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Structure of classical (finite and affine)W-algebras

Alberto De Sole Victor G. Kac Daniele Valeri

Abstract

First, we derive an explicit formula for the Poisson bracketof the classical finite
W-algebraWfin(g, f), the algebra of polynomial functions on the Slodowy slice as-
sociated to a simple Lie algebrag and its nilpotent elementf . On the other hand, we
produce an explicit set of generators and we derive an explicit formula for the Poisson
vertex algebra structure of the classical affineW-algebraW(g, f). As an immedi-
ate consequence, we obtain a Poisson algebra isomorphism betweenWfin(g, f) and
the Zhu algebra ofW(g, f). We also study the generalized Miura map for classical
W-algebras.

Keywords. W -algebra, Poisson algebra, Poisson vertex algebra, Slodowy slice,
Hamiltonian reduction, Zhu algebra, Miura map.

1 Introduction

The four fundamental frameworks of physical theories, classical mechanics, classical field

theory, quantum mechanics, and quantum field theory, have, as their algebraic counter-

parts, respectively, the following four fundamental algebraic structures: Poisson algebras

(PA), Poisson vertex algebras (PVA), associative algebras(AA), and vertex algebras (VA).

We thus have the following diagram:

PV A

Zhu
��

V A
cl.limit
oo

Zhu
��

PA AA
cl.limit
oo

(1.1)
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(The algebraic structure corresponding to an arbitrary quantum field theory is still to be

understood, but in the special case of chiral quantum fields of a 2-dimensional confor-

mal field theory the adequate algebraic structure is a vertexalgebra.) The classical limit

associates to a family of associative (resp. vertex) algebras with a commutative limit a

Poisson algebra (resp. Poisson vertex algebra). Furthermore, the Zhu map associates to a

VA (resp. PVA) with an energy operator, an associative algebra (resp. Poisson algebra),

see [Zhu96] (resp. [DSK06]).

The simplest example when all four objects in diagram (1.1) can be constructed, is ob-

tained starting with a finite-dimensional Lie algebra (or superalgebra)g, with Lie bracket

[· , ·], and with a non-degenerate invariant symmetric bilinear form (· | ·). We have a family

of Lie algebrasg~, ~ ∈ F, with underlying spaceg, and the Lie bracket

[a, b]~ = ~[a, b] . (1.2)

We also have a family of Lie conformal algebras Curg~ = (F[∂] ⊗ g) ⊕ FK, with the

following λ-bracket:

[aλb]~ = ~
(
[a, b] + (a|b)Kλ

)
, [aλK] = 0 , for a, b ∈ g . (1.3)

Then, the universal enveloping algebra ofg~ is the family of associative algebrasU(g~),

and its classical limit is the symmetric algebraS(g), with the Kirillov-Kostant Poisson

bracket (here the invariant bilinear form plays no role). Furthermore, the universal en-

veloping vertex algebra of Curg~ is the family of vertex algebrasV (g~), and its classical

limit is the algebra of differential polynomialsV(g) = S(F[∂]g), with the PVAλ-bracket

defined by (1.3) with ~ = 1. For the definition of the latter structures and the construction

of the corresponding Zhu maps, see [DSK06]. Thus, we get the following example of

diagram (1.1):

V(g)

��

V (g~)oo

��

S(g) U(g~)oo

(1.4)

Now, let s = {e, h, f} be ansl2-triple in g. Then all the four algebraic structures in

diagram (1.4) admit a Hamiltonian reduction.

Recall that a classical finite Hamiltonian reduction (HR) ofa Poisson algebraP is

associated to a triple(P0, I0, ϕ), whereP0 is a Poisson algebra,I0 ⊂ P0 is a Poisson

algebra ideal, andϕ : P0 → P is a Poisson algebra homomorphism. The corresponding

classical finite HR is the following Poisson algebra:

Wfin = Wfin(P,P0, I0, ϕ) =
(
P
/
Pϕ(I0)

)adϕ(P0) . (1.5)

It is easy to see that the obvious Poisson bracket on the commutative associative algebra

Wfin is well defined.
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Next, recall that a quantum finite HR of a unital associative algebraA is associated to

a triple(A0, I0, ϕ), whereA0 is a unital associative algebra,I0 ⊂ A0 is its two sided ideal,

andϕ : A0 → A is a homomorphism of unital associative algebras. The corresponding

finite HR is the following unital associative algebra:

W fin =W fin(A,A0, I0, ϕ) =
(
A
/
Aϕ(I0)

)adϕ(A0) . (1.6)

Again, it is easy to see that the obvious product onW fin is well defined.

The classical affine HR of a PVAV is defined very similarly to the classical finite HR:

W = W(V,V0, I0, ϕ) =
(
V
/
Vϕ(I0)

)adϕ(V0)
, (1.7)

whereV0 is a PVA,I0 ⊂ V0 is its PVA ideal, andϕ : V0 → V is a PVA homomorphism.

Given ansl2-triple s in g, we can perform all three above Hamiltonian reductions as

follows. LetP = S(g),A = U(g~), V = V(g). Next, let

g =
⊕

j∈ 1

2
Z

gj ,

be the eigenspace decomposition with respect to1
2
ad h. LetP0 = S(g>0) ⊂ S(g), A0 =

U(g>0,~) ⊂ U(g~), andV0 = V(g>0) ⊂ V(g), and letϕ be the inclusion homomorphism

in all three cases. Furthermore, let, in the three cases,I0 ⊂ P0 be the associative algebra

ideal, I0 ⊂ A0 be the two sided ideal, andI0 ⊂ V0 be the differential algebra ideal,

generated by the set {
m− (f |m)

∣∣m ∈ g≥1

}
.

Applying the three Hamiltonian reductions, we obtain the finite classicalW-algebraWfin(g, s),

the finite quantumW -algebraW fin
~
(g, s) (it first appeared in [Pre02]), and the classical

W-algebraW(g, s).

Unfortunately, we don’t know of a similar construction of a quantum affine HR for

vertex algebras. One uses instead a more special, cohomological approach, to construct

the family of vertex algebraW~(g, s) [FF90, KW04].

We thus obtain a Hamiltonian reduction of the whole diagram (1.4) [DSK06]:

W(g, s)

��

W~(g, s)oo

��

Wfin(g, s) W fin
~
(g, s)oo

(1.8)

In the present paper we study in detail the “classical” part of diagram (1.8). (which we

are planning to apply to the “quantum” part in a subsequent publication).

The main result of Section2 is Theorem2.11, which provides an explicit formula for

the Poisson bracket of the classical finiteW-algebraWfin(g, s). This Poisson algebra is
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viewed here as the algebra of polynomial functions on the Slodowy sliceS = f + ge (the

equivalence of this definition to the HR definition was provedin [GG02]). As in [GG02],

we use Weinstein’s Theorem (Theorem2.1of our paper), which, in our situation, gives an

induced Poisson structure on the submanifoldS of the Poisson manifoldg ≃ g∗, sinceS

intersects transversally and non-degenerately the symplectic leaves ofg∗. Our basic tool

is a projection mapΦ(r) : g → ge, defined by (2.27), for eachr ∈ g≥0.

In Section3 we recall the definition of the PVAW = W(g, s) in the form given in

[DSKV13], which is equivalent to the HR definition, but it is more convenient. Indeed,

by this definition,W is a differential subalgebra of the algebraV(g≤ 1

2

) of differential

polynomials overg≤ 1

2

. This allows, using the decompositiong≤ 1

2

= gf ⊕ [e, g≤− 1

2

], to

show in Section4 that for everyq ∈ gf there exists a unique elementw(q) ∈ W of the

form w(q) = q + r̃(q), wherer̃(q) lies in the differential ideal ofV(g≤ 1

2

) generated by

[e, g≤− 1

2

], see Corollary4.1. Due to [DSKV13], W, as a differential algebra, is isomorphic

to the algebra of differential polynomials in the variablesw(q), whereq runs over a basis

of gf . Furthermore, we compute explicitly the termr(q) of r̃(q) linear in [e, g≤− 1

2

], see

Theorem4.3.

Using these results we are able to compute in Section5 the explicit PVAλ-brackets

between the generatorsw(a), a ∈ gf , of W, see Proposition5.1and Theorem5.3.

Of course, the same method allows one to obtain an algebraic proof of Theorem2.11

on explicit Poisson brackets ofWfin. Alternatively, by the results of [DSK06, Sec.6],

Theorem2.11is obtained from Theorem5.3by putting∂ = 0 andλ = 0 in formula (5.5).

In [MR14] they constructed explicitly the generators for theW-algebraW(g, s), where

g is a simple Lie algebra of typeA,B,C,D,G, ands is a principalsl2 triple in g. It would

be interesting to compare their choice of generators with ours.

In Section7 we study the family of Zhu algebrasZhuz W, parametrized byz ∈ F,

and show that it is isomorphic to the Poisson algebras ofz-deformed Slodowy sliceSz =

e+ 1
2
zh+ gf , see Theorem7.1. (The standard Zhu algebra corresponds toz = 1.) Since,

by Theorem2.14all these Poisson algebras are isomorphic, we conclude thatthe Poisson

algebrasZhuz W are isomorphic for all values ofz ∈ F. In particular, we have that

Zhu 1W ≃ Zhu 0W
(
≃ W/W∂W

)
. (1.9)

It is easy to show that the Zhu algebras are isomorphic for allnon-zero values ofz

[DSK06], but the isomorphism (1.9) is quite surprising.

Another surprising corollary of our results is Remark7.6, which provides a canonical

choice (up to scalar factors) of generators of the algebra ofinvariant polynomials on a

simple Lie algebrag.

In the last section, we construct the generalized Miura map,which is an injective

homomorphism of the PVAW(g, s) to the tensor product ofV(g0) and the “fermionic”

PVA F(g 1

2

).
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Throughout the paper, unless otherwise specified, all vector spaces, tensor products

etc., are defined over a fieldF of characteristic 0.

2 Poisson algebra structure of the Slodowy slice

2.1 Poisson structures on manifolds and submanifolds

Recall that aPoisson manifoldM =Mn is endowed with a skewsymmetric 2-vector field

η ∈ Γ(
∧2 TM) satisfying the condition that[[η, η]] = 0, where[[· , ·]] is the Nijenhuis-

Schouten bracket on the spaceΓ(
∧• TM) of alternating polyvector fields onM . (It is the

unique extension of the usual commutator on the spaceVect(M) = Γ(TM) of vector

fields onM , to a graded Gerstenhaber (=odd Poisson) bracket on the spaceΓ(
∧• TM) of

alternating polyvector fields onM .) In local coordinates, the Poisson structureη has the

form

η(x) =

n∑

i,j=1

K(x)ij
∂

∂xi
∧

∂

∂xj
, (2.1)

whereK(x) is a skewsymmetric matrix, associated toη and the choice of coordinates

{xi}
n
i=1.

The algebra of functionsC∞(M) has then a natural structure of a Poisson algebra,

given, in local coordinates, by

{f(x), g(x)} =

n∑

i,j=1

Kij(x)
∂f(x)

∂xi

∂g(x)

∂xj

(
= η(x)(dxf ∧ dxg)

)
. (2.2)

In fact, the condition[[η, η]] = 0 is equivalent to the Jacobi identity for the bracket (2.2).

The Poisson structureη defines a map from 1-forms to vector fields,

η : Ω1(M) = Γ(T ∗M) → Γ(TM) = Vect(M) ,

given by the natural pairing ofT ∗
xM andTxM . In local coordinates, it is

Ω1(M) ∋ ξ(x) =

n∑

i=1

Fi(x)dxi 7→ η(ξ)(x) =

n∑

i,j=1

K(x)ijFj

∂

∂xi
∈ Vect(M) . (2.3)

TheHamiltonian vector fieldXh associated to the functionh(x) ∈ C∞(M) is, by defini-

tion,

Xh(x) = η(dh)(x) =
n∑

i,j=1

K(x)ij
∂h(x)

∂xj

∂

∂xi
= {h(x), · } ∈ Vect(M) . (2.4)

Hence, the Poisson structureη is uniquely determined by the mapX : C∞(M) →

Vect(M) associating to a smooth functionh ∈ C∞(M) the corresponding Hamiltonian

vector fieldXh ∈ Vect(M).
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Recall that a Poisson manifold is disjoint union of itssymplectic leaves: M = ⊔αSα.

Each symplectic leafS ⊂ M is defined by the condition that, for everyx ∈ S ⊂ M , we

have

η(x)
(
T ∗
xM

)
= TxS .

