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IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE

PSEUDOALGEBRAS II.

PRIMITIVE PSEUDOALGEBRAS OF TYPE K

BOJKO BAKALOV, ALESSANDRO D’ANDREA, AND VICTOR G. KAC

Abstract. One of the algebraic structures that has emerged recently in the
study of the operator product expansions of chiral fields in conformal field
theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generaliza-
tion of the notion of a Lie conformal algebra for which C[∂] is replaced by the
universal enveloping algebra H of a finite-dimensional Lie algebra. The finite
(i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our
previous work [BDK]. The present paper is the second in our series on repre-
sentation theory of simple Lie pseudoalgebras. In the first paper we showed
that any finite irreducible module over a simple Lie pseudoalgebra of type W

or S is either an irreducible tensor module or the kernel of the differential in
a member of the pseudo de Rham complex. In the present paper we establish
a similar result for Lie pseudoalgebras of type K, with the pseudo de Rham
complex replaced by a certain reduction called the contact pseudo de Rham
complex. This reduction in the context of contact geometry was discovered by
Rumin.
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1. Introduction

The present paper is the second in our series of papers on representation theory
of simple Lie pseudoalgebras, the first of which is [BDK1].

Recall that a Lie pseudoalgebra is a (left) module L over a cocommutative Hopf
algebra H , endowed with a pseudo-bracket

L⊗ L→ (H ⊗H)⊗H L , a⊗ b 7→ [a ∗ b] ,

which is an H-bilinear map of H-modules, satisfying some analogs of the skewsym-
metry and Jacobi identity of a Lie algebra bracket (see [BD], [BDK]).

In the case when H is the base field k, this notion coincides with that of a Lie
algebra. Any Lie algebra g gives rise to a Lie pseudoalgebra Cur g = H ⊗ g over H
with pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1 ⊗ 1)⊗H [a, b] ,

extended to the whole Cur g by H-bilinearity.
In the case whenH = k[∂], the algebra of polynomials in an indeterminate ∂ with

the comultiplication ∆(∂) = ∂⊗1+1⊗∂, the notion of a Lie pseudoalgebra coincides
with that of a Lie conformal algebra [K]. The main result of [DK] states that in
this case any finite (i.e., finitely generated over H = k[∂]) simple Lie pseudoalgebra
is isomorphic either to Cur g with simple finite-dimensional g, or to the Virasoro
pseudoalgebra Vir = k[∂]ℓ, where

[ℓ ∗ ℓ] = (1⊗ ∂ − ∂ ⊗ 1)⊗k[∂] ℓ ,

provided that k is algebraically closed of characteristic 0.
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In [BDK] we generalized this result to the case when H = U(d), where d is any
finite-dimensional Lie algebra. The generalization of the Virasoro pseudoalgebra is
W (d) = H ⊗ d with the pseudobracket

[(1⊗ a) ∗ (1⊗ b)] = (1⊗ 1)⊗H (1⊗ [a, b]) + (b⊗ 1)⊗H (1⊗ a)− (1⊗ a)⊗H (1⊗ b) .

The main result of [BDK] is that all nonzero subalgebras of the Lie pseudoalgebra
W (d) are simple and non-isomorphic, and, along with Cur g, where g is a simple
finite-dimensional Lie algebra, they provide a complete list of finitely generated
over H simple Lie pseudoalgebras, provided that k is algebraically closed of charac-
teristic 0. Furthermore, in [BDK] we gave a description of all subalgebras of W (d).
Namely, a complete list consists of the “primitive” series S(d, χ), H(d, χ, ω) and
K(d, θ), and their “current” generalizations.

In [BDK1] we constructed all finite (i.e., finitely generated over H = U(d))
irreducible modules over the Lie pseudoalgebras W (d) and S(d, χ). The simplest
nonzero module over W (d) is Ω0(d) = H , given by

(1.1) (f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1 , f, g ∈ H , a ∈ d .

A generalization of this construction, called a tensor W (d)-module, is as follows
[BDK1]. First, given a Lie algebra g, define the semidirect sum W (d)⋉Cur g as
a direct sum as H-modules, for which W (d) is a subalgebra and Cur g is an ideal,
with the following pseudobracket between them:

[(f ⊗ a) ∗ (g ⊗ b)] = −(f ⊗ ga)⊗H (1⊗ b) ,

where f, g ∈ H , a ∈ d, b ∈ g. Given a finite-dimensional g-module V0, we construct
a representation of W (d)⋉Cur g in V = H ⊗ V0 by (cf. (1.1)):

(1.2)
(
(f ⊗ a)⊕ (g ⊗ b)

)
∗ (h⊗ v) = −(f ⊗ ha)⊗H (1⊗ v) + (g ⊗ h)⊗H (1⊗ bv) ,

where f, g, h ∈ H , a ∈ d, b ∈ g, v ∈ V0.
Next, we define an embedding of W (d) in W (d)⋉Cur(d⊕ gl d) by

(1.3) 1⊗ ∂i 7→ (1⊗ ∂i)⊕
(
(1 ⊗ ∂i)⊕ (1⊗ ad ∂i +

∑

j

∂j ⊗ eji )
)
,

where {∂i} is a basis of d and {eji} a basis of gl d, defined by eji (∂k) = δjk∂i.
Composing this embedding with the action (1.2) ofW (d)⋉Cur g, where g = d⊕gl d,
we obtain a W (d)-module V = H ⊗ V0 for each (d⊕ gl d)-module V0. This module
is called a tensor W (d)-module and is denoted T (V0).

The main result of [BDK1] states that any finite irreducible W (d)-module is a
unique quotient of a tensor module T (V0) for some finite-dimensional irreducible
(d⊕gl d)-module V0, describes all cases when T (V0) are not irreducible, and provides
an explicit construction of their irreducible quotients, called the degenerate W (d)-
modules. Namely, we prove in [BDK1] that all degenerate W (d)-modules occur as
images of the differential d in the Π-twisted pseudo de Rham complex of W (d)-
modules

(1.4) 0 → Ω0
Π(d)

d
−→ Ω1

Π(d)
d
−→ · · ·

d
−→ Ωdimd

Π (d) .

Here Π is a finite-dimensional irreducible d-module and Ωn
Π(d) = T (Π ⊗

∧n
d∗) is

the space of pseudo n-forms.
In the present paper we construct all finite irreducible modules over the contact

Lie pseudoalgebra K(d, θ), where d is a Lie algebra of odd dimension 2N +1 and θ
is a contact linear function on d. To any θ ∈ d∗ one can associate a skewsymmetric
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bilinear form ω on d, defined by ω(a ∧ b) = −θ([a, b]). The linear function θ is
called contact if d is a direct sum of subspaces d̄ = ker θ and kerω. In this case
dimkerω = 1 and there exists a unique element ∂0 ∈ kerω such that θ(∂0) = −1.
Furthermore, the restriction of ω to d̄ is non-degenerate; hence we can choose dual
bases {∂i} and {∂i} of d̄, i.e., ω(∂i∧∂j) = δij for i, j = 1, . . . , 2N . Then the element

r =

2N∑

i=1

∂i ⊗ ∂i ∈ H ⊗H

is skewsymmetric and independent of the choice of dual bases.
The Lie pseudoalgebra K(d, θ) is defined as a free H-module He of rank 1 with

the following pseudobracket:

[e ∗ e] = (r + ∂0 ⊗ 1− 1⊗ ∂0)⊗H e .

There is a unique pseudoalgebra embedding of K(d, θ) in W (d), which is given by

e 7→ −r + 1⊗ ∂0 .

We will denote again by e its image in W (d). Let sp d (respectively sp d̄) be the
subalgebra of the Lie algebra gl d (resp. gl d̄), consisting of A ∈ gl d (resp. A ∈ gl d̄),
such that ω(Au ∧ v) = −ω(u∧Av) for all u, v ∈ d (resp. d̄). Let csp d = sp d⊕ kI ′,
where I ′(∂0) = 2∂0, I

′|d̄ = Id̄, and csp d̄ = sp d̄⊕kId̄. We have an obvious surjective
Lie algebra homomorphism of the Lie algebra sp d onto the (simple) Lie algebra sp d̄,
and of csp d onto csp d̄. We show that the image of e ∈ W (d) under the map (1.3)
lies in W (d)⋉Cur(d⊕ csp d). Hence each (d⊕ csp d̄)-module V0, being a (d⊕ csp d)-
module, gives rise to a K(d, θ)-module T (V0) = H ⊗ V0, with the action given by
(1.2). These are the tensor modules T (V0) over K(d, θ).

In the present paper we show that any finite irreducible K(d, θ)-module is a
unique quotient of a tensor module T (V0) for some finite-dimensional irreducible
(d ⊕ cspd̄)-module V0. We describe all cases when the K(d, θ)-modules T (V0) are
not irreducible and give an explicit construction of their irreducible quotients called
degenerateK(d, θ)-modules. It turns out that all degenerate K(d, θ)-modules again
appear as images of the differential in a certain complex of K(d, θ)-modules, which
we call the Π-twisted contact pseudo de Rham complex, obtained by a certain
reduction of the Π-twisted pseudo de Rham complex (1.4). The idea of this re-
duction is borrowed from Rumin’s reduction of the de Rham complex on a contact
manifold [Ru].

As a corollary of our results we obtain the classification of all degenerate mod-
ules over the contact Lie–Cartan algebra K2N+1, along with a description of the
corresponding singular vectors given (without proofs) in [Ko]. Moreover, we obtain
an explicit construction of these modules.

We will work over an algebraically closed field k of characteristic 0. Unless other-
wise specified, all vector spaces, linear maps and tensor products will be considered
over k. Throughout the paper, d will be a Lie algebra of odd dimension 2N+1 <∞.

2. Preliminaries

In this section we review some facts and notation that will be used throughout
the paper.
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2.1. Forms with constant coefficients. Consider the cohomology complex of
the Lie algebra d with trivial coefficients:

(2.1) 0 → Ω0 d0−→ Ω1 d0−→ · · ·
d0−→ Ω2N+1 , dim d = 2N + 1 ,

where Ωn =
∧n

d∗. Set Ω =
∧•

d∗ =
⊕2N+1

n=0 Ωn and Ωn = {0} if n < 0 or
n > 2N + 1. We will think of the elements of Ωn as skew-symmetric n-forms,
i.e., linear maps from

∧n
d to k. Then the differential d0 is given by the formula

(α ∈ Ωn, ai ∈ d):

(d0α)(a1 ∧ · · · ∧ an+1)

=
∑

i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)(2.2)

if n ≥ 1, and d0α = 0 if α ∈ Ω0 = k. Here, as usual, a hat over a term means that
it is omitted in the wedge product.

Recall also that the wedge product of two forms α ∈ Ωn and β ∈ Ωp is defined
by:

(α ∧ β)(a1 ∧ · · · ∧ an+p)

=
1

n!p!

∑

π∈Sn+p

(sgnπ)α(aπ(1) ∧ · · · ∧ aπ(n))β(aπ(n+1) ∧ · · · ∧ aπ(n+p)) ,
(2.3)

where Sn+p denotes the symmetric group on n+ p letters and sgnπ is the sign of
the permutation π.

The wedge product, defined by (2.3), makes Ω an associative graded-commutative
algebra: for α ∈ Ωn, β ∈ Ωp, γ ∈ Ω, we have

(2.4) α ∧ β = (−1)npβ ∧ α ∈ Ωn+p, (α ∧ β) ∧ γ = α ∧ (β ∧ γ) .

The differential d0 is an odd derivation of Ω :

(2.5) d0(α ∧ β) = d0α ∧ β + (−1)nα ∧ d0β .

For a ∈ d, define operators ιa : Ω
n → Ωn−1 by

(2.6) (ιaα)(a1 ∧ · · · ∧ an−1) = α(a ∧ a1 ∧ · · · ∧ an−1) , ai ∈ d .

Then each ιa is also an odd derivation of Ω. For A ∈ gl d, denote by A· its action
on Ω ; explicitly,

(2.7) (A · α)(a1 ∧ · · · ∧ an) =
n∑

i=1

(−1)iα(Aai ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) .

Each A· is an even derivation of Ω :

(2.8) A · (α ∧ β) = (A · α) ∧ β + α ∧ (A · β) ,

and we have the following Cartan formula for the coadjoint action of d :

(2.9) (ad a)· = d0ιa + ιad0 .

The latter implies that (ad a)· commutes with d0.
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2.2. Contact forms on d. From now on we will assume that the Lie algebra d

admits a contact form θ ∈ Ω1 = d∗, i.e., a 1-form such that

(2.10) θ ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸
N

6= 0 , where ω = d0θ .

Consider the kernel of ω, i.e., the space of all elements a ∈ d such that ιaω = 0.
Equation (2.10) implies that kerω is 1-dimensional and θ does not vanish on it.
We let s ∈ kerω be the unique element for which θ(s) = −1, and let d̄ ⊂ d be the
kernel of θ. Then it is easy to deduce the following lemma (cf. [BDK]).

Lemma 2.1. With the above notation, we have a direct sum of vector subspaces

d = d̄⊕ ks such that

(2.11) [a, b] = ω(a ∧ b)s mod d̄ , a, b ∈ d .

The restriction of ω to d̄ ∧ d̄ is nondegenerate, ιsω = 0, and [s, d̄] ⊂ d̄.

Note that not every Lie algebra of odd dimension admits a contact form. In
particular, it is clear from the above lemma that d cannot be abelian. Also, the Lie
algebra d cannot be simple other than sl2 (see [BDK, Example 8.6]). Here are two
examples of pairs (d, θ) taken from [BDK, Section 8.7].

Example 2.1. Let d = sl2 with the standard basis {e, f, h}, and let θ(h) = 1,
θ(e) = θ(f) = 0. Then s = −h, d̄ = span{e, f}, and ω(e ∧ f) = −1.

Example 2.2. Let d be the Heisenberg Lie algebra with a basis {ai, bi, c} and the
only nonzero brackets [ai, bi] = c for 1 ≤ i ≤ N , and let θ(c) = 1, θ(ai) = θ(bi) = 0.
Then s = −c, d̄ = span{ai, bi}, and ω(ai ∧ bi) = −1.

Let ω̄ be the restriction of ω to d̄ ∧ d̄. Since ω̄ is nondegenerate, it defines a
linear isomorphism φ : d̄ → d̄∗, given by φ(a) = ιaω̄. The inverse map φ−1 : d̄∗ → d̄

gives rise to a skew-symmetric element r ∈ d̄ ⊗ d̄ such that φ−1(α) = (α ⊗ id)(r)
for α ∈ d̄∗. Explicitly, let us choose a basis {∂0, ∂1, . . . , ∂2N} of d such that ∂0 = s
and {∂1, . . . , ∂2N} is a basis of d̄, and let {x0, . . . , x2N} be the dual basis of d∗ so

that 〈xj , ∂k〉 = δjk.
We set ωij = ω(∂i ∧ ∂j), and we denote by (rij)i,j=1,...,2N the inverse matrix to

(ωij)i,j=1,...,2N , so that

(2.12)
2N∑

j=1

rijωjk = δik , i, k = 1, . . . , 2N .

Then

(2.13) r =
2N∑

i,j=1

rij∂i ⊗ ∂j =
2N∑

i=1

∂i ⊗ ∂i = −
2N∑

i=1

∂i ⊗ ∂i ,

where

(2.14) ∂i =

2N∑

j=1

rij∂j , ω(∂i ∧ ∂k) = δik for i, k = 1, . . . , 2N .

We also have

(2.15) ω(∂i ∧ ∂j) = 〈xi, ∂j〉 = −rij = rji .
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Recall that a basis {∂1, . . . , ∂2N} of d̄ is called symplectic iff it satisfies

(2.16) ω(∂i ∧ ∂i+N ) = 1 = −ω(∂i+N ∧ ∂i) , ω(∂i ∧ ∂j) = 0 for |i− j| 6= N .

In this case we have

(2.17) ∂i = −∂i+N , ∂i+N = ∂i , i = 1, . . . , N ,

which implies that

(2.18) r =

N∑

i=1

(∂i+N ⊗ ∂i − ∂i ⊗ ∂i+N ) .

Note that, by (2.3),

(2.19) θ = −x0 , ω =
1

2

2N∑

i,j=1

ωijx
i ∧ xj ,

and when the basis {∂1, . . . , ∂2N} of d̄ is symplectic, we have

(2.20) ω =

N∑

i=1

xi ∧ xi+N .

2.3. The Lie algebras sp d̄ and csp d̄. In this subsection we continue to use the
notation from the previous one. In particular, recall that {∂0, . . . , ∂2N} is a basis
of d and {x0, . . . , x2N} is the dual basis of d∗, while restriction to nonzero indices
gives dual bases of d̄ and d̄∗.

We will identify End d̄ with d̄ ⊗ d̄∗ as a vector space. In more detail, the el-
ementary matrix eji ∈ End d̄ is identified with the element ∂i ⊗ xj ∈ d̄ ⊗ d̄∗,

where eji (∂k) = δjk∂i. Notice that (∂ ⊗ x)(∂′) = 〈x, ∂′〉∂, so that the composi-
tion (∂ ⊗ x) ◦ (∂′ ⊗ x′) equals 〈x, ∂′〉∂ ⊗ x′. We will adopt a raising index notation
for elements of End d̄ as well, so that

(2.21) eij = ∂i ⊗ xj =

2N∑

k=1

rikejk , i 6= 0 .

Definition 2.1. We denote by sp d̄ = sp(d̄, ω̄) the Lie algebra of all A ∈ gl d̄ such
that A · ω̄ = 0.

