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IRREDUCIBLE MODULES OVER FINITE SIMPLE LIE
PSEUDOALGEBRAS II.
PRIMITIVE PSEUDOALGEBRAS OF TYPE K

BOJKO BAKALOV, ALESSANDRO D’ANDREA, AND VICTOR G. KAC

ABSTRACT. One of the algebraic structures that has emerged recently in the
study of the operator product expansions of chiral fields in conformal field
theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generaliza-
tion of the notion of a Lie conformal algebra for which C[9] is replaced by the
universal enveloping algebra H of a finite-dimensional Lie algebra. The finite
(i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our
previous work [BDK]. The present paper is the second in our series on repre-
sentation theory of simple Lie pseudoalgebras. In the first paper we showed
that any finite irreducible module over a simple Lie pseudoalgebra of type W
or S is either an irreducible tensor module or the kernel of the differential in
a member of the pseudo de Rham complex. In the present paper we establish
a similar result for Lie pseudoalgebras of type K, with the pseudo de Rham
complex replaced by a certain reduction called the contact pseudo de Rham
complex. This reduction in the context of contact geometry was discovered by
Rumin.
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1. INTRODUCTION

The present paper is the second in our series of papers on representation theory
of simple Lie pseudoalgebras, the first of which is [BDKI].

Recall that a Lie pseudoalgebra is a (left) module L over a cocommutative Hopf
algebra H, endowed with a pseudo-bracket

LL—- (H®H)®u L, a®bw [ax],

which is an H-bilinear map of H-modules, satisfying some analogs of the skewsym-
metry and Jacobi identity of a Lie algebra bracket (see [BD], [BDK]).

In the case when H is the base field k, this notion coincides with that of a Lie
algebra. Any Lie algebra g gives rise to a Lie pseudoalgebra Curg = H ® g over H
with pseudobracket

(1®a)x(1@b)]=(1®1)®H [a,b],

extended to the whole Cur g by H-bilinearity.

In the case when H = k[0], the algebra of polynomials in an indeterminate 0 with
the comultiplication A(9) = d®1+1®03, the notion of a Lie pseudoalgebra coincides
with that of a Lie conformal algebra [K|. The main result of [DK] states that in
this case any finite (i.e., finitely generated over H = k[0]) simple Lie pseudoalgebra
is isomorphic either to Cur g with simple finite-dimensional g, or to the Virasoro
pseudoalgebra Vir = k[0]¢, where

Uxll=(120—-0®1) g ¢,

provided that k is algebraically closed of characteristic 0.
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In [BDK] we generalized this result to the case when H = U(9), where 0 is any
finite-dimensional Lie algebra. The generalization of the Virasoro pseudoalgebra is
W(d) = H ® 0 with the pseudobracket

(I®a)x(12b)]=0101)®r (1®[a,b)+ (0®21) 9 (1®a)—(1®a) @ (1®D).

The main result of [BDK] is that all nonzero subalgebras of the Lie pseudoalgebra
W(0) are simple and non-isomorphic, and, along with Cur g, where g is a simple
finite-dimensional Lie algebra, they provide a complete list of finitely generated
over H simple Lie pseudoalgebras, provided that k is algebraically closed of charac-
teristic 0. Furthermore, in [BDK] we gave a description of all subalgebras of W (d).
Namely, a complete list consists of the “primitive” series S(9,x), H(?, x,w) and
K(2,0), and their “current” generalizations.

In [BDKI] we constructed all finite (i.e., finitely generated over H = U(0))
irreducible modules over the Lie pseudoalgebras W (d) and S(9,x). The simplest
nonzero module over W (0) is Q°(d) = H, given by

(11) (f®a)*g:_(f®ga)®H17 fngHvaea'

A generalization of this construction, called a tensor W (d)-module, is as follows
[BDKI]. First, given a Lie algebra g, define the semidirect sum W (d) x Curg as
a direct sum as H-modules, for which W () is a subalgebra and Cur g is an ideal,
with the following pseudobracket between them:

(f@a)x(g@b)]=—(f ®ga) ®u (1®D),

where f,g € H, a €90, b € g. Given a finite-dimensional g-module Vj, we construct
a representation of W (@) x Curgin V = H ® Vj by (cf. (T):

(1.2) (f®@a)@(geb)*(h®v)=—(f®he) @y (1®v)+(g@h) @ (1@ b),

where f,g,h € H,a€d,be g, ve V.
Next, we define an embedding of W () in W(d) x Cur(d @ gld) by

(1.3) 120~ (1ed)e(1ed)e(leadd+ Y 0;@€)),

J

where {9;} is a basis of 0 and {e/} a basis of gld, defined by €!(d)) = .0,
Composing this embedding with the action (L2) of W (d) x Cur g, where g = 0gl?,
we obtain a W (d)-module V = H ® Vj for each (0 @ gld)-module V. This module
is called a tensor W (9)-module and is denoted T (Vp).

The main result of [BDKI] states that any finite irreducible W (d)-module is a
unique quotient of a tensor module 7 (Vp) for some finite-dimensional irreducible
(0@ gld)-module Vj, describes all cases when 7 (Vo) are not irreducible, and provides
an explicit construction of their irreducible quotients, called the degenerate W (0)-
modules. Namely, we prove in [BDKI] that all degenerate W (d)-modules occur as
images of the differential d in the II-twisted pseudo de Rham complex of W (?)-
modules
(1.4) 0— Q%) 5 Q4() & - & afime().

Here II is a finite-dimensional irreducible d-module and QF(2) = T(IT® A" 0*) is
the space of pseudo n-forms.

In the present paper we construct all finite irreducible modules over the contact
Lie pseudoalgebra K (0, 6), where 0 is a Lie algebra of odd dimension 2N + 1 and 6
is a contact linear function on 0. To any # € 0* one can associate a skewsymmetric
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bilinear form w on d, defined by w(a A b) = —60([a,b]). The linear function 6 is
called contact if 0 is a direct sum of subspaces 0 = kerd and kerw. In this case
dimkerw = 1 and there exists a unique element dy € kerw such that 6(9y) = —1.

Furthermore, the restriction of w to 0 is nor_l-degenerate; hence we can choose dual
bases {0;} and {0'} of 9, i.e., w(0" AO;) = 0% for i, j = 1,...,2N. Then the element

2N
r=>Y 0,00 cHoH
=1

is skewsymmetric and independent of the choice of dual bases.
The Lie pseudoalgebra K (9, 0) is defined as a free H-module He of rank 1 with
the following pseudobracket:

exe]=(r+0h®1-1®0) ue.
There is a unique pseudoalgebra embedding of K (9,8) in W (), which is given by
e——1r+1® 80 .

We will denote again by e its image in W (0). Let sp0 (respectively spd) be the
subalgebra of the Lie algebra gld (resp. gld), consisting of A € gld (resp. A € gld),
such that w(Au Av) = —w(u A Av) for all u,v € 0 (resp. 0). Let cspd =spo kI,
where I'(9y) = 200, I'|5 = I3, and csp 0 = sp 0 kl;. We have an obvious surjective
Lie algebra homomorphism of the Lie algebra sp d onto the (simple) Lie algebra sp 0,
and of ¢spd onto cspd. We show that the image of e € W (9) under the map (L3)
lies in W (9) x Cur(d @ csp ). Hence each (0@ csp d)-module Vj, being a (0@ csp d)-
module, gives rise to a K (9,0)-module T (V) = H ® Vj, with the action given by
([L2). These are the tensor modules T (V) over K(0,0).

In the present paper we show that any finite irreducible K(9,6)-module is a
unique quotient of a tensor module 7 (Vp) for some finite-dimensional irreducible
(0 @ ¢spd)-module V. We describe all cases when the K (9,6)-modules T (V) are
not irreducible and give an explicit construction of their irreducible quotients called
degenerate K (0, 0)-modules. It turns out that all degenerate K (9, 6)-modules again
appear as images of the differential in a certain complex of K (9, #)-modules, which
we call the II-twisted contact pseudo de Rham complex, obtained by a certain
reduction of the II-twisted pseudo de Rham complex (). The idea of this re-
duction is borrowed from Rumin’s reduction of the de Rham complex on a contact
manifold [Rul.

As a corollary of our results we obtain the classification of all degenerate mod-
ules over the contact Lie—Cartan algebra Kany1, along with a description of the
corresponding singular vectors given (without proofs) in [Ko]. Moreover, we obtain
an explicit construction of these modules.

We will work over an algebraically closed field k of characteristic 0. Unless other-
wise specified, all vector spaces, linear maps and tensor products will be considered
over k. Throughout the paper, 0 will be a Lie algebra of odd dimension 2N +1 < co.

2. PRELIMINARIES

In this section we review some facts and notation that will be used throughout
the paper.
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2.1. Forms with constant coefficients. Consider the cohomology complex of
the Lie algebra 0 with trivial coeflicients:

(2.1) 000 2o b doy oy 92NHL - Qi = 2N + 1,

where Q" = A"0*. Set @ = A"0* = @V and Q" = {0} if n < 0 or
n > 2N + 1. We will think of the elements of 2" as skew-symmetric n-forms,
i.e., linear maps from A" 0 to k. Then the differential dy is given by the formula
(€ Q" a; €0):

(doa)(a1 VANRRIAN CLn+1)

(2:2) =S (-1 a(la, a) Aar A AG A A A A ang)
1<J

if n > 1, and dga = 0 if o € Q° = k. Here, as usual, a hat over a term means that
it is omitted in the wedge product.

Recall also that the wedge product of two forms o € Q™ and B € QP is defined
by:

(@A B)(ar A=+ Aanip)
1
nlp!

(2.3)

> (senm) alan@y A+ Aar(m) Blannin A= Aldrinip)

Tr6571+p

where S,,4, denotes the symmetric group on n + p letters and sgn = is the sign of
the permutation 7.

The wedge product, defined by ([Z3]), makes 2 an associative graded-commutative
algebra: for a € Q™, § € OQP, v € 2, we have

(2.4) ahB=(=1)""BAae QP (@aAB)Ay=aA(BA7).

The differential dg is an odd derivation of €2:

(2.5) do(aAB) =doa NS+ (—1)"aAdof.

For a € 0, define operators i,: Q" — Q"1 by

(2.6) (tg@)(@r A+ Nap—1) =alaNar A+ ANap_1), a; €0.

Then each ¢, is also an odd derivation of Q. For A € gl0, denote by A- its action

on (1; explicitly,

(2.7) (A-a)(ar A Aay) Z a(Aa;i Nay A~ NG A+ Aay).
=1

Each A- is an even derivation of Q:

(2.8) A (@A) =(A-a)AB+an (A f),

and we have the following Cartan formula for the coadjoint action of 0:
(2.9) (ada)- = dotg + tado -

The latter implies that (ad a)- commutes with do.
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2.2. Contact forms on 9. From now on we will assume that the Lie algebra 0
admits a contact form 6 € Q' = 0¥, i.e., a 1-form such that

(2.10) ONWA---ANw#0, where w =dpf.
—
N

Consider the kernel of w, i.e., the space of all elements a € 0 such that (,w = 0.
Equation (ZI0) implies that kerw is 1-dimensional and 6 does not vanish on it.
We let s € kerw be the unique element for which 6(s) = —1, and let @ C 0 be the
kernel of 8. Then it is easy to deduce the following lemma (cf. [BDK]).

Lemma 2.1. With the above notation, we have a direct sum of vector subspaces
0 =0 ® ks such that

(2.11) [a,b] =w(aAb)s mod D, a,bed.
The restriction of w to 0 AD is nondegenerate, tsw =0, and [s,0] C D.

Note that not every Lie algebra of odd dimension admits a contact form. In
particular, it is clear from the above lemma that 9 cannot be abelian. Also, the Lie
algebra 0 cannot be simple other than sly (see [BDK| Example 8.6]). Here are two
examples of pairs (9,0) taken from [BDK]| Section 8.7].

Example 2.1. Let 0 = sly with the standard basis {e, f,h}, and let 8(h) = 1,
6(e) = 0(f) =0. Then s = —h, 0 = span{e, f}, and w(e A f) = —1.

Example 2.2. Let 0 be the Heisenberg Lie algebra with a basis {a;, b;, ¢} and the
only nonzero brackets [a;,b;] = ¢ for 1 <i < N, and let 8(c) =1, 6(a;) = 6(b;) = 0.
Then s = —¢, 0 = span{a;, b;}, and w(a; Ab;) = —1.

Let @ be the restriction of w to d A 0. Since @ is nondegenerate, it defines a
linear isomorphism ¢: 0 — 0%, given by ¢(a) = 1,@. The inverse map ¢~1: 0* —
gives rise to a skew-symmetric element r € 0 ® 0 such that ¢~!(a) = (a ® id)(r)
for a € 0*. Explicitly, let us choose a basis {9y, d1, . ..,02n} of 0 such that 9y = s
and {01,...,02n} is a basis of 9, and let {2°,..., 22V} be the dual basis of 9* so
that (27, ;) = 7.

We set w;; = w(d; A 0;), and we denote by (r*); j—1,. on the inverse matrix to
(wij)i)jzl)m)gjv, so that

2N
(2.12) Zrijwjkzs;;, ik=1,...,2N.
j=1
Then
2N B 2N ) 2N )
(2.13) r=> 19,0 =) 60d==> 00,
7,7=1 1=1 1=1
where
(2.14) 0'=>"179;,  w(@ ANO) =0, for ik=1,...,2N.
j=1

We also have

(2.15) w0 A = (2%, 07) = —rd =",
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Recall that a basis {91, ...,02n} of 0 is called symplectic iff it satisfies
(2.16) w(@; NIiyn) =1=—w(Qiyn ND;), w(G;iNO;)=0 for |i—j|#N.
In this case we have
(2.17) o' = -0 n, OV =9, i=1,...,N,
which implies that

N
(2.18) r=> (DN ®0; — 0 ®Dirn).
i=1
Note that, by (23],
12N
(2.19) 0 =—2°, w=3 Z wijzt N
7,7=1
and when the basis {01,...,02n} of 0 is symplectic, we have
N
(2.20) w= Z ot A2t
i=1
2.3. The Lie algebras spd and csp 0. In this subsection we continue to use the
notation from the previous one. In particular, recall that {Jy,...,02n} is a basis
of 9 and {2°,..., 22N} is the dual basis of 0*, while restriction to nonzero indices

gives dual bases of 0 and 0*.