(The inclusion⊂ exactly means thatS is preserved by the integral curves of Hamiltonian

vector fields, while the inclusion⊃ means that the restriction of the Poisson structure

η(x) onS is non degenerate for everyx ∈ S, thus makingS a symplectic manifold.) On

a symplectic leafS, the symplectic formω(x) : TxS × TxS → R is easily expressed in

terms of the Poisson structureη(x) onM (which can be equivalently viewed as a map

η(x) : T ∗
xM → TxS ⊂ TxM , cf. (2.3), or as a mapη(x) : T ∗

xM × T ∗
xM → R). For

α, β ∈ T ∗
xM , we have:

ω(x)(η(x)(α), η(x)(β)) = η(x)(α, β) . (2.5)

Theorem 2.1([Va94]). Let (M, η) be a Poisson manifold, whereη is the bi-vector field

onM defining the Poisson structure, and letN ⊂M be a submanifold. Suppose that, for

every pointx ∈ N , denoting by(S, ω) the symplectic leaf ofM throughx, we have

(i) the restriction of the symplectic formω(x) : TxS × TxS → R to TxN ∩ TxS is

non-degenerate;

(ii) N is transverse toS, i.e.TxN + TxS = TxM .

Then, the Poisson structure onM induces a Poisson structure onN , and the symplectic

leaf ofN throughx isN∩S. The Poisson structureηN onN is defined as follows. Given a

functionh ∈ C∞(N), we extend it to a functioñh ∈ C∞(M), and we consider the vector

fieldXh̃(x) = η(dh̃)(x) ∈ TxS ⊂ TxM . By the non-degeneracy condition (i), we have

the orthogonal decompositionTxS = (TxN ∩ TxS) ⊕ (TxN ∩ TxS)
⊥ω. We then define

XN
h (x) = ηN(dNh) as the projection ofXh̃(x) to TxN ∩ TxS.

We shall apply this theorem to a vector spaceM overF with a polynomial Poisson

structure (i.e. the matrixK(x) in (2.1) is a polynomial function ofx), andN an affine

subspace ofM . Then Theorem2.1holds overF. Hence, we get a Poisson bracket on the

algebra of polynomial functions onN .

2.2 Example: the Kirillov-Kostant symplectic structure on coadjoint
orbits.

Let g be a Lie algebra overF. The Lie bracket[· , ·] on g extends uniquely to a Poisson

bracket on the symmetric algebraS(g): if {xi}
n
i=1 is a basis ofg, we have, forP,Q ∈
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S(g),

{P,Q} =

n∑

i,j=1

∂P

∂xi

∂Q

∂xj
[xi, xj ] . (2.6)

We think ofS(g) as the algebra of polynomial functions ong∗, and, therefore, the space

g∗ is a (algebraic) Poisson manifold. Let{ξi}
n
i=1 be the basis ofg∗ dual to the given basis

of g: ξi(xj) = δij . In coordinates, if we think of{xi}ni=1 as linear functions ong∗, then,

by (2.6), the Poisson structureη evaluated atξ ∈ g∗ is

η(ξ) =

n∑

i,j=1

ξ([xi, xj ])
∂

∂xi
∧

∂

∂xj
∈ ∧2(Tξg

∗)

=
n∑

i,j=1

ξ([xi, xj ])ξi ∧ ξj =
n∑

j=1

∗

ad(xj)(ξ) ∧ ξj ∈ ∧2(g∗) ,

(2.7)

wheread∗ is the coadjoint action ofg on g∗. Equivalently, the matrix associated to the

Poisson structureη in coordinates{xi}ni=1 is

K(ξ)ij = ξ([xi, xj]) = (
∗

ad(xj)(ξ))(xi) .

The Poisson structureη can be equivalently viewed as a mapη(ξ) : T ∗
ξ g

∗ ≃ g → Tξg
∗ ≃

g∗, given by

η(ξ)(a) =
∗

ad(a)(ξ) , (2.8)

or as a skewsymmetric mapη(ξ) : T ∗
ξ g

∗ × T ∗
ξ g

∗ ≃ g× g → F, given by

η(ξ)(a, b) = ξ([a, b]) . (2.9)

The symplectic leaves ofg∗ are given by this well known theorem:

Theorem 2.2(Kirillov-Kostant). The symplectic leaves of the Poisson manifoldg∗ are

the coadjoint orbits:S = (Ad∗G)ξ. The symplectic structureω(ξ) : TξS × TξS ≃

((ad∗ g)ξ)× ((ad∗ g)ξ) → F, on the coadjoint orbitS = (Ad∗G)ξ is given by

ω(ξ)
(
(

∗

ad a)ξ, (
∗

ad b)ξ
)
= ξ([a, b]) . (2.10)

2.3 The Slodowy slice and the classical finiteW-algebra

Let g be a simple finite-dimensional Lie algebra, and letf ∈ g be a nilpotent element. By

the Jacoboson-Morozov Theorem,f can be included in ansl2-triple {e, h = 2x, f}. Let

(· | ·) be a non-degenerate invariant symmetric bilinear form ong, and letψ : g
∼
→ g∗ be

the isomorphism associated to this bilinear form:ψ(a) = (a| ·). We also letχ = ψ(f) =

(f | ·) ∈ g∗.
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Definition 2.3 (see e.g. [Pre02, GG02]). TheSlodowy sliceassociated to thissl2-triple is,

by definition, the following affine space

S = ψ(f + ge) =
{
χ+ ψ(a)

∣∣ a ∈ ge
}
⊂ g∗ .

As we state below,S carries a natural structure of a Poisson manifold, induced by that

of g∗. Theclassical finiteW-algebraWfin(g, f) can be defined as the Poisson algebra of

polynomial functions of the Slodowy sliceS.

Let ξ = ψ(f + r), r ∈ ge, be a point of the Slodowy slice. The tangent space to the

coadjoint orbit(Ad∗G)ξ at ξ is

Tξ(
∗

AdG)ξ ≃ (
∗

ad g)ξ = ψ([f + r, g]) ⊂ g∗ ≃ Tξg
∗ , (2.11)

while the tangent space to the Slodowy slice atξ is

Tξ(S) ≃ ψ(ge) ⊂ g∗ ≃ Tξg
∗ . (2.12)

By Theorem2.2, the symplectic formω(ξ) on the coadjoint orbits, which are the sym-

plectic leaves ofg∗, coincides with the following skew-symmetric non-degenerate bilinear

form ωf+r onTξ((Ad
∗G)ξ) ≃ ψ([f + r, g]) ≃ [f + r, g]:

ωf+r([f + r, a], [f + r, b]) = (f + r|[a, b]) . (2.13)

According to Theorem2.1, and in view of (2.11) and (2.12), in order to prove that the

Slodowy sliceS carries a natural Poisson structure induced byg∗, it suffices to check that,

for everyr ∈ ge, two properties hold:

(i) the restriction of the inner product (2.13) to [f + r, g] ∩ ge is non-degenerate;

(ii) [f + r, g] + ge = g.

It was proved by Gan and Ginzburg in the 3rd archive version of[GG02] that these con-

ditions indeed hold. Following their argument, we provide here a proof of conditions (i)

and (ii) for everyr ∈ g≥0 (hence for everyr ∈ ge), respectively in parts (c) and (d) of the

following lemma.

Lemma 2.4. Let r ∈ g≥0. Then:

(a) [f + r, [e, g]] ∩ ge = 0.

(b) The mapad(f + r) restricts to a bijectionad(f + r) : [e, g] → [f + r, [e, g]].

(c) If a ∈ g is such that[f + r, a] ∈ ge and

(a|[f + r, g] ∩ ge) = 0 , (2.14)

then[f + r, a] = 0.
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(d) [f + r, g] + ge = g.

(e) If f ∈ g is a principal nilpotent element, theng = [f + r, g]⊕ ge.

Proof. Suppose, by contradiction, that0 6= [f + r, [e, z]] ∈ ge for somer ∈ g≥0. We can

expand

[e, z] = [e, zi] + [e, zi+ 1

2

] + . . . , (2.15)

where0 6= [e, zi] ∈ [e, gi], [e, zi+ 1

2

] ∈ [e, gi+ 1

2

], . . . . Since, by assumption,r ∈ g≥0, the

component of[f + r, [e, z]] ∈ ge in gei is

[f, [e, zi]] ∈ [f, [e, gi]] ∩ gei ⊂ [f, g] ∩ ge = 0 .

(For the last equality, see e.g. (2.17) below.) On the other hand, we know thatad f :

[e, g] → [f, g] is a bijection (see e.g. (2.25) below). It follows that[e, zi] = 0, a contradic-

tion, proving part (a).

For part (b) it suffices to prove that, if[f + r, [e, z]] = 0, then[e, z] = 0. The argument

is the same as for part (a): if we expand[e, z] as in (2.15), with [e, zi] 6= 0, then the

component of[f + r, [e, z]] in gi is 0 = [f, [e, zi]] 6= 0, a contradiction.

Next, we prove part (c). By linear algebra, we have
(
[f + r, g] ∩ ge

)⊥
= [f + r, g]⊥ + (ge)⊥ = Ker(ad(f + r)) + [e, g] .

(Here we are using the fact that, for everyξ ∈ g, T = ad(ξ) ∈ End(g) is a skewadjoint

operator with respect to(· | ·), hence(KerT )⊥ = ImT and(ImT )⊥ = Ker T .) Hence,

condition (2.14) is equivalent to

a = k + [e, z] where k ∈ Ker(ad(f + r)) and z ∈ g . (2.16)

But then[f + r, a] = [f + r, [e, z]] ∈ [f + r, [e, g]] ∩ ge and this is zero by part (a).

By part (b), we have that[f + r, [e, g]] has the same dimension as[e, g], which is equal

to the codimension ofge. Also, by part (a) we have that[f + r, [e, g]] ∩ ge = 0. It follows

that

g = [f + r, [e, g]]⊕ ge ⊂ [f + r, g] + ge ,

proving part (d).

Finally, let us prove part (e). For the principal nilpotentf , we havedim(gf ) = rk(g),

and it is minimal possible:dim(ga) ≥ rk(g) for everya ∈ g. By part (d) we also have

[f + r, g] + ge = g. Hence,

dim(g) = dim
(
[f + r, g] + ge

)
≤ dim([f + r, g]) + dim(ge)

= dim(g)− dim(gf+r, g]) + rk(g) ≤ dim(g) .

Hence, all the inequalities above must be equalities, proving (e).

The algebra of polynomial functions on the Slodowy sliceS with the obtained Poisson

structure is called theclassical finiteW-algebra, and it is denoted byWfin(g, f).
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2.4 Setup and notation

Let, as before,g be a simple Lie algebra with a non-degenerate symmetric invariant bi-

linear form(· | ·), and let{f, 2x, e} ⊂ g be ansl2-triple in g. We have the corresponding

adx-eigenspace decomposition

g =
⊕

k∈ 1

2
Z

gk where gk =
{
a ∈ g

∣∣ [x, a] = ka
}
.

Clearly,f ∈ g−1, x ∈ g0 ande ∈ g1. We letd be thedepthof the grading, i.e. the maximal

eigenvalue ofadx.

By representation theory ofsl2, the Lie algebrag admits the direct sum decompositions

g = gf ⊕ [e, g] = ge ⊕ [f, g] . (2.17)

They are dual to each other, in the sense thatgf ⊥ [f, g] and[e, g] ⊥ ge. Fora ∈ g, we

denote bya♯ = πgf (a) ∈ gf its component ingf with respect to the first decomposition in

(2.17). Note that, since[e, g] is orthogonal toge, the spacesgf andge are non-degenerately

paired by(· | ·).

Next, we choose a basis ofg as follows. Let{qj}j∈Jf be a basis ofgf consisting

of adx-eigenvectors, and let{qj}j∈Jf be the the dual basis ofge. For j ∈ Jf , we let

δ(j) ∈ 1
2
Z be theadx-eigenvalue ofqj, so that

[x, qj ] = −δ(j)qj , [x, qj] = δ(j)qj . (2.18)

Fork ∈ 1
2
Z+ we also letJf

−k = {i ∈ Jf | δ(i) = k} ⊂ Jf , so that{qj}j∈Jf
−k

is a basis of

g
f
−k, and{qj}

j∈Jf
−k

is the dual basis ofgek. By representation theory ofsl2, we get a basis

of g consisting of the following elements:

qjn = (ad f)nqj where n ∈ {0, . . . , 2δ(j)} , j ∈ Jf . (2.19)

This basis consists ofad x-eigenvectors, and, fork ∈ 1
2
Z such that−d ≤ k ≤ d, the

corresponding basis ofgk ⊂ g is {qjn}(j,n)∈J−k
, whereJ−k is the following index set

J−k =
{
(j, n) ∈ Jf × Z+

∣∣∣ δ(j)− |k| ∈ Z+, n = δ(j)− k
}
. (2.20)

The union of all these index sets is the index set for the basisof g:

J =
⊔

h∈ 1

2
Z

Jh =
{
(j, n)

∣∣∣ j ∈ Jf , n ∈ {0, . . . , 2δ(j)}
}
. (2.21)

The corresponding dual basis ofg is given by the following lemma.
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Lemma 2.5. For i, j ∈ Jf andm,n ∈ Z+, we have

((ad e)nqj|(ad f)
mqi) = (−1)n(n!)2

(
2δ(j)

n

)
δi,jδm,n . (2.22)

Hence, the basis ofg dual to(2.19) is given by ((j, n) ∈ J):

qnj =
(−1)n

(n!)2
(
2δ(j)
n

)(ad e)nqj . (2.23)

Proof. Equation (2.22) is easily proved by induction onn, using the invariance of the

bilinear form.

