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Extrapolated full waveform inversion: An image-space approach
Yunyue Elita Li, National University of Singapore, and Laurent Demanet, Massachusetts Institute of Technology

SUMMARY

The primary factor that prevents full waveform inversion from
universal success is the band-limited nature of seismic data,
resulting in a gap between the low wavenumber background
velocity model and the high wavenumber seismic images. In
this paper, we propose to bridge the wavenumber gap in the
extended image space, where full kinematic information in the
data is preserved in spite of the inaccuracy of the background
migration velocity model, and where the wavenumber range of
the extended image is extrapolated using total-variation con-
strained deconvolution. This explicit wavenumber extrapola-
tion is nested within least-squares reverse time migration iter-
ations to ensure that the resulting extended images match the
recorded band-limited data. We then synthesize reflection data
using extended Born modeling with the extrapolated images.
Numerical experiments show that although the total variation
projection has limited the high frequencies that can be recre-
ated by extended Born modeling, the low frequencies are re-
liably extrapolated at all offsets, given a reasonable starting
velocity model. When the initial model is too crude, the pro-
posed frequency extrapolation breaks down near the complex
structures.

INTRODUCTION

The extended imaging scheme introduces extra spatial or time
lags in the image space to accommodate the kinematic error
that has not been modeled correctly by the migration velocity
model (Rickett and Sava, 2002; Sava and Fomel, 2006). When
the initial velocity is inaccurate, the images in the extended
model space will not focus at the zero subsurface-offset or at
zero time-lag, as opposed to the assumption by conventional
RTM. These “leaked” events in the extended model space help
reconstruct the accurate kinematics of the recorded reflection
data via extended Born modeling, regardless of the accuracy
of the migration velocity model. A conceptual description of
the extended Born modeling operator takes the form

d̂ = Fe(w)Ie, (1)

where Fe is the extended Born modeling operator, the adjoint
operator of the extended imaging operator; Ie is the extended
image, and d̂ is the modeled data. Since the kinematics in d̂
match the kinematics in the recorded reflection data d, the ex-
tended images can be used to fit the recorded reflection data
without the concerns of cycle-skipping in conventional full
waveform inversion (Gauthier et al., 1986; Gerhard Pratt et al.,
1998; Pratt and Shipp, 1999a,b; Etgen et al., 2009). The result-
ing iterative inversion scheme is referred as least-squares ex-
tended reverse time migration (LSERTM). LSERTM has shown
robustness against the inaccuracies in the migration velocity
model in many applications, such as to separate contaminated
seismic records with simultaneous sources (Leader et al., 2014),

to enhance the signal-to-noise ratio, and to interpolate the prestack
seismic data (Weibull and Arntsen, 2014; Hou and Symes,
2016).

Here, we focus on the wavenumber (and corresponding fre-
quency) analysis of the extended images (and corresponding
data). After extended Born modeling, the frequency band of
the synthesized data d̂ is determined by two factors: the fre-
quency band of the source wavelet w defined in the modeling
operator Fe, and the wavenumber band of the extended image
Ie. The key innovation of this paper can be summarized math-
ematically as follows:

d̂l = Fe(wl)∆me, (2)

where ∆me is the extended model, a modified version of Ie with
same kinematical information but a wider wavenumber range;
wl is a synthesized wavelet, whose frequency support is wider
than the original source wavelet w; and d̂l is the newly syn-
thesized data, whose frequency support is also wider than the
original recorded data d. In other words, frequency extrapo-
lation of the data is achieved by wavenumber extrapolation of
the extended images and subsequent extended Born modeling.

The wavenumber extrapolation is an essential step in the fre-
quency extrapolation, because the raw extended images only
contain wavenumber components that are supported by the fre-
quency band of the recorded data. In this paper, we propose to
perform wavenumber extrapolation by adding a total variation
(TV) constraint (Rudin et al., 1992; Fadili and Peyré, 2011)
to the LSERTM inversion. However, the extended Born mod-
eling and imaging operators are too expensive to evaluate for
hundreds of iterations that are required for the TV constraint.
Therefore, we design a variable-wavelet 1D convolutional op-
erator to approximate the expensive normal operator F∗e Fe and
solve the TV-constrained deconvolution problem as a precon-
ditioning step of the LSERTM iterations. This deconvolution
step also compensates the footprint of the wavelet on the ex-
tended images. Consequently, we achieve fast convergence for
both wavenumber extrapolation and data fitting by extended
Born modeling.

The spirit of this paper is aligned with our previous papers (Li
and Demanet, 2015, 2016): low frequency data can be syn-
thesized based on the bandlimited recorded data. The full
waveform inversion schemes based on the extrapolated low
frequencies are referred as extrapolated full waveform inver-
sion (EFWI) in both cases. However, the particular approaches
are drastically different. The previously proposed phase track-
ing method is performed in the data space, via highly con-
trolled model parameterization and strong model reduction.
The method we propose in this paper achieves a similar goal
in the image space, via image extension and deconvolutive fre-
quency extrapolation. The implicit duality between these two
methods is yet to be explored.