We will identify Endd with @ ® 0* as a vector space. In more detail, the el-
ementary matrix e/ € Endd is identified with the element 9; ® 27 € ? ® ?*,
where ¢/(8y) = §/8;. Notice that (9 @ z)(8') = (x,0')d, so that the composi-
tion (0 ® x) o (0" ® ') equals (x,0")0 ® ='. We will adopt a raising index notation
for elements of Endd as well, so that

(2.21) eV =0 @ = Zrikei, 1#0.

k=1
Definition 2.1. We denote by sp0d = sp(d,w) the Lie algebra of all A € gld such
that A-w = 0.

Since the 2-form @ is nondegenerate, the Lie algebra spd is isomorphic to the
symplectic Lie algebra sp,py, and in particular it is simple. It will be sometimes
convenient to embed spd in gl by identifying gl with a subalgebra of gld. We
will also consider the Lie subalgebra cspd = sp 0 ® kI’ of gld, where

2N
(2.22) I’:268+Ze§€g[0.
i=1
Note that ¢sp is a trivial extension of sp 0 by the central ideal kI”.

Lemma 2.2. We have
(2.23) el -0 =0, e)-w=0, el w=a'Nat, i#£0.
In particular, A-0 = A-w =0 for all A € s5p0d and

(2.24) I'0=-20, I' w=—2w, I' 2t =—zt, i#0.
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Proof. One can deduce from (Z7) that e}, -z* = —d.a7. Then the first two equations
in [223)) are immediate from ([2ZI9) and (28)). To check the third one, we observe
that

2N

ei-w:Zwkixi/\Ij, k#£0

=1

and then apply (Z21)). Finally, 2224)) can be deduced from ([222]) and the above
formulas. O
Corollary 2.1. The elements

(2.25) fi = —%(eij + &) = fit, 1<i<j<2N

form a basis of spo.

Recalling that (z¢,07) = —r =17 we find

(2.26) e ol = pkigh,

so that

(2.27) 6%, €M) = pkigil — pilgki

and

(228) [f”, fkl] = 5 (T-lkfﬂ + ’I“Zlfjk + ,rjkle + T]lfzk) -

Let us also introduce the notation

2N _ 2N
(2.29) = wiaf¥, fi = wiawinf?.
a=1 a,b=1

Lemma 2.3. (i) For everyi=1,...,2N the elements

(2.30) hi = —2f, € = fii, fi=—r"

constitute a standard sla-triple.
(ii) The element

2N y
(2.31) = > fif7 €Ulspa)

ij=1

equals the Casimir element corresponding to the invariant bilinear form normalized
by the condition that the square length of long roots is 2.

Proof. (i) We have:

2N

2N
T = D lwnaf ™ £ = D wiar™ [ =
a=1

a=1
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and similarly
2N
[fi fiil = Z [Wiaf ™, wibwicf*]
a,b,c=1
12N
= 5 Z wiawibwic('rabfw + Taszb + szfac + ’I“wfab)
a,b,c=1
2N
D (Brwipwicf™ + Sfwicwin f — wipr" wiawic ¢ — wier“wiawin f*°) =
a,b,c=1

Finally,

) = 1Y wiawn f)

a,b=1

2N
— Z wmwib(riafib + T,ibfia)
a,b=1
2N
== Y wiar®wa [ + wiartwie f* = =2,
a,b=1
proving part (i).

(i) Using (Z25) and (Z26]), we compute:
2N
Fii ¥ =" wiawp oM

a,b=1

1 2N
_ Z § : WiaWjb (kaeal + leeak + Tkaebl + ,rlaebk) )
a,b=1

Since by 2.21)), tre¥ = r¥ = —rJ  we obtain

2N
1 1
Kl kb al | . 1b, ak Isk | sksl
tr fi; f° = B g Wiqw;p (rr® +rPre¥) = —5(5i5j +6;6;) -
a,b=1
The trace form is bilinear, symmetric, invariant under the adjoint action, and gives

square length 2 for long roots of spd (see, e.g., [FH, Lecture 16]). This proves
part (ii). O

The above lemma turns out to be particularly useful when the basis {9;} of D is
symplectic (see (ZI6])). In this case one has

(2.32) hi = el —entt, i=1,....,N:

hence {hi}izl
Lecture 16]).

Following the notation of [OV], we denote by R(\) the irreducible spd-module
with highest weight A. Recall that the highest weight of the vector representation
0 is the fundamental weight 71, and that

(2.33) N0~ R(m,) ® R(mp_2) ® R(mp_4)® -, 0<n<N,

N is a basis for the diagonal Cartan subalgebra of spo (cf. [FH]

.....

—fii-
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where 7, are the fundamental weights and we set R(mg) =k, R(m,) = {0} ifn <0
or n > N. The following facts are standard (see, e.g., [OV], Reference Chapter,
Table 5).

Lemma 2.4. With the above notation, we have:
R(m,) @ R(m) ~ R(my, + 1) ® R(mmp—1) ® R(mnt1),
dim R(mp, 4+ 1) > dim R(m,) , 1<n<N.
Furthermore, the Casimir element (Z31) acts on R(m,) as scalar multiplication by
n(2N +2 —n)/2.

2.4. Bases and filtrations of U(?) and U(?)*. Let ? be a Lie algebra of dimen-
sion 2N + 1 with a basis {9y, 01,...,02n}, as in Section Then its universal
enveloping algebra H = U(?) has a basis

(2.34) o) =9l 92N figl--ian!, I =(ig,...,ian) € Z2NTT.

Recall that the coproduct A: H — H ® H is a homomorphism of associative
algebras defined by A(0) =0® 14+ 1® 0 for 0 € 0. Then it is easy to see that

(2.35) A= Y oD @)
J+K=I

The canonical increasing filtration of U(?) is given by
(2.36) FPU(0) = span {0 | |I| <p},  where |I| =io+---+ian,

and it does not depend on the choice of basis of 0. This filtration is compatible
with the structure of a Hopf algebra (see, e.g., [BDK| Section 2.2] for more details).
We have: F' H = {0}, F°H =k, F'H=k®d.

It is also convenient to define a different filtration of U (), called the contact
filtration:

(2.37) FPU(0) = span {0 | |I|' <p},  where [I|'=2g+i1+ - +in_1.
This filtration is also compatible with the Hopf algebra structure on U(?), and we
have F°H =k, F ' H =k @9, F?H Dk ®0d = F' H. Tt is easy to see that the
two filtrations of H are equivalent.

The dual X = H* := Homg(H, k) is a commutative associative algebra. Define
elements x; € X by (x7,0)) = 6/, where, as usual, §7 =1 if [ = J and 67 = 0 if
I # J. Then, by [234)), we have xjxx = x4k and

(2.38) xr = (2% (@®N)2N T = (ig,...,dan) € Z2N T
where
(2.39) rt=x,, & =1(0,...,0,1,0,...,0), i=0,...,2N.

Therefore, X can be identified with the algebra Oani1 = k[[t%,¢1,...,t2V]] of
formal power series in 2N + 1 indeterminates.
There are left and right actions of ® on X by derivations given by

(2.40) (O, f) = —(z,0f),
(2.41) (0, f) = (=, fO), oev,zeX, feH,
where 0f and f0 are products in H. These two actions coincide only when the Lie

algebra 0 is abelian. The difference 0z — x0 gives the coadjoint action of 0 € 9 on
reX.
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Let F, X = (F? H)L be the set of elements from X = H* that vanish on F¥ H.
Then {F, X} is a decreasing filtration of X called the canonical filtration. It has
the properties:

(2.42) F.iX=X, X/FoX~k, FoX/F;X~0",
(243) (Fo X)(FpX) CFrapi1 X, 0F,X)CFp1 X, (F,XPCF,_1X.

Note that Fo X is the unique maximal ideal of X, and F, X = (Fo X )P*!. We define
a topology of X by considering {F, X} as a fundamental system of neighborhoods
of 0. We will always consider X with this topology, while H and 0 with the discrete
topology. Then X is a linearly compact algebra (see [BDK| Chapter 6]), and the
left and right actions of d on it are continuous (see (Z43))).

Similar statements hold for the filtration F,, X = (F'” H)*, namely:
(244) (F, X)(F,X)CF, X, F,X)CF, X, (F,XPCF, X,

(2.45) d(F, X)CF, ,X, (F,X)d CF, ,X.

We will call {F, X'} the contact filtration. It is equivalent to the canonical filtration
{Fp X} ‘ ‘

We can consider z* as elements of 9*; then {z'} is a basis of 9* dual to the basis
{0;} of 0, ie., (z',0;) = 8i. Let cf; be the structure constants of 0 in the basis
{0}, so that [9;,0;] = Y ;0. Then we have the following formulas for the left
and right actions of ? on X (see, e.g., [BDKIl Lemma 2.2]):

(2.46) Oia? = =01 = chab mod F1 X,
k<i

(2.47) 210, =6/ + Y cla¥ mod Fy X .
k>i

3. LIE PSEUDOALGEBRAS AND THEIR REPRESENTATIONS

In this section we review the definitions and results about Lie pseudoalgebras
from [BDKLBDKI], which will be needed in the paper.

3.1. Hopf algebra notations. Let H be a cocommutative Hopf algebra with a
coproduct A, a counit €, and an antipode S. We will use the following notation

(cf. [Swl):

(3.1) A(R) =Ny @ hig) = ha) @ hay ,

(3.2) (A ®id)A(h) = Id®@A)A(R) = hay @ hay @ hy,
(3.3) (S®id)A(h) = h(_l) & h(g) , heH.

Then the axioms of antipode and counit can be written as follows:
(3.4) h—1yh@y = hayh—2) = e(h),

(3.5) e(h(y)h) = hae(he)) = h,

while the fact that A is a homomorphism of algebras translates as:
(3.6) (f9)) @ (f9)2 = fnmgn ® f2)9¢2), fig€ H.

Eqgs. (34), (3.3) imply the following useful relations:
(3.7) h(_l)h(g) ® h(3) =1®h= h(l)h(_g) & h(g).



12 B. BAKALOV, A. D’ANDREA, AND V. G. KAC

The following lemma, which follows from [BDK| Lemma 2.3], plays an important
role in the paper.

Lemma 3.1. For any H-module V, the linear maps
HV > (HH)®ygV, h@uv—=(h®1l)®yv

and
HeV - (HH)yV, h@v— (1®h)@yv

are isomorphisms of vector spaces.

The dual X = H* := Homy(H, k) becomes a commutative associative algebra
under the product defined by
(38) <Iya h> = <Ia h(l)><yh(2)> ) h e H, T,y € X.
X admits left and right actions of H, given by (cf. [2.40), (241)):
(3.9) (ha, f) = (x,S(h)f),
(3.10) (zh, f) = (=, fS(h)),  h,feH zyeX.
They have the following properties:
(3.11) h(zy) = (hayz)(h2)y) ,
(3.12) (zy)h = (xhq))(yh(2)),
(3.13) h(zg) = (hz)g, h,g€ H, v,y € X.

3.2. Lie pseudoalgebras and their representations. Let us recall the defini-
tion of a Lie pseudoalgebra from [BDK| Chapter 3]. A pseudobracket on a left
H-module L is an H-bilinear map

(3.14) L®L— (HoH)®y L, a@b— [axb],

where we use the comultiplication A: H — H ® H to define (H @ H) @y L. We
extend the pseudobracket (3.I4) to maps (H®? @y L) ® L — H®? @y L and
L® (H®? @y L) — H® @y L by letting:

(315)  [(hena)h=Y (ho1)(Aoid)(g) on e,
(316)  [as(honb)] =Y 1@k (ded)g) o e,
where h € H®?, a,b € L, and

(3.17) laxb]=> gi®@me;  with g€ H®? ¢; € L.
A Lie pseudoalgebra is a left H-module equipped with a pseudobracket satisfying
the following skewsymmetry and Jacobi identity axioms:
(3.18) bxa)l =—(c@pid)[ax*],
(3.19) [[axb]xc]=ax[bxc]] — ((c ®id) @ id) [b* [a * c]] .
Here, 0: H® H — H ® H is the permutation of factors, and the compositions

[[a*b] %], [a*[bx*c]] are defined using (3.15), B.I6).

The definition of a module over a Lie pseudoalgebras is an obvious modification
of the above. A module over a Lie pseudoalgebra L is a left H-module V together
with an H-bilinear map

(3.20) LV —-HQIH)®uV, a®ura*v
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that satisfies (a,b € L, v € V)
(3.21) [axblxv=ax(b*xv)—((c ®id) @p id) (bx* (a xv)).
An L-module V will be called finite if it is finitely generated as an H-module.

Remark 3.1. If V is a torsion module over H, then the action of L on V is trivial,
ie,, L*V = {0} (see [BDK] Corollary 10.1]). Notice that this holds whenever V is
finite dimensional and H = U(0) with dimd > 0.

Some of the most important Lie pseudoalgebras are described in the following
examples (see [BDK]).

Example 3.1. For a Lie algebra g, the current Lie pseudoalgebra Cur g = H®g has
an action of H by left multiplication on the first tensor factor and a pseudobracket

(3.22) [(f@a)x(g@b)] = (f®9) ®u (1 [a,b]).

Example 3.2. Let H = U(0) be the universal enveloping algebra of a Lie algebra 0.

Then W (9) = H®D has the structure of a Lie pseudoalgebra with the pseudobracket
(3.23) [(f@a)x(g@b)] = (f©g)@n (1®][a,b])
' —(fega)@p (10b)+ (fo®g) @y (1®a).

The formula
(3.24) (f®a)xg=—(f©ga)®n1
defines the structure of a W (d)-module on H.

Example 3.3. The semidirect sum W () x Cur g contains W (9) and Cur g as sub-
algebras and has the pseudobracket

(3.25) [(f @a)x(g@b)] = =(f ©®ga) ©u (12D)
for f,gec H=U®),a€0,beg(cf B24).

Let U and V be two L-modules. A map 3: U — V is a homomorphism of
L-modules if 8 is H-linear and satisfies

(3.26) ((d®id) @g B)(a*u) = ax*B(u), aceL,uel.

A subspace W C V is an L-submodule if it is an H-submodule and L x W C
(H® H)®y W, where L x W is the linear span of all elements a * w with a € L
and w € W. A submodule W C V is called proper if W # V. An L-module V is
irreducible (or simple) if it does not contain any nonzero proper L-submodules and
L« V #{0}.