We will also need the following simple facts about thesl2 action on the dual bases

{qnj } and{qjn}.

Lemma 2.6. For j ∈ Jf andn ∈ {0, 1, . . . , 2δ(j)}, we have

(i) [f, qnj ] = −qn−1
j ,

(ii) [e, qnj ] = −(n + 1)(2δ(j)− n)qn+1
j ,

(iii) [f, qjn] = qjn+1,

(iv) [e, qjn] = n(2δ(j)− n+ 1)qjn−1.

In the above equations we letq−1
j = qj−1 = q

2δ(j)+1
j = qj2δ(j)+1 = 0.

Proof. All formulas are easily proved by induction, using the formulas (2.19) and (2.23)

for qjn andqnj respectively.

Clearly, the bases (2.19) and (2.23) are compatible with the direct sum decompositions

(2.17). In fact, we can write the corresponding projectionsπgf , π[e,g] = 1 − πgf , πge , and

π[f,g] = 1− πge , in terms of these bases:

a♯ = πgf (a) =
∑

j∈Jf

(a|qj)qj , π[e,g](a) =
∑

j∈Jf

2δ(j)∑

n=1

(a|qjn)q
n
j ,

πge(a) =
∑

j∈Jf

(a|qj)q
j , π[f,g](a) =

∑

j∈Jf

2δ(j)∑

n=1

(a|qnj )q
j
n .

(2.24)
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2.5 Preliminary results

Due to the decomposition (2.17), the adjoint action off restricts to a bijective map

ad f : [e, g]
∼

−→ [f, g] , (2.25)

and we denote by(ad f)−1 : [f, g] → [e, g] the inverse map. Therefore, we have the

following well defined map(ad f)−1 ◦ π[f,g] : g → [e, g], which is obviously surjective

and with kernelge. We have an explicit formula for it, in terms of the bases (2.19)-(2.23),

using the last completeness relation in (2.24):

(ad f)−1 ◦ π[f,g](a) =
∑

j∈Jf

2δ(j)−1∑

n=0

(a|qn+1
j )qjn . (2.26)

Lemma 2.7. Let r ∈ g≥0. Then the map(ad r) ◦ (ad f)−1 ◦ π[f,g] : g → g is nilpotent. In

fact, it is zero when raised to a power greater than twice the depthd of g.

Proof. Clearly,π[f,g] is homogeneous with respect to theadx-eigenspace decomposition,

and it does not change thead x-eigenvalues, the map(ad f)−1 is also homogeneous with

respect to thead x-eigenspace decomposition, and it increases theadx-eigenvalues by

1, while the mapad r is not homogeneous, but it does not decrease thead x-eigenvalues

(since, by assumption,r ∈ g≥0). The claim follows.

For r ∈ g≥0, consider the mapΦ(r) : g → g, given by

Φ(r) = πge ◦
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1

= πge ◦
2d∑

t=0

(
− (ad r) ◦ (ad f)−1 ◦ π[f,g]

)t
.

(2.27)

Note that, thanks to Lemma2.7, we can replaced by∞ in the above summation. Associ-

ated tor ∈ g≥0, we also introduce the following vector space :

V (r) :=
{
[f + r, a]

∣∣∣ a ∈ g,
(
a|[f + r, g] ∩ ge

)
= 0

}
. (2.28)

Lemma 2.8. For everyr ∈ g≥0 we have:

(a) Φ(r)(a) ∈ ge for everya ∈ g.

(b) Φ(r)(a) = a for everya ∈ ge.

(c) For everya ∈ g, we have

a−Φ(r)(a) =
[
f + r, (ad f)−1 ◦π[f,g] ◦

(
1+(ad r)◦ (ad f)−1 ◦π[f,g]

)−1
(a)

]
. (2.29)
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(d) Ker(Φ(r)) = Span{a− Φ(r)(a) | a ∈ g} ⊂ [f + r, g].

(e) V (r) ∩ ge = 0.

(f) Ker(Φ(r)) = V (r).

(g) We have the direct sum decomposition

g = ge ⊕ V (r) , (2.30)

andΦ(r) is the projection ontoge with kernelV (r).

(h) We have the direct sum decomposition

[f + r, g] =
(
[f + r, g] ∩ ge

)
⊕ V (r) , (2.31)

andΦ(r)
∣∣
[f+r,g]

is the projection onto[f + r, g] ∩ ge with kernelV (r).

Proof. Part (a) is obvious. Part (b) is clear, sinceπ[f,g] acts trivially onge due to the

decomposition (2.17). For part (c), we have

a− Φ(r)(a) = a− πge ◦
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

= a−
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

+ π[f,g] ◦
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

= (ad r) ◦ (ad f)−1 ◦ π[f,g] ◦
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

+ π[f,g] ◦
(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

=
[
f + r, (ad f)−1 ◦ π[f,g] ◦

(
1 + (ad r) ◦ (ad f)−1 ◦ π[f,g]

)−1
(a)

]
.

The equality in part (d) follows from (a) and (b), and the inclusion follows from part (c).

Part (e) is the same as Lemma2.4(c). The inclusionKerΦ(r) ⊂ V (r) follows from (d)

and (c), and the observation that the map(ad f)−1 ◦ π[f,g] has values in[e, g], which is

orthogonal toge. By parts (a), (b), (e) and the inclusionKerΦ(r) ⊂ V (r) we have

g = ge ⊕Ker(Φ(r)) ⊂ ge + V (r) = ge ⊕ V (r) .

Part (f) follows. Finally, part (g) is an immediate consequence of (a)–(f), and part (h)

follows from (g) and the fact thatV (r) ⊂ [f + r, g].

2.6 Explicit formula for the Poisson structure of the Slodowy slice

Note that we can identify the “dual space” toS = ψ(f + ge) ≃ ge asgf (via the non-

degenerate pairing ofge andgf ). Hence, the classical finiteW-algebra is, as a commuta-

tive associative algebra,

Wfin(g, f) ≃ S(gf) . (2.32)
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A polynomial functionP onS can be identified with an elementP ∈ S(gf ) which can

viewed as an element ofS(g), and therefore it can be considered as a polynomial function

on g∗. Clearly, the restriction of it toS coincides with the polynomial functionP we

started with (we are using the fact thatP (f + r) = P (r), since(f |gf) = 0). The Poisson

structureηS onS is given by Theorem2.1. Fix ξ = ψ(f + r) ∈ S, wherer ∈ ge. We have

theωf+r-orthogonal decomposition (cf. (2.11), (2.12) and (2.13))

TξS ≃ [f + r, g] = (ge ∩ [f + r, g])⊕ V (r) , (2.33)

whereV (r) is as in (2.28). By Lemma2.8(h), the projection onto the first component is

the mapΦ(r)|[f+r,g] : [f + r, g] → ge ∩ [f + r, g] given by (2.27). If we considerηS(ξ) as

a mapηS(ξ) : T ∗
ξ S ≃ gf → TξS ≃ ge, we have that (q ∈ gf ):

ηS(ξ)(q) = Φ(r)([q, f + r]) = Φ(r)([q, r]) . (2.34)

Equivalently, we can considerηS(ξ) as a skewsymmetric mapηS(ξ) : gf×gf → F, given

by (p, q ∈ gf )

ηS(ξ)(p, q) =
(
p|Φ(r)([q, r])

)
. (2.35)

To get the corresponding Poisson bracket onWfin(g, f) = S(gf), we should write the

RHS of (2.34) as a polynomial functionP p,q(q1, . . . , qℓ) (ℓ = dim gf ) in the elements of

gf , i.e. (
p|Φ(r)([q, r])

)
= P p,q((q1|r), . . . , (qℓ|r)) ,

for all r ∈ ge. Then, this polynomial gives the corresponding Poisson bracket among

generators of the classical finiteW-algebra:

{p, q}S = P p,q(q1, . . . , qℓ) ∈ S(gf ) . (2.36)

Example 2.9. If q ∈ g
f
0 = ge0, then[q, f + r] = [q, r] ∈ ge ∩ [f + r, g], and therefore

Φ(r)([q, r]) = [q, r]. It follows thatP p,q(r) = (p|Φ(r)([q, r])) = (p|[q, r]) = ([p, q]|r), i.e.

P p,q = [p, q] ∈ gf ⊂ S(gf). By skewsymmetry, ifp ∈ g
f
0 , we also haveP p,q = [p, q]. In

conclusion,

{p, q}S = [p, q] ∈ gf if p, q ∈ gf and eitherp or q ∈ g
f
0 .

Example 2.10. If f ∈ g is a principal nilpotent element andr ∈ ge, then, by Lemma

2.4(e), we haveg = [f +r, g]⊕ge. It follows by (2.28) thatV (r) = [f +r, g]. On the other

hand, forq ∈ gf , we have[r, q] = [f + r, q] ∈ V (r) = Ker(Φ(r)). Hence,Φ(r)([q, r]) = 0.

It follows that{p, q}S = 0 for everyp, q ∈ gf : the Poisson bracket is identically zero in

this case, which is a well known result of Kostant [Kos78].
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Theorem 2.11.The general formula for the Poisson bracket on theW-algebraWfin(g, f)

is (p, q ∈ gf ):

{p, q}S = [p, q] +
∞∑

t=1

∑

j1,...,jt∈Jf

2δ(j1)−1∑

n1=0

· · ·

2δ(jt)−1∑

nt=0

[p, qj1n1
]♯[qn1+1

j1
, qj2n2

]♯ . . . [qnt+1
jt

, q]♯ ,

(2.37)

wherea♯ = πgf (a).

Proof. By (2.36) and (2.27), we have{p, q}S =
∑∞

t=0{p, q}
(t)
S , where

{p, q}
(t)
S (r) =

(
p
∣∣∣πge ◦

(
− (ad r) ◦ (ad f)−1 ◦ π[f,g]

)t
([q, r])

)
.

Note that we can removeπge since, by assumption,p ∈ gf . Fort = 0 we get{p, q}(0)S (r) =

(p|[q, r]), i.e.{p, q}(0)S = [p, q]. For t ≥ 1 we have

{p, q}
(t)
S (r) =

(
r
∣∣∣
[
p, (ad f)−1 ◦ π[f,g] ◦

(
− (ad r) ◦ (ad f)−1 ◦ π[f,g]

)t−1
([q, r])

])
.

We can use equation (2.26) to rewrite the above equation as

{p, q}
(t)
S (r) =

∑

j1∈Jf

2δ(j1)−1∑

n1=0

([p, qj1n1
]|r)

(
qn1+1
j1

∣∣∣
(
− (ad r) ◦ (ad f)−1 ◦ π[f,g]

)t−1
([q, r])

)
.

The general formula follows by an easy induction ont.

Remark 2.12. Formula (2.37) appeared for the first time in [DS13].

Remark 2.13. The Poisson bracket (2.37) is homogeneous with respect to the conformal

weight (cf. Section3.2), which coincides with the so-called Kazhdan grading. In fact,

the Poisson algebraF[S] can be viewed as the associated graded (or “classical limit”) of

the quantum finiteW -algebraW fin(g, f) with respect to the Kazhdan filtration, [GG02].

(HereW , as opposed toW, refers to “quantum”W -algebras.)

2.7 Twisted Slodowy slice

We can consider also the following “twisted” Slodowy slice

Sz = ψ(f + zx + ge) , z ∈ F .

Sincex ∈ g0, and all the preliminary results from Sections2.3and2.5hold for r ∈ g≥0

(not only for r ∈ ge), we can repeat the same arguments that lead to Theorem2.11

(replacing everywherer by zx + r) to get the Poisson algebra structure on the algebra

of polynomial functionsWfin
z (g, f) ≃ S(gf ) onSz. We thus get the following “twisted”

analogue of Theorem2.11:
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Theorem 2.14. The general formula for the Poisson bracket on generators ofthe z-

twisted classical finiteW-algebraWz(g, f) is as follows (p, q ∈ gf ):

{p, q}Sz

= [p, q] + z(x|[p, q]) +

∞∑

t=1

∑

j1,...,jt∈Jf

2δ(j1)−1∑

n1=0

· · ·

2δ(jt)−1∑

nt=0

(
[p, qj1n1

]♯ + z(x|[p, qj1n1
])
)

(
[qn1+1

j1
, qj2n2

]♯ + z(x|[qn1+1
j1

, qj2n2
])
)
. . .

(
[qnt+1

jt
, q]♯ + z(x|[qnt+1

jt
, q])

)
.