METHOD

To illustrate the workflow of the proposed method, we demon-
strate each step using a simple three-layer synthetic example
(Figure 1(a)). The background velocity is 2000 m/s and the
velocity of the middle layer is 4000 m/s. The thickness of the
middle layer is 200 m. Figure 1(b) shows the bandlimited shot
record between 6 and 50 Hz at xs = 0 m. We use 41 shots at
100 m spacing to image the synthetic model.

(a) (b)

Figure 1: (a) The synthetic model with a high-velocity layer.
(b) Synthetic seismic data recorded between (6-50 Hz).

Least-squares extended reverse time migration (LSERTM)

The primary reflection data can be estimated by Born approxi-
mation using the causal Green’s function G(x,y, t) for a given
background velocity m0. Hence, the resulting scattered data
modeled by the Born modeling operator can be expressed:

(F∆m)(xs,xr, t) =
∂ 2

∂ t2

∫
dxdτw(τ)G(xs,x,τ)

× 2m0(x)∆m(x)G(x,xr, t− τ), (3)

with w(t) a source wavelet that is bandlimited to the frequency
content of the data and ∆m the perturbation to the background
velocity. The adjoint operator F∗ maps scattered data δd to
the model space:

(F∗δd)(x) = 2m0(x)
∫

dxsdxrdtdτw(τ)G(xs,x,τ)

× G(x,xr, t− τ)
∂ 2

∂ t2 δd(xs,xr, t). (4)

The model space object in Equation 4 is often referred as a
reverse-time migration image.

Based on the survey-sinking imaging condition introduced by
Claerbout (1985), we can introduce an extra subsurface offset
to the migration image. The resulting imaging operator is re-
ferred as the extended imaging operator F∗e which maps the
scattered data to the extended images:

I(x,h) = (F∗e δd)(x,h)

= 2m0(x)
∫

dxsdxrdtdτw(τ)G(xs,x+h,τ)

× G(x−h,xr, t− τ)
∂ 2

∂ t2 δd(xs,xr, t). (5)

The adjoint operator Fe is referred as the extended Born model-
ing operator which maps the extended images to the scattered

data:

δ d̂(xs,xr, t) = (Fe∆me)(xs,xr, t)

=
∂ 2

∂ t2

∫
dxdhdτw(τ)G(xs,x+h,τ)

× 2m0(x)∆me(x,h)G(x−h,xr, t− τ). (6)

Under favorable conditions, this pair of forward and adjoint
operators are pseudodifferential. In that case, sequentially ap-
plying them one after the other, regardless of the order, does
not move the singularities. Therefore, the phases modeled
by sequential application of this pair of operators are aligned
with the original object. The amplitude differences can be
compensated by gradient-based inversion due to linearity. ten
Kroode (2012) and Hou and Symes (2015) provided detailed
explanations for the statement above and proposed designs of
pseudoinverse operators for the extended Born modeling in
terms of Kirchhoff migration and reverse-time migration, re-
spectively.

In this paper, we formulate least-squares extended reverse time
migration problem explicitly:

JLSERT M(∆me(x,h)) =
1
2

∑
r,s,t

(δus(xs,xr, t;∆me)−δdr,s,t)
2,

(7)
where δd is the primary reflection data, and δus is the modeled
data by Equation 6. When working with reflection data whose
specular angle is limited to a maximum of 45◦, the LSERTM
inversion can only resolve the wavenumber components corre-
sponding to the frequency content of the data.

Figure 2(a) shows the extended image obtained by migrating
the reflection seismic data using a constant velocity model of
2200 m/s. Due to the too fast migration velocity, the reflectors
are imaged deeper than their true depth. The upward curva-
ture and strong energy at h 6= 0 in the subsurface offset domain
indicates that the migration velocity is inaccurate. Similarly,
Figure 2(b) shows the extended image when a constant migra-
tion velocity of 1800 m/s is used. The reflectors are imaged
shallower with strong curvatures in the subsurface offset do-
main. In both cases, the leaked energy in the subsurface off-
set domain preserves the kinematic information of the seismic
data. The wavenumber contents in both extended images are
consistent with the frequency contents in the recorded data,
leading to low resolution images of the true model.

(a) (b)

Figure 2: Extended images obtained by LSERTM, using a con-
stant fast velocity mode in (a) and using a constant slow veloc-
ity model in (b).