Since the 2-form ω̄ is nondegenerate, the Lie algebra sp d̄ is isomorphic to the
symplectic Lie algebra sp2N , and in particular it is simple. It will be sometimes
convenient to embed sp d̄ in gl d by identifying gl d̄ with a subalgebra of gl d. We
will also consider the Lie subalgebra csp d̄ = sp d̄⊕ kI ′ of gl d, where

(2.22) I ′ = 2e00 +

2N∑

i=1

eii ∈ gl d .

Note that csp d̄ is a trivial extension of sp d̄ by the central ideal kI ′.

Lemma 2.2. We have

(2.23) ejk · θ = δk0 x
j , ej0 · ω = 0 , eij · ω = xi ∧ xj , i 6= 0 .

In particular, A · θ = A · ω = 0 for all A ∈ sp d̄ and

(2.24) I ′ · θ = −2θ , I ′ · ω = −2ω , I ′ · xi = −xi , i 6= 0 .
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Proof. One can deduce from (2.7) that ejk ·x
i = −δikx

j . Then the first two equations
in (2.23) are immediate from (2.19) and (2.8). To check the third one, we observe
that

ejk · ω =

2N∑

i=1

ωkix
i ∧ xj , k 6= 0

and then apply (2.21). Finally, (2.24) can be deduced from (2.22) and the above
formulas. �

Corollary 2.1. The elements

(2.25) f ij = −
1

2
(eij + eji) = f ji , 1 ≤ i ≤ j ≤ 2N

form a basis of sp d̄.

Recalling that 〈xi, ∂j〉 = −rij = rji, we find

(2.26) eij ◦ ekl = rkjeil,

so that

(2.27) [eij , ekl] = rkjeil − rilekj

and

(2.28) [f ij , fkl] =
1

2

(
rikf jl + rilf jk + rjkf il + rjlf ik

)
.

Let us also introduce the notation

(2.29) f j
i =

2N∑

a=1

ωiaf
aj, fij =

2N∑

a,b=1

ωiaωjbf
ab .

Lemma 2.3. (i) For every i = 1, . . . , 2N the elements

(2.30) hi = −2f i
i , ei = fii, fi = −f ii

constitute a standard sl2-triple.

(ii) The element

(2.31) −
2N∑

i,j=1

fijf
ij ∈ U(sp d̄)

equals the Casimir element corresponding to the invariant bilinear form normalized

by the condition that the square length of long roots is 2.

Proof. (i) We have:

[f i
i , f

ii] =

2N∑

a=1

[ωiaf
ai, f ii] =

2N∑

a=1

ωiar
aif ii = f ii,
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and similarly

[f i
i , fii] =

2N∑

a,b,c=1

[ωiaf
ai, ωibωicf

bc]

=
1

2

2N∑

a,b,c=1

ωiaωibωic(r
abf ic + racf ib + ribfac + ricfab)

=
1

2

2N∑

a,b,c=1

(δbiωibωicf
ic + δciωicωibf

ib − ωibr
biωiaωicf

ac − ωicr
ciωiaωibf

ab) = −fii .

Finally,

[f ii, fii] = [f ii,

2N∑

a,b=1

ωiaωibf
ab]

=

2N∑

a,b=1

ωiaωib(r
iaf ib + ribf ia)

= −
2N∑

a,b=1

ωiar
aiωibf

ib + ωibr
biωiaf

ia = −2f i
i ,

proving part (i).
(ii) Using (2.25) and (2.26), we compute:

fijf
kl =

2N∑

a,b=1

ωiaωjbf
abfkl

=
1

4

2N∑

a,b=1

ωiaωjb(r
kbeal + rlbeak + rkaebl + rlaebk) .

Since by (2.21), tr eij = rij = −rji, we obtain

tr fijf
kl =

1

2

2N∑

a,b=1

ωiaωjb(r
kbral + rlbrak) = −

1

2
(δliδ

k
j + δki δ

l
j) .

The trace form is bilinear, symmetric, invariant under the adjoint action, and gives
square length 2 for long roots of sp d̄ (see, e.g., [FH, Lecture 16]). This proves
part (ii). �

The above lemma turns out to be particularly useful when the basis {∂i} of d̄ is
symplectic (see (2.16)). In this case one has

(2.32) hi = eii − eN+i
N+i , i = 1, . . . , N ;

hence {hi}i=1,...,N is a basis for the diagonal Cartan subalgebra of sp d̄ (cf. [FH,
Lecture 16]).

Following the notation of [OV], we denote by R(λ) the irreducible sp d̄-module
with highest weight λ. Recall that the highest weight of the vector representation
d̄ is the fundamental weight π1, and that

(2.33)
∧n

d̄ ≃ R(πn)⊕R(πn−2)⊕R(πn−4)⊕ · · · , 0 ≤ n ≤ N ,
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where πn are the fundamental weights and we set R(π0) = k, R(πn) = {0} if n < 0
or n > N . The following facts are standard (see, e.g., [OV], Reference Chapter,
Table 5).

Lemma 2.4. With the above notation, we have:

R(πn)⊗R(π1) ≃ R(πn + π1)⊕R(πn−1)⊕R(πn+1) ,

dimR(πn + π1) > dimR(πn) , 1 ≤ n ≤ N .

Furthermore, the Casimir element (2.31) acts on R(πn) as scalar multiplication by

n(2N + 2− n)/2.

2.4. Bases and filtrations of U(d) and U(d)∗. Let d be a Lie algebra of dimen-
sion 2N + 1 with a basis {∂0, ∂1, . . . , ∂2N}, as in Section 2.2. Then its universal
enveloping algebra H = U(d) has a basis

(2.34) ∂(I) = ∂i00 · · · ∂i2N2N /i0! · · · i2N ! , I = (i0, . . . , i2N ) ∈ Z
2N+1
+ .

Recall that the coproduct ∆: H → H ⊗ H is a homomorphism of associative
algebras defined by ∆(∂) = ∂ ⊗ 1 + 1⊗ ∂ for ∂ ∈ d. Then it is easy to see that

(2.35) ∆(∂(I)) =
∑

J+K=I

∂(J) ⊗ ∂(K).

The canonical increasing filtration of U(d) is given by

(2.36) Fp U(d) = span
k
{∂(I) | |I| ≤ p} , where |I| = i0 + · · ·+ i2N ,

and it does not depend on the choice of basis of d. This filtration is compatible
with the structure of a Hopf algebra (see, e.g., [BDK, Section 2.2] for more details).
We have: F−1H = {0}, F0H = k, F1H = k⊕ d.

It is also convenient to define a different filtration of U(d), called the contact

filtration:

(2.37) F′p U(d) = spank{∂
(I) | |I|′ ≤ p} , where |I|′ = 2i0 + i1 + · · ·+ iN−1 .

This filtration is also compatible with the Hopf algebra structure on U(d), and we
have F′0H = k, F′1H = k ⊕ d̄, F′2H ⊃ k ⊕ d = F1H . It is easy to see that the
two filtrations of H are equivalent.

The dual X = H∗ := Homk(H,k) is a commutative associative algebra. Define
elements xI ∈ X by 〈xI , ∂(J)〉 = δJI , where, as usual, δ

J
I = 1 if I = J and δJI = 0 if

I 6= J . Then, by (2.35), we have xJxK = xJ+K and

(2.38) xI = (x0)i0 · · · (x2N )i2N , I = (i0, . . . , i2N ) ∈ Z
2N+1
+ ,

where

(2.39) xi = xεi , εi = (0, . . . , 0, 1
i
, 0, . . . , 0) , i = 0, . . . , 2N .

Therefore, X can be identified with the algebra O2N+1 = k[[t0, t1, . . . , t2N ]] of
formal power series in 2N + 1 indeterminates.

There are left and right actions of d on X by derivations given by

〈∂x, f〉 = −〈x, ∂f〉 ,(2.40)

〈x∂, f〉 = −〈x, f∂〉 , ∂ ∈ d, x ∈ X, f ∈ H ,(2.41)

where ∂f and f∂ are products in H . These two actions coincide only when the Lie
algebra d is abelian. The difference ∂x− x∂ gives the coadjoint action of ∂ ∈ d on
x ∈ X .
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Let FpX = (FpH)⊥ be the set of elements from X = H∗ that vanish on FpH .
Then {FpX} is a decreasing filtration of X called the canonical filtration. It has
the properties:

F−1X = X , X/F0X ≃ k , F0X/F1X ≃ d∗ ,(2.42)

(FnX)(FpX) ⊂ Fn+p+1X , d(FpX) ⊂ Fp−1X , (FpX)d ⊂ Fp−1X .(2.43)

Note that F0X is the unique maximal ideal ofX , and FpX = (F0X)p+1. We define
a topology of X by considering {FpX} as a fundamental system of neighborhoods
of 0. We will always consider X with this topology, while H and d with the discrete
topology. Then X is a linearly compact algebra (see [BDK, Chapter 6]), and the
left and right actions of d on it are continuous (see (2.43)).

Similar statements hold for the filtration F′
pX = (F′pH)⊥, namely:

(F′
nX)(F′

pX) ⊂ F′
n+p+1X , d̄(F′

pX) ⊂ F′
p−1X , (F′

pX)d̄ ⊂ F′
p−1X ,(2.44)

∂0(F
′
pX) ⊂ F′

p−2X , (F′
pX)∂0 ⊂ F′

p−2X .(2.45)

We will call {F′
pX} the contact filtration. It is equivalent to the canonical filtration

{FpX}.
We can consider xi as elements of d∗; then {xi} is a basis of d∗ dual to the basis

{∂i} of d, i.e., 〈xi, ∂j〉 = δij . Let ckij be the structure constants of d in the basis

{∂i}, so that [∂i, ∂j ] =
∑

ckij∂k. Then we have the following formulas for the left
and right actions of d on X (see, e.g., [BDK1, Lemma 2.2]):

∂ix
j = −δji −

∑

k<i

cjikx
k mod F1X ,(2.46)

xj∂i = −δji +
∑

k>i

cjikx
k mod F1X .(2.47)

3. Lie Pseudoalgebras and Their Representations

In this section we review the definitions and results about Lie pseudoalgebras
from [BDK,BDK1], which will be needed in the paper.

3.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a
coproduct ∆, a counit ε, and an antipode S. We will use the following notation
(cf. [Sw]):

∆(h) = h(1) ⊗ h(2) = h(2) ⊗ h(1) ,(3.1)

(∆⊗ id)∆(h) = (id⊗∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3) ,(3.2)

(S ⊗ id)∆(h) = h(−1) ⊗ h(2) , h ∈ H .(3.3)

Then the axioms of antipode and counit can be written as follows:

h(−1)h(2) = h(1)h(−2) = ε(h),(3.4)

ε(h(1))h(2) = h(1)ε(h(2)) = h,(3.5)

while the fact that ∆ is a homomorphism of algebras translates as:

(3.6) (fg)(1) ⊗ (fg)(2) = f(1)g(1) ⊗ f(2)g(2), f, g ∈ H.

Eqs. (3.4), (3.5) imply the following useful relations:

(3.7) h(−1)h(2) ⊗ h(3) = 1⊗ h = h(1)h(−2) ⊗ h(3).
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The following lemma, which follows from [BDK, Lemma 2.3], plays an important
role in the paper.

Lemma 3.1. For any H-module V , the linear maps

H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (h⊗ 1)⊗H v

and

H ⊗ V → (H ⊗H)⊗H V , h⊗ v 7→ (1⊗ h)⊗H v

are isomorphisms of vector spaces.

The dual X = H∗ := Homk(H,k) becomes a commutative associative algebra
under the product defined by

(3.8) 〈xy, h〉 = 〈x, h(1)〉〈yh(2)〉 , h ∈ H, x, y ∈ X .

X admits left and right actions of H , given by (cf. (2.40), (2.41)):

〈hx, f〉 = 〈x, S(h)f〉 ,(3.9)

〈xh, f〉 = 〈x, fS(h)〉 , h, f ∈ H, x, y ∈ X .(3.10)

They have the following properties:

h(xy) = (h(1)x)(h(2)y) ,(3.11)

(xy)h = (xh(1))(yh(2)) ,(3.12)

h(xg) = (hx)g, h, g ∈ H, x, y ∈ X.(3.13)

3.2. Lie pseudoalgebras and their representations. Let us recall the defini-
tion of a Lie pseudoalgebra from [BDK, Chapter 3]. A pseudobracket on a left
H-module L is an H-bilinear map

(3.14) L⊗ L→ (H ⊗H)⊗H L , a⊗ b 7→ [a ∗ b] ,

where we use the comultiplication ∆: H → H ⊗H to define (H ⊗H) ⊗H L. We
extend the pseudobracket (3.14) to maps (H⊗2 ⊗H L) ⊗ L → H⊗3 ⊗H L and
L⊗ (H⊗2 ⊗H L) → H⊗3 ⊗H L by letting:

[(h⊗H a) ∗ b] =
∑

(h⊗ 1) (∆⊗ id)(gi)⊗H ci ,(3.15)

[a ∗ (h⊗H b)] =
∑

(1⊗ h) (id⊗∆)(gi)⊗H ci ,(3.16)

where h ∈ H⊗2, a, b ∈ L, and

[a ∗ b] =
∑

gi ⊗H ci with gi ∈ H⊗2, ci ∈ L.(3.17)

A Lie pseudoalgebra is a left H-module equipped with a pseudobracket satisfying
the following skewsymmetry and Jacobi identity axioms:

[b ∗ a] = −(σ ⊗H id) [a ∗ b] ,(3.18)

[[a ∗ b] ∗ c] = [a ∗ [b ∗ c]]− ((σ ⊗ id)⊗H id) [b ∗ [a ∗ c]] .(3.19)

Here, σ : H ⊗ H → H ⊗ H is the permutation of factors, and the compositions
[[a ∗ b] ∗ c], [a ∗ [b ∗ c]] are defined using (3.15), (3.16).

The definition of a module over a Lie pseudoalgebras is an obvious modification
of the above. A module over a Lie pseudoalgebra L is a left H-module V together
with an H-bilinear map

(3.20) L⊗ V → (H ⊗H)⊗H V , a⊗ v 7→ a ∗ v
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that satisfies (a, b ∈ L, v ∈ V )

(3.21) [a ∗ b] ∗ v = a ∗ (b ∗ v)− ((σ ⊗ id)⊗H id) (b ∗ (a ∗ v)) .

An L-module V will be called finite if it is finitely generated as an H-module.

Remark 3.1. If V is a torsion module over H , then the action of L on V is trivial,
i.e., L ∗ V = {0} (see [BDK, Corollary 10.1]). Notice that this holds whenever V is
finite dimensional and H = U(d) with dim d > 0.

Some of the most important Lie pseudoalgebras are described in the following
examples (see [BDK]).

Example 3.1. For a Lie algebra g, the current Lie pseudoalgebra Cur g = H⊗g has
an action of H by left multiplication on the first tensor factor and a pseudobracket

(3.22) [(f ⊗ a) ∗ (g ⊗ b)] = (f ⊗ g)⊗H (1 ⊗ [a, b]) .

Example 3.2. LetH = U(d) be the universal enveloping algebra of a Lie algebra d.
ThenW (d) = H⊗d has the structure of a Lie pseudoalgebra with the pseudobracket

[(f ⊗ a) ∗ (g ⊗ b)] = (f ⊗ g)⊗H (1⊗ [a, b])

− (f ⊗ ga)⊗H (1⊗ b) + (fb⊗ g)⊗H (1⊗ a) .
(3.23)

The formula

(3.24) (f ⊗ a) ∗ g = −(f ⊗ ga)⊗H 1

defines the structure of a W (d)-module on H .

Example 3.3. The semidirect sum W (d)⋉Cur g containsW (d) and Cur g as sub-
algebras and has the pseudobracket

(3.25) [(f ⊗ a) ∗ (g ⊗ b)] = −(f ⊗ ga)⊗H (1 ⊗ b)

for f, g ∈ H = U(d), a ∈ d, b ∈ g (cf. (3.24)).

Let U and V be two L-modules. A map β : U → V is a homomorphism of
L-modules if β is H-linear and satisfies

(3.26)
(
(id⊗ id)⊗H β

)
(a ∗ u) = a ∗ β(u) , a ∈ L , u ∈ U .

A subspace W ⊂ V is an L-submodule if it is an H-submodule and L ∗W ⊂
(H ⊗ H) ⊗H W , where L ∗W is the linear span of all elements a ∗ w with a ∈ L
and w ∈ W . A submodule W ⊂ V is called proper if W 6= V . An L-module V is
irreducible (or simple) if it does not contain any nonzero proper L-submodules and
L ∗ V 6= {0}.

Remark 3.2. (i) Let V be a module over a Lie pseudoalgebra L and let W be an
H-submodule of V . By Lemma 3.1, for each a ∈ L, v ∈ V , we can write

(3.27) a ∗ v =
∑

I∈Z
2N+1

+

(∂(I) ⊗ 1)⊗H v′I , v′I ∈ V ,

where the elements v′I are uniquely determined by a and v. Then W ⊂ V is an
L-submodule iff it has the property that all v′I ∈ W whenever v ∈W . This follows
again from Lemma 3.1.

(ii) Similarly, for each a ∈ L, v ∈ V , we can write

(3.28) a ∗ v =
∑

I∈Z
2N+1

+

(1⊗ ∂(I))⊗H v′′I , v′′I ∈ V ,
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and W is an L-submodule iff v′′I ∈ W whenever v ∈ W .

