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ABSTRACT
While swarm robotics systems are often claimed to be highly fault-
tolerant, so far research has limited its attention to safe labora-
tory settings and has virtually ignored security issues in the pres-
ence of Byzantine robots—i.e., robots with arbitrarily faulty or
malicious behavior. However, in many applications one or more
Byzantine robots may suffice to let current swarm coordination
mechanisms fail with unpredictable or disastrous outcomes. In this
paper, we provide a proof-of-concept for managing security issues
in swarm robotics systems via blockchain technology. Our approach
uses decentralized programs executed via blockchain technology
(blockchain-based smart contracts) to establish secure swarm coor-
dination mechanisms and to identify and exclude Byzantine swarm
members. We studied the performance of our blockchain-based
approach in a collective decision-making scenario both in the pres-
ence and absence of Byzantine robots and compared our results to
those obtained with an existing collective decision approach. The
results show a clear advantage of the blockchain approach when
Byzantine robots are part of the swarm.
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1 INTRODUCTION
Swarm robotics is a promising approach for tackling problems that
require the coverage of a large physical space in dangerous, un-
known, or hazardous environments. Examples are humanitarian
demining, search and rescue, underwater exploration, or surveil-
lance [1]. In these environments, the robots can usually only com-
municate in a peer-to-peer manner via noisy and unreliable com-
munication channels and centralized control may be unfeasible
or undesirable (single point of failure). Despite the decentralized
and scattered information distribution on which they rely, in many
swarm robotics applications the robots have to reach consensus

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

on a common view of the world or on the best of n alternatives
(best-of-n problem) [24, 26].

While swarm robotics systems are often claimed to be highly
fault-tolerant, in some cases one or more Byzantine robots—robots
that show arbitrarily faulty or malicious behavior—may suffice to let
current coordination mechanisms fail [15]. Once robot swarms will
exit the research labs and operate in real-world missions, they will
face situations in which some of the robots in the swarm become
Byzantine robots. For example, harsh environmental conditions
might cause individual robots to fail, or hackers might take con-
trol of some of the robots and make them behave in misleading
ways [14]. Robustness to Byzantine robots will therefore become
of paramount importance.

Until now swarm robotics research has left virtually unaddressed
the problem of how to manage the security issues generated by
the presence of Byzantine robots. We believe that such security
issues should be considered in all the development stages of swarm
robotics research—from lab experiments to real-world applications—
since waiting for security issues to appear in real world applications
might cause time-consuming redesigns or even the complete aban-
donment of existing approaches. Higgins et al. [14] present the first
comprehensive survey of security challenges in swarm robotics;
they identify several potential threats that still hinder the usage of
robot swarms in real-world application: (i) tampered swarm mem-
bers or failing sensors: the messages sent from these members can
contain wrong or deceptive information; (ii) attacked or noisy com-
munication channels: messages can be manipulated or destroyed
while propagating through the peer-to-peer network; (iii) loss of
availability: information stored on a robot’s hard drive might be
deleted; the robot might be captured or destroyed.

In this paper, we argue that blockchain technology might be used
to provide solutions to the aforementioned security issues. In par-
ticular, we show that it allows a robot swarm to achieve consensus
in a collective decision problem even in the presence of Byzantine
robots. While blockchain technology was originally developed as
a peer-to-peer financial system in the context of the cryptocur-
rency Bitcoin [17], recently there have been proposals for using
blockchain technology as a distributed computing platform where
arbitrary programs (blockchain-based smart contracts) can be run.
The best known example of such a platform is Ethereum [3, 27].
Blockchain-based smart contracts allow decentralized systems with
mutually distrusting nodes to agree on the outcome of the pro-
grams. We provide the first proof-of-concept for using blockchain
technology in swarm robotics applications. We do so by laying the
foundation of a secure general framework for addressing best-of-n
collective decision problems.



Using the robot swarm simulator ARGoS [18], we study a collec-
tive decision scenario inwhich robots sensewhich of two features in
an environment is the most frequent one—a best-of-2 problem. Our
approach is based on the collective decision scenario of Valentini
et al. [23] (classical approach). Via blockchain-based smart con-
tracts using the Ethereum protocol (blockchain approach), we add
a security layer on top of the classical approach that allows for
taking care of the presence of Byzantine robots. Our blockchain
approach also allows for logging events in a tamper-proof way:
these logs can then be used, if necessary, to analyze the behavior
of the robots in the swarm without incurring the risk that some
malicious agent has modified them. In addition, it provides a new
way to understand how we debug and how we can approach data
forensics in decentralized systems such as robot swarms. We use
the ARGoS simulator to vary the number of Byzantine robots and
compare the performance—in terms of consensus time and prob-
ability of a correct outcome—of Valentini et al.’s strategies [23]
and our blockchain-based variants both in the presence and in the
absence of Byzantine robots.