Preconditioning with total variation constrained deconvo-
lution
This inverse problem in Equation 7 has a large nullspace due
to the incompleteness of data in space and frequency. To bet-
ter constrain the inverse problem and to honor the geological
information, we introduce a total variation (TV) regularization
to augment the inversion:

min ||Fe∆me(x,h)−δdr,s,t ||22,
s.t. ||∆me||TV ≤ τ, (8)

where || · ||TV denotes the TV norm (morally, the L1 norm of
the gradient), and τ is a user-defined parameter. The top equa-
tion in the fitting system is the same as Equation 7. Solving
a TV constrained problem requires too many iterations for the
computational cost of LSERTM to be affordable. Hence, we
rearrange the optimization goals:

min ||F∗e Fe∆me(x,h)−F∗e δd||22,
s.t. ||∆me||TV ≤ τ. (9)

The object F∗e δd is already defined in Equation 5 as the ex-
tended image I(x,h). We now approximate the normal op-
erator using a cheap 1-D convolution operator A ≈ F∗e Fe and
obtain an approximated system of equations to solve for the
TV constrained optimization problem:

min ||A∆me(x,h)− I(x,h)||22,
s.t. ||∆me||TV ≤ τ. (10)

(a) (b)

Figure 3: Extended images obtained by LSERTM precondi-
tioned by TV-constrained deconvolution, using a constant fast
velocity model in (a) and using a constant slow velocity model
in (b).

Notice that the deconvolution problem in Equation 10 is per-
formed in the depth domain, where the seismic wavelet is stretched
due to velocity variation and variable illumination. Conven-
tional stationary wavelet deconvolution as performed in the
time domain is insufficient to capture the source signature for
all depth ranges. Therefore, we design a velocity-dependent
variable wavelet deconvolution operator A to better approxi-
mate the extended normal operator F∗e Fe.

To solve the TV constrained inverse problem, we use a pro-
jected gradient descent method, which projects the updated
model after each iteration to a total variation ball of finite ra-
dius:

∆mi+1
e = Proj{||·||TV≤τ}

(
∆mi

e +αA∗(I−A∆mi
e)
)
, (11)

where Proj{||·||TV≤τ} is the projector on the TV ball and α is
a predetermined step length.

Figure 3 shows the extended images obtained by LSERTM
with TV-constrained deconvolution preconditioning. Compared
with the extended images in Figure 2, preconditioned LSERTM
not only removes the migration artifacts from the image, but
also extends the bandwidth in wavenumber way beyond the
wavenumber supported by the frequencies in the data. The pre-
conditioning will also speed up the convergence of LSERTM.

Figure 4 compares the wavenumber spectra of the true model
(in blue), the extended images (in green), and the extended im-
ages after TV-constrained deconvolution (in red). The original
image does not contain any low wavenumber components due
to the missing low frequencies in the data. Although the image
after TV-LSERTM does not reproduce the spectrum of the true
model exactly, it has restored the relative balance between the
low wavenumber and the high wavenumber components.
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Figure 4: Comparison of average wavenumber spectra of
the true model (Blue), of the inverted image (Green) by
LSERTM, and of the image by LSERTM preconditioned by
TV-constrained deconvolution (Red), for the cases of constant
fast velocity (a) and constant slow velocity (b).

Figure 5 compares the low frequency (0 - 6 Hz) seismic records
reconstructed by extended Born modeling with the data record
modeled using the true velocity model. Both phase and am-
plitude of the low frequency data have been successfully re-
constructed, despite the inaccuracies in the migration velocity
model. Slight phase differences at large offsets are due to the
differences in the boundary reflections.

At this point, the low frequency data are reconstructed using
the extended linearization scheme preconditioned by wavenumber-
extending deconvolution. After filling in the frequency gap,
the conventional Born linearization at the low frequencies is
accurate enough to be used for updating the background (low-
wavenumber) velocity model m0. Therefore, the synthesized
data can provide coherent information for full waveform in-
version when sweeping over data from low to high frequen-
cies. The resulting model from FWI contains a full wavenum-
ber spectrum, eliminating the need of interpreting velocity and
reflectivity models separately.

Extrapolated full waveform inversion
To demonstrate the reliability of the extrapolated low frequency
data, we use the reconstructed low frequencies to initialize the



(a) (b)

(c)

Figure 5: Comparison of low frequency (0-6 Hz) seismic
record. (a) Data record reconstructed from the constant fast
velocity and extended image in Figure 3(a). (b) Data record
reconstructed from the constant slow velocity and extended
image in Figure 3(b). (c) Data record modeled using the true
velocity model in Figure 1(a).

frequency sweep of full waveform inversion on the Marmousi
model. The initial model we use for the numerical test repre-
sents a typical case when the low-wavenumber velocity model
is obtained by ray-based tomography or wave-equation migra-
tion velocity analysis: the kinematics of seismic data are accu-
rately explained up to 2 Hz, which is still lower than the lowest
frequency recorded (6 Hz) in the data. The highest available
frequency in the data for extrapolation is 50 Hz.

