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0. Introduction

0.1. Overview. The main result of the paper is a proof of the Gromov-Witten/
Pairs (GW/P) correspondence for several compact Calabi-Yau 3-folds (including all
Calabi-Yau complete intersections in products of projective spaces). The GW/P
correspondence was first stated in terms of the Donaldson-Thomas theory of ideal
sheaves in [17, 18] and is often referred to as the Maulik-Nekrasov-Okounkov-
Pandharipande (MNOP) conjecture.

(i) Via the Gromov-Witten theory of the moduli of stable maps to a 3-fold X,
the generating series of curve counts is defined with a genus parameter u.

(ii) Via the Donaldson-Thomas theory of the moduli of ideal sheaves on X,
the generating series of sheaf counts is defined with an Euler characteristic
parameter q.

The MNOP conjecture equates the generating series (i) and (ii) after the nontrivial
change of variables

−q = eiu .

For Calabi-Yau 3-folds, the formulation in terms of stable pairs [34] was proven to
be equivalent in [4, 40].
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390 R. PANDHARIPANDE AND A. PIXTON

Our proof here uses much of the development of the Donaldson-Thomas theory
of 3-folds in the past decade. The first input is a series of papers culminating in
[21] which establish the MNOP conjecture for nonsingular, quasi-projective, toric
3-folds. The results essentially concern the 3-fold toric vertex (first studied in the
Calabi-Yau case in [1]). The argument of [21] uses

• the proof of the MNOP conjecture for local curves established in the papers
[5, 28, 29],

• the proof of the MNOP conjecture for 3-folds An × P1, where An is the
holomorphic symplectic resolution of the standard An-surface singularity,
in the papers [16, 19, 20].

A basic idea introduced in [21] is the notion of the capped 3-fold vertex—a reorga-
nization of the standard localization formula which respects the MNOP conjecture.

The second input is the foundation of the theory of stable pairs developed in
[34–36]. Stable pairs are much better behaved than the Donaldson-Thomas theory
of ideal sheaves since there are no floating points. Real differences between stable
pairs and ideal sheaves appear in the study of descendent invariants involving the
integration of the slant products of the Chern characters of the tautological sheaves
over the moduli space. The generating functions of descendent invariants for sta-
ble pairs are conjectured to be rational functions (while the parallel generating
functions for ideal sheaves are known to be irrational).

The third input is the study of descendent invariants for the stable pairs theory
of 3-folds:

• the proof of the rationality of the generating series for toric 3-folds in the
papers [30, 31],

• the formulation (and proof in the toric case) of a GW/P correspondence
for descendents in [33].

For the toric arguments in [33], a capped 3-fold descendent vertex is introduced.
Given a 3-fold X and a nonsingular divisor D ⊂ X, there are relative stable

pairs and Gromov-Witten theories [13,15,18,30]. The interaction of the descendent
theory with the relative theory plays a crucial role. We approach compact Calabi-
Yau 3-fold via degeneration to toric geometries. In order to prove the GW/P
correspondence, we prove appropriate GW/P correspondence for all the simpler
descendent and relative geometries which arise in the degeneration process.

A crucial case concerns the geometry of a P1-bundle,

π : PS → S ,

over a surface S relative to a section of π. We prove GW/P correspondences in
case S is a toric surface, a K3 surface, or a projective bundle over a higher genus
curve C. The proofs systematically use the descendent theory of 3-folds. Once the
GW/P correspondences for these special relative geometries are established, then
the degeneration scheme of [22] can be used to prove the GW/P correspondence
for any compact Calabi-Yau 3-fold which admits a good degeneration.

0.2. Descendents in Gromov-Witten theory. Let X be a nonsingular projec-
tive 3-fold. Gromov-Witten theory is defined via integration over the moduli space
of stable maps. Let Mg,r(X, β) denote the moduli space of r-pointed stable maps

Licensed to Mass Inst of Tech. Prepared on Tue May 29 13:07:08 EDT 2018 for download from IP 18.51.0.96.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 391

from connected genus g curves to X representing the class β ∈ H2(X,Z). Let

evi : Mg,r(X, β) → X,

Li → Mg,r(X, β)

denote the evaluation maps and the cotangent line bundles associated to the marked
points. Let γ1, . . . , γr ∈ H∗(X,Q), and let

ψi = c1(Li) ∈ H2(Mg,n(X, β),Q).

The descendent fields, denoted by τk(γ), correspond to the classes ψk
i ev

∗
i (γ) on the

moduli space of maps. Let〈
τk1

(γ1) · · · τkr
(γr)

〉
g,β

=

∫
[Mg,r(X,β)]vir

r∏
i=1

ψki

i ev∗i (γi
)

denote the descendent Gromov-Witten invariants. Foundational aspects of the
theory are treated, for example, in [2, 3, 14].

Let C be a possibly disconnected curve with at worst nodal singularities. The

genus of C is defined by 1 − χ(OC). Let M
′
g,r(X, β) denote the moduli space of

maps with possibly disconnected domain curves C of genus g with no collapsed
connected components. The latter condition requires each connected component
of C to represent a nonzero class in H2(X,Z). In particular, C must represent a
nonzero class β.

We define the descendent invariants in the disconnected case by〈
τk1

(γ1) · · · τkr
(γr)

〉′

g,β
=

∫
[M

′
g,r(X,β)]vir

r∏
i=1

ψki
i ev∗i (γi).

The associated partition function is defined by1

(1) Z′
GW

(
X;u

∣∣∣ r∏
i=1

τki
(γi)

)
β
=

∑
g∈Z

〈 r∏
i=1

τki
(γi)

〉′

g,β
u2g−2.

Since the domain components must map nontrivially, an elementary argument
shows the genus g in the sum (1) is bounded from below. The descendent insertions
in (1) should match the (genus independent) virtual dimension,

(2) dim [M
′
g,r(X, β)]vir =

∫
β

c1(TX) + r.

If X is a nonsingular projective toric 3-fold, then the descendent invariants can
be lifted to equivariant cohomology. Let

T = (C∗)3

be the 3-dimensional algebraic torus acting on X. Let s1, s2, s3 be the equivariant
first Chern classes of the standard representations of the three factors of T. The
equivariant cohomology of the point is well-known to be

H∗
T(•) = Q[s1, s2, s3] .

1Our notation follows [18, 21] and emphasizes the role of the moduli space M
′
g,r(X,β). The

degree 0 collapsed contributions will not appear anywhere in our paper.
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392 R. PANDHARIPANDE AND A. PIXTON

For equivariant classes γi ∈ H∗
T(X,Q), the descendent invariants〈

τk1
(γ1) · · · τkr

(γr)
〉′

g,β
=

∫
[M

′
g,r(X,β)]vir

r∏
i=1

ψki
i ev∗i (γi) ∈ H∗

T(•)

are well-defined. In the equivariant setting, the descendent insertions may exceed
the virtual dimension (2). The equivariant partition function

Z′
GW

(
X;u

∣∣∣ r∏
i=1

τki
(γi)

)T

β
∈ Q[s1, s2, s3]((u))

is a Laurent series in u with coefficients in H∗
T(•).

If X is a nonsingular quasi-projective toric 3-fold, the equivariant Gromov-
Witten invariants of X are still well-defined2 by localization residues [5]. In the
quasi-projective case,

Z′
GW

(
X;u

∣∣∣ r∏
i=1

τki
(γi)

)T

β
∈ Q(s1, s2, s3)((u)) .

For the study of the Gromov-Witten theory of toric 3-folds, the open geometries
play an important role.

0.3. Descendents in the theory of stable pairs. Let X be a nonsingular pro-
jective 3-fold, and let β ∈ H2(X,Z) be a nonzero class. We consider next the
moduli space of stable pairs3

[OX
s→ F ] ∈ Pn(X, β),

where F is a pure sheaf supported on a Cohen-Macaulay subcurve of X, s is a
morphism with 0-dimensional cokernel, and

χ(F ) = n, [F ] = β.

The space Pn(X, β) carries a virtual fundamental class obtained from the deforma-
tion theory of complexes in the derived category [34].

Since Pn(X, β) is a fine moduli space, there exists a universal sheaf

F → X × Pn(X, β);

see Section 2.3 of [34]. For a stable pair [OX → F ] ∈ Pn(X, β), the restriction of F
to the fiber

X × [OX → F ] ⊂ X × Pn(X, β)

is canonically isomorphic to F . Let

πX : X × Pn(X, β) → X,

πP : X × Pn(X, β) → Pn(X, β)

be the projections onto the first and second factors. Since X is nonsingular and
F is πP -flat, F has a finite resolution by locally free sheaves.4 Hence, the Chern

2A quasi-projective toric variety X has a finite skeleton of 1-dimensional projective torus orbits.
For a stable map to X to be torus fixed, the image must lie in the 1-dimensional skeleton. Hence,
the torus fixed locus of the moduli space of stable maps is compact.

3See [34] for a foundational development. An introduction to the subject of stable pairs can
be found in [38].

4Both X and Pn(X,β) carry ample line bundles.
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GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 393

character of the universal sheaf F on X × Pn(X, β) is well-defined. By definition,
the operation

πP∗
(
π∗
X(γ) · ch2+i(F) ∩ π∗

P ( · )
)
: H∗(Pn(X, β)) → H∗(Pn(X, β))

is the action of the descendent τi(γ), where γ ∈ H∗(X,Z).
For nonzero β ∈ H2(X,Z) and arbitrary γi ∈ H∗(X,Q), define the stable pairs

invariant with descendent insertions by〈
τk1

(γ1) · · · τkr
(γr)

〉
n,β

=

∫
[Pn(X,β)]vir

r∏
i=1

τki
(γi) .

The partition function is

ZP

(
X; q

∣∣∣ r∏
i=1

τki
(γi)

)
β
=

∑
n

〈 r∏
i=1

τki
(γi)

〉
n,β

qn.

Since Pn(X, β) is empty for sufficiently negative n, the partition function is a
Laurent series in q. The following conjecture was made in [35].

Conjecture 1. The partition function ZP

(
X; q |

∏r
i=1 τki

(γi)
)
β
is the Laurent ex-

pansion of a rational function in q.

Let X be a nonsingular quasi-projective toric 3-fold. The stable pairs descendent
invariants can be lifted to equivariant cohomology (and defined by residues in the
open case). For equivariant classes γi ∈ H∗

T(X,Q), we see

ZP

(
X; q

∣∣∣ r∏
i=1

τki
(γi)

)T

β
∈ Q(s1, s2, s3)((q))

is a Laurent series in q with coefficients in H∗
T(•). A central result of [30,31] is the

following rationality property.
Toric rationality. Let X be a nonsingular quasi-projective toric 3-fold. The
partition function

ZP

(
X; q

∣∣∣ r∏
i=1

τki
(γi)

)T

β

is the Laurent expansion in q of a rational function in the field Q(q, s1, s2, s3).
The above rationality result implies Conjecture 1 whenX is a nonsingular projec-

tive toric 3-fold. The corresponding statement for the equivariant Gromov-Witten
descendent partition function is expected (from calculational evidence) to be false.

0.4. Descendent correspondence. LetX be a nonsingular projective 3-fold. Let

α̂ = (α̂1, . . . , α̂�̂) be a partition of length 	̂. Let

ιΔ : Δ → X �̂

be the inclusion of the small diagonal in the product X �̂. For γ ∈ H∗(X,Q), we
write

γ ·Δ = ιΔ∗(γ) ∈ H∗(X �̂,Q) .

By Künneth decomposition, we have

γ ·Δ =
∑

j1,...,j�̂

cγj1,...,j�̂
θj1 ⊗ · · · ⊗ θj�̂ ,
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394 R. PANDHARIPANDE AND A. PIXTON

where {θj} is a basis of H∗(X,Q). We define the descendent insertion τα̂(γ) by

(3) τα̂(γ) =
∑

j1,...,j�̂

cγj1,...,j�̂
τα̂1−1(θj1) · · · τα̂�̂−1(θj�̂) .

Three basic examples are the following:

• If α̂ = (â1), then

τ( â1 )(γ) = τâ1−1(γ) .

The convention of shifting the descendent by 1 allows us to index descendent
insertions by standard partitions α̂. The shift by 1 is natural from the point
of view of relative/descendent correspondences and follows the notation of
[33].

• If α̂ = (â1, â2) and γ = 1 is the identity class, then

τ( â1, â2 )(1) =
∑
j1,j2

c1j1,j2τâ1−1(θj1) τâ2−1(θj2) ,

where Δ =
∑

j1,j2
c1j1,j2 θj1 ⊗ θj2 is the standard Künneth decomposition of

the diagonal in X2.
• If γ is the class of a point, then

τα̂(p) = τα̂1−1(p) · · · τα̂�̂−1(p).

By the multilinearity of descendent insertions, formula (3) does not depend upon
the basis choice {θj}.

A central result of [33] is the construction of a universal correspondence matrix

K̃ indexed by partitions α and α̂ of positive size with5

K̃α,α̂ ∈ Q[i, c1, c2, c3]((u))

and K̃α,α̂ = 0 unless |α| ≥ |α̂|. Via the substitution

(4) ci = ci(TX),

the elements of K̃ act by cup product on the cohomology of X with Q[i]((u))-

coefficients. The coefficients K̃α,α̂ are constructed from the capped descendent
vertex [33].

The matrix K̃ is used to define a correspondence rule

(5) τα1−1(γ1) · · · τα�−1(γ�) �→ τα1−1(γ1) · · · τα�−1(γ�) .

The formula for the right side of (5) requires a sum over all set partitions P of
{1, . . . , 	}. For such a set partition P , each element S ∈ P is a subset of {1, . . . , 	}.
Let αS be the associated subpartition of α, and let

γS =
∏
i∈S

γi.

In case all cohomology classes γj are even, we define the right side of (5) by

(6) τα1−1(γ1) · · · τα�−1(γ�) =
∑

P set partition of {1,...,�}

∏
S∈P

∑
α̂

τα̂(K̃αS ,α̂ · γS) .

5Here, i2 = −1.
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GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 395

The last sum is over all partitions α̂ of positive size, but by the vanishing

K̃αS ,α̂ = 0 unless |αS | ≥ |α̂| ,
the summation index may be restricted to partitions α̂ of positive size bounded by
|αS |.

The leading term of the descendent correspondence is calculated in [33],

τα1−1(γ1) · · · τα�−1(γ�) = (iu)�(α)−|α| τα1−1(γ1) · · · τα�−1(γ�) + · · · .
The leading term occurs in the contribution of the maximal set partition

{1} ∪ {2} ∪ · · · ∪ {	} = {1, 2, . . . , 	}
in 	 parts; see [33, Section 7]. In case α = 1� has all parts equal to 1, the leading
term is the entire formula,

τ0(γ1) · · · τ0(γ�) = τ0(γ1) · · · τ0(γ�) .
In the presence of odd cohomology, a natural sign must be included in (6). We

may write set partitions P of {1, . . . , 	} indexing the sum on the right side of (6)
as

S1 ∪ · · · ∪ S|P | = {1, . . . , 	}.
The parts Si of P are unordered, but we choose an ordering for each P . We then
obtain a permutation of {1, . . . , 	} by moving the elements to the ordered parts
Si (and respecting the original order in each group). The permutation, in turn,
determines a sign σ(P ) determined by the anti-commutation of the associated odd
classes. We then write

τα1−1(γ1) · · · τα�−1(γ�) =
∑

P set partition of {1,...,�}
(−1)σ(P )

∏
Si∈P

∑
α̂

τα̂(K̃αSi
,α̂ · γSi

) .

The descendent τα1−1(γ1) · · · τα�−1(γ�) is easily seen to have the same commutation
rules with respect to odd cohomology as τα1−1(γ1) · · · τα�−1(γ�).

To state the descendent correspondence proposed in [33] for all nonsingular pro-
jective 3-folds X, the basic degree

dβ =

∫
β

c1(X) ∈ Z

associated to the class β ∈ H2(X,Z) will be required.

Conjecture 2. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2ZP

(
X; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
)
β

= (−iu)dβZ′
GW

(
X;u

∣∣∣ τα1−1(γ1) · · · τα�−1(γ�)
)
β

under the variable change −q = eiu.

By Conjecture 1, the stable pairs descendent series on the left is expected to be
a rational function in q, so the change of variables is well-defined.

IfX is a nonsingular quasi-projective toric 3-fold, all terms of the descendent cor-
respondence have T-equivariant interpretations. We take the equivariant Künneth
decomposition in (3), and the equivariant Chern classes ci(TX) with respect to the
canonical T-action on TX in (4). The toric case is proven in [33].
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396 R. PANDHARIPANDE AND A. PIXTON

Toric correspondence. For γi ∈ H∗
T(X,Q), we have

(−q)−dβ/2ZP

(
X; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
)T

β

= (−iu)dβZ′
GW

(
X;u

∣∣∣ τα1−1(γ1) · · · τα�−1(γ�)
)T

β

under the variable change −q = eiu for all nonsingular quasi-projective toric 3-folds
X.

0.5. Complete intersections. Let X be a Fano or Calabi-Yau complete intersec-
tion in a product of projective spaces,

X ⊂ Pn1 × · · · ×Pnm .

The main result of the paper is the proof of the descendent correspondence for even
classes.

Theorem 1. Let X be a Fano or Calabi-Yau complete intersection 3-fold in a
product of projective spaces, and let γi ∈ H2∗(X,Q) be even classes. Then,

ZP

(
X; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
)
β

∈ Q(q) ,

and we have the correspondence

(−q)−dβ/2ZP

(
X; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
)
β

= (−iu)dβZ′
GW

(
X;u

∣∣∣ τα1−1(γ1) · · · τα�−1(γ�)
)
β

under the variable change −q = eiu.

If we specialize Theorem 1 to the case where all descendents are primary or
stationary, we obtain the explicit correspondence conjectured first in [18] for the
Donaldson-Thomas theory of ideal sheaves.

