

MIT Open Access Articles

The canonical basis of the quantum adjoint representation

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Lusztig, George. "The Canonical Basis of the Quantum Adjoint Representation." Journal of Combinatorial Algebra 1, 1 (2017): 45–57 © 2018 European Mathematical Publishing House

As Published: http://dx.doi.org/10.4171/JCA/1-1-2

Publisher: European Mathematical Publishing House

Persistent URL: http://hdl.handle.net/1721.1/115866

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

THE CANONICAL BASIS OF THE QUANTUM ADJOINT REPRESENTATION

G. Lusztig

INTRODUCTION

0.1. According to Drinfeld and Jimbo, the universal enveloping algebra of a simple split Lie algebra \mathfrak{g} over \mathbf{Q} admits a remarkable deformation \mathbf{U} (as a Hopf algebra over $\mathbf{Q}(v)$, where v is an indeterminate) called a quantized enveloping algebra. Moreover, the irreducible finite dimensional g-modules admit quantum deformation to become simple U-modules. In [L3], I found that these quantum deformations admit canonical bases with very favourable properties (at least when \mathfrak{g} is of type A, D or E) which give also rise by specialization to canonical bases of the corresponding simple \mathfrak{g} -modules. (Later, Kashiwara [Ka] found another approach to the canonical bases.) In this paper we are interested in the canonical basis of the quantum deformation Λ of the adjoint representation of \mathfrak{g} . Before the introduction of the canonical bases, in [L1], [L2], I found a basis of Λ in which the generators E_i, F_i of U act through matrices whose entries are polynomials in $\mathbf{N}[v]$. By specialization, this gives rise to a basis of the adjoint representation of \mathfrak{g} in which the Chevalley generators e_i, f_i of \mathfrak{g} act through matrices whose entries are natural numbers, in contrast with the more traditional treatments where a multitude of signs appear.

In this paper (Section 1) I will prove that the basis of Λ from [L1], [L2] coincides with the canonical basis of Λ . I thank Meinolf Geck for suggesting that I should write down this proof. As an application (Section 2), I will give a definition of the Chevalley group over a field k associated to \mathfrak{g} which seems to be simpler than Chevalley's original definition [Ch].

0.2. Let *I* be a finite set with a given **Z**-valued symmetric bilinear form $y, y' \mapsto y \cdot y'$ on $Y = \mathbf{Z}[I]$ such that the symmetric matrix $(i \cdot j)_{i,j \in I}$ is positive definite and such that $i \cdot i/2 \in \{1, 2, 3, ...\}$ for all $i \in I$, $i \cdot i/2 = 1$ for some $i \in I$ and $2\frac{i \cdot j}{i \cdot i} \in \{0, -1, -2, ...\}$ for all $i, j \in I$. In the terminology of [L4, 1.1.1, 2.1.3], this is a *Cartan datum* of finite type. We shall assume that our Cartan datum is irreducible (see [L4, 2.1.3]). Let *e* be the maximum value of $i \cdot i/2$ for $i \in I$. We

Supported by NSF grant DMS-1303060.

have $e \in \{1, 2, 3\}$. Let $I^1 = \{i \in I; i \cdot i/2 = 1\}$, $I^e = \{i \in I; i \cdot i/2 = e\}$. If e = 1 we have clearly $I^1 = I^e = I$; if e > 1, we have $I = I^1 \sqcup I^e$.

Let $X = \text{Hom}(Y, \mathbf{Z})$ and let $\langle , \rangle : Y \times X \to \mathbf{Z}$ be the obvious pairing. For $j \in I$ we define $j' \in X$ by $\langle i, j' \rangle = 2\frac{i \cdot j}{i \cdot i}$ for all $i \in I$. Let v be an indeterminate. For $i \in I$ we set $v_i = v^{i \cdot i/2}$; for $n \in \mathbf{Z}$ we set $[n]_i = \frac{v_i^n - v_i^{-n}}{v_i - v_i^{-1}}$; for $n \in \mathbf{N}$ we set $[n]_i^! = \prod_{s=1}^n [s]_i$.

Note that when $i \in I^1$ we have $v_i = v$ and we write [n] instead of $[n]_i$.

0.3. Following Drinfeld and Jimbo we define **U** to be the associative $\mathbf{Q}(v)$ -algebra with generators $E_i, F_i \ (i \in I), K_y \ (y \in Y)$ and relations

$$\begin{split} K_{y}K_{y'} &= K_{y+y'} \text{ for } y, y' \text{ in } Y, \\ K_{i}E_{j} &= v^{\langle i,j' \rangle} E_{j}K_{i} \text{ for } i, j \text{ in } I, \\ K_{i}F_{j} &= v^{-\langle i,j' \rangle} F_{j}K_{i} \text{ for } i, j \text{ in } I, \\ E_{i}F_{j} - F_{j}E_{i} &= \delta_{ij} \frac{K_{i}^{i\cdot i/2} - K_{i}^{-i\cdot i/2}}{v_{i} - v_{i}^{-1}}, \\ \sum_{p,p' \in \mathbf{N}; p+p'=1-\langle i,j' \rangle} (-1)^{p'} \frac{[p+p']_{i}!}{[p]_{i}![p']_{i}!} E_{i}^{p}E_{j}E_{i}^{p'} = 0 \text{ for } i \neq j \text{ in } I, \\ \sum_{p,p' \in \mathbf{N}; p+p'=1-\langle i,j' \rangle} (-1)^{p'} \frac{[p+p']_{i}!}{[p]_{i}![p']_{i}!} F_{i}^{p}F_{j}F_{i}^{p'} = 0 \text{ for } i \neq j \text{ in } I. \end{split}$$

For $i \in I, s \in \mathbb{N}$ we set $E_i^{(s)} = ([s]_i^!)^{-1} E_i^s, F_i^{(s)} = ([s]_i^!)^{-1} F_i^s.$

By [L4, 3.1.12], there is a unique **Q**-algebra isomorphism⁻: $\mathbf{U} \to \mathbf{U}$ such that $\overline{E}_i = E_i, \overline{F}_i = F_i$ for $i \in I, \overline{K}_y = K_{-y}$ for $y \in Y$ and $\overline{v^n u} = v^{-n} \overline{u}$ for all $u \in \mathbf{U}$, $n \in \mathbf{Z}$.