The remainder of this paper is structured as follows. Section 2 re-
views related work. Section 3 explains the fundamental concepts of
blockchain technology. Section 4 compares the logic of the classical
and blockchain approaches. Section 5 evaluates the performance
of the approaches through experiments in simulation. Section 6
discusses advantages and disadvantages of the classical and block-
chain approaches. Section 7 presents our conclusions and provides
directions for future work.

2 RELATEDWORK
Many studies (e.g., [2, 12, 13, 16, 19, 20, 25]) have addressed col-
lective decision-making in robot swarms, a key task for the ad-
vancement of swarm robotics [7]. Collective decision-making tasks
can be divided into two sub-classes: task allocation and consensus
achievement [1]. In task allocation, the goal of the swarm is to
maximize the overall swarm performance by assigning the mem-
bers to different tasks. In consensus achievement, the goal of the
swarm is to agree upon the best among a set of alternatives. The
scenario that we use in this paper is based on the work of Valentini
et al. [23], who describe and evaluate a collective decision scenario
where robots have to reach consensus on the most frequent tile
color in an environment in which the floor is covered with black
and white tiles.

Robot swarms are often assumed to be fault-tolerant by de-
sign [15], therefore, the explicit detection of faults was initially
given little attention in swarm robotics research. Early security
research focused on fault detection in the presence of defective
robots [5, 6]. More recently, the explicit modeling of malicious
robots has attracted more attention: [22] gives an overview of robot
swarms’ robustness to different attacker strategies in a cooperative
navigation experiment and [28] presents a reputation management
system that assigns a dynamic trust level to robots to identify mali-
cious entities. In [10], a lightweight algorithm for detecting Sybil
attacks via physical properties of wireless signals is developed. Con-
nectivity requirements for achieving consensus in the presence of
malicious robots are studied in [11]. [21] presents a resilient consen-
sus protocol for dynamic agents whose network topology changes

over time. However, so far, no secure general frameworks exist to
cope with security issues in a fully decentralized way. Currently,
blockchain technology mainly has applications in the financial
domain—most notably as a decentralized database for storing trans-
actions of cryptographic tokens (cryptocurrencies). The potential
use of blockchain technology for managing security issues in robot
swarms was first outlined by Castelló Ferrer [4]. The author de-
scribes blockchain technology as the “key to serious progress in the
field of swarm robotics” (p. 10). Several possible use cases, including
secure communication, distributed decision making, and innovative
business models are discussed in his paper. However, our paper
is the first to provide an actual proof-of-concept of using block-
chain technology for the coordination of robot swarms—including
a description, implementation, and evaluation of the approach.

3 FUNDAMENTALS OF BLOCKCHAIN
TECHNOLOGY

A blockchain is a distributed database that is replicated among the
peers of a network. The underlying technology offers a successful
way to create a trusted and tamper-proof system between mutually
untrusted agents without the need of a centralized third-party. A
blockchain is designed to securely store its data, make it resilient
against Byzantine faults, and reach a consistent global state. It is
organized into blocks that contain batches of data (Figure 1). Each
block in the blockchain consists of a header and a body. The body
contains the actual data (transactions), and the header contains
metadata, such as a timestamp and reference to the previous block
via a hash, which creates a chain of blocks back to the very first
block—the genesis block. Each one of these hashes takes into ac-
count the transaction and metadata information contained in its
correspondent block. Therefore, any attempt to alter the informa-
tion of previous blocks will automatically result in a different hash,
thus, breaking the chain. The participants (nodes) of the network
store copies of the blockchain. Other participants can connect to
these nodes and exchange the information stored in the block-
chain. Blockchains are usually permissionless—anyone can join the
network at any time without the need of authentication and can
read the contents of the blockchain. However, permissioned/private
blockchains are currently used in order to develop proof-of-concept
systems (such as the one introduced in this paper) with a limited
number of agents.

Blockchains are append-only databases: existing data in a block-
chain is immutable. The data is stored at addresses, i.e., crypto-
graphic public identifiers which can be derived from private keys.
By creating transactions—signed data packages [3]—the participants
can interact with a blockchain. Transactions contain a sender ad-
dress, a recipient address, a digital signature, a certain amount of a
cryptocurrency (a value stored on the blockchain), a fee that is given
to the miner (see below), and an optional data field. Only partici-
pants owning the corresponding private key can send transactions
from a sender address.