(2.38)

Note that all thez-twisted Poisson algebrasWfin
z (g, f) are isomorphic for everyz ∈

F. Indeed (as Pasha Etingof pointed out), the automorphisme
1

2
z ad∗(e) of g∗ mapsS =

ψ(f + ge) to Sz = ψ(f + zx + ge), hence it induces a Poisson algebra isomorphism

Wfin(g, f)
∼
→ Wfin

z (g, f). This algebra isomorphism is obtained as pullback of the mapof

Poisson manifoldsφ : Sz
∼
→ S, given by

φ : f + zx+ r 7→ e−
1

2
z ad e(f + zx + r) = f + r +

z2

4
e .

Hence, it maps the generatorsq ∈ gf (viewed as a linear function(q| ·) onS ≃ ge) to

φ∗(q) = q +
z2

4
(q|e) . (2.39)

As a consequence, we get the induced Poisson algebra isomorphismφ∗ : W(g, f) ≃

S(gf)
∼

−→ Wz(g, f) ≃ S(gf ). In other words, we have the following

Corollary 2.15. The mapφ∗ : W(g, f) ≃ S(gf)
∼

−→ Wz(g, f) ≃ S(gf) defined,

on generators, by(2.39), is a Poisson algebra isomorphism from the Poisson algebra

W(g, f) ≃ S(gf ) with Poisson bracket(2.37) to the Poisson algebraWz(g, f) ≃ S(gf)

with Poisson bracket(2.38). In other words, equation(2.38) is unchanged if we replace

zx by z2

4
e.

3 Classical affineW-algebrasW(g, f)

In this section we recall the definition of classical affineW-algebrasW(g, f) in the

language of Poisson vertex algebras, following [DSKV13] (which is a development of

[DS85]). We refer to [BDSK09] for the definition of Poisson vertex algebras (PVA) and

their basic properties. We shall use the setup and notation of Section2.4.

3.1 Construction of the classical affineW-algebra

Let g be a simple finite-dimensional Lie algebra over the fieldF with a non-degenerate

symmetric invariant bilinear form(· | ·). Given an elements ∈ g, we have a PVA structure
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on the algebra of differential polynomialsV(g) = S(F[∂]g), with λ-bracket given on

generators by

{aλb}z = [a, b] + (a|b)λ+ z(s|[a, b]), a, b ∈ g , (3.1)

and extended toV(g) by the sesquilinearity axioms and the Leibniz rules. Herez is an

element of the fieldF.

We shall assume thats lies in gd. In this case theF[∂]-submoduleF[∂]g≥ 1

2

⊂ V(g) is

a Lie conformal subalgebra with theλ-bracket{aλb}z = [a, b], a, b ∈ g≥ 1

2

(it is indepen-

dent ofz, sinces commutes withg≥ 1

2

). Consider the differential subalgebraV(g≤ 1

2

) =

S(F[∂]g≤ 1

2

) of V(g), and denote byρ : V(g) ։ V(g≤ 1

2

), the differential algebra homo-

morphism defined on generators by

ρ(a) = π≤ 1

2

(a) + (f |a), a ∈ g , (3.2)

whereπ≤ 1

2

: g → g≤ 1

2

denotes the projection with kernelg≥1. Recall from [DSKV13]

that we have a representation of the Lie conformal algebraF[∂]g≥ 1

2

on the differential

subalgebraV(g≤ 1

2

) ⊂ V(g) given by (a ∈ g≥ 1

2

, g ∈ V(g≤ 1

2

)):

a ρ
λ g = ρ{aλg}z (3.3)

(note that the RHS is independent ofz since, by assumption,s ∈ Z(g≥ 1

2

)).

TheclassicalW-algebrais, by definition, the differential algebra

W = W(g, f) =
{
g ∈ V(g≤ 1

2

)
∣∣ a ρ

λ g = 0 for all a ∈ g≥ 1

2

} , (3.4)

endowed with the following PVAλ-bracket

{gλh}z,ρ = ρ{gλh}z, g, h ∈ W . (3.5)

Theorem 3.1([DSKV13]). (a) Equation(3.3) defines a representation of the Lie confor-

mal algebraF[∂]g≥ 1

2

onV(g≤ 1

2

) by derivations (i.e.a ρ
λ (gh) = (a ρ

λ g)h+ (a ρ
λ h)g).

(b) W ⊂ V(g≤ 1

2

) is a differential subalgebra.

(c) We haveρ{gλρ(h)}z = ρ{gλh}z, andρ{ρ(h)λg}z = ρ{hλg}z for everyg ∈ W and

h ∈ V(g).

(d) For everyg, h ∈ W, we haveρ{gλh}z ∈ W[λ].

(e) Theλ-bracket{· λ ·}z,ρ : W ⊗W → W[λ] given by(3.5) defines a PVA structure on

W.
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3.2 Structure Theorem for classical affineW-algebras

In the algebra of differential polynomialsV(g≤ 1

2

) we introduce the grading byconformal

weight, denoted by∆ ∈ 1
2
Z, defined as follows. Fora ∈ g such that[x, a] = δ(a)a, we

let ∆(a) = 1 − δ(a). For a monomialg = a
(m1)
1 . . . a

(ms)
s , product of derivatives ofad x

eigenvectorsai ∈ g≤ 1

2

, we define its conformal weight as

∆(g) = ∆(a1) + · · ·+∆(as) +m1 + · · ·+ms . (3.6)

Thus we get the conformal weight space decomposition

V(g≤ 1

2

) =
⊕

∆∈ 1

2
Z+

V(g≤ 1

2

){∆} .

For exampleV(g≤ 1

2

){0} = F, V(g≤ 1

2

){1
2
} = g 1

2

, andV(g≤ 1

2

){1} = g0 ⊕ S2g 1

2

.

Theorem 3.2([DSKV13]). Consider the PVAW = W(g, f) with theλ-bracket{· λ ·}z,ρ
defined by equation(3.5).

(a) For every elementq ∈ g
f
1−∆ there exists a (not necessarily unique) elementw ∈

W{∆} = W ∩ V(g≤ 1

2

){∆} of the formw = q + g, where

g =
∑

b
(m1)
1 . . . b(ms)

s ∈ V(g≤ 1

2

){∆} , (3.7)

is a sum of products of derivatives ofadx-eigenvectorsbi ∈ g1−∆i
⊂ g≤ 1

2

, such that

∆1 + · · ·+∆s +m1 + · · ·+ms = ∆ and s+m1 + · · ·+ms > 1 .

(b) Let{wj = qj+gj}j∈Jf be any collection of elements inW as in part (a). (Recall, from

Section2.4, that{qj}j∈Jf is a basis ofgf consisting ofad x-eigenvectors.) Then the

differential subalgebraW ⊂ V(g≤ 1

2

) is the algebra of differential polynomials in the

variables{wj}j∈Jf . The algebraW is a graded associative algebra, graded by the

conformal weights defined in(3.6): W = F⊕W{1}⊕W{3
2
}⊕W{2}⊕W{5

2
}⊕ . . . .

4 Generators of theW-algebraW = W(g, f)

Recall the first of the direct sum decompositions (2.17). By assumption, the elements

q0j = qj , j ∈ Jf , form a basis ofgf , and by construction the elementsqnj , (j, n) ∈ J ,

with n ≥ 1, form a basis of[e, g] (here we are using the notation from Section2.4). Since

gf ⊂ g≤ 1

2

, we have the corresponding direct sum decomposition

g≤ 1

2

= gf ⊕ [e, g≤− 1

2

] . (4.1)
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It follows that the algebra of differential polynomialsV(g≤ 1

2

) admits the following de-

composition in a direct sum of subspaces

V(g≤ 1

2

) = V(gf)⊕
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
, (4.2)

whereV(gf ) is the algebra of differential polynomials overgf , and
〈
[e, g≤− 1

2

]
〉
V(g

≤1
2

)
is

the differential ideal ofV(g≤ 1

2

) generated by[e, g≤− 1

2

].

As a consequence of Theorem3.2, we get the following result:

Corollary 4.1. For everyq ∈ gf there exists a unique elementw = w(q) ∈ W of the form

w = q + r, wherer ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
. Moreover, ifq ∈ g1−∆, thenw(q) lies inW{∆}

and r is of the form(3.7). Consequently,W coincides with the algebra of differential

polynomials in the variableswj = w(qj), j ∈ Jf .

Proof. We prove the existence of an elementw(q) = q + r, with q ∈ g
f
1−∆ andr ∈〈

[e, g≤− 1

2

]
〉
V(g

≤1
2

)
, by induction on∆. For∆ = 1, an elementw given by Theorem3.2(a)

has the form

w = q +
∑

b1b2 , (4.3)

with b1, b2 ∈ g 1

2

. Sinceg 1

2

= [e, g− 1

2

], the elementw is of the desired form. For∆ > 1,

again by Theorem3.2(a) we have an elementw ∈ W of the formw = q + g, with g as in

(3.7). We decomposeg according to the direct sum decomposition (4.2): g = a+b, where

a =
∑

cm1...ms

j1...js
(∂m1qj1) . . . (∂

msqjs) ∈ V(gf) , (4.4)

and b ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
. Each summand in the expression (4.4) of a has conformal

weight ∆, therefore eachqj has conformal weight strictly smaller than∆. Hence, by

inductive assumption, there iswj ∈ W of the formqj + rj , with rj ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
.

But then, letting

A =
∑

cm1...ms

j1...js
(∂m1wj1) . . . (∂

mswjs) ∈ W ,

we have thatA − a ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
. Therefore,w − A is an element ofW of the

desired form.

Next, we claim that

W ∩
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
= 0 . (4.5)

Let us fix, by the existence part, a collection of elementswj = qj + rj, whererj ∈〈
[e, g≤− 1

2

]
〉
V(g

≤1
2

)
, for j ∈ Jf . By Theorem3.2(b), W is the algebra of differential poly-

nomials in the variableswj . Take an element

∑
cm1...ms

j1...js
(∂m1wj1) . . . (∂

mswjs) ∈ W ∩
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
.
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After projecting ontoV(gf ), according to the direct sum decomposition (4.2), we get

∑
cm1...ms

j1...js
(∂m1qj1) . . . (∂

msqjs) = 0 .

Hence, all the coefficientscm1...ms

j1...js
must be zero, proving (4.5). The uniqueness ofw(q) =

q + r ∈ W, with r ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
, follows immediately from (4.5).

Consider the direct sum decomposition (4.2), and letπ : V(g≤ 1

2

) ։ V(gf) be the

projection onto the first summand. According to Corollary4.1, we have an injective map

w : gf →֒ W, extending to a differential algebra isomorphismw : V(gf )
∼
→ W, such

that

π ◦ w = 1V(gf ) . (4.6)

For q ∈ gf , we havew(q) = q + r̃(q), wherer̃(q) ∈
〈
[e, g≤− 1

2

]
〉
V(g

≤ 1
2

)
. The element̃r(q)

can be expanded uniquely in the form,

r̃(q) = r(q) + r2(q) + r3(q) + · · · = r(q) + r≥2(q) , (4.7)

wherern(q) ∈ V(gf )⊗ Sn
(
F[∂][e, g≤− 1

2

]
)

(due to (4.2)).

Remark 4.2. In [DSKV14] we computed the generators of theW-algebraW(g, f) for

the minimal and short nilpotent elementsf , and all the expression obtained there are of

the form described above.

The following theorem gives us an explicit formula for the first contributionr(q) in

the expansion (4.7).

Theorem 4.3. For q ∈ g
f
−k, the unique elementw = w(q) ∈ W = W(g, f), given by

Corollary 4.1, has the formw(q) = q + r(q) + r≥2(q) as in(4.7), where

r(q) =
∑

1

2
≤k1≤k

∑

(j,n)∈J−k1

(
[q, qjn]

♯ − (q|qjn)∂
)
qn+1
j

+
∑

1

2
≤k1≤k

1

2
≤k2≤k1−1

∑

(j1,n1)∈J−k1

(j2,n2)∈J−k2

(
[q, qj1n1

]♯ − (q|qj1n1
)∂
)(
[qn1+1

j1
, qj2n2

]♯ − (qn1+1
j1

|qj2n2
)∂
)
qn2+1
j2

+ . . . .

(4.8)

Lemma 4.4. For h, k ∈ 1
2
Z, (i,m) ∈ J−h and(j, n) ∈ J−k, we have

ρ{qimλq
n
j }z =





0 if h− k > 1 ,
δi,jδn,m+1 if h− k = 1 ,
[qim, q

n
j ] + δi,jδm,nλ+ z(s|[qim, q

n
j ]) if h− k ≤ 1

2
.

(4.9)

Proof. It follows immediately from the definitions.
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Lemma 4.5. If r ∈ V(gf )F[∂][e, g≤− 1

2

] ⊂ V(g≤ 1

2

) is such that

πρ{aλr}z = 0 for all a ∈ g≥ 1

2

, (4.10)

thenr = 0.

