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Abstract. We prove local well-posedness of the Schrödinger flow from R
n into

a compact Kähler manifold N with initial data in Hs+1(Rn, N) for s ≥
[

n
2

]
+4.

1. Introduction. We consider maps

u : R
n → N

where N is a k-dimensional compact Kähler manifold with complex structure J and
Kähler form ω (so that ω is a nondegenerate, skew-symmetric two-form). Thus N is
a complex manifold and J is an endomorphism of the tangent bundle whose square,
at each point, is minus the identity. N has a Riemannian metric g defined by

g(·, ·) = ω(·, J ·).
The condition that N is Kähler is equivalent to assuming that ∇J = 0 where ∇ is
the Levi-Civita covariant derivative with respect to g. The energy of a map u is
defined by

E(u) =
1

2

∫

Rn

|du|2dx

where the energy density |du|2 is simply the trace with respect to the Euclidean
metric of the pullback of the metric g under u, |du|2 = Tr u∗(g). In local coordinates
we have

|du|2(x) =

n∑

α=1

gij(u(x))
∂ui

∂xα

∂uj

∂xα
.
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(We use the Einstein summation convention and sum over repeated indices.)
The L2-gradient of E(u) is given by minus the tension of the map, −τ(u),

τ(u) is a vector field on N which can be expressed in local coordinates as τ(u) =
(τ(u)1, . . . , τ(u)k) with

τ(u)i = ∆ui +

n∑

α=1

Γi
jk(u)

∂uj

∂xα

∂uk

∂xα
for i = 1, . . . , k (1.1)

where Γi
jk(u) are the Christoffel symbols of the metric g at u(x). Critical points of

the energy are Harmonic maps and are characterized by the equation τ(u) = 0. The
foundational result on the existence of harmonic maps is due to Eells and Sampson
[14] and is achieved by studying the harmonic map flow

∂u

∂t
= τ(u)

which is simply the gradient flow for the energy functional on the space of maps.
Eells and Sampson proved the existence of harmonic maps as stationary points
of this flow when the domain is a compact manifold and the target is a compact
manifold of non-positive curvature. In our setting, the symplectic structure on N
induces a symplectic structure on the space of maps. Let Xs = Hs(Rn, N) be the
Sobolev space of maps between R

n and N as defined below. For s ≥ n
2 + 1, Xs

is a Banach manifold with a symplectic structure Ω induced from that of (N, ω)
as follows. The tangent space to Xs at a map u is identified with sections of the
pull-back tangent bundle over R

n. We let Γ(V ) denote the space of sections of the
bundle V , for example du ∈ Γ(T s(Rn)⊗u−1(TN)). For σ, µ ∈ Γ(u−1(TN)) = TuXs

we define

Ω(σ, µ) =

∫

Rn

ω(σ, µ)dx.

In this setting we are interested in the Hamiltonian flow for the energy functional
E(·) on (Xs, Ω). This is the Schrödinger flow which takes the form

∂u

∂t
= J(u)τ(u). (1.2)

This natural geometric motivation for the flow (1.2) was elucidated in [12].
A key aspect of our approach to understanding the flow (1.2) is to isometrically

embed N in some Euclidean space R
p and study “ambient” flows of maps from R

n

to R
p which are related to (1.2). This is also central to the Eells-Sampson treatment

of the harmonic map flow. Toward this end we use the Nash embedding theorem
to assume that we have an isometric embedding

w : (N, g) → (Rp, δ).

Using this we can now define Hs(Rn; N), the L2-based Sobolev spaces of maps from
R

n to N as follows. Note that since the domain is noncompact some care must be
taken even when s = 0.

Definition 1.1. For s ≥ 1 let

Hs(Rn; N) = {u : R
n → R

p : u(x) ∈ N a.e. and ∃ yu ∈ N such that (1.3)

v − w(yu) ∈ L2(Rn; Rp), ∂v ∈ Hs−1(Rn; Rp),

where v = w ◦ u}.
With this definition in mind we can state our main result.
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Main Theorem. Given β ≥ 0, the initial value problem
{

∂u
∂t = J(u)τ(u) + βτ(u)

u(0) = u0
(1.4)

for the generalized Schrödinger flow has a solution whenever the initial data u0 ∈
Hs+1(Rn, N) for s ≥

[
n
2

]
+ 4. Moreover (1.4) is locally well posed in Hs+1(Rn, N)

for s ≥
[

n
2

]
+ 4.

The question of the local and global well-posedness of equation (1.4) with data
in Sobolev spaces has been previously studied by many authors (see [12, 13, 11, 35,
36, 42, 10, 33, 34, 43, 44, 31, 32, 20, 23, 21]). A common feature in most existence
results for smooth solutions of Schrödinger maps is that they are obtained by using
the energy method. This method consists in finding an appropriate regularizing
equation which approximates the Schrödinger flow, and for which smooth solutions
exist. One then proves that the regularizing equations satisfy a priori bounds in
certain Sobolev norms, independent of the approximation, and that they converge
to a solution of the original equation. The differences in the distinct results and
proofs lie in the type of regularization used.

Ding and Wang [13] established a similar result to Theorem 1.2 for s ≥
[

n
2

]
+ 3.

Their work proceeds by direct study of equation (1.4) with β > 0, with a passage to
the limit for β = 0. Thus the regularizing equation they use is obtained by adding
the second order dissipative term βτ(u). In this paper we analyze equation (1.4)
by adding a fourth order dissipative term (note that we allow the case β = 0 from
the start). This term arises naturally in the geometric setting as the first variation
of the L2-norm of the tension. We believe that our regularization of (1.4) by a
fourth order equation, which is geometric in nature, is of intrinsic and independent
interest. H. McGahagan [31, 32] in her doctoral dissertation also proved a version of
Theorem 1.2. Her work proceeds by a different regularization, this time hyperbolic,

implemented by adding a term of the form −ǫ∂2u
∂t2 which transforms the equation

into one whose solutions are wave maps.
We note that while our existence proof in Theorem 1.2 is different from the ones

in [13] and [31, 32], our proof of uniqueness is the same, using parallel transport. In
fact, in Appendix A we extend the uniqueness argument in [32], carried out there
in the case when β = 0 to the case β ≥ 0, which gives the uniqueness statement in
Theorem 1.2.

Our proof of Theorem 1.2 actually only shows that the mapping u0 7→ u ∈
C([0, T ], Hs′+1(Rn, N)), with s′ < s, is continuous. However, one can show, by
combining the parallel transport argument with the standard Bona-Smith regular-
ization procedure ([8, 19, 22]) that the statement in Theorem 1.2 also holds.

Equations of the type (1.4), but with N being Euclidean space are generally
known as derivative Schrödinger equations and have been the object of extensive
study recently (see for instance [26, 16, 9, 15, 27, 28, 24, 25]). The results in these
investigations however do not apply directly to (1.4) for two reasons. The first one
is the constraint imposed by the target being the manifold N . The second one
is that in these works one needs to have data u0 in a weighted Sobolev space, a
condition that we would like to avoid in the study of (1.4).

It turns out that for special choices of the target N , the equations (1.4) are related
to various theories in mechanics and physics. They are examples of gauge theories
which are abelian in the case of Riemann surfaces (Kähler manifolds of dimension
1 such as the 2-sphere S2 or hyperbolic 2-space H2). In the case of the 2-sphere
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S2, Schrödinger maps arise naturally from the Landau-Lifschitz equations (a U(1)-
gauge theory) governing the static as well as dynamical properties of magnetization
[30, 38]. More precisely, for maps s : R × R

n → S2 →֒ R
3, equation (1.4) takes the

form
∂ts = s × ∆s, |s| = 1 (1.5)

which is the Landau-Lifschitz equation at zero dissipation, when only the exchange
field is retained [29, 38]. When n = 2 this equation is also known as the two-
dimensional classical continuous isotropic Heisenberg spin model (2d-CCIHS); i.e.
the long wave length limit of the isotropic Heisenberg ferromagnet ([29, 38, 42]). It
also occurs as a continuous limit of a cubic lattice of classical spins evolving in the
magnetic field created by their close neighbors [42]. The paper [42] contains, in fact,
for the cases n = 1, 2, N = S2 the first local well-posedness results for equation (1.4)
or (1.5) that we are aware of. In [10], Chang-Shatah-Uhlenbeck showed that, when
n = 1, (1.5) is globally (in time) well-posed for data in the energy space H1(R1; S2).
When n = 2, for either radially symmetric or S1-equivariant maps, they show that
small energy implies global existence. For global existence results see also [39]. In
[33, 34], the authors show that, when n = 2, the problem is locally well-posed in the
space H2+ε(R2; S2), while the existence was extended to the space H3/2+ε(R2; S2)
in [20] and [23], and the uniqueness to the space H7/4+ǫ(R2; S2) in [21].

More recently, in [3, 17], a direct method, in the case of small data, using fixed
point arguments in suitable spaces was introduced. The first global well-posedness
result for (1.5) in critical spaces (precisely, global well-posedness for small data in
the critical Besov spaces in dimensions n ≥ 3) was proved, independently in [18]
and [4]. This was later improved to global regularity for small data in the critical
Sobolev spaces in dimensions n ≥ 4 in [5]. Finally, in [6], the global well-posedness
of (1.5), for “small data” in the critical Sobolev space H

n
2 (Rn, S2), n ≥ 2, was

proved.

Remark 1. A first version of this paper was posted on arxiv:0511701, in Novem-
ber 2005, by C.K., D.P., G.S. and T.T. The paper was withdrawn in May 2007.
The reason for this was that Jesse Holzer, at the time a graduate student of Alex
Ionescu at the University of Wisconsin, Madison, discovered an error in the original
argument. The source of the error was in the construction of the ambient flow equa-
tions, which were introduced in the first version of the paper. The construction of
the ambient flow equations resulted in equations of quasilinear type in the leading
order term, which could not be solved by the Duhamel principle as was pointed out
by Holzer.

C.K., D.P., G.S. and T.T. are indebted to Jesse Holzer for pointing out this
error and to T.L., who constructed new ambient flow equations, whose leading
order terms are ε∆2, which can then be dealt with directly by Duhamel’s principle.
The price one pays for this change in the ambient flow equation, is that it turns out
to be more difficult to show that if the initial value takes values in the manifold, so
does the whole flow. All of this is carried out in Lemma 2.5 and Lemma 2.10.

Notation. We will use C, c to denote various constant, usually depending only on
s, n and the manifold N . In case a constant depends upon other quantities, we
will try to make that explicit. We use A . B to denote an estimate of the form
A ≤ CB.

2. A fourth order parabolic regularization. The method we employ in order
to establish short-time existence to (1.4) is in part inspired by the work of Ding
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and Wang [12]. We seek to approximate equation (1.4) by a family (parametrized
by 0 < ε < 1) of parabolic equations. We establish short time existence for these
systems and use energy methods to show that the time of existence is independent
of ε and obtain ε independent bounds which allow us to pass to the limit as ε → 0
and thus obtain a solution to (1.4). The regularization we use differs substantially
from that of Ding and Wang because we wish to view the right hand side of (1.4) as
a lower order term (in the regularization) so that we can use Duhamel’s principle
and a contraction mapping argument to establish and study the existence of our
derived parabolic system.

The energy method we employ ultimately depends on establishing ε indepen-
dent L2-estimates for the tension, τ(u) and its derivatives. This suggests that we
regularize (1.2) by ε times the gradient flow for the functional

G(u) =
1

2

∫

Rn

|τ(u)|2dx.

2.1. Geometric preliminaries. We perform many of our computations in the
appropriate pull-back tensor bundles over R

n. We begin by recalling alternative
formulations of the tension τ(u) in this setting (see [14]). First note that du is a
closed 1-form with values in u−1(TN). The tension is simply minus the divergence
of the differential of u

τ(u) = −δdu ∈ Γ(u−1(TN))

where δ denotes the divergence operator with respect to the metric g. In particular,
this shows that a map u is harmonic if and only if its differential is a harmonic
1-form. Let ∇ denote the covariant derivative on T ∗(Rn) ⊗ u−1(TN) defined with
respect to the Levi-Civita connection of the Euclidean metric on R

n (i.e. the ordi-
nary directional derivative) and the Riemannian metric g on N . For α = 1, . . . , n
we let ∇αu ∈ Γ(u−1(TN)) be the vector field given by

∇αu = ∂αu =
∂ui

∂xα

∂

∂ui
(2.1)

where (u1, . . . , uk) are coordinates about u(x) ∈ N . In particular

du =
∂ui

∂xα
dxα ⊗ ∂

∂ui
= (∇αu)idxα ⊗ ∂

∂ui
.

The second fundamental form of the map u is defined to be the covariant derivative
of du, ∇du ∈ Γ((T 2

R
n) ⊗ u−1(TN)). In local coordinates we have for i = 1, . . . , k

and α, β ∈ 1, . . . n,

(∇du)i
αβ = ∇α∇βui (2.2)

=
∂2ui

∂xα∂xβ
+ Γi

jk(u)
∂uj

∂xα

∂uk

∂xβ
.

Note that here the subscript α actually denotes covariant differentiation with respect
to the vector field ∇αu as defined in (2.1) and we have ∇α∇βu = ∇β∇αu. The
tension is simply the trace of ∇du with respect to the Euclidean metric, δ = δαβ

τ(u)i = ∇α∇αui (2.3)

=
∂2ui

∂xα∂xα
+ Γi

jk(u)
∂uj

∂xα

∂uk

∂xα

from which we recover (1.1).



394 C. KENIG, T. LAMM, D. POLLACK, G. STAFFILANI AND T. TORO

2.2. The gradient flow for G(u). For a given vector field ξ ∈ Γ(u−1(TN)), we
construct a variation of u : R

n → N with initial velocity ξ as follows. Define the
map

U : R
n × R → N

by setting

U(x, s) = expu(x) sξ(x)

where expu(x) : Tu(x)N → N denotes the exponential map. Set us(x) = U(x, s)

and now let ∇ denote the natural covariant derivative on T ∗(Rn ×R)⊗U−1(TN).
Then

d

ds
G(us)

∣∣∣∣
s=0

=
1

2

d

ds

∫

Rn

|τ(us)|2dx

∣∣∣∣
s=0

=
1

2

∫

Rn

∂

∂s
〈τ(us), τ(us)〉dx

∣∣∣∣
s=0

=

∫

Rn

〈∇sτ(us), τ(us)〉dx

∣∣∣∣
s=0

where the inner products are taken with respect to g and we have used the metric
compatibility of ∇. Let R = R(·, ·)· denote the Riemann curvature endomorphism
of ∇. Using (2.3) and the definition of R we see that

∇sτ(us) = ∇s∇α∇αus

= ∇α∇s∇αus − R(∇αus,∇sus)∇αus

= ∇α∇α∇sus − R(∇αus,∇sus)∇αus.