Corollary 1. Let X be a Fano or Calabi-Yau complete intersection 3-fold in a
product of projective spaces, and let γi ∈ H2∗(X,Q) be even classes of positive
degree. Then,

ZP

⎛
⎝X; q

∣∣∣∣∣
r∏

i=1

τ0(γi)
s∏

j=1

τkj
(p)

⎞
⎠

β

∈ Q(q) ,

and we have the correspondence

(−q)−dβ/2 ZP

⎛
⎝X; q

∣∣∣∣∣
r∏

i=1

τ0(γi)

s∏
j=1

τkj
(p)

⎞
⎠

β

= (−iu)dβ (iu)−
∑

kj Z′
GW

⎛
⎝X;u

∣∣∣∣∣
r∏

i=1

τ0(γi)

s∏
j=1

τkj
(p)

⎞
⎠

β

under the variable change −q = eiu.

If we specialize Theorem 1 further to the Calabi-Yau case (with no descendent
insertions), we obtain the following result.
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GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 397

Corollary 2. Let X be a Calabi-Yau complete intersection 3-fold in a product of
projective spaces. Then,

ZP

(
X; q

)
β

∈ Q(q) ,

and we have the correspondence

ZP

(
X; q

)
β
= Z′

GW

(
X;u

)
β

under the variable change −q = eiu.

Corollary 2 together with the Donaldson-Thomas/Pandharipande-Thomas
(DT/PT) correspondence proven by Toda [40] and Bridgeland [4] implies the orig-
inal GW/DT correspondence [17] in case X is a Calabi-Yau complete intersection
in a product of projective spaces.

0.6. Bogomol’nyi-Prasad-Sommerfield counts. For complete intersection
Calabi-Yau 3-folds, Theorem 1 is closely related to the Bogomol’nyi-Prasad-Som-
merfield (BPS) structure conjectured by Gopakumar and Vafa [6] in 1998.

The method of [6] was to consider limits of type IIA string theory which may be
conjecturally analyzed in M-theory. A remarkable proposal was made in [6] for the
form of the Gromov-Witten potential FX of a Calabi-Yau 3-fold X. Let

FX(u, v) =
∑
g≥0

u2g−2FX
g (v), FX

g (v) =
∑

0�=β∈H2(X,Z)

NX
g,β vβ ,

where NX
g,β is the (connected) genus g Gromov-Witten invariant of X in curve class

β. For each curve class β ∈ H2(X,Z) and genus g, there is conjecturally an integer
nX
g,β counting BPS states in the associated M-theory. For fixed β, the count nX

g,β is

conjectured to be nonzero for only finitely many g. The formula predicted in [6] is

(7) FX(u, v) =
∑
g≥0

∑
β �=0

nX
g,βu

2g−2
∑
d>0

1

d

( sin(du/2)
u/2

)2g−2

vdβ .

The BPS form (7) places integrality constraints on the Gromov-Witten invariants.
We can uniquely define invariants nX

g,β ∈ Q by (7). Neither the integrality nor

the vanishing of nX
g,β for sufficiently high g is then clear. As a corollary of Theorem

1, we obtain the following result.

Corollary 3. Let X be a Calabi-Yau complete intersection 3-fold in a product of
projective spaces, and let β ∈ H2(X,Z):

(i) After the variable change −q = eiu,

FX
β (q) = Coeffvβ

[
FX

]
∈ Q(q)

is a rational function invariant under q ↔ q−1.
(ii) If, for all divisors β̃|β, nX

g,β̃
vanishes for all sufficiently large g, then

nX
g,β ∈ Z, ∀g ≥ 0 .

Corollary 3 follows easily from Theorem 1 and the results of Section 3 of [34].
The rationality of part (i) is slightly weaker than the full Gopakumar-Vafa predicted
BPS form, but becomes equivalent with the vanishing assumed in (ii). A proof of
the integrality of nX

g,β has recently been claimed in [10]. The method is analytic

but eventually reduces the integrality to the local curves calculation of [5]. The
vanishing (ii) is open.
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0.7. Plan of the paper. We will prove Theorem 1 via the degeneration scheme
established in [22]. To control the Gromov-Witten and stable pairs theories of
Fano and Calabi-Yau complete intersections in products of projective spaces, we
must prove GW/P correspondences for relative and descendent insertions in several
simpler geometries.

Let D ⊂ X be a nonsingular divisor in a nonsingular 3-fold X. The first step
in the proof of Theorem 1 is to formulate a GW/P descendent correspondence for
the relative geometry X/D. The interaction of the descendents with the relative
divisor is explained in Section 1 with a full correspondence proposed in Conjecture
4 of Section 1.3.

The degeneration scheme of [22] requires the study of P1-bundles

π : PS → S

over surfaces S relative to a section of π where S is either

(i) a toric surface,
(ii) a K3 surface,
(iii) or a P1-bundle over a higher genus curve C.

Sections 2–6 are devoted to the proofs of descendent correspondences for the relative
surface geometries (i)–(iii).

The toric case (i) is studied in Section 2. For theK3 surface, the results of Section
8 of [33] establish special cases. The required descendent correspondence for PK3

is proven in Section 3 after the fully equivariant relative descendent correspondence
for the 3-fold cap is established.

The technically most difficult results concern the surface geometries (iii). We
study higher genus curves by degeneration to genus 0. The method requires estab-
lishing correspondences for special surface geometries in Section 4 and the introduc-
tion of bi-relative residue theories in Section 5. The odd cohomology of the higher
genus curves, discussed in Section 6, is controlled by the strategy first employed in
[27].

The degeneration scheme and the proof of Theorem 1 is presented in Section
7. In fact, our methods are valid in any context in which the Fano or Calabi-Yau
3-folds can be efficiently degenerated. As an example, the GW/P correspondence
for the Enriques Calabi-Yau is discussed in Section 7.6.

The application of relative and descendent methods to the GW/P correspon-
dences for nontoric Calabi-Yau geometries has been one of the major motivations
for our work in [30–33]. The recent proof [37] of the full Katz-Klemm-Vafa conjec-
ture for the Gromov-Witten theory of K3 surfaces uses the GW/P correspondences
for nontoric hypersurface Calabi-Yau 3-folds established here.

1. Relative theories

1.1. Definitions. LetX be a nonsingular 3-fold with a nonsingular divisorD ⊂ X.
Relative Gromov-Witten and relative stable pairs theories enumerate curves with
specified tangency to the divisor D. See [13, 15, 18, 30] for a technical discussion of
relative theories.

In Gromov-Witten theory, relative conditions are represented by a partition μ
of the integer

∫
β
[D], each part μi of which is marked by a cohomology class δi ∈

H∗(D,Z),

(8) μ = ((μ1, δ1), . . . , (μ�, δ�)) .
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The numbers μi record the multiplicities of intersection with D while the cohomol-

ogy labels δi record where the tangency occurs. More precisely, let M
′
g,r(X/D, β)μ

be the moduli space of stable relative maps with tangency conditions μ along D. To
impose the full boundary condition, we pull back the classes δi via the evaluation
maps

(9) M
′
g,r(X/D, β)μ → D

at the points of tangency. Also, the tangency points are considered to be un-
ordered.6

In the stable pairs theory, the relative moduli space admits a natural morphism
to the Hilbert scheme of d points in D,

Pn(X/D, β) → Hilb(D,

∫
β

[D]) .

Cohomology classes on Hilb(D,
∫
β
[D]) may thus be pulled back to the relative

moduli space. We will work in the Nakajima basis ofH∗(Hilb(D,
∫
β
[D]),Q) indexed

by a partition μ of
∫
β
[D] labeled by cohomology classes of D as in (8). For example,

the class ∣∣μ〉 ∈ H∗(Hilb(D,

∫
β

[D]),Q) ,

with all cohomology labels equal to the identity, is
∏

μ−1
i times the Poincaré dual

of the closure of the subvariety formed by unions of schemes of length

μ1, . . . , μ�(μ)

supported at 	(μ) distinct points of D.
The conjectural relative GW/P correspondence for primary fields [18] equates

the partition functions of the theories.

Conjecture 3. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2 ZP

(
X/D; q

∣∣∣ τ0(γ1) · · · τ0(γr) ∣∣∣μ)
β

= (−iu)dβ+�(μ)−|μ| Z′
GW

(
X/D;u

∣∣∣ τ0(γ1) · · · τ0(γr) ∣∣∣μ)
β
,

after the change of variables eiu = −q.

As before, ZP

(
X/D; q | τ0(γ1) · · · τ0(γr)

∣∣μ)
β
is conjectured to be a rational func-

tion of q. Conjecture 3 is made for every boundary condition (8).

1.2. Diagonal classes. To state our results for the Gromov-Witten/Pairs descen-
dent correspondence in the relative case, a discussion of diagonal classes is required.

For the absolute geometry X, the product Xs naturally parameterizes s ordered
(possibly coincident) points on X. For the relative geometry X/D, the moduli
space of s ordered (possibly coincident) points

(p1, . . . , ps) ∈ X/D

6The evaluation maps are well-defined only after ordering the points. We define the theory
first with ordered tangency points. The unordered theory is then defined by dividing by the
automorphisms of the cohomology weighted partition μ.
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is a more subtle space. The points are not allowed to lie on the relative divisor
D. When the points approach D, the target X degenerates. The resulting moduli
space (X/D)s is a nonsingular variety. Let

Δrel ⊂ (X/D)s

consisting of the small diagonal where all the points pi are coincident. As a variety,
Δrel is isomorphic to X.

The space (X/D)s is a special case of well-known constructions in relative ge-
ometry. For example, (X/D)2 consists of 6 strata:

1•

2•

X D

����

����
D

1•

2•

X

����

����
D

1•

2•

X

����

����
D

1•

2•

X
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����

��������

����

D

1•

2•

X

����

��������

����

D

2•

1•

X

As a variety, (X/D)2 is the blowup of X2 along D2. And, Δrel ⊂ (X/D)2 is the
strict transform of the standard diagonal.

Select a subset S of cardinality s from the r markings of the moduli space of

maps. Just as M
′
g,r(X, β) admits a canonical evaluation to Xs via the selected

markings, the moduli space M
′
g,r(X/D, β)μ admits a canonical evaluation

evS : M
′
g,r(X/D, β)μ → (X/D)s,

well-defined by the definition of a relative stable map (the markings never map to
the relative divisor). The class

ev∗S(Δrel) ∈ H∗(M
′
g,r(X/D, β)μ)

plays a crucial role in the relative descendent correspondence.
By forgetting the relative structure, we obtain a projection

π : (X/D)s → Xs .

The product contains the standard diagonal Δ ⊂ Xs. However,

π∗(Δ) �= Δrel .

The former has more components in the relative boundary if D �= ∅.

1.3. Relative descendent correspondence. Let α̂ be a partition of length 	̂. Let

Δrel be the cohomology class of the small diagonal in (X/D)�̂. For a cohomology
class γ of X, let

γ ·Δrel ∈ H∗((X/D)�̂,Q).
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We define the relative descendent insertion τα(γ) by

(10) τα̂(γ) = ψα̂1−1
1 · · ·ψα̂�̂−1

�̂
· ev∗

1,...,�̂
(γ ·Δrel) .

In case, D = ∅, definition (10) specializes to (3).
Let ΩX [D] denote the locally free sheaf of differentials with logarithmic poles

along D. Let
TX [−D] = ΩX [D] ∨

denote the dual sheaf of tangent fields with logarithmic zeros.

For the relative geometryX/D, we let the coefficients of K̃ act on the cohomology
of X via the substitution

ci = ci(TX [−D])

instead of the substitution ci = TX used in the absolute case. Then, we define

(11) τα1−1(γ1) · · · τα�−1(γ�) =
∑

P set partition of {1,...,l}

∏
S∈P

∑
α̂

τα̂(K̃αS ,α̂ · γS)

as before via (10) instead of (3).
Definition (11) is for even classes γi. In the presence of odd γi, a sign has to be

included exactly as in the absolute case.

Conjecture 4. For γi ∈ H∗(X,Q), we have

(−q)−dβ/2ZP

(
X/D; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)

β

= (−iu)dβ+�(μ)−|μ|Z′
GW

(
X/D;u

∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)

β

under the variable change −q = eiu.

In addition, the stable pairs descendent series on the left is conjectured to be
a rational function in q, so the change of variables is well-defined. Conjecture
4 is also well-defined in the equivariant case with respect to a group action on X
preserving the relative divisor D. Definition (10) lifts canonically to the equivariant

cohomology. The coefficients of K̃ act on the equivariant cohomology of X via the
equivariant Chern classes ci(TX [−D]).

1.4. Degeneration. There is no difficulty in proving the compatibility of Conjec-
tures 2 and 4 with respect to the degeneration formula. In fact, both definition
(10) and the replacement of TX by TX [−D] are required for compatibility with the
degeneration formula. Definition (10) canonically lifts the diagonal splittings which
occur in the correspondence for the absolute case.

The log tangent bundle arises for the following reason. Let

π : X → B

be a nonsingular 4-fold fibered over an irreducible nonsingular base curve B. Let
X be a nonsingular fiber, and let

X1 ∪D X2

be a reducible special fiber consisting of two nonsingular 3-folds intersecting trans-
versally along a nonsingular surface D. Let TX[−X1 −X2] be the tangent bundle
of the total space X with logarithmic zeros along X1 ∪D X2. The basic restriction
property

c(TX[−X1 −X2])|Xi
= c(TXi

[−D])
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holds on the special fiber. The Chern classes of the tangent bundle of a general
fiber of π therefore are extended by the Chern classes of the log tangent bundle of
the special fiber.

Since the compatibility with degeneration will play an important role in the
paper, we state the result (a formal consequence of the usual degeneration formula
in Gromov-Witten theory [12, 13]).
Compatibility with degeneration. Let γ1, . . . , γ� be cohomology classes on the
total space X. We have

Z′
GW

(
X
∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)

)
β

=

∑
Z′
GW

(
X1/D

∣∣∣ ∏
i∈I1

τai−1(γi)
∣∣∣ μ)

β1

z(μ)u2�(μ)

· Z′
GW

(
X2/D

∣∣∣ ∏
i∈I2

τai−1(γi)
∣∣∣ μ∨

)
β2

.

The sum is over all marking distributions and curve class splittings

I1 ∪ I2 = {1, . . . , 	}, β = β1 + β2,

and all boundary conditions μ along D.
The boundary conditions μ are partitions weighted by elements of a fixed ba-

sis of H∗(D,Q). The boundary condition μ∨ has the same parts as μ but with
weights given by dual elements of the dual7 basis of H∗(D,Q). The gluing factor
is defined by

(12) z(μ) =

�(μ)∏
i=1

μi · |Aut(μ)|.

The first factor in (12) is simply the product of the parts of μ. The second term is
the order of the symmetry group of μ as a weighted partition.

1.5. Relative results. The first results about the descendent correspondence in
the relative case concern projective bundles over a nonsingular surface S. Let

L0, L∞ → S

be two line bundles. The projective bundle8

PS = P(L0 ⊕ L∞) → S

admits sections

Si = P(Li) ⊂ PS .

We will establish the relative descendent correspondence of Conjecture 4 for PS/S∞
and PS/S0 ∪ S∞ when S is a toric surface.

There is a canonical C∗-action on PS by scaling the coordinates on the P1-fibers,

(13) ξ · [l0, l∞] = [ξl0, l∞], ξ ∈ C∗ .

We denote by t the generator of the equivariant cohomology of C∗. We will prove
Conjecture 4 for PS equivariantly with respect to the fiberwise C∗-action (13).

7With respect to the intersection pairing.
8We always follow the convention of projectivization by 1-dimension subspaces.
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Theorem 2. Let S be a nonsingular projective toric surface. For classes γi ∈
H∗

C∗(PS ,Q), we have

ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β

= (−iu)dβ+�(μ)−|μ|Z′
GW

(
PS/S∞;u

∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β

under the variable change −q = eiu.

The parallel result holds when the projective bundle geometry is taken relative
to both sections.

Theorem 3. Let S be a nonsingular projective toric surface. Consider the relative
geometry PS/S0 ∪ S∞. For γi ∈ H∗

C∗(PS ,Q), we have

ZP

(
ν
∣∣∣τα1−1(γ1) · · · τα�−1(γ�)

∣∣∣ μ)C∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

(
ν
∣∣∣τα1−1(γ1) · · · τα�−1(γ�)

∣∣∣ μ)C∗

β

= (−iu)dβ+�(ν)−|ν|+�(μ)−|μ|Z′
GW

(
ν
∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)

∣∣∣ μ)C∗

β

under the variable change −q = eiu.

Theorems 2 and 3 will be proven in Section 2. We will use the absolute toric
correspondence and the relative projective bundle geometries to prove Theorem 1
in Section 7.

2. Proofs of Theorems 2 and 3

2.1. Conventions. Localization with respect to the fiberwise C∗-action will play a
central role in the proofs of the descendent correspondence for the relative projective
bundle geometries. We will use the localization formula for PS/S∞ in a capped
form following [21, 33]. We review the constructions here.

Since the fiberwise C∗ acts trivially on S, we have the simple characterization

H∗
C∗(S,Q) = H∗(S,Q)⊗Q Q[t] .

Via the C∗-invariant projection

π : PS → S ,

there is a canonical pullback

π∗ : H∗
C∗(S,Q) → H∗

C∗(PS,Q) .

The localized C∗-equivariant cohomology of PS is a free module of rank 2 over
the localized C∗-equivariant cohomology of S,

(14) H∗
C∗(PS ,Q) 1

t

∼
= H∗

C∗(S,Q) 1
t
· [S0] ⊕H∗

C∗(S,Q) 1
t
· [S∞].
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The normal bundles of S0 and S∞ in PS are

N∗ = L∞ ⊗ L∗
0 and N = L0 ⊗ L∗

∞,

respectively. Under the isomorphism (14), we have

(15) π∗(γ) =
γ

−t−N
[S0] +

γ

t+N
[S∞], γ ∈ H∗

C∗(S,Q),

where N = c1(N) ∈ H∗(S,Q). Equation (15) is the Atiyah-Bott localization for-
mula for the fiberwise C∗-action on PS .