Remark 3.2. (i) Let V be a module over a Lie pseudoalgebra L and let W be an
H-submodule of V. By Lemma [3.1], for each a € L, v € V, we can write
(3.27) a*xv= Z O 1)@y 0], v EV,

IeziN !
where the elements v} are uniquely determined by @ and v. Then W C V is an
L-submodule iff it has the property that all v; € W whenever v € W. This follows

again from Lemma [311
(ii) Similarly, for each a € L, v € V, we can write

(3.28) axv = Z (1(5@3(1))@”1,@/[/7 vl ev,

2N+1
ez’
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and W is an L-submodule iff v/ € W whenever v € W.

3.3. Twistings of representations. Let L be a Lie pseudoalgebra over H = U(),
and let II be any finite-dimensional 9-module. In [BDKT] Section 4.2], we introduced
a covariant functor 717 from the category of finite L-modules to itself. In the present
paper we will use it only in the special case when all the modules are free as H-
modules. For a finite L-module V = H ® Vj, which is free over H, we choose a
k-basis {v;} of Vp, and write the action of L on V in the form

(3.29) ax(1@v) = (fij ®gi5) ®u (18 v))
j
where a € L, fij,gi; € H.

Definition 3.1. The twisting of V by II is the L-module Ti(V) = H @ II ® V%,
where H acts by a left multiplication on the first factor and

(3.30) ax(1ouav) =Y (fij ®gij) @n (10 gij_pyu@v;)

J
fora € L, u € II.

The facts that T17(V') is an L-module and that the action of L on it is independent
of the choice of basis of V; follow from [BDK1], Proposition 4.2]. Let us now recall
how Tty is defined on homomorphisms of L-modules. Consider two finite L-modules,
V=H®Vand V' = H®YVJ. Choose k-bases {v;} and {v/} of Vj and Vj,
respectively. For a homomorphism of L-modules 5: V — V', write

(3.31) Bl@wv) =Y hij@v},  hijeH.
j

Then Tr(8): T (V) — T (V') is given by
(3.32) TH(B)(l ®u®vi) = Z hij(l) ®hij(_2)u®v; .

J

Thanks to [BDKI, Proposition 4.3], the map Tr(8) is a homomorphism of L-
modules, independent of the choice of bases.

Note that Ty can be defined on the category of (free) H-modules. The next
result concerns only the H-module structure.

Proposition 3.1. (i) The functor Ty is exact on free H-modules, i.e., if V LN
\% 6—> V" is a short exact sequence of finite free H-modules, then the sequence
Ta(V) ELIGN (V") ELIGEN Tu(V") is exact.

(ii) Let B: V — V' be a homomorphism between two free H-modules. If the
image of B has a finite codimension over k, then the image of Tr(B) has a finite
codimension in T (V').

Proof. Consider the linear map
F:HQII — H®II, h®u'—>h(1)®h(,2)u,

which was introduced in the proof of [BDKI] Lemma 5.2]. From (37 it is easy to
see that F' is a linear isomorphism and

F_l(h®u):h(1)®h(2)u, he H uell.
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Since F'is a linear isomorphism, both statements of the proposition are true if and
only if they are true for (F~! ®id)Ty(8) instead of Tr1(). In this case, they follow
easily from the identity

(F'eid)Th(B)(1 @ u®v;) = Z hij @ u® v} = o12(u® B(1 @ vy)),
J

where 014 is the transposition of the first and second factors. [l

3.4. Annihilation algebras of Lie pseudoalgebras. For a Lie pseudoalgebra
L, we set A(L) = X ®pg L, where as before X = H*, and we define a Lie bracket
on L = A(L) by the formula (cf. [BDK| Eq. (7.2)]):

(3.33) [z @ma,y@u bl =Y (xfi)(yg:) ®uci, if [axbl= (fi®g)®uci.

Then £ is a Lie algebra, called the annihilation algebra of L (see [BDK] Section 7.1]).
We define a left action of H on £ in the obvious way:

(3.34) hz ®pa) =hx Qg a.

In the case H = U(D), the Lie algebra 9 acts on £ by derivations. The semidirect
sum £ =0 x L is called the extended annihilation algebra.

Similarly, if V' is a module over a Lie pseudoalgebra L, we let A(V) = X @y V,
and we define an action of £ = A(L) on A(V) by:

(335) (z@ma)ly®@uv) =Y (¢fi)yg) @mvi, it axv=> (fi®g)®uuvi.

We also define an H-action on A(V) similarly to 34). Then A(V) is an L-
module [BDK] Proposition 7.1].

When L is a finite H-module, we can define a filtration on £ as follows (see [BDK|,
Section 7.4] for more details). We fix a finite-dimensional vector subspace Lg of L
such that L = H Ly, and set

(3.36) FpL=spany{zr®@pacLl|zeF, X, ac Ly}, p>—1.
The subspaces F,, £ constitute a decreasing filtration of £, satisfying
(3.37) FnL,F, L] CFpypo L, ¥F,L)CFp 1L,

where / is an integer depending only on the choice of Lj. Notice that the filtration
just defined depends on the choice of Ly, but the topology that it induces does
not [BDK| Lemma 7.2]. We set £, = Fp,¢ £, so that [L,,, £,] C L, 4p. In particular,
Ly is a subalgebra of L.

We also define a filtration of £ by letting F_ L= EN, F, L= F, L for p > 0, and
we set Zp = Fpie L. An L-module V is called conformal if every v € V is killed
by some L,; in other words, if V' is a continuous L-module when endowed with the
discrete topology.

The next two results from [BDK] play a crucial role in our study of representa-
tions (see [BDK], Propositions 9.1 and 14.2, and Lemma 14.4).

Proposition 3.2. Any module V' over the Lie pseudoalgebra L has a natural struc-
ture of a conformal L-module, given by the action of d on V and by

(338) (z®@ua)-v=> (zfigiq) Giui, i axv=> (fi®g)Suuv
foraeL,ze X, veV.
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Conversely, any conformal L-module V has a natural structure of an L-module,
given by

(3.39) axv= Y (SO ®1)@u ((r1®ua)-v).

2N+1
ez’

Moreover, V is irreducible as an L-module iff it is irreducible as an L-module.

Lemma 3.2. Let L be a finite Lie pseudoalgebra and V' be a finite L-module. For
p>—1—1¢, let

ker,V={veV|L,v=0},
so that, for example, ker_1_¢V =kerV and V = Jker, V. Then all vector spaces

ker, V/ker V are finite dimensional. In particular, if kerV = {0}, then every
vector v € V is contained in a finite-dimensional subspace invariant under L.

4. PRIMITIVE LIE PSEUDOALGEBRAS OF TYPE K

Here we introduce the main objects of our study: the Lie pseudoalgebra K (0, 6)
and its annihilation algebra K (see [BDKJ|, Chapter 8]). We will review the (unique)
embedding of K(9,0) into W(0) and the induced embedding of annihilation alge-
bras. Throughout this section, 0 will be a Lie algebra of odd dimension 2N + 1,
and 0 € 0* will be a contact form, as in Section As before, let H = U(0).

4.1. Definition of K (0,0). Recall the elements r € 0 ® 0 and s € ? introduced in
Section and notice that r is skew-symmetric. It was shown in [BDK| Lemma
8.7] that r and s satisfy the following equations:

(4.1) [, Als)] =0,
(42) ([’I”lg,?"lg] +T1253) —|—CyC1iC = O,

where we use the standard notation rio =r® 1, s3 =1® 1 ® s, etc., and “cyclic”
denotes terms obtained by applying the two nontrivial cyclic permutations.

Definition 4.1. The Lie pseudoalgebra K (9,0) is defined as a free H-module of
rank one, He, with the following pseudobracket

(4.3) [exe]=(r+s®1-1®s)Qpe.

The fact that K (,0) is a Lie pseudoalgebra follows from (@.1), (£2)); see [BDK|
Section 4.3]. By [BDK| Lemma 8.3], there is an injective homomorphism of Lie
pseudoalgebras

(4.4) v K(0,0) = W (), e——T1+1®s,

where W(0) = H ® 0 is from Example Moreover, this is the unique nontrivial
homomorphism from K (9, 6) to W(d) [BDK]| Theorem 13.7]. From now on, we will
often identify K (0, 6) with its image in W () and will write simply e instead of ¢(e).
In the notation of Section [Z:2] we have the formula

2N
(4.5) e=1R0) —» 0,0

i=1
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4.2. Annihilation algebra of W(?). Let W = A(W(?)) be the annihilation al-
gebra of the Lie pseudoalgebra W () (see Section B4). Since W(0) = H ® 0, we
have W =X @y (H ®0) ~ X ®09, so we can identify W with X ® 9. Then the Lie
bracket in W becomes (z,y € X, a,b €0):

(4.6) [T®a,y®b =2y ® [a,b] —z(ya) @b+ (zb)y @a,

while the left action of H on W is given by: h(z ® a) = hx ® a. The Lie algebra

0 acts on W by derivations. We denote by W the extended annihilation algebra
0 X W, where

(4.7) [0, z®al=0xRa, d,a€d, zeX.
We choose Ly = k ® 0 as a subspace of W(0) such that W(d) = HLy, and we
obtain the following filtration of W:
(4.8) W, =F,W=F,X®y L =F,X®0d, p>-1.
This is a decreasing filtration of W, satisfying W_; = W and [W;, W,] C Wiy;.
Note that W/Wp ~k ® 0 ~ 0 and Wy/W) ~ 0* ®0.
Lemma 4.1 ([BDKI]). Forx € Fo X, a €0, the map
(4.9) (x®a) mod Wy — —a® (x mod Fi X)

is a Lie algebra isomorphism from Wy /Wi to 0@0* ~ gld. Under this isomorphism,
the adjoint action of Wy /Wi on W/Wy coincides with the standard action of gl
on 0.

The action ([3:24) of W (9) on H induces a corresponding action of the annihila-
tion algebra W on A(H) = X:

(4.10) (x ®a)y = —z(ya), z,y € X, a €.

Since 0 acts on X by continuous derivations, the Lie algebra W acts on X by
continuous derivations. The isomorphism X ~ Osy.y from Section 2.4] induces
a Lie algebra homomorphism W — Wsny1 = Der Ogn1. In fact, this is an
isomorphism compatible with the filtrations [BDKI, Proposition 3.1]. Recall that
the canonical filtration of the Lie—Cartan algebra Wy is given by

2N
0
(4.11) FpWoni = {; fiﬁ fi € Fp O2N+1} ,
where F), Oan 41 is the (p+1)-st power of the maximal ideal (2, ..., ") of Oan 1.

The Euler vector field
2N g
4.12 E:=) t'— eFyW-
( ) ; ot 0o Wan+1

gives rise to a grading of Osn41 and a grading Waony1,; (j > —1) of Wany1 such
that

(4.13) F,Woni1 = H Wont1, FpWoni1/Fpi1 Wongi >~ Woniayp -
jzp
We define the contact filtration of W by (see [2.31)):
(4.14) W, =F,W=(F,X20)®([F,,, X®ks).
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Introduce the contact Euler vector field
9 N g
(415) E = 2t0w + Ztl@ eFoWani1 N F6 Won+1 -
i=1

Then the adjoint action of E’ decomposes Wan 11 as a direct product of eigenspaces
Wini1.; (5 > —1), on which ad E” acts as multiplication by j. One defines

(4.16) F,Wonia = [[ Winay
jzp
so that
(417) F; W2N+1/ F;H—l W2N+1 ~ W2/N+l;p .

The filtration {F; Wan+1} induces on Wan 1 the same topology as the filtration
{Fp Want1}.

4.3. Annihilation algebra of K(0,6). We define a filtration on the annihilation
algebra K = A(K(9,0)) by

(4.18) Ky=F,K=F X®oge, p>-2.

This filtration is equivalent to the one defined in Section 3.4l by choosing L = ke,
because the filtrations {F), X} and {F, X} are equivalent.

Recall that the canonical injection ¢ of the subalgebra K (9,6) in W(d) induces
an injective Lie algebra homomorphism A(:): K — W that allows us to view K as
a subalgebra of WW. In more detail, by (@3] we have

2N
(4.19) Az ope) =200 -y 20,00, zeX.

i=1
Lemma 4.2. The contact filtrations of K and W are compatible, i.e., one has
K, = KNW,. In particular, [K;,, K] C K;

m—+n-*

Proof. Any element of K/, has the form z @ e with 2 € F),,; X. Then, by {I9),
(ET4) and (2.44)), its image in W lies in W,,. Therefore, KC;, C XNW},. The opposite
inclusion is proved similarly. ([

Composing the isomorphism W — Wan 1 with the injection £ — W, one
obtains a map ¢: K — Wasny1, whose image however does not coincide with
Kony1 € Waong1. Recall that Konq is the Lie subalgebra of Wapny1 consist-
ing of vector fields preserving the standard contact form dt® + Zﬁl t'dtV+ up to
multiplication by a function, i.e., by an element of Osny1 (see [BDK| Chapter 6]
and the references therein).

Proposition 4.1. There exists a ring automorphism ¢ of Oani1 such that the
induced Lie algebra automorphism ¢ of Wany1 satisfies ¢(K) = (Kan41)-

Proof. The proof is similar to that of [BDKI| Proposition 3.6]. The image ¢(K) is
the Lie algebra of all vector fields preserving a certain contact form up to multiplica-
tion by an element of Oap 41 [BDKIL Proposition 8.3]. We can find a change of vari-
ables conjugating this contact form to the standard contact form dto—l—zfil tideN e,
Hence, there exists an automorphism ¢ of Ogn 41 such that ¢(K) = (Kany1). O
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We will denote by &’ the lifting to K of the contact Euler vector field B’ € Kon 1,
that is & = ¢~ 1 (E).

Remark 4.1. The adjoint action of & on K is semisimple, as it translates the
semisimple action of E’ on Ksnii. As the automorphism ¢ can be chosen so
that the induced homomorphism on the associated graded Lie algebra equals the
identity, one can easily show that the adjoint action of £ on K preserves each K/,
and that it equals multiplication by n on K}, /K7, ;.

4.4. The normalizer Nx. It is well known that all derivations of the Lie-Cartan
algebras of type W are inner. This fact was used in [BDKIl Section 3.3] to prove

that the centralizer of W in W consists of clements 0 (0 € 9) so that the map
0 +— 0 is an isomorphism of Lie algebras. We have

(4.20) d=0+120—add modW;, e,

where ad 0 is understood as an element of gld ~ W,/ W;.

Proposition 4.2. Elements o span a Lie subalgebra 2cKk isomorphic to 0. The
normalizer N of K, in K coincides with 0 @ Ky and is independent of p > 0.

There is a decomposition as a direct sum of subspaces K=2 ® Ni.