Proof. Recall that, fork ∈ 1
2
Z, 1

2
≤ k ≤ d, a basis of[e, g−k] is {qn+1

j }, where(j, n) ∈

J−k. Hence, any elementr ∈ V(gf )F[∂][e, g≤− 1

2

] has the form

r =
∑

1

2
≤k≤d

∑

(j,n)∈J−k

N∑

p=0

Ap,j,n∂
pqn+1

j where Ap,j,n ∈ V(gf) . (4.11)

Suppose, by contradiction, thatr 6= 0, and letK ≥ 1
2

be the largest value ofk with

non-zero contribution in the sum (4.11). For (i,m) ∈ J−K and (j, n) ∈ J−k (so that

(j, n+ 1) ∈ J−k+1) we have, by equation (4.9),

ρ{qimλq
n+1
j }z =

{
δi,jδn,m if k = K ,
0 if k < K

.

Takinga = qim ∈ gK in equation (4.10), we thus get

0 = πρ{qimλr}z =
∑

1

2
≤k≤d

∑

(j,n)∈J−k

N∑

p=0

Ap,j,n(λ+ ∂)pπρ{qimλq
n+1
j }z =

N∑

p=0

Ap,i,mλ
p .

Hence,Ap,i,m = 0 for all (i,m) ∈ J−K , contradicting the assumption thatr 6= 0.

Proof of Theorem4.3. By the definition (3.4) of theW-algebra, we have

ρ{aλw}z = ρ{aλq + r(q) + r≥2(q)}z = 0 for all a ∈ g≥ 1

2

.

On the other hand, by the Leibniz rule and the definition of theprojection mapπ :

V(g≤ 1

2

) ։ V(gf ), we clearly haveπρ{aλr≥2(q)}z = 0. Therefore, thanks to Lemma

4.5, it suffices to prove that the elementr(q) ∈ V(gf)F[∂][e, g≤− 1

2

] given by (4.8) satisfies

the equation

πρ{aλq + r(q)}z = 0 for all a ∈ g≥ 1

2

. (4.12)

Let h ≥ 1
2

and(i,m) ∈ J−h. By equation (4.9), we have, forq ∈ g
f
−k,

πρ{qimλq}z = [qim, q]
♯ + (qim|q)λ . (4.13)

Furthermore, by equation (4.9), for k ≥ 1
2

and(j, n) ∈ J−k, we have

πρ{qimλq
n+1
j }z =





0 if h > k or h = k − 1
2
,

δi,jδn,m if h = k ,
[qim, q

n+1
j ]♯ + (qim|q

n+1
j )λ if h ≤ k − 1 .

(4.14)
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Recalling the definition (4.8) of r(q), we have

πρ{qimλr(q)}z =
∑

1

2
≤k1≤k

∑

(j,n)∈J−k1

(
[q, qjn]

♯ − (q|qjn)(∂ + λ)
)
πρ{qimλq

n+1
j }z

+
∑

1

2
≤k1≤k

1

2
≤k2≤k1−1

∑

(j1,n1)∈J−k1

(j2,n2)∈J−k2

(
[q, qj1n1

]♯ − (q|qj1n1
)(∂ + λ)

)
×

×
(
[qn1+1

j1
, qj2n2

]♯ − (qn1+1
j1

|qj2n2
)(∂ + λ)

)
πρ{qimλq

n2+1
j2

}z + . . . .

(4.15)

By (4.14), the first sum in the RHS of (4.15) is equal to

(
[q, qim]

♯ − (q|qim)λ
)

+
∑

1

2
≤k1≤k

(h≤k1−1)

∑

(j,n)∈J−k1

(
[q, qjn]

♯ − (q|qjn)(∂ + λ)
)(
[qim, q

n+1
j ]♯ + (qim|q

n+1
j )λ

)
. (4.16)

Similarly, the second sum in the RHS of (4.15) is equal to

∑

1

2
≤k1≤k

(h≤k1−1)

∑

(j1,n1)∈J−k1

(
[q, qj1n1

]♯ − (q|qj1n1
)(∂ + λ)

)(
[qn1+1

j1
, qim]

♯ − (qn1+1
j1

|qim)λ
)

+
∑

1

2
≤k1≤k

1

2
≤k2≤k1−1

(h≤k2−1)

∑

(j1,n1)∈J−k1

(j2,n2)∈J−k2

(
[q, qj1n1

]♯ − (q|qj1n1
)(∂ + λ)

)
×

×
(
[qn1+1

j1
, qj2n2

]♯ − (qn1+1
j1

|qj2n2
)(∂ + λ)

)(
[qim, q

n2+1
j2

]♯ + (qim|q
n2+1
j2

)λ
)
.
(4.17)

The RHS of (4.13) is opposite to the first term in (4.16). The second term in (4.16) is

opposite to the first sum in (4.17). Proceeding by induction, we conclude that (4.12) holds.

We can rewrite equation (4.8) in a more compact form as follows. Forh, k ∈ 1
2
Z, we

introduce the notation

h ≺ k if and only if h ≤ k − 1 . (4.18)

Also, for s ≥ 1, we denote~k = (k1, k2, . . . , ks) ∈ (1
2
Z)s, andJ−~k := J−k1 × . . . J−ks.

Therefore, an element(~j, ~n) ∈ J−~k is ans-tuple with

(j1, n1) ∈ J−k1 , . . . , (js, ns) ∈ J−ks . (4.19)



ClassicalW-algebras 23

Using this notation, equation (4.8) can be equivalently rewritten as

w(qj0) = qj0 +
∑

1

2
≤k1≤k

∑

(j1,n1)∈J−k1

(
[qj0 , q

j1
n1
]♯ − (qj0 |q

j1
n1
)∂
)
qn1+1
j1

+
∑

1

2
≤k2≺k1≤k

∑

(~j,~n)∈J
−~k

(
[qj0 , q

j1
n1
]♯ − (qj0|q

j1
n1
)∂
)(
[qn1+1

j1
, qj2n2

]♯ − (qn1+1
j1

|qj2n2
)∂
)
qn2+1
j2

+ · · ·+ r≥2(qj0)

=
∞∑

s=0

∑

1

2
≤ks≺···≺k1≤k

(~j,~n)∈J
−~k

s−1∏

α=0

(
[qnα+1

jα
, qjα+1

nα+1
]♯ − (qnα+1

jα
|qjα+1

nα+1
)∂
)
· qns+1

js
+ r≥2(qj0) ,

(4.20)

where, in the RHS of the last equation, we are lettingn0 = −1 and the product is taken in

the increasing order ofα (the factors do not commute).

Now we rewrite equation (4.20) in some special cases. Forj0 ∈ Jf
0 (i.e.∆ = 1), we

have a non-zero contribution in the RHS of (4.20) only for s = 0. Hence, equation (4.20)

gives, in this case,

w(qj0) = qj0 + r≥2(qj0) ,

in agreement with equation (4.3). For j0 ∈ Jf

− 1

2

(i.e. ∆ = 3
2
), we have a non-zero con-

tribution in the RHS of (4.20) only for s = 0 or 1, and fors = 1 we must havek1 = 1
2
.

Hence, equation (4.20) gives, in this case,

w(qj0) = qj0 − ∂q1j0 +
∑

(j1,n1)∈J− 1
2

[qj0, q
j1
n1
]♯qn1+1

j1
+ r≥2(qj0) .

For j0 ∈ Jf
−1 (i.e.∆ = 2), again we have a non-zero contribution in the RHS of (4.20)

only for s = 0 or 1, and fors = 1 we must havek1 = 1
2

or 1. Hence, equation (4.20) gives

w(qj0) = qj0 − ∂q1j0 +
∑

(j1,n1)∈J− 1
2

⊔J−1

[qj0, q
j1
n1
]♯qn1+1

j1
+ r≥2(qj0) .

We can write, for arbitraryj0 ∈ Jf
−k (corresponding to conformal weight∆ = k+ 1), the

first few summands of (4.20) more explicitly. The term corresponding tos = 0 is qj0. The

term corresponding tos = 1 in (4.20) is
∑

1

2
≤k1≤k

∑

(j1,n1)∈J−k1

[qj0, q
j1
n1
]♯qn1+1

j1
− ∂q1j0 .

Moreover, the term corresponding tos = 2 in (4.20) is equal to
∑

1

2
≤k2≺k1≤k

∑

(j1,n1)∈J−k1

(j2,n2)∈J−k2

[qj0, q
j1
n1
]♯[qn1+1

j1
, qj2n2

]♯qn2+1
j2

+ ∂2q2j0

−
∑

1

2
≤k2≤k−1

∑

(j2,n2)∈J−k2

∂
(
[q1j0, q

j2
n2
]♯qn2+1

j2

)
−

∑

1

2
≤k1≤k

∑

(j1,n1)∈J−k1

[qj0, q
j1
n1
]♯∂qn1+2

j1
.
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5 Explicit formula for the PVA structure of W = W(g, f)

Proposition 5.1. For i0 ∈ Jf
−h andj0 ∈ Jf

−k, we have

{w(qi0)λw(qj0)}z,ρ =
∞∑

s,t=0

∑

1

2
≤hs≺···≺h1≤h

1

2
≤kt≺···≺k1≤k

∑

(~i,~m)∈J
−~h

(~j,~n)∈J
−~k

(−1)s

t−1∏

β=0

(
w([q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯)− (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)

(
w([qms+1

is
, qnt+1

jt
]♯) + (f |[qms+1

is
, qnt+1

jt
])

+ (qms+1
is

|qnt+1
jt

)(λ+ ∂) + z(s|[qms+1
is

, qnt+1
jt

])
)

s−1∏

α=0

(
w([qis−α

ms−α
, q

ms−α−1+1
is−α−1

]♯)− (qis−α
ms−α

|q
ms−α−1+1
is−α−1

)(λ+ ∂)
)
,

(5.1)

where the products are taken in the increasing order of the indicesα andβ.

Proof. According to Corollary4.1, the mapsw : V(gf) andπ|W : W → V(gf ) are

inverse to each other. Hence, in order to compute{w(qi0)λw(qj0)}z,ρ ∈ W[λ], we can

first compute

πρ{w(qi0)λw(qj0)}z ∈ V(gf ) ,

and then apply the differential algebra isomorphismw : V(gf ) → W to the result. On the

other hand, it is clear from the Leibniz rules and the definition of the mapπ : V(g≤ 1

2

) ։

V(gf ), that, in the expansionsw(qi0) = qi0 + r(qi0) + r≥2(qi0) andw(qj0) = qj0 +

r(qj0)+r
≥2(qj0) (cf. equation (4.7)), the termsr≥2(qi0) andr≥2(qj0) give no contribution.

Moreover, by equation (4.20) we get, using the Leibniz rules and the definition of the map

π,

π{w(qi0)λw(qj0)}z,ρ

=

∞∑

s,t=0

∑

1

2
≤hs≺···≺h1≤h

1

2
≤kt≺···≺k1≤k

∑

(~i,~m)∈J
−~h

(~j,~n)∈J
−~k

t−1∏

β=0

(
[q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯ − (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)

× πρ{qms+1
is λ+∂ q

nt+1
jt

}z→

0∏

α=s−1

(
[qmα+1

iα
, qiα+1

mα+1
]♯ − (qmα+1

iα
|qiα+1

mα+1
)(−λ− ∂)

)
,

where the second product is taken in the decreasing order ofα. Equation (5.1) is the result

of applying the mapw to both sides of this equation.

Formula (5.1) has the advantage of being manifestly skewsymmetric. It can be sim-

plified by bringing it to the form similar to (2.37), at the price of loosing the manifest

skewsymmetry. For this, we will need the following result.
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Lemma 5.2. For everyk ∈ 1
2
Z, −d ≤ k ≤ d, we have

∑

(i,m)∈Jk−1

qm+1
i ⊗ qim = −

∑

(j,n)∈J−k

qjn ⊗ qn+1
j ∈ [e, gk−1]⊗ [e, g−k] . (5.2)

Proof. First, we prove that both the LHS and the RHS of (5.2) lie in [e, gk−1]⊗[e, g−k]. By

assumption{qjn}(j,n)∈J−k
is a basis ofgk = [e, gk−1]⊕ g

f
k. On the other hand, forqjn ∈ g

f
k,

we haveqnj ∈ ge−k, and thereforeqn+1
j =const.[e, qnj ] = 0. Hence, only the basis elements

qjn in [e, gk−1] give a non-zero contribution to
∑

(j,n)∈J−k
qjn ⊗ qn+1

j , which therefore lies

in [e, gk−1]⊗ [e, g−k]. The same argument applies to the LHS of (5.2).

Note that the space[e, gk−1] is non-degenerately paired by the bilinear form(· | ·) to

[f, g−k+1], and the space[e, g−k] is non-degenerately paired to[f, gk]. In fact, the ele-

ments{qm+1
i }(i,m)∈Jk−1

form a basis of[e, gk−1], and{qim+1}(i,m)∈Jk−1
is the dual basis

of [f, g−k+1]. Similarly,{qn+1
j }(j,n)∈J−k

form a basis of[e, g−k], and{qjn+1}(j,n)∈J−k
is the

dual basis of[f, gk]. Hence, we have the following completeness relations
∑

(i,m)∈Jk−1

([f, a]|qm+1
i )qim+1 = [f, a] for every a ∈ g−k+1 ,

∑

(j,n)∈J−k

([f, b]|qn+1
j )qjn+1 = [f, b] for every b ∈ gk .