Let L ∈ H2(S,Z) be a fixed ample polarization of S. We will measure the
S-degree of curve classes on PS via π pushforward followed by intersection with L,

Lβ =

∫
S

L · π∗(β) .

Let [P] ∈ H2(PS ,Z) be the class of a fiber of π. We have an exact sequence

(16) 0 −→ Z[P] −→ H2(PS ,Z)
π∗−→ H2(S,Z) −→ 0 .

The only effective curve classes with Lβ = 0 are multiples of [P].
The inclusions of S via S0 and S∞ determine two sections of the surjection in

(16). Let
Eff(S0), Eff(S∞) ⊂ H2(PS,Z)

denote the effective curve classes supported on S0 and S∞, respectively.

2.2. Log tangent bundle. The definition of the descendent correspondence

τα1−1(γ1) · · · τα�−1(γ�) �→ τα1−1(γ1) · · · τα�−1(γ�)

for the relative geometry PS/S∞ requires the Chern classes of the log tangent
bundle TPS

[−S∞].
Similarly, for the relative geometry PS/S0∪S∞, the Chern classes of TPS

[−S0−
S∞] are required.

Lemma 1. The total Chern classes are

c(TPS
[−S∞]) = c(π∗TS) · (1 + [S0]) ,

c(TPS
[−S0 − S∞]) = c(π∗TS)

in the C∗-equivariant cohomology of PS for the fiberwise action.

In both cases, the restriction of the Chern classes to S∞ involves only classes
pulled back from S via π. We leave the elementary derivation of Lemma 1 to the
reader.

2.3. Capped localization.

2.3.1. Capping over S0. Let Pn(PS/S∞, β)μ be the moduli space of stable pairs9

with the boundary condition given by μ. Let α be a partition of positive size, and
let

Γ = (γ1, . . . , γ�), γi ∈ H∗(S,Q)

9The moduli space Pn(PS/S∞, β)μ ⊂ Pn(PS/S∞, β) is defined as the inverse image, via the

boundary evaluation, of a cycle V
ι
↪→ Hilb(S∞) representing the class μ. The virtual class of

Pn(PS/S∞, β)μ is defined by refined intersection

[Pn(PS/S∞, β)μ]
vir = ι![Pn(PS/S∞, β)]vir ,

using the nonsingularity of Hilb(S∞). For a representative cycle, Nakajima’s construction may be
used.
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be a vector of cohomology classes. Let

τα(Γ0) = τα1−1(γ1[S0]) · · · τα�−1(γ�[S0])

be the associated descendent insertion over S0. We can study the partition functions

(17)
∑
n

qn
∫
[Pn(PS/S∞,β)μ]vir

τα(Γ0),

∑
g

u2g−2

∫
[M

′
g,�(PS/S∞,β)μ]vir

τα(Γ0)

via localization with respect to the fiberwise C∗-action. Recall, τα(Γ0) is defined
by (11) and is a sum of terms. For the stable maps moduli space, the number of

markings depends upon the summand of τα(Γ0) and is denoted by �.
The stable pairs capped descendent over S0 is a sum of particular localization

contributions to (17). Let

Un,β,μ ⊂ Pn(PS/S∞, β)μ

be the open locus corresponding to stable pairs which do not carry components of
positive S-degree in the rubber over S∞. The open set Un,β,μ is C∗-invariant and
has compact C∗-fixed locus. Indeed, the fixed locus

UC∗

n,β,μ ⊂ Un,β,μ

consists precisely of the C∗-fixed loci of Pn(PS/S∞, β)μ with no components of
positive S-degree in the rubber over S∞. Unless the curve class β is of the form

(18) β = β0 + |μ|[P], β0 ∈ Eff(S0),

the open set Un,β,μ is empty. The stable pairs capped descendent over S0 is

(19) CP
0 (τα(Γ0), β)μ =

∑
n

qn
∫
[Un,β,μ]vir

τα(Γ0) ∈ Q[t,
1

t
]((q)),

well-defined by C∗-residues.10 If condition (18) is not satisfied, CP
0 (τα(Γ0), β)μ

vanishes.
For the Gromov-Witten theory, we consider the parallel open set

Ũg,β,μ ⊂ M
′
g,	(PS/S∞, β)μ

corresponding to stable maps which do not carry curves of positive S-degree in

the rubber over S∞. The open set Ũg,β,μ is C∗-invariant and has a compact C∗-
fixed locus. We again define the Gromov-Witten capped descendent over S0 via

10We have presented the definition of the stable pairs capped descendent CP
0(τα(Γ0), β)μ

to parallel as closely as possible the definition of the Gromov-Witten capped descendent
CGW
0 (τα(Γ0), β)μ. Instead of considering Pn(PS/S∞, β)μ as a space (after a fixed representative

of the Nakajima basis element |μ〉 is chosen), we could alternatively arrive at the same definition
of CP

0(τα(Γ0), β)μ via the C∗-residue

CP
0(τα(Γ0), β)μ =

∑
n

qn
∫
[Un,β ]vir

τα(Γ0) ∪ ev∗(μ) ,

where Un,β ⊂ Pn(PS/S∞, β) is the open locus corresponding to stable pairs which do not carry
components of positive S-degree in the rubber over S∞ and ev is the boundary map to the Hilbert
scheme of points of S∞.
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C∗-residues,

(20) CGW
0

(
τα(Γ0), β

)
μ
=

∑
g

u2g−2

∫
[Ũg,β,μ]vir

τα(Γ0) ∈ Q[t,
1

t
]((u)).

The capped descendent (20) vanishes unless condition (18) is satisfied.

2.3.2. Capping over S∞. We can similarly define the capped contribution over S∞.
Let

τα̂(Γ̂∞) = τα̂1−1(γ̂1[S∞]) · · · τα̂�−1(γ̂�[S∞]) .

Consider the integrals

(21)
∑
n

qn
∫
[Pn(PS/S0∪S∞,β)ν,μ]vir

τα̂(Γ̂∞),

∑
g

u2g−2

∫
[M

′
g,�(PS/S0∪S∞,β)ν,μ]vir

τα̂(Γ̂∞)

via localization with respect to the fiberwise C∗-action.
The stable pairs capped descendent over S∞ is again a sum of particular local-

ization contributions to (21). Let

Wn,β,ν,μ ⊂ Pn(PS/S0 ∪ S∞, β)ν,μ

be the open locus corresponding to stable maps which do not carry components of
positive S-degree in the rubber over S0. The open set Wn,β,ν,μ is C∗-invariant and
has a compact C∗-fixed locus. The fixed locus

WC∗

n,β,ν,μ ⊂ Wn,β,ν,μ

consists precisely of the C∗-fixed loci of Pn(PS/S0 ∪S∞, β)ν,μ with no components
of positive S-degree in S0. Unless the curve class β satisfies

(22) β = |ν|[P] + β∞, β∞ ∈ Eff(S∞),

the open set Wn,β,ν,μ is empty. The stable pairs capped descendent over S∞ is

(23) CP
∞(τα̂(Γ̂∞), β)ν,μ =

∑
n

qn
∫
[Wn,β,ν,μ]vir

τα̂(Γ̂∞) ∈ Q[t,
1

t
]((q))

well-defined by C∗-residues. The capped descendent (23) vanishes unless condition
(22) is satisfied.

For Gromov-Witten theory, we consider the parallel open set

W̃g,β,ν,μ ⊂ M
′
g,	(PS/S0 ∪ S∞, β)ν,μ

corresponding to stable maps which do not carry curves of positive S-degree in the

rubber over S0. The open set W̃g,β,ν,μ is C∗-invariant and has a compact C∗-fixed
locus. We define the Gromov-Witten capped descendent over S∞ via C∗-residues,

(24) CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

=
∑
g

u2g−2

∫
[W̃g,β,ν,μ]vir

τα̂(Γ̂∞) ∈ Q[t,
1

t
]((u)).

The capped descendent (24) vanishes unless condition (22) is satisfied.
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408 R. PANDHARIPANDE AND A. PIXTON

2.3.3. Capped localization formula. Let Φ = (φ1, . . . , φf ) be a graded basis of
H∗(S,Q), and let φ∨

1 , . . . , φ
∨
f be the dual basis satisfying∫

S

φi · φ∨
j = δij .

We take the cohomological weights of the relative boundary condition μ to lie in
the basis Φ. Let μ∨ then denote the boundary condition obtained by replacing each
φi by the Poincaré dual class φ∨

i .
Let β ∈ H2(PS,Z) be a curve class. A splitting of β of type d ≥ 0 is a pair of

curve classes β0, β∞ of PS satisfying

β0 ∈ Eff(S0), β∞ ∈ Eff(S∞), and β0 + d[P] + β∞ = β.

We will often denote the type of a splitting by

β = β0 + d[P] + β∞ .

A given β ∈ H2(PS,Z) admits only finitely many such splittings.
The capped localization formula for PS/S∞ is easy to state in terms of the

capped descendents over S0 and S∞. First consider the stable pairs partition func-
tion11

ZP
β,μ

(
τα(Γ0) · τα̂(Γ̂∞)

)C∗

=
∑
n

qn
∫
[Pn(PS/S∞,β)μ]vir

∏
i

ταi−1(γi[S0]) ·
∏
j

τα̂j−1(γ̂j [S∞]).

The capped localization formula is

ZP
β,μ

(
τα(Γ0) · τα̂(Γ̂∞)

)C∗

=
∑

CP
0 (τα(Γ0), β0 + d[P])ν

(−1)|ν|−�(ν)z(ν)

q|ν|
CP
∞(τα̂(Γ̂∞), d[P] + β∞)ν∨,μ).

The sum on the right side is the triple sum∑
d≥0

∑
β0+d[P]+β∞=β

∑
|ν|=d

.

The gluing factor z(ν) is defined by (12).
The parallel partition function12 in the Gromov-Witten theory is

Z′GW
β,μ

(
τα(Γ0) · τα̂(Γ̂∞)

)C∗

=
∑
g

u2g−2

∫
[M

′
g,�(PS/S∞,β)μ]vir

∏
i

ταi−1(γi[S0]) ·
∏
j

τα̂j−1(γ̂j [S∞]),

11We depart slightly from the notation of the Introduction for more efficient presentation of
the data.

12Since S0 and S∞ are disjoint, we have

τα(Γ0) · τα̂(Γ̂∞) = τα(Γ0) · τα̂(Γ̂∞)

by definition (11).
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and the capped localization formula is

Z′GW
β,μ

(
τα(Γ0) · τα̂(Γ̂∞)

)C∗

= CGW
0

(
τα(Γ0), β0 + d[P]

)
ν
z(ν)u2�(ν) CGW

∞

(
τα̂(Γ̂∞), d[P] + β∞

)
ν∨,μ

,

where again the sum on the right is the triple sum∑
d≥0

∑
β0+d[P]+β∞=β

∑
|ν|=d

.

The idea of capping localization contributions has been used extensively in [21,
33]. The main properties are the following:

• By definition, the capped contributions differ from the bare residue contri-
butions by just edge contributions and 1-legged S-degree 0 contributions
on the far vertex.

• The capped localization formula is obtained from the standard localization
formula by redistributing edge and 1-legged S-degree 0 contributions (no
new geometric derivation is required).

• The capped contributions, unlike the bare contributions, are conjectured
to have well-behaved rationality and GW/P correspondence properties.

2.3.4. Capped edge. In the capped localization formulas of [21, 33], capped edge
terms appear as follows:

ZP
d,ν,μ =

∑
n

qn
∫
[Pn(PS/S0∪S∞,d[P])μ]vir

1 ,

Z′GW
d,ν,μ =

∑
g

u2g−2

∫
[Mg(PS/S0∪S∞,d[P])μ]vir

1,

where d = |ν| = |μ|. By the following result, the capped edges here are trivial, and
hence need not be included in the capped localization formulas in our geometry.

Lemma 2. We have the evaluations

ZP
d,ν,μ∨ = δν,μ

(−1)|ν|−�(ν)

z(ν)
qd,

Z′GW
d,ν,μ∨ = δν,μ

1

z(ν)
u−2�(ν) .

Proof. We use the standard degeneration of PS/S0 ∪ S∞ to

PS/S0 ∪ S∞ ∪ PS/S0 ∪ S∞ .

For the stable pairs, the degeneration formula for the capped edges is

ZP
d,ν,μ∨ =

∑
λ

ZP
d,ν,λ∨ (−1)|λ|−�(λ)

z(λ) q−|λ| ZP
d,λ,μ∨ .

The capped edge evaluation follows immediately. A parallel argument is valid in
the Gromov-Witten theory. �
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410 R. PANDHARIPANDE AND A. PIXTON

2.4. Proof of Theorem 2.

2.4.1. Correspondence over S0. We will use the capped localization formulas to-
gether with C∗-equivariant descendent correspondences for the capped contribu-
tions over S0 and S∞ to prove Theorem 2.

To study the contributions over S0, we require the full torus action. Since S is a
toric surface, a 2-dimension torus T acts on S. We lift T to the line bundles L0 and
L1. Let T be the full 3-dimensional torus acting on the relative geometry PS/S∞,

T = T × C∗,

where the second factor is the fiberwise C∗.
The capped contribution over S0 is not difficult to understand. The open sets

(25) Un,β,μ ⊂ Pn(PS/S∞, β)μ, Ũg,β,μ ⊂ M
′
g,	(PS/S∞, β)μ

after localization with respect to the T-action yield only the standard capped de-
scendent vertices at the T -fixed points of S0.

We consider capped contributions over S0 in curve class

β = β0 + d[P], β0 ∈ Eff(S0).

Let μ be a boundary condition along S∞ with |μ| = d.

Proposition 3. The C∗-equivariant descendent correspondence for the capped con-
tributions over S0 holds. We have CP

0 (τα(Γ0), β)μ ∈ Q(q, t) and

(−q)−dβ/2 CP
0 (τα(Γ0), β)μ = (−iu)dβ+�(μ)−|μ| CGW

0

(
τα(Γ0), β

)
μ

under the variable change −q = eiu.

Proof. We apply T-equivariant localization to the open sets (25) to express capped
contributions in terms of descendent vertices [33]. We then apply the GW/P cor-
respondence established in Theorem 8 of [33]. Since the C∗-fixed locus is compact
(for the fiberwise C∗-action), we may set the equivariant parameters of T to 0. �

2.4.2. Correspondence over S∞. The next step is to prove a descendent correspon-
dence for the capped contributions over S∞. Consider capped contributions over
S∞ in curve class

β = d[P] + β∞, β∞ ∈ Eff(S∞).

Let ν, μ be boundary conditions along S0 and S∞ with |ν| = d.

Proposition 4. The C∗-equivariant descendent correspondence for the capped con-

tributions over S∞ holds. We have CP
∞

(
τα̂(Γ̂∞), β

)
ν,μ

∈ Q(q, s) and

(−q)−dβ/2 CP
∞

(
τα̂(Γ̂∞), β

)
ν,μ

= (−iu)dβ+�(ν)−|ν|+�(μ)−|μ| CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

under the variable change −q = eiu.

Theorem 2 is an immediate consequence of Propositions 3 and 4 and the capped
localization formulas for PS/S∞. Proposition 4 is harder to prove than Proposition
3 because of the possibility of curves of positive S-degree in the rubber over S∞.
The GW/P correspondence for the descendent vertex [33] does not directly apply.
The proof of Proposition 4 is given in Sections 2.4.3–2.4.6.
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GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 411

2.4.3. Induction strategy. If β is not an effective curve class, both capped descen-
dent contributions over S∞ vanish and Proposition 4 is trivial.

We will prove Proposition 4 for effective curve classes by induction on Lβ and
the length 	(α̂). The base case is

Lβ = 0 and 	(α̂) = 0 .

If Lβ = 0, then β∞ = 0. If 	(α̂) is also 0, the capped contribution over S∞ is equal
to the capped edge term determined by Lemma 2. Proposition 4 for β∞ = 0 and
	(α̂) = 0 is then easily seen to hold.

Consider capped contributions over S∞ in curve class

β = d[P] + β∞, β∞ ∈ Eff(S∞).

Let ν and μ be relative conditions along S0 and S∞ with |ν| = d. We take the
cohomology weights of ν and μ to lie in the basis

Φ = (φ1, . . . , φf )

of H∗(S,Q). Let deg(ν) and deg(μ) be the sum of the (complex) degrees13 of the
cohomology weights of ν and μ, respectively. The codimensions of the relative
conditions ν and μ are

θ(ν) = |ν| − 	(ν) + deg(ν) and θ(μ) = |μ| − 	(μ) + deg(μ) .

For the vector Γ̂ = (γ̂1, . . . , γ̂�) associated to the descendent insertion, define14

(26) deg(Γ̂) =
1

2

�∑
i=1

deg(γ̂i), γ̂i ∈ Hdeg(γ̂i)(S,Q) .

The maximum value of deg(Γ̂) is 2	.
We will prove Proposition 4 for the capped contributions

(27) CP
∞(τα̂(Γ̂∞), β)ν,μ, CGW

∞

(
τα̂(Γ̂∞), β

)
ν,μ

.

By induction, we assume Proposition 4 has been established for all capped contri-
butions

CP
∞(τα′(Γ′

∞), β′)ν′,μ′ , CGW
∞

(
τα′(Γ′

∞), β′
)
ν′,μ′

satisfying at least one of the following four conditions:

• Lβ′ < Lβ ,
• Lβ′ = Lβ and 	(α′) < 	(α̂),

• Lβ′ = Lβ, 	(α
′) = 	(α̂), and deg(Γ′) > deg(Γ̂),

• Lβ′ = Lβ, 	(α
′) < 	(α̂), deg(Γ′) = deg(Γ̂), and θ(ν′) < θ(ν).

Via the third condition, we include a reverse induction over deg(Γ̂). Since deg(Γ̂) ≤
2	, the reverse induction is possible.

The proof of the induction step requires the C∗-localization formula for the
capped descendent contributions over S∞ in terms of rubber moduli spaces. A
review of the basic facts is presented in Sections 2.4.4 and 2.4.5.

13We will always use the complex grading (which is 1
2
of the real grading).