Blockchains cannot fall back on the authority of a trusted third-
party. Therefore, to guarantee consensus on the distributed storage,
a consensus protocol is used. It serves as a tool for agreeing on the
state of the blockchain and for securely appending new informa-
tion to the blockchain. The most popular consensus algorithm is
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Figure 1: The blockchain—a distributed database—is orga-
nized into blocks. Each block consists of two parts, the
header and the body. The header contains metadata for the
block—most importantly the hash of the previous block
which creates a unique chain of blocks. The body contains
the actual data: the transactions.

Proof-of-Work (PoW). PoW is the proof that a certain amount of
computational power was consumed to solve a puzzle that allows
the adding of a block to the blockchain. The process of finding
such a solution is called mining; the nodes that execute the mining
process are called miners. Once miners find a solution (i.e., a hash
string that fulfills a certain target and takes into account the block’s
data and a suitable nonce value), they distribute the corresponding
block to all the network nodes, and if the solution is valid, the
blockchain gets extended with this block. While the computation
of the PoW is time-consuming, verifying a correct solution is fast.
Participants of a blockchain accept the longest chain (i.e., the chain
which consumed the greatest total amount of calculations) as the
true state of the blockchain; nodes connect to each other in a peer-
to-peer manner and exchange their blockchain information. Blocks
can temporarily have different successive blocks, a situation that is
known as a fork. This case occurs if multiple miners find solutions
to the PoW puzzle almost simultaneously or if the blocks are not
disseminated fast enough among the participants. These forks get
resolved over time, when one chain of blocks becomes longer than
the others. Transactions in the discarded chain that are not yet part
of the longer chain can be included in later blocks again.

The PoW guarantees that changing existing information memo-
rized in the blockchain would require an attacker to redo all PoW
computations from the block where the manipulations were made
up to the current block. Therefore, as long as an attacker does not
have more than 50 % of the processing power of all the miners par-
ticipating in the network, the data in the blockchain is immutable.
As an incentive for keeping the mining process running, the solver
of a puzzle receives a reward (immutable tokens acting as ‘cryp-
tocurrency’) that is composed of a block reward and the collected
fees obtained from the transactions that are included in the solved
block.

While blockchain technology was originally developed as a peer-
to-peer financial system, in this paper, we use the Ethereum pro-
tocol [3, 27] which introduced blockchain-based smart contracts.
A smart contract is a decentralized protocol that can contain vari-
ables and deterministic functions that allow for executing Turing-
complete programming code. Each node in the blockchain network
runs an Ethereum Virtual Machine (EVM) implementation that
handles the internal state and executes the computations of the
smart contracts. Participants of a blockchain network interact with

functions of the smart contracts by sending transactions—using the
data field to specify the arguments—to the smart contract address.
The transactions get executed when a miner includes these trans-
actions in a new block. Upon receipt of a block, each participant of
the network executes the list of transactions again and checks that
only valid transactions are included in the block. This decentralized
execution and validation of the code ensures “applications that
run exactly as programmed without any possibility of downtime,
censorship, fraud or third party interference.” [8].

4 METHODS
In this section, we present Valentini et al.’s work [23] (classical
approach) and our approach that uses blockchain-based smart con-
tracts (blockchain approach). We use the subscripts ‘cl’ and ‘bc’ to
denote the classical and blockchain variants of elements in our
algorithms, respectively (e.g., DCbc for the Direct Comparison (DC)
strategy of the blockchain approach—defined below).

4.1 Experimental setup
In both the classical and blockchain approaches, the goal of the
robot swarm is to make a collective decision and to reach con-
sensus on the most frequent tile color (in all our experiments
the white color) of a black/white grid (Figure 2)1. Each robot has
a current opinion about which color is the most frequent, and
via dissemination/decision-making strategies, they influence their
peers.

The robots move in a square environment of 2 × 2 m2 that is
bounded by four walls. The grid is composed of |B | black tiles and
|W | white tiles, with |B | + |W | = 400. Each tile is 0.1 × 0.1 m2.
The difficulty of the task (ρ∗b ) can be varied by modifying the ratio
between the percentage ρb =

|B |

|B |+ |W |
of black tiles and ρw =

|W |

|B |+ |W |
of white tiles: ρ∗b =

ρb
ρw . In a relatively simple task, the

difference between the percentage of white and black tiles is large
(e.g., ρb = 34%, ρw = 66% → ρ∗b ≈ 0.52), while in a relatively
difficult task, the difference is small (e.g., ρb = 48%, ρw = 52%→

ρ∗b ≈ 0.92).
At the end of a successful run, all robots will have the same

opinion corresponding to the most frequent color.