(5.3)

Since both the LHS and the RHS of (5.2) lie in [e, gk−1]⊗[e, g−k], to prove the equality

in (5.2) it suffices to show that, for everya ∈ g−k+1 andb ∈ gk, we have
∑

(i,m)∈Jk−1

([f, a]|qm+1
i )([f, b]|qim) = −

∑

(j,n)∈J−k

([f, a]|qjn)([f, b]|q
n+1
j ) . (5.4)

But by the invariance of the bilinear form and the completeness relations (5.3), both sides

of (5.4) are equal to([a, f ]|b).

Theorem 5.3.For a ∈ g
f
−h andb ∈ g

f
−k, we have

{w(a)λw(b)}z,ρ = w([a, b]) + (a|b)λ+ z(s|[a, b])

−

∞∑

t=1

∑

−h+1≤kt≺···≺k1≤k

∑

(~j,~n)∈J
−~k

(
w([b, qj1n1

]♯)− (b|qj1n1
)(λ+ ∂) + z(s|[b, qj1n1

])
)

(
w([qn1+1

j1
, qj2n2

]♯)− (qn1+1
j1

|qj2n2
)(λ+ ∂) + z(s|[qn1+1

j1
, qj2n2

])
)
. . .

. . .
(
w([q

nt−1+1
jt−1

, qjtnt
]♯)− (q

nt−1+1
jt−1

|qjtnt
)(λ+ ∂) + z(s|[q

nt−1+1
jt−1

, qjtnt
])
)

(
w([qnt+1

jt
, a]♯)− (qnt+1

jt
|a)λ+ z(s|[qnt+1

jt
, a])

)
.

(5.5)

Note that in each summand of (5.5) thez term can be non-zero at most in one factor.

In fact,z may occur in the first factor only fork1 ≤ 0, in the second factor only fork1 ≥ 1

andk2 ≤ −1, in the third factor only fork2 ≥ 1 andk3 ≤ −1, and so on, and it may

occur in the last factor only forkt ≥ 1. Since these conditions are mutually exclusive, the

expression in the RHS of (5.5) is linear inz.
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Proof. By Lemma5.2, we have, forα = 0, . . . , s− 1,
∑

(is−α,ms−α)∈J−hs−α

q
ms−α+1
is−α

⊗ qis−α
ms−α

= −
∑

(jt+1+α,nt+1+α)∈J−kt+1+α

qjt+1+α
nt+1+α

⊗ q
nt+1+α+1
jt+1+α

,

where

kt+1+α = −hs−α + 1 .

Also, the inequalities1
2
≤ hs ≺ · · · ≺ h1 ≤ h translate, in terms of the new indices

kt+1, . . . , kt+s, to

−h + 1 ≤ kt+s ≺ kt+s−1 ≺ · · · ≺ kt+2 ≺ kt+1 ≤
1

2
.

Hence, formula (5.1) can be rewritten as follows

{w(qi0)λw(qj0)}z,ρ = −

∞∑

s,t=0

∑

1

2
≤kt≺···≺k1≤k

−h+1≤kt+s≺···≺kt+1≤
1

2

∑

(~j,~n)∈J
−~k

t−1∏

β=0

(
w([q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯)− (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)

(
w([qnt+1

jt
, qjt+1

nt+1
]♯)− (f |[qjt+1

nt+1
, qnt+1

jt
])

− (qnt+1
jt

|qjt+1

nt+1
)(λ+ ∂) + z(s|[qnt+1

jt
, qjt+1

nt+1
])
)

s−1∏

α=0

(
w([q

nt+1+α+1
jt+1+α

, qjt+2+α
nt+2+α

]♯)− (q
nt+1+α+1
jt+1+α

|qjt+2+α
nt+2+α

)(λ+ ∂)
)
,

(5.6)

where we letqjt+s+1

nt+s+1
= qi0 in the last factor. First, recall thatqjt+1

nt+1
∈ gkt+1

andqnt+1
jt

∈

[e, g−kt ] ⊂ g−kt+1. Since, by assumption,s ∈ gd, it follows that(s|[qnt+1
jt

, qjt+1

nt+1
]) can be

non-zero only ifkt ≥ 1 andkt+1 ≤ −1. Therefore, the coefficient ofz in formula (5.6) is

the same as the coefficient ofz in formula (5.5), (for a = qi0 andb = qj0).

Next, we study formula (5.6) when z = 0. We consider separately the two contri-

butions to the RHS of (5.6): the one in which the term(f |[qjt+1

nt+1
, qnt+1

jt
]) enters, and the

remainder. For the first contribution, we note that

(f |[qjt+1

nt+1
, qnt+1

jt
]) = (q

jt+1

nt+1+1|q
nt+1
jt

) = δjt,jt+1
δnt,nt+1

.

Therefore, the term in the RHS of (5.6) in which (f |[qjt+1

nt+1
, qnt+1

jt
]) enters is (lettingℓ =

t+ s− 1 andqjℓnℓ
= qi0)

+
∞∑

ℓ=0

ℓ∑

t=0

∑

−h+1≤kℓ≺···≺k1≤k

kt=
1

2

∑

(~j,~n)∈J
−~k

ℓ−1∏

β=0

(
w([q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯)− (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)
.

(5.7)
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Next, note that, ifkt ≥ 1
2

and kt+1 ≤ 1
2
, then eitherkt+1 ≺ kt, or (kt, kt+1) is one

of the following three pairs:(1
2
, 0), (1

2
, 1
2
), (1, 1

2
). But in all these three cases, we have

[qnt+1
jt

, qjt+1

nt+1
]♯ = 0 and(qnt+1

jt
|qjt+1

nt+1
) = 0. Therefore, the contribution to the RHS of (5.6),

in which the term(f |[qjt+1

nt+1
, qnt+1

jt
]) does not enter, is (lettingℓ = t+ s)

−

∞∑

ℓ=0

ℓ∑

t=0

∑

−h+1≤kℓ≺···≺k1≤k

kt+1≤
1

2
≤kt

∑

(~j,~n)∈J
−~k

ℓ−1∏

β=0

(
w([q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯)− (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)
.

(5.8)

The sum over the indices~k in (5.8) has terms in whichkt+1 <
1
2
< kt, terms in which

kt+1 <
1
2
= kt, and terms in whichkt+1 = 1

2
< kt. Each of the last two types of terms

give the same contribution as (5.7) but with opposite sign. Hence, combining (5.6) and

(5.7) we get

−
∞∑

ℓ=0

∑

−h+1≤kℓ≺···≺k1≤k

∑

(~j,~n)∈J
−~k

ℓ−1∏

β=0

(
w([q

nβ+1
jβ

, q
jβ+1

nβ+1
]♯)− (q

nβ+1
jβ

|q
jβ+1

nβ+1
)(λ+ ∂)

)
,

which is the same as the RHS of (5.5) for z = 0.

Remark 5.4. Let ζ ∈ ge. Consider the differential algebra automorphism ofW =

S(F[∂]w(gf )) defined, on generators, by

w(a) 7→ w(a) + (ζ |a) , a ∈ gf .

(We could letζ be an arbitrary element ofg, but for ζ ∈ [f, g] this map is the identity

map.) Under this automorphism, the PVAλ-bracket{ ·λ ·}z=0,ρ is mapped to the following

deformedλ-bracket

{w(a)λw(b)}
ζ = w([a, b]) + (a|b)λ+ (ζ |[a, b])

−

∞∑

t=1

∑

−h+1≤kt≺···≺k1≤k

∑

(~j,~n)∈J
−~k

(
w([b, qj1n1

]♯)− (b|qj1n1
)(λ+ ∂) + (ζ |[b, qj1n1

])
)

(
w([qn1+1

j1
, qj2n2

]♯)− (qn1+1
j1

|qj2n2
)(λ+ ∂) + (ζ |[qn1+1

j1
, qj2n2

])
)
. . .

. . .
(
w([q

nt−1+1
jt−1

, qjtnt
]♯)− (q

nt−1+1
jt−1

|qjtnt
)(λ+ ∂) + (ζ |[q

nt−1+1
jt−1

, qjtnt
])
)

(
w([qnt+1

jt
, a]♯)− (qnt+1

jt
|a)λ+ (ζ |[qnt+1

jt
, a])

)
.

(5.9)

Thisλ-bracket withζ = zs coincides with theλ-bracket (5.5). This proves, in particular,

that classicalW-algebras are isomorphic for different choices ofz ∈ F. In fact, theλ-

brackets{· λ ·}ζ define a family of isomorphic PVA’s parametrized byζ ∈ ge. However



28 Alberto De Sole, Victor G. Kac, Daniele Valeri

the dependence onζ is in general non-linear. As we pointed out after Theorem5.3, for

ζ = zs and s ∈ gd the λ-bracket (5.9) is linear in z. Hence, in this case, we get a

compatible family of PVA’s parametrized by elements ofgd.

6 Special cases

6.1 Elements of conformal weight1

Consider the case when eithera or b lies ing
f
0 , which corresponds to a generatorw(a) or

w(b) of W = W(g, f) of conformal weight∆ = 1. Sincegf0 = ge0, if a ∈ g
f
0 andnt ≥ 0,

we have[qnt+1
jt

, a]♯ = 0 and(qnt+1
jt

|a) = 0. For the first equation we used the fact that

[[e, g], ge] ⊂ [e, g] . (6.1)

Hence, the sum in the RHS of (5.5) is zero in this case. The case whenb ∈ g
f
0 can

be derived by skewsymmetry, or by the fact that, thanks to Lemma 5.2, we also have∑
(j1,n1)∈J−h1

[b, qj1n1
]♯ ⊗ qn1+1

j1
= 0 and

∑
(j1,n1)∈J−h1

(b|qj1n1
)⊗ qn1+1

j1
= 0.

In conclusion, if eithera or b lies ing
f
0 , we have

{w(a)λw(b)}z,ρ = w([a, b]) + (a|b)λ+ z(s|[a, b]) . (6.2)

In particular, the mapw restricts to an injective PVA homomorphismV(gf0) →֒ W. Fur-

thermore, (6.2) defines a representation of the Lie conformal algebraF[∂]gf0 on F[∂]Uk,

whereUk = {b+ z(s|b) | b ∈ g
f
−k} andk ≥ 1

2
. (Explicitly, this representation is given by

aλ(b+ z(s|b)) = [a, b] + z(s|[a, b]) for a ∈ g
f
0 , b ∈ g

f
−k, and extended by sesquilinearity.)

6.2 Elements of conformal weight3
2

Consider the case whena, b ∈ g
f

− 1

2

, corresponding to generatorsw(a) andw(b) of W of

conformal weight∆ = 3
2
. In this case the sum over the indices~k is non-empty only for

t = 1, and in this case it must bek1 = 1
2
. Moreover, it is easy to check, using Lemmas2.6

and5.2, that
∑

(j,n)∈J
−1

2

(a|qjn)q
n+1
j =

∑

j∈Jf

−1
2

(a|qj)q1j = −[e, a] ,
∑

(j,n)∈J
−1

2

(a|qn+1
j )qjn = [e, a] .

In conclusion, fora, b ∈ g
f

− 1

2

we get

{w(a)λw(b)}z,ρ = w([a, b]) + (∂ + 2λ)w([a, [e, b]]♯)− (e|[a, b])λ2

+
∑

(j,n)∈J
−1

2

w([a, qjn]
♯)w([qn+1

j , b]♯) + z(s|[a, b]) . (6.3)

Equation (6.3) is the same as [DSKV14, Eq.(3.11)] (cf. [Suh13]).
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6.3 Generatorw(f)

Next, we consider the case whena = f (for which h = 1). In this case[f, b] = 0 and

(f |b) = 0 for everyb ∈ gf . For t ≥ 1 we have, by Lemma2.6(i),

[qnt+1
jt

, f ]♯ = (qnt

jt
)♯ = δkt≥ 1

2

δnt,0qjt . (6.4)

Here and further we use the standard notationδk≥ 1

2

, which is1 for k ≥ 1
2

and0 otherwise.

By Lemma5.2we also have

∑

(jt,nt)∈J−kt

(qnt+1
jt

|f)qjtnt
= −

∑

(jt,nt)∈Jkt−1

(qjtnt
|f)qnt+1

jt
= δkt,0x (6.5)

The term witht = 1 in the RHS of (5.5) is, by (6.4) and (6.5),

−
∑

0≤k1≤k

∑

(j1,n1)∈J−k1

(
w([b, qj1n1

]♯)− (b|qj1n1
)(λ+ ∂) + z(s|[b, qj1n1

])
)

×
(
w([qn1+1

j1
, f ]♯)− (qn1+1

j1
|f)λ+ z(s|[qn1+1

j1
, f ])

)

=
∑

1

2
≤k1≤k

∑

j1∈J
f
−k1

w(qj1)w([q
j1, b]♯) + δk≥ 1

2

(λ+ (k + 1)∂)w(b)

− zw([b, s]♯) + (k + 1)z(s|b)λ .