Therefore

d

ds
G(us)

∣∣∣∣
s=0

=

∫

Rn

〈∇α∇α∇sus − R(∇αus,∇sus)∇αus, τ(us)〉dx

∣∣∣∣
s=0

=

∫

Rn

〈∇α∇αξ, τ(u)〉dx −
∫

Rn

〈R(∇αu, ξ)∇αu, τ(u)〉dx.

By the symmetries of the curvature we have
∫

Rn

〈R(∇αu, ξ)∇αu, τ(u)〉dx =

∫

Rn

〈R(∇αu, τ(u))∇αu, ξ〉dx

and provided that τ(u) and ∇ατ(u), for α = 1, . . . , n, are in L2 (and likewise for v)
we may integrate by parts to obtain

d

ds
G(us)

∣∣∣∣
s=0

=

∫

Rn

〈ξ,∇α∇ατ(u)〉dx −
∫

Rn

〈R(∇αu, τ(u))∇αu, ξ〉dx. (2.4)

Proposition 2.1. The Euler-Lagrange equation for G acting on Hs+1(Rn, N), for
s ≥ 3 is

F (u) ≡ ∇α∇ατ(u) − R(∇αu, τ(u))∇αu = 0. (2.5)

The parabolic regularization of (1.4) which we now proceed to study is
{

∂u
∂t = −εF (u) + J(u)τ(u) + βτ(u)

u(0) = u0
(2.6)
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2.3. The ambient flow equations. Rather than attempting to study the para-
bolic equations (2.6) directly we will focus on the induced “ambient flow equations”
for v = w ◦u where w : (N, g) → R

p is a fixed isometric embedding. We fix a δ > 0,
chosen sufficiently small so that on the δ-tubular neighborhood w(N)δ ⊂ R

p, the
nearest point projection map

Π : w(N)δ → w(N)

is a smooth map (cf. [40] §2.12.3). For a point Q ∈ w(N)δ set

ρ(Q) = Q − Π(Q) ∈ R
p

so that |ρ(Q)| = dist (Q, w(N)), and viewing ρ and Π as maps from w(N)δ into
itself we have

Π + ρ = Id|w(N)δ
. (2.7)

Note that then the differentials of the maps satisfy

dΠ + dρ = Id (2.8)

as a linear map from R
p to itself. For any map v : R

n → w(N)δ we set

T (v) = ∆v − Πab(v)va
αvb

α

where Πab(v), 1 ≤ a, b ≤ p are the components of the Hessian of Π at v(·). At a
point y ∈ N the Hessian of Π is minus the second fundamental form of N at y. So
if v = w ◦ u, with u : R → N , then T (v) is simply the tangential component of the
Laplacian of v which corresponds to the tension of the map u, i.e.

dw(τ(u)) = (∆v)T = dΠ(∆v) = T (v).

Therefore, in direct analogy with the functional G(·), we now consider

G(v) =
1

2

∫

Rn

|T (v)|2dx

=
1

2

∫

Rn

|∆v − Πab(v)va
αvb

α|2dx

Our point here (and hence the seemingly odd notation) is that we wish to consider
T (v) for arbitrary maps into w(N)δ whose image does not necessarily lie on N .

Definition 2.1. For v : R
n → w(N)δ , let F(v) denote the Euler-Lagrange operator

of G(v) with respect to unconstrained variations. A simple computation shows that
its components are given by

(F(v))c = (∆T (v))c

−
n∑

α,β=1

(
T (v)eΠe

abc(v)va
αvb

β − (T (v)eΠe
ac(v)va

α)β − (T (v)eΠe
cb(v)vb

β)α

)

= ∆2vc − (F̃(v))c,

where

(F̃(v))c =

n∑

α,β=1

(
∆(Πc

ab(v)va
αvb

β) + T (v)eΠe
abc(v)va

αvb
β − (T (v)eΠe

ac(v)va
α)β

− (T (v)eΠe
cb(v)vb

β)α

)

denotes the lower order terms. Note that the subscripts here refer to coordinate
differentiation in R

n (Greek indices) or R
p (Roman indices).
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For v = w ◦ u, we wish to consider compactly supported tangential variations
of G(v). Such variations correspond to (compactly supported) vector fields φ on
w(N)δ which satisfy dρ(φ) = 0.

Proposition 2.2. If u : R
n → N and v = w ◦ u then for all φ ∈ Γ(Tw(N)δ) with

compact support such that dρ(φ) = 0 we have

d

ds
G(v + sφ)

∣∣∣∣
s=0

=

∫

Rn

〈F(v), φ〉dx =

∫

Rn

〈dΠ(F(v)), φ〉dx.

Recall that dΠ = Id − dρ.

Definition 2.2. If v = w ◦u, then the ambient form of the Schrödinger vector field
J(u)τ(u), is given by the vector field fv with

fv = dw|
w−1Π(v(x))

[J(w−1Π(v))(dw)−1
|Π(v(x))

(dΠ|v(x)
(∆v))]. (2.9)

Note that fv is defined for maps v : R
n → w(N)δ whose image does not necessarily

lie on N .

Next we have the following Lemma.

Lemma 2.3. If u : R
n → N and v = w ◦ u then we have

dρ(v)(F(v)) =∆(Πab(v)∇αva∇αvb) + div(Πab(v)∆va∇vb) + Πab(v)∇α∆va∇αvb

− dρ(v)(F̃ (v))

=:H(v).

Proof. This follows from the facts that

dρ(v)(F(v)) = dρ(v)(∆2v) − dρ(v)(F̃(v)),

∆div
(
dρ(v)(∇v)

)
=∆

(
dρ(v)(∆v)

)
+ ∆

(
ρab(v)∇va∇vb

)

=div
(
dρ(v)(∇∆v)

)
+ div

(
ρab(v)∆va∇vb

)

+ ∆
(
ρab(v)∇va∇vb

)

=dρ(v)(∆2v) + ρab(v)∇∆va∇vb

+ div
(
ρab(v)∆va∇vb

)
+ ∆

(
ρab(v)∇va∇vb

)

and

dρ(v)(∇v) = 0.

Finally we note that

ρab(v) = −Πab(v).

Remark 2. Note that H(v) only contains derivatives of v up to third order. More-
over this term is well-defined for every v : R

n → w(N)δ.

The regularized ambient equations are given by
{

∂v
∂t = −ε(F(v) −H(v)) + fv + βTv

v(0) = v0
(2.10)

The basic relationship between the regularized geometric flows (2.6) and the regu-
larized ambient flows (2.10) is provided by the following Lemma (cf. §7 of [14]).
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Lemma 2.4. Fix ε ∈ [0, 1]. Given u0 ∈ Hs+1(Rn, N) with s ≥ 3, w : N → R
p an

isometric embedding, and Tε > 0, a flow u : R
n × [0, Tε] → N satisfies (2.6) if and

only if the flow v = w ◦ u : R
n × [0, Tε] → R

p satisfies (2.10) with v0 = w ◦ u0.

Proof. First note that since w is an isometry we have

|T (v)|2 = |τ(u)|2 (2.11)

and therefore G(v) = G(u). Given ξ ∈ Γ(u−1(TN)) a smooth compactly supported
vector field set φ = dw(ξ) ∈ Γ(u−1(TR

p)). As before we consider the variation of u
given by us(x) = expu(x) sξ. We then have

w ◦ us = v + sφ + O(s2)

so that
G(us) = G(v + sφ) + O(s2).

Therefore ∫

Rn

〈F (u), ξ〉dx =

∫

Rn

〈F(v), φ〉dx.

Observe that∫

Rn

〈
∂u

∂t
, ξ

〉
dx =

∫

Rn

〈
dw

(
∂u

∂t

)
, dw(ξ)

〉
dx =

∫

Rn

〈
∂v

∂t
, φ

〉
dx. (2.12)

Since dρ(φ) = 0 and H(v) = dρ(F(v)) we also have

− ε

∫

Rn

〈F (u), ξ〉dx = −ε

∫

Rn

〈F(v), φ〉dx = −ε

∫

Rn

〈F(v) −H(v), φ〉dx. (2.13)

Note that∫

Rn

〈J(u)τ(u), ξ〉dx =

∫

Rn

〈dw(J(u)τ(u)), dw(ξ)〉dx

=

∫

Rn

〈dw[J(w−1(Π(v)))(dw)−1(T (v))], dw(ξ)〉dx

=

∫

Rn

〈fv, φ〉dx

and ∫

Rn

〈τ(u), ξ〉dx =

∫

Rn

〈dw(τ(u)), dw(ξ)〉dx

=

∫

Rn

〈Tv, φ〉dx.

This together with (2.12) and (2.13) implies that the flows correspond as
claimed.

We end this section by exhibiting in a more practical form the structure of the
parabolic operator appearing in the regularized ambient flow equations (2.10).

Definition 2.5. For v : R
n → R

p, and j ∈ N we let ∂jv denote an arbitrary
jth-order partial derivative of v

∂jv =
∂jv

∂xα1 · · ·∂xαr
with α1 + · · ·αr = j

and let
∂j1v ∗ · · · ∗ ∂jlv

denote terms which are a sum of products of terms of the form ∂j1v, . . . , ∂jlv.
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Proposition 2.3. Let v : R
n → w(N)δ ⊂ R

p, then

−ε(F(v) −H(v)) + fv + βTv

= −ε∆2v − ε

4∑

l=2

∑

j1+···+jl=4

A(j1···jl)(v)∂j1v ∗ · · · ∗ ∂jlv + B0(v)∂2v + B1(v)∂v ∗ ∂v

where each js ≥ 1 and each of A(j1···jl)(v), B0(v) and B1(v) are bounded smooth
functions of v.

Proof. This follows from the explicit expressions for F(v), H(v), fv and Tv.

In the following Lemma (which is a suitable modification of Theorem 7C of [14])
we show that if v : R

n×[0, T ] → w(N)δ is a solution of (2.10) and if v0 : R
n → w(N),

then v : R
n × [0, T ] → w(N).

Lemma 2.6. Fix ε ≥ 0 and β ≥ 0. Let v : R
n × [t0, t1] → w(N)δ be a solution of

(2.10) with v(x, t0) = v0(x) ∈ w(N), where v0 ∈ Hs+1(Rn, w(N)) with s ≥ [n
2 ] + 4.

Then v(x, t) ∈ w(N) for all x ∈ R
n and all t ∈ [t0, t1].

Note that in this case by Lemma 2.4 u(x, t) = w−1 ◦ v(x, t) solves

{
∂u
∂t = −εF (u) + J(u)τ(u) + βτ(u)

u(x, t0) = u0(x) = w−1 ◦ v0(x).

Proof. We start by calculating

∂tρ(v) =daρ(v)∂tv
a,

∆ρ(v) =daρ(v)∆va − Πab(v)∇va∇vb and

∆2ρ(v) =∆
(
daρ(v)∆va

)
− ∆

(
Πab(v)∇va∇vb

)

=div
(
daρ(v)∇∆va

)
− div

(
Πab(v)∆va∇vb

)
− ∆

(
Πab(v)∇va∇vb

)

=daρ(v)∆2va − Πab(v)∇∆va∇vb − div
(
Πab(v)∆va∇vb

)

− ∆
(
Πab(v)∇va∇vb

)
.

Here we used again that Πab(v) = −ρab(v). Now if v is a solution of (2.10) we get
that

∂tv = − ε∆2v + εF̃(v) − εdρ(v)F̃(v) + fv + β∆v − βΠab(v)∇va∇vb

+ ε
(
∆(Πab(v)∇va∇vb) + div(Πab(v)∆va∇vb) + Πab(v)∇∆va∇vb

)

=β∆v − ε∆2v + εdΠ(v)F̃(v) + fv − βΠab(v)∇va∇vb

+ ε
(
∆(Πab(v)∇va∇vb) + div(Πab(v)∆va∇vb) + Πab(v)∇∆va∇vb

)
.
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Combining these two calculations yields

(∂t−β∆ + ε∆2)ρ(v) = εdρ(v)
(
dΠ(v)F̃(v)

)
+ dρ(v)fv − βdρ(v)

(
Πab(v)∇va∇vb

)

+ εdρ(v)
(
∆(Πab(v)∇va∇vb) + div(Πab(v)∆va∇vb) + Πab(v)∇∆va∇vb

)

+ βΠab(v)∇va∇vb − ε
(
∆(Πab(v)∇va∇vb) + div(Πab(v)∆va∇vb)

+ Πab(v)∇∆va∇vb
)

=dρ(v)fv + βdΠ(v)
(
Πab(v)∇va∇vb

)
− εdΠ(v)

(
∆(Πab(v)∇va∇vb)

+ div(Πab(v)∆va∇vb) + Πab(v)∇∆va∇vb
)

+ εdρ(v)
(
dΠ(v)F̃(v)

)
.

Multiplying this equation with ρ(v) and using the facts that (note that fv ∈
TΠ(v)w(N))

ρ(v) · dΠ(v)(φ) =0 ∀φ ∈ w(N)δ,

ρ(v) · dρ(v)fv = ρ(v) · (fv − dΠ(v)fv) =0, and

ρ(v) · dρ(v)
(
dΠ(v)(φ)

)
= ρ(v) · dΠ(v)

(
dρ(v)(φ)

)
=0 ∀φ ∈ w(N)δ,

gives for all t ∈ (t0, t1)

1

2
∂t|ρ(v)|2 =〈ρ(v), β∆ρ(v) − ε∆2ρ(v)〉.

Integrating this equation over R
n and using integration by parts, we have for all

t ∈ (t0, t1)

∂t

∫

Rn

|ρ(v)|2 = − 2

∫

Rn

(β|∇ρ(v)|2 + ε|∆ρ(v)|2)

≤0.

Since ρ(v0) = 0 this implies that ρ(v) = 0 for all t ∈ [t0, t1] and hence finishes the
proof of the Lemma.

3. The Duhamel solution to the ambient flow equations. In this section
we introduce a fixed point method that solves the initial value problem (2.10) in
the Sobolev space Hs+1(Rn, Rp), for s ≥ n

2 + 4. To simplify the notation, using
Proposition 2.3, we rewrite (2.10) as

{
∂v
∂t = −ε∆2v + N(v)

v(x, 0) = v0,
(3.1)

where

N(v) = −ε

4∑

l=2

∑

j1+···+jl=4

A(j1,...,jl)(v)∂j1v ∗ · · · ∗ ∂jlv (3.2)

+B0(v)∂2v + B1(v)∂v ∗ ∂v.

