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THE CANONICAL BASIS OF THE

QUANTUM ADJOINT REPRESENTATION

G. Lusztig

Introduction

0.1. According to Drinfeld and Jimbo, the universal enveloping algebra of a sim-
ple split Lie algebra g over Q admits a remarkable deformation U (as a Hopf
algebra over Q(v), where v is an indeterminate) called a quantized enveloping
algebra. Moreover, the irreducible finite dimensional g-modules admit quantum
deformation to become simple U-modules. In [L3], I found that these quantum
deformations admit canonical bases with very favourable properties (at least when
g is of type A,D or E) which give also rise by specialization to canonical bases
of the corresponding simple g-modules. (Later, Kashiwara [Ka] found another ap-
proach to the canonical bases.) In this paper we are interested in the canonical
basis of the quantum deformation Λ of the adjoint representation of g. Before the
introduction of the canonical bases, in [L1], [L2], I found a basis of Λ in which
the generators Ei, Fi of U act through matrices whose entries are polynomials in
N[v]. By specialization, this gives rise to a basis of the adjoint representation of
g in which the Chevalley generators ei, fi of g act through matrices whose entries
are natural numbers, in contrast with the more traditional treatments where a
multitude of signs appear.

In this paper (Section 1) I will prove that the basis of Λ from [L1], [L2] coincides
with the canonical basis of Λ. I thank Meinolf Geck for suggesting that I should
write down this proof. As an application (Section 2), I will give a definition of
the Chevalley group over a field k associated to g which seems to be simpler than
Chevalley’s original definition [Ch].

0.2. Let I be a finite set with a given Z-valued symmetric bilinear form y, y′ 7→ y·y′

on Y = Z[I] such that the symmetric matrix (i · j)i,j∈I is positive definite and
such that i · i/2 ∈ {1, 2, 3, . . .} for all i ∈ I, i · i/2 = 1 for some i ∈ I and

2 i·j
i·i

∈ {0,−1,−2, . . .} for all i, j ∈ I. In the terminology of [L4, 1.1.1, 2.1.3],
this is a Cartan datum of finite type. We shall assume that our Cartan datum is
irreducible (see [L4, 2.1.3]). Let e be the maximum value of i · i/2 for i ∈ I. We
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2 G. LUSZTIG

have e ∈ {1, 2, 3}. Let I1 = {i ∈ I; i · i/2 = 1}, Ie = {i ∈ I; i · i/2 = e}. If e = 1
we have clearly I1 = Ie = I; if e > 1, we have I = I1 ⊔ Ie.

Let X = Hom(Y,Z) and let 〈, 〉 : Y × X −→ Z be the obvious pairing. For

j ∈ I we define j′ ∈ X by 〈i, j′〉 = 2 i·j
i·i

for all i ∈ I. Let v be an indeterminate.

For i ∈ I we set vi = vi·i/2; for n ∈ Z we set [n]i =
vn
i −v−n

i

vi−v−1

i

; for n ∈ N we set

[n]!i =
∏n

s=1[s]i.
Note that when i ∈ I1 we have vi = v and we write [n] instead of [n]i.

0.3. Following Drinfeld and Jimbo we define U to be the associative Q(v)-algebra
with generators Ei, Fi (i ∈ I), Ky (y ∈ Y ) and relations

KyKy′ = Ky+y′ for y, y′ in Y,

KiEj = v〈i,j
′〉EjKi for i, j in I,

KiFj = v−〈i,j′〉FjKi for i, j in I,

EiFj − FjEi = δij
K

i·i/2
i −K

−i·i/2
i

vi − v−1
i

,

∑

p,p′∈N;p+p′=1−〈i,j′〉

(−1)p
′ [p+ p′]!i
[p]!i[p

′]!i
Ep

i EjE
p′

i = 0 for i 6= j in I,

∑

p,p′∈N;p+p′=1−〈i,j′〉

(−1)p
′ [p+ p′]!i
[p]!i[p

′]!i
F p
i FjF

p′

i = 0 for i 6= j in I.

For i ∈ I, s ∈ N we set E
(s)
i = ([s]!i)

−1Es
i , F

(s)
i = ([s]!i)

−1F s
i .

By [L4, 3.1.12], there is a unique Q-algebra isomorphism¯: U −→ U such that
Ēi = Ei, F̄i = Fi for i ∈ I, K̄y = K−y for y ∈ Y and vnu = v−nū for all u ∈ U,
n ∈ Z.