Figure 6 compares the low wavenumber models inverted from
modeled low frequency (2 - 6 Hz) data (a) and from the ex-
trapolated low frequency (2 - 6 Hz) data (b) with the smooth
initial model in (c). The inverted model from extrapolated data
appears to be higher resolution than the inverted model from
modeled data; however, this apparent higher resolution is due
to the unbalanced frequency components in the data. Nonethe-
less, the extrapolated data provide reliable information in the
frequency gap between 2 Hz and 6 Hz, which maps to reason-
able estimations of the model. Both of these models can be
used to initialize FWI at higher frequencies (6 Hz and above).

DISCUSSIONS AND CONCLUSIONS

We have proposed two different methods to synthesize the low
frequency data from the bandlimited field recordings. In the
previously phase tracking method (Li and Demanet, 2015, 2016),
the low frequency data are estimated in the data space as a pure
data processing step, hence the accuracy of which is indepen-
dent of the accuracy of the initial velocity model. Accuracy of
the extrapolated low frequencies by phase tracking is in gen-
eral higher for near offsets than for far offsets, due to higher
signal amplitudes at near offsets. Phase tracking becomes am-
biguous at large offsets where weak crossing events are con-

(a) (b)

(c)

Figure 6: (a) Low wavenumber model by inverting modeled
data at low frequencies (2-6 Hz). (b) Low wavenumber model
by reconstructed data via extended Born modeling at low fre-
quencies (2-6 Hz). (c) Initial model (maximum wavenumber
corresponds to 2 Hz).

taminated by noise. Consequently, we have limited the appli-
cation of the current version of the phase tracking algorithm to
near offsets (< 500 m).

On the other hand, the accuracy of the image-space method
we proposed here is relatively uniform for all offsets and more
robust to the noise in the data, not only because of the mul-
tifold stacking at each image point, but also because of the
denoising effect of the TV constraints. The main drawback of
the image-space method is that its accuracy relies on the accu-
racy of the initial velocity model. Numerical experience shows
that the low frequencies extrapolated after TV-constrained de-
convolution become unreliable when the initial velocity is too
crude, especially in regions where the geological environment
is highly complex. Comparing with the phase-tracking method
which extracts explicit handles of extrapolated phase and am-
plitude, the wavenumber extrapolation by TV deconvolution
is more automatic and implicit. Therefore, further studies are
needed to improve the stability of the wavenumber extrapola-
tion when the background velocity is less accurate.

In general, the image-space method is more computational in-
tensive than the data-space method. Nonetheless, the recon-
structed data by the image-space method is more consistent
between the extrapolated low frequency and the recorded high
frequency. Consequently, the reconstructed data can be used
throughout the frequency sweep of FWI after extrapolation.
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Fadili, J. M., and G. Peyré, 2011, Total variation projection with first order schemes: IEEE Transactions on Image Processing, 20,

657–669.
Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion of seismic waveforms: Numerical results:

Geophysics, 51, 1387.
Gerhard Pratt, C. Shin, and Hicks, 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion:

Geophysical Journal International, 133, 341–362.
Hou, J., and W. W. Symes, 2015, An approximate inverse to the extended Born modeling operator: Geophysics, 80, R331–R349.
——–, 2016, Accelerating extended least-squares migration with weighted conjugate gradient iteration: Geophysics, 81, S165–

S179.
Leader, C., B. Biondi, et al., 2014, Demigration and image space separation of simultaneously acquired data: 2014 SEG Annual

Meeting.
Li, Y. E., and L. Demanet, 2015, Phase and amplitude tracking for seismic event separation: Geophysics, 200, 363–373.
——–, 2016, Full waveform inversion with extrapolated low frequency data: Geophysics, 81, R339–R348.
Pratt, R. G., and R. M. Shipp, 1999a, Seismic waveform inversion in the frequency domain; Part 2; Fault delineation in sediments

using crosshole data: Geophysics, 64, 902–914.
——–, 1999b, Seismic waveform inversion in the frequency domain; Part 2; Fault delineation in sediments using crosshole data.
Rickett, J. E., and P. C. Sava, 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics,

67, 883–889.
Rudin, L. I., S. Osher, and E. Fatemi, 1992, Nonlinear total variation based noise removal algorithms: international symposium on

physical design, 60, 259–268.
Sava, P., and S. Fomel, 2006, Time-shift imaging condition in seismic migration: Geophysics, 71, S209–S217.
ten Kroode, F., 2012, A wave-equation-based Kirchhoff operator: Inverse Problems, 28, 115013 – 115040.
Weibull, W. W., and B. Arntsen, 2014, Reverse-time demigration using the extended-imaging condition: Geophysics, 79, WA97–

WA105.