We now state the well-posedness theorem for (3.1). For any fixed v0, define the
spaces

L2
δ = {v : R

n → R
p| ‖v − v0‖L2 < δ}.

and

L2,∞
δ = {v : R

n → R
p| ‖v − v0‖L2 , ‖v − v0‖L∞ < δ}.

We then have the following theorem:
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Theorem 3.1. Assume δ > 0, ε > 0, and γ ∈ R
p are fixed. Then for any (v0−γ) ∈

Hs+1(Rn, Rp), s ≥ n
2 +4 there exist Tε = T (ε, δ, ‖∂v0‖Hs , ‖v0 − γ‖L2) and a unique

solution v = vε for (3.1) such that v ∈ C([0, Tε], H
s+1 ∩ L2,∞

δ ).

To prove the theorem we rewrite (3.1) as an integral equation using the Duhamel
principle:

v(x, t) = Sε(t)(v0 − γ) +

∫ t

0

Sε(t − t′)N(v)(x, t′)dt′ + γ, (3.3)

where for f ∈ Hs+1(Rn, Rp)

Sε(t)f(x) =

∫

Rn

e(i〈x,ξ〉−ε|ξ|4t)f̂(ξ)dξ (3.4)

is the solution of the linear and homogeneous initial value problem associated to
(3.1). The main idea is to consider the operator

Lv(x, t) = Sε(t)(v0 − γ) +

∫ t

0

Sε(t − t′)N(v)(x, t′)dt′ + γ (3.5)

and prove that for a certain Tε the operator L is a contraction from a suitable ball
in C([0, Tε], H

s ∩ L2,∞
δ ) into itself.

To estimate L we need to study the smoothing properties of the linear solution
Sε(t)v0. Because the order of derivatives that appears in N(v) is 3, in order to be
able to estimate the nonlinear part of L in Hs+1, we should prove that the operator
Sε(t) provides a smoothing effect also of order 3. We have in fact the following
lemma:

Lemma 3.2. Define the operator Ds, s ∈ R as the multiplier operator such that

D̂sf(ξ) = |ξ|sf̂ . Then for any t > 0 and i = 1, 2, 3,

‖Sε(t)f‖L2 . ‖f‖L2, (3.6)

‖DsSε(t)f‖L2 . t−
i
4 ε−

i
4 ‖Ds−if‖L2. (3.7)

Proof. The proof follows from Plancherel theorem and the two estimates
∣∣∣∣e−ε|ξ|4t

∣∣∣∣ . 1

|ξ|s
∣∣∣∣e−ε|ξ|4t

∣∣∣∣ . |ξ|s−it−
i
4 ε−

i
4 .

To state the next lemma, where we show how for small intervals of time the evolution
Sε(t)(v0 − γ) stays close to v0 − γ, we need to introduce the space Ḣs. This space
denotes the homogeneous Sobolev space defined as the set of all functions f such
that Dsf ∈ L2.

Lemma 3.3. Let σ ∈ (0, 1), s > n
2 + 4σ and assume that f ∈ H4σ ∩ Ḣs. Then

‖Sε(t)f −f‖L∞ ≤ εσtσ[‖f‖Ḣs +‖f‖Ḣ4σ ], and ‖Sε(t)f −f‖L2 ≤ εσtσ‖f‖Ḣ4σ . (3.8)

Proof. By the mean value theorem
∣∣∣∣e−ε|ξ|4t − 1

∣∣∣∣ . |ξ|4tε,
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which combined with the trivial bound∣∣∣∣e−ε|ξ|4t − 1

∣∣∣∣ ≤ 2

gives, for any σ ∈ [0, 1] ∣∣∣∣e−ε|ξ|4t − 1

∣∣∣∣ . (|ξ|4tε)σ. (3.9)

We now write

|(Sε(t) − 1)f(x)| =

∣∣∣∣
∫

Rn

ei〈x,ξ〉[e−ε|ξ|4t − 1]f̂(ξ)dξ

∣∣∣∣ (3.10)

. (tε)σ

∫

Rn

|f̂ |(ξ)|ξ|4σ

= (tε)σ

[∫

|ξ|≤1

|f̂ |(ξ)|ξ|4σ +

∫

|ξ|≥1

|f̂ |(ξ)|ξ|s 1

|ξ|s−4σ

]
,

and this concludes the argument since s > n
2 +4σ guarantees the summability after

the application of Cauchy-Schwartz. Note also that

‖(Sε(t) − 1)f‖L2 ≤ ‖(e−|ξ|4εt − 1)f̂‖L2 (3.11)

. (tε)σ

(∫
(|ξ|4σ)2|f̂ |2

) 1
2

. (tε)σ‖f‖Ḣ4σ . (tε)σ‖∂f‖H4σ−1 .

We are now ready to prove Theorem 3.1.

Proof. For Tε, r > 0 and s ≥ n
2 + 4 consider the ball

Br = {∂v ∈ Hs : ‖∂(v − v0)‖L∞
Tε

,Hs ≤ r} ∩ L2,∞
δ .

We want to prove that for the appropriate Tε and r, the operator L maps Br to
itself and is a contraction. We start with the estimate of the linear part of L. By
(3.6) we have

‖∂(Sε(t)(v0 − γ) − (v0 − γ))‖Hs . ‖(1 + Ds)Sε(t)∂v0‖L2 + ‖∂v0‖Hs . ‖∂v0‖Hs .
(3.12)

To estimate the nonlinear term we use (3.6) (3.7), and interpolation :
∥∥∥∥∂
(∫ t

0

Sε(t − t′)N(v)(x, t′)dt′
)∥∥∥∥

Hs

(3.13)

=

∥∥∥∥
∫ t

0

Sε(t − t′)∂N(v)(x, t′)dt′
∥∥∥∥

L2

+

∥∥∥∥
∫ t

0

DsSε(t − t′)∂N(v)(x, t′)dt′
∥∥∥∥

L2

.

∫ t

0

‖∂N(v)‖L2
x
(t′) dt′ +

∫ t

0

(t′)−3/4ε−3/4‖Ds−3∂N(v)‖L2
x
(t′) dt′

.

∫ t

0

(1 + (t′)−3/4ε−3/4)‖∂v‖m
Hs

x
(t′) dt′,

where m is the order of the nonlinearity1 N(v). Note that to control ∂N(v) and
Ds−3∂N(v) in the previous inequality we are never in the position of estimating v

1In our case actually one can compute that m = 4.
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in L2. By (3.5), (3.7), (3.12) and (3.13), we obtain the estimate

‖∂(Lv − v0)‖Hs
x
(t) ≤ C0‖∂v0‖Hs + C1

∫ t

0

(1 + (t′)−3/4ε−3/4)‖∂v‖m
Hs

x
(t′) dt′. (3.14)

Thus

‖∂(Lv − v0)‖L∞
Tε

Hs
x
≤ C0‖∂v0‖Hs + C1ε

−3/4T 1/4
ε ‖∂v‖m

L∞
Tε

Hs
x
. (3.15)

We still need to check that Lv is continuous in time and that Lv ∈ L∞,2
δ . The

continuity follows directly from the continuity of the operator Sε(t). To prove the
L∞ and L2 estimates one uses (3.8) with σ = 1/4 applied to f = v0−γ, the Sobolev
inequality and estimates similar to the ones used to obtain (3.14). One gets

‖Lv − v0‖L∞
Tε

L2
x

+ ‖Lv − v0‖L∞
Tε

L∞
x

≤ C1ε
1/4T 1/4

ε ‖∂v0‖Hs (3.16)

+ C1ε
− 3

4 T 1/4
ε ‖∂v‖m

L∞
Tε

Hs
x
.

We now take r = 3C0‖v0‖Hs and

Tε ≤ min(δ4C−4
1 ε36−4mC−4m

0 ‖v0‖−4m+4
Hs , δ42−4C−4

1 ε−1‖v0‖−4
Hs) (3.17)

so that (3.14) and (3.16) guarantees that L maps Br into itself. Note that (3.13)
yields for v, w ∈ Br

∥∥∥∥
∫ t

0

Sε(t − t′)∂[N(v) − N(w)](x, t′) dt′
∥∥∥∥

Hs

(3.18)

. ε−3/4T 1/4
ε ‖∂[N(v) − N(w)]‖L∞

Tε
Hs−3

x
.

Therefore

‖∂(Lv − Lw)‖L∞
Tε

Hs
x

(3.19)

. ε−3/4T 1/4
ε ‖∂[N(v) − N(w)]‖L∞

Tε
Hs−3

x

. ε−3/4T 1/4
ε C(δ)(‖∂v‖m−1

L∞
Tε

Hs
x

+ ‖∂w‖m−1
L∞

Tε
Hs

x
)‖∂(v − w)‖L∞

Tε
Hs

x

. ε−3/4T 1/4
ε C(δ, ‖∂v0‖Hs

x
)‖∂(v − w)‖L∞

Tε
Hs

x
.

Similarly one shows that

‖Lv − Lw‖L∞
Tε

Hs
x

. ε−3/4T 1/4
ε C(δ, ‖∂v0‖Hs

x
)‖∂(v − w)‖L∞

Tε
Hs

x
.

By shrinking Tε further by an absolute constant if necessary, from (3.19) and (3.20)
we obtain

‖Lv − Lw‖L∞
Tε

Hs+1
x

≤ 1

2
‖v − w‖L∞

Tε
Hs+1

x
. (3.20)

The contraction mapping theorem ensures that there exists a unique function v = vε

in L2
δ ∩ {∂v ∈ Hs : ‖∂(v − v0)‖L∞

Tε
,Hs ≤ r} which solves the integral equation (3.3)

in the time interval [0, Tε] defined in (3.17). Moreover v ∈ Br by our choice of

Tǫ. The uniqueness in the whole space Hs+1
x ∩ L2,∞

δ follows by similar and by now
classical arguments.
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4. Analytic preliminaries. In this section we state and present the detailed proof
of an interpolation inequality for Sobolev sections on vector bundles which appears
in [13] (see Theorem 2.1). This inequality was first proved for functions on R

n

by Gagliardo and Nirenberg, and for functions on Riemannian manifolds by Aubin
[1]. The justification for presenting a complete proof is that this estimate plays a
crucial role in the energy estimates and therefore in the proof of the results this
paper. The precise dependence of the constants involved in this inequality is vital
to our argument and we feel compelled to emphasize it.

Let Π : E → R
n be a Riemannian vector bundle over R

n. We have the bundle
ΛP T ∗

R
n ⊗ E → R

n over R
n which is a tensor product of the bundle E and the

induced P -form bundle over R
n, with P = 1, 2, . . . , n. We define T (ΛP T ∗

R
n ⊗ E)

as the set of all smooth sections of ΛP T ∗
R

n ⊗ E → R
n. There exists an induced

metric on ΛP T ∗
R

n ⊗ E → R
n from the metric on T ∗

R
n and E such that for any

s1, s2 ∈ Γ(ΛP T ∗
R

n ⊗ E)

〈s1, s2〉 =
∑

i1≤···≤ip

〈s1(ei1 , . . . eip
), s2(e1, . . . eip

)〉 (4.1)

where {ei} is an orthonormal local frame for TR
n. We define the inner product on

Γ(ΛP T ∗
R

n ⊗ E) as follows

(s1, s2) =

∫

Rn

〈s1, s2〉(x)dx. (4.2)

The Sobolev space L2(Rn, ΛP T ∗
R

n ⊗E) is the completion of Γ(ΛP T ∗
R

n ⊗E) with
respect to the above inner product. To define the bundle-valued Sobolev space
Hk,r(Rn, ΛP T ∗

R
n ⊗ E) consider ∇ the covariant derivative induced by the metric

on E, then take the completion of smooth sections of E in the norm

‖s‖Hk,r = ‖s‖k,r =

(
k∑

i=0

∫

Rn

|∇is|rdx

) 1
r

(4.3)

where

|∇is|2 = 〈∇ · · ·∇︸ ︷︷ ︸
i−times

s,∇· · ·∇︸ ︷︷ ︸
i−times

s〉. (4.4)

If r = 2, Hk,r = Hk.

Proposition 4.4. Let s ∈ C∞
c (E) where E is a finite dimensional C∞ vector

bundle over R
n. Then given q, r ∈ [1,∞] and integers 0 ≤ j ≤ k we have that

‖∇js‖Lp ≤ C‖∇ks‖a
Lq‖s‖1−a

Lr (4.5)

with p ∈ [2,∞), a ∈
(

j
k , 1
]

and satisfying

1

p
=

j

n
+

1

r
+ a

(
1

q
− 1

r
− k

n

)
. (4.6)

If r = n/k− 1 6= 1 then (4.5) does not hold for a = 1. The constant C that appears
in (4.5) only depends on n, k, j, q, r and a.

Proof. If f is a real valued smooth function with compact support on E then The-
orem 3.70 in [2] ensures that (4.5) holds.

Case 1: Let j = 0 and k = 1. Then for f = |s| we have by (4.5) that

‖s‖Lp ≤ C‖∇|s|‖a
Lq‖s‖1−a

Lr . (4.7)
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Kato’s inequality ensures that |∇|s|| ≤ |∇s| which using (4.7) yields

‖s‖Lp ≤ C‖∇s‖a
Lq‖s‖1−a

Lr , (4.8)

which proves (4.5) for j = 0 and k = 1. In general if f = |∇js| Kato’s inequality
ensures that |∇|∇js|| ≤ |∇j+1s| which yields using (4.8)

‖∇js‖Lp ≤ C‖∇|∇js| ‖a
Lq‖∇js‖1−a

Lr (4.9)

≤ C‖∇j+1s‖a
Lq‖∇js‖1−a

Lr

where a ∈ (0, 1) and
1

p
=

1

r
+ a

(
1

q
− 1

r
− 1

n

)
. (4.10)

Note that so far the condition p ≥ 2 has not played a role.