Proof. Since all derivations of K ~ Ksxy1 are inner, there exist elements d €K
centralizing I and such that d =0 mod K for & € 0. Then 0 — 0 € W centralizes
K, which implies 0 = 5, because the centralizer of I in W is zero. Therefore,
the centralizer of K in K coincides with the centralizer d of W in W. The other
statements follow as in [BDKI, Proposition 3.3]. O

The above proposition implies that for every 0 € 0 the element d—0 €W lies
in the subalgebra IC, and hence it can be expressed as a Fourier coefficient = ® g e
for suitable x € X. In order to do so, let us compute the images of the first few
Fourier coefficients of e under the identification of K as a subalgebra of W.

Lemma 4.3. The embedding A(): K — W identifies the following elements:
(i) 1®pe—1®0;

(i) Qe 100 +17 @) — Z cgkxk®8i mod Wi N W ;
0<i<k
(iii) P2 @ge— a2’ ®dy — Z wirz® @ 8" mod Wi NWy;
0<i<k
(iv) 'z @y e 2f9 mod Wy, 1, #0;
(v) %27 @ e 2°® 07 mod Wi NWy, J#0;
(vi) r'aiz® @ e 0 mod W) NWy, i,7,k #0.

Proof. The proof is straightforward, using (£19), (2417), and [ZII)). Note that
elements f¥ € gld, defined in ([Z2H), need to be understood by means of the
identification gld = Wy /Wi given in Lemma 1] O

Notice that K (respectively K{, K1) is spanned over k by elements (i)-(vi) (resp.
(iii)-(vi), (v)-(vi)) modulo Kj. Also, K5 C W5 C Wi, by Lemma 2l and F5 X C
F1 X, which follows from F* H c F? H.
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In the proof of next proposition, we will use the following abelian Lie subalgebra
of glo:
(421) Cp = LL‘O & 6 = span{eio}lgiggN = span{e?}lgiggN C g[b.

Note that the semidirect sum ¢ x cspd C gld is a Lie algebra containing ¢y as an
abelian ideal.

Proposition 4.3. We have K{)/K| ~ spd & kI’ = csp?.

Proof. Since elements (iii)-(vi) in the previous lemma all lie in Wy, and K} C W,
we have K}, C Wp. Moreover Wi C W is an ideal, so the inclusion X — W induces
a well-defined Lie algebra homomorphism 7: Ky — Wy/W; ~ gld. Observe now
that in Wy /W, one has

2N
“I'=20@d+» 7' ®0;

i=1

2N
(422) = 220 ® 0y + Z wijxl ® &

ij=1

=2 @y e+2 Z Wijfij mod W .
0<i<y

As a consequence, I’ € gl0 lies in the image of 7. By Lemma [£3] 7 is injective on
the linear span of elements (iii)-(v). The image of 7 equals ¢p x ¢spd, and 7 maps
the ideal K C K, onto the ideal ¢y C ¢o % ¢spd, so that 7 induces an isomorphism
between K{/K} and csp . O

Corollary 4.1. Elements d € K satisfy the following (j #0):
(4.23) B —0o=1®ge—addy mod K},
(424) O - =) @pe— (ad(?j + 27 ® 0y — Z k@ 3i> mod K .
o<i<k
Proof. Follows from (£20), Lemma and Propositions and O
The above two statements imply:
Corollary 4.2. Elements
(4.25) addy, add’ —eh+ Y e, j#£0
0<i<k
lie in sp 0.
Proof. Indeed, they must lie in cspd but the matrix coefficient multiplying e is

zero in both cases. O

Similarly to [BDKJBDXI], we will say that an Nic-module V' is conformal if K,
acts trivially on it for some p > 1.

Proposition 4.4. The subalgebra K| C N acts trivially on any irreducible finite-
dimensional conformal Nic-module. Irreducible finite-dimensional conformal Ni-
modules are in one-to-one correspondence with irreducible finite-dimensional mod-
ules over the Lie algebra Nic /K| ~ 0 @ csp.
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Proof. The proof is the same as in [BDKI| Proposition 3.4]. Let V be a finite-
dimensional irreducible conformal ANy-module; then it is an irreducible module
over the finite-dimensional Lie algebra g = Nic /K], = 0 (Ko/K;,) for some p > 1.
We apply [BDKT, Lemma 3.4] for I = K3 /K], and go = (k&' + K},)/K;,. Note that
by Lemma[£.2] one has I C Radg, and [£, IC’ »] C K. Moreover, the adjoint action
of £ on K is invertible. Thus, the adjoint action of £ is injective on I, and I
acts trivially on V. We can then take p = 1, in which case g = 0 @ (K}/K}) ~
0D csp . O

5. SINGULAR VECTORS AND TENSOR MODULES

We start this section by recalling an important class of modules over the Lie
pseudoalgebra W () called tensor modules. Restricting such modules to K(9,0)
leads us to the definition of a tensor module over K (9, 0). By investigating singular
vectors, we show that every irreducible module is a homomorphic image of a tensor
module. We continue to use the notation of Section

5.1. Tensor modules for W (). Consider a Lie algebra g with a finite-dimensional
representation Vp. Then the semidirect sum Lie pseudoalgebra W (9) x Cur g from
ExampleB3lacts on the free H-module V = H®Vj as follows (see [BDK1, Remark
4.3]):

(5.1) (fea)@(geb)*(h®u)=—(f®ha) @ (1Qu)+ (9@ h) O (1@ bu),

where f,g,h € H=U(®), a €0, b € g, u € Vy. This combines the usual action of
Curg on V with the W (d)-action on H given by (3:24).

By [BDKIl Remark 4.6], there is an embedding of Lie pseudoalgebras W (d) —
W (d) x Cur(d @ gld) given by

(5.2) 100~ (1ed) e (10d)e(1eadd+ Y 0;®€l).

J
Composing this embedding with the above action (E.1]) for g = 0 gl 0, we obtain a
W (d)-module V = H®V, for every (2@ gld)-module V. This module V is called a

tensor module and denoted T (Vo). The action of W(9) on T (Vp) is given explicitly
by [BDK1l Eq. (4.30)], which we reproduce here for convenience:

12d)*(1ou)=>0101)0y (1 (add;)u Z @1) @ (1®elu)
(5.3)
—(1®6i)®H(1®u)+(1®1)®H(1®aiu).

If II is a finite-dimensional 0-module and Vj is a finite-dimensional gld-module,
then their exterior tensor product IIK Vj is defined as the (9 ® gld)-module II® Vj,
where 0 acts on the first factor and gl9 acts on the second one. Following [BDKI],
in this case the tensor module 7 (II X V) will also be denoted as T (II, V). Then

(5.4) TL Vo) = Tu(T (k, Vo)) ,

where 777 is the twisting functor from Definition Bl
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5.2. Tensor modules for K(9,6). We will identify K (9,0) with a subalgebra of
W () via embedding [@4). Then K(9,0) = He where e € W(d) is given by ({3).
Introduce the H-linear map 7: W(9) — Cur gld given by (cf. (52))

2N _
(5.5) T(h®d)=h®add;+ Y ho;®el, heH.

=0

Then the image of e under the map ([B.2)) has the form e @ (e ® 7(e)).

Definition 5.1. We define a linear map ad®: 0 — sp0 by ad®® 9y = ad 9y and
L -
(5.6) ad® OF = ad 9% — ef + 3 Z cyie k#0.
ij=1
Remark 5.1. The fact that the image of ad®? is inside sp d follows from Corollary @2l
(cf. @25), ([@25)). One can show that ad®® 9% is obtained from ad 9% by first

restricting it to @ C 0 and then projecting onto spd. This implies that the map
ad®? does not depend on the choice of basis.

Lemma 5.1. With the above notation, we have

2N 2N
1 . g
e sp / . 20 9. 2,
(5.7) 7(e) = (id@ad™®)(e) + 50 ® I' - ;alao ®e +”z::1 8:0; ® fiI .
Proof. Using (225) and the H-linearity of 7, we find for ¢ # 0
T(0;®0") =0 ®add' + Y _ 9;0; ® €V
j=0
, 2N 12N -
=0 ®add' + 0@ e’ =Y 0,0;® f7+ 5> (01,05 @ et
j=1 j=1
By (ZI1)) and ([2.22]), we have
2N
(5.8) [05,0] =wijOo+ Y chiok,  i,j#0
k=1
and
2N - 2N ‘
Y wiido@el == 0y @el =y @2e)—I').
i,j=1 j=1
The rest of the proof is straightforward. O

Recall the definition of the abelian subalgebra ¢y C gl given in (Z2]).
Corollary 5.1. With the above notation, we have: 7(e) € Cur(co X csp ).

Therefore, the image of e under map (5.2) lies in W(d) x Curg where g :=
0@ (¢ X espd). Hence, every finite-dimensional g-module V; gives rise to a K (9, 6)-
module H ® Vp with an action given by (BIl). An important special case is when
¢o acts trivially on Vp. Since ¢g is an ideal in g, having such a representation is
equivalent to having a representation of the Lie algebra 0 @ csp 0 ~ g/co.
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Definition 5.2. (i) Let Vj be a finite-dimensional representation of 9 ¢spd. Then
the above K (0,6)-module H ® Vp is called a tensor module and will be denoted
as T (Vo).

(ii) Let Vo = IIK U, where II is a finite-dimensional 9-module and U is a finite-
dimensional ¢sp d-module. Then the module 7 (Vp) will also be denoted as T (IL, U).

(iii) Let Vo be as in part (ii), and assume I’ € ¢spd acts on U as multiplication
by a scalar ¢ € k. Then the module 7 (V}) will also be denoted as T(IL, U, ¢), and
similarly the csp 9-module structure on U will be denoted (U, ¢).

The action of e € K(9,0) on a tensor module 7 (Vp) = H ® V} is given explicitly
by (cf. @35), E1), G.1)):
ex(1@u)=—e@y (10u)+(1®1)@y (1® (9 +addo)u)
2N
k sp ak 1 !
Y (k@)@ (1@ (0" +ad® o )u)+§(ao®1)®H (1®I'u)

(5.9) k=1

2N

+ > (00,0 o 1@ fIu), uel.
i,j=1
Remark 5.2. More generally, if ¢y does not act trivially on Vj, the above action
(E9) is modified by adding the term
2N

— Z(@ﬁo & 1) (2928 (1 & eiou)
i=1

to the right-hand side (cf. Lemma [B.]).

As in [BDKI], in the sequel it will be convenient to modify the above definition
of tensor module. Let R be a finite-dimensional (9 & ¢sp d)-module, with an action
denoted as pr. We equip R with the following modified action of d ® cspd (cf.
[BDKI Egs. (6.7), (6.8)]):

ou = (pr(9) + tr(ad 9))u, 0€d, ueR,
Au= (pr(A) —tr A)u, A€ spd, ueR.
Note that, in fact, tr A = 0 for A € sp0 and tr I’ = 2N + 2.

(5.10)

Definition 5.3. Let R be a finite-dimensional (9 ® csp 0)-module with an action
pr. Then the tensor module T (R), where R is considered with the modified action
(EI0), will be denoted as V(R). As in Definition 52 we will also use the notation
V(ILU) and V(II,U,c) when R = IR U and I’ acts on U as multiplication by a
scalar c.

The above definition can be made more explicit as follows:
V(IL U, ¢) = T(II ® Kiy ag, U, ¢ — 2N — 2)
TILU,¢) = VI Q@ K_trad,U,c+ 2N + 2),

where for a trace form x on ? we denote by k, the corresponding 1-dimensional
0-module.

(5.11)

Remark 5.3. (cf. [BDK1, Remark 6.2]). Let R be a finite-dimensional representation
of 9 ¢sp 0, or more generally, of 9 (¢o X ¢sp D). Using the map 7 from the proof of
Proposition.3], whose image is ¢ xcsp 9, we endow R with an action of Nic = d0BK),.
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Moreover, ¢y acts trivially on R if and only if K} does. Then Propositions 3.2]
and .3 imply that, as a K-module, the tensor module V(R) is isomorphic to the

induced module Imdf/,C R.

The action of K (9,6) on V(R) can be derived from (G.9) and (GI0). We will
need the following explicit form of this action.

Proposition 5.1. The action of K(0,60) on a tensor module V(R) is given by:
*(1ou)=(1®1)@n (1® pr(d +addo)u — 0y @ u)

2N
- O ®1 1 O* + ad® 0%)u — 9*
(5.12) ;( k ®1) @ (1@ pr(0* +a Ju @ u)
1 2N N
+5@ @) e (1@ pr(Iu) + ) (00,9 1) @n (19 pr(f7)u).
4,j=1

Proof. Let us compare (512) to (59), using (E.I0) and the fact that

—(1®1)®g (B ®u +Z ;0 1) @n (0" @)

2N
=—e@u(10u)—(el)@r (1ou)+ > (0,0'@1)@s (1®u).
=1

Noting that ad 9y € sp 0 and tr ad 9y = 0, we see that (5.12) reduces to the following
identity

2N . 2N
> 9,0'=-Ndo— Y _ (tradd*)oy .
i=1 k=1
By 2II)-@I4), we have:
2N . 2N 3
22 0:0' = [0:,0' =Y 17[0;,0)]
i=1 i,j=1
(5.13) .
= Z Tijwijao—F Z ’I”” kak,
i,j=1 i,5,k=1

and the coefficient of Jy in the right-hand side is indeed —2/N. On the other hand,
for k # 0 the fact that ad®® 0¥ € spd implies

1 ..
0= trad® 0F = trad 8" + 3 Z Pk

using that tre” = r¥. This completes the proof. ([

Remark 5.4. Computing directly

trad 9F = Zr’”trada = Z rk

3,7=1
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we obtain the identities

oN _ | 2N
Zrkchj—l—ng”cfj:O, k#0.
ij=1 ij=1

5.3. Singular vectors. The annihilation algebra K of K(9,6) has a decreasing
filtration {/C},},> 2 (see (EI8)). For a K-module V', we denote by ker, V' the set of
all v € V that are killed by . A K-module V' is called conformal iff V' = (Jker, V.
For any p > 0 the normalizer of K, in K is equal to N due to Proposition
Therefore, each ker, V' is an Nj-module, and in fact, ker, V' is a representation
of the finite-dimensional Lie algebra Nk /K, = 2o (K, /K})- In particular, by
Proposition B3, Nic/K} is isomorphic to the direct sum of Lie algebras ? & csp 0.

Equivalence of the filtrations {KC, } and {K,}, along with Proposition[3.2} implies
that any K (9,6)-module has a natural structure of a conformal K-module and vice
versa.