3.3. Twistings of representations. Let L be a Lie pseudoalgebra overH = U(d),
and let Π be any finite-dimensional d-module. In [BDK1, Section 4.2], we introduced
a covariant functor TΠ from the category of finite L-modules to itself. In the present
paper we will use it only in the special case when all the modules are free as H-
modules. For a finite L-module V = H ⊗ V0, which is free over H , we choose a
k-basis {vi} of V0, and write the action of L on V in the form

(3.29) a ∗ (1⊗ vi) =
∑

j

(fij ⊗ gij)⊗H (1⊗ vj)

where a ∈ L, fij , gij ∈ H .

Definition 3.1. The twisting of V by Π is the L-module TΠ(V ) = H ⊗ Π ⊗ V0,
where H acts by a left multiplication on the first factor and

(3.30) a ∗ (1 ⊗ u⊗ vi) =
∑

j

(
fij ⊗ gij(1)

)
⊗H

(
1⊗ gij(−2)u⊗ vj

)

for a ∈ L, u ∈ Π.

The facts that TΠ(V ) is an L-module and that the action of L on it is independent
of the choice of basis of V0 follow from [BDK1, Proposition 4.2]. Let us now recall
how TΠ is defined on homomorphisms of L-modules. Consider two finite L-modules,
V = H ⊗ V0 and V ′ = H ⊗ V ′

0 . Choose k-bases {vi} and {v′i} of V0 and V ′
0 ,

respectively. For a homomorphism of L-modules β : V → V ′, write

(3.31) β(1 ⊗ vi) =
∑

j

hij ⊗ v′j , hij ∈ H .

Then TΠ(β) : TΠ(V ) → TΠ(V
′) is given by

(3.32) TΠ(β)(1 ⊗ u⊗ vi) =
∑

j

hij (1) ⊗ hij (−2)u⊗ v′j .

Thanks to [BDK1, Proposition 4.3], the map TΠ(β) is a homomorphism of L-
modules, independent of the choice of bases.

Note that TΠ can be defined on the category of (free) H-modules. The next
result concerns only the H-module structure.

Proposition 3.1. (i) The functor TΠ is exact on free H-modules, i.e., if V
β
−→

V ′ β′

−→ V ′′ is a short exact sequence of finite free H-modules, then the sequence

TΠ(V )
TΠ(β)
−−−−→ TΠ(V

′)
TΠ(β′)
−−−−→ TΠ(V

′′) is exact.

(ii) Let β : V → V ′ be a homomorphism between two free H-modules. If the

image of β has a finite codimension over k, then the image of TΠ(β) has a finite

codimension in TΠ(V
′).

Proof. Consider the linear map

F : H ⊗Π → H ⊗Π , h⊗ u 7→ h(1) ⊗ h(−2)u ,

which was introduced in the proof of [BDK1, Lemma 5.2]. From (3.7) it is easy to
see that F is a linear isomorphism and

F−1(h⊗ u) = h(1) ⊗ h(2)u , h ∈ H, u ∈ Π .
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Since F is a linear isomorphism, both statements of the proposition are true if and
only if they are true for (F−1⊗ id)TΠ(β) instead of TΠ(β). In this case, they follow
easily from the identity

(F−1 ⊗ id)TΠ(β)(1 ⊗ u⊗ vi) =
∑

j

hij ⊗ u⊗ v′j = σ12
(
u⊗ β(1⊗ vi)

)
,

where σ12 is the transposition of the first and second factors. �

3.4. Annihilation algebras of Lie pseudoalgebras. For a Lie pseudoalgebra
L, we set A(L) = X ⊗H L, where as before X = H∗, and we define a Lie bracket
on L = A(L) by the formula (cf. [BDK, Eq. (7.2)]):

(3.33) [x⊗H a, y ⊗H b] =
∑

(xfi)(ygi)⊗H ci , if [a ∗ b] =
∑

(fi ⊗ gi)⊗H ci .

Then L is a Lie algebra, called the annihilation algebra of L (see [BDK, Section 7.1]).
We define a left action of H on L in the obvious way:

(3.34) h(x⊗H a) = hx⊗H a.

In the case H = U(d), the Lie algebra d acts on L by derivations. The semidirect

sum L̃ = d⋉L is called the extended annihilation algebra.
Similarly, if V is a module over a Lie pseudoalgebra L, we let A(V ) = X ⊗H V ,

and we define an action of L = A(L) on A(V ) by:

(3.35) (x⊗H a)(y ⊗H v) =
∑

(xfi)(ygi)⊗H vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi .

We also define an H-action on A(V ) similarly to (3.34). Then A(V ) is an L̃-
module [BDK, Proposition 7.1].

When L is a finiteH-module, we can define a filtration on L as follows (see [BDK,
Section 7.4] for more details). We fix a finite-dimensional vector subspace L0 of L
such that L = HL0, and set

(3.36) Fp L = spank{x⊗H a ∈ L | x ∈ FpX , a ∈ L0} , p ≥ −1 .

The subspaces Fp L constitute a decreasing filtration of L, satisfying

(3.37) [Fn L,Fp L] ⊂ Fn+p−ℓ L , d(Fp L) ⊂ Fp−1 L ,

where ℓ is an integer depending only on the choice of L0. Notice that the filtration
just defined depends on the choice of L0, but the topology that it induces does
not [BDK, Lemma 7.2]. We set Lp = Fp+ℓ L, so that [Ln,Lp] ⊂ Ln+p. In particular,
L0 is a subalgebra of L.

We also define a filtration of L̃ by letting F−1 L̃ = L̃, Fp L̃ = Fp L for p ≥ 0, and

we set L̃p = Fp+ℓ L̃. An L̃-module V is called conformal if every v ∈ V is killed

by some Lp; in other words, if V is a continuous L̃-module when endowed with the
discrete topology.

The next two results from [BDK] play a crucial role in our study of representa-
tions (see [BDK], Propositions 9.1 and 14.2, and Lemma 14.4).

Proposition 3.2. Any module V over the Lie pseudoalgebra L has a natural struc-

ture of a conformal L̃-module, given by the action of d on V and by

(3.38) (x⊗H a) · v =
∑

〈xfi, gi(1)〉 gi(2)vi , if a ∗ v =
∑

(fi ⊗ gi)⊗H vi

for a ∈ L, x ∈ X, v ∈ V .
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Conversely, any conformal L̃-module V has a natural structure of an L-module,

given by

(3.39) a ∗ v =
∑

I∈Z
2N+1

+

(
S(∂(I))⊗ 1

)
⊗H

(
(xI ⊗H a) · v

)
.

Moreover, V is irreducible as an L-module iff it is irreducible as an L̃-module.

Lemma 3.2. Let L be a finite Lie pseudoalgebra and V be a finite L-module. For

p ≥ −1− ℓ, let

kerp V = {v ∈ V | Lp v = 0},

so that, for example, ker−1−ℓ V = kerV and V =
⋃
kerp V . Then all vector spaces

kerp V/ kerV are finite dimensional. In particular, if kerV = {0}, then every

vector v ∈ V is contained in a finite-dimensional subspace invariant under L0.

4. Primitive Lie Pseudoalgebras of Type K

Here we introduce the main objects of our study: the Lie pseudoalgebra K(d, θ)
and its annihilation algebra K (see [BDK, Chapter 8]). We will review the (unique)
embedding of K(d, θ) into W (d) and the induced embedding of annihilation alge-
bras. Throughout this section, d will be a Lie algebra of odd dimension 2N + 1,
and θ ∈ d∗ will be a contact form, as in Section 2.2. As before, let H = U(d).

4.1. Definition of K(d, θ). Recall the elements r ∈ d⊗ d and s ∈ d introduced in
Section 2.2 and notice that r is skew-symmetric. It was shown in [BDK, Lemma
8.7] that r and s satisfy the following equations:

[r,∆(s)] = 0 ,(4.1)

([r12, r13] + r12s3) + cyclic = 0 ,(4.2)

where we use the standard notation r12 = r ⊗ 1, s3 = 1 ⊗ 1⊗ s, etc., and “cyclic”
denotes terms obtained by applying the two nontrivial cyclic permutations.

Definition 4.1. The Lie pseudoalgebra K(d, θ) is defined as a free H-module of
rank one, He, with the following pseudobracket

(4.3) [e ∗ e] = (r + s⊗ 1− 1⊗ s)⊗H e .

The fact that K(d, θ) is a Lie pseudoalgebra follows from (4.1), (4.2); see [BDK,
Section 4.3]. By [BDK, Lemma 8.3], there is an injective homomorphism of Lie
pseudoalgebras

(4.4) ι : K(d, θ) →W (d) , e 7→ −r + 1⊗ s ,

where W (d) = H ⊗ d is from Example 3.2. Moreover, this is the unique nontrivial
homomorphism from K(d, θ) to W (d) [BDK, Theorem 13.7]. From now on, we will
often identify K(d, θ) with its image inW (d) and will write simply e instead of ι(e).
In the notation of Section 2.2, we have the formula

(4.5) e = 1⊗ ∂0 −
2N∑

i=1

∂i ⊗ ∂i .
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4.2. Annihilation algebra of W (d). Let W = A(W (d)) be the annihilation al-
gebra of the Lie pseudoalgebra W (d) (see Section 3.4). Since W (d) = H ⊗ d, we
have W = X ⊗H (H ⊗ d) ≃ X ⊗ d, so we can identify W with X ⊗ d. Then the Lie
bracket in W becomes (x, y ∈ X , a, b ∈ d):

(4.6) [x⊗ a, y ⊗ b] = xy ⊗ [a, b]− x(ya)⊗ b+ (xb)y ⊗ a ,

while the left action of H on W is given by: h(x ⊗ a) = hx ⊗ a. The Lie algebra

d acts on W by derivations. We denote by W̃ the extended annihilation algebra
d⋉W , where

(4.7) [∂, x⊗ a] = ∂x⊗ a , ∂, a ∈ d, x ∈ X .

We choose L0 = k ⊗ d as a subspace of W (d) such that W (d) = HL0, and we
obtain the following filtration of W :

(4.8) Wp = Fp W = FpX ⊗H L0 ≡ FpX ⊗ d , p ≥ −1 .

This is a decreasing filtration of W , satisfying W−1 = W and [Wi,Wj] ⊂ Wi+j .
Note that W/W0 ≃ k⊗ d ≃ d and W0/W1 ≃ d∗ ⊗ d.

Lemma 4.1 ( [BDK1]). For x ∈ F0X, a ∈ d, the map

(4.9) (x ⊗ a) mod W1 7→ −a⊗ (x mod F1X)

is a Lie algebra isomorphism from W0/W1 to d⊗d∗ ≃ gl d. Under this isomorphism,

the adjoint action of W0/W1 on W/W0 coincides with the standard action of gl d

on d.

The action (3.24) of W (d) on H induces a corresponding action of the annihila-
tion algebra W on A(H) ≡ X :

(4.10) (x⊗ a)y = −x(ya), x, y ∈ X, a ∈ d.

Since d acts on X by continuous derivations, the Lie algebra W acts on X by
continuous derivations. The isomorphism X ≃ O2N+1 from Section 2.4 induces
a Lie algebra homomorphism W → W2N+1 = DerO2N+1. In fact, this is an
isomorphism compatible with the filtrations [BDK1, Proposition 3.1]. Recall that
the canonical filtration of the Lie–Cartan algebra W2N+1 is given by

(4.11) FpW2N+1 =
{ 2N∑

i=0

fi
∂

∂ti

∣∣∣ fi ∈ Fp O2N+1

}
,

where Fp O2N+1 is the (p+1)-st power of the maximal ideal (t0, . . . , t2N) of O2N+1.
The Euler vector field

(4.12) E :=

2N∑

i=0

ti
∂

∂ti
∈ F0W2N+1

gives rise to a grading of O2N+1 and a grading W2N+1;j (j ≥ −1) of W2N+1 such
that

(4.13) FpW2N+1 =
∏

j≥p

W2N+1;j , FpW2N+1/Fp+1W2N+1 ≃W2N+1;p .

We define the contact filtration of W by (see (2.37)):

(4.14) W ′
p = F′

p W = (F′
pX ⊗ d̄)⊕ (F′

p+1X ⊗ ks) .
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Introduce the contact Euler vector field

(4.15) E′ := 2t0
∂

∂t0
+

2N∑

i=1

ti
∂

∂ti
∈ F0W2N+1 ∩ F′

0W2N+1 .

Then the adjoint action of E′ decomposesW2N+1 as a direct product of eigenspaces
W ′

2N+1;j (j ≥ −1), on which adE′ acts as multiplication by j. One defines

(4.16) F′
pW2N+1 =

∏

j≥p

W ′
2N+1;j

so that

(4.17) F′
pW2N+1/F

′
p+1W2N+1 ≃W ′

2N+1;p .

The filtration {F′
pW2N+1} induces on W2N+1 the same topology as the filtration

{FpW2N+1}.

4.3. Annihilation algebra of K(d, θ). We define a filtration on the annihilation
algebra K = A(K(d, θ)) by

(4.18) K′
p = F′

p K = F′
p+1X ⊗H e , p ≥ −2 .

This filtration is equivalent to the one defined in Section 3.4 by choosing L0 = ke,
because the filtrations {F′

pX} and {FpX} are equivalent.
Recall that the canonical injection ι of the subalgebra K(d, θ) in W (d) induces

an injective Lie algebra homomorphism A(ι) : K → W that allows us to view K as
a subalgebra of W . In more detail, by (4.5) we have

(4.19) A(ι)(x ⊗H e) = x⊗ ∂0 −
2N∑

i=1

x∂i ⊗ ∂i , x ∈ X .

Lemma 4.2. The contact filtrations of K and W are compatible, i.e., one has

K′
p = K ∩W ′

p. In particular, [K′
m,K

′
n] ⊂ K′

m+n.

Proof. Any element of K′
p has the form x⊗H e with x ∈ F′

p+1X . Then, by (4.19),
(4.14) and (2.44), its image in W lies in W ′

p. Therefore, K
′
p ⊂ K∩W ′

p. The opposite
inclusion is proved similarly. �

Composing the isomorphism W → W2N+1 with the injection K → W , one
obtains a map φ : K → W2N+1, whose image however does not coincide with
K2N+1 ⊂ W2N+1. Recall that K2N+1 is the Lie subalgebra of W2N+1 consist-

ing of vector fields preserving the standard contact form dt0 +
∑N

i=1 t
idtN+i up to

multiplication by a function, i.e., by an element of O2N+1 (see [BDK, Chapter 6]
and the references therein).

Proposition 4.1. There exists a ring automorphism ψ of O2N+1 such that the

induced Lie algebra automorphism ψ of W2N+1 satisfies φ(K) = ψ(K2N+1).

Proof. The proof is similar to that of [BDK1, Proposition 3.6]. The image φ(K) is
the Lie algebra of all vector fields preserving a certain contact form up to multiplica-
tion by an element of O2N+1 [BDK1, Proposition 8.3]. We can find a change of vari-

ables conjugating this contact form to the standard contact form dt0+
∑N

i=1 t
idtN+i.

Hence, there exists an automorphism ψ of O2N+1 such that φ(K) = ψ(K2N+1). �
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We will denote by E ′ the lifting to K of the contact Euler vector field E′ ∈ K2N+1,
that is E ′ = φ−1ψ(E′).

Remark 4.1. The adjoint action of E ′ on K is semisimple, as it translates the
semisimple action of E′ on K2N+1. As the automorphism ψ can be chosen so
that the induced homomorphism on the associated graded Lie algebra equals the
identity, one can easily show that the adjoint action of E ′ on K preserves each K′

n

and that it equals multiplication by n on K′
n/K

′
n+1.

4.4. The normalizer NK. It is well known that all derivations of the Lie–Cartan
algebras of type W are inner. This fact was used in [BDK1, Section 3.3] to prove

that the centralizer of W in W̃ consists of elements ∂̃ (∂ ∈ d) so that the map

∂ 7→ ∂̃ is an isomorphism of Lie algebras. We have

(4.20) ∂̃ = ∂ + 1⊗ ∂ − ad ∂ mod W1, ∂ ∈ d ,

where ad∂ is understood as an element of gl d ≃ W0/W1.

Proposition 4.2. Elements ∂̃ span a Lie subalgebra d̃ ⊂ K̃ isomorphic to d. The

normalizer NK of K′
p in K̃ coincides with d̃ ⊕ K′

0 and is independent of p ≥ 0.

There is a decomposition as a direct sum of subspaces K̃ = d⊕NK.

Proof. Since all derivations of K ≃ K2N+1 are inner, there exist elements ∂̂ ∈ K̃

centralizing K and such that ∂̂ = ∂ mod K for ∂ ∈ d. Then ∂̂ − ∂̃ ∈ W centralizes

K, which implies ∂̂ = ∂̃, because the centralizer of K in W is zero. Therefore,

the centralizer of K in K̃ coincides with the centralizer d̃ of W in W̃ . The other
statements follow as in [BDK1, Proposition 3.3]. �

The above proposition implies that for every ∂ ∈ d the element ∂̃ − ∂ ∈ W lies
in the subalgebra K, and hence it can be expressed as a Fourier coefficient x⊗H e
for suitable x ∈ X . In order to do so, let us compute the images of the first few
Fourier coefficients of e under the identification of K as a subalgebra of W .