Case 2: Let j = 1, k = 2 and 1
2 ≤ a ≤ 1. If a = 1 (4.9) yields

‖∇s‖Lp ≤ C‖∇2s‖Lq (4.11)

with
1

p
=

1

q
− 1

n
. (4.12)

If a = 1
2 , assume p ≥ 2 then

div 〈|∇s|p−2∇s, s〉 = |∇s|p + |∇s|p−2〈∇α∇αs, s〉+ (4.13)

+(p − 2)|∇s|p−4〈∇βs,∇α∇βs〉〈∇αs, s〉.
Since ∫

Rn

div 〈|∇s|p−2∇s, s〉 = 0 (4.14)

then (4.13) gives
∫

Rn

|∇s|p ≤ (n + p − 2)

∫

Rn

|∇s|p−2|∇2s| |s|. (4.15)

Given our choice of j = 1, k = 2 and a = 1
2 we have 1

q + 1
r = 2

p , i.e. 1
q + 1

r + p−2
p = 1.

Thus Hölder’s inequality yields

‖∇s‖p
Lp ≤ (n + p − 2)‖∇2s‖Lq‖s‖Lr‖∇s‖p−2

Lp , (4.16)

thus

‖∇s‖Lp ≤
√

n + p − 2‖∇2s‖
1
2

Lq‖s‖
1
2

Lr (4.17)

with
1

p
=

1

2

(
1

r
+

1

n

)
. (4.18)

For a ∈
(

1
2 , 1
)

we consider two cases: q < n, and q ≥ n. For q < n using the
convexity of log ‖f‖p

Lp as a function of p we have

‖∇s‖Lp ≤ ‖∇s‖α
Lt‖∇s‖1−α

Lσ with α =
p−1 − σ−1

t−1 − σ−1
∈ (0, 1) (4.19)

where t < p < σ are such that

2

t
=

1

q
+

1

r
and

1

σ
=

1

q
− 1

n
. (4.20)

Using (4.11) and (4.17) we have that

‖∇s‖Lσ ≤ C‖∇2s‖Lq (4.21)
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and

‖∇s‖Lt ≤ C‖∇2s‖
1
2

Lq‖s‖
1
2

Lr . (4.22)

Combining (4.19), (4.21) and (4.22) we obtain

‖∇s‖Lp ≤ C‖∇2s‖1−α
2

Lq ‖s‖
α
2

Lr (4.23)

where
1

p
=

1

n
+

1

r
+
(
1 − α

2

) (1

q
− 1

r
− 2

n

)
, (4.24)

which proves the case a ∈
(

1
2 , 1
)

and q < n.
For q ≥ n, t > 0 and b ∈ (0, 1) such that

1

p
=

1

t
+ b

(
1

q
− 1

t
− 1

n

)
(4.25)

we have by (4.9)

‖∇s‖Lp ≤ C‖∇2s‖b
Lq‖∇s‖1−b

Lt . (4.26)

Choosing t > 0 so that
2

t
=

1

q
+

1

r
(4.27)

we have by (4.17)

‖∇s‖Lt ≤ C‖∇2s‖
1
2

Lq‖s‖
1
2

Lr . (4.28)

Combining (4.26) and (4.28) we obtain

‖∇s‖Lp ≤ C‖∇2s‖
b+1
2

Lq ‖s‖
1−b
2

Lr (4.29)

with
1

p
=

1

n
+

1

r
+

(
b + 1

2

) (
1

q
− 1

r
− 2

n

)
(4.30)

by (4.25) and (4.27). This concludes the proof of Case 2.

Case 3: Let j = 0 and k = 2. From (4.8) we have

‖s‖Lp ≤ C‖∇s‖a1

Lq1‖s‖1−a1

Lr (4.31)

with a1 ∈ (0, 1) and
1

p
=

1

r
+ a1

(
1

q1
− 1

r
− 1

n

)
. (4.32)

Choosing q1 so that

1

q1
=

1

r
+

1

n
+ a2

(
1

q
− 1

r
− 2

n

)
(4.33)

then a2 ∈
(

1
2 , 1
)

and

‖∇s‖Lq1 ≤ C‖∇2s‖a2

Lq‖s‖1−a2

Lr . (4.34)

Combining (4.31) and (4.34) we have that

‖s‖Lp ≤ C‖∇2s‖a1a2

Lq ‖s‖1−a1a2

Lr (4.35)

with
1

p
=

1

r
+ a1a2

(
1

q
− 1

r
− 2

n

)
(4.36)

from (4.32) and (4.33).
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Case 4: We now proceed by induction on k. Assume that for k ≥ 2 and j < k we
have proved (4.5). Let j < k < k + 1. By (4.9) we have

‖∇ks‖Lq1 ≤ C‖∇k+1s‖a2

Lq2‖∇ks‖1−a2

Lr2 (4.37)

with
1

q1
=

1

r2
+ a2

(
1

q2
− 1

r2
− 1

n

)
. (4.38)

By the induction hypothesis, applied to ∇k−1s, we also have

‖∇ks‖Lr2 ≤ C‖∇k+1s‖a3

Lq3‖∇k−1s‖1−a3

Lr3 (4.39)

with
1

r2
=

1

r3
+

1

n
+ a3

(
1

q3
− 1

r3
− 2

n

)
(4.40)

and

‖∇k−1s‖Lr0 ≤ C‖∇ks‖a4

Lq4‖s‖1−a4

Lr4 (4.41)

with
1

r3
=

1

r4
+

k − 1

n
+ a4

(
1

q4
− 1

r4
− k

n

)
. (4.42)

Letting q4 = r2, q3 = q, r4 = r, r2 = p we obtain

‖∇ks‖Lp ≤ C‖∇k+1s‖a
Lq‖s‖1−a

Lr with a =
a3

1 − a4 + a3a4
∈
[

k

k + 1
, 1

]
(4.43)

and
1

p
=

1

r
+

k

n
+ a

(
1

q
− 1

r
+

k + 1

n

)
. (4.44)

By hypothesis for j < k and using (4.43) we have

‖∇js‖Lp ≤ C‖∇ks‖a1

Lq1‖s‖1−a1

Lr (4.45)

≤ C‖∇k+1s‖a0a1

Lq ‖s‖1−a0a1

Lr

with a0a1 ∈
[

j
k+1 , 1

]
and

1

p
=

1

r
+

j

n
+ a1a0

(
1

q
− 1

r
− k + 1

n

)
(4.46)

which finishes the proof of the proposition.

Corollary 4.1. Let u ∈ C∞(Rn, N) be constant outside a compact set. Then for
k ≥ 1, q, r ∈ [1,∞) and 0 ≤ j ≤ k − 1 we have

‖∇j+1u‖Lp ≤ C‖∇ku‖a
Lq‖∇u‖1−a

Lr (4.47)

with
1

p
=

j

n
+

1

r
+ a

(
1

q
− 1

r
− k − 1

n

)
. (4.48)

If r = n
k−1−j 6= 1 then (4.47) does not hold for a = 1. The constant C that appears

in (4.48) only depends on n, k, j, q, r and a.

Proof. Apply (4.5) to s = ∇u a section of the bundle u∗(TN) ⊗ T ∗
R

n. Since ∇u
is not necessarily compactly supported a standard approximation argument might
be needed to complete the proof.
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In the second part of this section we establish the equivalence of the Sobolev
norms defined in either the intrinsic, geometric setting or in the ambient, Euclidean
setting. These results hold when we are above the range in which these spaces have
suitable multiplication properties. Since we are working with the gradients of the
maps we must consider the Hs spaces with s > n

2 + 1.
We begin by assuming that we have chosen coordinate systems on (N, g) so that

the eigenvalues of g are bounded above and below by a fixed constant C > 1, i.e.
we assume that

C−1|ξ|2 ≤ gijξiξj ≤ C|ξ|2 for all ξ ∈ R
k.

We denote these coordinates by either (y1, . . . , yk) or (u1, . . . , uk). As before (x1, . . . ,
xn) denotes Euclidean coordinates on R

n.
For v : R

n → R
p we let

∂αv =
∂va

∂xα
ea

where {e1, . . . , ep} is an orthonormal basis for R
p. Recall that if X ∈ Γ(u−1(TN))

then

(∇αX)j =
∂Xj

∂xα
+ Γj

ikX i ∂uk

∂xα

and ∇αu = ∂αu ∈ Γ(u−1(TN)) denotes the vector field along u defined in (2.1).
We use the following notation for higher order derivatives.

Definition 4.1. Let α = (α1, . . . , αl+1) denote a multi-index of length l + 1 (|α| =
l +1) with each αs ∈ {1, . . . , n}. We let ∇l+1u ∈ Γ(u−1(TN)) denote any covariant
derivative of u of order l + 1 e.g.

∇l+1u =
∑

α=(α1,...,αl+1)

∇α1 · · ·∇αl+1
u

Similarly

∂l+1v =
∑

α=(α1,...,αl+1)

∂l+1va

∂xα1 · · ·∂xαl+1
ea

and

∂l+1u =
∑

α=(α1,...,αl+1)

∂l+1ua

∂xα1 · · · ∂xαl+1

∂

∂ya
.

Remark 1. Note that our use of the multi-index notation differs from the usual
one.

Recall that for

v : R
n → R

p

u : R
n → N
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the Sobolev norms of ∂v and ∇u for k ∈ N are defined by

‖∂v‖Hk =
k∑

l=0

‖∂l+1v‖L2(Rn)

‖∇u‖Hk =

k∑

l=0

‖∇l+1u‖L2(Rn)

=

k∑

l=0

(∫

Rn

gij(∇l+1u)i(∇l+1u)j

) 1
2

where here

‖∇l+1u‖L2(Rn) =
∑

|α|=l+1

‖∇α1 · · · ∇αl+1
u‖L2(Rn)

and the sum is taken over all distinct multi-indices of length l + 1. The L2 norm
of each of these is computed with respect to the metric g as indicated. We use the
obvious analogous definition for ‖∂l+1v‖L2(Rn).

Note that by definition u ∈ Hk(Rn, N) if ∃ yu ∈ N such that for v = w ◦ u

‖v − w(yu)‖L2 + ‖∂v‖Hk−1 < ∞.

Our immediate goal is to show that for k > n
2 + 1 if v = w ◦ u then

‖∂v‖Hk < ∞ if and only if ‖∇u‖Hk < ∞.

Lemma 4.2. For each k ≥ 0 we have

∇k+1u = ∂k+1u +
k+1∑

l=2

∑

j1+···+jl=k+1

G(j1,...,jl)(u)∂j1u ∗ · · · ∗ ∂jlu (4.49)

∂k+1u = ∇k+1u +
k+1∑

l=2

∑

j1+···+jl=k+1

E(j1,...,jl)(u)∇j1u ∗ · · · ∗ ∇jlu (4.50)

∂k+1v =
∂wa

∂yj
∂k+1ujea +

k+1∑

l=2

∑

j1+···+jl=k+1

F(j1,...,jl)(u)∂j1u ∗ · · · ∗ ∂jlu (4.51)

where each subscript js ≥ 1 and

G(j1,...,jl)(u) = Gj
(j1,...,jl)

(u)
∂

∂yj

E(j1,...,jl)(u) = Ej
(j1,...,jl)

(u)
∂

∂yj

F(j1,...,jl)(u) = F a
(j1,...,jl)

(u)ea

and each G, E and F are smooth, bounded functions of u.

The notation aj1 ∗ · · · ∗ ajl
corresponds to a product of the ajk

’s.

Remark 2. Throughout this section whenever expressions similar to the right hand
side of (4.49), (4.50) or (4.51) occur, a key point is to note that all the subscripts
js ≥ 1, for s ∈ {1, . . . , l}. This is always to be understood even if it is not explicitly
stated.
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Proof. We establish each of these by induction, beginning with (4.49). Note that
for k = 0, ∇u = ∂u. For k = 1

∇α2∇α1u = ∇α2

(
∂uj

∂xα1

∂

∂yj

)

=
∂2uj

∂xα2∂xα1

∂

∂yj
+ Γj

ik

∂ui

∂xα1

∂uk

∂xα2

∂

∂yj
.

Then

∇k+2u = ∇αk+2
∇k+1u

= ∇αk+2
(∇αk+1

· · · ∇α1u)

= ∇αk+2

(
∂k+1uj

∂xαk+1 · · ·∂xα1

∂

∂yj

)

+∇αk+2




k+1∑

l=2

∑

j1+···+jl=k+1

Gj
(j1,...,jl)

(u)∂j1u ∗ · · · ∗ ∂jlu
∂

∂yj




= ∂k+2u + Γj
il

∂k+1ui

∂xαk+1 · · ·∂xα1

∂ul

∂xαk+2

∂

∂yj

+
k+1∑

l=2

∑

j1+···+jl=k+1

(
Gj

(j1,...,jl)
(u)
)′

∂j1u ∗ · · · ∗ ∂jlu
∂

∂yj

+

k+2∑

l=2

∑

j1+···+jl=k+2

Gi
(j1,...,jl)

(u)∂j1u ∗ · · · ∗ ∂jlu
∂

∂yj

+

k+2∑

l=2

∑

j1+···+jl=k+2

Gi
(j1,...,jl)

(u)∂j1u ∗ · · · ∗ ∂jluΓj
il

∂ul

∂xαk+2

∂

∂yj
.

Therefore

∇k+2u = ∂k+2u +
k+2∑

l=2

∑

j1+···+jl=k+2

G(j1,...,jl)(u)∂j1u ∗ · · · ∗ ∂jlu

which completes the proof of (4.49). The proof of (4.50) proceeds in a similar fashion
and is left to the reader.

To prove (4.51) we recall that v = w ◦ u and thus

∂va

∂xα1
=

∂wa

∂yj

∂uj

∂xα1
(4.52)

(which is the case k = 0). When k = 1 we differentiate this to obtain

∂2va

∂xα2∂xα1
=

∂wa

∂yj

∂2uj

∂xα2∂xα1
+

∂2wa

∂yi∂yj

∂ui

∂xα2

∂uj

∂xα1
.

Assume now that (4.51) holds for some k ≥ 1. Then

∂k+2v = ∂αk+2
(∂k+1v)

=
∂wa

∂yj
∂k+2ujea +

∂2wa

∂yi∂yj
∂k+1uj ∂ui

∂xαk+2
ea

+

k+2∑

l=2

∑

j1+···+jl=k+2

F(j1,...,jl)(u)∂j1u ∗ · · · ∗ ∂jlu.
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This implies (4.51) and completes the proof of the Lemma.

Combining (4.50) and (4.51) in Lemma 4.2 we obtain the following.

Lemma 4.3. For v = w ◦ u and k ≥ 0 we have

∂k+1va =
∂wa

∂yj
(∇k+1u)j +

k+1∑

l=2

∑

j1+···+jl=k+1

Ha
(j1,...,jl)

(u)∇j1u ∗ · · · ∗ ∇jlu (4.53)

where, as before, each subscript js ≥ 1 and each Ha is a smooth, bounded function
of u.