14Again, we use the complex grading.
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412 R. PANDHARIPANDE AND A. PIXTON

2.4.4. Rubber geometry. The capped contributions (27) over S∞ are defined via
C∗-residues. The C∗-localization formula for the capped contributions has three
parts:

(i) rubber integrals over S0,
(ii) edge terms,
(iii) rubber integrals over S∞.

The edge terms for stable pairs and stable maps are determined by Lemma 2. We
discuss the rubber integrals here.

Consider first rubber15 geometry for the moduli of stable pairs. Let

Pn(PS/S0 ∪ S∞, β)◦ε,δ ⊂ Pn(P/S0 ∪ S∞, β)ε,δ

denote the open set with finite stabilizers for the fiberwise C∗-action and no desta-
bilization over S∞. The rubber moduli space,

Pn(PS/S0 ∪ S∞, β)∼ε,δ = Pn(P/S0 ∪ S∞, β)◦ε,δ / C∗,

denoted by a superscripted tilde, is determined by the (stack) quotient. The rubber
moduli space carries a virtual fundamental class,

[Pn(PS/S0 ∪ S∞, β)
∼
ε,δ]

vir.

The fiberwise C∗-action is lost after the quotient, the fiberwise C∗ acts trivially on
the rubber moduli space.

The rubber moduli space Pn(PS/S0∪S∞, β)∼ε,δ carries cotangent lines associated

to S0 and S∞. A construction can be found in Section 1.5.2 of [22]. Let

Ψ0,Ψ∞ ∈ H2(Pn(PS/S0 ∪ S∞, β)
∼
ε,δ,Q)

denote the associated cotangent line classes.
The C∗-localization formula for the capped descendent contribution over S∞ for

stable pairs is

(28) CP
∞(τα̂(Γ̂∞), β)ν,μ

=
∑
|λ|=d

RP
d[P]

( 1

−Ψ∞ − t

)
ν,λ

(−1)|λ|−�(λ)z(λ)

qd

· RP
β

( 1

−Ψ0 + t
·

�∏
i=1

τα̂i−1

(
(t+N)γ̂i

))
λ∨,μ

.

Here, RP
d[P] denotes the generating series for rubber integrals over S0 ⊂ PS of

curve class d[P] with inverse normal factor16
(

1
−Ψ∞−t

)
. Similarly, RP

β denotes the

generating series of rubber integrals over S∞ ⊂ PS of curve class β with inverse

normal factor
(

1
−Ψ0+t

)
and descendent insertions. There are only two virtual

normal directions in the relative geometry here.

15We follow the terminology and conventions of the rubber discussion in [30] for stable pairs
and [22] for Gromov-Witten theory.

16The normal factor is the tensor of the tangent line −Ψ∞ of the rubber moduli with the
tangent line −t on the target fiber (which is pure weight).
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For Gromov-Witten theory, a parallel discussion yields the C∗-localization for-
mula

(29) CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

=
∑
|λ|=d

R′GW
d[P]

( 1

−Ψ∞ − t

)
ν,λ

z(λ)u2�(λ)

· R′GW
β

( 1

−Ψ0 + t
·

�∏
i=1

τα̂i−1

(
(t+N)γ̂i

))
λ∨,μ

.

2.4.5. Virtual dimensions. The virtual dimensions of the stable pairs and stable
map spaces are

dim [Pn(PS/S0 ∪ S∞, β)ν,μ]
vir = dβ − θ(ν)− θ(μ) ,

dim [M
′
g,�(PS/S∞, β)ν,μ]

vir = dβ + 	− θ(ν)− θ(μ) .

The virtual dimensions of the rubber moduli space are 1 less,

dim [Pn(PS/S0 ∪ S∞, β)∼ν,μ]
vir = dβ − θ(ν)− θ(μ)− 1 ,

dim [M
′
g,�(PS/S∞, β)∼ν,μ]

vir = dβ + 	− θ(ν)− θ(μ)− 1 .

2.4.6. Proof of the induction step. We return to the proof of Proposition 4 via the
induction strategy of Section 2.4.3. We must prove the descendent correspondence
for the capped contributions (27) assuming the induction hypothesis. The analysis
divides into two cases.

Case I. |α̂| − 2	(α̂) + deg(Γ̂) ≥ dβ − θ(ν)− θ(μ).

Under the hypothesis of Case I, we will prove the vanishing of both sides of the
descendent correspondence of Proposition 4 for capped contributions over S∞ by a
straightforward dimension analysis.

First, consider the moduli space of stable pairs. Formula (28) expresses

CP
∞ (τα(Γ∞), β)ν,μ , β = d[P] + β∞

in terms of integrals over rubber moduli spaces. The rubber over S0 carries curve
classes with S-degree 0. In formula (28), if

θ(ν) + θ(λ) > 2d,

then the rubber integrals over S0 vanish (since the virtual dimension17 of the rubber
moduli spaces over S0 is 2d− 1). Therefore,

θ(λ∨) ≥ θ(ν) .

As a consequence, the virtual dimensions of the rubber moduli spaces over S∞ in
(28) never exceed

dβ − θ(ν)− θ(μ)− 1 .

The dimension of the integrand on the rubber of ∞ is at least the dimension of

dim
( �∏

i=1

τα̂i−1

(
γ̂i
))

= |α̂| − 2	(α̂) + deg(Γ̂) > dβ − θ(ν)− θ(μ)− 1 ,

17The leading q term of RP
d[P]

(
1

−Ψ∞+t

)
ν,λ

, given by the intersection pairing between ν and

λ, is degenerate.
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where the inequality is by the hypothesis of Case I. We conclude every rubber
integral18 over S∞ in (28) vanishes and hence

CP
∞

(
τα̂(Γ̂∞), β

)
ν,μ

= 0 .

The argument for the vanishing of CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

is identical. We use the

compatibility of the correspondence with grading established in Proposition 24 of
[33] and the identification of the log tangent bundle of Lemma 1. Degree can
be interchanged between the cotangent lines and Chern class of TPS

(−S0 − S∞).
However, since

c(TPS
[−S0 − S∞]) = c(π∗TS),

the dimension calculus for the vanishing remains unchanged. We conclude

CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

= 0 .

Proposition 4 is established in Case I.

Case II. |α̂| − 2	(α̂) + deg(Γ̂) < dβ − θ(ν)− θ(μ).

The capped contributions need not vanish under the hypothesis of Case II. How-
ever, we will find parallel inductive relations to establish the descendent correspon-
dence of Proposition 4.

To each partition λ weighted by cohomology classes of S in the basis Φ,

(30) ((λ1, δ1), . . . , (λ�(λ), δ�(λ))) , |λ| =
�(λ)∑
i=1

λi, δi ∈ Φ ,

we associate a descendent insertion over S0,

τ [λ] = τλ1−1(δ1[S0]) · · · τλ�(λ)−1(δ�(λ)[S0]) .

The dimension of the descendent insertion τ [λ] equals θ(λ).
Let Λν be the set of cohomology weighted partitions (30) defined by

Λν =
{
λ
∣∣∣ |λ| = |ν|, θ(λ) = θ(ν)

}
.

Since there are only finitely many partitions (30) satisfying |λ| = |ν|, the set Λν is
finite.

For each cohomology weighted partition λ ∈ Λν , consider the stable pairs and
Gromov-Witten generating series

(31) ZP
β,μ

(
τ [λ] · τα̂(Γ̂Id)

)C∗

=
∑
n

qn
∫
[Pn(PS/S∞,β)μ]vir

∏
i

τλi−1(δi[S0]) ·
∏
j

τα̂j−1(γ̂j).

Z′GW
β,μ

(
τ [λ] · τα̂(Γ̂Id)

)C∗

=
∑
g

u2g−2

∫
[M

′
g,�(PS/S∞,β)μ]vir

∏
i

τλi−1(δi[S0]) ·
∏
j

τα̂j−1(γ̂j).

18All the rubber integrals are nonequivariant (there is no C∗-action). For a nonvanishing result,
the integrand cannot exceed the virtual dimension.
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The dimension of the integrand for the stable pair series (31) is

θ(ν) + |α̂| − 2	(α̂) + deg(Γ̂),

and the dimension of the moduli space of stable pairs is dβ−θ(μ). By the hypothesis
of Case II, the integrand dimension is strictly less than the dimension of the moduli
space. By compactness of the geometry, the series (31) vanishes identically,

(32) ZP
β,μ

(
τ [λ] · τα̂(Γ̂Id)

)C∗

= 0 .

An identical dimension count shows

(33) Z′GW
β,μ

(
τ [λ] · τα̂(Γ̂Id)

)C∗

= 0 .

The relations (32) and (33) will be used to uniquely determine the capped contri-
butions

(34) CP
∞

(
τα̂(Γ̂∞), β

)
ν,μ

, CGW
∞

(
τα̂(Γ̂∞), β

)
ν,μ

, β = d[P] + β∞ .

Moreover, the determinations will be sufficiently compatible to prove the correspon-
dence of Proposition 4 for (34).

We will expand relations (32) and (33) using the capped localization formula.
First, we write

(35) τα̂j−1(γ̂j) = τα̂j−1

(
γ̂j

−t−N
[S0]

)
+ τα̂j−1

(
γ̂j

t+N
[S∞]

)
using the basic identity (15). We have already proven the descendent correspon-
dence for almost all the terms of the parallel capped localization formulas for (32)
and (33). The correspondence is proven for all the capped contributions over S0 by
Proposition 3. Also, the correspondence is proven for all the capped contributions
over S∞ which are covered by the induction hypothesis of Section 2.4.3. We can
write

0 =
∑
|ρ|=d

CP
0 (τ [λ], d[P])ρ

(−1)|ρ|−�(ρ)z(ρ)

q|ρ|

(
1

t

)�(α̂)

CP
∞(τα̂(Γ̂∞), β)ρ∨,μ) + · · · ,

0 =
∑
|ρ|=d

CGW
0 (τ [λ], d[P])ρ z(ρ)u2�(ρ)

(
1

t

)�(α̂)

CGW
∞ (τα̂(Γ̂∞), β)ρ∨,μ) + · · · ,

where the sums are over all cohomology weighted partitions ρ of d. The dots stand
for terms covered by the first three inductive conditions:

• lower S-degree over S∞,
• fewer descendent insertions over S∞,
• higher descendent degree over S∞.

The induction condition over the descendent degree is used to replace

γ̂j
t+N

=
γ̂j
t
− γ̂jN

t2
+

γ̂jN
2

t3

by the leading term (note N3 = 0 in H∗(S,Q)).
Using the fourth induction condition, the relations can be simplified further. The

capped contributions over S0,

CP
0 (τ [λ], d[P])ρ, CGW

0 (τ [λ], d[P])ρ,
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416 R. PANDHARIPANDE AND A. PIXTON

have a curve class of S-degree 0. Hence, the capped contributions equal the full
stable pairs and Gromov-Witten partition functions

CP
0 (τ [λ], d[P])ρ = ZP

d[P],ρ(τ [λ])
C∗

,

CGW
0 (τ [λ], d[P])ρ = Z′GW

d[P],ρ(τ [λ])
C∗

.

Since the moduli space Pn(PS, d[P])ρ has virtual dimension 2d− θ(ρ), we see only
terms with

θ(λ) + θ(ρ) ≥ 2d

occur in the stable pairs relation. A parallel dimension count yields the same
conclusion on the Gromov-Witten side. When the inequality is strict, we have

θ(λ) + θ(ρ) > 2d =⇒ θ(ρ∨) < θ(λ) = θ(ν),

so the terms are covered by the fourth induction condition.
The final forms we find for the principal terms on the right side of the relations

(32) and (33) are the following:

∑
|ρ|=d, θ(ρ)=θ(ν∨)

CP
0 (τ [λ], d[P])ρ

(−1)|ρ|−�(ρ)z(ρ)

q|ρ|

(
1

t

)�(α̂)

CP
∞(τα̂(Γ̂∞), β)ρ∨,μ)+ · · · ,

∑
|ρ|=d, θ(ρ)=θ(ν∨)

CGW
0 (τ [λ], d[P])ρ z(ρ)u2�(ρ)

(
1

t

)�(α̂)

CGW
∞ (τα̂(Γ̂∞), β)ρ∨,μ) + · · · .

The capped contributions

CP
∞(τα̂(Γ̂∞), β)ρ∨,μ), CGW

∞ (τα̂(Γ̂∞), β)ρ∨,μ)

as ρ varies yield exactly |Λν | unknowns. As λ varies, we obtain exactly |Λν | equa-
tions. The coefficients of the system are nonsingular by Proposition 6 of [31] on the
stable pairs side (and therefore also on the Gromov-Witten side by Proposition 3).
Hence, the relations uniquely determine all the unknowns including (34). Since the
descendent correspondences have already been proven for all of the terms besides
the unknowns, we conclude Proposition 4 holds for (34). The induction step has
been established. �

2.5. Proof of Theorem 3. The capped localization formulas for stable pairs and
stable maps for the relative geometry PS/S0 ∪ S∞ have contributions over S0 and
S∞. Both take the form of the capped contributions over S∞ for the relative
geometry PS/S∞. Hence, both are covered by the descendent correspondence of
Proposition 4. Theorem 3 follows immediately. �

2.6. Nontoric surfaces. Let S be a nonsingular projective surface (not necessarily
toric) with line bundles

L0, L∞ → S .

As a consequence of Conjecture 2, Theorems 2 and 3 should hold for nontoric S
exactly as stated.

In fact, our proofs of Theorems 2 and 3 are valid for any nonsingular projective
surface S for which Proposition 3, concerning the correspondence for capped de-
scendent contributions of PS/S∞ over S0, holds. The toric hypothesis for S was
only used to establish Proposition 3 via the descendent correspondence of [33] for
capped vertices in toric geometry.
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In order to prove Theorem 1, we will require Theorem 2 for particular nontoric
surfaces. Let

ε : S → C

be a surface S expressed as a P1-bundle over a curve of genus g. Let

LC
0 , L

C
∞ → C

be line bundles. We will prove Proposition 3 for S and the line bundles

(36) ε∗LC
0 , ε∗LC

∞ → S

in Section 6. As a consequence, Theorem 2 will also hold for the geometry deter-
mined by the data (36).

In the proof of Theorem 1, K3 surfaces will also appear. A special case of
Theorem 2 for K3 surfaces S (in the nonequivariant limit) has been established in
Proposition 26 of [33]. In Proposition 10 of Section 3.8, we will prove the results
we require for K3 surfaces.

3. Descendent correspondence for the cap

3.1. Overview. The 1-leg cap is the total space of the trivial bundle,

(37) N = OP1 ⊕ OP1 → P1 ,

relative to the fiber

N∞ ⊂ N

over ∞ ∈ P1. The total space N naturally carries an action of a 3-dimensional
torus

T = T × C∗ .

Here, T acts by scaling the factors of N and preserving the relative divisor N∞.
The C∗-action on the base P1 which fixes the points 0,∞ ∈ P1 lifts to an additional
C∗-action on N fixing N∞. Let the tangent weights at 0,∞ ∈ P1 with respect to
the last C∗-factor be −s3 and s3, respectively.

19

The equivariant cohomology ring H∗
T(•) is generated by the Chern classes s1,

s2, and s3 of the standard representation of the three C∗-factors. Following [30],
we define

(38) ZP
d,η

⎛
⎝ k∏

j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

=
∑
n∈Z

qn
∫
[Pn(N/N∞,d)η ]vir

k∏
j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞]) ,

19The tangent weight conventions here match [30].
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418 R. PANDHARIPANDE AND A. PIXTON

by T-equivariant residues. By Theorem 3 of [30], the partition function (38) is a
Laurent series in q of a rational function20 in Q(q, s1, s2, s3). Let

(39) Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

=
∑
g∈Z

u2g−2

∫
[M

′
g,�(N/N∞,d)η ]vir

k∏
j=1

τij ([0])

k′∏
j′=1

τi′
j′
([∞]) ,

be the parallel Gromov-Witten partition function.
Our goal here is to prove the relative descendent correspondence of Conjecture

4 for the fully T-equivariant partition functions (38) and (39).

Theorem 4. For the cap geometry N/N∞, we have

(−q)−dZP
d,η

( k∏
j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞])

)cap,T

= (−iu)|η|+�(η)Z′GW
d,η

( k∏
j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞])

)cap,T

under the variable change −q = eiu.

The proof of Theorem 4, given in Sections 3.2–3.7, follows the strategy of the
proof of Theorem 3 of [33]. The main idea is to intertwine an induction on the
depth of the descendent theories with the localization formula.

3.2. T -depth. For N defined by (37), let S ⊂ N be the relative divisor associated
to the points p1, . . . , pr ∈ P1. We consider the T -equivariant stable pairs theory of
N/S with respect to the scaling action.

The T -depth m theory of N/S consists of all T -equivariant series

(40) ZP
d,η1,...,ηr

⎛
⎝ k′∏

j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

,

where k′ ≤ m. Here, p ∈ H2(P1,Z) is the class of a point, and the ηi are partitions
determining the relative conditions along π−1(pi). The T -depth m theory has at
most m descendents of 1 and arbitrarily many descendents of p in the integrand.
The T -depth m theory of N/S is correspondent if Conjecture 4 holds for all T -depth
m series (40),

(−q)−dZP
d,η1,...,ηr

⎛
⎝ k′∏

j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

= (−iu)2d+
∑

l(�(η
l)−|ηl|) Z′GW

d,η1,...,ηr

⎛
⎝ k′∏

j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

.

20By Theorem 5 of [30], the poles in q of the partition function occur only at roots of unity.
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The T -depth 0 theory concerns only descendents of p. By taking the specializa-
tion s3 = 0, we have

ZP
d,η

⎛
⎝ k∏

j=1

τij (p)

⎞
⎠

cap,T

= ZP
d,η

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T ∣∣∣
s3=0

.

The parallel relation holds for Gromov-Witten theory. By the descendent corre-
spondence for the 1-leg capped vertex [33], we see the T -depth 0 theory of the cap
is correspondent.

Lemma 5. The T -depth 0 theory of N/S is correspondent.