Lemma 4.3. The embedding A(ι) : K → W identifies the following elements:

1⊗H e 7→ 1⊗ ∂0 ;(i)

xj ⊗H e 7→ 1⊗ ∂j + xj ⊗ ∂0 −
∑

0<i<k

cjikx
k ⊗ ∂i mod W ′

1 ∩W1 ;(ii)

x0 ⊗H e 7→ x0 ⊗ ∂0 −
∑

0<i<k

ωikx
k ⊗ ∂i mod W ′

1 ∩W1 ;(iii)

xixj ⊗H e 7→ 2f ij mod W1 , i, j 6= 0 ;(iv)

x0xj ⊗H e 7→ x0 ⊗ ∂j mod W ′
1 ∩W1 , j 6= 0 ;(v)

xixjxk ⊗H e 7→ 0 mod W ′
1 ∩W1 , i, j, k 6= 0 .(vi)

Proof. The proof is straightforward, using (4.19), (2.47), and (2.11). Note that
elements f ij ∈ gl d, defined in (2.25), need to be understood by means of the
identification gl d = W0/W1 given in Lemma 4.1. �

Notice that K (respectively K′
0, K

′
1) is spanned over k by elements (i)-(vi) (resp.

(iii)-(vi), (v)-(vi)) modulo K′
2. Also, K′

2 ⊂ W ′
2 ⊂ W1, by Lemma 4.2 and F′

2X ⊂
F1X , which follows from F1H ⊂ F′2H .
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In the proof of next proposition, we will use the following abelian Lie subalgebra
of gl d:

(4.21) c0 = x0 ⊗ d̄ = span{ei0}1≤i≤2N = span{e0i }1≤i≤2N ⊂ gl d .

Note that the semidirect sum c0 ⋊ csp d̄ ⊂ gl d is a Lie algebra containing c0 as an
abelian ideal.

Proposition 4.3. We have K′
0/K

′
1 ≃ sp d̄⊕ kI ′ = csp d̄.

Proof. Since elements (iii)-(vi) in the previous lemma all lie in W0, and K′
2 ⊂ W1,

we have K′
0 ⊂ W0. Moreover W1 ⊂ W0 is an ideal, so the inclusion K → W induces

a well-defined Lie algebra homomorphism π : K′
0 → W0/W1 ≃ gl d. Observe now

that in W0/W1 one has

−I ′ = 2x0 ⊗ ∂0 +

2N∑

i=1

xi ⊗ ∂i

= 2x0 ⊗ ∂0 +

2N∑

i,j=1

ωijx
i ⊗ ∂j

= 2x0 ⊗H e+ 2
∑

0<i<j

ωijf
ij mod W1 .

(4.22)

As a consequence, I ′ ∈ gl d lies in the image of π. By Lemma 4.3, π is injective on
the linear span of elements (iii)-(v). The image of π equals c0 ⋊ csp d̄, and π maps
the ideal K′

1 ⊂ K′
0 onto the ideal c0 ⊂ c0 ⋊ csp d̄, so that π induces an isomorphism

between K′
0/K

′
1 and csp d̄. �

Corollary 4.1. Elements ∂̃ ∈ K̃ satisfy the following (j 6= 0):

∂̃0 − ∂0 = 1⊗H e− ad∂0 mod K′
1 ,(4.23)

∂̃j − ∂j = xj ⊗H e−
(
ad ∂j + xj ⊗ ∂0 −

∑

0<i<k

cjikx
k ⊗ ∂i

)
mod K′

1 .(4.24)

Proof. Follows from (4.20), Lemma 4.3 and Propositions 4.2 and 4.3. �

The above two statements imply:

Corollary 4.2. Elements

(4.25) ad ∂0 , ad∂j − ej0 +
∑

0<i<k

cjike
ik , j 6= 0

lie in sp d̄.

Proof. Indeed, they must lie in csp d̄ but the matrix coefficient multiplying e00 is
zero in both cases. �

Similarly to [BDK,BDK1], we will say that an NK-module V is conformal if K′
p

acts trivially on it for some p ≥ 1.

Proposition 4.4. The subalgebra K′
1 ⊂ NK acts trivially on any irreducible finite-

dimensional conformal NK-module. Irreducible finite-dimensional conformal NK-

modules are in one-to-one correspondence with irreducible finite-dimensional mod-

ules over the Lie algebra NK/K′
1 ≃ d⊕ csp d̄.
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Proof. The proof is the same as in [BDK1, Proposition 3.4]. Let V be a finite-
dimensional irreducible conformal NK-module; then it is an irreducible module
over the finite-dimensional Lie algebra g = NK/K′

p = d̃⊕ (K′
0/K

′
p) for some p ≥ 1.

We apply [BDK1, Lemma 3.4] for I = K′
1/K

′
p and g0 = (kE ′ +K′

p)/K
′
p. Note that

by Lemma 4.2, one has I ⊂ Rad g, and [E ′,K′
p] ⊂ K′

p. Moreover, the adjoint action
of E ′ on K′

1 is invertible. Thus, the adjoint action of E ′ is injective on I, and I

acts trivially on V . We can then take p = 1, in which case g = d̃ ⊕ (K′
0/K

′
1) ≃

d⊕ csp d̄. �

5. Singular Vectors and Tensor Modules

We start this section by recalling an important class of modules over the Lie
pseudoalgebra W (d) called tensor modules. Restricting such modules to K(d, θ)
leads us to the definition of a tensor module over K(d, θ). By investigating singular
vectors, we show that every irreducible module is a homomorphic image of a tensor
module. We continue to use the notation of Section 2.

5.1. Tensor modules forW (d). Consider a Lie algebra g with a finite-dimensional
representation V0. Then the semidirect sum Lie pseudoalgebra W (d)⋉Cur g from
Example 3.3 acts on the free H-module V = H⊗V0 as follows (see [BDK1, Remark
4.3]):

(5.1)
(
(f ⊗ a)⊕ (g ⊗ b)

)
∗ (h⊗ u) = −(f ⊗ ha)⊗H (1⊗ u) + (g ⊗ h)⊗H (1⊗ bu) ,

where f, g, h ∈ H = U(d), a ∈ d, b ∈ g, u ∈ V0. This combines the usual action of
Cur g on V with the W (d)-action on H given by (3.24).

By [BDK1, Remark 4.6], there is an embedding of Lie pseudoalgebras W (d) →֒
W (d)⋉Cur(d⊕ gl d) given by

(5.2) 1⊗ ∂i 7→ (1⊗ ∂i)⊕
(
(1 ⊗ ∂i)⊕ (1⊗ ad ∂i +

∑

j

∂j ⊗ eji )
)
.

Composing this embedding with the above action (5.1) for g = d⊕gl d, we obtain a
W (d)-module V = H⊗V0 for every (d⊕gl d)-module V0. This module V is called a
tensor module and denoted T (V0). The action of W (d) on T (V0) is given explicitly
by [BDK1, Eq. (4.30)], which we reproduce here for convenience:

(1⊗ ∂i) ∗ (1⊗ u) = (1 ⊗ 1)⊗H (1⊗ (ad ∂i)u) +
∑

j

(∂j ⊗ 1)⊗H (1⊗ ejiu)

− (1⊗ ∂i)⊗H (1⊗ u) + (1 ⊗ 1)⊗H (1⊗ ∂iu) .

(5.3)

If Π is a finite-dimensional d-module and V0 is a finite-dimensional gl d-module,
then their exterior tensor product Π⊠V0 is defined as the (d⊕gl d)-module Π⊗V0,
where d acts on the first factor and gl d acts on the second one. Following [BDK1],
in this case the tensor module T (Π⊠ V0) will also be denoted as T (Π, V0). Then

(5.4) T (Π, V0) = TΠ(T (k, V0)) ,

where TΠ is the twisting functor from Definition 3.1.
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5.2. Tensor modules for K(d, θ). We will identify K(d, θ) with a subalgebra of
W (d) via embedding (4.4). Then K(d, θ) = He where e ∈ W (d) is given by (4.5).
Introduce the H-linear map τ : W (d) → Cur gl d given by (cf. (5.2))

(5.5) τ(h⊗ ∂i) = h⊗ ad ∂i +

2N∑

j=0

h∂j ⊗ eji , h ∈ H .

Then the image of e under the map (5.2) has the form e⊕ (e⊕ τ(e)).

Definition 5.1. We define a linear map adsp : d → sp d̄ by adsp ∂0 = ad ∂0 and

(5.6) adsp ∂k = ad∂k − ek0 +
1

2

2N∑

i,j=1

ckije
ij , k 6= 0 .

Remark 5.1. The fact that the image of adsp is inside sp d̄ follows from Corollary 4.2
(cf. (2.25), (4.25)). One can show that adsp ∂k is obtained from ad∂k by first
restricting it to d̄ ⊂ d and then projecting onto sp d̄. This implies that the map
adsp does not depend on the choice of basis.

Lemma 5.1. With the above notation, we have

(5.7) τ(e) = (id⊗ adsp)(e) +
1

2
∂0 ⊗ I ′ −

2N∑

i=1

∂i∂0 ⊗ ei0 +
2N∑

i,j=1

∂i∂j ⊗ f ij .

Proof. Using (2.25) and the H-linearity of τ , we find for i 6= 0

τ(∂i ⊗ ∂i) = ∂i ⊗ ad∂i +

2N∑

j=0

∂i∂j ⊗ eij

= ∂i ⊗ ad∂i + ∂i∂0 ⊗ ei0 −
2N∑

j=1

∂i∂j ⊗ f ij +
1

2

2N∑

j=1

[∂i, ∂j ]⊗ eij .

By (2.11) and (2.22), we have

(5.8) [∂i, ∂j ] = ωij∂0 +

2N∑

k=1

ckij∂k , i, j 6= 0

and
2N∑

i,j=1

ωij∂0 ⊗ eij = −
2N∑

j=1

∂0 ⊗ ejj = ∂0 ⊗ 2(e00 − I ′) .

The rest of the proof is straightforward. �

Recall the definition of the abelian subalgebra c0 ⊂ gl d given in (4.21).

Corollary 5.1. With the above notation, we have: τ(e) ∈ Cur(c0 ⋊ csp d̄).

Therefore, the image of e under map (5.2) lies in W (d)⋉Cur g where g :=
d⊕ (c0⋊ csp d̄). Hence, every finite-dimensional g-module V0 gives rise to a K(d, θ)-
module H ⊗ V0 with an action given by (5.1). An important special case is when
c0 acts trivially on V0. Since c0 is an ideal in g, having such a representation is
equivalent to having a representation of the Lie algebra d⊕ csp d̄ ≃ g/c0.
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Definition 5.2. (i) Let V0 be a finite-dimensional representation of d⊕csp d̄. Then
the above K(d, θ)-module H ⊗ V0 is called a tensor module and will be denoted
as T (V0).

(ii) Let V0 = Π⊠ U , where Π is a finite-dimensional d-module and U is a finite-
dimensional csp d̄-module. Then the module T (V0) will also be denoted as T (Π, U).

(iii) Let V0 be as in part (ii), and assume I ′ ∈ csp d̄ acts on U as multiplication
by a scalar c ∈ k. Then the module T (V0) will also be denoted as T (Π, U, c), and
similarly the csp d̄-module structure on U will be denoted (U, c).

The action of e ∈ K(d, θ) on a tensor module T (V0) = H ⊗V0 is given explicitly
by (cf. (4.5), (5.1), (5.7)):

e ∗ (1⊗ u) = −e⊗H (1 ⊗ u) + (1⊗ 1)⊗H

(
1⊗ (∂0 + ad∂0)u

)

−
2N∑

k=1

(∂k ⊗ 1)⊗H

(
1⊗ (∂k + adsp ∂k)u

)
+

1

2
(∂0 ⊗ 1)⊗H (1 ⊗ I ′u)

+

2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H (1⊗ f iju) , u ∈ V0 .

(5.9)

Remark 5.2. More generally, if c0 does not act trivially on V0, the above action
(5.9) is modified by adding the term

−
2N∑

i=1

(∂i∂0 ⊗ 1)⊗H (1 ⊗ ei0u)

to the right-hand side (cf. Lemma 5.1).

As in [BDK1], in the sequel it will be convenient to modify the above definition
of tensor module. Let R be a finite-dimensional (d⊕ csp d̄)-module, with an action
denoted as ρR. We equip R with the following modified action of d ⊕ csp d̄ (cf.
[BDK1, Eqs. (6.7), (6.8)]):

∂u = (ρR(∂) + tr(ad ∂))u , ∂ ∈ d , u ∈ R ,

Au = (ρR(A)− trA)u , A ∈ csp d̄ , u ∈ R .
(5.10)

Note that, in fact, trA = 0 for A ∈ sp d̄ and tr I ′ = 2N + 2.

Definition 5.3. Let R be a finite-dimensional (d ⊕ csp d̄)-module with an action
ρR. Then the tensor module T (R), where R is considered with the modified action
(5.10), will be denoted as V(R). As in Definition 5.2, we will also use the notation
V(Π, U) and V(Π, U, c) when R = Π ⊠ U and I ′ acts on U as multiplication by a
scalar c.

The above definition can be made more explicit as follows:

V(Π, U, c) = T (Π⊗ ktr ad, U, c− 2N − 2) ,

T (Π, U, c) = V(Π⊗ k−tr ad, U, c+ 2N + 2) ,
(5.11)

where for a trace form χ on d we denote by kχ the corresponding 1-dimensional
d-module.

Remark 5.3. (cf. [BDK1, Remark 6.2]). LetR be a finite-dimensional representation
of d⊕ csp d̄, or more generally, of d⊕ (c0⋊ csp d̄). Using the map π from the proof of

Proposition 4.3, whose image is c0⋊csp d̄, we endowR with an action ofNK = d̃⊕K′
0.
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Moreover, c0 acts trivially on R if and only if K′
1 does. Then Propositions 3.2, 4.2

and 4.3 imply that, as a K̃-module, the tensor module V(R) is isomorphic to the

induced module IndK̃NK
R.

The action of K(d, θ) on V(R) can be derived from (5.9) and (5.10). We will
need the following explicit form of this action.

Proposition 5.1. The action of K(d, θ) on a tensor module V(R) is given by:

e ∗ (1 ⊗ u) = (1⊗ 1)⊗H

(
1⊗ ρR(∂0 + ad ∂0)u− ∂0 ⊗ u

)

−
2N∑

k=1

(∂k ⊗ 1)⊗H

(
1⊗ ρR(∂

k + adsp ∂k)u− ∂k ⊗ u
)

+
1

2
(∂0 ⊗ 1)⊗H

(
1⊗ ρR(I

′)u
)
+

2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H

(
1⊗ ρR(f

ij)u
)
.

(5.12)

Proof. Let us compare (5.12) to (5.9), using (5.10) and the fact that

−(1⊗ 1)⊗H (∂0 ⊗ u) +

2N∑

i=1

(∂i ⊗ 1)⊗H (∂i ⊗ u)

= −e⊗H (1 ⊗ u)− (∂0 ⊗ 1)⊗H (1⊗ u) +

2N∑

i=1

(∂i∂
i ⊗ 1)⊗H (1 ⊗ u) .

Noting that ad∂0 ∈ sp d̄ and tr ad∂0 = 0, we see that (5.12) reduces to the following
identity

2N∑

i=1

∂i∂
i = −N∂0 −

2N∑

k=1

(tr ad∂k)∂k .

By (2.11)–(2.14), we have:

2

2N∑

i=1

∂i∂
i =

2N∑

i=1

[∂i, ∂
i] =

2N∑

i,j=1

rij [∂i, ∂j ]

=

2N∑

i,j=1

rijωij∂0 +

2N∑

i,j,k=1

rijckij∂k ,

(5.13)

and the coefficient of ∂0 in the right-hand side is indeed −2N . On the other hand,
for k 6= 0 the fact that adsp ∂k ∈ sp d̄ implies

0 = tr adsp ∂k = tr ad ∂k +
1

2

2N∑

i,j=1

rijckij ,

using that tr eij = rij . This completes the proof. �

Remark 5.4. Computing directly

tr ad∂k =

2N∑

i=1

rki tr ad∂i =

2N∑

i,j=1

rkicjij ,
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we obtain the identities

2N∑

i,j=1

rkicjij +
1

2

2N∑

i,j=1

rijckij = 0 , k 6= 0 .

5.3. Singular vectors. The annihilation algebra K of K(d, θ) has a decreasing
filtration {K′

p}p≥−2 (see (4.18)). For a K-module V , we denote by kerp V the set of
all v ∈ V that are killed by K′

p. A K-module V is called conformal iff V =
⋃
kerp V .

For any p ≥ 0 the normalizer of K′
p in K̃ is equal to NK due to Proposition 4.2.

Therefore, each kerp V is an NK-module, and in fact, kerp V is a representation

of the finite-dimensional Lie algebra NK/K′
p = d̃ ⊕ (K′

0/K
′
p). In particular, by

Proposition 4.3, NK/K
′
1 is isomorphic to the direct sum of Lie algebras d⊕ csp d̄.

Equivalence of the filtrations {Kp} and {K′
p}, along with Proposition 3.2, implies

that any K(d, θ)-module has a natural structure of a conformal K̃-module and vice
versa.

Definition 5.4. For any K(d, θ)-module V , a singular vector is an element v ∈ V
such that K′

1 · v = 0. The space of singular vectors in V will be denoted by singV .
We will denote by ρsing : d ⊕ csp d̄ → gl(sing V ) the representation obtained from
the NK-action on singV ≡ ker1 V via the isomorphism NK/K′

1 ≃ d⊕ csp d̄.