We now proceed to bound the pointwise norms in terms of each other.

Lemma 4.4. For v = w ◦ u and k ≥ 0 there is a constant C > 1 depending only
on n and k such that

|∂k+1v|2 ≤ C|∇k+1u|2 + C

k+1∑

l=2

∑

j1+···+jl=k+1

|∇j1u|2 · · · |∇jlu|2 (4.54)

and

|∇k+1u|2 ≤ C|∂k+1v|2 + C
k+1∑

l=2

∑

j1+···+jl=k+1

|∂j1v|2 · · · |∂jlv|2 (4.55)

Proof. Using (4.53) we have

p∑

a=1

|∂k+1va|2 =

p∑

a=1

∑

|α|=k+1

|∂αk+1
· · · ∂α1v

a|2

=

p∑

a=1

∂wa

∂yj
(∇k+1u)j ∂wa

∂yi
(∇k+1u)i

+

∣∣∣∣∣∣

k+1∑

l=2

∑

j1+···+jl=k+1

Ha
(j1,...,jl)

(u)∇j1u ∗ · · · ∗ ∇jlu

∣∣∣∣∣∣

2

+ 2
∂wa

∂yj
(∇k+1u)j

k+1∑

l=2

∑

j1+···+jl=k+1

Ha
(j1,...,jl)

(u)∇j1u ∗ · · · ∗ ∇jlu.

Since w : N → R
p is an isometric embedding we note that

gij =

p∑

a=1

∂wa

∂yi

∂wa

∂yj
. (4.56)

Therefore, using the fact that for any l ≥ 1

C−1
k∑

i=1

|(∇lu)i|2 ≤ |∇lu|2 = gij(∇lu)i(∇lu)j ≤ C

k∑

i=1

|(∇lu)i|2

we have

p∑

a=1

|∂k+1va|2 ≤ 2|∇k+1u|2 + 2C

k+1∑

l=2

∑

j1+···+jl=k+1

|∇j1u|2 · · · |∇jlu|2
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which establishes (4.54). To prove (4.55) we proceed by induction. For k = 0 we
have

∇au =
∂ui

∂xα

∂

∂yi
.

Using (4.52) and (4.56) this implies

|∇αu|2 = gij
∂ui

∂xα

∂uj

∂xα
=

∂va

∂xα

∂va

∂xα
.

Therefore
|∇u|2 = |∂v|2. (4.57)

Note that for k = 1, by (4.53) we have

∂wa

∂yj
(∇2u)j = ∂2va − Ha(u)∇u ∗ ∇u.

So that
|∇2u|2 ≤ 2|∂2v|2 + C|∇u|4

or
|∇2u|2 ≤ 2|∂2v|2 + C|∂v|4. (4.58)

Assume now that (4.55) holds for any k ≥ 1. Again using (4.53) we then have

|∇k+2u|2 ≤ 2|∂k+2v|2 + C

k+2∑

l=2

∑

j1+···+jl=k+2

|∇j1u|2 · · · |∇jlu|2

≤ 2|∂k+2v|2 + C

k+2∑

l=2

∑

j1+···+jl=k+2

|∂j1v|2 · · · |∂jlv|2

which completes the proof of Lemma 4.4.

Lemma 4.5. Assume that k > n
2 +1. There exists a constant C = C(N, k, n) such

that for u ∈ C∞(Rn, N) constant outside a compact set of R
n if v = w ◦ u then

‖∇k+1u‖L2 ≤ C

k∑

l=1

‖∂v‖l
Hk (4.59)

‖∂k+1v‖L2 ≤ C

k∑

l=1

‖∇u‖l
Hk . (4.60)

Proof. By (4.55) we have

‖∇k+1u‖L2 ≤ C‖∂k+1v‖L2 + C

k+1∑

l=2

∑

j1+···+jl=k+1

(∫

Rn

|∂j1
v |2 · · · |∂jlv|2

) 1
2

. (4.61)

Let 2 ≤ pi ≤ ∞, i = 1, . . . l be such that

1

p1
+ · · · + 1

pl
=

1

2
. (4.62)

Then by Hölder’s inequality

‖|∂j1v| · · · |∂jlv|‖L2 ≤ c‖∂j1v‖Lp1 · · · ‖∂jlv‖Lpl . (4.63)

Since k ≥ n
2 + 1 then

ji − 1

k
< ai =

ji − 1

k
+

n

2k2

(
k − ji +

1

l

)
< 1 (4.64)
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and

1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− kai

n
> 0 . (4.65)

Note that to ensure that ai < 1 in (4.64) we either need n ≤ 3 or we must have(
n
2k − 1

) (
k − ji + 1

l

)
< 1 − 1

l . Since 2 ≤ l ≤ k + 1 and 1 ≤ ji ≤ k the previous

inequality holds provided
(

n
2k − 1

) (
k − 1

2

)
< 1

2 which requires k >
n+

√
n(n−4)

4 .
Thus to accommodate all values of n simultaneously, it is enough to choose k ≥ n

2 +1
and k ∈ N. Thus (4.5) in Proposition 4.1 yields

‖∂jiv‖Lpi ≤ C‖∂k+1v‖ai

L2‖∂v‖1−ai

L2 (4.66)

≤ C‖∂v‖Hk .

Therefore combining (4.61), (4.63) and (4.66) we have

‖∇k+1u‖L2 ≤ C
k∑

ρ=1

‖∂v‖ρ
Hk . (4.67)

A similar argument to the one above where Proposition 4.4 is now applied to ∇u
rather than ∂v yields (4.60).

Lemma 4.6. There exists a constant C = C(N, n) such that if u ∈ C∞(Rn, N) is
constant outside a compact set of R

n and v = w ◦ u then for 1 ≤ k ≤ n
2 + 1

‖∇k+1u‖L2 ≤ C

k∑

l=1

‖∂v‖l

H[n
2 ]+2

(4.68)

‖∂k+1v‖L2 ≤ C

k∑

l=1

‖∇u‖l

H[n
2 ]+2

. (4.69)

Proof. The proof is very similar to that of Lemma 4.5, where the ai’s and pi’s in
the interpolation are taken as follows

ji − 1

s0
< ai =

ji − 1

s0
+

n

2ks0
(k − ji + l−1) < 1, (4.70)

where s0 =
[

n
2

]
+ 2, and

1

2
≥ 1

pi
=

ji − 1

n
+

1

n
− s0

n
ai > 0. (4.71)

Remark 3. Proposition 4.4 holds for s ∈ Cm
c (E) where E is a finite dimensional

Cm vector bundle over R
n provided k < m. Similarly Lemma 4.5 holds for u ∈

Cm(Rn, N) and u constant outside a compact set of R
n, provided once again that

m > k. A simple approximation theorem ensures that Lemma 4.5 holds for u ∈
Cm(Rn, N) ∩ Hk(Rn, N) with m > k.
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Corollary 4.2. Assume that k ≥ n
2 + 4. There exists a constant C = C(N, k, n)

such that for u ∈ Ck+1(Rn, N) ∩ Hk(Rn, N)

‖∇u‖L∞ ≤ C

[n
2 ]+2∑

j=1

‖∇u‖j

H[n
2 ]+2

(4.72)

‖∇2u‖L∞ ≤ C

2[n
2 ]+4∑

l=1

‖∇u‖l

H[n
2 ]+3

(4.73)

‖∇3u‖L∞ ≤ C

3[n
2 ]+12∑

l=1

‖∇u‖l

H[n
2 ]+4

. (4.74)

Proof. Recall that ‖∇u‖ = |∂v| if v = w ◦ u, and by Sobolev embedding theorem

‖∂v‖L∞ ≤ c‖∂v‖
H[n

2 ]+2
(4.75)

‖∂2v‖L∞ ≤ c‖∂v‖
H[n

2 ]+3
(4.76)

and

‖∂3v‖L∞ ≤ c‖∂v‖
H[n

2 ]+4
(4.77)

Therefore combining (4.60), (4.69) and (4.75) we have

‖∇u‖L∞ ≤ C

[n
2 ]+2∑

j=0

‖∂j+1v‖L2 (4.78)

≤ C


‖∇u‖L2 +

[n
2 ]+2∑

j=1

‖∇u‖j

H[n
2 ]+2




≤ C

[n
2 ]+2∑

j=1

‖∇u‖j

H[n
2 ]+2

.

Note that (4.55) ensures that

|∇2u| ≤ C|∂2v| + c|∂v|2. (4.79)

Combining (4.75), (4.76), (4.60) and (4.69) we have

‖∇2u‖L∞ ≤ C‖∂2v‖L∞ + C‖∂v‖2
L∞ (4.80)

≤ C‖∂v‖
H[n

2 ]+3
+ C‖∂v‖2

H[ n
2 ]+2

≤ C

[n
2 ]+3∑

j=0

‖∂j+1v‖L2 + C

[n
2 ]+2∑

j=0

‖∂j+1v‖2
L2

≤ C

[2 n
2 ]+4∑

l=1

‖∇u‖l

H[n
2 ]+3

Note that (4.55) also ensures that

|∇3u| ≤ C(|∂3v| + |∂2v| |∂v| + |∂v|3). (4.81)
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Combining (4.75), (4.76), (4.77), (4.60) and (4.69) we have

‖∇3u‖L∞ ≤ C

3([n
2 ]+4)∑

j=1

‖∇u‖j

H[n
2 ]+4

. (4.82)

5. ε-independent energy estimates. Theorem 3.1 ensures that the initial value
problem {

∂v
∂t = −ε∆2v + N(v)

v(0) = v0

has a unique solution vε ∈ C([0, Tε], H
s+1 ∩ L2,∞

δ ) provided v0 ∈ Hs+1(Rn, Rp)
for s > [n

2 ] + 4. To prove that (1.4) has a solution we need to show that (2.10)
has a solution for ε = 0. To do this we need to show that each vε extends to
a solution in C([0, T ], Hs+1 ∩ L2,∞

δ ) where T > 0 is independent of ε. This is
accomplished by proving ε-independent energy estimates for the function vε. It
turns out that thanks to the geometric nature of this flow, if one assumes enough
regularity (i.e. s > [n

2 ] + 4), it is easier to prove ε-independent energy estimates for
the corresponding uε. Lemma 4.5 and Lemma 4.6 then allows us to translate these
into estimates for vε.

Let uε = u ∈ C([0, Tε], H
s+1(Rn, N)) with s large enough2 be a solution of

{
∂tu = −ε∆τ(u) + εR(∇u, τ(u))∇u + J(u)τ(u) + βτ(u)

u(0) = u0,
(5.1)

where ε ∈ (0, 1], β ≥ 0, ∆ =
∑n

α=1 ∇α∇α. Our goal is to understand how
‖∇u‖Hk(t) varies with time.

Let l ∈ N. We denote by α the multi-index of length l, α = (α1 · · ·αl), and
∇αu = ∇α1···∇αl

u. The following lemma and corollaries establish some computa-
tional identities which are very useful.

Lemma 5.1. Let u ∈ C1([0, T ], Hs(Rn, N)), s ∈ N, s > n
2 + 2. Let X ∈ TN for

1 ≤ l ≤ s and |α| = l. We have

∇α0∇αu = ∇α∇α0u +
l−2∑

j=0

∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl

u] (5.2)

∇t∇αu = ∇α∇tu +

l−2∑

j=0

∇α1 · · · ∇αj
[R(∇tu,∇αj+1u)∇αj+2 · · · ∇αl

u] (5.3)

∇α0∇αX = ∇α∇α0X +

l−1∑

j=0

∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

X ]. (5.4)

Proof. The proof is done by induction on the length of the multi-index α, i.e., on
l. We prove (5.4) and leave (5.2) and (5.3) to the reader, as the proofs are very
similar. If l = 1

∇α0∇α1X = ∇α1∇α0X + R(∇α0u,∇α1u)X. (5.5)

2 We will see later that s > [ n
2
] + 4 will be enough. In this paper we do not attempt to obtain

the lowest possible exponent s.
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Suppose (5.4) holds for l ≥ 1 and consider

∇α0∇α1 · · ·∇αl+1
X (5.6)

= ∇α1 [∇α0∇α2 · · ·∇αl+1
X ] + R(∇α0u,∇α1u)∇α2 · · · ∇αl+1

X

= ∇α1 · · · ∇α+1∇α0X + R(∇α0u,∇α1u)∇α2 · · · ∇αl+1
X

+∇α1 [

l∑

j=1

∇α2 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl+1

X ]

= ∇α1 · · · ∇αl+1
∇α0X

+

l∑

j=0

∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl+1

X ]

Corollary 5.3. Let u ∈ C1([0, T ], Hs(Rn, N)) s ∈ N, s > n
2 +2, then for 1 ≤ l ≤ s,

|α| = l we have

∆∇αu = ∇ατ(u) +
l−1∑

j=0

∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl

∇α0u]

+

l−2∑

j=1

∇α0∇α1 · · ·∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

u] (5.7)

∇t∇α∇α0u = ∇α∇α0∇tu (5.8)

+

l−1∑

j=0

∇α1 · · · ∇αj
[R(∇tu,∇αj+1u)∇αj+2 · · · ∇αl

∇α0u]

∇β0∇α∇α0u = ∇α∇α0∇β0u (5.9)

+

l−1∑

j=0

∇α1 · · · ∇αj
[R(∇β0u,∇αj+1u)∇αj+2 · · · ∇αl

∇α0u]

Proof. The proof of (5.7) is an application of (5.2) and (5.4). To prove (5.8) and
(5.9) apply (5.4) to ∇α0u = X and note that ∇t and ∇β0 behave the same way.
Moreover recall that ∇α0∇tu = ∇t∇α0u.

Corollary 5.4. Let u ∈ C1([0, T ], Hs(Rn, N)), s ∈ N s > n
2 +2. Let X ∈ TN then

for l ≥ 1 and |α| = l we have

∆∇αX = ∇α∆X (5.10)

+

l−1∑

j=0

∇α1 · · ·∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

∇α0X ]

+

l−1∑

j=0

∇α0∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2∇αl

X ].
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Proof. To prove (5.10) we apply (5.4) twice, first to X then ∇α0X .

∆∇αX = ∇α0∇α0∇αX (5.11)

= ∇α0 [∇α∇α0X + ∇α0 [

l−1∑

j=0

∇α1 · · ·

· · · ∇αj
(R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

X ]

= ∇α∇α0∇α0X +

l−1∑

j=0

∇α1 · · ·

· · · ∇αj
(R(∇α0u,∇αj+1u)∇αj+2∇αl

∇α0X)

+

l−1∑

j=0

∇α0∇α1 · · ·∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl

X ].