Proof. By the degeneration formula, all the descendents τij (p) can be degenerated
onto a cap. The T -depth 0 theory of the cap is correspondent. The theories of
local curves without any insertions are correspondent by [24,29]. Hence, the result
follows by the compatibility of Conjecture 4 with the degeneration formula. �

3.3. Induction I. To establish the descendent correspondence for the T -depth m
theory of N/S, the following result is required.

Lemma 6. The descendent correspondence for the T -depth m theory of the cap
implies the descendent correspondence of the T -depth m theory of N/S.

Proof. We must prove the descendent correspondence for the T -depth m theories
of N relative to p1, . . . , pr ∈ P1. If r = 1, the geometry is the cap and the
correspondence of the T -depth m theories is given. Assume the correspondence
holds for r. We will show the correspondence holds for r + 1.

Let p(d) be the number of partitions of size d > 0. Consider the ∞×p(d) matrix
Md, indexed by monomials

L =
∏
i≥0

τi(p)
ni

in the descendents of p and partitions μ of d, with coefficient ZP
d,μ (L)

cap,T in position

(L, μ). The lowest Euler characteristic for a degree d stable pair on the cap is d.
The leading qd coefficients of Md are well-known to be of maximal rank.21 Hence,
the full matrix Md is also of maximal rank.

Consider N relative to r + 1 points in T -depth m,

(41) ZP
d,η1,...,ηr ,μ

⎛
⎝ k′∏

j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

.

We will determine the series (41) from the T -depth m series relative to r points,

(42) ZP
d,η1,...,ηr

⎛
⎝L

k′∏
j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

defined by all monomials L in the descendents of p.

21The leading qd coefficients are obtained from the Chern characters of the tautological rank
d bundle on Hilb(N∞, d). The Chern characters generate the ring H∗

T (Hilb(N∞, d),Q) after
localization as can easily be seen in the T -fixed point basis. A more refined result is discussed in
Proposition 9 of [30].
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420 R. PANDHARIPANDE AND A. PIXTON

Consider the T -equivariant degeneration of N by bubbling off a single cap at a
point not equal to p1, . . . , pr. All the descendents of p remain on the original N in
the degeneration except for those in L which distribute to the cap. By induction
on m, we need only analyze the terms of the degeneration formula in which the
descendents of 1 distribute away from the cap. Then, since Md has full rank, the
invariants (41) are determined by the invariants (42).

The parallel inductive construction for Gromov-Witten theory determines

(43) Z′GW
d,η1,...,ηr ,μ

⎛
⎝ k′∏

j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

in terms of the T -depth m series relative to r points,

(44) Z′GW
d,η1,...,ηr

⎛
⎝ L

k′∏
j′=1

τi′
j′
(1)

k∏
j=1

τij (p)

⎞
⎠

N/S,T

,

the T -depth m theory of the cap, and theories of lower T -depth. By the compati-
bility of the descendent correspondence with the degeneration formula, the deter-
minations of the T -depth m theories of N relative r + 1 points in P1 respect the
descendent correspondence. �

The 1-leg tube is the total space of the trivial bundle,

N = OP1 ⊕ OP1 → P1 ,

relative to the fibers

N0, N∞ ⊂ N

over both 0,∞ ∈ P1. The tube carries a fiberwise T -action as well as a full T-
action. Lemma 6 implies the following result which will be half of our induction
argument relating the descendent theory of the cap and the tube.

Lemma 7. The descendent correspondence for the T -depth m theory of the cap
implies the descendent correspondence for the T -depth m theory of the tube.

3.4. T-depth. The T-depth m theories of the cap consists of all the T-equivariant
series

(45) ZP
d,η

⎛
⎝ k∏

j=1

τij ([0])

k′∏
j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

,

Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0])

k′∏
j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

,

where k′ ≤ m. Here, 0 ∈ P1 is the nonrelative T-fixed point and ∞ ∈ P1 is the
relative point. The T-depth m theory of the cap is correspondent if Conjecture 4
holds for all depth m stable pairs and Gromov-Witten partition functions (45).

Lemma 8. The descendent correspondence for the T-depth m theory of the cap
implies the descendent correspondence for the T -depth m theory of the cap.
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Proof. The identity class 1 ∈ H∗
T (P

1,Z) may be expressed in terms of the T-fixed
point classes,

1 = − [0]

s3
+

[∞]

s3
.

We can calculate at mostm descendents of 1 in the T -equivariant theory via at most
m descendents of [∞] in the T-equivariant theory (followed by the specialization
s3 = 0). �

3.5. Induction II. The first half of our induction argument was established in
Lemma 7. The second half relates the tube back to the cap with an increase in
depth.

Lemma 9. The descendent correspondence for the T -depth m theory of the tube
implies the descendent correspondence for the T-depth m+ 1 theory of the cap.

Proof. The result follows from the T-equivariant localization formula for the cap
in terms of the T -equivariant theory of the tube (already used in [30]). We first
review the formula.

For the theory of stable pairs, consider the partition function

(46) ZP
d,η

⎛
⎝ k∏

j=1

τij ([0])

k′∏
j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

.

We will write the T-equivariant localization formula for (46), as a sum over set
partitions

R = (R1, R2, . . . , Rr(R)), Ri ⊂ {1, . . . , k′},
satisfying the following conditions:

• Ri are nonempty and disjoint,
• R1 ∪R2 ∪ · · · ∪Rr(R) = {1, . . . , k′},
• min{j′ ∈ Ri} > min{j′ ∈ Ri+1} .

Let mi be the minimal index in Ri. As a consequence of the third condition,
mr(R) = 1 ∈ Rr(R). The formula for the partition function (46) is

∑
R

s
k′−r(R)
3 ZP

d,η1

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T

gη
1η̃1

qd
ZP
d,η̃1,η2

⎛
⎝τi′m1

(p)
∏

j′∈R∗
1

τi′
j′
(1)

⎞
⎠

tube,T

· g
η2η̃2

qd
ZP
d,η̃2,η3

⎛
⎝τi′m2

(p)
∏

j′∈R∗
2

τi′
j′
(1)

⎞
⎠

tube,T

· · ·

· g
ηr η̃r

qd
ZP
d,η̃r ,η

⎛
⎝τi′mr

(p)
∏

j′∈R∗
r

τi′
j′
(1)

⎞
⎠

tube,T

,

where the metric term is

gηη̃ = (s1s2)
�(η)(−1)|η|−�(η)

z(η) · δη,η̃ .

The above T-equivariant formula is proven via localization and the rubber calculus;
see Section 7.2 of [30].
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For a partition function (46) of T-depth m+1, the right side of the T-equivariant
localization formula is in terms of the T-depth 0 theory of the cap and the T -depth
m theory of the tube. Consider next the Gromov-Witten partition function,

(47) Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0])
k′∏

j′=1

τi′
j′
([∞])

⎞
⎠

cap,T

.

The T-equivariant localization formula for (47) is

∑
R

s
k′−r(R)
3 Z′GW

d,η1

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T

hη1η̃1

u−2�(η1)
Z′GW
d,η̃1,η2

⎛
⎝τi′m1

(p)
∏

j′∈R∗
1

τi′
j′
(1)

⎞
⎠

tube,T

· hη2η̃2

u−2�(η2)
Z′GW
d,η̃2,η3

⎛
⎝τi′m2

(p)
∏

j′∈R∗
2

τi′
j′
(1)

⎞
⎠

tube,T

· · ·

· hηr η̃r

u−2�(ηr)
Z′GW
d,η̃r ,η

⎛
⎝τi′mr

(p)
∏

j′∈R∗
r

τi′
j′
(1)

⎞
⎠

tube,T

,

where the metric is now

hηη̃ = (s1s2)
�(η)z(η) · δη,η̃ .

The proof is again via standard localization and rubber calculus.
The descendent correspondence of Conjecture 4 is formally compatible with the

above T-equivariant localization formulas. Since the right sides concern only the
T-depth 0 theory of the cap and the T -depth m theory of the tube, Lemma 9 is an
immediate consequence. �
3.6. Gromov-Witten side. The stable pairs localization formula for (46) in Sec-
tion 3.5 was explained in [30]. While the Gromov-Witten side is parallel, we present
the first cases here to help the reader.

To start, we write the localization formula for T-depth 1 series for the cap as

Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0]) · τi′1([∞])

⎞
⎠

cap,T

= Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0]) · τi′1([∞])

⎞
⎠

cap,T

=
∑
|μ|=d

WVert
μ

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠ ·W(0,0)

μ · Sμη (τi′1) ,

where the rubber term on the right is

Sμη (τi′1) =
∑
g

u2g−2

〈
μ

∣∣∣∣ s3τi′1
s3 − ψ0

∣∣∣∣ η

〉∼

g,d

.

Here, WVert
μ and W0,0

μ denote the Gromov-Witten vertex and edge terms.
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The rubber term simplifies via the topological recursion relation for ψ0 after
writing

(48)
s3

s3 − ψ0
= 1 +

ψ0

s3 − ψ0
.

We find the relation

Sμη (τi′1) =
∑
|η̃|=d

Sμη̃ · hη̃η̃

u−2�(η̃)
· Z′GW

d,η̃,η

(
τi′1([∞])

)tube,T

,

where the rubber term on the right is

Sμη =
∑
g

u2g−2

〈
μ

∣∣∣∣ 1

s3 − ψ0

∣∣∣∣ η

〉∼

g,d

.

The leading 1 on the right side of (48) corresponds to the degenerate leading term
of Sμη̃ . The topological recursion applied to the ψ0 prefactor of the second term

produces the rest of Sμη̃ . We have also used here the identification of the log tangent
bundle on the destabilized cap.

After reassembling the localization formula, we find

Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0]) · τi′1([∞])

⎞
⎠

cap,T

=
∑
|η̃|=d

Z′GW
d,η̃

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T

· hη̃η̃

u−2�(η̃)
· Z′GW

d,η̃,η

(
τi′1([∞])

)tube,T

,

which is equivalent to the first case of the Gromov-Witten formula of Section 3.5.
The higher cases of the Gromov-Witten localization formula of Section 3.5 are

proven by expanding definition (11) of the descendent correspondence and following
the rubber calculus. Consider

Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0]) · τi′1([∞])τi′2([∞])

⎞
⎠

cap,T

= Z′GW
d,η

⎛
⎝ k∏

j=1

τij ([0]) · τi′1([∞])τi′2([∞])

⎞
⎠

cap,T

,

where we have

(49) τi′1([∞])τi′2([∞]) = s3
∑
α

τα(K̃(i′1+1,i′2+1),α · [∞])

+
∑
δ

τδ(K̃(i′1+1),δ · [∞]) ·
∑
ε

τε(K̃(i′2+1),ε · [∞])

by definition. The first summand on the right of (49) is obtained from the set
partition {1, 2} and the second term from the set partition {1}∪{2}. After applying
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localization and the rubber calculus to the {1, 2} term, we obtain the {1, 2} term
of

(50)
∑
|η̃|=d

s3Z
′GW
d,η̃

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T

· hη̃η̃

u−2�(η̃)
· Z′GW

d,η̃,η

(
τi′1(p)τi′2(1)

)tube,T

.

After applying localization and the rubber calculus to the {1} ∪ {2} term of (49),
we obtain the {1} ∪ {2} term of (50) plus the full series

(51)
∑

|μ̃|,|η̃|=d

Z′GW
d,μ̃

⎛
⎝ k∏

j=1

τij ([0])

⎞
⎠

cap,T

· hμ̃μ̃

u−2�(μ̃)
· Z′GW

d,μ̃,η̃

(
τi′2(p)

)tube,T

· hη̃η̃

u−2�(η̃)
· Z′GW

d,η̃,η

(
τi′1(p)

)tube,T

.

Combining (50) and (51) exactly yields the Gromov-Witten formula of Section 3.5
for two insertions over ∞.

3.7. Proof of Theorem 4. Lemmas 7–9 together provide an induction which
establishes the descendent correspondence for the T-depth m theory of the cap for
all m. �

Since the classes of the T-fixed points 0,∞ ∈ P1 generate H∗
T(P

1,Z) after
localization, Theorem 4 is a T-equivariant correspondence for the full descendent
theory of the cap.

3.8. K3 surfaces. For a surface S, following the notation of Section 1.5, let

PS = P(L0 ⊕ L∞) → S, Si = P(Li) ⊂ PS .

Proposition 10. Let S be a nonsingular projective K3 surface. For classes γi ∈
H∗(S,Q), we have

ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)

β
∈ Q(q)

and the correspondence

(−q)−dβ/2ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)

β

= (−iu)dβ+�(μ)−|μ|Z′
GW

(
PS/S∞;u

∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)

β

under the variable change −q = eiu.

Proof. If the cohomology insertions γi are supported on S0, then the above corre-
spondence is proven in Proposition 26 of [33]. The support hypotheses for γi were
needed there since, for the T-equivariant cap, only the correspondence for descen-
dents of the nonrelative point had been proven in [33]. Theorem 4 now removes
the need for the support hypothesis. The proof of Proposition 26 together with
Theorem 4 yields the result. �

Licensed to Mass Inst of Tech. Prepared on Tue May 29 13:07:08 EDT 2018 for download from IP 18.51.0.96.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GROMOV-WITTEN/PAIRS CORRESPONDENCE FOR THE QUINTIC 3-FOLD 425

4. The geometry P1 × C×P1 / P1 × C

4.1. Overview. Let Y denote the the quasi-projective variety P1 × C × P1. For
clarity, we will denote the first factor by P1

1 and the third factor by P1
3. Let

π1 : Y → P1
1, π3 : Y → P1

3

denote the projections onto the first and last factors.
The variety Y admits an action of the 3-torus

T = C∗
1 × C∗

2 × C∗
3 .

The first factor C∗
1 of T acts on P1

1 with fixed points 0,∞ ∈ P1
1 with tangent

weights −s1, s1, respectively. The factor C∗
2 acts on C with fixed point 0 ∈ C with

tangent weight −s2. Finally, C∗
3 acts on P1

3 with fixed points 0,∞ ∈ P1
3 with

tangent weights −s3, s3, respectively.
Define the divisors Y0, Y∞ ⊂ Y to be the fibers of π3 over 0,∞ ∈ P1

3,

Y0 = P1
1 × C× {0}, Y∞ = P1

1 × C× {∞}.
Both Y0 and Y∞ are preserved by the T-action. Let

[0], [∞] ∈ H2
T(Y,Q)

denote the classes of Y0 and Y∞, respectively.
The projection π1 is equivariant with respect to the projection of T onto C∗

1.
We will view

θj , θ
′
j′ ∈ H∗

C∗
1
(P1

1,Q)

as classes in H∗
T(Y,Q) via pullback by π1.

Since Y∞ is preserved by the T-action, we can define

(52) ZP
β,η

⎛
⎝ k∏

j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞])

⎞
⎠

Y/Y∞,T

=
∑
n∈Z

qn
∫
[Pn(Y/Y∞,β)η ]vir

k∏
j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞]) ,

by T-equivariant residues. Here, β ∈ H2(Y,Z) is a curve class (specified by degrees
along the two P1-factors), and η is a boundary condition along Y∞. The parallel
Gromov-Witten partition function is

(53) Z′GW
β,η

⎛
⎝ k∏

j=1

τij (θj [0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

⎞
⎠

Y/Y∞,T

=
∑
g∈Z

u2g−2

∫
[M

′
g,�(Y/Y∞,β)η ]vir

k∏
j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞]) .

Our goal here is to prove the relative descendent correspondence of Conjecture
4 for the fully T-equivariant partition functions (52) and (53).

Theorem 5. For the relative geometry Y/Y∞, we have

ZP
β,η

( k∏
j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞])

)Y/Y∞,T

∈ Q(q, s1, s2, s3)
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and the correspondence

(−q)−dβ/2ZP
β,η

( k∏
j=1

τij (θj [0])
k′∏

j′=1

τi′
j′
(θ′j′ [∞])

)Y/Y∞,T

= (−iu)dβ+�(η)−|η|Z′GW
β,η

( k∏
j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞])

)Y/Y∞,T

under the variable change −q = eiu.

The proof of Theorem 5, given in Sections 4.2–4.4, again proceeds by induction
on the depth of the descendent theories. A study of capped rubber for the geometry
Y/Y0 ∪ Y∞ is required for the base case of the induction.

4.2. Depth induction. The proof of Theorem 4 can be exactly followed to es-
tablish Theorem 5. To start, we define the two notions of depth for the geometry
Y .

Let S ⊂ Y be the relative divisor ∪iπ
−1
3 (pi) associated to the points p1, . . . , pr ∈

P1
3. Let

T = C∗
1 × C∗

2 ⊂ T

be the first two factors of the 3-torus. We consider the T -equivariant stable pairs
theory of Y/S. The T -depth m theory of Y/S consists of all T -equivariant series

(54) ZP
β,η1,...,ηr

⎛
⎝ k′∏

j′=1

τi′
j′
(θ′j′ · 1)

k∏
j=1

τij (θj · p)

⎞
⎠

Y/S,T

,

where k′ ≤ m. Here, p ∈ H2(Y,Z) denotes the class of a fiber of π3, and the ηi are
partitions determining the relative conditions along π−1(pi). Following exactly the
proof of Lemma 7, we obtain the following result.

Lemma 11. The descendent correspondence for the T -depth m theory of Y/Y∞
implies the descendent correspondence for the T -depth m theory of the Y/Y0 ∪
Y∞. �

The stable T-depth m theory of Y/Y∞ consists of all the T-equivariant series

(55) ZP
β,η

⎛
⎝ k∏

j=1

τij (θj [0])

k′∏
j′=1

τi′
j′
(θ′j′ [∞])

⎞
⎠

Y/Y∞,T

,

where k′ ≤ m.
The proofs of Lemmas 8 and 9 are formal and remain valid for the geometry

Y/Y∞. As a result, we obtain the following two results.