0.4. Let W be the (finite) subgroup of Aut(X) generated by the involutions si :
λ 7→ λ − 〈i, λ〉i′ of X (i ∈ I). Let R be the smallest W -stable subset of X
that contains {i′; i ∈ I}. This is a finite set. Let R+ = {α ∈ R;α ∈

∑
i Ni′},

R− = −R+. Let R1 (resp. Re be the smallest W -stable subset of X that contains
I1 (resp. Ie). Then R1, Re are W -orbits. If e = 1 we have R = R1 = Re; if e > 1
we have R = R1 ⊔Re.

For i ∈ I and α ∈ R let pi,α be the largest integer ≥ 0 such that α, α + i′, α+
2i′, . . . , α + pi,αi

′ belong to R and let qi,α be the largest integer ≥ 0 such that
α, α− i′, α− 2i′, . . . , α− qi,αi

′ belong to R. Then:
(a) 〈i, α〉 = qi,α − pi,α and pi,α + qi,α ≤ 3.
(b) If pi,α + qi,α > 1, then we must have pi,α + qi,α = e, i ∈ I1; moreover,

α− qi,αi
′ ∈ Re, α + pi,αi

′ ∈ Re and α + ki′ ∈ R1 for −qi,α < k < pi,α.
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(c) If pi,α + qi,α = 1, then either both α− qi,αi
′, α+ pi,αi

′ belong to Re or both
belong to R1.
We define h : R+ −→ N by h(α) =

∑
i∈I ni where α =

∑
i∈I nii

′ with ni ∈ N.
There is a unique α0 ∈ R+ such that h(α0) is maximum. We then have pi,α0

= 0
for all i ∈ I; it follows that 〈i, α0〉 ≥ 0 for any i ∈ I. We have α0 ∈ Re.

0.5. The U-module Λ := Λα0
(see [L4, 3.5.6]) is well defined; it is simple, see

[L4, 6.2.3], and finite dimensional, see [L4, 6.3.4]. Let η = ηα0
∈ Λ be as in [L4,

3.5.7]. We have a direct sum decomposition (as a vector space) Λ = ⊕λ∈XΛλ

where Λλ = {x ∈ Λ;Kyx = v〈y,λ〉x ∀y ∈ Y }. Note that for i ∈ I, λ ∈ X we

have EiX
λ ⊂ Xλ+i′ , FiX

λ ⊂ Xλ−i′ . Moreover, we have dimΛα = 1 if α ∈ R,
dimΛ0 = ♯(I) and Λλ = 0 if λ /∈ R ∪ {0}.

Let B be the canonical basis of Λ defined in [L4, 14.4.11]. We now state the
following result in which || denotes absolute value.

Theorem 0.6. (a) Λ has a unique Q(v)-basis E = {Xα;α ∈ R}⊔ {ti; i ∈ I} such
that (i)-(iii) below hold.

(i) Xα0
= η;

(ii) for α ∈ R we have Xα ∈ Λα; for i ∈ I we have ti ∈ Λ0;

(iii) for any i ∈ I the linear maps Ei : Λ −→ Λ, Fi : Λ −→ Λ, are given by

EiXα = [qi,α + 1]iXα+i′ if α ∈ R, pi,α > 0,

EiX−i′ = ti,

EiXα = 0 if α ∈ R, pi,α = 0, α 6= −i′,

Eitj = [|〈j, i′〉|]jXi′ , if j ∈ I,

FiXα = [pi,α + 1]iXα−i′ if α ∈ R, qi,α > 0,

FiXi′ = ti,

FiXα = 0 if α ∈ R, qi,α = 0, α 6= i′,

Fitj = [|〈j, i′〉|]jX−i′ if j ∈ I.

(b) We have E = B.

Note that the uniqueness of E in (a) is straightforward. The existence of E
is proved in [L1] under the assumption that e = 1 and is stated in [L2] without
assumption on e. We shall note use these results here. Instead, in 1.15 we shall
give a new proof (based on results in [L4]) of the existence of E at the same time
as proving (b).
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1. Proof of Theorem 0.6

1.1. For any λ ∈ X , B∩Λλ is a basis of Λλ. In particular, for any α ∈ R, B∩Λα

is a single element; we denote it by bα.