Definition 5.4. For any K (9,0)-module V, a singular vector is an element v € V
such that K} - v = 0. The space of singular vectors in V will be denoted by sing V.
We will denote by psing: 0 @ ¢spd — gl(sing V) the representation obtained from
the Nc-action on sing V' = ker; V' via the isomorphism Ny /K| ~ 0 & csp 0.

It follows that a vector v € V is singular if and only if
(5.14) exveE (FPHok) oy V,
or equivalently
(5.15) exve (k@F?H)oy V.

Proposition 5.2. For any nonzero finite K (0, 6)-module V', the vector space sing V’
is monzero and the space sing V/ker V' is finite dimensional.

Proof. Finite dimensionality of ker, V/ker V for all p follows from Lemma To
prove that sing V' # {0}, we may assume without loss of generality that ker V"= {0}.
Since the K-module V is conformal, ker, V' is nonzero for some p > 0. Note that
ker, V' is preserved by the normalizer Nic. Choose an irreducible Njc-submodule
U C ker, V. As U is finite dimensional, Proposition 4] shows that the action of
K4 on U is trivial, hence U C sing V. O

Note that, by definition,
(5.16) peing(O)0=0-v, Ded, vesingV,
and, due to Lemma F3(iv),
3 1
(5.17) Psing (fY)v = 5(17117] ®me)-v, v Esing V.

The next result describes the action of K(9,0) on a singular vector. It can be
derived from Remark 5.3 but for completeness we give a direct proof.
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Proposition 5.3. Let V be a K(0,0)-module and v € V be a singular vector.
Then the action of K(0,0) on v is given by

2N

- 1
exv=Y (0,0;®1)@p psing(f7)v+ 300 ®1) O psing(I')v
ii=1
(5.18) 2N
— Z (8k & 1) R (psing(ak + ad®? 8k)v — 8kv)
k=1

+(1®1) @n (psing(do +addo)v — dov) .
Proof. As K} acts trivially on a singular vector v, Proposition implies that
exv = Z (S(0;0;) ® 1) @p (z'2? @pe) - v

0<i<y
2N

! i
(5.19) i 2 ;(S(@f) ®1)®u ((z')’ @me)-v

2N
+ Z(S(@k) @1) @y (" @pe) v
k=0

+(1®1l)®yg (1®ge)-v.
On the other hand, by Corollary and Lemma [L3|(iv), we have for k # 0:
(5.20) (1®pge)-v= 50 v — 0oV + psing(ad Op)v
(5.21) (zF @pe)-v=20"v— v+ Psing (ad@k —eh 4 Z cfjeij)v.

0<i<y

Now we rewrite the first summand on the right-hand side of (5I9) using that
1 1
S(@lﬁj) = 8j6i = 5(61(% + (9](91) — 5[(91, BJ] .

Then, thanks to (&.IT), the first two summands become

2N
Z (aza] & 1) ®H psing(fij)v - Z ([61'7 a]] ® 1) ®H psing(fij)v .
i,j5=1 0<i<y

This shows that the first summand in (5I8) matches with (5.19). By (&14), (520),
the last summands in (B8] and (B.19) are also equal.

It remains to rewrite

2N
Z (10:,0;] ® 1) @p psing(f7)v + Z(ak ®1) @y (2" @ e)-v
0<i<j k=0

so that it matches the negative of the second and third terms in the right-hand side
of (5I8). Recalling the commutation relations (5.8]), we obtain

o (1 e 3 i)
0<i<j
. <1<

+> O ®1) @n ((xk D1 ) v+ pang( 3 ijfij)v) _

k=1 0<i<j
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By ([@22), the first summand is equal to —%(9y ® 1) @ u psing(I')v.
Finally, by (5.21), (228) and (E.6), we have

(fEk QH 6) U+ psing( Z ijfij)v

0<i<y
=0F . v — kv + Psing (ad(?k - eg + Z ci—“jeij + Z ci—“jfij>v
0<i<j 0<i<j
=9 v— M + psing(adsp 8k)v .
This completes the proof. (I

Corollary 5.2. Let V be a K(0,0)-module and let R be a nonzero (0 @ csp?)-
submodule of sing V. Denote by HR the H-submodule of V generated by R. Then
HR is a K(0,0)-submodule of V. In particular, if V is irreducible, then V = HR.

Proof. By (&18), K(9,0) * R C (H ® H) g HR, and by H-bilinearity, K (9,0) *
HRC (H® H)®y HR. 0

Corollary 5.3. Let R be a finite-dimensional (0 & ¢spd)-module with an action
pr. Then for the tensor K(0,0)-module V(R) = H® R, we have k@ R C sing V(R)
and

(5.22) psing(A)(1 ®u) =1® pr(A)u, A€odespd, ueR.

We will call elements of k ® R C V(R) constant vectors. Combining the above
results, we obtain the following theorem.

Theorem 5.1. Let V be an irreducible finite K (9,0)-module, and let R be an
irreducible (0 @ csp0)-submodule of singV. Then V is a homomorphic image of
V(R). In particular, every irreducible finite K (9,0)-module is a quotient of a tensor
module.

Proof. Comparing (0.18) and (512), we see that the canonical projection V(R) =
H ® R — HR is a homomorphism of K(9,6)-modules. However, HR = V by
Corollary 5.2 O

We will now show that reducibility of a tensor module depends on the existence
of nonconstant singular vectors.

Definition 5.5. An element v of a K (9,60)-module V is called homogeneous if it is
an eigenvector for the action of £ € K.

Remark 5.5. Note that the homogeneous components of a singular vector are still
singular, so that a classification of singular vectors will follow from a description of
homogeneous ones.

Lemma 5.2. Let R be an irreducible representation of 9&¢spd. Then any nonzero
proper K (0,0)-submodule M of V(R) does not contain nonzero constant vectors,

ie., MN(k® R) = {0},

Proof. Both M and k ® R C singV(R) are Njc-stable, and the same is true of
their intersection My. Since K acts trivially on My, it is a representation of
N /K] ~ 0@ ¢sp 0. The claim now follows from the irreducibility of k@ R ~ R. [

Corollary 5.4. If singV(R) = k® R, then the K (0, 0)-module V(R) is irreducible.
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Proof. Assume there is a nonzero proper submodule M. Then M must contain
some nonzero singular vector. However, M Nsing V(R) = {0} by Lemma 52 O

Proposition 5.4. Every nonconstant homogeneous singular vector in V(R) is con-
tained in a nonzero proper submodule. In particular, V(R) is irreducible if and only
if singV(R) =k® R.

Proof. Recall that, by Remark [5.3] we have V(R) = Ind/\'%/)C R. The Lie algebra K is
graded by the eigenspace decomposition of ad £’. If ¢, denotes the graded summand
of eigenvalue n, then one has the direct sum decomposition of Lie algebras

Ne=veKj=da ][]
320

and the decomposition of vector spaces

K= (Efz (& E71) @N/C.

Since t_o B t_1 is a graded Lie algebra, its universal enveloping algebra is also

graded. Then V(R) = Indf/,C R is isomorphic to U(t_2 @ t_1) ® R, which can be
endowed with a Z-grading by setting elements from R to have degree zero, and
elements from ¢_; to have degree —i. Thus submodules of V(R) contain all £’-
homogeneous components of their elements, i.e., they are graded submodules.

It is now easy to show that every homogeneous singular vector v, say of degree
d < 0, is contained in some nonzero proper K-submodule of V(R). Indeed U (K)v =
U(t_2®¥_1)v is a nonzero submodule of V(R) lying in degrees < d, and it intersects
R trivially, since R lies in degree zero. O

5.4. Filtration of tensor modules. After filtering the Lie algebra K using the
contact filtration F' of X, it is convenient to filter tensor K (9, #)-modules using the
contact filtration of H. We therefore define

(5.23) F?V(R)=F?H®R, p=-1,0,....

As usual, F"'V(R) = {0} and F°V(R) = k ® R. It will also be convenient to
agree that F'"2V(R) = {0}. The associated graded space is defined accordingly,
and we have isomorphisms of vector spaces

(5.24) gr'’? V(R) ~ gr'”” H® R.

Note that, since 9 = 0 @ kdy and the degree of 9y equals two, gr'’” H is isomorphic
to the direct sum @ZLQ 6% SP=2iy. Here |p/2] denotes the largest integer not greater
than p/2, which is p/2 for p even and (p — 1)/2 for p odd.

Lemma 5.3. For every p > 0, we have:

(i) 2-FPV(R) C FPTVY(R),
(ii) do -FPV(R) C FP"?V(R),
(iii) Nk -FPV(R) C FPV(R),

(iv) K-FPV(R) C FPT2V(R),
) 1-FPV(R) Cc FP'V(R).
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Proof. The proof of (i) and (ii) is clear, as the action of elements in ? is by left
multiplication on the left factor of V(R) = H ® R. In particular, this implies
2 - F?V(R) C FP™VY(R). Before proceeding with proving (iii)—(v), observe that

(@.23), @.24) imply o B
d'ev+K 4, do €0+ K,

so that @ C 9+ K’ ;. Also notice that K = 2 4+ K’_,, which implies [K, K] C K, s
Moreover K’ | + Nic =0 + N, as 0 C N. Then we have:
P,Kj]cpP+K,,K)]cCIK ,,K\]cK)c Nk,

[00, K] C [K,K}) c K\, o+ Nk,

PNk]CP+K ,0+K)Cco+K , CK | +NcCd+Ng,

[00, Nic] € K =0+ Nic..

Now (iii) can be proved by induction as in the case of W (0) (see [BDK1), Lemma
6.3]), the basis of induction p = 0 following from F° V(R) C sing V(R). As for
p > 0, notice that

F?V(R) =F°V(R) +0F? ' V(R) + 0, F? 2 V(R).
Then:
Nic(@FP7'V(R)) c 0Nk FP71V(R)) + [0, N FP V(R)
COFP ' V(R) + (0 + N) FP 1 V(R)
COFP'V(R) +FP ' V(R) C FPV(R),
and similarly
Nic(8o FP72V(R)) C 0o(Nic FP 2 V(R)) + [00, Nc] FP~* V(R)
COFP2V(R) + (0 + Nx) FP2V(R)
COF?2V(R) + Nc F?2V(R) C F? V(R).
It is now immediate to prove (iv) from K = d + Ni.
Finally, (v) can analogously be showed by induction on p: when p = 0, we have

F°V(R) C singV(R), hence K} F® V(R) = {0} by definition of sing V(R). When
p > 0, we observe that

KiQ@F?'V(R))

and that
K3 (90 FP 2 V(R)) € do(K} FP> V(R)) + [0, K4] FP> V(R)
C H(FP3V(R)) 4+ (0 + Ni) FP2V(R)
CFP ' VY(R).
This completes the proof. (I

The above lemma implies that both Nk and its quotient N /K} = 0 @ cspd
act on each space gr'’? V(R). The next result describes the action of N /K] more
explicitly.
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Lemma 5.4. The action of 3 ~ 0 and K)/K} ~ ¢spd = spd @ kI’ on the space
gr’? V(R) ~ gr'” H ® R is given by:

(5.25) 0-(f®u)=foprd)u,
(5.26) A (fo5 @ u) = (Af)9h @ u+ [y @ pr(A)u,
(5.27) I' - (fou)=pf@utfepr(I)u,

where A € spd, f € gr’? H, f € SP=20,u € R, and Af denotes the standard action
of spd C gld on 0.

Proof. The proof is similar to that of Lemmas 6.4 and 6.5 from [BDKI]. O
Corollary 5.5. We have an isomorphism of (0 @ csp0)-modules
lp/2] .
g V(ILU,¢) ~ @ TR (SP*2 @ U, c+p).
i=0
Proof. Follows immediately from Lemma [5.4 O

6. TENSOR MODULES OF DE RHAM TYPE

The main goal of this section is to define an important complex of K(9,6)-
modules, called the contact pseudo de Rham complex. We continue to use the
notation of Sections 2.1l and

6.1. The Rumin complex. As before, let § € 0* be a contact form, and let 0CDO
be the kernel of 6. Consider the wedge powers Q" = A" 9* and Q" = A" 0*. Then
we have a short exact sequence

(6.1) 0—-00" ! Q"= 0" =0,

where © is the operator of left wedge multiplication with 6, i.e., ©(a) = A . For
a € Q", we will denote by @ € Q" its projection via (G.1)).

The direct sum decomposition d = 0 @ ks gives a splitting of the sequence (G.1)).
In more detail, elements & € Q" are identified with n-forms o € Q" such that
tsac = 0. Thus we have a direct sum Q" = ©Q" ' @ Q". Then ©2 = 0 implies that
ker ©|gn = ©Q"! and we get a natural isomorphism

(6.2) 00" = Q" fAaw a.
The 2-form w = dpf can be identified with @, because tsw = 0. Denote by ¥

(respectively, W) the operator of left wedge multiplication with w (respectively, @).
Consider the images and kernels of W:

(6.3) Im=v0"2cqQ", K™ =ker¥|g. C Q™.

Since w is nondegenerate, we have I = Q" forn > N+ 1 and K" = 0 for
n < N — 1. In particular, ¥: QV~1 — QN+ is an isomorphism. More generally,
for all m = 0,..., N, the maps ¥ : QN =™ — QN+™ are isomorphisms.

Lemma 6.1. The composition of natural maps K~ — QN — QN /IN is an iso-
morphism. More generally, the composition

Jmy—1
RN+m  QN+m (™) QN-m _, QN—m/fN—m

is an isomorphism for all m =0,..., N.
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Proof. To show surjectivity, take any o € Q¥ =™, We want to find 3 € KN*+™ such
that a — (¥™)~13 € IN=™, Since ¥+2: QN-m=2 _ ON+m+2 i5 an isomorphism,
there is v € QN =772 guch that ¥™*2y = I™*lq. Then B = U™ (a — Uy) satisfies
the above conditions.

To prove injectivity, we need to show that U™ [VN-" N KN*+™m = [0}, If a €
ymN=—mn KN+ then a = " +p for some p € QV~™"2, But then ¥m*2p =
Vo = 0, which implies p = 0 and a = 0. O

Since A-@w = 0 for A € spd and the action of A is an even derivation of the wedge
product (see Lemma 22 and ([28)), it follows that I"™ and K™ are sp 0-submodules
of Q™. Furthermore, the map V¥ is an spd-homomorphism. In particular, the
isomorphism from Lemma [6.1] commutes with the action of spd. Recall that R(m,,)

denotes the n-th fundamental representation of sp 9, and R(m) = k.
Lemma 6.2. We have isomorphisms of spd-modules
Q" /1" ~ K*N=" ~ R(r,), 0<n<N.
Proof. This is well known; see, e.g., [FH, Lecture 17]. O

Following [Rul, we consider the spaces
(6.4) I"=9v0"24+ 00" cQ", K" =ker¥lg. NkerO|g. C Q™.
Using O¥ = ¥O and (G1]), we obtain a short exact sequence
(6.5) 00" 51" —=I"=0,

while ([G2]) gives a natural isomorphism

(6.6) K" S K"l nae—a.
The above equations imply that I" = Q" forn > N+ 1 and K" =0forn < N. It
is also clear that Q" /I™ ~ Q™ /I" for all n.