Lemma 12. The descendent correspondence for the T-depth m theory of Y/Y∞
implies the descendent correspondence for the T -depth m theory of the Y/Y∞. �

Lemma 13. The descendent correspondence for the T -depth m theory of the tube
implies the descendent correspondence for the T-depth m+1 theory of the cap. �

Lemmas 11–13 together establish a recursion which reduces Theorem 5 to the
base case of the T-depth 0 theory of Y/Y∞.
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4.3. T-depth 0. The last step in the proof of Theorem 5 is to establish the de-
scendent correspondence in the base case of T-depth 0.

Proposition 14. For the relative geometry Y/Y∞, we have

ZP
β,η

( k∏
j=1

τij (θj [0])
)Y/Y∞,T

∈ Q(q, s1, s2, s3)

and the correspondence

(−q)−dβ/2ZP
β,η

( k∏
j=1

τij (θj [0])
)Y/Y∞,T

= (−iu)dβ+�(η)−|η|Z′GW
d,η

( k∏
j=1

τij (θj [0])
)Y/Y∞,T

under the variable change −q = eiu.

We can write the partition function for Y/Y∞ via capped localization for both
stable pairs and Gromov-Witten theory. The capped contributions over Y0 are
2-leg capped toric descendent vertices and satisfy the descendent correspondence
by [33]. The interesting new terms in the capped localization formula occur over
Y∞—the capped rubber contributions. The capped rubber contributions carry no
descendent insertions.

To prove the correspondence for the capped rubber contributions over Y∞, we
follow the technique developed in [21] where the capped rubber contributions for

An ×P1 /An × {∞}
over ∞ were studied. Via the differential equations constructed in Sections 3.2 of
[21], the analysis of Section 3.4 can be applied to our capped rubber contributions.
The proof of Lemma 6 of [21] is valid here. As a result the correspondence for
the capped rubber contributions of Y/Y∞ over Y∞ is equivalent to the following
nonrubber correspondence.

We consider the relative geometry Y / Y0 ∪ Y∞ with respect to the 2-torus T -
action by the first two factors T ⊂ T. Let γ ∈ H∗

C∗(P1
1,Q) be the class of the fixed

point ∞ ∈ P1
1.

Proposition 15. For the relative geometry Y/Y0 ∪ Y∞, we have

ZP
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

= (−iu)dβ+�(ν)−|ν|+�(μ)−|μ|Z′GW
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

under the variable change −q = eiu.

By basic properties of the descendent correspondence [33],

τ0(γ[0]) = τ0(γ[0]) .
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Proposition 14 is a consequence of Proposition 15 together with the recursion of
Lemmas 11–13. Hence the proof of Theorem 5 will be complete once Proposition
15 is established.

4.4. Proof of Proposition 15. The curve class β ∈ H2(Y,Z) is a linear combina-
tion of the curves

[P1
1] = P1

1 × {0} × {0}, [P1
3] = {0} × {0} ×P1

3 .

If β is a multiple of [P1
3], then Proposition 15 reduces immediately to the T -

equivariant descendent correspondence of local curves [33].
Let Y = P1

1 × P1
2 × P1

3. We view the projective variety Y as a T-equivariant
compactification of the quasi-projective variety Y ,

P1
1 × C×P1

3 ⊂ P1
1 ×P1

2 ×P1
3.

Let Y0 and Y∞ be the π3-fibers of Y over 0,∞ ∈ P1
3. Our proof of Proposition 15

will be obtained from studying the partition functions

(56) ZP
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

, Z′GW
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

for the compact relative geometry Y/Y0 ∪Y∞. We will consider curve classes

β = d1[P
1
1] + d3[P

1
3] ∈ H2(Y,Z)

for which d1 > 0 and d3 ≥ 0.
If d3 > 0, the relative conditions ν and μ in (56) will be taken to be of a special

form. The relative condition ν is a partition of d3 weighted by H∗
T (P

1
1 × P1

2,Q).
We require the weights of all the parts νi to be the pullbacks of the classes of the
C∗

1-fixed points 0,∞ ∈ P1
1 except for the weight of the part ν1. For ν1, we take the

weight to be the class of one of the following T -fixed points:

(0, 0), (∞, 0) ∈ P1
1 ×P1

2 .

For μ, we require all weights to be the pullbacks of the classes of 0,∞ ∈ P1
1.

The moduli space of stable pairs Pn(Y/Y0 ∪ Y∞, β)ν,μ has virtual dimension
2d1 +2d3 minus the constraints imposed by the boundary conditions. The number
of constraints imposed by ν is d3 + 1 and by μ is d3. Hence, the virtual dimension
of the stable pairs space is

2d1 + 2d3 − 2d3 − 1 .

The integrand τ0(γ[0]) imposes another constraint, so the virtual dimension of the
integrals in the stable pairs partition function (56) is 2d1−2. The parallel dimension
analysis for the Gromov-Witten partition function (56) also yields 2d1 − 2.

Lemma 16. For d3 > 0 with our special boundary conditions ν and μ, we have

ZP
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

= (−iu)dβ+�(ν)−|ν|+�(μ)−|μ|Z′GW
β,ν,μ

(
τ0(γ[0])

)Y/Y0∪Y∞,T

under the variable change −q = eiu.
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Proof. We can assume d1 > 0, and then 2d1 − 2 ≥ 0. If 2d1 − 2 > 0, both the
stable pairs and Gromov-Witten partition functions vanish by the compactness of
the geometry. If 2d1 − 2 = 0, then both partition functions are independent of
the equivariant parameters s1 and s2. The required matching then follows from
Theorem 3. �

We can apply T -equivariant localization to both sides of the correspondence of
Lemma 16. Via the action of the second factor of T , the T -equivariant contributions
occur with P1

2 coordinate either 0 or ∞ (remember the curve class β is degree 0 over
P1

2). The localization contributions where the entire curve β and all the boundary
conditions lie over 0 ∈ P1

2 yield22 the residue invariants appearing in Proposition
15. All the other terms in the localization formula can be expressed as the residue
invariants of Proposition 15 (over 0 or ∞ ∈ P1

2) with lesser β. Hence the T -
equivariant localization relation applied to Lemma 16 reduces Proposition 15 to
the case where d3 = 0.

To prove the d3 = 0 case of Proposition 15, we replace Lemma 16 with a different
partition function. Let

γ0 ∈ H∗
T (P

1
1 ×P1

2,Q)

be the class of the point (∞, 0). Alternatively, γ0 is the intersection of γ with the
divisor over 0 ∈ P1

2. Hence, γ0 restricted to P1
1 × {0} ×P1

3 is −s2γ.

Lemma 17. For d3 = 0, we have

ZP
β,∅,∅

(
τ0(γ0[0])

)Y/Y0∪Y∞,T

∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP
β,∅,∅

(
τ0(γ0[0])

)Y/Y0∪Y∞,T

= (−iu)dβZ′GW
β,∅,∅

(
τ0(γ0[0])

)Y/Y0∪Y∞,T

under the variable change −q = eiu.

Proof. The dimension analysis used in the proof of Lemma 16 is also valid here and
yields the result. �

Finally, we can apply T -equivariant localization to both sides of the correspon-
dence of Lemma 17. The localization contributions where the entire curve β lies
over 0 ∈ P1

2 yield23 the residue invariants appearing in Proposition 15. All the
other terms in the localization formula include unconstrained curves over ∞ ∈ P1

2

with positive [P1
1] components—all such contributions vanish.24 The T -equivariant

localization relation applied to Lemma 17 completes the proof of Proposition 15. �
Proposition 15 was the last step in the proof of Proposition 14. The proof of

Proposition 14 completes the proof of Theorem 5.

22Up to a harmless s2 factor obtained from the cohomology weight of the part ν1.
23Up to a harmless s2 factor obtained from γ0.
24The proof can be obtained inductively from the geometry Y/Y0 ∪ Y∞ by considering the

integrand τ0(γ0). We leave the details as an exercise for the reader.
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5. Bi-relative residue theories

5.1. Overview. In order to prove Theorem 1, we must first extend Theorem 2
to nontoric surfaces S which are projective bundles over higher genus curves (as
discussed in Section 2.6). Our strategy is to extend Proposition 3 to such surfaces.
The extension of Theorem 2 then follows as a consequence.

In order to extend Proposition 3 to projective bundles S over higher genus curves,
we will degenerate S. To carry out the argument, we will require a descendent
correspondence for a particular residue theory in a bi-relative 3-fold geometry.

5.2. Bi-relative geometry. Following the notation of Section 4.4, let

Y = P1
1 ×P1

2 ×P1
3 , Y∞ = P1

1 ×P1
2 × {∞} ,

and let D∞ ⊂ Y be the divisor

D∞ = P1
1 × {∞} ×P1

3 .

We will consider the bi-relative 3-fold geometry

(57) Y / Y∞ ∪D∞ .

Since the divisors Y∞ and D∞ intersect, the full stable pairs and Gromov-Witten
theories of the geometry (57) are not described by standard relative techniques
[9, 12].

Fortunately, we are only interested here in a corner of the bi-relative geometry
(57) which can be approached by standard relative geometry—the residue theory
over 0 ∈ P1

2. To define the residues over 0 ∈ P1
2, curves intersecting Y∞ ∩D∞ do

not arise, so the standard relative methods are sufficient.
The descendent correspondence for residue theory of (57) over 0 ∈ P1

2 will play
a crucial role in the extension of Proposition 3 and Theorem 2.

5.3. Construction I. Consider the moduli space of stable pairs Pn(Y/Y∞, β)η
with curve class

β = d1[P
1
1] + d2[P

1
2] + d3[P

1
3]

and C∗
1 × C∗

2-equivariant relative condition η along Y∞ with cohomology weights
supported on

P1
1 × {0} × {∞} ⊂ Y∞ .

Define the open set

Vn,β,η ⊂ Pn(Y/Y∞, β)η

to be the locus of stable pairs for which D∞ is not a zero divisor.
More precisely, a stable pair in the relative geometry Y/Y∞ is supported on

a destabilization Ỹ of Y along Y∞. The original divisor D∞ degenerates to the
reducible divisor

D̃∞ = π−1
2 (∞) ⊂ Ỹ, π2 : Ỹ → P1

2 .

We define Vn,β,η to be the open set of stable pairs for which D̃∞ is not a zero

divisor.25 In other words, the stable pair is transverse to D̃∞: there are no free

25The moduli space Pn(Y/Y∞, β)η is not relative to D̃∞, so transversality along D̃∞ is a

nontrivial condition. There is no bubbling along D̃∞.
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points (the cokernel of the stable pair) on D̃∞. Via the intersection with D̃∞, we
obtain a canonical map26

ε : Vn,β,η → Hilb(P1
1 ×P1

3 /P
1
1 × {∞}, d2) .

Here, Hilb(P1
1 × P1

3 /P
1
1 × {∞}, d2) is the Hilbert scheme27 of d2 points of the

surface P1
1 ×P1

3 relative to the divisor P1
1 × {∞}.

The original 3-torus T acting on Y acts on Vn,β,η. While Vn,β,η is certainly not
compact, the C∗

2-fixed point locus is compact—all features of the stable pair occur
on

D̃0 = π−1
2 (0) ⊂ Ỹ .

A C∗
2-fixed stable pair in Vn,β,η meets D̃∞ transversely. On Ỹ \ D̃0, C

∗
2-fixed stable

pairs are simply the pullbacks of 0-dimensional subschemes of D̃∞. All components
of positive degree over P1

1×P1
3 of C

∗
2-fixed curves associated to stable pairs in Vn,β,η

lie over 0 ∈ P1
2.

Let θj , θ
′
j′ ∈ H∗

C∗
1
(P1

1,Q) be as in Section 4.1. Let

[0, 0], [0,∞] ∈ H∗
C∗

2×C∗
3
(P1

2 ×P1
3)

denote the classes of the points (0, 0) and (0,∞), respectively. Let

φ ∈ H∗
C∗

1×C∗
3
(Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2),Q) .

We define the uncapped residue descendent series

VP
β

⎛
⎝ k∏

j=1

τij (θj [0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞])

⎞
⎠

Y/Y∞∪D∞,T

η,φ

=
∑
n∈Z

qn
∫
[Vn,β,η ]vir

k∏
j=1

τij (θj [0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]) ∪ ε∗(φ)

by T-equivariant residues.

5.4. Construction II. Next, we consider the moduli of stable pairs for the relative
geometry

(58) Y / Y∞ ∪D∞

with curve classes d2[P
1
2]. Since

[P1
2] ·Y∞ = 0 ,

the curves never meet Y∞. So the delicate study of geometry relative to the
singularities of Y∞ ∪D∞ can be completely avoided. The moduli space

Pn(Y/Y∞ ∪D∞, d2[P
1
2])

is easily constructed. The projections of the curves to

P1
1 × {0} ×P1

3

are never allowed to meet

P1
1 × {0} × {∞} ⊂ Y∞ .

26The map involves possible stabilization. Stabilization here contracts bubbled components
which have continuous automorphisms fixing the boundary sheaf.

27The Hilbert scheme of points of a surface relative to a divisor is a special case of the relative
ideal sheaf moduli for 3-folds. See [39] for a discussion and study.
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Bubbling occurs along Y∞ to keep the projections away. The points of the resulting

moduli space correspond to stable pairs which meet D̃∞ away from the intersection
with Y∞. Hence, the deformation theory and virtual class are standard.

The boundary conditions along D∞ are defined via the canonical map

ε : Pn(Y/Y∞ ∪D∞, d2[P
1
2]) → Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2) .

While any element of the cohomology of Hilb(P1
1 × P1

3 /P
1
1 × {∞}, d2) imposes

a boundary condition, special elements corresponding to the Nakajima basis of
the cohomology of the Hilbert scheme of points in the absolute case will play a
distinguished role.

Let μ be the partition of d2 weighted by the cohomology of the surface P1
1×P1

3.
Explicitly,

(59) μ = {(μ1, ω1), . . . , (μ�, ω�)}, d2 =

�∑
i=1

μi, ωi ∈ H∗
C∗

1×C∗
3
(P1

1 ×P1
3,Q).

Such a weighted partition determines an element

Nak(μ) ∈ H∗
C∗

1×C∗
3
(Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2),Q)

by the following construction. Recall(
P1

1 ×P1
3 /P

1
1 × {∞}

)� → P1
1 ×P1

3

is the space of ordered points in the relative surface geometry; see Section 1.2. The
cohomology weights ωi pull back canonically to the space of points

(
P1

1×P1
3 /P

1
1×

{∞}
)�
. Let

Cμ ⊂
(
P1

1 ×P1
3 /P

1
1 × {∞}

)� ×Hilb
(
P1

1 ×P1
3 /P

1
1 × {∞}, d2

)
be the closure of the locus of distinct points in (P1

1 × P1
3 /P

1
1 × {∞})� carrying

punctual subschemes of lengths μ1, . . . , μ�(μ). Let

Nak(μ) =
1

z(μ)
pr2∗

(
Cμ · pr∗1(ω1 ∪ · · · ∪ ω�)

)
with respect to the projections of

(P1
1 ×P1

3 /P
1
1 × {∞})� ×Hilb(P1

1 ×P1
3 /P

1
1 × {∞}, d2)

onto the first and second factors.
Let D0 ⊂ Y be the divisor lying over 0 ∈ P1

2. We can also consider the rubber
moduli spaces of stable pairs

Pn(Y/Y∞ ∪D0 ∪D∞, d2[P
1
2])

∼

which arise in the boundary of Pn(Y/Y∞ ∪D∞, d2[P
1
2]) over D∞. In addition to

the boundary map ε∞ associated to D∞, there is also a boundary map

ε0 : Pn(Y/Y∞ ∪D0 ∪D∞, d2[P
1
2])

∼ → Hilb(P1
1 ×P1

3 / P1
1 × {∞}, d2)

obtained by the intersection with D̃0.
As in Section 2.4.4, we have the cotangent line classes

Ψ0,Ψ∞ ∈ H2
C∗

1×C∗
3
(Pn(Y/Y∞ ∪D0 ∪D∞, d2[P

1
2])

∼
,Q) .
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Define the rubber series

RP
d2[P1

2]

(
1

−Φ0 + s2

)T

φ,μ

=
∑
n∈Z

qn
∫
[Pn(Y/Y∞∪D0∪D∞,d2[P1

2])
∼]vir

1

−Φ0 + s2
· ε∗0(φ) ∪ ε∗∞(Nak(μ)) .

Here, φ ∈ H∗
C∗

1×C∗
3
(Hilb(P1

1 ×P1
3 / P1

1 × {∞}, d2),Q) is an arbitrary class.

5.5. Definition of the bi-relative residue. We define the bi-relative capped
descendent residue theory

CP
0

⎛
⎝ k∏

j=1

τij (θj [0, 0])
k′∏

j′=1

τi′
j′
(θ′j′ [0,∞]), β

⎞
⎠

Y/Y∞∪D∞,T

η,μ

by the formula

∑
i

VP
β

⎛
⎝ k∏

j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞])

⎞
⎠

Y/Y∞∪D∞,T

η,φi

· q−d2 RP
d2[P1

2]

(
1

−Φ0 + s2

)T

φ∨
i ,μ

,

where the sum is over the components of a C∗
1 × C∗

3-equivariant Künneth decom-
position

f∑
i=1

φi ⊗ φ∨
i = [Δ] ∈ HC∗

1×C∗
3
(Hilb×Hilb,Q)

of the diagonal of Hilb(P1
1 ×P1

3 / P1
1 × {∞}, d2).

5.6. Motivation. We have given above a rigorous definition of the bi-relative
capped descendent residue theory. If we had a complete definition of the stable
pairs theory of the bi-relative geometry Y/Y∞ ∪D∞, the definition of

(60) CP
0

⎛
⎝ k∏

j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞]), β

⎞
⎠

Y/Y∞∪D∞,T

η,μ

as a capped residue theory would be immediate. Since we are interested in the
residue theory over 0 ∈ P1

2, the stable pairs do not interact with the singularities
of Y∞ ∪D∞, and we are able to define (60) by hand.

5.7. Gromov-Witten theory. Following every step of the stable pairs construc-
tion, we can also define a bi-relative capped descendent residue theory for stable
maps,

(61) CGW
0

⎛
⎝ k∏

j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞]), β

⎞
⎠

Y/Y∞∪D∞,T

η,μ

.