(6.6)

For t ≥ 2, the corresponding summand in the RHS of (5.5) is, again by (6.4) and (6.5),

−
∑

0≤kt≺···≺k1≤k

∑

(~j,~n)∈J
−~k

(
w([b, qj1n1

]♯)− (b|qj1n1
)(λ+ ∂) + z(s|[b, qj1n1

])
)
. . .

. . .
(
w([q

nt−1+1
jt−1

, qjtnt
]♯)− (q

nt−1+1
jt−1

|qjtnt
)(λ+ ∂) + z(s|[q

nt−1+1
jt−1

, qjtnt
])
)

(
w([qnt+1

jt
, f ]♯)− (qnt+1

jt
|f)λ+ z(s|[qnt+1

jt
, f ])

)

= −
∑

1≤kt−1≺···≺k1≤k

∑

(~j,~n)∈J
−~k

(
w([b, qj1n1

]♯)− (b|qj1n1
)(λ+ ∂) + z(s|[b, qj1n1

])
)
. . .

. . .
(
w([q

nt−2+1
jt−2

, qjt−1

nt−1
]♯)− (q

nt−2+1
jt−2

|qjt−1

nt−1
)(λ+ ∂) + z(s|[q

nt−2+1
jt−2

, qjt−1

nt−1
])
)

(q
nt−1+1
jt−1

|x)λ2 .

(6.7)

Here we used that fact that, fornt−1 ≥ 0, we have[qnt−1+1
jt−1

, qjt]♯ = 0 (by (6.1)), (qnt−1+1
jt−1

|qjt) =

0, (s|[qnt−1+1
jt−1

, qjt]) = 0, and[qnt−1+1
jt−1

, x]♯ = 0. Note that(qnt−1+1
jt−1

|x) is zero unlessnt−1 =

0. But for nt−1 = 0 andnt−2 ≥ 0, we have[qnt−2+1
jt−2

, qjt−1]♯ = 0 and(qnt−2+1
jt−2

|qjt−1) = 0.

Hence, fort ≥ 2 the RHS of (6.7) vanishes. Moreover, we have

∑

(j1,n1)∈J−k1

(qn1+1
j1

|x)qj1n1
= −δk1,1

1

2
e .
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Hence, tort = 2 the RHS of (6.7) becomes

−
1

2
(b|e)λ3 . (6.8)

Combining (6.6) and (6.8), we conclude that, fora ∈ g
f
1−∆ we have

{w(f)λw(a)}z,ρ =
∑

j∈Jf

≤−1
2

w(qj)w([q
j, a]♯) + (1− δ∆,1)(∂ +∆λ)w(a)

−
(e|a)

2
λ3 + zw([s, a]♯) + z∆(s|a)λ .

(6.9)

6.4 Virasoro element

Proposition 6.1. (a) Consider the elementL0 = 1
2

∑
j∈Jf

0

w(qj)w(q
j) ∈ W{2}. For

a ∈ g
f
−k, we have

{L0λw(a)}z,ρ =
∑

j∈Jf
0

w(qj)w([q
j, a]) + δk,0(∂ + λ)w(a)− δk,dzw([s, a]

♯) ,

{w(a)λL0}z,ρ = −
∑

j∈Jf
0

w(qj)w([q
j, a]) + δk,0w(a)λ+ δk,dzw([s, a]

♯) ,

(6.10)

In particular, for a ∈ g
f
0 , we have

{L0λw(a)}z,ρ = (∂ + λ)w(a) , {w(a)λL0}z,ρ = w(a)λ . (6.11)

Furthermore, we have

{L0λL0}z,ρ = (∂ + 2λ)L0 . (6.12)

In particular, L0 is a Virasoro element ofW with zero central charge, and the gen-

eratorsw(a), a ∈ g
f
0 , are primary elements with respect toL0 of conformal weight

1.

(b) We have:

{w(f)λw(f)}z,ρ = (∂ + 2λ)w(f)− (x|x)λ3 + 2z(s|f)λ , (6.13)

i.e.w(f) ∈ W{2} is a Virasoro element, with central charge−(x|x). Moreover,

{w(f)λL0}z,ρ = {L0λw(f)}z,ρ = 0 . (6.14)

(c) The elementL = w(f) + L0 ∈ W{2} is also a Virasoro element ofW, and we have

{LλL}z,ρ = (∂ + 2λ)L− (x|x)λ3 + 2z(s|f)λ . (6.15)
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For a ∈ g
f
1−∆ we have

{Lλw(a)}z,ρ = (∂ +∆λ)w(a)−
(e|a)

2
λ3 + z∆(s|a)λ . (6.16)

In particular, for z = 0, all the generatorsw(a), a ∈ gf , ofW are primary elements

for L, provided that(e|a) = 0. In other words, forz = 0, W is an algebra of differ-

ential polynomials generated byL anddim(gf )− 1 primary elements with respect to

L. So,W is a PVA ofCFT type(cf. [DSKW10]).

Proof. By equation (6.2) and the Leibniz rule, we have

{L0λw(a)}z,ρ =
∑

j∈Jf
0

{w(qj)λ+∂w(a)}z,ρ→w(qj)

=
∑

j∈Jf
0

w(qj)w([q
j, a]) +

∑

j∈Jf
0

(qj |a)(λ+ ∂)w(qj) + z
∑

j∈Jf
0

(s|[qj, a])w(qj) .
(6.17)

The second term is non-zero only fora ∈ g
f
0 , and in this case it is(λ + ∂)w(a). The last

term is non-zero only fork = d, and in this case it is−zw([s, a]♯). This proves the first

equation in (6.10). The second equation in (6.10) is obtained from the first by skewsym-

metry. Fora ∈ g
f
0 , we have, by a simple symmetry argument, that

∑
j∈Jf

0

qj [q
j, a] = 0,

as an element ofS2(gf0). Hence, equations (6.11) are a special case of equations (6.10).

Moreover, equation (6.12) follows immediately from (6.11) and the Leibniz rule. This

proves part (a).

Lettinga = f in equation (6.9) we get

{w(f)λw(f)}z,ρ =
∑

j∈Jf

≤−1
2

w(qj)w([q
j, f ]) + (∂ + 2λ)w(f)− (x|x)λ3 + 2z(s|f)λ .

(6.18)

Here we used the facts that(e|f)
2

= (x|x) and[s, f ]♯ = 0. To get equation (6.13) we just

observe that the first term in the RHS of (6.18) is zero. Indeed, it is easy to check that

{qj}j∈Jf

−1
2

and{[f, qj]}
j∈Jf

−1
2

are dual bases ofgf
− 1

2

with respect to the non-degenerate

skewsymmetric form(e|[· , ·]). But then a simple symmetry argument shows that
∑

j∈Jf

≤−1
2

qj[q
j , f ],

considered as an element ofS2(gf
− 1

2

), is zero. To prove equation (6.14) we use (6.9) and

the Leibniz rule:

{w(f)λL0}z,ρ =
∑

j∈Jf
0

{w(f)λw(qj)}z,ρw(q
j)

=
∑

j∈Jf
0

∑

i∈Jf

≤−1
2

w(qi)w([q
i, qj ]

♯)w(qj) .
(6.19)
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Equation (6.14) then follows from (6.19) by the observation that, forj ∈ Jf
0 andi ∈ Jf

≤− 1

2

,

we have[qi, qj] ∈ g≥ 1

2

, so that[qi, qj ]♯ = 0. This proves part (b).

Equation (6.15) is an immediate consequence of equations (6.12), (6.13) and (6.14).

Finally, equation (6.16) follows form equations (6.9) and (6.10) and the observation that∑
j∈Jf qj [q

j, a]♯, viewed as an element ofS2(gf), is zero.

Note that the definition ofL in Proposition6.1(c) is compatible with the Virasoro ele-

ment in [DSKV14]. The fact thatW is generated byL anddim(gf)−1 primary elements

has been known to physicists for a long time [BFOFW90].

Remark 6.2. By equation (6.15) the central charge of the Virasoro elementL is c =

−(x|x), which varies with the rescaling of the bilinear form(· | ·).

7 Isomorphism between the Zhu algebra ofW(g, f) and
Wfin(g, f)

Recall that anenergy operatorH on a Poisson vertex algebraV is a diagonalizable oper-

ator onV, which is a derivation of the commutative associative product, and such that

H{aλb} = {H(a)λb}+ {aλH(b)} − (1 + λ∂λ){aλb} . (7.1)

If a ∈ V is an eigenvector ofH, we denote by∆(a) the corresponding eigenvalue (or

conformal weight). Given a Poisson vertex algebraV with an energy operatorH, follow-

ing [DSK06, Sec.6] we introduce the correspondingH-twisted Zhu algebraZhuz(V). It

is a1-parameter family of Poisson algebras (parametrized byz ∈ F) defined as follows.

As a commutative associative algebra,

Zhu z(V) = V/〈(∂ + zH)V〉V , (7.2)

where〈(∂ + zH)V〉V denotes the differential ideal ofV generated by the elements∂a +

zH(a), wherea ∈ V. The Poisson bracket onZhuz(V) is defined by

{a, b}z = {ã z∂ǫ b̃}→ǫ
∆(a)−1

∣∣
ǫ=1

+ 〈(∂ + zH)V〉V , (7.3)

whereã, b̃ ∈ V are representatives ofa, b ∈ Zhuz(V). Formula (7.3) is a special case of

[DSK06, Eq.(6.3)].

Here we compute the Zhu algebra of the classical affineW-algebraW(g, f), with the

energy operatorH given by the conformal weight defined in Section3.2: H(w(p)) =

∆(p)w(p), where∆(p) = (1 − δ(p)), for p ∈ gf . As a commutative associative algebra,

Zhuz(W(g, f)) = S(w(gf)), and we have the relation

∂A = −z∆(A)A , (7.4)

for every eigenvectorA ∈ W(g, f) of H.
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Theorem 7.1. The Poisson bracket onZhuz(W(g, f)) is given by the following formula

(for a ∈ gf−h andb ∈ g
f
−k):

{w(a), w(b)}z = w([a, b])− z(x|[a, b])−

∞∑

t=1

∑

−h+1≤kt≺···≺k1≤k

∑

(~j,~n)∈J
−~k(

w([b, qj1n1
]♯)− z(x|[b, qj1n1

])
)(
w([qn1+1

j1
, qj2n2

]♯)− z(x|[qn1+1
j1

, qj2n2
])
)
. . .

. . .
(
w([q

nt−1+1
jt−1

, qjtnt
]♯)− z(x|[q

nt−1+1
jt−1

, qjtnt
])
)(
w([qnt+1

jt
, a]♯)− z(x|[qnt+1

jt
, a])

)
.

(7.5)

Lemma 7.2. For s ≥ 0, a1, b1, . . . , as, bs ∈ g eigenvectors ofad x, C ∈ W(g, f) eigen-

vector ofH, andα ∈ 1
2
Z, let

A(ǫ) =
(
w([a1, b1]

♯)−(a1|b1)(∂+z∂ǫ)
)
. . .

(
w([as, bs]

♯)−(as|bs)(∂+z∂ǫ)
)
Cǫα .

Then, modulo the relations(7.4), we have

(∂ +z∂ǫ)A(ǫ)
∣∣
ǫ=1

= z(α −∆([a1, b1])− · · · −∆([as, bs])−∆(C))A(ǫ)
∣∣
ǫ=1

. (7.6)

Proof. Fors = 0 equation (7.6) reduces to

(∂ + z∂ǫ)Cǫ
α
∣∣
ǫ=1

= z(α−∆(C))Cǫα
∣∣
ǫ=1

, (7.7)

which is clear by the relation (7.4). Next, we prove (7.6) for s = 1. We have

(∂ + z∂ǫ)
(
w([a1, b1]

♯)− (a1|b1)(∂ + z∂ǫ)
)
Cǫα

∣∣
ǫ=1

= ∂w([a1, b1]
♯)C − (a1|b1)∂

2C − (a1|b1)∂Cz∂ǫǫ
α
∣∣
ǫ=1

+ w([a1, b1]
♯)Cz∂ǫǫ

α
∣∣
ǫ=1

− (a1|b1)∂Cz∂ǫǫ
α
∣∣
ǫ=1

− (a1|b1)z
2C∂2ǫ ǫ

α
∣∣
ǫ=1

= z(α−∆([a1, b1])−∆(C))w([a1, b1]
♯)C

− z2
(
α(α− 1)− 2α∆(C) + ∆(C)(∆(C) + 1)

)
(a1|b1)C .

(7.8)

On the other hand, we have

z(α−∆([a1, b1])−∆(C))
(
w([a1, b1]

♯)− (a1|b1)(∂ + z∂ǫ)
)
Cǫα

∣∣
ǫ=1

= z(α−∆([a1, b1])−∆(C))w([a1, b1]
♯)C

− z2(α−∆([a1, b1])−∆(C))(α−∆(C))(a1|b1)C .