Let A = Z[v, v−1] and let ΛA be the A-submodule of Λ generated by B. It is

known that LA is stable under E
(s)
i , F

(s)
i for i ∈ I, s ∈ N .

By [L4, 19.3.4], there is a unique Q-linear isomorphism ¯ : Λ −→ Λ such that
uη = ūη for all u ∈ U. By [L4, 19.1.2], there is a unique bilinear form (, ) :

Λ × Λ −→ Q(v) such that (η, η) = 1 and (Eix, x
′) = (x, viK

i·i/2
i Fix

′), (Fix, x
′) =

(x, viK
−i·i/2
i Eix

′), (Kyx, x
′) = (x,Kyx

′) for all i ∈ I, y ∈ Y and x, x′ in Λ.

1.2. By [L4, 19.3.5],

(a) an element b ∈ Λ satisfies ±b ∈ B if and only if b ∈ ΛA, b̄ = b and
(b, b) ∈ 1 + v−1Z[v−1].

1.3. By [Ka] (see also [L4, 16.1.4]), for any i ∈ I there is a unique Q(v)-linear

map F̃i : Λ −→ Λ such that the following holds: if x ∈ Λλ, Eix = 0 and s ∈ N, then

F̃i(F
(s)
i x) = F

(s+1)
i x. Moreover, there is a unique Q(v)-linear map Ẽi : Λ −→ Λ

such that the following holds: if x ∈ Λλ, Fix = 0 and s ∈ N, then Ẽi(E
(s)
i x) =

E
(s+1)
i x. Let A = Q(v) ∩Q[[v−1]]. Let ΛA be the A-submodule of Λ generated

by B. For any x ∈ ΛA let x be the image of x in Λ := ΛA/v−1ΛA. Note that

{b; b ∈ B} is a Q-basis of Λ. By [Ka] (see also [L4, 20.1.4]), for any i ∈ I, F̃i, Ẽi

preserve ΛA, v−1ΛA hence they induce Q-linear maps Λ −→ Λ (denoted again by

F̃i, Ẽi). From [Ka] (see also [L4, 20.1.4]) we see also that

(a) F̃i : Λ −→ Λ, Ẽi : Λ −→ Λ act in the basis {b; b ∈ B} by matrices with all
entries in {0, 1}.
In the case where e = 1, the results in this subsection are not needed; in this case,
instead of (a), we could use the positivity of the matrix entries of Ei : Λ −→ Λ,
Fi : Λ −→ Λ proved in [L4, 22.1.7].

1.4. Let α ∈ R, i ∈ I be such that qi,α = 0, p = pi,α ≥ 1. Then we have

〈i, α〉 = −p. Let Z0 = bα ∈ Λα. We have FiZ
0 ∈ Λα−i′ hence FiZ

0 = 0. We

define Zk ∈ Λα+ki′ for k = 1, . . . , p by the inductive formula

(a) Zk = [k]−1
i EiZ

k−1 = Ẽk
i Z

0.
Using FiZ

0 = 0 together with (a) and the commutation formula between Ei, Fi

we see by induction on k that for k = 1, . . . , p we have

(b) FiZ
k = [p− k + 1]iZ

k−1.

1.5. We preserve the setup of 1.4. We show that for k ∈ [0, p− 1] we have

(a) (Zk+1, Zk+1) =
1− v−2p+2k

i

1− v−2k−2
i

(Zk, Zk).
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We have EiZ
k = [k + 1]iZ

k+1 hence using 1.4(b):

[k + 1]2i (Z
k+1, Zk+1) = (EiZ

k, EiZ
k) = (Zk, viK

i·i/2
i FiEiZ

k)

= (Zk, viK
i·i/2
i EiFiZ

k)− (Zk, viK
i·i/2
i

K
i·i/2
i −K

−i·i/2
i

vi − v−1
i

Zk)

= (v
〈i,α+ki′〉+1
i [k]i[p− k + 1]i −

v
2〈i,α+ki′〉+1
i − vi

vi − v−1
i

)(Zk, Zk)

= (v−p+2k+1
i [k]i[p− k + 1]i −

v−2p+4k+1
i − vi

vi − v−1
i

)(Zk, Zk).