The “constant-coefficient” Rumin complez [Ru] is the following complex of ¢sp d-
modules

0,70 do do. AN /7N 90 N+1 do do 2N+1
(6.7) 0—-Q/I" = .-.. = QY/I" - K RN e 7

where the map dt is defined as in [Ru]. We will need the “pseudo” version of
this complex defined in Section below. The latter is a contact counterpart of
the pseudo de Rham complex from [BDK|BDKIT], which we review in the next
subsection.

6.2. Pseudo de Rham complex. Following [BDK], we define the spaces of pseud-
oforms Q") = H® Q" and Q) =H®Q = @iﬁgl Q™). They are considered
as H-modules, where H acts on the first factor by left multiplication. We can iden-
tify Q"(9) with the space of linear maps from A" 0 to H, and H®? @y Q"(0) with
Hom(A" 0, H®?). For g € H, o € , we will write the element g ® a € Q(0) as go;
in particular, we will identify © with k ® Q C Q(2).

Let us consider H = U(D) as a left 9-module with respect to the action a - h =
—ha, where ha is the product of a € 9 C H and h € H in H. Then consider the
cohomology complex of 0 with coefficients in H:

(6.8) 0-0°0) 5 ') L 42N,
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Explicitly, the differential d is given by the formula (a € Q"(2), a; € ?):
(da)(ar A+ A apt1)
=> (=D a(lai,a] Aay A NG A= NG A=+ A ang)
(6.9) =
—l—Z(—l)Za(al/\---AEZ-A---Aan+1)ai if n>1,
(da)(a1) = —aay if a€%0)=H.

Notice that d is H-linear. The sequence (6.8]) is called the pseudo de Rham complez.
It was shown in [BDK| Remark 8.1] that the n-th cohomology of the complex
(Q(9),d) is trivial for n # 2N + 1 = dimd, and it is 1-dimensional for n = 2N + 1.
In particular, the sequence ([6.8) is exact.
Example 6.1. For a =1 € H = Q°0), Eq. (63) gives
2N _
(6.10) —dl=e:=) @' c HR =0'(d).
i=0
Next, we introduce H-bilinear maps
(6.11) x: W0Q)@ Q") — H®? @5 Q"(0)
by the formula [BDK]:
(wxy) (1A Nap) =—(f @ ga)alar A+ Nay)

n

(6.12) +Z(—1)i(fai®g) a(a/\al/\"'/\ai/\"'/\an)

N
Il
-

(-1)(f@g)alla,a) Aay A ANa; A--- ANay) € HS?,

-

s
Il
-

+

where n > 1, w = f ®a € W(0) and v = ga € Q"(0). When v =g € Q°(d) = H,
we let w* vy = —f ® ga. Note that the latter coincides with the action (B24) of
W) on H.

It was shown in [BDKI[BDKI] that maps (6.11]) provide each Q"(9) with a struc-
ture of a W(d)-module. These modules are instances of tensor modules as intro-
duced in [BDKI], namely Q"(9) = T (k, Q™) (see Section [E.I]). The action of W ()
commutes with d, i.e.,

(6.13) wx (dy) = (([d®id) @g d)(w * )
for w € W(d), v € Q"(9).
Let us extend the wedge product in €2 to a product in £2(?) by setting

(fa) A (9B) = (fg)lanp), a,BeR, fge H.

In a similar way, we also extend it to products
(hou (fOa)AB=hou (f®(aAp)),

aNh@g(gep)=hog (o (@Ap), heH®.
Lemma 6.3. For any w € W(0), a € Q" and B € Q, we have:
(6.14) d(aAB) =doaAB+ (—1)"aAdf,

(6.15) wr(aAB)=(wxa)AB+an(wxp)+wey (aAp).
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Proof. Since dp is an odd derivation of the wedge product, by subtracting (23]
from (6I4), we obtain that (6.14) is equivalent to:

(d=do)(anp) = (=1)"an(d=do)s.
On the other hand, comparing ([614) with (23) and ([23]), we see that
(6.16) (d—dp)a=—-€eNa,

where € is defined by ([6I0). Then (614 follows from the associativity and graded-
commutativity of the wedge product (see (24)).
By H-linearity, it is enough to prove (6.I3]) in the case w = 1®9;. Then by ([&.3)

we have

1ed)*a—(109)opa=(181)2y (add;) a—i—z ®1) Qg el

Using that (add;) and e/ are even derivations of the wedge product (see (ZX))
completes the proof. O

6.3. Contact pseudo de Rham complex. As before, let Q"(d) = H @ Q,
00) = @iNJ 10" (d) be the spaces of pseudoforms. We extend the operators ©
and U defined in Section to Q(0d) by H-linearity. We also set I"(d) = H ® I"
and K"(9) = H ® K™. From (614) and w = dof, we deduce:

(6.17) AV =¥d, dO =T -6ed,

where d is given by (69). This implies that dI™(d) C I"*1(d) and dK™(d) C
K"1(d). Therefore, we have the induced complexes

(6.18) 0 Q°0)/1°0) L Q') /1) & - % QN (@)/1V(0)
and
(6.19) KN (@) % KNP (0) & o S KN ).

Lemma 6.4 (cf. [Ru]). The sequences (618) and [619) are ezact.

Proof. First, to show exactness at the term Q"(9)/I"(0) in (6I8) for n < N — 1,
take a € Q7(0) such that da € I""1(d). This means da = ©8 + ¥~y for some
B €N (0), v € Q" 1(d). Then d(a — ©v) = da — Uy + Ody = (S + dy) ; hence,
by changing the representative & mod I™(d), we can assume that v = 0. Now we
have 0 = d?a = dO3 = U3 — ©dB. Then ¥(O8) = 0, i.e., O € K"1(d). But
K" (d) =0 for n < N — 1; thus ©3 = 0 and da = 0. It follows that o = dp for
some p € Q"71(d).

To prove exactness at the term K™(?) in (G.I9) for n > N + 2, take o € K™ ()
such that daw = 0. Then a = dj for some 3 € Q" 1(2). Since I""1(2) = Q"~1(d)
for n > N + 2, we can write 8 = O+ Up for some v € Q"2(2), p € Q"3(d). But
since d(¥p) = d(©dp), by replacing v with v+ dp, we can assume that p = 0. Then
dB = —Ody + ¥y and O©a = 0 implies OU~y = 0. Therefore, 3 = Oy € K" 1(0),
which completes the proof. O

Now, following [Rul, we will construct a map d®: QN(2)/IN(d) — KN*+1(d)
that connects the complexes ([6.I8) and (6.19), which we will call the Rumin map.
Since IVt () = QNFL(2), for every a € QN (d) we can write da = ©3 + Uy for
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some 3 € QN (), v € QV71(d). Then, as in the proof of Lemma 6.4, we have
da =0(B+dy) € KN*T1(d) for & = a — ©7. We let d®a = da.

We have to prove that dRa is independent of the choice of & and depends only on
the class of @ mod IV (9). First, if da = O+ ¥y = OB+ ¥4/, then OV (y—+') = 0,
which implies O(y — ') € K¥(d). But KN¥(®) = 0; hence, @ = a — Oy =
a — ©7'. Next, consider the case when a € IV(d). Write @ = Ou + Up; then
da = O(—du) + ¥(u + dp) and dRa = O((—dp) + d(p + dp)) = 0, as desired.

Using the Rumin map d®, we can combine the two complexes (6.I8) and (6.19).

Proposition 6.1 (cf. [Ru]). The sequence

0— Q°0)/I°®0) NN QN @)/IV () i‘: KENT1(2) NN K2V (g)

is an exact complez.

Proof. In the preceding discussion we have shown that d® is well defined. Next, it
is clear by construction that d®d = 0 and dd® = 0. Due to Lemma [6.4] it remains
only to check exactness at the terms QY (2)/IV (0) and KN+1(d).

First, let a € QV(0) be such that d®a = 0. Then da = d®a = 0; hence & = d
for some B € QV=1(d). Then a + IN(d) = a+ IV (0) =d(8 + IVN~1(2)).

Now let o € K¥*1(d) be such that da = 0. Then o = df3 for some 3 € QN (d).
Since dg € KN*1(d), we can take B =7, and dRB8 =dj = a. O

We will call the complex from Proposition [6.1] the contact pseudo de Rham com-
plex.

6.4. K(0,0)-action on the contact pseudo de Rham complex. Here we prove
that the contact pseudo de Rham complex is a complex of K(9,6)-modules, and
we realize its members as tensor modules.

First, we show that the members of the Rumin complex (6.7)) are csp 9-modules.
Recall that the Lie algebra gld acts on the space 2™ of constant coefficient n-forms
via (2.7, and this action is by even derivations (see ([2.8])).

Lemma 6.5. For every n, we have: ¢spd-I" C I" and c¢spd - K® C K*. In
addition, ¢o - Q" C I™ and ¢y - K™ = {0}. Hence the gld-action on Q" induces
actions of ¢spd on Q"/I"™ and K™, and the trivial action of ¢y on them.

Proof. By Lemma22 A-a = ca for A € ¢spd, a € {0,w} and some ¢ € C. Then
by @8), A-(aAp)=aAn(cf+ A-p)forall g€ Q. This implies A-I"™ C I"™ and
A-K™C K",
Next, recall that ¢y = span{e }.0 and €? - 2' = —§i 2% = 6. 6. Then
e (A AT =OAT2 A A2 if k=14,
and is zero if k # 4, for all s. Therefore, ¢y - 27 C OQ"~ L C I™.

Now, if « € K", by (6.8) we can write o = 6 A 3 for some 3 € Q"~1. Then for
k # 0 we have e - 8 =6 A~ for some v € Q"2 and we find

ea=e) - (OAB) =OA()-B)=0A(BAY) =0,
using that €? - § = 0. O
Lemma 6.6. We have isomorphisms of c¢sp 0-modules

Q" /I" ~ (R(my,), —n), KNt~ (R(n,),—2N —2+n), 0<n<N.
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Proof. Recall that we have isomorphisms of spd-modules Q"/I" ~ Q"/I" and
K™~ K" ! (see (6.6))). The sp d-action on these modules is described in Lemmal[G.2}
Finally, to determine the action of I, we use (Z8), 224) and (6.6). We obtain
that I’ acts as —n on Q" C Q" and as —n — 1 on K™. 0

Here is the main result of this section.

Theorem 6.1. The contact pseudo de Rham complex

0— QO(D)/IO(O) i> i> QN(D)/IN(D) i KN+1(O) i> i> K2N+1(D)

is an exact complex of K(0,0)-modules. Its members are tensor modules, namely
Q"(@)/1"(0) = Tk, Q"/I") = T (k, R(my), —n)

and

K"(0) = T(k, K") = T(k, R(Tan11-n), -1 — 1).

Proof. Recall that all Q"(d) = T (k,Q") are tensor modules for W(?); see Sec-
tion Bl and [BDKI]. In particular, e * (1 ® «) is given by Remark 52 for o € Q™.
By Lemma [65 ¢o acts trivially on K™ and K" is a csp 0-module. Therefore, for
a € K™, the action e * (1 ® «) is given by (5:9). By definition, this means that
K™(d) = H® K" = T(k, K™) has the structure of a tensor K(9,6)-module. The
same argument applies to the quotient Q™(d)/I™(0) = T (k, Q" /I"™).

The exactness of the complex was established in Proposition It remains
to prove that the maps of the complex are homomorphisms of K (9,6)-modules.
For d, this follows by construction from the fact that d: Q*(d0) — Q"*1(d) is a
homomorphism of W (d)-modules. In order to prove it for d®, we need the next
lemma, which can be deduced from Remark and Lemma

Lemma 6.7. Identifying o € Q™ with 1 ®@ a € Q"(0) = H ® Q", we have:

(6.20) ex=—(e+dh®1)®0,
2N )
(6.21) exw=—(e+dh@1)@rw—» (0dh®1)@m (OA").
i=1

Now take an a € QY (d) and write da = O + ¥y = A B +w A~y. Then, by
definition, d®a = d(a — 6 A ). Using that d is a homomorphism (see (G.13)), we
obtain

ex (d%a) = (((d®id) @ d) (exa—ex (A7) .
Then we find from (G.I5) and (620) that
ex (OANY)=0NY, ' =exy—(0®@1) 7.
On the other hand, using again ([G.13]), (620) and (621]), we compute
([d@id) @g d)(exa) =ex* (da) =ex (OAB) +ex (WAY) =0AB +wAy
for some ', where 7/ is as above. Then
(([d®id) @g d¥)(e*a) = ((([d®id) @ d) (exa— O AY),

which coincides with e * (d®«). This completes the proof of the theorem. 0
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6.5. Twisted contact pseudo de Rham complex. For any choice of a finite-
dimensional 9-module II, one may apply the twisting functor Ty from Section [3.3]
to Theorem and obtain a corresponding exact complex of K (0, 6)-modules

R
0 — T(IL,k, 0) 2% T(IT, R(m), —1) <% . 25 T(I1, R(my ), - N) 5
T(I, R(ry), =N — 2) 4% . 4% (11, R(mry), —2N — 1) 2% T(IL, k, —2N — 2),
where we used the notation dry = Ti1(d) and d® = Ty (dR). In the rest of the paper,

we will suppress the reference to II, and write d instead of dry and d® instead of

dR whenever there is no possibility of confusion. If we set
6.22) V' = V(IL R(my,),p) = T ® Ky ad, R(mp), p — 2N — 2)
' V2HN+2—p = V(Ha R(Wp)u 2N +2— p) = T(H ® Kerad, R(Wp)a —P),

for 0 < p < N, where R(my) = k denotes the trivial representation of sp 9, then we
obtain an exact sequence of K (9, #)-modules

d d d ar d d d
(6.23) 0= ViNio S Vingt — - = VNgo — VN — - = VIES VL

The above exact complex will be useful in the study of reducible tensor modules
and in the computation of their singular vectors. We will be using notation ([6.22])
throughout the rest of the paper. Notice that V,; is not defined.