Moreover, the depth induction techniques of Sections 3 and 4 applied to both the
descendent insertions and to the parts of μ yield the following correspondence.
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Theorem 6. We have

CP
0

( k∏
j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞]), β

)Y/Y∞∪D∞,T

η,μ
∈ Q(q, s1, s2, s3)

and the correspondence

(−q)−dβ/2CP
0

( k∏
j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞]), β

)Y/Y∞∪D∞,T

η,μ

= (−iu)dβ+�(η)−|η|+�(μ)−|μ|CGW
0

( k∏
j=1

τij (θj [0, 0])

k′∏
j′=1

τi′
j′
(θ′j′ [0,∞]) , β

)Y/Y∞∪D∞,T

η,μ

under the variable change −q = eiu.

Proof. We take the relative condition μ of the form (59) to have cohomology weights

ωi = γi[0] or γi[∞],

where γi ∈ H∗
C∗

1
(P1

1,Q) and [0], [∞] ∈ H∗
C∗

3
(P1

3,Q) are the classes of the C∗
3-fixed

points.
To prove Theorem 6, we exactly follow the depth induction used in the proof of

Theorems 4 and 5. The depth count has two components:

• the number of descendent insertions of the form τi′
j′
(θ′j′ [0,∞]),

• the number of parts of μ with weights of the form γ[∞].

There is no difficulty in including the parts of μ over∞ ∈ P1
3 in theT-equivariant

localization formula of Lemma 9. The descendents over ∞ ∈ P1
3 were used to

rigidify the rubber—we can also use the parts of μ to rigidify the rubber. The
outcome is a reduction of Theorem 6 to the base case where all the descendent
insertions and parts of μ lie over 0 ∈ P1

3.
Theorem 6 in the base case concerns only 3-leg descendent vertices at the points

(0, 0, 0), (∞, 0, 0) ∈ Y and the capped rubber contributions over ∞ ∈ P1
3. The

GW/P correspondence for the 3-leg descendent vertex has been established in [33].
The correspondence for the capped rubber of ∞ ∈ P1

3 has already been treated in
Section 4.3 via Proposition 15. �

5.8. Degeneration. Let S be a nonsingular projective surface equipped with two
line bundles L0 and L∞. Let

π : PS → S

be the P1-bundle obtained from the projectivization of the sum L0 ⊕ L∞. The
fiberwise C∗-action on PS leaves the divisor

S∞ = P(L∞) ⊂ PS

invariant. Let C ⊂ S be a nonsingular curve, and let

PC = π−1(C) ⊂ PS .

Via the fiberwise C∗-action, we can define capped bi-relative residue theories for
the geometry

PS /PC ∪ S∞
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for stable pairs and stable maps. The constructions of Sections 5.3–5.5 apply here:
only the fiberwise C∗

2-action was needed there to define the bi-relative residue the-
ories. We therefore have capped bi-relative residue theories

(62) CP
0

⎛
⎝ k∏

j=1

τij (γj), β

⎞
⎠

PS/PC∪S∞,C∗

η,μ

, CGW
0

⎛
⎝ k∏

j=1

τij (γj), β

⎞
⎠

PS/PC∪S∞,C∗

η,μ

,

where γ1, . . . , γk ∈ H∗
C∗(PS,Q) are classes supported on S0, η is a C∗-equivariant

boundary condition along PC with support on PC ∩ S0, and

Nak(μ) ∈ H∗(Hilb(S /C, |μ|),Q)

is a Nakajima element.
The capped bi-relative residue theories occur naturally in the degeneration for-

mula. Let
π : S → Δ

be a nonsingular 3-fold fibered over an irreducible nonsingular base curve Δ. Let
S be a nonsingular fiber, and let

A ∪C B

be a reducible special fiber consisting of two nonsingular surfaces intersecting trans-
versally along a nonsingular surface C. Let

L0,L∞ → S

be two line bundles. The degeneration

(63) PS = P(L0 ⊕ L∞) → B

is a nonsingular 4-fold with a reducible fiber

PS1
∪PC

PS2
.

Let [P] ∈ H2(PS,Z) be the curve class of the P1-fiber.
To write the degeneration formula corresponding to the geometry (63), we require

the following notation:

• Let β = βS0
+ d[P] ∈ H2(PS,Z) where βS0

∈ H2(S0,Z).
• Let γ1, . . . , γk ∈ H∗

C∗(PS,Q) be classes supported on S0.
• Let μ be a partition of d with cohomology weights lying in H∗(S∞,Q).

The degeneration formula for stable pairs is

CP
0

( k∏
j=1

τij (γj), β
)PS/S∞,C∗

μ

=

∑
CP
0

( ∏
j∈J1

τij (γj), β1

)PA/PC∪A∞,C∗

η,μ1
(−1)|η|−�(η)

z(η)q−|η|

· CP
0

(∏
i∈J2

τij (γj), β2

)PB/PC∪B∞,C∗

η∨,μ2
.

The sum is over all distributions of descendents, distributions of μ, and curve class
splittings

J1 ∪ J2 = {1, . . . , k}, μ = μ1 ∪ μ2, β = β1 + β2,

where we have
β1 = βA0

+ d1[P], β2 = βB0
+ d2[P]
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with βA0
∈ H2(A0,Z), βB0

∈ H2(B0,Z), and d1 + d2 = d. The sum is also over a
basis η of H∗

C∗(PC \PC ∩S∞,Q) supported on PC ∩S0.
The above degeneration formula is a straightforward consequence of the standard

degeneration formula for stable pairs residue theories and the definition of the bi-
relative integrals.28 We leave the details to the reader.

The degeneration formula for Gromov-Witten theory takes a parallel form,

CGW
0

( k∏
j=1

τij (γj), β
)PS/S∞,C∗

μ

=

∑
CGW
0

(∏
j∈J1

τij (γj), β1

)PA/PC∪A∞,C∗

η,μ1
z(η)u2�(η)

· CGW
0

(∏
i∈J2

τij (γj), β2

)PB/PC∪B∞,C∗

η∨,μ2

with the same summation conventions. The correspondence

k∏
j=1

τij (γj) �→
k∏

j=1

τij (γj)

is defined via the conventions of Sections 1.3 for relative geometries. The relative
diagonals and log tangent bundle are used.

The above degeneration formulas are compatible with the natural generalization
of Conjecture 4 for capped bi-relative residue theories.

Conjecture 5. For the theories (62), we have

CP
0

( k∏
j=1

τij (γj), β
)PS/PC∪S∞,C∗

η,μ
∈ Q(q, t)

and the correspondence

(−q)−dβ/2CP
0

( k∏
j=1

τij (γj), β
)PS/PC∪S∞,C∗

η,μ

= (−iu)dβ+�(η)−|η|+�(μ)−|μ|CGW
0

( k∏
j=1

τij (γj), β
)PS/PC∪S∞,C∗

η,μ

under the variable change −q = eiu.

The conditions imposed on β, γj , μ, and η in Conjecture 5 are as discussed for
the degeneration formula.

5.9. Review. Theorems 4–6 are parallel results. The strategy of depth induction
is the main idea in the proof of Theorem 4 for descendents on the cap. The base
case is the correspondence for the 1-leg capped descendent vertex of [33]. For the
relative geometry P1×C×P1 / P1×C, the same depth induction is valid, but the
base case, settled in Proposition 14, is new. Finally, for the bi-relative geometry

28Since the curves of the residue theory with positive S-degree lie in S0 before degeneration,
the limits lie in A0 and B0 after degeneration.
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of Theorem 6, the relative constraints along D∞ are new. Fortunately, the relative
insertions fit into the original depth induction.

Theorem 6 and the degeneration formula of Section 5.8 are the main technical
results which will be needed to study descendent correspondences for projective
bundles over curves.

6. Projective bundles over higher genus curves

6.1. Overview. Let C be a nonsingular projective curve of genus g equipped with
a rank 2 vector bundle Λ → C and two line bundles

LC
0 , L

C
∞ → C .

Let S be the nonsingular projective surface obtained by the projectivization of Λ,

S = P(Λ)
ε−→ X .

The projective bundle

(64) PS = P(ε∗LC
0 ⊕ ε∗LC

∞) → S

admits sections

Si = P(ε∗LC
i ) ⊂ PS .

We will establish here the relative descendent correspondence of Conjecture 4 for
PS/S∞.

Relative projective bundle geometries over toric surfaces were studied in Section
2. We follow here the conventions and constructions of Section 2. Let

Γ = (γ1, . . . , γ�), γi ∈ H∗(S,Q) .

Since S has odd cohomology, the classes γi may be of odd (real) degree.
We consider capped contributions over S0 in curve class

β = β0 + d[P], β0 ∈ Eff(S0).

Let μ be a boundary condition along S∞ with |μ| = d,

μ = {(μ1, ω1), . . . , (μ�(μ), ω�(μ))}

with ωi ∈ H∗(S∞,Q). Again, the classes ωi may be of odd (real) degree.

Proposition 18. The C∗-equivariant descendent correspondence for the capped
contributions over S0 holds for the geometry (64),

CP
0 (τα(Γ0), β)

PS/S∞,C∗

μ ∈ Q(q, t),

and we have

(−q)−dβ/2 CP
0 (τα(Γ0), β)

PS/S∞,C∗

μ = (−iu)dβ+�(μ)−|μ| CGW
0

(
τα(Γ0), β

)PS/S∞,C∗

μ

under the variable change −q = eiu.

The proof of Proposition 18 will be given in Sections 6.2–6.6. In the toric case
studied in Section 2, Proposition 3 was shown to formally imply Theorem 2. For
the geometry (64), Proposition 18 implies the descendent correspondence by the
same argument.
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Theorem 7. For the relative geometry PS/S∞ associated to (64) and classes γi ∈
H∗

C∗(PS ,Q), we have

ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β
∈ Q(q, t)

and the correspondence

(−q)−dβ/2ZP

(
PS/S∞; q

∣∣∣τα1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β

= (−iu)dβ+�(μ)−|μ|Z′
GW

(
PS/S∞;u

∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)
∣∣∣ μ)C∗

β

under the variable change −q = eiu. �

The parallel descendent correspondence holds when the projective bundle geom-
etry PS/S0 ∪ S∞ is taken relative to both sections.

6.2. Torus actions. If Λ splits as a sum of line bundles on C,

(65) Λ = Λ0 ⊕ Λ∞ ,

then S = P(Λ) admits a fiberwise C∗-action by scaling. The 3-fold

(66) PS = P(ε∗LC
0 ⊕ ε∗LC

∞)

then carries a 2-dimensional torus action

C∗
1 × C∗

2 ×PS → PS,

where C∗
1 is the scaling associated to the splitting (65) and C∗

2 is the scaling asso-
ciated to the splitting (66).

In case Λ splits, we will prove the natural C∗
1×C∗

2-equivariant lift of Proposition
18,

CP
0 (τα(Γ0), β)

PS/S∞,C∗
1×C∗

2
μ ∈ Q(q, s),

and we have

(−q)−dβ/2 CP
0 (τα(Γ0), β)

PS/S∞,C∗
1×C∗

2
μ

= (−iu)dβ+�(μ)−|μ| CGW
0

(
τα(Γ0), β

)PS/S∞,C∗
1×C∗

2

μ

under the variable change −q = eiu.
Since every rank 2 bundle Λ is deformation equivalent to a split bundle, we can

assume Λ is split in the proof of Proposition 18. We will prove the above C∗
1 ×

C∗
2-equivariant correspondence (which, of course, then implies the C∗

2-equivariant
statement of Proposition 18).

6.3. Invertibility. Before proving Proposition 18, we will require an auxiliary re-
sult for the capped residue theory

(67) CP
0

( k∏
j=1

τij (θj [0, 0]), d[P1
3]
)Y/Y∞∪D∞,T

η,∅

derived from the analysis of stable pairs descendents in [32].
Let P(d, 2) be the set of pairs of partitions (η0, η∞) satisfying

|η0|+ |η∞| = d.
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We define the boundary condition η = (η0, η∞) of (67) by weighting the parts of
η0 with the class of the point (0, 0,∞) ∈ Y∞ and the parts of η∞ with the class of
the point (∞, 0,∞) ∈ Y∞.

Let QP(d,2) denote the linear space of functions from P(d, 2) to the field
Q(q, s1, s2, s3). Let p0, p∞ ∈ H∗

C∗
1
(P1

1,Q) be the classes of the fixed points 0,∞ ∈
P1

1. Let

(68) τ̃(p) =
∞∑
i=0

c0i τi(p0[0, 0]) +
∞∑
i=0

c∞i τi(p∞[0, 0])

be a finite linear combination of descendents. For w ≥ 0, define a function on
P(d, 2) by

γw : P(d, 2) → Q(q, s1, s2, s3), η �→ CP
0

(
τ̃(p)w, d[P1

3]
)Y/Y∞∪D∞,T

η,∅
.

Here, CP
0 is defined by a multilinear expansion of the insertion τ̃(p)w.

Lemma 19. For d ≥ 0, there exists a linear combination τ̃(p) for which the set of
functions,

{γ0, γ1, γ2, . . . },

spans QP(d,2).

Proof. The spanning statement concerns the linear algebra of the field of rational
functions Q(q, s1, s2, s3). We must prove nondegeneracy of the set {γ0, γ1, γ2, . . . }.
We will require only the leading q term of

CP
0

(
τ̃(p)w, d[P1

3]
)Y/Y∞∪D∞,T

η,∅
.

The matter is then an assertion about the cohomology of the Hilbert scheme of
points of Y∞.

After changing the basis of η to the C∗
1 × C∗

2-fixed points of the Hilbert scheme
of points of Y∞ at (0, 0,∞) and (∞, 0,∞), the action of τ̃(p) is determined in
Section 1.2 of [32]. The operator τk(p0[0, 0]) is diagonal in the fixed point basis
with eigenvalues given by symmetric functions in the weights29 of the structure
sheaf of the fixed point of the Hilbert scheme of Y∞ at (0, 0,∞). Modulo lower
order symmetric functions, the eigenvalue of τk(p0[0, 0]) is simply the kth power
sum.

Since the power sums determine all symmetric functions, we can find a finite
linear combination

τ̃(p) =
∞∑
i=0

c0i τi(p0[0, 0]) +
∞∑
i=0

c∞i τi(p∞[0, 0])

with distinct eigenvalues on the C∗
1 × C∗

2-fixed points of the Hilbert scheme of
Y∞ at (0, 0,∞) and (∞, 0,∞). By the Vandermonde determinant, the lemma is
proven. �

29The weights depend only on s1 and s2.
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Lemma 19 is similar to Lemma 5.6 of [27]. The parallel result for

CGW
0

(
τ̃(p)w, d[P1

3]
)Y/Y∞∪D∞,T

η,∅

follows from the correspondence of Theorem 6.
We have used the full T-action to prove Lemma 19. However, the weight s3 of

the third factor C∗
3 of T is not needed in the argument. Hence, Lemma 19 holds

for

γw : P(d, 2) → Q(q, s1, s2), η �→ CP
0

(
τ̃(p)w, d[P1

3]
)Y/Y∞∪D∞,C∗

1×C∗
2

η,∅
.

6.4. Even theory. We first prove Proposition 18 in case all the cohomology inser-
tions γj and all the cohomology weights ωi are of even (real) degree.

If the underlying curve C is P1, Proposition 18 specializes to Proposition 3 and
is established. Consider a fiber F of

(69) ε : R = P(Λ0 ⊕ Λ∞) → P1.

We can degenerate R to the normal cone of F ,

R � R ∪F P1 ×P1 .

We can degenerate the line bundles

(70) Λ0, Λ∞, ε∗LC
0 , ε∗LC

∞

so the restrictions to P1×P1 are all trivial. By the restriction of Theorem 6 to the
subtorus C∗

1 × C∗
2, Lemma 19 restricted to C∗

1 × C∗
2, and the compatibility of the

descendent correspondence with the degeneration formula, we conclude Conjecture
5 holds C∗

1×C∗
2-equivariantly for PR/PF∪R∞. Repeating the argument for another

fiber F ′ of ε shows Conjecture 5 holds C∗
1 ×C∗

2-equivariantly for PR/PF∪F ′ ∪R∞.
Next suppose E is a genus 1 carrying line bundles Λ0, Λ∞, LE

0 , and LE
∞ with

ε : S = P(Λ0 ⊕ Λ∞) → E .

We can degenerate E to a nodal rational curve. The line bundles carried by E
can be taken to specialize to line bundles on the nodal curve. Since there is no
vanishing even cohomology for the degeneration, we conclude Conjecture 5 holds
C∗

1 ×C∗
2-equivariantly for the genus 1 case PS/S∞ as a consequence of the genus 0

case PR/PF∪F ′ ∪R∞.
Since we know Conjecture 5 holds C∗

1 × C∗
2-equivariantly for the genus 1 case

PS/S∞, degeneration to the normal cone to fibers of ε and Lemma 19 restricted to
C∗

1 × C∗
2 prove Conjecture 5 holds C∗

1 × C∗
2-equivariantly for the genus 1 cases

(71) PS/PF ∪ S∞ , PS/PF∪F ′ ∪ S∞ .

Finally, if C is the curve of arbitrary genus g, we can degenerate C to a chain of
g elliptic curves. Since there is no vanishing cohomology, we deduce Conjecture 5
in the even case from the geometries (71). �
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6.5. Odd theory.

6.5.1. Reduction to genus 1. Suppose C is a genus g curve carrying line bundles
Λ0, Λ∞, LC

0 , and LC
∞ with

ε : S = P(E0 ⊕ E∞) → C .

We now consider Conjecture 5 equivariantly with respect to C∗
1 ×C∗

2 for classes γj
and ωi in full generality.

Since the degeneration of C to a chain of genus 1 curves has no vanishing coho-
mology, we may assume C is of genus 1. By the C∗

1 × C∗
2-equivariant methods of

Section 6.4, Conjecture 5 for (71) follows from Conjecture 5 for PS/S∞.
We may further simplify the geometry by degenerating C to the normal cone to

a point p ∈ C,

C � C ∪p P
1,

and requiring the line bundles Λ0, Λ∞, ε∗LC
0 , ε

∗LC
∞ to be trivial on C in the limit.