It follows that a vector v ∈ V is singular if and only if

(5.14) e ∗ v ∈ (F′2H ⊗ k) ⊗H V ,

or equivalently

(5.15) e ∗ v ∈ (k ⊗ F′2H)⊗H V .

Proposition 5.2. For any nonzero finite K(d, θ)-module V , the vector space sing V
is nonzero and the space sing V/ kerV is finite dimensional.

Proof. Finite dimensionality of kerp V/ kerV for all p follows from Lemma 3.2. To
prove that singV 6= {0}, we may assume without loss of generality that kerV = {0}.
Since the K-module V is conformal, kerp V is nonzero for some p ≥ 0. Note that
kerp V is preserved by the normalizer NK. Choose an irreducible NK-submodule
U ⊂ kerp V . As U is finite dimensional, Proposition 4.4 shows that the action of
K′

1 on U is trivial, hence U ⊂ sing V . �

Note that, by definition,

(5.16) ρsing(∂)v = ∂̃ · v , ∂ ∈ d , v ∈ sing V ,

and, due to Lemma 4.3(iv),

(5.17) ρsing(f
ij)v =

1

2
(xixj ⊗H e) · v , v ∈ sing V .

The next result describes the action of K(d, θ) on a singular vector. It can be
derived from Remark 5.3, but for completeness we give a direct proof.
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Proposition 5.3. Let V be a K(d, θ)-module and v ∈ V be a singular vector.

Then the action of K(d, θ) on v is given by

e ∗ v =

2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H ρsing(f
ij)v +

1

2
(∂0 ⊗ 1)⊗H ρsing(I

′)v

−
2N∑

k=1

(∂k ⊗ 1)⊗H

(
ρsing(∂

k + adsp ∂k)v − ∂kv
)

+ (1⊗ 1)⊗H

(
ρsing(∂0 + ad∂0)v − ∂0v

)
.

(5.18)

Proof. As K′
1 acts trivially on a singular vector v, Proposition 3.2 implies that

e ∗ v =
∑

0<i<j

(S(∂i∂j)⊗ 1)⊗H (xixj ⊗H e) · v

+
1

2

2N∑

i=1

(S(∂2i )⊗ 1)⊗H ((xi)2 ⊗H e) · v

+

2N∑

k=0

(S(∂k)⊗ 1)⊗H (xk ⊗H e) · v

+ (1⊗ 1)⊗H (1⊗H e) · v .

(5.19)

On the other hand, by Corollary 4.2 and Lemma 4.3(iv), we have for k 6= 0:

(1⊗H e) · v = ∂̃0 · v − ∂0v + ρsing(ad∂0)v ,(5.20)

(xk ⊗H e) · v = ∂̃k · v − ∂kv + ρsing

(
ad∂k − ek0 +

∑

0<i<j

ckije
ij
)
v .(5.21)

Now we rewrite the first summand on the right-hand side of (5.19) using that

S(∂i∂j) = ∂j∂i =
1

2
(∂i∂j + ∂j∂i)−

1

2
[∂i, ∂j ] .

Then, thanks to (5.17), the first two summands become

2N∑

i,j=1

(∂i∂j ⊗ 1)⊗H ρsing(f
ij)v −

∑

0<i<j

([∂i, ∂j ]⊗ 1)⊗H ρsing(f
ij)v .

This shows that the first summand in (5.18) matches with (5.19). By (5.16), (5.20),
the last summands in (5.18) and (5.19) are also equal.

It remains to rewrite

∑

0<i<j

([∂i, ∂j ]⊗ 1)⊗H ρsing(f
ij)v +

2N∑

k=0

(∂k ⊗ 1)⊗H (xk ⊗H e) · v

so that it matches the negative of the second and third terms in the right-hand side
of (5.18). Recalling the commutation relations (5.8), we obtain

(∂0 ⊗ 1)⊗H

(
(x0 ⊗H e) · v + ρsing

( ∑

0<i<j

ωijf
ij
)
v
)

+

2N∑

k=1

(∂k ⊗ 1)⊗H

(
(xk ⊗H e) · v + ρsing

( ∑

0<i<j

ckijf
ij
)
v
)
.



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS II 27

By (4.22), the first summand is equal to − 1
2 (∂0 ⊗ 1)⊗H ρsing(I

′)v.
Finally, by (5.21), (2.25) and (5.6), we have

(xk ⊗H e) · v + ρsing
( ∑

0<i<j

ckijf
ij
)
v

= ∂̃k · v − ∂kv + ρsing

(
ad ∂k − ek0 +

∑

0<i<j

ckije
ij +

∑

0<i<j

ckijf
ij
)
v

= ∂̃k · v − ∂kv + ρsing(ad
sp ∂k)v .

This completes the proof. �

Corollary 5.2. Let V be a K(d, θ)-module and let R be a nonzero (d ⊕ csp d̄)-
submodule of singV . Denote by HR the H-submodule of V generated by R. Then

HR is a K(d, θ)-submodule of V . In particular, if V is irreducible, then V = HR.

Proof. By (5.18), K(d, θ) ∗ R ⊂ (H ⊗H) ⊗H HR, and by H-bilinearity, K(d, θ) ∗
HR ⊂ (H ⊗H)⊗H HR. �

Corollary 5.3. Let R be a finite-dimensional (d ⊕ csp d̄)-module with an action

ρR. Then for the tensor K(d, θ)-module V(R) = H⊗R, we have k⊗R ⊂ singV(R)
and

(5.22) ρsing(A)(1 ⊗ u) = 1⊗ ρR(A)u , A ∈ d⊕ csp d̄, u ∈ R .

We will call elements of k ⊗ R ⊂ V(R) constant vectors. Combining the above
results, we obtain the following theorem.

Theorem 5.1. Let V be an irreducible finite K(d, θ)-module, and let R be an

irreducible (d ⊕ csp d̄)-submodule of sing V . Then V is a homomorphic image of

V(R). In particular, every irreducible finite K(d, θ)-module is a quotient of a tensor

module.

Proof. Comparing (5.18) and (5.12), we see that the canonical projection V(R) =
H ⊗ R → HR is a homomorphism of K(d, θ)-modules. However, HR = V by
Corollary 5.2. �

We will now show that reducibility of a tensor module depends on the existence
of nonconstant singular vectors.

Definition 5.5. An element v of a K(d, θ)-module V is called homogeneous if it is
an eigenvector for the action of E ′ ∈ K.

Remark 5.5. Note that the homogeneous components of a singular vector are still
singular, so that a classification of singular vectors will follow from a description of
homogeneous ones.

Lemma 5.2. Let R be an irreducible representation of d⊕csp d̄. Then any nonzero

proper K(d, θ)-submodule M of V(R) does not contain nonzero constant vectors,

i.e., M ∩ (k⊗R) = {0}.

Proof. Both M and k ⊗ R ⊂ sing V(R) are NK-stable, and the same is true of
their intersection M0. Since K′

1 acts trivially on M0, it is a representation of
NK/K′

1 ≃ d⊕csp d̄. The claim now follows from the irreducibility of k⊗R ≃ R. �

Corollary 5.4. If singV(R) = k⊗R, then the K(d, θ)-module V(R) is irreducible.
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Proof. Assume there is a nonzero proper submodule M . Then M must contain
some nonzero singular vector. However, M ∩ sing V(R) = {0} by Lemma 5.2. �

Proposition 5.4. Every nonconstant homogeneous singular vector in V(R) is con-
tained in a nonzero proper submodule. In particular, V(R) is irreducible if and only

if singV(R) = k⊗R.

Proof. Recall that, by Remark 5.3, we have V(R) = IndK̃NK
R. The Lie algebra K is

graded by the eigenspace decomposition of adE ′. If kn denotes the graded summand
of eigenvalue n, then one has the direct sum decomposition of Lie algebras

NK = d̃⊕K′
0 = d̃⊕

∏

j≥0

kj

and the decomposition of vector spaces

K̃ = (k−2 ⊕ k−1)⊕NK.

Since k−2 ⊕ k−1 is a graded Lie algebra, its universal enveloping algebra is also

graded. Then V(R) = IndK̃NK
R is isomorphic to U(k−2 ⊕ k−1) ⊗ R, which can be

endowed with a Z-grading by setting elements from R to have degree zero, and
elements from k−i to have degree −i. Thus submodules of V(R) contain all E ′-
homogeneous components of their elements, i.e., they are graded submodules.

It is now easy to show that every homogeneous singular vector v, say of degree

d < 0, is contained in some nonzero proper K̃-submodule of V(R). Indeed U(K̃)v =
U(k−2⊕k−1)v is a nonzero submodule of V(R) lying in degrees ≤ d, and it intersects
R trivially, since R lies in degree zero. �

5.4. Filtration of tensor modules. After filtering the Lie algebra K using the
contact filtration F′ of X , it is convenient to filter tensor K(d, θ)-modules using the
contact filtration of H . We therefore define

(5.23) F′p V(R) = F′pH ⊗R , p = −1, 0, . . . .

As usual, F′−1 V(R) = {0} and F′0 V(R) = k ⊗ R. It will also be convenient to
agree that F′−2 V(R) = {0}. The associated graded space is defined accordingly,
and we have isomorphisms of vector spaces

(5.24) gr′p V(R) ≃ gr′pH ⊗R.

Note that, since d = d̄⊕ k∂0 and the degree of ∂0 equals two, gr′pH is isomorphic

to the direct sum
⊕⌊p/2⌋

i=0 Sp−2id̄. Here ⌊p/2⌋ denotes the largest integer not greater
than p/2, which is p/2 for p even and (p− 1)/2 for p odd.

Lemma 5.3. For every p ≥ 0, we have:

d̄ · F′p V(R) ⊂ F′p+1 V(R) ,(i)

∂0 · F
′p V(R) ⊂ F′p+2 V(R) ,(ii)

NK · F′p V(R) ⊂ F′p V(R) ,(iii)

K̃ · F′p V(R) ⊂ F′p+2 V(R) ,(iv)

K′
1 · F

′p V(R) ⊂ F′p−1 V(R) .(v)
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Proof. The proof of (i) and (ii) is clear, as the action of elements in d is by left
multiplication on the left factor of V(R) = H ⊗ R. In particular, this implies
d · F′p V(R) ⊂ F′p+2 V(R). Before proceeding with proving (iii)–(v), observe that
(4.23), (4.24) imply

∂i ∈ d̃+K′
−1, ∂0 ∈ d̃+K′

−2,

so that d̄ ⊂ d̃+K′
−1. Also notice that K̃ = d̃+K′

−2, which implies [K̃,K′
p] ⊂ K′

p−2.

Moreover K′
−1 +NK = d̄+NK, as d̃ ⊂ NK. Then we have:

[d̄,K′
1] ⊂ [d̃+K′

−1,K
′
1] ⊂ [K′

−1,K
′
1] ⊂ K′

0 ⊂ NK ,

[∂0,K
′
1] ⊂ [K̃,K′

1] ⊂ K′
−1 ⊂ d̄+NK ,

[d̄,NK] ⊂ [d̃+K′
−1, d̃+K′

0] ⊂ d̃+K′
−1 ⊂ K′

−1 +NK ⊂ d̄+NK ,

[∂0,NK] ⊂ K̃ = d+NK .

Now (iii) can be proved by induction as in the case of W (d) (see [BDK1, Lemma
6.3]), the basis of induction p = 0 following from F′0 V(R) ⊂ sing V(R). As for
p > 0, notice that

F′p V(R) = F′0 V(R) + d̄F′p−1 V(R) + ∂0 F
′p−2 V(R).

Then:

NK(d̄F
′p−1 V(R)) ⊂ d̄(NK F′p−1 V(R)) + [d̄,NK] F

′p−1 V(R)

⊂ d̄F′p−1 V(R) + (d̄+NK) F
′p−1 V(R)

⊂ d̄F′p−1 V(R) + F′p−1 V(R) ⊂ F′p V(R),

and similarly

NK(∂0 F
′p−2 V(R)) ⊂ ∂0(NK F′p−2 V(R)) + [∂0,NK] F

′p−2 V(R)

⊂ dF′p−2 V(R) + (d+NK) F
′p−2 V(R)

⊂ dF′p−2 V(R) +NK F′p−2 V(R) ⊂ F′p V(R).

It is now immediate to prove (iv) from K̃ = d+NK.
Finally, (v) can analogously be showed by induction on p: when p = 0, we have

F′0 V(R) ⊂ singV(R), hence K′
1 F

′0 V(R) = {0} by definition of singV(R). When
p > 0, we observe that

K′
1(d̄F

′p−1 V(R)) ⊂ d̄(K′
1 F

′p−1 V(R)) + [d̄,K′
1] F

′p−1 V(R)

⊂ d̄(F′p−2 V(R)) +NK F′p−1 V(R)

⊂ F′p−1 V(R),

and that

K′
1(∂0 F

′p−2 V(R)) ⊂ ∂0(K
′
1 F

′p−2 V(R)) + [∂0,K
′
1] F

′p−2 V(R)

⊂ ∂0(F
′p−3 V(R)) + (d̄+NK) F

′p−2 V(R)

⊂ F′p−1 V(R).

This completes the proof. �

The above lemma implies that both NK and its quotient NK/K′
1 = d̃ ⊕ csp d̄

act on each space gr′p V(R). The next result describes the action of NK/K′
1 more

explicitly.
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Lemma 5.4. The action of d̃ ≃ d and K′
0/K

′
1 ≃ csp d̄ = sp d̄ ⊕ kI ′ on the space

gr′p V(R) ≃ gr′pH ⊗R is given by:

∂̃ · (f ⊗ u) = f ⊗ ρR(∂)u,(5.25)

A · (f̄∂i0 ⊗ u) = (Af̄)∂i0 ⊗ u+ f̄∂i0 ⊗ ρR(A)u,(5.26)

I ′ · (f ⊗ u) = p f ⊗ u+ f ⊗ ρR(I
′)u,(5.27)

where A ∈ sp d̄, f ∈ gr′pH, f̄ ∈ Sp−2id̄, u ∈ R, and Af̄ denotes the standard action

of sp d̄ ⊂ gl d on d̄.

Proof. The proof is similar to that of Lemmas 6.4 and 6.5 from [BDK1]. �

Corollary 5.5. We have an isomorphism of (d⊕ csp d̄)-modules

gr′p V(Π, U, c) ≃

⌊p/2⌋⊕

i=0

Π⊠ (Sp−2id̄⊗ U, c+ p).

Proof. Follows immediately from Lemma 5.4. �

6. Tensor Modules of de Rham Type

The main goal of this section is to define an important complex of K(d, θ)-
modules, called the contact pseudo de Rham complex. We continue to use the
notation of Sections 2.1 and 2.2.

6.1. The Rumin complex. As before, let θ ∈ d∗ be a contact form, and let d̄ ⊂ d

be the kernel of θ. Consider the wedge powers Ωn =
∧n

d∗ and Ω̄n =
∧n

d̄∗. Then
we have a short exact sequence

(6.1) 0 → ΘΩn−1 → Ωn → Ω̄n → 0 ,

where Θ is the operator of left wedge multiplication with θ, i.e., Θ(α) = θ ∧α. For
α ∈ Ωn, we will denote by ᾱ ∈ Ω̄n its projection via (6.1).

The direct sum decomposition d = d̄⊕ks gives a splitting of the sequence (6.1).
In more detail, elements ᾱ ∈ Ω̄n are identified with n-forms α ∈ Ωn such that
ιsα = 0. Thus we have a direct sum Ωn = ΘΩn−1 ⊕ Ω̄n. Then Θ2 = 0 implies that
kerΘ|Ωn = ΘΩn−1, and we get a natural isomorphism

(6.2) ΘΩn ∼
−→ Ω̄n, θ ∧ α 7→ ᾱ .

The 2-form ω = d0θ can be identified with ω̄, because ιsω = 0. Denote by Ψ
(respectively, Ψ̄) the operator of left wedge multiplication with ω (respectively, ω̄).
Consider the images and kernels of Ψ̄:

(6.3) Īn = Ψ̄Ω̄n−2 ⊂ Ω̄n , K̄n = ker Ψ̄|Ω̄n ⊂ Ω̄n .

Since ω̄ is nondegenerate, we have Īn = Ω̄n for n ≥ N + 1 and K̄n = 0 for
n ≤ N − 1. In particular, Ψ̄ : Ω̄N−1 → Ω̄N+1 is an isomorphism. More generally,
for all m = 0, . . . , N , the maps Ψ̄m : Ω̄N−m → Ω̄N+m are isomorphisms.

Lemma 6.1. The composition of natural maps K̄N →֒ Ω̄N
։ Ω̄N/ĪN is an iso-

morphism. More generally, the composition

K̄N+m →֒ Ω̄N+m (Ψ̄m)−1

−−−−−→ Ω̄N−m
։ Ω̄N−m/ĪN−m

is an isomorphism for all m = 0, . . . , N .
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Proof. To show surjectivity, take any α ∈ Ω̄N−m. We want to find β ∈ K̄N+m such
that α− (Ψ̄m)−1β ∈ ĪN−m. Since Ψ̄m+2 : Ω̄N−m−2 → Ω̄N+m+2 is an isomorphism,
there is γ ∈ Ω̄N−m−2 such that Ψ̄m+2γ = Ψ̄m+1α. Then β = Ψ̄m(α− Ψ̄γ) satisfies
the above conditions.