(7.9)

Note that, if(a1|b1) 6= 0, then∆([a1, b1]) = 1. Hence, comparing equations (7.8) and

(7.9), we get that

(∂ + z∂ǫ)
(
w([a1, b1]

♯)− (a1|b1)(∂ + z∂ǫ)
)
Cǫα

∣∣
ǫ=1

= z(α−∆([a1, b1])−∆(C))
(
w([a1, b1]

♯)− (a1|b1)(∂ + z∂ǫ)
)
Cǫα

∣∣
ǫ=1

,
(7.10)

which is the same as (7.6) with s = 1. The general formula (7.6) for arbitrarys ≥ 1

follows by equations (7.7) and (7.10) and an easy induction.
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Proof of Theorem7.1. According to equation (5.5) and formula (7.3), for a ∈ g
f
−h and

b ∈ g
f
−k the Poisson bracket{w(a), w(b)}z is given by:

w([a, b]) + z(a|b)∂ǫǫ
h
∣∣∣
ǫ=1

−

∞∑

t=1

∑

−h+1≤kt≺···≺k1≤k

∑

(~j,~n)∈J
−~k(

w([b, qj1n1
]♯)− (b|qj1n1

)(z∂ǫ + ∂)
)(
w([qn1+1

j1
, qj2n2

]♯)− (qn1+1
j1

|qj2n2
)(z∂ǫ + ∂)

)
. . .

. . .
(
w([qnt+1

jt
, a]♯)− (qnt+1

jt
|a)z∂ǫ

)
ǫh
∣∣∣
ǫ=1

,

(7.11)

modulo the relations (7.4). We clearly have

z(a|b)∂ǫǫ
h
∣∣∣
ǫ=1

= z(a|b)h = −z(x|[a, b]) .

By Lemma7.2, in the first factor of (7.11) we can replace(b|qj1n1
)(z∂ǫ + ∂) by

(b|qj1n1
)
(
h−∆([qn1+1

j1
, qj2n2

])− · · · −∆([q
nt−1+1
jt−1

, qjtnt
])−∆([qnt+1

jt
, a])

)
. (7.12)

But, for (jj , ni) ∈ J−ki, we have

∆([qni+1
ji

, qji+1

ni+1
]) = ki − ki+1 .

Hence (7.12) becomes

(b|qj1n1
)
(
h− (k1 − k2)− · · · − (kt−1 − kt)− (h+ kt)

)
= −k1(b|q

j1
n1
) = (x|[b, qj1n1

]) .

Similarly for all the other factors. Equation (7.5) follows.

For z = 0 the Zhu algebra reduces toZhuz=0W(g, f) = W(g, f)/〈∂W(g, f)〉, and

formula (7.5) reduces to formula (2.37), once we identifyp ∈ gf with w(p) ∈ W(g, f).

Hence the Poisson algebrasZhuz=0W(g, f) andWfin(g, f) are isomorphic. More gener-

ally, it is immediate to see that formula (7.5) is the same as formula (2.38) with z replaced

by −z. Hence, as a consequence of Theorem2.14and Corollary2.15, we get the follow-

ing

Corollary 7.3. The Poisson algebrasZhuz(W(g, f)) andWfin(g, f) are isomorphic for

every value ofz ∈ F. In fact, the Poisson bracket(7.5) is unchanged if we replace−zx

by z2

4
e, and we thus have an explicit isomorphismZhuz=0(W(g, f)) → Zhuz(W(g, f))

given byw(q) 7→ w(q) + z2

4
(q|e), for q ∈ gf .

Remark 7.4. The “quantum” version of Corollary7.3was established in [DSK06]: ZhuzW (g, f) ≃

W fin(g, f) for z 6= 0. (As before,W , as opposed toW, refers to “quantum”W -algebras.)

Takingz = 0, Corollary (7.3) shows, in particular, that the Poisson algebrasWfin(g, f),

W(g, f)/〈∂W(g, f)〉, andW (g, f)/〈∂W (g, f)〉, are all isomorphic (the last isomorphism



ClassicalW-algebras 35

is proved in [DSK06, Sec.6]), and the quantum finiteW -algebraW fin(g, f) is their quan-

tization. Note that in [DSK06] we use the cohomological definition of classical and quan-

tumW -algebras. The equivalence of these definitions to the Hamiltonian reduction def-

initions was established in the appendix of [DSK06] for the finite quantumW -algebra,

and in [Suh13] for the classical ones.

By Corollary 7.3, we can view the classical finiteW-algebraWfin(g, f) as the Zhu-

algebra of the classicalW-algebraW(g, f) atz = 0. It follows thatWfin(g, f) = W/W∂W,

can be obtained by classical Hamiltonian reduction as in theaffine case:

Wfin(g, f) =
{
g ∈ S(g≤ 1

2

)
∣∣ ρ((ad a)(g)) = 0 for all a ∈ g≥ 1

2

} ,

whereρ : S(g) ։ S(g≤ 1

2

) is the algebra homomorphism defined on generators by (3.2).

The analogue of Corollary4.1holds in this case as well:

Corollary 7.5. For everyq ∈ gf there exists a unique elementw = w(q) ∈ Wfin(g, f)

of the formw = q + r, wherer lies in the ideal ofS(g≤ 1

2

) generated by[e, g≤− 1

2

], and it

is homogeneous with respect to conformal weight provided that q is anad x-eigenvector.

Consequently,Wfin(g, f) coincides with the algebra of differential polynomials in the

variablesw(qj), where{qj} is a basis ofgf .

Remark 7.6. The canonical quotient mapS(g) → S(g)/〈m−(f |m) |m ∈ g≥ 1

2

〉 induces,

for a principal nilpotent elementfpr ∈ g, an isomorphism [Kos78]

φ : S(g)g
∼

−→
(
S(g)/〈m− (fpr|m) |m ∈ g≥ 1

2

〉
)ad n

= Wfin(g, fpr) .

Recall thatgfpr has a basis{qj}ℓj=1 consisting ofadx-eigenvectors with eigenvaluesm1 =

1 < m2 < · · · < mℓ, where themi’s are the exponents ofg. (Only in the case ofg of

typeD2n two of the exponents are equal, both beingn.) Hence,{φ−1(w(qj))}
ℓ
j=1 form

a canonical (up to a scalar factor for each basis element) setof generators of the algebra

S(g)g (with the mentioned above exception ofD2n).

8 The generalized Miura map for classicalW-algebras

Consider the affine PVAV(g) with λ-bracket (3.1) with z = 0. We denote by{· λ ·}0 the

restriction of thisλ-bracket to the PVA subalgebraV(g≤0) = S(F[∂]g≤0). Furthermore,

let F(g 1

2

) be the algebra of differential polynomialsS(F[∂]g 1

2

), endowed with the PVA

λ-bracket defined, on generators, by:

{aλb}
ne = −(f |[a, b]) =: 〈a|b〉 , for all a, b ∈ g 1

2

. (8.1)

We then consider the tensor product of PVA’s

V = V(g≤0)⊗ F(g 1

2

) .
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Namely, theλ-brackets on generators are defined by

{aλb}
⊗ = {aλb}

0 = [a, b] + (a|b)λ for a, b ∈ g≤0 ,

{aλc}
⊗ = {cλa}

⊗ = 0 for a ∈ g≤0, c ∈ g 1

2

,

{cλd}
⊗ = {cλd}

ne = −(f |[c, d]) for c, d ∈ g 1

2

.

Theorem 8.1. The obvious differential algebra isomorphismV(g≤ 1

2

)
∼

−→ V restricts to

an (injective) PVA homomorphism

W = W(g, f) →֒ V = V(g≤0)⊗ F(g 1

2

) . (8.2)

Proof. Recall thatW = W(g, f) is a differential subalgebra ofV(g≤ 1

2

), and we have

an obvious isomorphismV ≃ V(g≤ 1

2

). Hence, we have an injective differential algebra

homomorphismW →֒ V. We need to show that

{gλh}ρ = {gλh}
⊗ , (8.3)

for everyg, h ∈ W.

Let {qj}j∈J
≤1

2

be a basis ofg≤ 1

2
such that{qj}j∈J≤0

is a basis ofg≤0 and{qj}j∈J 1
2

is

a basis ofg 1

2

(hence,J≤ 1

2

= J≤0 ∪ J 1

2

). Recall that, due to sesquilinearity and Leibniz

rule, we have the Master Formula forλ-brackets of arbitrary differential polynomials (see

[DSK06, Ex.6.2]), which we use below. By the definition of the tensorλ-bracket inV, the

RHS of (8.3) becomes

{gλh}
⊗ =

∑

i,j∈J≤0

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}
0(−λ− ∂)m

∂g

∂q
(m)
i

+
∑

i,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}
ne(−λ− ∂)m

∂g

∂q
(m)
i

.
(8.4)

On the other hand, by equation (3.5) and the definition of the mapρ given by equation
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(3.2), the LHS(8.3) becomes

{gλh}ρ =
∑

i,j∈J≤0

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

+
∑

i∈J≤0,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

+
∑

i∈J 1
2

,j∈J≤0

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

+
∑

i,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

.

(8.5)

We note that fori, j ∈ J≤0 we haveρ{qiλqj} = {qiλqj}
0. Hence, the first summand in

(8.5) becomes

∑

i,j∈J≤0

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}
0(−λ− ∂)m

∂g

∂q
(m)
i

. (8.6)

Furthermore, by definition ofW, we haveρ{gλqj} = 0, for everyj ∈ J 1

2

. Hence, using

the fact thatJ≤ 1

2

= J≤0 ∪ J 1

2

we get

0 = ρ{gλqj} =
∑

i∈J≤0

m∈Z+

ρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

+
∑

i∈J 1
2

m∈Z+

ρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

.
(8.7)

Using the identity (8.7), the second summand in equation (8.5) becomes

−
∑

i,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

. (8.8)

Similarly,ρ{qiλh} = 0, for everyi ∈ J 1

2

, from which follows that

∑

j∈J≤0

n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλqj} = −
∑

j∈J 1
2

n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλqj} . (8.9)
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Using equation (8.9) (where we replaceλ with λ + ∂ acting on the right), we get that the

contribution of the third summand in equation (8.5) is

−
∑

i,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

. (8.10)

Combining equations (8.6), (8.8) and (8.10), it follows that the equation (8.5) becomes

{gλh}ρ =
∑

i,j∈J≤0

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}
⊗(−λ− ∂)m

∂g

∂q
(m)
i

−
∑

i,j∈J 1
2

m,n∈Z+

∂h

∂q
(n)
j

(λ+ ∂)nρ{qiλ+∂qj}(−λ− ∂)m
∂g

∂q
(m)
i

.

To prove that the above expression is the same as equation (8.4) it suffices to note that

ρ{qiλqj} = (f |[qi, qj ]) = −{qiλqj}
ne, for i, j ∈ J 1

2

.

Corollary 8.2. The homomorphism(8.2) induces an injective PVA homomorphismµ :

W → V(g0)⊗ F(g 1

2

), called thegeneralized Miura map.

Proof. Composing the PVA homomorphism (8.2) with the projectionV(g≤0) → V(g0)

(which is also a PVA homomorphism), we get a PVA homomorphismW → V(g0) ⊗

F(g 1

2

). It is not difficult to show, using Theorem4.3, that, forj ∈ Jf
−k, the term ofw(qj)

in g0 ⊕ g 1

2

is equal to(−∂)nqnj 6= 0, wheren = [k + 1
2
]. Injectiveness follows.

Example 8.3. The Virasoro elementL ∈ W(g, f) from Proposition6.1(c) has the fol-

lowing explicit expression, as an element ofV(g≤ 1

2

) (see [DSKV14, Eq.2.19]):

L = f + x′ +
1

2

∑

i

aiai +
∑

k

vk[f, vk] +
1

2

∑

k

vk∂vk ,

where{ai} and{ai} are dual (w.r.t.(· | ·)) bases ofg0, and{vk} and{vk} are bases ofg 1

2

dual with respect to〈· | ·〉 (cf. (8.1)), in the sense that〈vh|vk〉 = δh,k. Applying toL the

mapµ : W → V(g0)⊗F(g 1

2

), we thus get the element (cf. [KW04, Thm.5.2])

µ(L) = x′ +
1

2

∑

i∈J0

aiai +
1

2

∑

k∈J 1
2

vk∂vk .

In the special case ofg = sl2, we getµ(L) = x′ + x2

2(x|x)
, which is the classical Miura

map.
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Remark 8.4. As pointed out in the introduction, the assumption thatg is a simple Lie

algebra is not essential. In fact, all the results of the present paper hold for an arbitrary

finite-dimensional Lie algebra (or superalgebra)g, endowed with a non-degenerate sym-

metric invariant bilinear form(· | ·), and ansl2 triple s ⊂ g.
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