We then obtain a degeneration

S � P1 × C ∪F R ,

where R is of the form (69). Since Conjecture 5 has already been proven C∗
1 × C∗

2-
equivariantly for PR/PF ∪ R∞, we need only prove Conjecture 5 holds C∗

1 × C∗
2-

equivariantly for the special case

(72) ε : S = P(OE ⊕ OE) → E, LE
0 = OE , LE

∞ = OE , g(E) = 1 .

Explicitly, the geometry is

PS/S∞ = P1 ×P1 × E / P1 × {∞} × E.

6.6. Proof of Proposition 18. Consider the stable pair and Gromov-Witten the-
ories

(73) CP
0 (τα(Γ0), β)

PS/S∞,C∗
1×C∗

2
μ , CGW

0

(
τα(Γ0), β

)PS/S∞,C∗
1×C∗

2

μ

for the genus 1 geometry (72). Both are uniquely determined from the correspond-
ing even theories by the following four properties:

(i) Algebraicity of the virtual class,
(ii) Degeneration formulas for the relative theory in the presence of odd coho-

mology,
(iii) Monodromy invariance of the relative theory,
(iv) Elliptic vanishing relations.

The properties (i)–(iv) were used in [27] to determine the full relative Gromov-
Witten descendents of target curves in terms of the descendents of even classes.

The results of Section 5 of [27] are entirely formal and apply verbatim to the
theories (73). Lemma 19 replaces Lemma 5.6 of [27]. Let

L0, L∞ ∈ H∗
C∗

1×C∗
2
(P1

1 ×P1
2 × E,Q)

be the classes of the curves

{0} × {0} × E and {∞} × {0} × E,
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respectively. For γ ∈ H∗(E,Q), let30

τ̃(γ) =
∞∑
i=0

c0i τi(L0γ) +
∞∑
i=0

c∞i τi(L∞γ).

We start, as in (5.11) of [27], by studying the descendents

(74) CP
0

(
τ̃ (α)τ̃(β), d1[P

1
1] + d3[E]

)PS/S∞,C∗
1×C∗

2

η,∅ ,

CGW
0

(
τ̃(α)τ̃(β), d1[P

1
1] + d3[E]

)PS/S∞,C∗
1×C∗

2

η,∅

for the geometry (72) where

α, β ∈ H1(E,Q), α ∪ β = 1 .

Exactly following [27], the descendents (74) are determined from the even the-
ory. Since the relations (i)–(iv) respect the descendent correspondence, we deduce
Proposition 18 from the even case proven in Section 6.4. Also, the rationality of
the even theory implies the rationality of the full theory. When the invertibility of
Lemma 19 is applied here, an induction on d1 is necessary.

The method developed in Section 5 of [27] proceeds to handle all descendent
insertions. For the case studied in [27], the descendents

τn(γ), γ ∈ H∗(E,Q)

are labeled only by the integer n. Here, the insertions are of the form

τn(L0γ), τn(L∞γ), (n, L0γ), (n, L∞γ), γ ∈ H∗(E,Q),

where the latter two types31 are relative conditions of μ. The insertion labeling is
the only difference. The reduction to the even descendents exactly follows Section
5 of [27]. �

6.7. Products S × C. Let S be a nonsingular projective toric surface equipped
with the action of a 2-dimensional torus T . Let C be a nonsingular projective curve
of genus g. A simpler result than Theorem 7 is the following.

Proposition 20. For γi ∈ H∗
T (S × C,Q), we have

ZP

(
S × C; q

∣∣∣ τα1−1(γ1) · · · τα�−1(γ�)
)T

β
∈ Q(q, s1, s2)

and the correspondence

(−q)−dβ/2ZP

(
S × C; q

∣∣∣ τα1−1(γ1) · · · τα�−1(γ�)
)T

β

= (−iu)dβZ′
GW

(
S × C;u

∣∣∣ τa1−1(γ1) · · · τα�−1(γ�)
)T

β

under the variable change −q = eiu.

30Here, the coefficients c0i and c∞i are taken so Lemma 19 is valid. When γ is a class of a point

in E, we recover the C∗
1 × C∗

2 specialization of (68).
31The relative conditions must be treated on the same footing as the descendent insertions as

the relative weights may also be odd.
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Proof. Let p1, . . . , pn denote the T -fixed points of S. By considering localization
for stable pairs and stable maps on S × C with respect to the torus T , we can
reduce the descendent correspondence to a local result for C2 ×C with caps in the
two C2 directions. The localization formula is in terms of n such capped C2 × C
geometries (connected by simple capped edge geometries).

Consider the capped geometry C2 × C. If all the descendent insertions γi have
an even (real) cohomological degree, we can reduce to the case where g(C) = 0
by our standard degeneration and relative arguments. Crucial here is a tri-relative
residue theory for

(75) C2 ×P1 / C2 × {∞}

defined by completely parallel constructions to the bi-relative case considered in
Section 5. The tri-relative geometry has caps in the two C2 directions on (75). The
proof of the GW/P descendent correspondence for the tri-relative cap (75) exactly
follows the proof Theorem 4 with the two relative directions corresponding to C2

handled as in the proof Theorem 6.
To control the odd descendents, we follow the strategy of Section 6.5 (and [27]).

We reduce to the case where g(C) = 1 and express the full theory in terms of the
even theory. Lemma 19 for T still applies.

We leave the straightforward details here to the reader. The capped edges are
1-leg geometries and are easily handled. �

7. Proof of Theorem 1

7.1. Overview. We have now proven the GW/P descendent correspondences in
sufficiently many geometries to deduce Theorem 1. The idea is to degenerate the
complete intersection by factoring the equations. We present the proof carefully for
the quintic in P4 following the scheme of [22]. The argument for general Fano and
Calabi-Yau complete intersections in products of projective spaces is identical.

7.2. Simple theories. A complete intersection pair (V,W ) is a nonsingular com-
plete intersection

V ⊂ Pn1 × · · · ×Pnm ,

together with a nonsingular divisor W ⊂ V cut out by a hypersurface in Pn1 ×
· · · ×Pnm . In particular,

W ⊂ Pn1 × · · · ×Pnm

is also a complete intersection.
A class γ ∈ H∗(V,Q) is simple if γ lies in the image of the restriction map

H∗(Pn1 × · · · ×Pnm ,Q) → H∗(V,Q).

If V is a nonsingular complete intersection of dimension 3, the simple cohomology
of V equals the even cohomology by the Lefschetz results.

The simple Gromov-Witten and stable pairs theories of V consist of the integrals
of descendents of simple classes. Similarly, the simple Gromov-Witten and stable
pairs theories of the relative geometry V/W consists of integrals of descendents of
simple classes with no restrictions on the cohomology classes of W in the relative
constraints.
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7.3. Fano and Calabi-Yau hypersurfaces in P4.

7.3.1. Notation. The following notation for curves, surfaces, and 3-folds will be
convenient for our study:

(i) let Cd1,d2
⊂ P3 be a nonsingular complete intersection of type (d1, d2),

(ii) let Sd ⊂ P3 be a nonsingular surface of degree d,
(iii) let Td ⊂ P4 be a nonsingular 3-fold of degree d.

Finally, let P3[d1, d2] be the blowup of P3 along Cd1,d2
.

7.3.2. Degeneration for the quintic. Let ZP(T 	
5 ) denote the simple stable pairs de-

scendent theory of the Calabi-Yau quintic 3-fold.32 Factoring the quintic equation
yields a degeneration,

(76) T5 � T4 ∪S4
P3[4, 5],

where S4 ⊂ T4 is a linear section and S4 ⊂ P3[4, 5] is the strict transform of a
quartic containing C4,5 ⊂ P3. See Section 0.5.4 of [22] for a detailed construction
of the degeneration (76). The degeneration formula expresses ZP(T

	
5 ) in terms of

the relative theories of the special fibers. We write the relation schematically as

ZP(T
	
5 ) � ZP(T

	
4 /S4) and ZP(P

3[4, 5]/S4) .

Similarly, in Gromov-Witten theory, we have the determination

Z′
GW(T 	

5 ) � Z′
GW(T 	

4 /S4), and Z′
GW(P3[4, 5]/S4) .

By the compatibility of the descendent correspondence with degeneration, the de-
scendent correspondences for T 	

4 /S4 and P3[4, 5]/S4 imply Theorem 1 for T5.

7.3.3. Descendent correspondence for P3[4, 5]/S4. Let us start with P3[4, 5]/S4.
Degeneration to the normal cone of

S4 ⊂ P3[4, 5]

yields the determination33

(77) Z(P3[4, 5]) � Z(P3[4, 5]/S4) and Z(PS4
/S4) .

We know the descendent correspondence for all projective bundle geometriesPS4
/S4

by Proposition 10. By the invertibility of Proposition 6 of [31], the determination
(77) can be reversed,

Z(P3[4, 5]/S4) � Z(P3[4, 5]) and Z(PS4
/S4) .

Hence, the descendent correspondence for P3[4, 5] implies the descendent corre-
spondence for P3[4, 5]/S4.

An approach to the blowup P3[4, 5] is explained in Section 3.1 of [22]. Let
S4 ⊂ P3 contain C4,5. Degeneration to the normal cone of S4 ⊂ P3 yields

(78) P3 � P3 ∪S4
PS4

for the projective bundle geometry

(79) π : PS4
= P(OS4

⊕ OS4
(4)) → S4, PS4

/(S4)∞ .

32Here and below, the superscript 	 will indicate simple theories.
33When no superscript appears on the partition function, the statement is understood to hold

for both stable pairs and Gromov-Witten theory.
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The original curve C4,5 ⊂ P3 has a limit in (S4)0 ⊂ PS4
. After blowing up the

degeneration (78) along the moving curve C4,5, we obtain

P3[4, 5] � P3 ∪S4
X, X = BC4,5

(PS4
) .

Here X is the blowup of PS4
along C4,5 ⊂ (S4)0. In order to prove the descendent

correspondence for P3[4, 5], we need only prove the descendent correspondence for
P3/S4 and X/S4. Using the established descendent correspondences for the toric
variety P3 and projective bundles over S4 and the invertibility of Proposition 6 of
[31], we need only prove the descendent correspondence for X.

To study X, we repeat the blowup construction of the previous paragraph. Let
PS4

be the projective bundle (79), and let

PC4,5
⊂ PS4

be the divisor lying over C4,5 ⊂ S4 via π. Degeneration to the normal cone of
PC4,5

⊂ PS4
yields

(80) PS4
� PS4

∪PC4,5
PPC4,5

,

for the projective bundle geometry

(81) PPC4,5
= P(OC4,5

⊕ OC4,5
(5))×C4,5

P(OC4,5
⊕ OC4,5

(4)) → C4,5

relative to

PC4,5
= P(OC4,5

(5))×C4,5
P(OC4,5

⊕ OC4,5
(4)) .

The original curve C4,5 ⊂ (S4)0 ⊂ PS4
has a limit equal to

C4,5 = P(OC4,5
)×C4,5

P(OC4,5
) ⊂ P(OC4,5

⊕ OC4,5
(5))×C4,5

P(OC4,5
⊕ OC4,5

(4)) .

After blowing up the degeneration (78) along the moving curve C4,5, we obtain

X � PS4
∪PC4,5

Y ,

Y = BC4,5
(P(OC4,5

⊕ OC4,5
(5))×C4,5

P(OC4,5
⊕ OC4,5

(4))) .

In order to prove the descendent correspondence for Y , we need only prove the
descendent correspondence for PS4

/PC4,5
and Y/PC4,5

.
As we have seen in (81), PPC4,5

is a projective bundle over PC4,5
of the form

required by Theorem 7. Hence, the descendent correspondence holds for PS4
/PC4,5

by inverting

Z(PS4
) � Z(PS4

/PC4,5
) and Z(PPC4,5

/S4) .

The invertibility is possible again by Proposition 6 of [31]. Similarly, the descendent
correspondence for Y implies the descendent correspondence for Y/PC4,5

.

The last step in proving the descendent correspondence for P3[4, 5]/S4 is to prove
the descendent correspondence for Y . The 3-fold Y is a bundle over C4,5 with fiber
equal to Bp(P

1 ×P1), the blowup of P1 ×P1 at a point. By further degeneration
arguments,34 we can reduce to the case

Bp(P
1 ×P1)× C4,5

covered by Proposition 20. �

34We can degenerate

C4,5 � C4,5 ∪P1

and require all the twisting of Y to lie over P1.
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7.4. Proof of Theorem 1. We turn now to T 	
4 /S4. The normal cone degeneration

T4 � T4 ∪S4
PS4

and invertibility yields the determination

Z(T 	
4 /S4) � Z(T 	

4 ) and Z(PS4
/S4) .

Hence, the descendent correspondence for T 	
5 follows from the descendent corre-

spondence for T 	
4 .

By factoring the quartic equation defining T4 ⊂ P3, degree reduction can be
continued. The full reduction scheme for the quintic is

Z(T 	
5 ) � Z(T 	

4 /S4) and Z(P3[4, 5]/S4),

Z(T 	
4 /S4) � Z(T 	

4 ) and Z(PS4
/S4),

Z(T 	
4 ) � Z(T 	

3 /S3) and Z(P3[3, 4]/S3),

Z(T 	
3 /S3) � Z(T 	

3 ) and Z(PS3
/S3),

Z(T 	
3 ) � Z(T 	

2 /S2) and Z(P3[2, 3]/S2),

Z(T 	
2 /S2) � Z(T 	

2 ) and Z(PS2
/S2),

Z(T 	
2 ) � Z(T 	

1 /S1) and Z(P3[1, 2]/S1),

Z(T 	
1 /S1) � Z(T 	

1 ) and Z(PS1
/S1) .

The end points of the scheme are T ∗
1 (which is toric), projective bundles over toric

and K3 surfaces, and blown-up projective spaces. The descendent correspondence
has been established for all the end points—the blown-up projective spaces are
handled by the method of Section 7.3.3.

We have proven the GW/P descendent correspondence for the even theories of
all Fano hypersurfaces in P4. We can degenerate all Fano and Calabi-Yau 3-fold
complete intersections by an identical factoring argument. The outcome is a proof
of Theorem 1. �

7.5. Proof of Corollary 1. To prove Corollary 1, we start with the descendent
correspondence of Theorem 1. The initial term results of Theorem 2 of [33] then
imply the Corollary. �

7.6. The Enriques Calabi-Yau. As a further example, we prove the GW/P cor-
respondence for the Enriques Calabi-Yau 3-fold studied in [11, 23].

Let σ act freely on the product K3 × E by an Enriques involution σK3 on the
K3 and by −1 on the elliptic curve. By definition, the quotient

Q = (K3× E) /〈σ〉
is an Enriques Calabi-Yau 3-fold. Since K3 × E carries a holomorphic 3-form
invariant under σ, the canonical class is trivial

ωQ = OQ.

By projection on the right,

(82) Q → E/〈−1〉 = P1

is a K3 fibration with four double Enriques fibers.
Let invP1 be an involution of P1 with two fixed points. Let τ act freely on the

product K3×P1 by (σK3, invP1). Let

R =
(
K3×P1

)
/〈τ 〉
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denote the quotient. By projecting left,

(83) R → K3/〈σK3〉 = S

is a projective bundle over the Enriques surface S. Two sections of the bundle (83)
are obtained from the fixed points of invP1 . By projecting right,

R → P1/〈invP1〉
is a K3 fibration with two double Enriques fibers.

By degenerating the K3 fibration (82), we find a degeneration of the Enriques
Calabi-Yau Q,

Q � R ∪K3 R,

where the intersection K3 is a common fiber; see [23, Section 1.4]. Hence the
GW/P correspondence for Q is reduced to the GW/P descendent correspondence
for R/K3. The latter reduces to the GW/P descendent correspondence for R by
degeneration to the normal cone and Proposition 10.

The Enriques surface S degenerates35 to a union along an elliptic curve of a
P1-bundle over an elliptic curve and the rational elliptic surface; see [23, Section
1.3]. We use the corresponding degeneration of (83) to prove the GW/P descendent
correspondence for R. We obtain the following result.

Proposition 21. Let Q be the Enriques Calabi-Yau, and let β ∈ H2(Q,Z)/tor be
a curve class. Then,

ZP

(
Q; q

)
β

∈ Q(q) ,

and we have the correspondence

ZP

(
Q; q

)
β
= Z′

GW

(
Q;u

)
β

under the variable change −q = eiu.
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10.4171/119-1/17. MR2987666

[33] Rahul Pandharipande and Aaron Pixton, Gromov-Witten/pairs descendent correspondence
for toric 3-folds, Geom. Topol. 18 (2014), no. 5, 2747–2821, DOI 10.2140/gt.2014.18.2747.
MR3285224

[34] R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category,
Invent. Math. 178 (2009), no. 2, 407–447, DOI 10.1007/s00222-009-0203-9. MR2545686

[35] Rahul Pandharipande and Richard P. Thomas, The 3-fold vertex via stable pairs, Geom.
Topol. 13 (2009), no. 4, 1835–1876, DOI 10.2140/gt.2009.13.1835. MR2497313

[36] R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc.
23 (2010), no. 1, 267–297, DOI 10.1090/S0894-0347-09-00646-8. MR2552254

[37] R. Pandharipande and R. P. Thomas, The Katz-Klemm-Vafa conjecture for K3 surfaces,
available at arXiv:1407.3181.

[38] R. Pandharipande and R. P. Thomas, 13/2 ways of counting curves, Moduli spaces, London
Math. Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge, 2014, pp. 282–333.
MR3221298

[39] Iman Setayesh, Relative Hilbert scheme of points, ProQuest LLC, Ann Arbor, MI, 2011.
Thesis (Ph.D.)–Princeton University. MR2912104

[40] Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence,
J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157, DOI 10.1090/S0894-0347-10-00670-3.
MR2669709

Departement Mathematik, ETH Zürich, Zürich, Switzerland
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