0.4. Let W be the (finite) subgroup of Aut(X) generated by the involutions $s_i : \lambda \mapsto \lambda - \langle i, \lambda \rangle i'$ of X $(i \in I)$. Let R be the smallest W-stable subset of X that contains $\{i'; i \in I\}$. This is a finite set. Let $R^+ = \{\alpha \in R; \alpha \in \sum_i Ni'\}, R^- = -R^+$. Let R^1 (resp. R^e be the smallest W-stable subset of X that contains I^1 (resp. I^e). Then R^1, R^e are W-orbits. If e = 1 we have $R = R^1 = R^e$; if e > 1 we have $R = R^1 \sqcup R^e$.

For $i \in I$ and $\alpha \in R$ let $p_{i,\alpha}$ be the largest integer ≥ 0 such that $\alpha, \alpha + i', \alpha + 2i', \ldots, \alpha + p_{i,\alpha}i'$ belong to R and let $q_{i,\alpha}$ be the largest integer ≥ 0 such that $\alpha, \alpha - i', \alpha - 2i', \ldots, \alpha - q_{i,\alpha}i'$ belong to R. Then:

(a) $\langle i, \alpha \rangle = q_{i,\alpha} - p_{i,\alpha}$ and $p_{i,\alpha} + q_{i,\alpha} \leq 3$.

(b) If $p_{i,\alpha} + q_{i,\alpha} > 1$, then we must have $p_{i,\alpha} + q_{i,\alpha} = e$, $i \in I^1$; moreover, $\alpha - q_{i,\alpha}i' \in R^e$, $\alpha + p_{i,\alpha}i' \in R^e$ and $\alpha + ki' \in R^1$ for $-q_{i,\alpha} < k < p_{i,\alpha}$. (c) If $p_{i,\alpha} + q_{i,\alpha} = 1$, then either both $\alpha - q_{i,\alpha}i'$, $\alpha + p_{i,\alpha}i'$ belong to R^e or both belong to R^1 .

We define $h: R^+ \to \mathbf{N}$ by $h(\alpha) = \sum_{i \in I} n_i$ where $\alpha = \sum_{i \in I} n_i i'$ with $n_i \in \mathbf{N}$. There is a unique $\alpha_0 \in R^+$ such that $h(\alpha_0)$ is maximum. We then have $p_{i,\alpha_0} = 0$ for all $i \in I$; it follows that $\langle i, \alpha_0 \rangle \geq 0$ for any $i \in I$. We have $\alpha_0 \in R^e$.

0.5. The U-module $\Lambda := \Lambda_{\alpha_0}$ (see [L4, 3.5.6]) is well defined; it is simple, see [L4, 6.2.3], and finite dimensional, see [L4, 6.3.4]. Let $\eta = \eta_{\alpha_0} \in \Lambda$ be as in [L4, 3.5.7]. We have a direct sum decomposition (as a vector space) $\Lambda = \bigoplus_{\lambda \in X} \Lambda^{\lambda}$ where $\Lambda^{\lambda} = \{x \in \Lambda; K_y x = v^{\langle y, \lambda \rangle} x \quad \forall y \in Y\}$. Note that for $i \in I, \lambda \in X$ we have $E_i X^{\lambda} \subset X^{\lambda+i'}, F_i X^{\lambda} \subset X^{\lambda-i'}$. Moreover, we have dim $\Lambda^{\alpha} = 1$ if $\alpha \in R$, dim $\Lambda^0 = \sharp(I)$ and $\Lambda^{\lambda} = 0$ if $\lambda \notin R \cup \{0\}$.

Let **B** be the canonical basis of Λ defined in [L4, 14.4.11]. We now state the following result in which || denotes absolute value.

Theorem 0.6. (a) Λ has a unique $\mathbf{Q}(v)$ -basis $\mathfrak{E} = \{X_{\alpha}; \alpha \in R\} \sqcup \{t_i; i \in I\}$ such that (i)-(iii) below hold.

(i) $X_{\alpha_0} = \eta$; (ii) for $\alpha \in R$ we have $X_{\alpha} \in \Lambda^{\alpha}$; for $i \in I$ we have $t_i \in \Lambda^0$; (iii) for any $i \in I$ the linear maps $E_i : \Lambda \to \Lambda$, $F_i : \Lambda \to \Lambda$, are given by

$$\begin{split} E_i X_\alpha &= [q_{i,\alpha} + 1]_i X_{\alpha+i'} \text{ if } \alpha \in R, p_{i,\alpha} > 0, \\ & E_i X_{-i'} = t_i, \\ E_i X_\alpha &= 0 \text{ if } \alpha \in R, p_{i,\alpha} = 0, \alpha \neq -i', \\ & E_i t_j = [|\langle j, i' \rangle|]_j X_{i'}, \text{ if } j \in I, \\ & F_i X_\alpha &= [p_{i,\alpha} + 1]_i X_{\alpha-i'} \text{ if } \alpha \in R, q_{i,\alpha} > 0, \\ & F_i X_{i'} = t_i, \\ & F_i X_\alpha = 0 \text{ if } \alpha \in R, q_{i,\alpha} = 0, \alpha \neq i', \\ & F_i t_j = [|\langle j, i' \rangle|]_j X_{-i'} \text{ if } j \in I. \end{split}$$

(b) We have $\mathfrak{E} = \mathbf{B}$.

Note that the uniqueness of \mathfrak{E} in (a) is straightforward. The existence of \mathfrak{E} is proved in [L1] under the assumption that e = 1 and is stated in [L2] without assumption on e. We shall note use these results here. Instead, in 1.15 we shall give a new proof (based on results in [L4]) of the existence of \mathfrak{E} at the same time as proving (b).

1. Proof of Theorem 0.6

1.1. For any $\lambda \in X$, $\mathbf{B} \cap \Lambda^{\lambda}$ is a basis of Λ^{λ} . In particular, for any $\alpha \in R$, $\mathbf{B} \cap \Lambda^{\alpha}$ is a single element; we denote it by b^{α} .