Remark 4. Note that in particular (5.10) applied to X = τ(u) yields

∆∇ατ(u) = ∇α∆τ(u) (5.12)

+

l−1∑

j=0

∇α1 · · ·∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

∇α0τ(u)]

+
l−1∑

j=0

∇α0∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl

τ(u)]

Lemma 5.2. Let u ∈ C1([0, T ], Hs(Rn, N)) with s ∈ N and s ≥
[

n
2

]
+ 4 be a

solution of (5.1). Then for
[

n
2

]
+ 4 ≤ l ≤ s and l ∈ N we have

d

dt
‖∇lu‖2

L2 ≤ C‖∇u‖2
Hl−1(1 + ‖∇u‖3n+2l+14

Hl−1 ). (5.13)

For l =
[

n
2

]
+ 2 and l =

[
n
2

]
+ 3 we have

d

dt
‖∇lu‖2

L2 ≤ C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

)
‖∇u‖2

Hl−1

(
1 + ‖∇u‖2l+2

Hl−1

)
. (5.14)

Proof. We first compute the evolution

1

2

d

dt

∫

Rn

|∇u|2dx =

n∑

α0=1

∫
〈∇t∇α0u,∇α0u〉 (5.15)

=

∫
∇α0(〈∇tu,∇α0u〉) −

∫
〈∇tu, τ(u)〉

= ε

∫
〈∆τ(u), τ(u)〉 − ε

∫
〈R(∇u, τ(u))∇u, τ(u)〉

−
∫
〈J(u)τ(u), τ(u)〉 − β

∫
|τ(u)|2

= −ε

∫
|∇τ(u)|2 − β

∫
|τ(u)|2

−ε

∫
〈R(∇u, τ(u))∇u, τ(u)〉,
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where we have used the fact that for f ∈ L1(Rn, Rn)
∫

Rn div f = 0 as well as
integration by parts. Note that using integration by parts and Cauchy-Schwarz we
have

∣∣∣∣
∫
〈R(∇u, τ(u))∇u, τ(u)〉

∣∣∣∣ ≤ C‖∇u‖2
L∞

∫
|τ(u)|2 (5.16)

≤ C‖∇u‖2
L∞‖∇u‖L2‖∇τ(u)‖L2

≤ 1

2
‖∇τ(u)‖2

L2 + C‖∇u‖4
L∞‖∇u‖2

L2.

Combining (5.15) and (5.16) we have

1

2

d

dt
‖∇u‖2

L2 ≤ C‖∇u‖4
L∞‖∇u‖2

L2. (5.17)

For 1 ≤ l ≤ s applying (5.3) we have

1

2

d

dt
‖∇lu‖2

L2 =
∑

|α|=l

∫
〈∇t∇αu,∇αu〉 (5.18)

=
∑

|α|=l

∫
〈∇α∇tu,∇αu〉

+
∑

|α|=l

l−2∑

j=0

∫
〈∇α1 · · · ∇αj

[R(∇tu,∇αj+1u)∇αj+2 · · ·

· · · ∇αl
u],∇αu〉.

Consider each term separately

∫
〈∇α∇tu,∇αu〉 = −ε

∫
〈∇α∆τ(u),∇αu〉 (5.19)

+ε

∫
〈∇α(R(∇u, τ(u))∇u,∇αu〉

+

∫
〈∇αJ(u)τ(u),∇αu〉 + β

∫
〈∇ατ(u),∇αu〉.



418 C. KENIG, T. LAMM, D. POLLACK, G. STAFFILANI AND T. TORO

Using (5.12) and (5.7) and integrating by parts we have that

∫
〈∇α∆τ(u),∇αu〉 (5.20)

=

∫
〈∇ατ(u), ∆∇αu〉

−
l−1∑

j=0

∫
〈∇α1 · · · ∇αj

[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl
∇α0τ(u)],∇αu〉

−
l−1∑

j=0

∫
〈∇α0∇α1 · · ·∇αj

[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl
τ(u)],∇αu〉

=

∫
|∇ατ(u)|2

+

l−1∑

j=0

∫
〈∇α1 · · · ∇αj

[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl
∇α0u],∇ατ(u)〉

−
l−1∑

j=0

∫
〈∇α1 · · · ∇αj

[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl
∇α0τ(u)],∇αu〉

−
l−1∑

j=0

∫
〈∇α0∇α1 · · ·∇αj

[R(∇α0u,∇αj+1u)∇αj+2 · · ·∇αl
τ(u)],∇αu〉

+
l−2∑

j=1

〈∇α0∇α1 · · · ∇αj
[R(∇α0u,∇αj+1u)∇αj+2 · · · ∇αl

u],∇ατ(u)〉

(5.20) yields

− ε
∑

|α|=l

∫
〈∇α∆τ(u),∇αu〉 ≤ −ε

∫
|∇lτ(u)|2 (5.21)

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu|

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1

∫
|∇j1τ(u)| |∇j2u| · · · |∇jmu| |∇lu|.

Similarly

∑

|α|=l

∫
〈∇α[R(∇u, τ(u))∇u],∇αu〉 ≤ (5.22)

≤ C

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1 if s≥2

∫
|∇lu| |∇j1τ(u)| |∇j2u| · · · |∇jmu|
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We now look at the third term in (5.19) and recall that ∇J = 0 and 〈JX, X〉 = 0
for X ∈ TN . Integrating by parts and applying (5.7) we obtain for γ = (α2 · · ·αl)

∫
〈∇αJ(u)τ(u),∇αu〉 (5.23)

= −
∫
〈∇γJ(u)τ(u),∇α1∇αu〉

= −
∫
〈∇γJ(u)τ(u), ∆∇γu〉

= −
∫
〈J(u)∇γτ(u);∇γτ(u)〉

−
l−1∑

j=1

∫
〈J(u)∇γτ(u),∇α2 · · · ∇αj

[R(∇α1u,∇αj+1u)∇αj+2 · · ·∇αl
∇α1u]〉

−
l−2∑

j=2

∫
〈J(u)∇γτ(u),∇α1∇α2 · · · ∇αj

[R(∇α1u,∇αj+1u)∇αj+2 · · · ∇αl
u]〉

= −
l−1∑

j=1

∫
〈J(u)∇α3 · · ·∇αl

τ(u),

∇α2∇α2∇α3 · · · ∇αj
[R(∇α1u,∇αj+1u)∇αj+2 · · · ∇αl

∇α1u]〉

−
l−2∑

j=2

∫
〈J(u)∇α3 · · ·∇αl

τ(u),∇α2∇α1∇α2 · · ·

· · · ∇αj
[R(∇α1u,∇αj+1u)∇αj+2 · · · ∇αl

u]〉.

Thus (5.23) yields

∑

|α|=l

∫
〈∇αJ(u)τ(u),∇αu〉 (5.24)

≤ C

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1

∫
|∇l−2τ(u)| |∇j1u| · · · |∇jmu|.

A very similar computation yields

∫
〈∇ατ(u),∇αu〉 (5.25)

≤ −
∫

|∇γτ(u)|2 + C

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1

∫
|∇l−2τ(u)| |∇j1u| · · · |∇jmu|.
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Combining (5.19), (5.21), (5.22), (5.24) and (5.25) we obtain

∑

|α|=l

∫
〈∇α∇tu,∇αu〉 (5.26)

≤ −ε

∫
|∇lτ(u)|2 + Cε

l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu|

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇j1τ(u)| |∇j2u| · · · |∇jmu| |∇lu|

+Cε
l+2∑

m=3

∑

j1+···+jm=l+2
js≥1 if s≥2

∫
|∇lu| |∇j1τ(u)| |∇j2u| · · · |∇jmu|

−β

∫
|∇l−1τ(u)|2 + C

l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇l−2τ(u)| |∇j1u| · · · |∇jmu|.

We now look at the second term in (5.18). Using equation (5.1) we obtain

∑

|α|=l

l−2∑

j=0

∫
〈∇α1 · · · ∇αj

[R(∇tu,∇αj+1u)∇αj+2 · · · ∇αl
u],∇αu〉 (5.27)

≤ C
l+1∑

m=3

∑

j1+···+jm=l
js≥1 if s≥2

∫
|∇lu| |∇j1∇tu| |∇j2u| · · · |∇jmu|

≤ Cε
l+1∑

m=3

∑

j1+···+jm=l
js≥1 if s≥2

∫
|∇lu| |∇j1∆τ(u)| |∇j2u| · · · |∇jmu|

+Cε

l+3∑

m=6

∑

j1+···+jm=l+2
js≥1 if s≥2

∫
|∇lu| |∇j1τ(u)| |∇j2u| · · · |∇jmu|

+C

l∑

m=3

∑

j1+···+jm=l
js≥1 if s≥2

∫
|∇lu| |∇j1τ(u)| |∇j2u| · · · |∇jmu|.
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Combining (5.18), (5.26) and (5.27) we obtain

1

2

d

dt
‖∇lu‖2

L2 (5.28)

≤ −ε

∫
|∇lτ(u)|2

+Cε

∫
|∇lτ(u)| |∇lu| |∇u|2

+Cε

∫
|∇l−1τ(u)| |∇lu|

(
|∇u|3 + |∇u| |∇2u|

)

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2
1≤js≤l−1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu|

Cε

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1 if s≥2

∫
|∇lu| |∇j1τ(u)| · · · |∇jmu|

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2
js≥1

∫
|∇lu| |∇j1u| · · · |∇jmu|

+Cε

l+3∑

m=5

∑

j1+···+jm=l+4
js≥1

∫
|∇lu| |∇j1u| · · · |∇jmu|

+C

l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇lu| |∇j1u| · · · |∇jmu| − β

∫
|∇l−1τ(u)|2

≤ −ε

∫
|∇lτ(u)|2 + Cε

∫
|∇lτ(u)| |∇lu| |∇u|2

+Cε

∫
|∇l−1τ(u)| |∇lu|

(
|∇u|3 + |∇2u| |∇u|

)

+Cε

∫
|∇lu| |τ(u)| |∇l+1u| |∇u|

+Cε

∫
|∇lu|2

(
|τ(u)| |∇u|2 + |τ(u)| |∇2u|

)

+Cε

∫
|∇lu|2

(
|∇u|4 + |∇τ(u)| |∇u|

)

+Cε
l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu|

+Cε

l+3∑

m=5

∑

j1+···+jm=l+4

1≤js≤l−1

∫
|∇lu| |∇j1u| · · · |∇jmu|

(5.29)
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+C

l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇lu| |∇j1u| · · · |∇jmu|

+Cε
l+2∑

m=3

∑

j1+···+jm=l+2
1≤js≤l−1,s≥2

j1≤l−2

∫

l

|∇lu| |∇j1τ(u)| · · · |∇jmu|.

We now look at each term of (5.28) separately. Apply Cauchy-Schwarz we have

Cε

∫
|∇lτ(u)| |∇lu| |∇u|2 ≤ Cε‖∇u‖2

L∞(

∫
|∇lτ(u)|2) 1

2 (

∫
|∇lu|2) 1

2

≤ ε

64

∫
|∇lτ(u)|2 + C‖∇u‖4

L∞

∫
|∇lu|2. (5.30)

Using Cauchy-Schwarz and integration by parts we have

Cε

∫
|∇l−1τ(u)| |∇lu| |∇u|3 (5.31)

≤ Cε‖∇u‖3
L∞(

∫
|∇l−1τ(u)|2) 1

2 (

∫
|∇lu|2) 1

2

≤ ε

64

∫
|∇l−1τ(u)|2 + C‖∇u‖6

L∞

∫
|∇lu|2

≤ ε

64

∫
|∇lτ(u)| |∇l−2τ(u)| + C‖∇u‖6

L∞

∫
|∇lu|2

≤ ε

64
(

∫
|∇lτ(u)|2) 1

2 (

∫
|∇lu|2) 1

2 + C‖∇u‖6
L∞

∫
|∇lu|2

≤ ε

64

∫
|∇lτ(u)|2 + C(1 + ‖∇u‖6

L∞)

∫
|∇lu|2.

Cε

∫
|∇l−1τ(u)| |∇lu| |∇2u| |∇u| (5.32)

≤ Cε‖∇u‖L∞‖∇2u‖L∞

(∫
|∇l−1τ(u)|2

) 1
2
(∫

|∇lu|2
) 1

2

≤ ε

64

∫
|∇lτ(u)|2 + C

(
1 + ‖∇u‖6

L∞ + ‖∇2u‖3
L∞

) ∫
|∇lu|2.
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Using Cauchy-Schwarz, integration by parts and (5.17) we have

Cε

∫
|∇lu| |τ(u)| |∇l+1u| |∇u| (5.33)

≤ Cε‖τ(u)‖L∞‖∇u‖L∞(

∫
|∇lu|2) 1

2 (

∫
|∇l+1u|2) 1

2

≤ ε

64

∫
|∇l+1u|2 + C‖τ(u)‖2

L∞‖∇u‖2
L∞

∫
|∇lu|2

≤ − ε

64

∫
〈∆∇lu,∇lu〉 + C‖τ(u)‖2

L∞‖∇u‖2
L∞

∫
|∇lu|2

≤ ε

64

∫
|∇lτ(u)| |∇lu| + C‖τ(u)‖2

L∞‖∇u‖2
L∞

∫
|∇lu|2

+Cε

∫
|∇lu|

l+2∑

m=3

∑

j1+···+jm=l+2

|∇j1u| · · · |∇jmu|

≤ ε

64

∫
|∇lτ(u)|2 + C(‖τ(u)‖2

L∞‖∇u‖2
L∞ + 1)

∫
|∇lu|2

+Cε
l+2∑

m=3

∑

j1+···+jm=l+2

∫
|∇lu| |∇j1u| · · · |∇jmu|.

Combining (5.28), (5.30), (5.31), (5.32) and (5.33) and using the fact that ab ≤
ap

p + bq

q if 1
p + 1

q = 1 we have

1

2
d
dt ‖∇lu‖2

L2 ≤ −3ε

4

∫
|∇lτ(u)|2 (5.34)

+C(1 + ‖∇u‖6
L∞ + ‖∇2u‖3

L∞ + ‖∇u‖L∞‖∇3u‖L∞)

∫
|∇lu|2

+Cε

l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu|

+Cε

l+1∑

m=5

∑

j1+···+jm=l+4

1≤js≤l−1

∫
|∇lu| |∇j1u| · · · |∇jmu|

+Cε
l+2∑

m=3

∑

j1+···+jm=l+2

l−1≥js≥1 if s≥2
j1≤l−2

∫
|∇lu| |∇j1τ(u)| · · · |∇jmu|

+C

l+2∑

m=3

∑

j1+···+jm=l+2
1≤js≤l−1

∫
|∇lu| |∇j1u| · · · |∇jmu|.