We have

(vi − v−1
i )2(v−p+2k+1

i [k]i[p− k + 1]i −
v−2p+4k+1
i − vi

vi − v−1
i

)

= v−p+2k+1
i (vki − v−k

i )(vp−k+1
i − v−p+k−1

i )− (v−2p+4k+1
i − vi)(vi − v−1

i )

= v2k+2
i − v2i − v−2p+4k

i + v−2p+2k
i − v−2p+4k+2

i + v2i + v−2p+4k
i − 1

= v2k+2
i + v−2p+2k

i − v−2p+4k+2
i − 1 = (v−2p+2k

i − 1)(1− v2k+2
i ).

Thus

(Zk+1, Zk+1) =
(v−2p+2k

i − 1)(1− v2k+2
i )

(vk+1
i − v−k−1

i )2
(Zk, Zk)

and (a) follows.

1.6. We preserve the setup of 1.4. We must have p ∈ {1, 2, 3}.
Assume first that p = 1. From 1.5(a) we have (Z1, Z1) = (Z0, Z0).
Assume now that p = 2. Then from 0.4(b) we have vi = v and from 1.5(a) we

have
(Z1, Z1) = 1−v−4

1−v−2 (Z
0, Z0),

(Z2, Z2) = 1−v−2

1−v−4 (Z
1, Z1) = (Z0, Z0).

Assume next that p = 3. Then from 0.4(b) we have vi = v and from 1.5(a) we
have

(Z1, Z1) = 1−v−6

1−v−2 (Z
0, Z0),

(Z2, Z2) = (Z1, Z1).

(Z3, Z3) = 1−v−2

1−v−6 (Z
2, Z2) = (Z0, Z0).

1.7. We preserve the setup of 1.6. We show:
(a) We have Zk = bα+ki′ for k = 0, 1, . . . , p.

Since Z0 ∈ B, we have Z0 ∈ ΛA, Z̄
0 = Z0, (Z0, Z0) ∈ 1 + v−1Z(v−1). From

the formulas in 1.6 we see that (Zk, Zk) ∈ 1 + v−1Z(v−1) for k = 0, 1, . . . , p. For
k = 1, . . . , p we have EiZ

k−1 = [k]iZ
k hence for k = 0, 1, . . . , p we have Zk =
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E
(k)
i Z0 ∈ ΛA. From Zk = E

(k)
i Z0 we see also that Z̄k = E

(k)
i Z0 = E

(k)
i Z0 = Zk.

Using 1.2(a) we see that ǫZk ∈ B for some ǫ ∈ {1,−1}. By 1.4(a), we have

Zk = Ẽk
i Z

0. Using this together with and 1.3(a), we see that ǫ = 1 so that

Zk ∈ B. Since Zk ∈ Λα+ki′ , we see that Zk = bα+ki′ .

1.8. Let i ∈ I, α̃ ∈ R be such that pi,α̃ > 0 (or equivalently such that α̃+ i′ ∈ R).
We show:

(a) Eib
α̃ = [qi,α̃ + 1]ib

α̃+i′

Let α = α̃ − qi,α̃i
′ ∈ R. We have qi,α = 0, pi,α = pi,α̃ + qi,α̃ > 0. We set

Z0 = bα. We then define Zk with k ∈ [1, pi,α] in terms of α, Z0 as in 1.4. Note
that EiZ

k−1 = [k]iZ
k for any k ∈ [1, pi,α]. Taking k = qi,α̃+1 (so that k ∈ [1, pi,α])

we deduce
EiZ

qi,α̃ = [qi,α̃ + 1]iZ
qi,α̃+1.

By 1.7(a) we have Zqi,α̃ = bα̃, Zqi,α̃+1 = bα̃+i′ . This proves (a).

Here is a special case of (a); we assume that i 6= j in I:

(b) If 〈j, i′〉 < 0 then Ejb
i′ = bi

′+j′ ; if 〈j, i′〉 = 0 then Ejb
i′ = 0.

It is enough to use that pj,i′ = −〈j, i′〉 (we have qj,i′ = 0 since i′ − j′ /∈ R).

1.9. Let i ∈ I, α̃ ∈ R be such that qi,α̃ > 0 (or equivalently such that α̃− i′ ∈ R).
We show:

(a) Fib
α̃ = [pi,α̃ + 1]ib

α̃−i′ .

Let α = α̃ − qi,α̃i
′ ∈ R. We have qi,α = 0, pi,α = pi,α̃ + qi,α̃ > 0. We set

Z0 = bα. We then define Zk with k ∈ [1, pi,α] in terms of α, Z0 as in 1.4. Note that
FiZ

k = [pi,α − k + 1]iZ
k−1 for k ∈ [1, pi,α]. Taking k = qi,α̃ (so that k ∈ [1, pi,α])

we deduce
FiZ

qi,α̃ = [pi,α̃ + 1]iZ
qi,α̃−1.