Let $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$ and let $\Lambda_{\mathcal{A}}$ be the \mathcal{A} -submodule of Λ generated by **B**. It is known that $L_{\mathcal{A}}$ is stable under $E_i^{(s)}, F_i^{(s)}$ for $i \in I, s \in N$.

By [L4, 19.3.4], there is a unique **Q**-linear isomorphism $\bar{}: \Lambda \to \Lambda$ such that $\overline{u\eta} = \bar{u}\eta$ for all $u \in \mathbf{U}$. By [L4, 19.1.2], there is a unique bilinear form (,) : $\Lambda \times \Lambda \to \mathbf{Q}(v)$ such that $(\eta, \eta) = 1$ and $(E_i x, x') = (x, v_i K_i^{i \cdot i/2} F_i x')$, $(F_i x, x') = (x, v_i K_i^{-i \cdot i/2} E_i x')$, $(K_y x, x') = (x, K_y x')$ for all $i \in I, y \in Y$ and x, x' in Λ .

1.2. By [L4, 19.3.5],

(a) an element $b \in \Lambda$ satisfies $\pm b \in \mathbf{B}$ if and only if $b \in \Lambda_{\mathcal{A}}$, $\overline{b} = b$ and $(b,b) \in 1 + v^{-1}\mathbf{Z}[v^{-1}]$.

1.3. By [Ka] (see also [L4, 16.1.4]), for any $i \in I$ there is a unique $\mathbf{Q}(v)$ -linear map $\tilde{F}_i : \Lambda \to \Lambda$ such that the following holds: if $x \in \Lambda^{\lambda}$, $E_i x = 0$ and $s \in \mathbf{N}$, then $\tilde{F}_i(F_i^{(s)}x) = F_i^{(s+1)}x$. Moreover, there is a unique $\mathbf{Q}(v)$ -linear map $\tilde{E}_i : \Lambda \to \Lambda$ such that the following holds: if $x \in \Lambda^{\lambda}$, $F_i x = 0$ and $s \in \mathbf{N}$, then $\tilde{E}_i(E_i^{(s)}x) = E_i^{(s+1)}x$. Let $\mathbf{A} = \mathbf{Q}(v) \cap \mathbf{Q}[[v^{-1}]]$. Let $\Lambda_{\mathbf{A}}$ be the \mathbf{A} -submodule of Λ generated by \mathbf{B} . For any $x \in \Lambda_{\mathbf{A}}$ let \underline{x} be the image of x in $\underline{\Lambda} := \Lambda_{\mathbf{A}}/v^{-1}\Lambda_{\mathbf{A}}$. Note that $\{\underline{b}; b \in \mathbf{B}\}$ is a \mathbf{Q} -basis of $\underline{\Lambda}$. By [Ka] (see also [L4, 20.1.4]), for any $i \in I$, \tilde{F}_i, \tilde{E}_i preserve $\Lambda_{\mathbf{A}}, v^{-1}\Lambda_{\mathbf{A}}$ hence they induce \mathbf{Q} -linear maps $\underline{\Lambda} \to \underline{\Lambda}$ (denoted again by \tilde{F}_i, \tilde{E}_i). From [Ka] (see also [L4, 20.1.4]) we see also that

(a) $\tilde{F}_i : \underline{\Lambda} \to \underline{\Lambda}, \tilde{E}_i : \underline{\Lambda} \to \underline{\Lambda}$ act in the basis $\{\underline{b}; b \in \mathbf{B}\}$ by matrices with all entries in $\{0, 1\}$.

In the case where e = 1, the results in this subsection are not needed; in this case, instead of (a), we could use the positivity of the matrix entries of $E_i : \Lambda \to \Lambda$, $F_i : \Lambda \to \Lambda$ proved in [L4, 22.1.7].

1.4. Let $\alpha \in R$, $i \in I$ be such that $q_{i,\alpha} = 0, p = p_{i,\alpha} \geq 1$. Then we have $\langle i, \alpha \rangle = -p$. Let $Z^0 = b^{\alpha} \in \Lambda^{\alpha}$. We have $F_i Z^0 \in \Lambda^{\alpha-i'}$ hence $F_i Z^0 = 0$. We define $Z^k \in \Lambda^{\alpha+ki'}$ for $k = 1, \ldots, p$ by the inductive formula (a) $Z^k = [k]_i^{-1} E_i Z^{k-1} = \tilde{E}_i^k Z^0$.

Using $F_i Z^0 = 0$ together with (a) and the commutation formula between E_i, F_i we see by induction on k that for k = 1, ..., p we have

(b) $F_i Z^k = [p - k + 1]_i Z^{k-1}$.

1.5. We preserve the setup of 1.4. We show that for $k \in [0, p-1]$ we have

(a)
$$(Z^{k+1}, Z^{k+1}) = \frac{1 - v_i^{-2p+2k}}{1 - v_i^{-2k-2}} (Z^k, Z^k).$$

We have $E_i Z^k = [k+1]_i Z^{k+1}$ hence using 1.4(b):

$$\begin{split} &[k+1]_{i}^{2}(Z^{k+1}, Z^{k+1}) = (E_{i}Z^{k}, E_{i}Z^{k}) = (Z^{k}, v_{i}K_{i}^{i\cdot i/2}F_{i}E_{i}Z^{k}) \\ &= (Z^{k}, v_{i}K_{i}^{i\cdot i/2}E_{i}F_{i}Z^{k}) - (Z^{k}, v_{i}K_{i}^{i\cdot i/2}\frac{K_{i}^{i\cdot i/2} - K_{i}^{-i\cdot i/2}}{v_{i} - v_{i}^{-1}}Z^{k}) \\ &= (v_{i}^{\langle i, \alpha + ki' \rangle + 1}[k]_{i}[p - k + 1]_{i} - \frac{v_{i}^{2\langle i, \alpha + ki' \rangle + 1} - v_{i}}{v_{i} - v_{i}^{-1}})(Z^{k}, Z^{k}) \\ &= (v_{i}^{-p + 2k + 1}[k]_{i}[p - k + 1]_{i} - \frac{v_{i}^{-2p + 4k + 1} - v_{i}}{v_{i} - v_{i}^{-1}})(Z^{k}, Z^{k}). \end{split}$$