To finish the estimate we need to use the interpolation result that appears in Propo-
sition 4.4. Consider 3 ≤ m ≤ l + 2, 1 ≤ js ≤ l− 1 and j1 + · · ·+ jm = l + 2 then by
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Cauchy-Schwarz we have∫
|∇lτ(u)| |∇j1u| · · · |∇jmu| (5.35)

≤
(∫

|∇lτ(u)|2
) 1

2
(∫

|∇j1u|2 · · · |∇jmu|2
) 1

2

.

Let pi ∈ [2,∞] for i = 1, . . . , m be such that

1

p1
+ · · · + 1

pm
=

1

2
, (5.36)

by Hölder’s inequality
(∫

|∇j1u|2 · · · |∇jmu|2
) 1

2

≤ ‖∇j1u‖Lp1 · · · ‖∇jmu‖Lpm . (5.37)

Since l >
[

n
2

]
+ 1 for

ji − 1

l − 1
< ai =

ji − 1

l − 1
+

n

2(l − 1)2

(
l − 1 − ji +

3

m

)
< 1 (5.38)

and when m > 3 or m = 3 and ji ≥ 2

1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l − 1

n
ai > 0. (5.39)

Thus (4.5) yields

‖∇jiu‖Lpi ≤ C‖∇lu‖ai

L2‖∇u‖1−ai

L2 ≤ C‖∇u‖Hl−1 . (5.40)

Combining (5.35), (5.37) and (5.40) we have in the case m > 3 that

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu| ≤ c

(∫
|∇lτ(u)|2

) 1
2

‖∇u‖m
Hl−1 . (5.41)

In the case when m = 3, j1 ≥ j2 ≥ j3, and j3 = 1 we have j1 + j2 = l + 1 and
(∫

|∇j1u|2|∇j2u|2|∇u|2
) 1

2

≤ ‖∇u‖L∞

(∫
|∇j1u|2|∇j2u|2

) 1
2

. (5.42)

If j2 = 1 then (5.35) becomes

∫
|∇lτ(u)| |∇lu| |∇u|2 ≤ c‖∇u‖2

L∞

(∫
|∇lτ(u)|2

) 1
2
(∫

|∇lu|2
) 1

2

. (5.43)

If j2 > 1 then for i = 1, 2 let l0 = max
{[

n
2

]
+ 4, l

}
. If

ji − 1

l0 − 1
≤ ai =

ji − 1

l0 − 1
+

n

2(l0 − 1)(l − 1)
(l − ji) < 1 (5.44)

and
1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l0 − 1

n
ai > 0. (5.45)

Hölder’s inequality and Proposition 4.4 yield
(∫

|∇j1u|2|∇j2u|2
) 1

2

≤ ‖∇j1u‖Lp1‖∇j2u‖Lp2 (5.46)

≤ C‖∇l
0u‖a1

L2‖∇u‖1−a1

L2 ‖∇l
0u‖a2

L2‖∇u‖1−a2

L2

≤ C‖∇u‖2
Hl0−1 .
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Thus in this case (5.35) becomes combining (5.42) and (5.46)

∫
|∇lτ(u)| |∇j1u| · · · |∇u| ≤ c‖∇u‖L∞‖∇u‖2

Hl0−1

(∫
|∇lτ(u)|2

) 1
2

. (5.47)

Combining (5.41), (5.43) and (5.47) we can estimate the third term on the right
hand side of (5.34)

l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu| (5.48)

≤ C

(∫
|∇lτ(u)|2

) 1
2 (

1 + ‖∇u‖2
L∞

)
(

l+2∑

m=1

‖∇u‖m
Hl−1 + ‖∇u‖2

Hl0−1

)
.

To estimate the fourth term in (5.34) consider 5 ≤ m ≤ l + 3, 1 ≤ js ≤ l − 1 and
j1 + · · · + jm = l + 4 then by Cauchy-Schwarz we have

∫
|∇lu| |∇j1u| · · · |∇jmu| ≤

(∫
|∇lu|2

) 1
2
(∫

|∇j1u|2 · · · |∇jmu|2
) 1

2

. (5.49)

Let 2 ≤ pi ≤ ∞ for i = 1, . . . , m be such that

1

p1
+ · · · + 1

pm
=

1

2
(5.50)

by Hölder’s inequality (5.49) becomes

∫
|∇lu| |∇j1u| · · · |∇jmu| ≤

(∫
|∇lu|2

) 1
2

‖∇j1u‖Lp1 · · · ‖∇jmu‖Lpm (5.51)

since l >
[

n
2

]
+ 1 for

ji − 1

l − 1
≤ ai =

ji − 1

l − 1
+

n

2(l − 1)2

(
l − 1 − ji +

5

m

)
< 1 (5.52)

and when m > 5 or m = 5 and ji ≥ 2

1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l − 1

n
ai > 0. (5.53)

Thus (4.5) yields

∫
|∇lu‖∇j1u| · · · |∇jmu| ≤ C

(∫
|∇lu|2

) 1
2

‖∇u‖m
Hl−1 . (5.54)

If m = 5, j1 ≥ j2 ≥ · · · ≥ j5 ≥ 1, and j5 = 1 then j1 + j2 + j3 + j4 = l + 3, by
Cauchy-Schwarz and Hölder’s inequality

∫
|∇lu| |∇j1u| · · · |∇j4u| |∇u| (5.55)

≤ ‖∇u‖L∞

(∫
|∇lu|2

) 1
2
(∫

|∇j1u|2 · · · |∇j4u|2
) 1

2

≤ ‖∇u‖L∞

(∫
|∇lu|2

) 1
2

‖∇j1u‖Lp1 · · · ‖∇j4u‖Lp4
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with 1
p1

+ 1
p2

+ 1
p3

+ 1
p4

= 1
2 . For

ji − 1

l − 1
< ai =

ji − 1

l − 1
+

n

2(l − 1)2
(l − ji) < 1 (5.56)

if j4 > 1 we have
1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l − 1

n
ai > 0 (5.57)

and (5.55) becomes by Proposition 4.4

∫
|∇lu| |∇j1u| · · · |∇j4u| |∇u| ≤ C‖∇u‖L∞

(∫
|∇lu|2

) 1
2

‖∇u‖4
Hl−1 . (5.58)

If j4 = 1 and j3 > 1 a similar argument yields

∫
|∇lu| |∇j1u| |∇j3u| |∇u|2 ≤ C‖∇u‖2

L∞

(∫
|∇lu|2

) 1
2

‖∇u‖3
Hl−1 . (5.59)

If j3 = 1 then j1 + j2 = l + 1 since j1 ≤ l − 1 then j2 > 1 and we have

∫
|∇lu| |∇j1u| |∇j2u| |∇u|3 ≤ C‖∇u‖3

L∞

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hl−1 . (5.60)

Combining (5.54), (5.58), (5.59) and (5.60) we can estimate the fourth term on
the right hand side of (5.34) as follows

l+3∑

m=5

∑

j1+···+jm=l+4

1≤js≤l−1

∫
|∇lu| |∇j1u| · · · |∇jmu| (5.61)

≤ C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖3
L∞)

l+3∑

m=2

‖∇u‖m
Hl−1

≤ C
(
1 + ‖∇u‖3

L∞

) l+4∑

m=3

‖∇u‖m
Hl−1 .

To estimate the fifth term in (5.34) consider 3 ≤ m ≤ l + 2, j1 + · · ·+ jm = l + 2,
j1 ≤ l − 2, 1 ≤ js ≤ l − 1 if s ≥ 2. Cauchy-Schwarz and Hölder’s inequality ensure
that for 1

p1
+ · · · + 1

pm
= 1

2
∫

|∇lu| |∇j1τ(u)| |∇j2u| · · · |∇jmu| (5.62)

≤
(∫

|∇lu|2
) 1

2

‖∇j1τ(u)‖Lp1 · · · ‖∇jmu‖Lpm .

For l0 = max
{[

n
2

]
+ 4, l

}
> 1 for i ≥ 2

ji − 1

l0 − 1
< ai =

ji − 1

l0 − 1
+

n

2(l0 − 1)(l − 1)

(
l − 1 − ji +

3

m

)
< 1 (5.63)

and

j1
l0 − 1

< a1 =
j1

l0 − 1
+

n

2(l − 1)(l0 − 1)

(
l − 1 − j1 +

3

m

)
< 1 (5.64)
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when m > 3 or m = 3 and ji ≥ 2 for i ≥ 2

1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l0 − 1

n
ai > 0 (5.65)

and m > 3 or m = 3 and j1 ≥ 2

1

2
≥ 1

p1
=

j1
n

+
1

2
− l0 − 1

n
a1 > 0. (5.66)

In these cases (5.62) can be estimated by (4.5) as follows
∫

|∇lu| |∇j1τ(u)| · · · |∇jmu| (5.67)

≤
(∫

|∇lu|2
) 1

2

‖∇l0−1τ(u)‖a1

L2‖τ(u)‖1−a1

L2 ‖∇u‖m−1
Hl0−1 .

If m = 3 and j1 ≤ 1 then j2 ≥ 2 and j3 ≥ 2. Cauchy-Schwarz and Hölder’s
inequality yield for 1

p2
+ 1

p3
= 1

2

∫
|∇lu| |τ(u)| |∇j2u| |∇j3u| (5.68)

≤ ‖τ(u)‖L∞

(∫
|∇lu|2

) 1
2

‖∇j2u‖Lp2‖∇j3u‖Lp3 .

and
1

2
≥ 1

pi
=

ji − 1

n
+

1

2
− l − 1

n
ai > 0, (5.69)

Proposition 4.4 ensures that

∫
|∇lu| |τ(u)| |∇j2u| |∇j3u| ≤ C‖τ(u)‖L∞

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hl−1 . (5.70)

Similarly

∫
|∇lu| |∇τ(u)| |∇j2u| |∇j3u| ≤ C‖∇τ(u)‖L∞

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hl−1 . (5.71)

If m = 3, j1 ≥ 2 and j2 = 1, j3 > 1 we have by Cauchy-Schwarz and Hölder’s
inequality for 1

p1
+ 1

p3
= 1

2

∫
|∇lu| |∇j1τ(u)| |∇u| |∇j3u| (5.72)

≤ C‖∇u‖L∞

(∫
|∇lu|2

) 1
2

‖∇j1τ(u)‖Lp1 ‖∇j3u‖Lp3 .

For

a1 =
j1

l − 1
+

n

2(l − 1)2
(l − j1) < 1 and

1

2
≥ 1

p1
=

j1
n

+
1

2
− l − 1

n
a1 > 0 (5.73)

and

a3 =
j3 − 1

l − 1
+

n

2(l − 1)2
(l−j3) < 1 and

1

2
≥ 1

p3
=

j3 − 1

n
+

1

2
− l − 1

n
a3 > 0. (5.74)
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Proposition 4.4 ensures

∫
|∇lu| |∇j1τ(u)| |∇u| |∇j3u| (5.75)

≤ C‖∇u‖L∞

(∫
|∇lu|2

) 1
2

‖∇l−1τ(u)‖a1

L2‖τ(u)‖1−a1

L2 ‖∇u‖Hl−1 .

In the case j1 = l, j2 = j3 = 1 see (5.30).
Combining (5.67), (5.70), (5.71) and (5.75) we estimate the 5th term of (5.34) as

follows

l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1 if s≥2
j1≤l−2

∫
|∇lu| |∇j1τ(u)| · · · |∇jmu| (5.76)

≤ C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖L∞)

l+1∑

m=1

‖τ(u)‖L2‖∇u‖m
Hl−1‖∇l−1τ(u)‖L2

+C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖L∞)

l+1∑

m=1

‖τ(u)‖L2‖∇u‖m
Hl0−1‖∇l0−1τ(u)‖L2

+C(‖τ(u)‖L∞ + ‖∇τ(u)‖L∞)

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hl−1 .

Here we have used the fact that for a ∈ (0, 1) ≤ ras1−a ≤ ar + (1 − a)s.
Finally we look at the last term of (5.34). Let 3 ≤ m ≤ l+2, j1 + · · ·+jm = l+2.

Applying the same argument as the one used to obtain (5.48) we conclude that

l+2∑

m=3

∑

j1+···+jl=l+2

∫
|∇lu| |∇j1u| · · · |∇jmu| (5.77)

≤ C(1 + ‖∇u‖2
L∞)

(∫
|∇lu|2

) 1
2

(
l+2∑

m=1

‖∇u‖m
Hl−1 + ‖∇u‖2

Hl0−1

)
.

Combining (5.34), (5.48), (5.61), (5.76) and (5.77), using (4.78), (4.80), (4.82)
and the fact that l >

[
n
2

]
+ 1 as well as ε ∈ (0, 1) and the fact that for a ∈ (0, 1) ≤

ras1−a ≤ ar + (1 − a)s we obtain for l0 = l ≥
[

n
2

]
+ 4
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1

2

d

dt
‖∇lu‖2

L2 (5.78)

≤ −3ε

4

∫
|∇lτ(u)|2 + C(1 + ‖∇u‖6

L∞ + ‖∇2u‖3
L∞)‖∇lu‖2

L2

+Cε

(∫
|∇lτ(u)|2

) 1
2

(1 + ‖∇u‖2
L∞)

l+2∑

m=1

‖∇u‖m
Hl−1

+Cε(1 + ‖∇u‖3
L∞)

(∫
|∇lu|2

) 1
2

l+3∑

m=2

‖∇u‖m
Hl−1

+Cε

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖L∞)(‖∇l−1τ(u)‖L2 + ‖τ(u)‖L2)

l+1∑

m=1

‖∇u‖m
Hl−1

+C(‖τ(u)‖L∞ + ‖∇τ(u)‖L∞)

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hl−1

+C(1 + ‖∇u‖2
L∞)

(∫
|∇lu|2

) 1
2

l+2∑

m=1

‖∇u‖m
Hl−1

≤ −3ε

4

∫
|∇lτ(u)|2 + C

(
‖∇u‖6[n

2 ]+12

H[n
2 ]+4

+ 1

) l+4∑

m=2

‖∇u‖m
Hl−1

+Cε‖∇lu‖L2

(
1 + ‖∇u‖[

n
2 ]+2

H[n
2 ]+4

) l+2∑

m=1

‖∇u‖m
Hl−1‖∇l−1τ(u)‖L2

≤ −3ε

4

∫
|∇lτ(u)|2 +

ε

64
‖∇l−1τ(u)‖2

L2

+C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

) 2l+4∑

m=2

‖∇u‖m
Hl−1 .