4.2 Simulation environment
The simulations were executed in discrete time steps (ticks)—with
10 ticks per second using the ARGoS robot swarm simulator [18]
(version 3.0.0-beta48) and the ARGoS-Epuck [9] plugin with N = 20
e-puck robots on a computer cluster. For each experimental run,
two nodes were used on the cluster with 16 cores each. Each core
has a clock rate of 2.0 GHz and 1GB of RAM. ARGoS was executed
using N = 20 threads, and, for the blockchain approach, one geth
process (an interface for running a full Ethereum node) was started
for each robot using a single thread. The simulated robots were
programmed to use the IPC socket of geth.

Robots can only communicate with each other if there is no other
robot hindering the communication and if the robots’ distance
to each other is smaller than dn = 50 cm. We used this design

1A video of one experimental run can be found at:
https://www.youtube.com/watch?v=buDJuHHL5KM
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Figure 2: The robots’ task is to determine the most frequent
color in an environment whose floor is covered with black
andwhite tiles. This collective-decision experimentwas con-
ducted using the ARGoS robot swarm simulator with the
plugin for e-puck robots.

constraint in order to mimic the capabilities of IR/Bluetooth/RF
transmission, so that we can easily test the algorithm using real
robots in future research.

4.3 Classical approach
In the classical approach of Valentini et al. [23], the behavior of
each robot is determined by a probabilistic finite state machine
(PFSM) with Exploration states Ei and Dissemination states Di
(i ∈ {black,white}, i indicating the current opinion of the robot).
In the beginning of the experiment, all robots are in one of the
Exploration states.

There are three low-level control routines: (i) the random walk
routine, (ii) the obstacle avoidance routine, and (iii) the quality
estimation routine. Their execution is dictated by the state of the
robot (Ei or Di ).

When in the Ei state, a robot senses the features of the envi-
ronment; the robot remains in the Ei state for a time determined
by drawing a sample from an exponential distribution with mean
σ = 100 ticks when the robot enters the state. In this state, the robot
executes the low-level routines (i), (ii), and (iii). Each robot has a
current opinion i ∈ {black,white} about what it believes to be the
most frequent tile color. In the quality estimation routine the robot
senses the color of the surface once per tick via its ground sensors.
It updates its current quality estimate ρ̂i by calculating the ratio
between the number of ticks when it sensed the color of its current
opinion and the total number of ticks in the current exploration
state. At the end of each exploration state, the robot switches to
the dissemination state Di that matches its opinion i .

When in the Di state, a robot only executes the low-level rou-
tines (i) and (ii).2 Additionally, it disseminates its opinion. At the
end of the state, it applies a decision-making strategy to decide
whether or not to change its opinion. The decision-making strate-
gies considered in [23] are: (i) DMVDcl (voter model): adopt the
opinion of a random neighbor; (ii) DMMDcl (majority voting): adopt
the opinion of the majority of the neighbors (including the robot’s
own opinion); (iii) DCcl (direct comparison): adopt the opinion of a
random neighbor only if the robot’s current quality estimate ρ̂i is
lower than the neighbor’s quality estimate.

2This is because when in the dissemination state the goal of the robots is to mix their
positions and their opinions

The used strategy also determines the duration of the state: using
the DMVDcl or DMMDcl strategy, the robot selects the duration
of its Di state based on its current quality estimate ρ̂i by drawing
a sample from an exponential distribution with mean ρ̂iд (the pa-
rameter д is a design parameter, which in our experiments was set
to д = 100 ticks). The duration of the Di state using the DCcl strat-
egy is independent of the current quality estimate; it is chosen by
drawing a sample from an exponential distribution with mean ρwд.

Only in the last 30 ticks of the state, the robot receives opinions
of other robots. It uses the last two received opinions to decide
whether or not to change its opinion i by using one of the strategies.
Finally, the robot switches to the Ei state.

4.4 Blockchain approach
We designed the blockchain approach3 to be as similar as possible to
the classical approach. The behavior of the robots is determined by
a PFSM with the same low-level routines—while respecting particu-
larities of blockchain technology and adding safety measurements
for identifying Byzantine robots. Each robot keeps a separate copy
of the blockchain and acts as a node and miner in the blockchain
network.

The blockchain approach is driven by a blockchain-based smart
contract—programming code that is executed and verified via block-
chain technology by every node of the blockchain network. The
blockchain serves as a medium to share knowledge, record votes,
and apply decision-making strategies.

The smart contract provides three functions: registerRobot,
applyStrategy, and vote; to initiate their execution, the robots
create signed transactions and send them to their peers via the
blockchain protocol. The functions do not immediately return a
value since the transactions first have to be mined and included into
a block. Therefore, the robots listen to events, which are created as
soon as a transaction is mined.