We have

$$\begin{aligned} (v_i - v_i^{-1})^2 (v_i^{-p+2k+1}[k]_i[p-k+1]_i - \frac{v_i^{-2p+4k+1} - v_i}{v_i - v_i^{-1}}) \\ &= v_i^{-p+2k+1} (v_i^k - v_i^{-k}) (v_i^{p-k+1} - v_i^{-p+k-1}) - (v_i^{-2p+4k+1} - v_i) (v_i - v_i^{-1}) \\ &= v_i^{2k+2} - v_i^2 - v_i^{-2p+4k} + v_i^{-2p+2k} - v_i^{-2p+4k+2} + v_i^2 + v_i^{-2p+4k} - 1 \\ &= v_i^{2k+2} + v_i^{-2p+2k} - v_i^{-2p+4k+2} - 1 = (v_i^{-2p+2k} - 1) (1 - v_i^{2k+2}). \end{aligned}$$

Thus

$$(Z^{k+1}, Z^{k+1}) = \frac{(v_i^{-2p+2k} - 1)(1 - v_i^{2k+2})}{(v_i^{k+1} - v_i^{-k-1})^2} (Z^k, Z^k)$$

and (a) follows.

1.6. We preserve the setup of 1.4. We must have $p \in \{1, 2, 3\}$.

Assume first that p = 1. From 1.5(a) we have $(Z^1, Z^1) = (Z^0, Z^0)$.

Assume now that p = 2. Then from 0.4(b) we have $v_i = v$ and from 1.5(a) we have

 $\begin{aligned} &(Z^1, Z^1) = \frac{1 - v^{-4}}{1 - v^{-2}} (Z^0, Z^0), \\ &(Z^2, Z^2) = \frac{1 - v^{-2}}{1 - v^{-4}} (Z^1, Z^1) = (Z^0, Z^0). \end{aligned}$

Assume next that p = 3. Then from 0.4(b) we have $v_i = v$ and from 1.5(a) we have

$$(Z^{1}, Z^{1}) = \frac{1-v^{-6}}{1-v^{-2}}(Z^{0}, Z^{0}),$$

$$(Z^{2}, Z^{2}) = (Z^{1}, Z^{1}).$$

$$(Z^{3}, Z^{3}) = \frac{1-v^{-2}}{1-v^{-6}}(Z^{2}, Z^{2}) = (Z^{0}, Z^{0})$$

1.7. We preserve the setup of 1.6. We show:

(a) We have $Z^k = b^{\alpha+ki'}$ for k = 0, 1, ..., p. Since $Z^0 \in \mathbf{B}$, we have $Z^0 \in \Lambda_{\mathcal{A}}, \bar{Z}^0 = Z^0, (Z^0, Z^0) \in 1 + v^{-1}\mathbf{Z}(v^{-1})$. From the formulas in 1.6 we see that $(Z^k, Z^k) \in 1 + v^{-1}\mathbf{Z}(v^{-1})$ for k = 0, 1, ..., p. For k = 1, ..., p we have $E_i Z^{k-1} = [k]_i Z^k$ hence for k = 0, 1, ..., p we have $Z^k = 0$

 $E_i^{(k)} Z^0 \in \Lambda_{\mathcal{A}}$. From $Z^k = E_i^{(k)} Z^0$ we see also that $\overline{Z}^k = \overline{E_i^{(k)}} \overline{Z^0} = E_i^{(k)} Z^0 = Z^k$. Using 1.2(a) we see that $\epsilon Z^k \in \mathbf{B}$ for some $\epsilon \in \{1, -1\}$. By 1.4(a), we have $\underline{Z}^k = \tilde{E}_i^k \underline{Z}^0$. Using this together with and 1.3(a), we see that $\epsilon = 1$ so that $Z^k \in \mathbf{B}$. Since $Z^k \in \Lambda^{\alpha + ki'}$, we see that $Z^k = b^{\alpha + ki'}$.

1.8. Let $i \in I, \tilde{\alpha} \in R$ be such that $p_{i,\tilde{\alpha}} > 0$ (or equivalently such that $\tilde{\alpha} + i' \in R$). We show:

(a)
$$E_i b^{\tilde{\alpha}} = [q_{i,\tilde{\alpha}} + 1]_i b^{\tilde{\alpha}+i'}$$

Let $\alpha = \tilde{\alpha} - q_{i,\tilde{\alpha}}i' \in R$. We have $q_{i,\alpha} = 0$, $p_{i,\alpha} = p_{i,\tilde{\alpha}} + q_{i,\tilde{\alpha}} > 0$. We set $Z^0 = b^{\alpha}$. We then define Z^k with $k \in [1, p_{i,\alpha}]$ in terms of α, Z^0 as in 1.4. Note that $E_i Z^{k-1} = [k]_i Z^k$ for any $k \in [1, p_{i,\alpha}]$. Taking $k = q_{i,\tilde{\alpha}} + 1$ (so that $k \in [1, p_{i,\alpha}]$) we deduce

$$E_i Z^{q_{i,\tilde{\alpha}}} = [q_{i,\tilde{\alpha}} + 1]_i Z^{q_{i,\tilde{\alpha}} + 1}$$

By 1.7(a) we have $Z^{q_{i,\tilde{\alpha}}} = b^{\tilde{\alpha}}, Z^{q_{i,\tilde{\alpha}}+1} = b^{\tilde{\alpha}+i'}$. This proves (a).

Here is a special case of (a); we assume that $i \neq j$ in I:

(b) If $\langle j, i' \rangle < 0$ then $E_j b^{i'} = b^{i'+j'}$; if $\langle j, i' \rangle = 0$ then $E_j b^{i'} = 0$. It is enough to use that $p_{j,i'} = -\langle j, i' \rangle$ (we have $q_{j,i'} = 0$ since $i' - j' \notin R$).