By 1.7(a) we have Zqi,α̃ = bα̃, Zqi,α̃−1 = bα̃−i′ . This proves (a).

Here is a special case of (a); we assume that i 6= j in I:

(b) If 〈j, i′〉 < 0 then Fjb
−i′ = b−i′−j′ ; if 〈j, i′〉 = 0, then Fjb

−i′ = 0.
It is enough to use that qj,−i′ = 〈j,−i′〉 (we have pj,−i′ = 0 since −i′ + j′ /∈ R).

1.10. Let i ∈ I; we set ti = Eib
−i′ ∈ Λ0. We show

(a) Fiti = (vi + v−1
i )b−i′ .

Indeed,

Fiti = FiEib
−i′ = EiFib

−i′ −
K

i·i/2
i −K

−i·i/2
i

vi − v−1
i

b−i′

=
v2i − v−2

i

vi − v−1
i

bi
′

= (vi + v−1
i )b−i′ .
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We show:

(b) (ti, ti) = (1 + v−2
i )(b−i′ , b−i′).

Indeed, using (a) we have

(ti, ti) = (Eib
−i′ , ti) = (b−i′ , viK

i·i/2
i Fiti) = (b−i′ , viK

i·i/2
i (vi + v−1

i )b−i′) =

(vi + v−1
i )v

−〈i,i′〉+1
i (b−i′ , b−i′) = (1 + v−2

i )(b−i′ , b−i′).

From (b) we see that (ti, ti) ∈ 1 + v−1Z[v−1]; from the definitions we have also
ti ∈ ΛA and t̄i = ti; it follows that ǫti ∈ B for some ǫ ∈ {1,−1}. Now from

ti = Eib
−i′ and Fib

−i′ = 0 we see that ti = Ẽib
−i′ hence ti = Ẽib

−i′ . Using this
together with 1.3(a) and we see that ǫ = 1 hence

(c) ti ∈ B.

We show:

(d) If i 6= j, then Fitj = [−〈j, i′〉]jb
−i′ .

We have Fitj = FiEjb
−j′ = EjFib

−j′ . This is 0 if 〈i, j′〉 = 0 since by 1.9(b) we

have Fib
−j′ = 0 (so in this case (a) holds). Now assume that 〈i, j′〉 < 0. Then

using 1.9(b) and 1.8(a) we have

EjFib
−j′ = Ejb

−i′−j′ = [qj,−i′−j′ + 1]jb
−i′ .

Note that pj,−i′−j′ = 1 since −i′ − j′ + j′ ∈ R, −i′ − j′ + 2j′ /∈ R. Hence
qj,−i′−j′ − 1 = 〈j,−i′ − j′〉 = −2 − 〈j, i′〉 that is, qi,−i′−j′ + 1 = −〈j, i′〉. This
completes the proof of (d).

We show:

(e) (Eiti, Eiti) = [2]2i (b
−i′ , b−i′).

Indeed, using (b) we have

(Eiti, Eiti) = (ti, viK
i·i/2
i FiEiti) = (ti, viK

i·i/2
i EiFiti)

− (ti, viK
i·i/2
i

K
i·i/2
i −K

−i·i/2
i

vi − v−1
i

ti) = [2]i(ti, viK
i·i/2
i Eib

−i′) = [2]i(ti, viK
i·i/2
i ti)

= [2]i(ti, viti) = [2]2i (b
−i′ , b−i′),

proving (e).
From (e) we get ([2]−1

i Eiti, [2]
−1
i Eiti) ∈ 1 + v−1Z[v−1]. We have [2]−1

i Eiti =

E
(2)
i b−i′ ∈ ΛA. Moreover, we have clearly [2]−1

i Eiti = [2]−1
i Eiti. Using 1.2(a) we

deduce that ǫ[2]−1
i Eiti ∈ B for some ǫ ∈ {1,−1}. Since [2]−1

i Eiti ∈ Λi′ , we must

have ǫ[2]−1
i Eiti = bi

′

. Thus we have ǫE
(2)
i b−i′ = bi

′

. Since Fib
−i′ = 0 it follows

that Ẽ2
i b

−i′ = ǫbi
′

and Ẽ2
i b

−i′ = ǫbi
′

. Using 1.3(a), we deduce that ǫ = 1. Thus,

(f) Eiti = [2]ib
i′ .
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1.11. Let i ∈ I. We set t̃i = Fib
i′ ∈ Λ0. We show:

(a) Eit̃i = [2]ib
i′ .