To prove injectivity, we need to show that Ψ̄mĪN−m ∩ K̄N+m = {0}. If α ∈
Ψ̄mĪN−m ∩ K̄N+m, then α = Ψ̄m+1ρ for some ρ ∈ Ω̄N−m−2. But then Ψ̄m+2ρ =
Ψ̄α = 0, which implies ρ = 0 and α = 0. �

Since A·ω̄ = 0 for A ∈ sp d̄ and the action of A is an even derivation of the wedge
product (see Lemma 2.2 and (2.8)), it follows that Īn and K̄n are sp d̄-submodules
of Ω̄n. Furthermore, the map Ψ̄ is an sp d̄-homomorphism. In particular, the
isomorphism from Lemma 6.1 commutes with the action of sp d̄. Recall that R(πn)
denotes the n-th fundamental representation of sp d̄, and R(π0) = k.

Lemma 6.2. We have isomorphisms of sp d̄-modules

Ω̄n/Īn ≃ K̄2N−n ≃ R(πn) , 0 ≤ n ≤ N .

Proof. This is well known; see, e.g., [FH, Lecture 17]. �

Following [Ru], we consider the spaces

(6.4) In = ΨΩn−2 +ΘΩn−1 ⊂ Ωn, Kn = kerΨ|Ωn ∩ kerΘ|Ωn ⊂ Ωn.

Using ΘΨ = ΨΘ and (6.1), we obtain a short exact sequence

(6.5) 0 → ΘΩn−1 → In → Īn → 0 ,

while (6.2) gives a natural isomorphism

(6.6) Kn ∼
−→ K̄n−1, θ ∧ α 7→ ᾱ .

The above equations imply that In = Ωn for n ≥ N + 1 and Kn = 0 for n ≤ N . It
is also clear that Ωn/In ≃ Ω̄n/Īn for all n.

The “constant-coefficient” Rumin complex [Ru] is the following complex of csp d̄-
modules

(6.7) 0 → Ω0/I0
d0−→ · · ·

d0−→ ΩN/IN
dR
0−−→ KN+1 d0−→ · · ·

d0−→ K2N+1 ,

where the map dR0 is defined as in [Ru]. We will need the “pseudo” version of
this complex defined in Section 6.3 below. The latter is a contact counterpart of
the pseudo de Rham complex from [BDK, BDK1], which we review in the next
subsection.

6.2. Pseudo de Rham complex. Following [BDK], we define the spaces of pseud-

oforms Ωn(d) = H ⊗ Ωn and Ω(d) = H ⊗ Ω =
⊕2N+1

n=0 Ωn(d). They are considered
as H-modules, where H acts on the first factor by left multiplication. We can iden-
tify Ωn(d) with the space of linear maps from

∧n
d to H , and H⊗2 ⊗H Ωn(d) with

Hom(
∧n

d, H⊗2). For g ∈ H , α ∈ Ω, we will write the element g ⊗α ∈ Ω(d) as gα;
in particular, we will identify Ω with k⊗ Ω ⊂ Ω(d).

Let us consider H = U(d) as a left d-module with respect to the action a · h =
−ha, where ha is the product of a ∈ d ⊂ H and h ∈ H in H . Then consider the
cohomology complex of d with coefficients in H :

(6.8) 0 → Ω0(d)
d
−→ Ω1(d)

d
−→ · · ·

d
−→ Ω2N+1(d) .
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Explicitly, the differential d is given by the formula (α ∈ Ωn(d), ai ∈ d):

(dα)(a1 ∧ · · · ∧ an+1)

=
∑

i<j

(−1)i+jα([ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an+1)

+
∑

i

(−1)iα(a1 ∧ · · · ∧ âi ∧ · · · ∧ an+1) ai if n ≥ 1,

(dα)(a1) = −αa1 if α ∈ Ω0(d) = H.

(6.9)

Notice that d is H-linear. The sequence (6.8) is called the pseudo de Rham complex.
It was shown in [BDK, Remark 8.1] that the n-th cohomology of the complex
(Ω(d), d) is trivial for n 6= 2N + 1 = dim d, and it is 1-dimensional for n = 2N + 1.
In particular, the sequence (6.8) is exact.

Example 6.1. For α = 1 ∈ H = Ω0(d), Eq. (6.9) gives

(6.10) − d1 = ǫ :=

2N∑

i=0

∂i ⊗ xi ∈ H ⊗ d∗ = Ω1(d) .

Next, we introduce H-bilinear maps

(6.11) ∗ : W (d)⊗ Ωn(d) → H⊗2 ⊗H Ωn(d)

by the formula [BDK]:

(w ∗ γ)(a1∧ · · · ∧ an) = −(f ⊗ ga)α(a1 ∧ · · · ∧ an)

+
n∑

i=1

(−1)i(fai ⊗ g)α(a ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an)

+

n∑

i=1

(−1)i(f ⊗ g)α([a, ai] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ an) ∈ H⊗2 ,

(6.12)

where n ≥ 1, w = f ⊗ a ∈ W (d) and γ = gα ∈ Ωn(d). When γ = g ∈ Ω0(d) = H ,
we let w ∗ γ = −f ⊗ ga. Note that the latter coincides with the action (3.24) of
W (d) on H .

It was shown in [BDK,BDK1] that maps (6.11) provide each Ωn(d) with a struc-
ture of a W (d)-module. These modules are instances of tensor modules as intro-
duced in [BDK1], namely Ωn(d) = T (k,Ωn) (see Section 5.1). The action of W (d)
commutes with d, i.e.,

(6.13) w ∗ (dγ) = ((id⊗ id)⊗H d)(w ∗ γ)

for w ∈ W (d), γ ∈ Ωn(d).
Let us extend the wedge product in Ω to a product in Ω(d) by setting

(fα) ∧ (gβ) = (fg)(α ∧ β) , α, β ∈ Ω , f, g ∈ H .

In a similar way, we also extend it to products

(h⊗H (f ⊗ α)) ∧ β = h⊗H (f ⊗ (α ∧ β)) ,

α ∧ (h⊗H (g ⊗ β)) = h⊗H (g ⊗ (α ∧ β)) , h ∈ H⊗2 .

Lemma 6.3. For any w ∈W (d), α ∈ Ωn and β ∈ Ω, we have:

d(α ∧ β) = d0α ∧ β + (−1)nα ∧ dβ ,(6.14)

w ∗ (α ∧ β) = (w ∗ α) ∧ β + α ∧ (w ∗ β) + w ⊗H (α ∧ β) .(6.15)
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Proof. Since d0 is an odd derivation of the wedge product, by subtracting (2.5)
from (6.14), we obtain that (6.14) is equivalent to:

(d− d0)(α ∧ β) = (−1)nα ∧ (d− d0)β .

On the other hand, comparing (6.14) with (2.5) and (2.3), we see that

(6.16) (d− d0)α = −ǫ ∧ α ,

where ǫ is defined by (6.10). Then (6.14) follows from the associativity and graded-
commutativity of the wedge product (see (2.4)).

By H-linearity, it is enough to prove (6.15) in the case w = 1⊗∂i. Then by (5.3)
we have

(1 ⊗ ∂i) ∗ α− (1⊗ ∂i)⊗H α = (1⊗ 1)⊗H (ad ∂i) · α+

2N∑

j=0

(∂j ⊗ 1)⊗H eji · α .

Using that (ad ∂i) and eji are even derivations of the wedge product (see (2.8))
completes the proof. �

6.3. Contact pseudo de Rham complex. As before, let Ωn(d) = H ⊗ Ωn,

Ω(d) =
⊕2N+1

n=0 Ωn(d) be the spaces of pseudoforms. We extend the operators Θ
and Ψ defined in Section 6.1 to Ω(d) by H-linearity. We also set In(d) = H ⊗ In

and Kn(d) = H ⊗Kn. From (6.14) and ω = d0θ, we deduce:

(6.17) dΨ = Ψd, dΘ = Ψ−Θd ,

where d is given by (6.9). This implies that dIn(d) ⊂ In+1(d) and dKn(d) ⊂
Kn+1(d). Therefore, we have the induced complexes

0 → Ω0(d)/I0(d)
d
−→ Ω1(d)/I1(d)

d
−→ · · ·

d
−→ ΩN (d)/IN (d)(6.18)

and

KN+1(d)
d
−→ KN+2(d)

d
−→ · · ·

d
−→ K2N+1(d).(6.19)

Lemma 6.4 (cf. [Ru]). The sequences (6.18) and (6.19) are exact.

Proof. First, to show exactness at the term Ωn(d)/In(d) in (6.18) for n ≤ N − 1,
take α ∈ Ωn(d) such that dα ∈ In+1(d). This means dα = Θβ + Ψγ for some
β ∈ Ωn(d), γ ∈ Ωn−1(d). Then d(α− Θγ) = dα−Ψγ + Θdγ = Θ(β + dγ) ; hence,
by changing the representative α mod In(d), we can assume that γ = 0. Now we
have 0 = d2α = dΘβ = Ψβ − Θdβ. Then Ψ(Θβ) = 0, i.e., Θβ ∈ Kn+1(d). But
Kn+1(d) = 0 for n ≤ N − 1; thus Θβ = 0 and dα = 0. It follows that α = dρ for
some ρ ∈ Ωn−1(d).

To prove exactness at the term Kn(d) in (6.19) for n ≥ N + 2, take α ∈ Kn(d)
such that dα = 0. Then α = dβ for some β ∈ Ωn−1(d). Since In−1(d) = Ωn−1(d)
for n ≥ N +2, we can write β = Θγ+Ψρ for some γ ∈ Ωn−2(d), ρ ∈ Ωn−3(d). But
since d(Ψρ) = d(Θdρ), by replacing γ with γ+dρ, we can assume that ρ = 0. Then
dβ = −Θdγ + Ψγ and Θα = 0 implies ΘΨγ = 0. Therefore, β = Θγ ∈ Kn−1(d),
which completes the proof. �

Now, following [Ru], we will construct a map dR : ΩN (d)/IN (d) → KN+1(d)
that connects the complexes (6.18) and (6.19), which we will call the Rumin map.
Since IN+1(d) = ΩN+1(d), for every α ∈ ΩN (d) we can write dα = Θβ + Ψγ for
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some β ∈ ΩN(d), γ ∈ ΩN−1(d). Then, as in the proof of Lemma 6.4, we have
dα̃ = Θ(β + dγ) ∈ KN+1(d) for α̃ = α−Θγ. We let dRα = dα̃.

We have to prove that dRα is independent of the choice of α̃ and depends only on
the class of α mod IN (d). First, if dα = Θβ+Ψγ = Θβ′+Ψγ′, then ΘΨ(γ−γ′) = 0,
which implies Θ(γ − γ′) ∈ KN (d). But KN(d) = 0 ; hence, α̃ = α − Θγ =
α − Θγ′. Next, consider the case when α ∈ IN (d). Write α = Θµ + Ψρ ; then
dα = Θ(−dµ) + Ψ(µ+ dρ) and dRα = Θ((−dµ) + d(µ+ dρ)) = 0, as desired.

Using the Rumin map dR, we can combine the two complexes (6.18) and (6.19).

Proposition 6.1 (cf. [Ru]). The sequence

0 → Ω0(d)/I0(d)
d
−→ · · ·

d
−→ ΩN(d)/IN (d)

dR

−−→ KN+1(d)
d
−→ · · ·

d
−→ K2N+1(d)

is an exact complex.

Proof. In the preceding discussion we have shown that dR is well defined. Next, it
is clear by construction that dRd = 0 and ddR = 0. Due to Lemma 6.4, it remains
only to check exactness at the terms ΩN (d)/IN (d) and KN+1(d).

First, let α ∈ ΩN (d) be such that dRα = 0. Then dα̃ = dRα = 0 ; hence α̃ = dβ
for some β ∈ ΩN−1(d). Then α+ IN (d) = α̃+ IN (d) = d(β + IN−1(d)).

Now let α ∈ KN+1(d) be such that dα = 0. Then α = dβ for some β ∈ ΩN (d).

Since dβ ∈ KN+1(d), we can take β̃ = β, and dRβ = dβ̃ = α. �

We will call the complex from Proposition 6.1 the contact pseudo de Rham com-

plex.

6.4. K(d, θ)-action on the contact pseudo de Rham complex. Here we prove
that the contact pseudo de Rham complex is a complex of K(d, θ)-modules, and
we realize its members as tensor modules.

First, we show that the members of the Rumin complex (6.7) are csp d̄-modules.
Recall that the Lie algebra gl d acts on the space Ωn of constant coefficient n-forms
via (2.7), and this action is by even derivations (see (2.8)).

Lemma 6.5. For every n, we have: csp d̄ · In ⊂ In and csp d̄ · Kn ⊂ Kn. In

addition, c0 · Ωn ⊂ In and c0 · Kn = {0}. Hence the gl d-action on Ωn induces

actions of csp d̄ on Ωn/In and Kn, and the trivial action of c0 on them.

Proof. By Lemma 2.2, A · α = cα for A ∈ csp d̄, α ∈ {θ, ω} and some c ∈ C. Then
by (2.8), A · (α ∧ β) = α ∧ (cβ +A · β) for all β ∈ Ω. This implies A · In ⊂ In and
A ·Kn ⊂ Kn.

Next, recall that c0 = span{e0k}k 6=0 and e0k · x
i = −δikx

0 = δikθ. Then

e0k · (x
i1 ∧ · · · ∧ xin) = θ ∧ xi2 ∧ · · · ∧ xin , if k = i1 ,

and is zero if k 6= is for all s. Therefore, c0 · Ωn ⊂ ΘΩn−1 ⊂ In.
Now, if α ∈ Kn, by (6.6) we can write α = θ ∧ β for some β ∈ Ωn−1. Then for

k 6= 0 we have e0k · β = θ ∧ γ for some γ ∈ Ωn−2, and we find

e0k · α = e0k · (θ ∧ β) = θ ∧ (e0k · β) = θ ∧ (θ ∧ γ) = 0 ,

using that e0k · θ = 0. �

Lemma 6.6. We have isomorphisms of csp d̄-modules

Ωn/In ≃ (R(πn),−n) , K2N+1−n ≃ (R(πn),−2N − 2 + n) , 0 ≤ n ≤ N .
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Proof. Recall that we have isomorphisms of sp d̄-modules Ωn/In ≃ Ω̄n/Īn and
Kn ≃ K̄n−1 (see (6.6)). The sp d̄-action on these modules is described in Lemma 6.2.
Finally, to determine the action of I ′, we use (2.8), (2.24) and (6.6). We obtain
that I ′ acts as −n on Ω̄n ⊂ Ωn and as −n− 1 on Kn. �

Here is the main result of this section.

Theorem 6.1. The contact pseudo de Rham complex

0 → Ω0(d)/I0(d)
d
−→ · · ·

d
−→ ΩN(d)/IN (d)

dR

−−→ KN+1(d)
d
−→ · · ·

d
−→ K2N+1(d)

is an exact complex of K(d, θ)-modules. Its members are tensor modules, namely

Ωn(d)/In(d) = T (k,Ωn/In) = T (k, R(πn),−n)

and

Kn(d) = T (k,Kn) = T (k, R(π2N+1−n),−n− 1).

Proof. Recall that all Ωn(d) = T (k,Ωn) are tensor modules for W (d); see Sec-
tion 5.1 and [BDK1]. In particular, e ∗ (1 ⊗ α) is given by Remark 5.2 for α ∈ Ωn.
By Lemma 6.5, c0 acts trivially on Kn and Kn is a csp d̄-module. Therefore, for
α ∈ Kn, the action e ∗ (1 ⊗ α) is given by (5.9). By definition, this means that
Kn(d) = H ⊗Kn = T (k,Kn) has the structure of a tensor K(d, θ)-module. The
same argument applies to the quotient Ωn(d)/In(d) = T (k,Ωn/In).

The exactness of the complex was established in Proposition 6.1. It remains
to prove that the maps of the complex are homomorphisms of K(d, θ)-modules.
For d, this follows by construction from the fact that d: Ωn(d) → Ωn+1(d) is a
homomorphism of W (d)-modules. In order to prove it for dR, we need the next
lemma, which can be deduced from Remark 5.2 and Lemma 2.2.

Lemma 6.7. Identifying α ∈ Ωn with 1⊗ α ∈ Ωn(d) = H ⊗ Ωn, we have:

e ∗ θ = −(e+ ∂0 ⊗ 1)⊗H θ ,(6.20)

e ∗ ω = −(e+ ∂0 ⊗ 1)⊗H ω −
2N∑

i=1

(∂i∂0 ⊗ 1)⊗H (θ ∧ xi) .(6.21)

Now take an α ∈ ΩN (d) and write dα = Θβ + Ψγ = θ ∧ β + ω ∧ γ. Then, by
definition, dRα = d(α − θ ∧ γ). Using that d is a homomorphism (see (6.13)), we
obtain

e ∗ (dRα) =
(
(id⊗ id)⊗H d

)(
e ∗ α− e ∗ (θ ∧ γ)

)
.

Then we find from (6.15) and (6.20) that

e ∗ (θ ∧ γ) = θ ∧ γ′ , γ′ = e ∗ γ − (∂0 ⊗ 1)⊗H γ .