1.9. Let $i \in I, \tilde{\alpha} \in R$ be such that $q_{i,\tilde{\alpha}} > 0$ (or equivalently such that $\tilde{\alpha} - i' \in R$). We show:

(a)
$$F_i b^{\tilde{\alpha}} = [p_{i,\tilde{\alpha}} + 1]_i b^{\tilde{\alpha} - i'}.$$

Let $\alpha = \tilde{\alpha} - q_{i,\tilde{\alpha}}i' \in R$. We have $q_{i,\alpha} = 0$, $p_{i,\alpha} = p_{i,\tilde{\alpha}} + q_{i,\tilde{\alpha}} > 0$. We set $Z^0 = b^{\alpha}$. We then define Z^k with $k \in [1, p_{i,\alpha}]$ in terms of α, Z^0 as in 1.4. Note that $F_i Z^k = [p_{i,\alpha} - k + 1]_i Z^{k-1}$ for $k \in [1, p_{i,\alpha}]$. Taking $k = q_{i,\tilde{\alpha}}$ (so that $k \in [1, p_{i,\alpha}]$) we deduce

$$F_i Z^{q_{i,\tilde{\alpha}}} = [p_{i,\tilde{\alpha}} + 1]_i Z^{q_{i,\tilde{\alpha}} - 1}.$$

By 1.7(a) we have $Z^{q_{i,\tilde{\alpha}}} = b^{\tilde{\alpha}}, Z^{q_{i,\tilde{\alpha}}-1} = b^{\tilde{\alpha}-i'}$. This proves (a).

Here is a special case of (a); we assume that $i \neq j$ in *I*:

(b) If $\langle j, i' \rangle < 0$ then $F_j b^{-i'} = b^{-i'-j'}$; if $\langle j, i' \rangle = 0$, then $F_j b^{-i'} = 0$. It is enough to use that $q_{j,-i'} = \langle j, -i' \rangle$ (we have $p_{j,-i'} = 0$ since $-i' + j' \notin R$).

1.10. Let $i \in I$; we set $t_i = E_i b^{-i'} \in \Lambda^0$. We show

(a)
$$F_i t_i = (v_i + v_i^{-1}) b^{-i'}.$$

Indeed,

$$F_{i}t_{i} = F_{i}E_{i}b^{-i'} = E_{i}F_{i}b^{-i'} - \frac{K_{i}^{i\cdot i/2} - K_{i}^{-i\cdot i/2}}{v_{i} - v_{i}^{-1}}b^{-i'}$$
$$= \frac{v_{i}^{2} - v_{i}^{-2}}{v_{i} - v_{i}^{-1}}b^{i'} = (v_{i} + v_{i}^{-1})b^{-i'}.$$

We show:

(b)
$$(t_i, t_i) = (1 + v_i^{-2})(b^{-i'}, b^{-i'}).$$

Indeed, using (a) we have

$$(t_i, t_i) = (E_i b^{-i'}, t_i) = (b^{-i'}, v_i K_i^{i \cdot i/2} F_i t_i) = (b^{-i'}, v_i K_i^{i \cdot i/2} (v_i + v_i^{-1}) b^{-i'}) = (v_i + v_i^{-1}) v_i^{-\langle i, i' \rangle + 1} (b^{-i'}, b^{-i'}) = (1 + v_i^{-2}) (b^{-i'}, b^{-i'}).$$

From (b) we see that $(t_i, t_i) \in 1 + v^{-1} \mathbb{Z}[v^{-1}]$; from the definitions we have also $t_i \in \Lambda_{\mathcal{A}}$ and $\bar{t}_i = t_i$; it follows that $\epsilon t_i \in \mathbb{B}$ for some $\epsilon \in \{1, -1\}$. Now from $t_i = E_i b^{-i'}$ and $F_i b^{-i'} = 0$ we see that $t_i = \tilde{E}_i b^{-i'}$ hence $\underline{t_i} = \tilde{E}_i \underline{b}^{-i'}$. Using this together with 1.3(a) and we see that $\epsilon = 1$ hence

(c)
$$t_i \in \mathbf{B}$$

We show:

(d) If
$$i \neq j$$
, then $F_i t_j = [-\langle j, i' \rangle]_j b^{-i'}$.

We have $F_i t_j = F_i E_j b^{-j'} = E_j F_i b^{-j'}$. This is 0 if $\langle i, j' \rangle = 0$ since by 1.9(b) we have $F_i b^{-j'} = 0$ (so in this case (a) holds). Now assume that $\langle i, j' \rangle < 0$. Then using 1.9(b) and 1.8(a) we have

$$E_j F_i b^{-j'} = E_j b^{-i'-j'} = [q_{j,-i'-j'} + 1]_j b^{-i'}.$$

Note that $p_{j,-i'-j'} = 1$ since $-i' - j' + j' \in R$, $-i' - j' + 2j' \notin R$. Hence $q_{j,-i'-j'} - 1 = \langle j, -i' - j' \rangle = -2 - \langle j, i' \rangle$ that is, $q_{i,-i'-j'} + 1 = -\langle j, i' \rangle$. This completes the proof of (d).

We show:

(e)
$$(E_i t_i, E_i t_i) = [2]_i^2 (b^{-i'}, b^{-i'}).$$

Indeed, using (b) we have

$$(E_{i}t_{i}, E_{i}t_{i}) = (t_{i}, v_{i}K_{i}^{i \cdot i/2}F_{i}E_{i}t_{i}) = (t_{i}, v_{i}K_{i}^{i \cdot i/2}E_{i}F_{i}t_{i})$$

- $(t_{i}, v_{i}K_{i}^{i \cdot i/2}\frac{K_{i}^{i \cdot i/2} - K_{i}^{-i \cdot i/2}}{v_{i} - v_{i}^{-1}}t_{i}) = [2]_{i}(t_{i}, v_{i}K_{i}^{i \cdot i/2}E_{i}b^{-i'}) = [2]_{i}(t_{i}, v_{i}K_{i}^{i \cdot i/2}t_{i})$
= $[2]_{i}(t_{i}, v_{i}t_{i}) = [2]_{i}^{2}(b^{-i'}, b^{-i'}),$

proving (e).