Indeed,

Eit̃i = EiFib
i′ = FiEib

i′ +
K

i·i/2
i −K

−i·i/2
i

vi − v−1
i

bi
′

=
v2i − v−2

i

vi − v−1
i

bi
′

= [2]ib
i′ .

We show:

(b) (t̃i, t̃i) = [2]iv
−1
i (bi

′

, bi
′

).

Indeed, using (a) we have:

(t̃i, t̃i) = (Fib
i′ , t̃i) = (bi

′

, viK
−i·i/2
i Eit̃i) = (bi

′

, viK
−i·i/2
i [2]ib

i′)

= [2]iv
−1
i (bi

′

, bi
′

).

From (b) we see that (t̃i, t̃i) ∈ 1 + v−1Z[v−1]; from the definitions we have also

t̃i ∈ ΛA and t̃i = t̃i; using 1.2(a) we see that ǫt̃i ∈ B for some ǫ ∈ {1,−1}. From

t̃i = Fib
i′ , Eib

i′ = 0 we see that t̃i = F̃ib
i′ hence t̃i = F̃ib

i′ . Using this and 1.3(a)
we deduce that ǫ = 1 so that

(c) t̃i ∈ B.

We show:

(d) (t̃i, ti) = ±(1 + v−2
i )(bi

′

, bi
′

).

Indeed, using 1.10(f) we have

(t̃i, ti) = (Fib
i′ , ti) = (bi

′

, viK
−i·i/2
i Eiti) = (bi

′

, viK
−i·i/2
i [2]ib

i′)

= v−1
i [2]i(b

i′ , bi
′

) = (1 + v−2
i )(bi

′

, bi
′

)

hence (t̃i, ti) ∈ 1 + v−1Z[v−1]. If t̃i 6= ti then, since t̃i ∈ B and ti ∈ B, we would
have (t̃i, ti) ∈ v−1Z[v−1] (see [L4, 19.3.3]), contradicting (d). Thus we hve t̃i = ti
and

(e) Fib
i′ = ti.

We show:

(f) If i 6= j, then Eitj = [−〈j, i′〉]jb
i′ .

Using (e) we have Eitj = EiFjb
j′ = FjEib

j′ . This is 0 if 〈i, j′〉 = 0 since by 1.8(b)

we have Eib
j′ = 0 (so in this case (f) holds). Now assume that 〈i, j′〉 < 0. Then

using 1.8(b) and 1.9(a) we have

FjEib
j′ = Fjb

i′+j′ = [pj,i′+j′ + 1]jb
i′ .

Note that qj,i′+j′ = 1 since i′ + j′ − j′ ∈ R, i′ + j′ − 2j′ /∈ R. Hence 1− pj,i′+j′ =
〈j, i′ + j′〉 = 2 + 〈j, i′〉 that is, pi,i′+j′ + 1 = −〈j, i′〉. This completes the proof of
(f).
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1.12. We show:
(a) If α ∈ R1, then (bα, bα) = 1 + v−2 + · · ·+ v−2(e−1) = v−e+1[e]. If α ∈ Re,

then (bα, bα) = 1.
Note that when e = 1 we have R1 = Re and the two formulas in (a) are compatible
with each other.

We first prove (a) for α ∈ R+ by descending induction on h(α). If h(α) = h(α0)
then α = α0 and we have bα = η so that (bα, bα) = (η, η) = 1. Now assume
that α ∈ R+, h(a) < h(α0). We can find α′ ∈ R+, i ∈ I such that qi,α′ = 0,
p = pi,α′ ≥ 1 and α = α′+ki′ where k ∈ {0, 1, . . . , p−1}. Then h(α′+pi′) > h(α)
hence (α′ + pi′, α′ + pi′) is given by the formula in (a). Assume first that p = 1.