7. IRREDUCIBILITY OF TENSOR MODULES

We will investigate submodules of tensor modules, and prove a criterion for
irreducibility of tensor modules. Throughout the section, R will be an irreducible
(0 @ ¢sp 0)-module with an action denoted pgr, and V(R) the corresponding tensor
module.

7.1. Coefficients of elements and submodules. Note that every element v €
V(R) = H ® R can be written uniquely in the form

(7.1) v = Z 8(1)@)1)], vr € R.

2N+1
rez?’

Definition 7.1. The nonzero elements vy in (T.I]) are called coefficients of v € V(R).
For a submodule M C V(R), we denote by coeff M the subspace of R linearly
spanned by all coefficients of elements from M.

It will be convenient to introduce the notation
2N -
(72) Y(u) =Y 80, @pr(f)u, ueR.
ij=1
Lemma 7.1. If v € V(R) is given by (1), then

e v :Z(l ® 8D @5 ¥(vr)
(7.3) 1
+ terms in (k® 0D H) @y (FLH® (k+ pr(spd +10)) - vr).

In particular, the coefficient multiplying 1@ 09 equals 1 (vr) modulo F* V(R).
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Proof. We rewrite (B.12)) using the fact that

(7.4) Gie)egrv=101)ydv—(1®0J) v
for any v € V(R). We obtain:
(7.5)
2N
ex(1ou) = (1@l on (V) - > 0@ pr(d*)u)
k=1

+ terms in (k® H) @y (a @ (k+ pr(sp0)) - u+k® (k+ pr(spd +2)) u) .
Then plugging in (1) and applying H-bilinearity completes the proof. O

Remark 7.1. For v € sing V(R), we have by (5.18)
2N -
(7.6) exv= Y (1®0,0;) @ psing(f?)v + terms in (k@ F' H) @p V(R).
ij=1
Lemma 7.2. For any nonzero proper K(0,0)-submodule M C V(R), we have
coeff M = R.

Proof. Pick a nonzero element v =), o) @ vy contained in M. Then Lemma [Z.1]
shows that M contains an element congruent to ¢ (v;) modulo F! V(R), thus coef-
ficients of 1 (vy) lie in coeff M for all I. This proves that sp d(coeff M) C coeff M.
Similarly, one can write

2N
exv = Z (1w 6(1)) QH (¢(U1) _ Za’f ® pR(ak)’U])
k=1

I

+ terms in (k® 0V H) @ (a @ pr(spd +k)or + k@ (k+ pr(spd + D))vl),

showing that pr(0%)v; € coeff M forall I and allk = 1,...,2N. Thus, d(coeff M) C
coeff M. However, D generates 0 as a Lie algebra, hence 0 stabilizes coeff M as well.
Then coeff M is a nonzero (0 csp 0)-submodule of R. Trreducibility of R now gives
that coeff M = R. O

Corollary 7.1. Let M be a nonzero proper K (0,0)-submodule of V(R). Then for
every u € R there is an element in M that coincides with 1(u) modulo F* V(R).

Proof. As coeff M = R, it is enough to prove the statement for coefficients of ele-
ments v € M. Since M is a K (9, 0)-submodule of V(R), the coefficient multiplying
1® oW in [T3) still lies in M and it equals ¥(vr) modulo F* V(R). O

7.2. An irreducibility criterion. The results of the previous subsection make it
possible to prove a sufficient condition for irreducibility of V(R) when the sp 9-action
on R is nontrivial. We first need the following lemma.

Lemma 7.3. Assume the K(0,0)-tensor module V(R) contains a nonzero proper
submodule. Then the sp0-action on R satisfies

(7.7) > fedu) =0,  ueR,

forall 1 < a,b,c,d < 2N, where the sum is over all permutations of a,b,c,d.
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Proof. Let M be a nonzero proper K (9,6)-submodule of V(R) and v € M be an
element equal to ¥(u) modulo F! V(R) (see Corollary [TT). Let us express e * v
in the form > ,(1 ® 0Y)) @y ur using (5.12) and (T4). If |I| > 4 then ur = 0;
moreover if |I| = 4 then uy lies in k ® R. By Lemma these coefficients must
cancel with each other, and they give exactly (7). O

Now we can prove the main result of this section.

Theorem 7.1. If the K(0,0)-tensor module V(IL,U, ¢) is not irreducible, then U
is either the trivial representation of sp0 or is isomorphic to R(m;) for some i =

1,...,N.
Proof. Lowering indices in (7)) gives the following equivalent identity:
(fafd + facf* + Fo 10+ FOfd + P fac + FE12) -u =0,
forall 1 <a,b,c,d < 2N and u € R. Specializing to a = b = ¢ = d = i we obtain:
AfLfE+ fuf "+ f7fu=0.
Recalling that elements (Z30) form a standard slo-triple, this can be rewritten as
hf—eifi—fiei =0.

As h? is a linear combination of h? — (e; f; + fie;) = 0 and the Casimir element of
(€4, hi, fi) =~ sla, it acts on any irreducible slo-submodule W C U as a scalar, which

forces h? to be equal either 0 or 1. Then the eigenvalue of the action of h; = —2f
on a highest weight vector in U is also either 0 or 1.

When the basis 1, ...,02n5 of 0 is symplectic with respect to w, elements h; =
el — e%ﬁ form a basis of the diagonal Cartan subalgebra of sp0 (see (2.32))). Let
U = R(X) be an irreducible representation of spd with highest weight A = >, \i7;.

1 N+1

For the standard choice of simple roots, the eigenvalue of hy = e; — ey} on the
highest weight vector Ais Y, A; < 1 (cf. [EH, Lecture 16]). Since \; are non-negative
integers, A must be 0 or one of the fundamental weights ;. (I

Remark 7.2. The module V(II, U, ¢) is always irreducible if the sp9-module U is
infinite-dimensional irreducible. In order to show this, it suffices to prove that
the factor of U(spd) by the ideal generated by relations (7.7)) is finite-dimensional.
It is enough to prove this for the associated graded algebra S(sp?d): letting a =
b=c=din (T7), we get (f2*)? = 0; then letting in (1) a = b, ¢ = d, we
get (fo)2 = —4ff% hence (f*)* = 0 for all a,b, proving the claim (we are
grateful to C. De Concini for this argument). Similarly, the tensor modules for Lie
pseudoalgebras of W and S types in [BDKI]| are irreducible if the corresponding
modules U are irreducible infinite-dimensional.

We are left with investigating irreducibility of all tensor modules for which U
is isomorphic to some R(m;) or to the trivial representation R(m) = k. We will
do so by explicitly constructing all singular vectors contained in nonzero proper
submodules of V(II, U, ¢), and thus determining conditions on the scalar value ¢
of the action of I’. A central tool for the classification of singular vectors is the
following proposition, which enables us to bound the degree of singular vectors.

Proposition 7.1. Let v € V(R) be a singular vector contained in a nonzero proper
K(0,0)-submodule M, and assume that the spd-action on R is nontrivial. Then v
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is of degree at most two in the contact filtration, i.e., it is of the form

2N 2N
(7.8) v=Y0:0; Qv+ h@u+187.
ij=1 k=0

Proof. Write v =>",0%) ® v;. Then Lemma [} together with (7.6]), shows that
¥(vr) = 0 whenever |I|” > 2. As the spd-action on R is nontrivial, ¢(v;) = 0
implies v; = 0. ([

Our next goal is to characterize singular vectors of degree at most two in all
modules that do not satisfy the irreducibility criterion given in Theorem [Z.I] and
thus to obtain a classification of reducible tensor modules.

8. COMPUTATION OF SINGULAR VECTORS

In this section, we will be concerned with tensor modules of the form V(II, U, ¢),
where II is an irreducible finite-dimensional representation of 0, and U is either the
trivial sp 9-module or one the fundamental representations. Our final result states
that such a tensor module contains singular vectors if and only if it shows up in
a twist of the contact pseudo de Rham complex, and that in such cases singular
vectors may be described in terms of the differentials.

8.1. Singular vectors in V(II, k,c). Here we treat separately the case U ~ k.
Since the sp 9-action is trivial, now (5.I2) can be rewritten as
2N
ex(1@u)=> (h®1) @ (0*®u—18 pr(d*)u)
k=1
+(00®1) @ (1@cu/2)—(1®1) @ (0o @u—1® pr(do)u) .

Using (B.13), we can also write

(8.1)

2N
k=1

(8.2)

Proposition 8.1. We have:

(i) sing V(IL, k, ¢) = FO V(IL, k, ¢) for ¢ # 0;

(i) sing V(II, k,0) = F"* V(IT, k, 0);

(iii) V(R) = V(IL k, ¢) is irreducible if and only if ¢ # 0.
Proof. (i) Let v = 3", 0" ®@vr € V(R) be a singular vector, and assume that vy # 0
for some I with |I| > 0. If n is the maximal value of |I| for such I, choose among

all I = (ig,41,...,%2n) with |I| = n one with largest possible ig. If we use [82) to
compute e * v and express the result in the form

(8.3) Y@y @uus,  useV(R),
J

then the coefficient multiplying 1@0*20) equals —(ig+1)cvr/2. Since v is singular,
this must vanish if |I| > 0, and ¢ # 0 gives a contradiction with vy # 0.

(ii) In the same way as in part (i), we show that sing V(IT, k, 0) € F! V(II, k, 0).
Indeed, computing the coefficient multiplying 109U *¢¥) | we see that |I| > 1 implies
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vy = 0. Now, constant vectors are clearly singular, and using u = 9; ® v; (i # 0)
in (BI)) easily shows u to be singular for all choices of v; € R. We are left with
showing that dy ® vg (vg # 0) is never a singular vector. Once again, substituting
this in (1)) and expressing the result as in (B3] gives nonzero terms multiplying
000k ® 1 for all k # 0.

(iii) If ¢ # 0, then V(IL k, ¢) has no nonconstant singular vectors, hence it is
irreducible by Corollary 5.4l As far as V(II, k, 0) is concerned, direct inspection of
(BI) shows that elements 0 @ u — 1 ® pr(d)u (9 € d,u € R) generate over H a
proper K (9,0)-submodule of V(IL k, 0). O

Corollary 8.1. We have sing Vil = FO VT + d FO VL.

Proof. The (d9@®csp d)-submodule d F® V]I  sing V{! contains nonconstant elements,
so it has a nonzero projection to gr’! VII. However, Corollary 5.5 shows that this is
isomorphic to II X, whence it is irreducible. ([

We will now separately classify singular vectors of degree one and two in all other
cases.

8.2. Classification of singular vectors of degree one. Our setting is the fol-
lowing: V =V(R) = H® R is a reducible K (9, 0) tensor module, R is isomorphic to
IIXU as a (0@ csp 0)-module, where both IT and U are irreducible, and U = R(m,,)
as an sp 0-module for some 1 < n < N. We are also given a nonzero proper sub-
module M C V. Note that by assumption U is not the trivial sp d-representation.
We look for singular vectors of degree one, i.e., of the form

2N
(8.4) v228i®vi+1®5,

i=0
which are contained in M. Note that every such singular vector is uniquely deter-
mined by its degree one part. Indeed, if v and v’ are two such vectors agreeing in
degree one, then v — v’ is a singular vector contained in M N (k ® R) = {0} (see

Lemma [5.2)).

Lemma 8.1. If v € M is a singular vector written as in (84), then vo = 0.

Proof. Compute e * v using (5I2). Then if we write e x v = Y, (0) @ 1) ®@p v,
the coefficient multiplying 900;0; ® 1 for i < j is pr(f*“)vg € M N (k ® R), up to
a nonzero multiplicative constant. Hence pr(f*)vy = 0 for all i, j, which implies
vg = 0 as the sp 0-action is nontrivial. ([

Proposition 8.2. Let v,v' be nonzero singular vectors of degree one contained in
nonzero proper submodules M, M’ of a tensor module V(R) = V(I1,U, ¢), as above.
If v=12" mod F°V(R), then v ="'

Proof. By Lemma Bl and Corollary 5.5, I’ acts on (sing V(R)NF' V(R))/ F* V(R)
via multiplication by ¢+ 1, and it obviously acts on F° V(R) via multiplication by
c. Then sing V(R) N F! V(R) is isomorphic to the direct sum of the ¢ + 1 and ¢
eigenspaces with respect to I'.

Any K-submodule of V is in particular stable under the action of I’, so it con-
tains the I’-eigenspace components of all of its singular vectors. However, a nonzero
proper submodule M cannot contain constant singular vectors. Thus, singular vec-
tors must lie in the c+1-eigenspace, and their constant coefficient part is determined
by their degree one part, independently on the choice of the submodule M. O
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So far, we have showed that singular vectors of degree one also have degree one
in the contact filtration, and that those contained in a nonzero submodule must be
homogeneous (i.e. eigenvectors) with respect to the action of I’. Notice that since
all constant vectors are singular, a singular vector of degree one stays singular if we
alter or suppress its constant part.

Lemma 8.2. A nonzero element v = Ziil O @ui € H® R is a singular vector
in V(R) = V(IL, U, c¢) for at most one value of c.

Proof. Compute exv =3 ,(0") @ 1)@y vr using (12). For k # 0, the coefficient
multiplying do0r ® 1 equals —1/2 ® cvy, plus a linear combination of terms of the
form 1 ® pr(f*)vy that arise from reordering terms multiplying 9;0;0) ® 1; such
terms are however independent of the choice of c¢. All such coefficients must vanish
when v is singular. If this happens for two distinct values of ¢, we obtain vy = 0
for all k, a contradiction with v = 0. O

Theorem 8.1. Assume that the action of spd on U is nontrivial. If V = V(I1, U, c)
contains singular vectors of degree one, then V = VZI)I for somel <p<2N+1,p#

N + 1. More precisely, sing VZI} NF! VZI)I =F° VE +dF° VZI}Jrl.

Proof. By Theorem[71] V(R) = V(II, U, ¢) is irreducible unless U = R(m,) for some
1 < p < N.Lemma[Rdand Corollary 5.5l show that singular vectors of degree one in
a nonzero proper K (9, #)-submodule M project faithfully to a (2 csp 9)-submodule
of gr’' V(R) isomorphic to ITX (0 ® U, c + 1). We can explicitly decompose 0 @ U
as a direct sum of irreducibles using Lemma 2.4l One has:

0® R(m) ~ R(2m) @k ® R(m2),
0® R(mp) ~ R(mp +m1) ® R(mp—1) ® R(mp+1), ifl<p<N,
0@ R(ry) ~ R(ry +m1) ® R(my_1).