The experiments are conducted using a private Ethereum net-
work (in contrast to Ethereum’s main network). For this purpose,
a custom genesis block is used, which allocates 100 ether4 to each
robot; this is enough to ensure that there are no limitations on
the number of transactions a robot can send during an experimen-
tal run. The mining difficulty is set to a fixed value by modifying
Ethereum’s source code. This ensures that the mining difficulty is
suited for the (simulated) robots’ limited computational power and
that the experiments are not influenced by Ethereum’s automatic
adaptation of the mining difficulty.

At the beginning of each experimental run, a geth process is
started for each robot. Additionally, we introduce an auxiliary geth
node to which each robot is connected during the initialization
phase. The auxiliary node publishes the smart contract and starts to
mine in order to include the contract in the blockchain and to obtain
its address. Each robot sends a transaction to the registerRobot
function of the smart contract. This tells the blockchain the robot’s
public key. The auxiliary node stops its mining process after the
sent transactions have been mined. The robots listen to the events
created by the registerRobot function, which include the robots’

3The source code for the blockchain approach is available at:
https://github.com/Pold87/blockchain-swarm-robotics
4Ethereum’s cryptocurrency (immutable tokens stored on the blockchain)

https://github.com/Pold87/blockchain-swarm-robotics


initial opinions as well as the block numbers and corresponding
block hashes, where the opinions are saved. As soon as all the steps
above are successful, the robots disconnect from the auxiliary node
and the experimental run is started.

There is no difference between the exploration states of the
classical and the blockchain approaches. However, the dissemina-
tion states are different due to particularities of the blockchain
approach: in the last 30 ticks of the Di state, a robot connects to the
Ethereum processes of its physical neighbors. In addition, in the
last 30 ticks of the Di state, robots are also mining (i.e., they try to
find a solution to the Proof-of-Work-based mining puzzle; we used
the default Ethereum PoW puzzle). This ensures that the transac-
tions of applyStrategy and vote are included into the blockchain
and distributed in the network. The blockchain consists of differ-
ent forks (versions) during the experiment since information is
often not spread out in the entire network but only in local robot
clusters and robots will mine on different versions of the block-
chain. Due to the movements of the robots, the network structure
of the robots changes over time. Whenever two or more robots
are connected to each other, the Ethereum protocol compares the
different blockchains and uses the longest chain as the truth. Addi-
tionally, transactions that are not yet included in a block are shared.
Since the robots have an equal hash rate (computational power),
the longest chain will be the one to which most robots contributed.

During the dissemination phase, the robots send transactions to
the function vote. As in the classical approach, we implemented
three decision-making strategies: DMVDbc, DMMDbc, and DCbc.
The amount of votes a robot sends during the dissemination phase
depends on the used decision-making/dissemination strategy: when
using DMVDbc or DMMDbc, the robots create a voting transaction
every five ticks of the dissemination state. Therefore, the longer
a robot’s dissemination time, the more votes it creates. If robots
use the DCbc strategy, they create only one voting transaction each
time they enter the dissemination state. The voting transaction
includes a robot’s opinion (and when using the DCbc strategy, also
their quality estimate ρ̂i ), the number of the stable block5 their
opinion is based upon, and the corresponding block hash (that
the robots received when they listened to the events created by
registerRobot/applyStrategy).

The robots interact with applyStrategy to obtain their new
opinions at the end of the dissemination state. For this purpose, the
robots send a transaction with their current opinion as an argument
to the function. The applyStrategy function then first chooses
two pseudo-random opinions (using the block number and public
key of the robot as random seed) from the stable block. Choosing

5We define a stable block as the block which has exactly z = 6 confirmations. The
choice of z is a trade-off between speed and security; it has implications for both the
probability of forks to occur and for attacks to be successful. In this paper, we are only
concerned with the influence of z on the probability of forks. If z is chosen too small,
the probability increases that the opinion of a robot is just based on a locally available
fork (and will, therefore, be invalid when the fork is resolved and the majority of the
robots agree on a different blockchain version); if z is chosen too high, it will introduce
delays (i.e., a robot’s opinion will be based on an outdated opinion distribution). In
our experiments, the average block time—given the fixed mining difficulty of 106 and
fixed total hash power of the robots—is approximately 17 seconds. Therefore, z = 6
blocks are mined on average after 102 seconds. The average difference per time step
between the highest and lowest block number of all robots was 8.5 and the average
standard deviation of the differences 2.7. The optimal value for z depends on many
factors, such as the movement of the robots, communication range, number of robots,
and the expected block time.

the opinions from the stable block increases the probability that
the blockchain operates on information on which consensus has
been reached and, consequently, reduces the probability that the
information was taken from a fork that will be discarded in the
future. Then, applyStrategy applies the decision-making strategy
(DMVDbc DMMDbc, or DCbc, depending on the experiment); the
logic of the decision-making strategies is implemented in the same
way as in the classical approach. The applyStrategy function
stores the chosen opinion and block number of the stable block
together with the public key of the robot in the blockchain.