Then α = α′ and by 1.6 and 1.7(a) we have (bα, bα) = (bα
′+i′ , bα

′+i′). By 0.4(c),
either both α, α + i′ belong to Re or both belong to R1; (a) follows in this case.
Next assume that p > 1. By 0.4(b) we have p = e and α′ + pi′ ∈ Re. Hence

(bα
′+pi′ , bα

′+pi′) = 1. If k = 0 then α ∈ Re (see 0.4(b)) and by 1.6 and 1.7(a)

we have (bα, bα) = (bα
′+pi′ , bα

′+pi′); (a) follows in this case. If k > 0, k < p then
α ∈ R1 (see 0.4(b)) and by 1.6 and 1.7(a) we have (bα, bα) = (1 + v−2 + · · · +

v−2(e−1))(bα
′+pi′ , bα

′+pi′); (a) follows in this case. This completes the proof of (a)
assuming that α ∈ R+.

We now prove (a) for α ∈ R− by induction on h(−α) ≥ 1. Let i ∈ I. Recall

that t̃i, ti satisfy t̃i = ti (see 1.11), (ti, ti) = [2]iv
−1
i (b−i′ , b−i′) (see 1.10(b)) and

(t̃i, t̃i) = [2]iv
−1
i (bi

′

, bi
′

) (see 1.11(b)). It follows that

(b) (b−i′ , b−i′) = (bi
′

, bi
′

).

In particular, (a) holds when h(−α) = 1. We now assume that α ∈ R− and
h(−α) ≥ 2. We can find α′ ∈ R−, i ∈ I such that qi,α′ = 0, p = pi,α′ ≥ 1
and α = α′ + ki′ where k ∈ {0, 1, . . . , p− 1}. Then h(−(α′ + pi′)) < h(−α) hence
(α′+pi′, α′+pi′) is given by the formula in (a). The rest of the proof is a repetition
of the first part of the proof. Assume first that p = 1. Then α = α′ and by 1.6 and
1.7(a) we have (bα, bα) = (bα

′+i′ , bα
′+i′). By 0.4(c), either both α, α + i′ belong

to Re or both belong to R1; (a) follows in this case. Next assume that p > 1. By

0.4(b) we have p = e and α′ + pi′ ∈ Re. Hence (bα
′+pi′ , bα

′+pi′) = 1. If k = 0 then

α ∈ Re (see 0.4(b)) and by 1.6 and 1.7(a) we have (bα, bα) = (bα
′+pi′ , bα

′+pi′); (a)
follows in this case. If k > 0, k < p then α ∈ R1 (see 0.4(b)) and by 1.6 and 1.7(a)

we have (bα, bα) = (1 + v−2 + · · · + v−2(e−1))(bα
′+pi′ , bα

′+pi′); (a) follows in this
case. This completes the proof of (a) assuming that α ∈ R−; hence (a) is proved
in all cases.

1.13. We show:
(a) If i ∈ I1 then (ti, ti) = (1 + v−2)(1 + v−2 + · · ·+ v−2(e−1)). If i ∈ Ie then

(ti, ti) = 1 + v−2
i = 1 + v−2e.

Note that when e = 1 we have I1 = Ie and the two formulas in (a) are compatible
with each other.
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From 1.10(b) we have (ti, ti) = [2]iv
−1
i (b−i′ , b−i′). Using 1.12(a) we see that (a)

holds.

In the remainder of this subsection we fix i 6= j in I. We show:
(b) If at least one of i, j is in I1 and i · j 6= 0 then (ti, tj) = v−e[e]. If both i, j

are in Ie and i · j 6= 0 then (ti, tj) = v−e. If i · j = 0 then (ti, tj) = 0.
Using 1.10(d), we have

(ti, tj) = (Eib
−i′ , tj) = (b−i′ , viK

i·i/2
i Fitj)

= [−〈j, i′〉]j(b
−i′ , viK

i·i/2
i b−i′) = v−1

i [−〈j, i′〉]j(b
−i′ , b−i′).

We see that if 〈j, i′〉 = 0 then (ti, tj) = 0.
Now assume that 〈j, i′〉 6= 0.
If i ∈ Ie, j ∈ Ie then 〈j, i′〉 = −1 and (ti, tj) = v−e.
If i ∈ Ie, j ∈ I1 then 〈j, i′〉 = −e and (ti, tj) = v−e[e].
If i ∈ I1, j ∈ Ie then (ti, tj) = (tj, ti) = v−e[e].

If i ∈ I1, j ∈ I1 then 〈j, i′〉 = −1 and (ti, tj) = v−1(1 + v−2 + · · ·+ v−2(e−1)) =
v−e[e].
This completes the proof of (b).