For all values of 1 < p < N, the sp 0-module R(m, + m1) satisfies the irreducibility
criterion stated in Theorem [T}, and its dimension is larger than dim R(m,). We
can therefore proceed as in [BDKI] Lemma 7.8] to conclude that no singular vectors
will have a nonzero projection to this summand.

However, by the construction of the contact pseudo de Rham complex, the ten-
sor module V(II, R(mp), ¢) contains singular vectors projecting to the summand
R(mp+1) when ¢ = p and to the summand R(m,—1) if ¢ = 2N + 2 — p. Lemma [82]
shows now that these are the only values of ¢ for which there are singular vectors
projecting to such components, whereas Proposition implies that those are the
only homogeneous singular vectors. O

8.3. Classification of singular vectors of degree two. In all of this section,
V(R) = V(IL, U, ¢) will be a tensor module containing a singular vector v of degree
two. Due to Proposition [[.I] we may assume that

2N 2N
i,j=1 1=0

where v;; = vj; for all i,j. We already know by Proposition 4] that V(R) is
reducible, hence U = R(m,) for some p by Theorem [TI] and Proposition 811 Our
goal is to describe all possible v’s, and show that the only tensor modules possessing
them is V(II, R(7n ), N). Recall the definition of 4 (u) given by ([T2]).
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Lemma 8.3. We have f*?(v) = ¢(vag) mod F'V(R).
Proof. Use ([[A) to compute e * v and compare it with (6l O

This shows that for some u € R there exists a singular vector coinciding with
¥(u) modulo F* V(R), since if v is a singular vector of degree two, then v,s # 0 for
some choice of «, 3.

Lemma 8.4. Let v,v’ be singular vectors of degree two in V(R), and assume that

v=1v" mod F'V(R). Then vy = v}.

Proof. Apply Lemma Bl to the singular vector of degree one v — v’. O
Note that since I’ acts on singular vectors, the projection operator ps of V(R) =

V(I1,U, ¢) to the ¢+ 2 eigenspace with respect to I’ maps sing V(R) N F2 V(R) to

itself. If a nonzero proper submodule M of V(R) contains a singular vector v of

degree two, then it also contains pov. We will say that psv is a homogeneous singular
vector of degree two.

Lemma 8.5. For every u € R there exists a unique homogeneous singular vector

(8.6) p(u) =p(u) mod F'V(R).

Elements ¢(u) depend linearly on u and satisfy:

(8.7) FP0(w) = o(f** (w),

(8.8) 0 p(u) = ¢(0 - u).

Moreover, if v is a homogeneous singular vector of degree two as in (81, then
(8.9) FoP(0) = d(vag) -

Proof. We know that for some 0 # u € R we can find a singular vector v equal to
¥(u) modulo F! V(R). Then its projection pyv to the ¢ 4 2-eigenspace of I’ is still
singular and coincides with v up to lower degree terms. If we are able to show that
B and [BF)) hold whenever both sides make sense, then the set of all u € R for
which ¢(u) is defined is a nonzero (3 @ cspd)-submodule of R, hence all of it by
irreducibility.

So, say ¢(u) is an element as above. By Lemma B3] we know that f*%(¢(u))
coincides with ¥(f*?(u)) up to lower degree terms. Moreover, as I’ commutes with
spd, the vector f#(¢(u)) is still homogeneous, thus showing (87). The proof of
([B9) is completely analogous. Similarly, Lemma 5.4 implies (8.8]), as the action of
I' commutes with that of d. d

Corollary 8.2. The map ¢: R — singV(R) is a well-defined injective (0 ® sp0)-
homomorphism, and the action of sp0 maps pasingV(R) to the image of ¢.

Proof. Since we are assuming that the action of spd on R is nontrivial, the map
¥: R — V(R) is injective. Then, by [.8]), ¢ is also injective. O

Corollary 8.3. The space pssing V(R) does not contain trivial sp0-summands.

Proof. If v € pysing V(R) lies in a trivial summand, then 0 = f*#(v) = ¢(vap) for
all o, 5. But ¢ is injective, hence v,5 = 0 for all ¢, 3, a contradiction with v being
of degree two. Therefore v = 0. O

The above results can be summarized as follows.
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Theorem 8.2. The map ¢: R — pasing V(R) is an isomorphism of (0 ® sp)-
modules. The action of I' on pssing V(R) is via scalar multiplication by ¢+ 2. All
homogeneous singular vectors of degree two in V(R) are of the form ¢(u) for u € R.

A classification of singular vectors of degree two will now follow by computing
the action of e € K(0,60) on vectors of the form ¢(u). In the computations we
will need some identities, which hold in any associative algebra. We will denote by
[, y] = 2y — yx the usual commutator and by

1
{z1,... 20} = ] Z Zo(1) -+ - To(n)

’ g€eSy,

the complete symmetrization of the product.

Lemma 8.6. For any elements a, b, c,d in an associative algebra, we have:

abe = {a,b,} + 5 (o, 1.} + 0. o} + e o 81)) + = (1o . l) + [l 8], ]),

abed = {a, b, c,d}
+ 5 ({abfe.d)y + fase, b, )} + fa,d, . )

+{b ¢, [a,d]} + {b,d, [a, ]} + {c, d, [a, b]})

+ (010, fes )y + (Lol b, ) + {la ), I ]}
+ 2 (1a s e dl} + o [,y ) + 10, o, e} + 0 [fa, o, ]}
+{e.[a, [b,d)}} + {e [fa, ], ]} + {d, a b, ]} + {d, [a, 5] ]}
+ < (1lesd) b1, 0] ~ ([, ), ] )
+ 2 (lla, 8l e, d)) + [l ] b, ) + [[a,dl, b, c])
Proof. 1t is a lengthy but standard computation. The authors have checked it using
Maple. (I
Now let us write
2N
(8.10) $u) =) + Y h@u+1®7, u€ER,
k=0

for some v, v € R, which may depend on wu.
Lemma 8.7. If the above vector ¢(u) is singular, then vg = (¢/2 — N — 1)u.

Proof. We use (5.12)) to compute e * ¢(u) = >, (0Y) @ 1)@y vr. If 0 < a < b, then
the coefficient multiplying 990,80, ® 1 equals I’ - f*°(u) — 2 (vg)+ commutators
that are obtained from reordering terms of the form 0;0;0;0; in the associative
algebra H = U (). These can be computed using Lemma [B.6], leading to

2N
—2f%(vg) + 1" b (u) + 2 Z wii [£, F(u) = (I - u — 209 — (2N +2)u),

i,j=1
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where 3. wig[f4, f] = —(N +1) f** due to ([2:28).
Since ¢(u) is a singular vector, this coefficient must vanish for all @ < b, and
a similar computation can be done when a = b. Since the spd-action on R is

nontrivial, we obtain that I’ - u — 2vg — (2N + 2)u = 0. To finish the proof, observe

that I’ -u = cu for all u € R. O
Lemma 8.8. If ¢(u) is singular, then

2N
(8.11) cvg = Z fanf®(u) .

a,b=1

Proof. Compute the coefficient multiplying 92®1 as in Lemma[B.7] using Lemma[S.6]
in order to explicitly compute commutators arising from terms 0y0;0;, which cancel,
and 0;0;0,0;. The final result is

2N
1 1 ij pkl 1 1 kl
_511.1}04— 5 ‘ Z Wikwjlfjf (u) = —§I/.UO+ §kalf (U),
i,5,k,1=1 k1l

which is a constant element, and must therefore vanish. (|
Corollary 8.4. If ¢(u) is singular for 0 # v € R =11 X (R(m,), c), then ¢ equals
either 2N + 2 — p or p. In other words, the only tensor modules that may possess
singular vectors of degree 2 are of the form VE or VQIIN+2_p.

Proof. Substitute Lemma [877] into Lemma B8] to obtain

1 2N
gczu — (N + 1)eu — Z fanf®(u) =0.

a,b=1

Recall by Lemmas 2.3 and 2.4] that — Ziﬁb’:l fapf? equals the Casimir element of
sp 0 and acts on R(m,) via multiplication by p(2N + 2 — p)/2. Hence we obtain

¢ — (2N +2)c+p(2N +2 —p) =0,
whose only solutions are ¢ = p and ¢ = 2N 4+ 2 — p. ([

Corollary 8.5. Let U be a nontrivial irreducible spd-module. Then a tensor
module V.= V(IL,U,c) is reducible if and only if it is of the form VE for some
1<p<2N+1,p#N+1.

Proof. The image of differentials constitute proper submodules of each tensor mod-
ule showing up in the contact pseudo de Rham complex ([@23]). Conversely, Theo-
rem 8] and Corollary [84] show that there are no other tensor modules possessing
nonconstant singular vectors. O

Theorem 8.3. The only tensor modules over K(0,0) possessing singular vectors
of degree two are those of the form V.

Proof. If V(R) = V(II, R(m,), c¢) has singular vectors of degree two, then we have a
nonzero homomorphism
V(II, R(mp), ¢+ 2) — VI, R(mp), ¢) .

However, if V(II, R(mp), ¢ + 2) is irreducible, then this map is injective, and its
image has the same rank as V(R). Hence, it is a proper cotorsion submodule
M ~ V(II, R(mp), ¢+ 2) in V(R), and the action of K(9,6) on V(R)/M is trivial by
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Remark BI] This means that e« V(R) C (H ® H) ® g M. But a direct inspection
of (5.12) shows that e x V(R) = (H ® H) ®g V(R), which is a contradiction.

We conclude that V(II, R(7p), ¢ + 2) and V(II, R(w,), ¢) are both reducible. By
Corollary BH and (622), ¢ and ¢ + 2 must add up to 2N + 2. Hence, c =p = N
and V(R) = V(IL, R(ry), N) = VL. O

9. CLASSIFICATION OF IRREDUCIBLE FINITE K (,6)-MODULES

We already know that all K (9, 0)-modules belonging to the exact complex ([6.23)
are reducible, as the image of each differential provides a nonzero submodule. Fur-
ther, Corollary shows that these are the only reducible tensor modules V(R),
when R is an irreducible finite-dimensional representation of 0 ® ¢sp 0. However, by
Proposition 5.2l and Theorem [5.1] every finite irreducible K (9, #)-module is a quo-
tient of some V(R), where R is an irreducible finite-dimensional (9 & csp 9)-module.
Thus, classifying irreducible quotients of all (reducible) tensor modules V(R) will
yield a classification of all irreducible finite K (9, 6)-modules.

Remark 9.1. By Theorems [B.I] and B3] each of the reducible tensor modules from
([6:23) contains a unique irreducible (9 @ csp 0)-summand of nonconstant singular
vectors.

Lemma 9.1. Let V and W be K(9,0)-modules, and assume V is generated over
H by its singular vectors. If f:V — W is a K(0,0)-homomorphism, then f(V) is
also H-linearly generated by its singular vectors.

Proof. This follows immediately from f(sing V') C sing W. O

Theorem 9.1. The image modules dRVJl\T,Jr2 and dVEH, where 0 < p < 2N + 1,

p # N,N + 1 are the unique nonzero proper K(9,0)-submodules of Vi and VE,
respectively.

Proof. We first claim that these submodules are irreducible, hence minimal. By
Proposition and Remark [@.1] it is enough to show that they are H-linearly
generated by their singular vectors. This follows from Lemma

To prove that there are no other nonzero proper submodules, it is enough to
show that these minimal submodules are also maximal. Equivalently, the quotients
Vn/d®Vy o and VJT/dVIL | are irreducible, which follows from exactness of the

complex ([G.23). O

The above results lead to the main theorem of the paper.

Theorem 9.2. A complete list of non-isomorphic finite irreducible K (9, 0)-modules
is as follows:

(i) Tensor modules V(II,U) where II is an irreducible finite-dimensional repre-
sentation of 0 and U is a nontrivial irreducible finite-dimensional csp d-module not
isomorphic to (R(mp),p) or (R(mp),2N +2 —p) with 1 <p < N,

(i) Images of differentials in the twisted contact pseudo de Rham complex (623),
namely dRVJr\}_,_Q and AV where 1 <n < 2N +1,n # N +1,N + 2. Here Il is
again an irreducible finite-dimensional 0-module.

Remark 9.2. The image dV3} ., of the first member of the complex ([G.23) is iso-
morphic to Vi, = V(II, R(m), 2N 4 2) and it is included in part (i) of the above
theorem.
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Recall that representations of the Lie pseudoalgebra K (0,6) are in one-to-one
correspondence with conformal representations of the extended annihilation algebra
K (see [BDK| and Proposition B.2). The latter is a direct sum of Lie algebras
K =0® K where 9 ~ 0 and K is isomorphic to the Lie—Cartan algebra Kon41 (see
Propositions[ I and £2). Thus, from our classification of finite irreducible K (9, 6)-
modules we can deduce a classification of irreducible conformal Ksn1-modules. In
this way we recover the results of I.A. Kostrikin, which were stated in [Ko] without
proof.

In order to state the results, we first need to set up some notation. Let R be
a finite-dimensional representation of ¢spd. Using that cspd ~ Kj/K}, we endow
R with an action of Kf such that K} acts trivially (see Proposition 3)). We also
view R as a (0 @ csp0)-module with a trivial action of 9, and as before we write
R = (U,¢). Then, by Remark 5.3 and Proposition 2] the induced K-module
Ind@) R is isomorphic to the tensor K (0, 6)-module V(R) = V(k, U, ¢). Finally, let
us recall the Z-grading of V' introduced in the proof of Proposition 54l In this
setting, Theorems and along with Remark imply the following.

Corollary 9.1. (i) [Kol. Every nonconstant homogeneous singular vector in V =
V(k,U,c) has degree 1 or 2. The space S of such singular vectors is an sp0-
module, and the quotient of V by the K-submodule generated by S is an irreducible
K-module. All singular vectors of degree 1 in V are listed in cases (a), (b) below,
while all singular vectors of degree 2 are listed in (c):

(a) U=R(np), c=p, S=R(mp+1), 0<p<N-1.
(b) U=R(my), c¢=2N+2-p, S=R(mp-1), 1<p<N.
(c) U=R(rny), ¢=N, S=R(rn).

(i) [Ko]. If the spd-module U is infinite-dimensional irreducible, then V(k, U, c)
does not contain nonconstant singular vectors.

(iii) If a K-module V(k,U,c) is not irreducible, then its (unique) irreducible
quotient is isomorphic to the topological dual of the kernel of the differential of a
member of the Rumin complex over formal power series.
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