The robots wait until their applyStrategy transaction is mined
by a robot of the network. During the waiting time, they connect
and disconnect from the Ethereum processes of other robots, con-
tinue tomine, perform the randomwalkwhile avoiding other robots,
but neither disseminate their opinions nor explore the environment.
As soon as the transaction is mined and the event with the new
opinion i is created, they switch to the corresponding Ei state.

The smart contract uses three safety criteria to decide if votes are
to be excluded from the blockchain; if at least one of these criteria
is met, the voting transaction is ignored. Using the safety criteria,
it can, for example, be decided whether the robots have different
blockchain versions or whether they were separated from the rest
of the swarm for too long: (i) Outdated opinion: the opinion of the
robot is based on an outdated block number; this is the case if the
robot did not send a transaction to applyStrategy in the last 25
blocks; (ii) Contingent exhausted: after each application of apply-
Strategy, the smart contract assigns a voting contingent to the
robot (50 votes when using the DMMDbc or DMVDbc strategy; one
vote when using the DCbc); the contingent gets renewed every time
the robot sends a transaction to the applyStrategy function. This
safety criterion prevents “vote spamming”; (iii) Different blockchain
versions: the robots have different blockchain versions, which is
found out by comparing the hash value of the specified blocks.
This safety criterion ensures that the opinion of robots is based on
information on which consensus has been reached.

4.5 Byzantine robots
We model a Byzantine robot as follows: it always votes for the
minority color (black in our experiments) and it keeps a quality
estimate of ρ̂i = 1.0, independent of its actual sensor readings.
Apart from that, it acts in the same way as a non-Byzantine robot.

To account for Byzantine robots via the smart contract, a robot’s
public key is added to a blacklist on the blockchain if none of the
safety criteria applies and it sends a vote for the color that does
not match its stored opinion on the blockchain. In other words,
the smart contract detects the inconsistency when a robot votes
for a color other than the one that was agreed upon during the
consensus process. From this moment on, the votes of this robot
are ignored and not added to the list of votes in the blockchain for
the remainder of the experimental run. When a robot is identified
as a ‘malicious’ robot, it is with 100% certainty (i.e., there are no
false positives).

4.6 Metrics
To measure the performance of the classical and blockchain ap-
proaches we use the following metrics:



Exit probability (EN ): this is “the probability to make the best deci-
sion, computed as the proportion of runs that converge to consensus
on opinion a.” [23]. In our experiments: a =w (‘white’).
Consensus time of correct outcomes (T correct

N ): this is the number of
seconds needed until all non-Byzantine robots in the swarm have
opinion ‘white.’ The metric is computed over all experimental runs
that converged to ‘white’; runs that converged to ‘black’ are not
considered.

5 EXPERIMENTS
This section describes two experiments in which we compare the
classical and the blockchain approaches using the swarm robotics
simulator ARGoS. The experiments for the classical approach are
conducted by running the code of Valentini et al. [23].6

In each experimental run, 50 % of the robots start with opinion
‘white’ and the other 50 % with opinion ‘black’ to have an unbiased
initial opinion distribution.

5.1 Experiment without Byzantine robots
In the first experiment, we vary the difficulty ρ∗b = ρb/ρw of the
task and compare the classical and blockchain approaches across the
different decision-making strategies. The goal of this experiment
is to determine if blockchain-based smart contracts can be used
for collective decision-making in robot swarms. In this experiment,
there are no Byzantine robots.

In the classical approach (Figure 3, top row), the results obtained
with the three decision-making strategies show different patterns
for themetrics EN andT correct

N . The DCcl strategy shows the highest
exit probability for all difficulty settings. The DMMDcl strategy has
an exit probability below 1.0 even for the easiest setting. It drops to
chance level at the highest difficulty setting. The DMVDcl strategy
is more stable, but its EN also decreases at higher difficulty settings.
For all difficulty settings, the DCcl strategy has the fastest consensus
time, followed by DMVDcl and then DMMDcl.

In the blockchain approach (Figure 3, bottom row), the exit prob-
ability (EN ) of the DMMDbc and DMVDbc strategy shows a similar
pattern and decreases for higher ρ∗b . The exit probability of the DCbc
strategy is EN = 1.0 for all ρ∗b ≤ 0.79 and drops to EN ≈ 0.8 at the
highest difficulty setting. The consensus time using the DMVDbc
and DMMDbc strategy is largely unaffected by the difficulty of the
task. In contrast, the consensus time of the DCbc strategy rises with
the difficulty.