1.14. We show:
(a) The elements {ti; i ∈ I} are distinct.

Let i 6= j in I. If we had ti = tj , then we would have (ti, tj) ∈ 1 + v−1Z[v−1], see
1.13(a). But 1.13(b) shows that (ti, tj) ∈ v−1Z[v−1]. This completes the proof of
(a).

Let E = {bα;α ∈ R} ⊔ {ti, i ∈ I}. By (a), this is a subset of Λ rather than a
multiset. We show:

(b) We have B = E.
Since ti ∈ B for any i ∈ I, we have E ⊂ B. Clearly we have ♯(E) = ♯(R) + ♯(I).
Since we have also ♯(B) = ♯(R) + ♯(I), it follows that E = B, proving (b).

1.15. We prove the existence part of 0.6(a). It is enough to prove that the ele-
ments Xα = bα and ti satisfy the requirements of 0.6(a). Now 0.6(a)(i) holds by
definition; 0.6(a)(ii) is immediate; 0.6(a)(iii) has been verified earlier in this sec-
tion. This proves the existence part of 0.6(a) and at the same time proves 0.6(b)
(see 1.14(b)).

2. Applications

2.1. Let i ∈ I, k ∈ Z>0. From 0.6 we see that the action of E
(k)
i , F

(k)
i in the basis

E of Λ is given by the following formulas.

E
(k)
i Xα =

[qi,α + k]!i
[qi,α]!i[k]

!
i

Xα+ki′ if α ∈ R, α 6= −i′, k ≤ pi,α,
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E
(k)
i Xα = 0 if α ∈ R, α 6= −i′, k > pi,α,

EiX−i′ = ti, E
(2)
i X−i′ = Xi′ , E

(k)
i X−i′ = 0 if k ≥ 3,

Eitj = [|〈j, i′〉|]jXi′ , E
(k)
i tj = 0 if k ≥ 2,

F
(k)
i Xα =

[pi,α + k]!i
[pi,α]

!
i[k]

!
i

Xα−ki′ if α ∈ R, α 6= i′, k ≤ qi,α,

F
(k)
i Xα = 0 if α ∈ R, α 6= i′, k > qi,α,

FiXi′ = ti, F
(2)
i Xi′ = X−i′ , F

(k)
i Xi′ = 0 if k ≥ 3,

Fitj = [|〈j, i′〉|]jX−i′ , F
(k)
i tj = 0 if k ≥ 2.

In particular, we see that E
(k)
i , F

(k)
i act through matrices with all entries in

N[v, v−1]. (In the case where e = 1 this is already known from [L4, 22.1.7].)

2.2. If v is specialized to 1, the U-module Λ becomes a simple module over the
universal enveloping algebra of a simple Lie algebra g corresponding to the adjoint
representation Λ|v=1 of g; this module inherits a Q-basis {Xα;α ∈ R}⊔{ti; i ∈ I}
in which the elements ei, fi of g defined by Ei, Fi act by matrices with entries in
N. Let z ∈ Q. Then for i ∈ I, the exponentials xi(z) = exp(zei), yi(z) = exp(zfi)
are well defined endomorphisms of Λ|v=1. Their action in the basis above can be
described using the formulas in 2.1:

xi(z)Xα =
∑

0≤k≤pi,α

(qi,α + k)!

qi,α!k!
zkXα+ki′ if α ∈ R, α 6= −i′,

xi(z)X−i′ = X−i′ + zti + z2Xi′ ,

xi(z)tj = tj + |〈j, i′〉|zXi′ if j ∈ I,

yi(z)Xα =
∑

0≤k≤qi,α

(pi,α + k)!

pi,α!k!
zkXα−ki′ if α ∈ R, α 6= i′,

yi(z)Xi′ = Xi′ + zti + z2X−i′ ,

yi(z)tj = tj + |〈j, i′〉|zX−i′ if j ∈ I.

2.3. Now let k be any field and let V be the k-vector space with basis {Xα;α ∈
R}⊔ {ti; i ∈ I}. For any i ∈ I and z ∈ k we define xi(z) ∈ GL(V ), yi(z) ∈ GL(V )
by the formulas in 2.2 (which involve only integer coefficients). The subgroup
of GL(V ) generated by the elements xi(z), yi(z) for various i ∈ I, z ∈ k is the
Chevalley group [Ch] over k associated to g.
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