From (e) we get $([2]_i^{-1}E_it_i, [2]_i^{-1}E_it_i) \in 1 + v^{-1}\mathbf{Z}[v^{-1}]$. We have $[2]_i^{-1}E_it_i = E_i^{(2)}b^{-i'} \in \Lambda_{\mathcal{A}}$. Moreover, we have clearly $\overline{[2]_i^{-1}E_it_i} = [2]_i^{-1}E_it_i$. Using 1.2(a) we deduce that $\epsilon[2]_i^{-1}E_it_i \in \mathbf{B}$ for some $\epsilon \in \{1, -1\}$. Since $[2]_i^{-1}E_it_i \in \Lambda^{i'}$, we must have $\epsilon[2]_i^{-1}E_it_i = b^{i'}$. Thus we have $\epsilon E_i^{(2)}b^{-i'} = b^{i'}$. Since $F_ib^{-i'} = 0$ it follows that $\tilde{E}_i^2b^{-i'} = \epsilon b^{i'}$ and $\tilde{E}_i^2\underline{b^{-i'}} = \epsilon \underline{b^{i'}}$. Using 1.3(a), we deduce that $\epsilon = 1$. Thus, (f) $E_it_i = [2]_ib^{i'}$.

1.11. Let $i \in I$. We set $\tilde{t}_i = F_i b^{i'} \in \Lambda^0$. We show:

(a)
$$E_i \tilde{t}_i = [2]_i b^{i'}$$

Indeed,

$$E_i \tilde{t}_i = E_i F_i b^{i'} = F_i E_i b^{i'} + \frac{K_i^{i \cdot i/2} - K_i^{-i \cdot i/2}}{v_i - v_i^{-1}} b^{i'} = \frac{v_i^2 - v_i^{-2}}{v_i - v_i^{-1}} b^{i'} = [2]_i b^{i'}.$$

We show:

(b)
$$(\tilde{t}_i, \tilde{t}_i) = [2]_i v_i^{-1}(b^{i'}, b^{i'}).$$

Indeed, using (a) we have:

$$\begin{aligned} (\tilde{t}_i, \tilde{t}_i) &= (F_i b^{i'}, \tilde{t}_i) = (b^{i'}, v_i K_i^{-i \cdot i/2} E_i \tilde{t}_i) = (b^{i'}, v_i K_i^{-i \cdot i/2} [2]_i b^{i'}) \\ &= [2]_i v_i^{-1} (b^{i'}, b^{i'}). \end{aligned}$$

From (b) we see that $(\tilde{t}_i, \tilde{t}_i) \in 1 + v^{-1} \mathbb{Z}[v^{-1}]$; from the definitions we have also $\tilde{t}_i \in \Lambda_{\mathcal{A}}$ and $\overline{\tilde{t}}_i = \tilde{t}_i$; using 1.2(a) we see that $\epsilon \tilde{t}_i \in \mathbf{B}$ for some $\epsilon \in \{1, -1\}$. From $\tilde{t}_i = F_i b^{i'}$, $E_i b^{i'} = 0$ we see that $\tilde{t}_i = \tilde{F}_i b^{i'}$ hence $\underline{\tilde{t}}_i = \tilde{F}_i \underline{b}^{i'}$. Using this and 1.3(a) we deduce that $\epsilon = 1$ so that

 $\in \mathbf{B}.$

We show:

(d)
$$(\tilde{t}_i, t_i) = \pm (1 + v_i^{-2})(b^{i'}, b^{i'}).$$

Indeed, using 1.10(f) we have

$$(\tilde{t}_i, t_i) = (F_i b^{i'}, t_i) = (b^{i'}, v_i K_i^{-i \cdot i/2} E_i t_i) = (b^{i'}, v_i K_i^{-i \cdot i/2} [2]_i b^{i'})$$
$$= v_i^{-1} [2]_i (b^{i'}, b^{i'}) = (1 + v_i^{-2}) (b^{i'}, b^{i'})$$

hence $(\tilde{t}_i, t_i) \in 1 + v^{-1} \mathbb{Z}[v^{-1}]$. If $\tilde{t}_i \neq t_i$ then, since $\tilde{t}_i \in \mathbb{B}$ and $t_i \in \mathbb{B}$, we would have $(\tilde{t}_i, t_i) \in v^{-1} \mathbb{Z}[v^{-1}]$ (see [L4, 19.3.3]), contradicting (d). Thus we hve $\tilde{t}_i = t_i$ and

(e)
$$F_i b^{i'} = t_i$$

We show:

(f) If
$$i \neq j$$
, then $E_i t_j = [-\langle j, i' \rangle]_j b^{i'}$.

Using (e) we have $E_i t_j = E_i F_j b^{j'} = F_j E_i b^{j'}$. This is 0 if $\langle i, j' \rangle = 0$ since by 1.8(b) we have $E_i b^{j'} = 0$ (so in this case (f) holds). Now assume that $\langle i, j' \rangle < 0$. Then using 1.8(b) and 1.9(a) we have

$$F_j E_i b^{j'} = F_j b^{i'+j'} = [p_{j,i'+j'} + 1]_j b^{i'}$$

Note that $q_{j,i'+j'} = 1$ since $i' + j' - j' \in R$, $i' + j' - 2j' \notin R$. Hence $1 - p_{j,i'+j'} = \langle j, i' + j' \rangle = 2 + \langle j, i' \rangle$ that is, $p_{i,i'+j'} + 1 = -\langle j, i' \rangle$. This completes the proof of (f).

1.12. We show:

(a) If $\alpha \in \mathbb{R}^1$, then $(b^{\alpha}, b^{\alpha}) = 1 + v^{-2} + \dots + v^{-2(e-1)} = v^{-e+1}[e]$. If $\alpha \in \mathbb{R}^e$, then $(b^{\alpha}, b^{\alpha}) = 1$.

Note that when e = 1 we have $R^1 = R^e$ and the two formulas in (a) are compatible with each other.