In general, the exit probabilities (EN ) show similar patterns when
using the strategies of the classical approach and when using the
counterparts of the blockchain approach. However, the DMVDbc
performsworse than the DMVDcl for almost all difficulty levels. The
consensus times (T correct

N ) of the DMVDbc and DMMDbc strategies
are, unlike their counterparts in the classical approach, unaffected
by the task difficulty.T correct

N of the DMVDbc has a high variability.

6We used a different implementation of the DMMDcl strategy, since the original
implementation contained a bug that led to the following behavior: if there is a tie
in a robot’s received opinions (including the robot’s own opinion), it always changes
its opinion to ‘white’. This case occurs, for example, if robot A has opinion ‘black’
and receives one vote for ‘white’ from robot B; robot A then changes to opinion
‘white’. Since there were always more white tiles than black tiles in Valentini et al.’s
experiments, this resulted in shorter consensus times and higher exit probabilities
than what would have been without the bug. Because of this, the results presented in
this paper for the DMMDcl strategy are not consistent with those presented in [23].

T correct
N of both the DCbc and DCcl rises with higher difficulties but
the DCbc is overall slower.

Discussion. Our results show that similar results can be achieved
using the classical approach and the blockchain approach. The
performance of the different strategies implemented in the two
approaches is not exactly equal. This is due to the fact that some
aspects of the classical approach cannot be implemented using the
blockchain approach. For example, in the classical approach robots
send their opinion directly to their neighbors; if a neighbor has
already received the opinion in a previous timestep from the same
robot, it is discarded. In contrast, the blockchain approach creates
a number of voting transactions proportional to the dissemination
time and all votes are stored in the blockchain. Furthermore, mining
and waiting for events in the blockchain approach can create delays
which are not present in the classical approach.

5.2 Experiment with Byzantine robots
In the second experiment, we test the robustness of the blockchain
approach to the presence of Byzantine robots—robots that always
vote for black with a quality estimate of ρ̂i = 1.0 (see Section 4.5).
Byzantine robots make the collective decision task more difficult.
Since they never change their opinion, consensus on the majority
color is no longer achievable when one or more Byzantine robots
are part of the swarm. Hence, we stop one experimental run as soon
as all non-Byzantine robots of the swarm have the same opinion for
the first time (sub-swarm consensus). This allows for comparisons
between the classical and blockchain approaches. In the experi-
ments, we study how increasing the number of Byzantine robots
affects the classical and blockchain approaches. We compare the
performance of the two approaches for different values of the num-
ber k of Byzantine robots in the swarm. The difficulty of the task is
set to ρ∗b = 0.52 (34 % of black tiles).

The results (EN andT correct
N ) show a clear difference in the perfor-

mance of the classical and blockchain approaches (Figure 4) when
using the DMVD or DMMD strategy. While the exit probabilities of
the classical approach sharply drop below chance level with even
a small number of Byzantine robots, the blockchain approach is
more resilient and the exit probabilities remain above chance level
for almost all values of k .

In contrast, the performance of the DCbc strategy shows a more
similar pattern to the DCcl strategy. This pattern occurs since the
robots only change their opinion when their current quality esti-
mate is smaller than the selected opinion in the smart contract. Since
Byzantine robots send quality estimate ρ̂ = 1.0, they can always
keep their opinion when using the DCbc strategy and act—from the
smart contract’s perspective—according to the protocol and there-
fore are not put on the blacklist. In other words, the modulation
technique used by the DMVDbc and DMMDbc strategy (sending an
amount of votes proportional to the quality estimate ρ̂ instead of
directly sending the value ρ̂) is robust to the presence of Byzantine
robots, while the DCbc strategy is vulnerable because Byzantine
robots can circumvent the security measurements.

The consensus times of the classical and blockchain approaches
significantly differ from each other; this is partly due to the fact that
using the classical approach, EN is small or zero for several values
of k . Therefore, T correct

N is only based on a few runs or cannot be
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Experiment without Byzantine robots (Blockchain approach)
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Figure 3: Exit probability (EN ) and consensus time of correct outcomes (T correct
N ) as a function of the difficulty of the task ρ∗b ∈

{0.52, 0.56, 0.61, 0.67, 0.72, 0.79, 0.85, 0.92} (top row: classical approach; bottom row: blockchain approach). The data is collected
by executing 40 repetitions for each combination of difficulty level and decision-making strategy.

calculated (remember that T correct
N is based on correct outcomes

only). The reliability of the consensus time of the classical approach
is hence lower because the sample is much smaller. T correct

N of
the DCcl strategy is particularly high (with a high variability) at
k ∈ {3, 4, 5}; for these values of k , the Byzantine robots manage to
influence some—but not all—of the non-Byzantine robots, making
it difficult to find consensus on any color. In contrast, the DCbc is
fast and T correct

N decreases with the number of Byzantine robots.
The slight increase of EN for k = 9 for both the classical and

the blockchain approach is due to the small number of remaining
non-Byzantine robots: since out of the N = 20 robots, ten (non-
Byzantine) robots start with initial opinion ‘white’, there is only
one remaining non-Byzantine robot with initial opinion ‘black’ that
has to change its opinion to ‘white’ to reach sub-swarm consensus.