On the other hand, using again (6.15), (6.20) and (6.21), we compute

((id⊗ id)⊗H d)(e ∗ α) = e ∗ (dα) = e ∗ (θ ∧ β) + e ∗ (ω ∧ γ) = θ ∧ β′ + ω ∧ γ′

for some β′, where γ′ is as above. Then

((id⊗ id)⊗H dR)(e ∗ α) =
(
(id⊗ id)⊗H d

)(
e ∗ α− θ ∧ γ′

)
,

which coincides with e ∗ (dRα). This completes the proof of the theorem. �
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6.5. Twisted contact pseudo de Rham complex. For any choice of a finite-
dimensional d-module Π, one may apply the twisting functor TΠ from Section 3.3
to Theorem 6.1 and obtain a corresponding exact complex of K(d, θ)-modules

0 → T (Π,k, 0)
dΠ−−→ T (Π, R(π1),−1)

dΠ−−→ · · ·
dΠ−−→ T (Π, R(πN ),−N)

dR
Π−−→

T (Π, R(πN ),−N − 2)
dΠ−−→ · · ·

dΠ−−→ T (Π, R(π1),−2N − 1)
dΠ−−→ T (Π,k,−2N − 2),

where we used the notation dΠ = TΠ(d) and dRΠ = TΠ(d
R). In the rest of the paper,

we will suppress the reference to Π, and write d instead of dΠ and dR instead of
dRΠ whenever there is no possibility of confusion. If we set

VΠ
p = V(Π, R(πp), p) = T (Π⊗ ktr ad, R(πp), p− 2N − 2)

VΠ
2N+2−p = V(Π, R(πp), 2N + 2− p) = T (Π⊗ ktr ad, R(πp),−p),

(6.22)

for 0 ≤ p ≤ N , where R(π0) = k denotes the trivial representation of sp d̄, then we
obtain an exact sequence of K(d, θ)-modules

0 → VΠ
2N+2

d
−→VΠ

2N+1
d
−→ · · ·

d
−→ VΠ

N+2
dR

−−→ VΠ
N

d
−→ · · ·

d
−→ VΠ

1
d
−→ VΠ

0 .(6.23)

The above exact complex will be useful in the study of reducible tensor modules
and in the computation of their singular vectors. We will be using notation (6.22)
throughout the rest of the paper. Notice that VΠ

N+1 is not defined.

7. Irreducibility of Tensor Modules

We will investigate submodules of tensor modules, and prove a criterion for
irreducibility of tensor modules. Throughout the section, R will be an irreducible
(d⊕ csp d̄)-module with an action denoted ρR, and V(R) the corresponding tensor
module.

7.1. Coefficients of elements and submodules. Note that every element v ∈
V(R) = H ⊗R can be written uniquely in the form

(7.1) v =
∑

I∈Z
2N+1

+

∂(I) ⊗ vI , vI ∈ R .

Definition 7.1. The nonzero elements vI in (7.1) are called coefficients of v ∈ V(R).
For a submodule M ⊂ V(R), we denote by coeffM the subspace of R linearly
spanned by all coefficients of elements from M .

It will be convenient to introduce the notation

(7.2) ψ(u) =

2N∑

i,j=1

∂i∂j ⊗ ρR(f
ij)u , u ∈ R .

Lemma 7.1. If v ∈ V(R) is given by (7.1), then

e ∗ v =
∑

I

(1⊗ ∂(I))⊗H ψ(vI)

+ terms in (k⊗ ∂(I)H)⊗H (F1H ⊗ (k+ ρR(sp d̄+ d)) · vI) .

(7.3)

In particular, the coefficient multiplying 1⊗ ∂(I) equals ψ(vI) modulo F1 V(R).
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Proof. We rewrite (5.12) using the fact that

(7.4) (∂i ⊗ 1)⊗H v = (1 ⊗ 1)⊗H ∂iv − (1 ⊗ ∂i)⊗H v

for any v ∈ V(R). We obtain:

e ∗ (1⊗ u) = (1 ⊗ 1)⊗H

(
ψ(u)−

2N∑

k=1

∂k ⊗ ρR(∂
k)u

)

+ terms in (k⊗H)⊗H

(
d⊗

(
k+ ρR(sp d̄)

)
· u+ k⊗

(
k+ ρR(sp d̄+ d)

)
· u

)
.

(7.5)

Then plugging in (7.1) and applying H-bilinearity completes the proof. �

Remark 7.1. For v ∈ singV(R), we have by (5.18)

(7.6) e ∗ v =

2N∑

i,j=1

(1⊗ ∂i∂j)⊗H ρsing(f
ij)v + terms in (k⊗ F1H)⊗H V(R).

Lemma 7.2. For any nonzero proper K(d, θ)-submodule M ⊂ V(R), we have

coeffM = R.

Proof. Pick a nonzero element v =
∑

I ∂
(I) ⊗ vI contained in M . Then Lemma 7.1

shows that M contains an element congruent to ψ(vI) modulo F1 V(R), thus coef-
ficients of ψ(vI) lie in coeffM for all I. This proves that sp d̄(coeffM) ⊂ coeffM .
Similarly, one can write

e ∗ v =
∑

I

(1 ⊗ ∂(I))⊗H

(
ψ(vI)−

2N∑

k=1

∂k ⊗ ρR(∂
k)vI

)

+ terms in (k⊗ ∂(I)H)⊗H

(
d⊗ ρR(sp d̄+ k)vI + k⊗

(
k+ ρR(sp d̄+ d)

)
vI

)
,

showing that ρR(∂
k)vI ∈ coeffM for all I and all k = 1, . . . , 2N . Thus, d̄(coeffM) ⊂

coeffM . However, d̄ generates d as a Lie algebra, hence d stabilizes coeffM as well.
Then coeffM is a nonzero (d⊕ csp d̄)-submodule of R. Irreducibility of R now gives
that coeffM = R. �

Corollary 7.1. Let M be a nonzero proper K(d, θ)-submodule of V(R). Then for

every u ∈ R there is an element in M that coincides with ψ(u) modulo F1 V(R).

Proof. As coeffM = R, it is enough to prove the statement for coefficients of ele-
ments v ∈M . Since M is a K(d, θ)-submodule of V(R), the coefficient multiplying
1⊗ ∂(I) in (7.3) still lies in M and it equals ψ(vI) modulo F1 V(R). �

7.2. An irreducibility criterion. The results of the previous subsection make it
possible to prove a sufficient condition for irreducibility of V(R) when the sp d̄-action
on R is nontrivial. We first need the following lemma.

Lemma 7.3. Assume the K(d, θ)-tensor module V(R) contains a nonzero proper

submodule. Then the sp d̄-action on R satisfies

(7.7)
∑

fabf cd(u) = 0 , u ∈ R ,

for all 1 ≤ a, b, c, d ≤ 2N , where the sum is over all permutations of a, b, c, d.
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Proof. Let M be a nonzero proper K(d, θ)-submodule of V(R) and v ∈ M be an
element equal to ψ(u) modulo F1 V(R) (see Corollary 7.1). Let us express e ∗ v
in the form

∑
I(1 ⊗ ∂(I)) ⊗H uI using (5.12) and (7.4). If |I| > 4 then uI = 0;

moreover if |I| = 4 then uI lies in k ⊗ R. By Lemma 5.2 these coefficients must
cancel with each other, and they give exactly (7.7). �

Now we can prove the main result of this section.

Theorem 7.1. If the K(d, θ)-tensor module V(Π, U, c) is not irreducible, then U
is either the trivial representation of sp d̄ or is isomorphic to R(πi) for some i =
1, . . . , N .

Proof. Lowering indices in (7.7) gives the following equivalent identity:

(f b
af

d
c + facf

bd + fd
af

b
c + f b

c f
d
a + f bdfac + fd

c f
b
a) · u = 0,

for all 1 ≤ a, b, c, d ≤ 2N and u ∈ R. Specializing to a = b = c = d = i we obtain:

4f i
if

i
i + fiif

ii + f iifii = 0 .

Recalling that elements (2.30) form a standard sl2-triple, this can be rewritten as

h2i − eifi − fiei = 0 .

As h2i is a linear combination of h2i − (eifi + fiei) = 0 and the Casimir element of
〈ei, hi, fi〉 ≃ sl2, it acts on any irreducible sl2-submodule W ⊂ U as a scalar, which
forces h2i to be equal either 0 or 1. Then the eigenvalue of the action of hi = −2f i

i

on a highest weight vector in U is also either 0 or 1.
When the basis ∂1, . . . , ∂2N of d̄ is symplectic with respect to ω, elements hi =

eii − eN+i
N+i form a basis of the diagonal Cartan subalgebra of sp d̄ (see (2.32)). Let

U = R(λ) be an irreducible representation of sp d̄ with highest weight λ =
∑

i λiπi.

For the standard choice of simple roots, the eigenvalue of h1 = e11 − eN+1
N+1 on the

highest weight vector λ is
∑

i λi ≤ 1 (cf. [FH, Lecture 16]). Since λi are non-negative
integers, λ must be 0 or one of the fundamental weights πi. �

Remark 7.2. The module V(Π, U, c) is always irreducible if the sp d̄-module U is
infinite-dimensional irreducible. In order to show this, it suffices to prove that
the factor of U(sp d̄) by the ideal generated by relations (7.7) is finite-dimensional.
It is enough to prove this for the associated graded algebra S(sp d̄): letting a =
b = c = d in (7.7), we get (faa)2 = 0; then letting in (7.7) a = b, c = d, we
get (fab)2 = −4faaf bb, hence (fab)4 = 0 for all a, b, proving the claim (we are
grateful to C. De Concini for this argument). Similarly, the tensor modules for Lie
pseudoalgebras of W and S types in [BDK1] are irreducible if the corresponding
modules U are irreducible infinite-dimensional.

We are left with investigating irreducibility of all tensor modules for which U
is isomorphic to some R(πi) or to the trivial representation R(π0) = k. We will
do so by explicitly constructing all singular vectors contained in nonzero proper
submodules of V(Π, U, c), and thus determining conditions on the scalar value c
of the action of I ′. A central tool for the classification of singular vectors is the
following proposition, which enables us to bound the degree of singular vectors.

Proposition 7.1. Let v ∈ V(R) be a singular vector contained in a nonzero proper

K(d, θ)-submodule M , and assume that the sp d̄-action on R is nontrivial. Then v
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is of degree at most two in the contact filtration, i.e., it is of the form

(7.8) v =

2N∑

i,j=1

∂i∂j ⊗ vij +

2N∑

k=0

∂k ⊗ vk + 1⊗ ṽ .

Proof. Write v =
∑

I ∂
(I) ⊗ vI . Then Lemma 7.1, together with (7.6), shows that

ψ(vI) = 0 whenever |I|′ ≥ 2. As the sp d̄-action on R is nontrivial, ψ(vI) = 0
implies vI = 0. �

Our next goal is to characterize singular vectors of degree at most two in all
modules that do not satisfy the irreducibility criterion given in Theorem 7.1, and
thus to obtain a classification of reducible tensor modules.

8. Computation of Singular Vectors

In this section, we will be concerned with tensor modules of the form V(Π, U, c),
where Π is an irreducible finite-dimensional representation of d, and U is either the
trivial sp d̄-module or one the fundamental representations. Our final result states
that such a tensor module contains singular vectors if and only if it shows up in
a twist of the contact pseudo de Rham complex, and that in such cases singular
vectors may be described in terms of the differentials.

8.1. Singular vectors in V(Π,k, c). Here we treat separately the case U ≃ k.
Since the sp d̄-action is trivial, now (5.12) can be rewritten as

e ∗ (1⊗ u) =

2N∑

k=1

(∂k ⊗ 1)⊗H

(
∂k ⊗ u− 1⊗ ρR(∂

k)u
)

+ (∂0 ⊗ 1)⊗H (1 ⊗ cu/2)− (1⊗ 1)⊗H

(
∂0 ⊗ u− 1⊗ ρR(∂0)u

)
.

(8.1)

Using (5.13), we can also write

e ∗ (1⊗ u) =−
2N∑

k=1

(1⊗ ∂k)⊗H

(
∂k ⊗ u− 1⊗ ρR(∂

k)u
)

− (1⊗ ∂0)⊗H (1⊗ cu/2) + terms in (k⊗ k)⊗H F1 V(R) .

(8.2)

Proposition 8.1. We have:

(i) singV(Π,k, c) = F0 V(Π,k, c) for c 6= 0;

(ii) singV(Π,k, 0) = F′1 V(Π,k, 0);

(iii) V(R) = V(Π,k, c) is irreducible if and only if c 6= 0.

Proof. (i) Let v =
∑

I ∂
(I)⊗vI ∈ V(R) be a singular vector, and assume that vI 6= 0

for some I with |I| > 0. If n is the maximal value of |I| for such I, choose among
all I = (i0, i1, . . . , i2N ) with |I| = n one with largest possible i0. If we use (8.2) to
compute e ∗ v and express the result in the form

(8.3)
∑

J

(1⊗ ∂(J))⊗H uJ , uJ ∈ V(R) ,

then the coefficient multiplying 1⊗∂(I+ε0) equals−(i0+1)cvI/2. Since v is singular,
this must vanish if |I| > 0, and c 6= 0 gives a contradiction with vI 6= 0.

(ii) In the same way as in part (i), we show that sing V(Π,k, 0) ⊂ F1 V(Π,k, 0).
Indeed, computing the coefficient multiplying 1⊗∂(I+εk), we see that |I| > 1 implies
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vI = 0. Now, constant vectors are clearly singular, and using u = ∂i ⊗ vi (i 6= 0)
in (8.1) easily shows u to be singular for all choices of vi ∈ R. We are left with
showing that ∂0 ⊗ v0 (v0 6= 0) is never a singular vector. Once again, substituting
this in (8.1) and expressing the result as in (8.3) gives nonzero terms multiplying
∂0∂k ⊗ 1 for all k 6= 0.

(iii) If c 6= 0, then V(Π,k, c) has no nonconstant singular vectors, hence it is
irreducible by Corollary 5.4. As far as V(Π,k, 0) is concerned, direct inspection of
(8.1) shows that elements ∂ ⊗ u − 1 ⊗ ρR(∂)u (∂ ∈ d, u ∈ R) generate over H a
proper K(d, θ)-submodule of V(Π,k, 0). �

Corollary 8.1. We have sing VΠ
0 = F0 VΠ

0 + dF0 VΠ
1 .

Proof. The (d⊕csp d̄)-submodule dF0 VΠ
1 ⊂ singVΠ

0 contains nonconstant elements,
so it has a nonzero projection to gr′1 VΠ

1 . However, Corollary 5.5 shows that this is
isomorphic to Π⊠ d, whence it is irreducible. �

We will now separately classify singular vectors of degree one and two in all other
cases.

8.2. Classification of singular vectors of degree one. Our setting is the fol-
lowing: V = V(R) = H⊗R is a reducible K(d, θ) tensor module, R is isomorphic to
Π⊠U as a (d⊕ csp d̄)-module, where both Π and U are irreducible, and U = R(πn)
as an sp d̄-module for some 1 ≤ n ≤ N . We are also given a nonzero proper sub-
module M ⊂ V . Note that by assumption U is not the trivial sp d̄-representation.
We look for singular vectors of degree one, i.e., of the form

(8.4) v =
2N∑

i=0

∂i ⊗ vi + 1⊗ ṽ ,

which are contained in M . Note that every such singular vector is uniquely deter-
mined by its degree one part. Indeed, if v and v′ are two such vectors agreeing in
degree one, then v − v′ is a singular vector contained in M ∩ (k ⊗ R) = {0} (see
Lemma 5.2).

Lemma 8.1. If v ∈M is a singular vector written as in (8.4), then v0 = 0.

Proof. Compute e ∗ v using (5.12). Then if we write e ∗ v =
∑

I(∂
(I) ⊗ 1) ⊗H vI ,

the coefficient multiplying ∂0∂i∂j ⊗ 1 for i ≤ j is ρR(f
ij)v0 ∈ M ∩ (k ⊗ R), up to

a nonzero multiplicative constant. Hence ρR(f
ij)v0 = 0 for all i, j, which implies

v0 = 0 as the sp d̄-action is nontrivial. �

Proposition 8.2. Let v, v′ be nonzero singular vectors of degree one contained in

nonzero proper submodules M,M ′ of a tensor module V(R) = V(Π, U, c), as above.

If v = v′ mod F0 V(R), then v = v′.

Proof. By Lemma 8.1 and Corollary 5.5, I ′ acts on (sing V(R)∩F1 V(R))/F0 V(R)
via multiplication by c+ 1, and it obviously acts on F0 V(R) via multiplication by
c. Then sing V(R) ∩ F1 V(R) is isomorphic to the direct sum of the c + 1 and c
eigenspaces with respect to I ′.

Any K̃-submodule of V is in particular stable under the action of I ′, so it con-
tains the I ′-eigenspace components of all of its singular vectors. However, a nonzero
proper submodule M cannot contain constant singular vectors. Thus, singular vec-
tors must lie in the c+1-eigenspace, and their constant coefficient part is determined
by their degree one part, independently on the choice of the submodule M . �



IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE PSEUDOALGEBRAS II 41

So far, we have showed that singular vectors of degree one also have degree one
in the contact filtration, and that those contained in a nonzero submodule must be
homogeneous (i.e. eigenvectors) with respect to the action of I ′. Notice that since
all constant vectors are singular, a singular vector of degree one stays singular if we
alter or suppress its constant part.

Lemma 8.2. A nonzero element v =
∑2N

k=1 ∂k ⊗ vk ∈ H ⊗ R is a singular vector

in V(R) = V(Π, U, c) for at most one value of c.