We first prove (a) for $\alpha \in R^+$ by descending induction on $h(\alpha)$. If $h(\alpha) = h(\alpha_0)$ then $\alpha = \alpha_0$ and we have $b^{\alpha} = \eta$ so that $(b^{\alpha}, b^{\alpha}) = (\eta, \eta) = 1$. Now assume that $\alpha \in R^+$, $h(a) < h(\alpha_0)$. We can find $\alpha' \in R^+$, $i \in I$ such that $q_{i,\alpha'} = 0$, $p = p_{i,\alpha'} \ge 1$ and $\alpha = \alpha' + ki'$ where $k \in \{0, 1, \dots, p-1\}$. Then $h(\alpha' + pi') > h(\alpha)$ hence $(\alpha' + pi', \alpha' + pi')$ is given by the formula in (a). Assume first that p = 1. Then $\alpha = \alpha'$ and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (b^{\alpha'+i'}, b^{\alpha'+i'})$. By 0.4(c), either both $\alpha, \alpha + i'$ belong to R^e or both belong to R^1 ; (a) follows in this case. Next assume that p > 1. By 0.4(b) we have p = e and $\alpha' + pi' \in R^e$. Hence $(b^{\alpha'+pi'}, b^{\alpha'+pi'}) = 1$. If k = 0 then $\alpha \in R^e$ (see 0.4(b)) and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (b^{\alpha'+pi'}, b^{\alpha'+pi'})$; (a) follows in this case. If k > 0, k < p then $\alpha \in R^1$ (see 0.4(b)) and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (1 + v^{-2} + \cdots + v^{-2(e-1)})(b^{\alpha'+pi'}, b^{\alpha'+pi'})$; (a) follows in this case. This completes the proof of (a) assuming that $\alpha \in R^+$.

We now prove (a) for $\alpha \in \mathbb{R}^-$ by induction on $h(-\alpha) \geq 1$. Let $i \in I$. Recall that \tilde{t}_i, t_i satisfy $\tilde{t}_i = t_i$ (see 1.11), $(t_i, t_i) = [2]_i v_i^{-1}(b^{-i'}, b^{-i'})$ (see 1.10(b)) and $(\tilde{t}_i, \tilde{t}_i) = [2]_i v_i^{-1}(b^{i'}, b^{i'})$ (see 1.11(b)). It follows that

(b)
$$(b^{-i'}, b^{-i'}) = (b^{i'}, b^{i'}).$$

In particular, (a) holds when $h(-\alpha) = 1$. We now assume that $\alpha \in R^-$ and $h(-\alpha) \geq 2$. We can find $\alpha' \in R^-$, $i \in I$ such that $q_{i,\alpha'} = 0$, $p = p_{i,\alpha'} \geq 1$ and $\alpha = \alpha' + ki'$ where $k \in \{0, 1, \dots, p-1\}$. Then $h(-(\alpha' + pi')) < h(-\alpha)$ hence $(\alpha' + pi', \alpha' + pi')$ is given by the formula in (a). The rest of the proof is a repetition of the first part of the proof. Assume first that p = 1. Then $\alpha = \alpha'$ and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (b^{\alpha'+i'}, b^{\alpha'+i'})$. By 0.4(c), either both $\alpha, \alpha + i'$ belong to R^e or both belong to R^1 ; (a) follows in this case. Next assume that p > 1. By 0.4(b) we have p = e and $\alpha' + pi' \in R^e$. Hence $(b^{\alpha'+pi'}, b^{\alpha'+pi'}) = 1$. If k = 0 then $\alpha \in R^e$ (see 0.4(b)) and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (b^{\alpha'+pi'}, b^{\alpha'+pi'})$; (a) follows in this case. If k > 0, k < p then $\alpha \in R^1$ (see 0.4(b)) and by 1.6 and 1.7(a) we have $(b^{\alpha}, b^{\alpha}) = (1 + v^{-2} + \dots + v^{-2(e-1)})(b^{\alpha'+pi'}, b^{\alpha'+pi'})$; (a) follows in this case. This completes the proof of (a) assuming that $\alpha \in R^-$; hence (a) is proved in all cases.

1.13. We show:

(a) If $i \in I^1$ then $(t_i, t_i) = (1 + v^{-2})(1 + v^{-2} + \dots + v^{-2(e-1)})$. If $i \in I^e$ then $(t_i, t_i) = 1 + v_i^{-2} = 1 + v^{-2e}$. Note that when e = 1 we have $I^1 = I^e$ and the two formulas in (a) are compatible

Note that when e = 1 we have $I^{1} = I^{e}$ and the two formulas in (a) are compatible with each other.

From 1.10(b) we have $(t_i, t_i) = [2]_i v_i^{-1}(b^{-i'}, b^{-i'})$. Using 1.12(a) we see that (a) holds.

In the remainder of this subsection we fix $i \neq j$ in I. We show:

(b) If at least one of i, j is in I^1 and $i \cdot j \neq 0$ then $(t_i, t_j) = v^{-e}[e]$. If both i, j are in I^e and $i \cdot j \neq 0$ then $(t_i, t_j) = v^{-e}$. If $i \cdot j = 0$ then $(t_i, t_j) = 0$. Using 1.10(d), we have

$$(t_i, t_j) = (E_i b^{-i'}, t_j) = (b^{-i'}, v_i K_i^{i \cdot i/2} F_i t_j)$$

= $[-\langle j, i' \rangle]_j (b^{-i'}, v_i K_i^{i \cdot i/2} b^{-i'}) = v_i^{-1} [-\langle j, i' \rangle]_j (b^{-i'}, b^{-i'}).$

We see that if $\langle j, i' \rangle = 0$ then $(t_i, t_j) = 0$.

Now assume that $\langle j, i' \rangle \neq 0$. If $i \in I^e, j \in I^e$ then $\langle j, i' \rangle = -1$ and $(t_i, t_j) = v^{-e}$. If $i \in I^e, j \in I^1$ then $\langle j, i' \rangle = -e$ and $(t_i, t_j) = v^{-e}[e]$. If $i \in I^1, j \in I^e$ then $(t_i, t_j) = (t_j, t_i) = v^{-e}[e]$. If $i \in I^1, j \in I^1$ then $\langle j, i' \rangle = -1$ and $(t_i, t_j) = v^{-1}(1 + v^{-2} + \dots + v^{-2(e-1)}) = v^{-e}[e]$.

This completes the proof of (b).

1.14. We show:

(a) The elements $\{t_i; i \in I\}$ are distinct.

Let $i \neq j$ in *I*. If we had $t_i = t_j$, then we would have $(t_i, t_j) \in 1 + v^{-1} \mathbb{Z}[v^{-1}]$, see 1.13(a). But 1.13(b) shows that $(t_i, t_j) \in v^{-1} \mathbb{Z}[v^{-1}]$. This completes the proof of (a).

Let $\mathfrak{E} = \{b^{\alpha}; \alpha \in R\} \sqcup \{t_i, i \in I\}$. By (a), this is a subset of Λ rather than a multiset. We show:

(b) We have $\mathbf{B} = \mathfrak{E}$.