Discussion. Even with the relaxed sub-swarm consensus met-
ric, the classical approach breaks down with a small number of
Byzantine robots. In contrast, the DMVDbc and DMMDbc decision-
making strategies yield high exit probabilities since a robot is added
to the blacklist whenever there is a mismatch between the opinion
it sends to the smart contract residing on the blockchain and its
opinion as written in the blockchain.

6 DISCUSSION
In this section, we list the advantages and disadvantages of the
classical and blockchain approaches and discuss the results of the
experiments in more general terms.

In presence of Byzantine robots, the classical approach always
converges to the wrong color if the simulation is not stopped when
sub-swarm consensus is reached. In the blockchain approach, in
contrast, consensus could be achieved in a fully decentralized way
via the smart contract, without a priori knowledge regarding which
robots are Byzantine. However, we considered sub-swarm consen-
sus measured by an external observer. Even though this metric can-
not be measured in a real robot deployment (as we would not know
which robots are Byzantine), we use it to see whether the “block-
chain machinery” causes the convergence of the non-Byzantine
robots to be much slower compared to the classical approach.

The Proof-of-Work secures the data of the robot swarm as long
as no intruders with significantly higher hash rates get access to the
blockchain. However, the work presented in this paper is a proof-
of-concept and in future work we will consider other consensus
protocols, such as Proof-of-Stake (already implemented in some ex-
isting blockchain protocols), Proof-of-Sensing (only robots that can
produce a certain sensory output can send/validate transactions), or
even Proof-of-physical-Work (only robots that can prove that they
have performed physical work—such as collecting an item—can
send/validate transactions).

Using the classical approach, the message size is 2 Bytes with the
DMVDcl/DMMDcl strategies and 4 Bytes with the DCcl strategy.
The message size in the blockchain approach is significantly larger:
approximately 160 Bytes per transaction since it contains also meta-
data, such as the digital signature and address of the receiving smart
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Experiment with Byzantine robots (Blockchain approach)
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Figure 4: Exit probability (EN ) and consensus time of correct outcomes (T correct
N ) as a function of the number of Byzantine

robots (top row: classical approach; bottom row: blockchain approach). Since T correct
N is calculated using correct outcomes

only, it is only based on a few runs or cannot be calculated when EN is small or zero. The data is collected by executing 50
repetitions for each combination of number of Byzantine robots and decision-making strategy.

contract. For a run of 15min, the blockchain size is approximately
10MB for the DMVDbc/DMMDbc strategies, and approximately
4MB for the DCbc strategy. The size increases linearly both with
time and number of robots.

We assume that the robots are able to send at least some kB/s.
Due to digital signatures in blockchain technology, noisy commu-
nication channels will not alter the sent transactions: they will
either be received completely or be invalid. Since transactions are
distributed in a peer-to-peer manner, unreliable communication
channels could also receive past information from different robots
after the information has been disseminated in the network.

We have not investigated how sparse connectivity affects the
blockchain approach. However, we still expect good performance
since all crucial actions of different robot clusters get recorded and
a new global view could be obtained by merging the different views
of the clusters once reunited.

7 CONCLUSIONS AND FUTUREWORK
While swarm robotics systems are often claimed to be highly fault-
tolerant, in some cases one or a few malfunctioning robots suffice
to make a robot swarm unable to continue operating. To the best
of our knowledge, in this paper we have described, implemented,
and evaluated the first proof-of-concept of a robot swarm that
manages malfunctioning robots via blockchain technology. Using a

blockchain-based smart contract, we demonstrated that Byzantine
robots can be identified and excluded from the swarm.

Until now, blockchain technology was mainly used on the Inter-
net with communication gaps of a few seconds. Its use in swarm
robotics poses several challenges. For example, the communication
can be much slower and the information only locally available for
longer time periods (i.e., in local robot clusters that are separated
from the rest of the swarm). Moreover, the hardware used in swarm
robotics is usually much more limited (computational/memory limi-
tations) than the hardware used in desktop computers or computing
clusters.

In future work, we will expand the range of possible Byzantine
failures and will study how blockchain technology can be used in
other swarm robotics tasks. Additionally, we intend to scale down
the computation and memory requirements to make the blockchain
run on devices with very limited computational capabilities. Finally,
we are currently working on transferring the system to a swarm of
real e-puck robots.
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