Proof. Compute e ∗ v =
∑

I(∂
(I) ⊗ 1)⊗H vI using (5.12). For k 6= 0, the coefficient

multiplying ∂0∂k ⊗ 1 equals −1/2⊗ cvk plus a linear combination of terms of the
form 1 ⊗ ρR(f

ij)vk that arise from reordering terms multiplying ∂i∂j∂k ⊗ 1; such
terms are however independent of the choice of c. All such coefficients must vanish
when v is singular. If this happens for two distinct values of c, we obtain vk = 0
for all k, a contradiction with v 6= 0. �

Theorem 8.1. Assume that the action of sp d̄ on U is nontrivial. If V = V(Π, U, c)
contains singular vectors of degree one, then V = VΠ

p for some 1 ≤ p ≤ 2N +1, p 6=

N + 1. More precisely, sing VΠ
p ∩ F1 VΠ

p = F0 VΠ
p + dF0 VΠ

p+1.

Proof. By Theorem 7.1, V(R) = V(Π, U, c) is irreducible unless U = R(πp) for some
1 ≤ p ≤ N. Lemma 8.1 and Corollary 5.5 show that singular vectors of degree one in
a nonzero proper K(d, θ)-submoduleM project faithfully to a (d⊕csp d̄)-submodule
of gr′1 V(R) isomorphic to Π ⊠ (d̄ ⊗ U, c+ 1). We can explicitly decompose d̄ ⊗ U
as a direct sum of irreducibles using Lemma 2.4. One has:

d̄⊗R(π1) ≃ R(2π1)⊕ k⊕R(π2) ,

d̄⊗R(πp) ≃ R(πp + π1)⊕R(πp−1)⊕R(πp+1), if 1 < p < N ,

d̄⊗R(πN ) ≃ R(πN + π1)⊕R(πN−1) .

For all values of 1 ≤ p ≤ N , the sp d̄-module R(πp + π1) satisfies the irreducibility
criterion stated in Theorem 7.1, and its dimension is larger than dimR(πp). We
can therefore proceed as in [BDK1, Lemma 7.8] to conclude that no singular vectors
will have a nonzero projection to this summand.

However, by the construction of the contact pseudo de Rham complex, the ten-
sor module V(Π, R(πp), c) contains singular vectors projecting to the summand
R(πp+1) when c = p and to the summand R(πp−1) if c = 2N + 2 − p. Lemma 8.2
shows now that these are the only values of c for which there are singular vectors
projecting to such components, whereas Proposition 8.2 implies that those are the
only homogeneous singular vectors. �

8.3. Classification of singular vectors of degree two. In all of this section,
V(R) = V(Π, U, c) will be a tensor module containing a singular vector v of degree
two. Due to Proposition 7.1, we may assume that

(8.5) v =

2N∑

i,j=1

∂i∂j ⊗ vij +

2N∑

i=0

∂i ⊗ vi + 1⊗ ṽ

where vij = vji for all i, j. We already know by Proposition 5.4 that V(R) is
reducible, hence U = R(πp) for some p by Theorem 7.1 and Proposition 8.1. Our
goal is to describe all possible v’s, and show that the only tensor modules possessing
them is V(Π, R(πN ), N). Recall the definition of ψ(u) given by (7.2).
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Lemma 8.3. We have fαβ(v) = ψ(vαβ) mod F1 V(R).

Proof. Use (7.5) to compute e ∗ v and compare it with (7.6). �

This shows that for some u ∈ R there exists a singular vector coinciding with
ψ(u) modulo F1 V(R), since if v is a singular vector of degree two, then vαβ 6= 0 for
some choice of α, β.

Lemma 8.4. Let v, v′ be singular vectors of degree two in V(R), and assume that

v = v′ mod F1 V(R). Then v0 = v′0.

Proof. Apply Lemma 8.1 to the singular vector of degree one v − v′. �

Note that since I ′ acts on singular vectors, the projection operator p2 of V(R) =
V(Π, U, c) to the c + 2 eigenspace with respect to I ′ maps singV(R) ∩ F2 V(R) to
itself. If a nonzero proper submodule M of V(R) contains a singular vector v of
degree two, then it also contains p2v. We will say that p2v is a homogeneous singular
vector of degree two.

Lemma 8.5. For every u ∈ R there exists a unique homogeneous singular vector

(8.6) φ(u) = ψ(u) mod F1 V(R) .

Elements φ(u) depend linearly on u and satisfy:

fαβ(φ(u)) = φ(fαβ(u)) ,(8.7)

∂̃ · φ(u) = φ(∂̃ · u) .(8.8)

Moreover, if v is a homogeneous singular vector of degree two as in (8.5), then

(8.9) fαβ(v) = φ(vαβ) .

Proof. We know that for some 0 6= u ∈ R we can find a singular vector v equal to
ψ(u) modulo F1 V(R). Then its projection p2v to the c+ 2-eigenspace of I ′ is still
singular and coincides with v up to lower degree terms. If we are able to show that
(8.7) and (8.8) hold whenever both sides make sense, then the set of all u ∈ R for

which φ(u) is defined is a nonzero (d̃ ⊕ csp d̄)-submodule of R, hence all of it by
irreducibility.

So, say φ(u) is an element as above. By Lemma 8.3, we know that fαβ(φ(u))
coincides with ψ(fαβ(u)) up to lower degree terms. Moreover, as I ′ commutes with
sp d̄, the vector fαβ(φ(u)) is still homogeneous, thus showing (8.7). The proof of
(8.9) is completely analogous. Similarly, Lemma 5.4 implies (8.8), as the action of

I ′ commutes with that of d̃. �

Corollary 8.2. The map φ : R → singV(R) is a well-defined injective (d ⊕ sp d̄)-
homomorphism, and the action of sp d̄ maps p2 singV(R) to the image of φ.

Proof. Since we are assuming that the action of sp d̄ on R is nontrivial, the map
ψ : R→ V(R) is injective. Then, by (8.6), φ is also injective. �

Corollary 8.3. The space p2 singV(R) does not contain trivial sp d̄-summands.

Proof. If v ∈ p2 singV(R) lies in a trivial summand, then 0 = fαβ(v) = φ(vαβ) for
all α, β. But φ is injective, hence vαβ = 0 for all α, β, a contradiction with v being
of degree two. Therefore v = 0. �

The above results can be summarized as follows.
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Theorem 8.2. The map φ : R → p2 sing V(R) is an isomorphism of (d ⊕ sp d̄)-
modules. The action of I ′ on p2 sing V(R) is via scalar multiplication by c+2. All

homogeneous singular vectors of degree two in V(R) are of the form φ(u) for u ∈ R.

A classification of singular vectors of degree two will now follow by computing
the action of e ∈ K(d, θ) on vectors of the form φ(u). In the computations we
will need some identities, which hold in any associative algebra. We will denote by
[x, y] = xy − yx the usual commutator and by

{x1, . . . , xn} =
1

n!

∑

σ∈Sn

xσ(1) . . . xσ(n)

the complete symmetrization of the product.

Lemma 8.6. For any elements a, b, c, d in an associative algebra, we have:

abc = {a, b, c}+
1

2

(
{a, [b, c]}+ {b, [a, c]}+ {c, [a, b]}

)
+

1

6

(
[a, [b, c]] + [[a, b], c]

)
,

abcd = {a, b, c, d}

+
1

2

(
{a, b, [c, d]}+ {a, c, [b, d]}+ {a, d, [b, c]}

+ {b, c, [a, d]}+ {b, d, [a, c]}+ {c, d, [a, b]}
)

+
1

4

(
{[a, b], [c, d]}+ {[a, c], [b, d]}+ {[a, d], [b, c]}

)

+
1

6

(
{a, [b, [c, d]]}+ {a, [[b, c], d]}+ {b, [a, [c, d]]}+ {b, [[a, c], d]}

+ {c, [a, [b, d]]}+ {c, [[a, b], d]}+ {d, [a, [b, c]]}+ {d, [[a, b], c]}
)

+
1

6

(
[[[c, d], b], a]− [[[b, d], c], a]

)

+
1

12

(
[[a, b], [c, d]] + [[a, c], [b, d]] + [[a, d], [b, c]]

)
.

Proof. It is a lengthy but standard computation. The authors have checked it using
Maple. �

Now let us write

(8.10) φ(u) = ψ(u) +

2N∑

k=0

∂k ⊗ vk + 1⊗ ṽ , u ∈ R ,

for some vk, ṽ ∈ R, which may depend on u.

Lemma 8.7. If the above vector φ(u) is singular, then v0 = (c/2−N − 1)u.

Proof. We use (5.12) to compute e ∗φ(u) =
∑

I(∂
(I) ⊗ 1)⊗H vI . If 0 < a < b, then

the coefficient multiplying ∂0∂a∂b ⊗ 1 equals I ′ · fab(u) − 2fab(v0)+ commutators
that are obtained from reordering terms of the form ∂i∂j∂k∂l in the associative
algebra H = U(d). These can be computed using Lemma 8.6, leading to

−2fab(v0) + I ′ · fab(u) + 2

2N∑

i,j=1

ωij [f
ia, f jb](u) = fab

(
I ′ · u− 2v0 − (2N + 2)u

)
,
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where
∑

ij ωij [f
ai, f bj ] = −(N + 1)fab due to (2.28).

Since φ(u) is a singular vector, this coefficient must vanish for all a < b, and
a similar computation can be done when a = b. Since the sp d̄-action on R is
nontrivial, we obtain that I ′ · u− 2v0 − (2N +2)u = 0. To finish the proof, observe
that I ′ · u = cu for all u ∈ R. �

Lemma 8.8. If φ(u) is singular, then

(8.11) cv0 =

2N∑

a,b=1

fabf
ab(u) .

Proof. Compute the coefficient multiplying ∂20⊗1 as in Lemma 8.7, using Lemma 8.6
in order to explicitly compute commutators arising from terms ∂0∂i∂j , which cancel,
and ∂i∂j∂k∂l. The final result is

−
1

2
I ′ · v0 +

1

2

2N∑

i,j,k,l=1

ωikωjlf
ijfkl(u) = −

1

2
I ′ · v0 +

1

2

∑

k,l

fklf
kl(u) ,

which is a constant element, and must therefore vanish. �

Corollary 8.4. If φ(u) is singular for 0 6= u ∈ R = Π ⊠ (R(πp), c), then c equals

either 2N + 2 − p or p. In other words, the only tensor modules that may possess

singular vectors of degree 2 are of the form VΠ
p or VΠ

2N+2−p.

Proof. Substitute Lemma 8.7 into Lemma 8.8, to obtain

1

2
c2u− (N + 1)cu−

2N∑

a,b=1

fabf
ab(u) = 0 .

Recall by Lemmas 2.3 and 2.4 that −
∑2N

a,b=1 fabf
ab equals the Casimir element of

sp d̄ and acts on R(πp) via multiplication by p(2N + 2− p)/2. Hence we obtain

c2 − (2N + 2)c+ p(2N + 2− p) = 0,

whose only solutions are c = p and c = 2N + 2− p. �

Corollary 8.5. Let U be a nontrivial irreducible sp d̄-module. Then a tensor

module V = V(Π, U, c) is reducible if and only if it is of the form VΠ
p for some

1 ≤ p ≤ 2N + 1, p 6= N + 1.

Proof. The image of differentials constitute proper submodules of each tensor mod-
ule showing up in the contact pseudo de Rham complex (6.23). Conversely, Theo-
rem 8.1 and Corollary 8.4 show that there are no other tensor modules possessing
nonconstant singular vectors. �

Theorem 8.3. The only tensor modules over K(d, θ) possessing singular vectors

of degree two are those of the form VΠ
N .

Proof. If V(R) = V(Π, R(πp), c) has singular vectors of degree two, then we have a
nonzero homomorphism

V(Π, R(πp), c+ 2) → V(Π, R(πp), c) .

However, if V(Π, R(πp), c + 2) is irreducible, then this map is injective, and its
image has the same rank as V(R). Hence, it is a proper cotorsion submodule
M ≃ V(Π, R(πp), c+2) in V(R), and the action of K(d, θ) on V(R)/M is trivial by
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Remark 3.1. This means that e ∗ V(R) ⊂ (H ⊗H)⊗H M . But a direct inspection
of (5.12) shows that e ∗ V(R) = (H ⊗H)⊗H V(R), which is a contradiction.

We conclude that V(Π, R(πp), c + 2) and V(Π, R(πp), c) are both reducible. By
Corollary 8.5 and (6.22), c and c + 2 must add up to 2N + 2. Hence, c = p = N
and V(R) = V(Π, R(πN ), N) = VΠ

N . �

9. Classification of Irreducible Finite K(d, θ)-Modules

We already know that all K(d, θ)-modules belonging to the exact complex (6.23)
are reducible, as the image of each differential provides a nonzero submodule. Fur-
ther, Corollary 8.5 shows that these are the only reducible tensor modules V(R),
when R is an irreducible finite-dimensional representation of d⊕ csp d̄. However, by
Proposition 5.2 and Theorem 5.1, every finite irreducible K(d, θ)-module is a quo-
tient of some V(R), where R is an irreducible finite-dimensional (d⊕ csp d̄)-module.
Thus, classifying irreducible quotients of all (reducible) tensor modules V(R) will
yield a classification of all irreducible finite K(d, θ)-modules.

Remark 9.1. By Theorems 8.1 and 8.3, each of the reducible tensor modules from
(6.23) contains a unique irreducible (d ⊕ csp d̄)-summand of nonconstant singular
vectors.

Lemma 9.1. Let V and W be K(d, θ)-modules, and assume V is generated over

H by its singular vectors. If f : V →W is a K(d, θ)-homomorphism, then f(V ) is
also H-linearly generated by its singular vectors.

Proof. This follows immediately from f(singV ) ⊂ singW . �

Theorem 9.1. The image modules dRVΠ
N+2 and dVΠ

p+1, where 0 ≤ p ≤ 2N + 1,

p 6= N,N + 1 are the unique nonzero proper K(d, θ)-submodules of VΠ
N and VΠ

p ,

respectively.

Proof. We first claim that these submodules are irreducible, hence minimal. By
Proposition 5.2 and Remark 9.1, it is enough to show that they are H-linearly
generated by their singular vectors. This follows from Lemma 9.1.

To prove that there are no other nonzero proper submodules, it is enough to
show that these minimal submodules are also maximal. Equivalently, the quotients
VΠ
N/d

RVΠ
N+2 and VΠ

p /dV
Π
p+1 are irreducible, which follows from exactness of the

complex (6.23). �

The above results lead to the main theorem of the paper.

Theorem 9.2. A complete list of non-isomorphic finite irreducible K(d, θ)-modules

is as follows:

(i) Tensor modules V(Π, U) where Π is an irreducible finite-dimensional repre-

sentation of d and U is a nontrivial irreducible finite-dimensional csp d̄-module not

isomorphic to (R(πp), p) or (R(πp), 2N + 2− p) with 1 ≤ p ≤ N,

(ii) Images of differentials in the twisted contact pseudo de Rham complex (6.23),
namely dRVΠ

N+2 and dVΠ
n where 1 ≤ n ≤ 2N + 1, n 6= N + 1, N + 2. Here Π is

again an irreducible finite-dimensional d-module.

Remark 9.2. The image dVΠ
2N+2 of the first member of the complex (6.23) is iso-

morphic to VΠ
2N+2 = V(Π, R(π0), 2N +2) and it is included in part (i) of the above

theorem.
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Recall that representations of the Lie pseudoalgebra K(d, θ) are in one-to-one
correspondence with conformal representations of the extended annihilation algebra

K̃ (see [BDK] and Proposition 3.2). The latter is a direct sum of Lie algebras

K̃ = d̃⊕K where d̃ ≃ d and K is isomorphic to the Lie–Cartan algebra K2N+1 (see
Propositions 4.1 and 4.2). Thus, from our classification of finite irreducible K(d, θ)-
modules we can deduce a classification of irreducible conformal K2N+1-modules. In
this way we recover the results of I.A. Kostrikin, which were stated in [Ko] without
proof.

In order to state the results, we first need to set up some notation. Let R be
a finite-dimensional representation of csp d̄. Using that csp d̄ ≃ K′

0/K
′
1, we endow

R with an action of K′
0 such that K′

1 acts trivially (see Proposition 4.3). We also
view R as a (d ⊕ csp d̄)-module with a trivial action of d, and as before we write
R = (U, c). Then, by Remark 5.3 and Proposition 4.2, the induced K-module

IndKK′

0
R is isomorphic to the tensor K(d, θ)-module V(R) = V(k, U, c). Finally, let

us recall the Z-grading of V introduced in the proof of Proposition 5.4. In this
setting, Theorems 9.1 and 9.2 along with Remark 7.2 imply the following.

Corollary 9.1. (i) [Ko]. Every nonconstant homogeneous singular vector in V =
V(k, U, c) has degree 1 or 2. The space S of such singular vectors is an sp d̄-

module, and the quotient of V by the K-submodule generated by S is an irreducible

K-module. All singular vectors of degree 1 in V are listed in cases (a), (b) below,

while all singular vectors of degree 2 are listed in (c):

U = R(πp) , c = p , S = R(πp+1) , 0 ≤ p ≤ N − 1 .(a)

U = R(πp) , c = 2N + 2− p , S = R(πp−1) , 1 ≤ p ≤ N .(b)

U = R(πN ) , c = N , S = R(πN ) .(c)

(ii) [Ko]. If the sp d̄-module U is infinite-dimensional irreducible, then V(k, U, c)
does not contain nonconstant singular vectors.

(iii) If a K-module V(k, U, c) is not irreducible, then its (unique) irreducible

quotient is isomorphic to the topological dual of the kernel of the differential of a

member of the Rumin complex over formal power series.
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