Since $t_i \in \mathbf{B}$ for any $i \in I$, we have $\mathfrak{E} \subset \mathbf{B}$. Clearly we have $\sharp(\mathfrak{E}) = \sharp(R) + \sharp(I)$. Since we have also $\sharp(\mathbf{B}) = \sharp(R) + \sharp(I)$, it follows that $\mathfrak{E} = \mathbf{B}$, proving (b).

1.15. We prove the existence part of 0.6(a). It is enough to prove that the elements $X_{\alpha} = b^{\alpha}$ and t_i satisfy the requirements of 0.6(a). Now 0.6(a)(i) holds by definition; 0.6(a)(ii) is immediate; 0.6(a)(iii) has been verified earlier in this section. This proves the existence part of 0.6(a) and at the same time proves 0.6(b) (see 1.14(b)).

2. Applications

2.1. Let $i \in I$, $k \in \mathbb{Z}_{>0}$. From 0.6 we see that the action of $E_i^{(k)}$, $F_i^{(k)}$ in the basis \mathfrak{E} of Λ is given by the following formulas.

$$E_{i}^{(k)}X_{\alpha} = \frac{[q_{i,\alpha} + k]_{i}^{!}}{[q_{i,\alpha}]_{i}^{!}[k]_{i}^{!}}X_{\alpha+ki'} \text{ if } \alpha \in R, \alpha \neq -i', k \leq p_{i,\alpha},$$

$$\begin{split} E_{i}^{(k)}X_{\alpha} &= 0 \text{ if } \alpha \in R, \alpha \neq -i', k > p_{i,\alpha}, \\ E_{i}X_{-i'} &= t_{i}, E_{i}^{(2)}X_{-i'} = X_{i'}, E_{i}^{(k)}X_{-i'} = 0 \text{ if } k \geq 3, \\ E_{i}t_{j} &= [|\langle j, i' \rangle|]_{j}X_{i'}, E_{i}^{(k)}t_{j} = 0 \text{ if } k \geq 2, \\ F_{i}^{(k)}X_{\alpha} &= \frac{[p_{i,\alpha} + k]_{i}^{l}}{[p_{i,\alpha}]_{i}^{l}[k]_{i}^{l}}X_{\alpha - ki'} \text{ if } \alpha \in R, \alpha \neq i', k \leq q_{i,\alpha}, \\ F_{i}^{(k)}X_{\alpha} &= 0 \text{ if } \alpha \in R, \alpha \neq i', k > q_{i,\alpha}, \\ F_{i}X_{i'} &= t_{i}, F_{i}^{(2)}X_{i'} = X_{-i'}, F_{i}^{(k)}X_{i'} = 0 \text{ if } k \geq 3, \\ F_{i}t_{j} &= [|\langle j, i' \rangle|]_{j}X_{-i'}, F_{i}^{(k)}t_{j} = 0 \text{ if } k \geq 2. \end{split}$$

In particular, we see that $E_i^{(k)}$, $F_i^{(k)}$ act through matrices with all entries in $\mathbf{N}[v, v^{-1}]$. (In the case where e = 1 this is already known from [L4, 22.1.7].)

2.2. If v is specialized to 1, the **U**-module Λ becomes a simple module over the universal enveloping algebra of a simple Lie algebra \mathfrak{g} corresponding to the adjoint representation $\Lambda|_{v=1}$ of \mathfrak{g} ; this module inherits a **Q**-basis $\{X_{\alpha}; \alpha \in R\} \sqcup \{t_i; i \in I\}$ in which the elements e_i, f_i of \mathfrak{g} defined by E_i, F_i act by matrices with entries in **N**. Let $z \in \mathbf{Q}$. Then for $i \in I$, the exponentials $x_i(z) = \exp(ze_i), y_i(z) = \exp(zf_i)$ are well defined endomorphisms of $\Lambda|_{v=1}$. Their action in the basis above can be described using the formulas in 2.1:

$$\begin{aligned} x_{i}(z)X_{\alpha} &= \sum_{0 \leq k \leq p_{i,\alpha}} \frac{(q_{i,\alpha} + k)!}{q_{i,\alpha}!k!} z^{k} X_{\alpha+ki'} \text{ if } \alpha \in R, \alpha \neq -i', \\ x_{i}(z)X_{-i'} &= X_{-i'} + zt_{i} + z^{2} X_{i'}, \\ x_{i}(z)t_{j} &= t_{j} + |\langle j, i' \rangle| zX_{i'} \text{ if } j \in I, \\ y_{i}(z)X_{\alpha} &= \sum_{0 \leq k \leq q_{i,\alpha}} \frac{(p_{i,\alpha} + k)!}{p_{i,\alpha}!k!} z^{k} X_{\alpha-ki'} \text{ if } \alpha \in R, \alpha \neq i', \\ y_{i}(z)X_{i'} &= X_{i'} + zt_{i} + z^{2} X_{-i'}, \\ y_{i}(z)t_{j} &= t_{j} + |\langle j, i' \rangle| zX_{-i'} \text{ if } j \in I. \end{aligned}$$

2.3. Now let k be any field and let V be the k-vector space with basis $\{X_{\alpha}; \alpha \in R\} \sqcup \{t_i; i \in I\}$. For any $i \in I$ and $z \in k$ we define $x_i(z) \in GL(V), y_i(z) \in GL(V)$ by the formulas in 2.2 (which involve only integer coefficients). The subgroup of GL(V) generated by the elements $x_i(z), y_i(z)$ for various $i \in I, z \in k$ is the Chevalley group [Ch] over k associated to \mathfrak{g} .

References

- [Ch] C.Chevalley, Sur certains groupes simples, Tohoku Math.J. 7 (1955), 14-66.
- [Ka] M.Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
- [L1] G.Lusztig, On quantum groups, J.Alg. 131 (1990), 466-475.
- [L2] G.Lusztig, Quantum groups at roots of 1, Geom. Ded. 35 (1990), 89-114.
- [L3] G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
- [L4] G.Lusztig, Introduction to quantum groups, Progr. in Math., vol. 110, Birkhäuser, Boston, 1993.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139