Using the same trick as in (5.31) we obtain from (5.78) for l ≥
[

n
2

]
+ 4

d

dt
‖∇lu‖2

L2 ≤ −ε

2

∫
|∇lτ(u)|2 + C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

) 2l+4∑

m=2

‖∇u‖m
Hl−1

≤ C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

)
‖∇u‖2

Hl−1

(
1 + ‖∇u‖2l+2

Hl−1

)
(5.79)

In the case where l =
[

n
2

]
+ 2 or l =

[
n
2

]
+ 3 then (5.78) and (5.79) become

1

2

d

dt
‖∇lu‖2

L2 (5.80)

≤ −3ε

4

∫
|∇lτ(u)|2 +

ε

64
‖∇l−1τ(u)‖2

L2 + C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

) 2l+4∑

m=2

‖∇u‖m
Hl−1

+Cε‖∇lu‖L2

(
1 + ‖∇u‖[

n
2 ]+2

H[n
2 ]+4

) l+2∑

m=1

‖∇u‖m
Hl−1‖∇[n

2 ]+3τ(u)‖L2

≤ C

(
1 + ‖∇u‖3n+12

H[n
2 ]+4

)
‖∇u‖2

Hl−1

(
1 + ‖∇u‖2l+2

Hl−1

)



430 C. KENIG, T. LAMM, D. POLLACK, G. STAFFILANI AND T. TORO

Thus (5.79) and (5.80) conclude the proof of Lemma 5.2.

Since our ultimate goal is to estimate d
dt‖∇u‖2

Hl−1 for l ≥ 1, we still need to

analyze d
dt‖∇lu‖2

L2 for 1 ≤ l ≤
[

n
2

]
+ 1.

Lemma 5.3. Let u ∈ C([0, T ], H [n
2 ]+4(Rn, N)) be a solution of (5.2). Let 1 ≤ l ≤[

n
2

]
+ 1 then if s0 =

[
n
2

]
+ 2 we have

d

dt
‖∇lu‖2

L2 ≤ c‖∇u‖2
Hs0

(
1 + ‖∇u‖Ml

Hs0+2

)
. (5.81)

where Ml = 3n + 2l + 12.

Proof. Note that (5.17) and the Sobolev embedding theorem yields

d

dt
‖∇u‖2

L2 ≤ C‖∇u‖4

H[n
2 ]+1

(
1 + ‖∇u‖2n+8

H[n
2 ]+2

)
. (5.82)

Note that for l ≥ 2 computation (5.34) remains valid. In fact we only used l >[
n
2

]
+ 1 when we started to interpolate as in Proposition 4.4. Let s0 =

[
n
2

]
+ 2.

Consider 3 ≤ m ≤ l + 2 1 ≤ js ≤ l − 1 and j1 + · · · + jm = l + 2 then by Cauchy-
Schwarz, Hölder’s inequality applied with 1

p1
+ · · · + 1

pm
= 1

2 where

1

pi
=

ji − 1

n
+

1

2
− s0

n
ai (5.83)

and

ji − 1

s0
≤ ai =

ji − 1

s0
+

n

2(l − 1)s0

(
l − 1 − ji +

3

m

)
< 1 (5.84)

and (4.5) in the case m > 3 or m = 3 and ji ≥ 2 we obtain as in (5.41)

∫
|∇lτ(u)||∇j1u| · · · |∇jmu| ≤ C

(∫
|∇lτ(u)|2

) 1
2

‖∇u‖m
Hs0 . (5.85)

In the case m = 3 we proceed as in the proof of (5.47) (where s0 now plays the role
of l0) and obtain

∫
|∇lτ(u)|2|∇j1u| · · · |∇jmu| ≤ C‖∇u‖L∞

(∫
|∇lτ(u)|2

) 1
2

‖∇u‖2
Hs0 . (5.86)

Thus for 2 ≤ l ≤
[

n
2

]
+ 1 (5.48) becomes

l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1

∫
|∇lτ(u)| |∇j1u| · · · |∇jmu| (5.87)

≤ C

(∫
|∇lτ(u)|2

) 1
2 (

1 + ‖∇u‖2
L∞

) l+2∑

m=1

‖∇u‖m
Hs0 .
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The same type of argument as the one used to prove (5.61), (5.76) and (5.77) yields

l+3∑

m=5

∑

j1+···+jm=l+4

1≤js≤l−1

∫
|∇lu| |∇j1u| · · · |∇jmu| (5.88)

≤ C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖3
L∞ + ‖∇τ(u)‖L∞)‖∇u‖m

Hs0

l+2∑

m=3

∑

j1+···+jm=l+2

1≤js≤l−1 s≥2
j1≤l−2

∫
|∇lu| |∇j1τ(u)| · · · |∇jmu| (5.89)

≤ C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖L∞)
l+1∑

m=1

‖∇u‖m
Hs0‖∇s0τ(u)‖a1

L2‖τ(u)‖1−a1

L2

+C(‖τ(u)‖L∞ + ‖∇τ(u)‖L∞)

(∫
|∇lu|2

) 1
2

‖∇u‖2
Hs0

≤ C

(∫
|∇lu|2

) 1
2

(1 + ‖∇u‖L∞)
l+2∑

m=2

‖∇u‖m
Hs0+1

+C(‖τ(u)‖L∞ + ‖∇τ(u)‖L∞)

(∫
|∇lu|2

) 1
2

‖∇u‖Hs0

l+2∑

m=3

∑

j1+···+jl=l+2

∫
|∇lu|2|∇j1u| · · · |∇jmu| (5.90)

≤ C(1 + ‖∇u‖2
L∞)

(∫
|∇lu|2

) 1
2

l+2∑

m−1

‖∇u‖m
Hs0 .

Combining (5.34), (5.87), (5.88), (5.89) and (5.90); using (4.75), (4.76) and (4.77)
we have for ε ∈ (0, 1), l ≤

[
n
2

]
+ 1, s0 =

[
n
2

]
+ 2

1

2

d

dt
‖∇lu‖2

L2 (5.91)

≤ −ε

2

∫
|∇lτ(u)|2 + C

(
1 + ‖∇u‖6

L∞ + ‖τ(u)‖3
L∞

) ∫
|∇lu|2

+C
(
1 + ‖∇u‖4

L∞

) 2l+4∑

m=2

‖∇u‖m
Hs0

+C (1 + ‖∇u‖L∞ + ‖τ(u)‖L∞ + ‖∇τ(u)‖L∞)

l+3∑

m=2

‖∇u‖m
Hs0+1

≤ C‖∇u‖2
Hs0

(
1 + ‖∇u‖3n+2l+12

Hs0+2

)

Corollary 5.5 (Uniform energy estimate). Let uε(t) ∈ Hs+1(Rn, N), with s ∈ N

and s ≥
[

n
2

]
+ 4 be a solution of (5.2). There exists T0 = T0(‖∇u0‖Hs) such that

for 0 ≤ t ≤ T0

‖∇uε(t)‖Hs ≤ 3‖∇u0‖Hs . (5.92)
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Proof. Let E(t) = ‖∇u‖2
Hs(t). Then (5.13), (5.14) and (5.81) imply for

[
n
2

]
+4 ≤ s

d

dt
E ≤ C0E(1 + E2n+s+8), (5.93)

which leads, after integrating from 0 to t, to

ln
E(t)

E(0)
− 1

2n + s + 8
ln

E(t)2n+s+8+1

E(0)2n+s+8 + 1
≤ C0t (5.94)

which implies

E(t)2n+s+8

1 + E(t)2n+s+8
≤ eC0t(2n+s+8) E(0)2n+s+8

1 + E(0)2n+s+8
(5.95)

≤ (1 + 4C0t(2n + s + 8))
E(0)2n+s+8

1 + E(0)2n+s+8
,

for t such that C0t(2n + s + 8) < 1
8 for example. A simple computation yields

E(t)2n+s+8 ≤ (1 + 4C0t(2n + s + 8))E(0)2n+s+8 (5.96)

+4C0t(2n + s + 8)E(0)2n+s+8E(t)2n+s+8.

For t such that 4C0t(2n + s + 8)E(0)2n+s+8 < 1
2 we have

E(t)2n+s+8 ≤ 2(1 + 4C0t(2n + s + 8))E(0)2n+s+8. (5.97)

Thus for s ≥
[

n
2

]
+ 4, (5.97) shows that if

0 < t ≤ T0 = min{ 1

8C0(2n + s + 8)
,

1

8C0(2n + s + 8)
E(0)2n+s+8} (5.98)

then

‖∇uε(t)‖Hs ≤ 3‖∇u0‖Hs . (5.99)

Lemma 5.4. Let uε(t) ∈ Hs+1(Rn, N) with s ∈ N and s ≥
[

n
2

]
+ 4 be a solution

of (5.1). Let v = vε = w ◦ uε. For T0 = T0(‖∇u0‖Hs) as in (5.98) we have

sup
0<t≤T0

‖v(t) − v0‖L2 ≤ C‖∇u0‖
H[ n

2 ]+4

(
1 + ‖∇u0‖

3[n
2 ]+6

H[n
2 ]+4

)
T0. (5.100)

Proof. Our goal is to study how ‖v(t) − v0‖L2 evolves. Using (3.1) and (3.2) we
have

1

2

d

dt

∫
|v − v0|2 =

∫
〈∂tv, v − v0〉 (5.101)

≤ ‖v − v0‖L2

(∫
(∂tv)2

) 1
2

≤ C
(
‖∆2v‖L2 + ‖∂2v‖L2 + ‖∂v‖L2‖∂v‖L∞

+‖∂2v‖L2‖∂2v‖L∞ + ‖∂v‖L2‖∂v‖3
L∞

+‖∂2v‖L2‖∂v‖2
L∞

)
‖v − v0‖L2 .

Recall that

|∂2v| ≤ |∇2u| + C|∇u|2 and |∂v| = |∇u|. (5.102)
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Moreover by (4.54) we have

|∂4v| ≤ C|∇4u| + C
4∑

l=2

∑

j1+···+jl=4

|∇j1u| · · · |∇jlu| (5.103)

≤ C|∇4u| + C|∇2u|2 + C|∇u|4 + C|∇3u| |∇u|.
Using (4.72), (4.73) and (5.103), (5.101) yields

d

dt

∫
|v − v0|2 (5.104)

≤ C
{
‖∇4u‖L2 + ‖∇2u‖L∞‖∇2u‖L2

‖∇u‖3
L∞‖∇u‖L2 + ‖∇u‖L∞‖∇3u‖L2 + ‖∇3u‖L2

+‖∇u‖L2‖∇u‖L∞ + ‖∇2u‖L2‖∇u‖2
L∞

}
‖v − v0‖L2

≤ C‖∇u‖
H[n

2 ]+3

(
1 + ‖∇u‖3[n

2 ]+6

H[n
2 ]+3

)
‖v − v0‖L2 .

For t ∈ [0, T0] as in (5.98), (5.104) combined with (5.92) yields

d

dt
‖v − v0‖2

L2 ≤ C‖∇u0‖
H[ n

2 ]+4

(
1 + ‖∇u0‖

3[n
2 ]+6

H[n
2 ]+4

)
‖v − v0‖L2. (5.105)

Integrating from 0 to T0 (as defined in (5.98)) we deduce from (5.105) that

‖v(t) − v0‖L2 ≤ CT0‖∇u0‖
H[ n

2 ]+4

(
1 + ‖∇u0‖

3[n
2 ]+6

H[n
2 ]+4

)
. (5.106)

Theorem 5.5. Let s ≥
[

n
2

]
+ 4. Given u0 ∈ Hs+1(Rn, N) there exists T0 =

T0(‖∇u0‖Hs , N) > 0 and a solution uε ∈ C([0, T0], H
s+1(Rn, N)) of (5.2). Fur-

thermore

sup
0≤t≤T0

‖∇uε(t)‖Hs ≤ 3‖∇u0‖Hs . (5.107)

Proof. Lemma 2.4, Lemma 4.5, Theorem 3.1 and Lemma 4.6 imply that there exist
Tε = T (ε, ‖∇u0‖Hs , ‖v0 − γ‖L2, N) for some γ ∈ R

p, and a solution of (5.2) given
by uε ∈ C([0, Tε], H

s+1(Rn, N)). Either Tε ≥ T0 as defined in (5.98) and we are
done or Tε < T0. Using the fact that

‖v(Tε) − v0‖L2 ≤ CT0‖∇u0‖
H[n

2 ]+4

(
1 + ‖∇u0‖n+2

H[ n
2 ]+4

)

the same argument as above ensures that there exists T ′
ε = T (ε, ‖∇u0‖Hs) and

uε ∈ C([Tε, Tε + T ′
ε], H

s(Rn, N)) a solution of (5.2). The uniqueness statement in
Theorem 3.1 ensures that we can extend uε ∈ C([0, Tε + T ′

ε], H
s(Rn, N)) to be a

solution of (5.2).
After a finite number of steps (namely l where Tε + lT ′

ε ≤ T0 < Tε +(l+1)T ′
ε) we

manage to extend ∀ε ∈ (0, 1), uε to be a solution of (5.2) in C([0, T0], H
s(Rn, N)).

Note that (5.107) is simply a restatement of (5.99).

Proof of the Main Theorem. For s ≥
[

n
2

]
+4, let uε ∈ C([0, T0], H

s+1(Rn, N))
be a solution of (5.1). Choosing a sequence εi → 0 we conclude, by means of Theo-
rem 5.5 and Lemma 4.6, 2.4 that there exist functions u ∈ C([0, T0], H

s+1(Rn, N))
and v ∈ C([0, T0], H

s+1(Rn, Rm)) with v = ω◦u satisfying the initial value problems
(3.1) and (2.10) with ε = 0 and v0 = ω ◦ u0.
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To prove the well-posedness of the Schrödinger flow (i.e. when β = 0 in (1.4)) we
refer to work of Ding and Wang [12] and McGahagan [32]. By adapting the argu-
ment of Ding and Wang [12] one can show that if a solution, u ∈ C([0, T0], H

s+1(Rn,
N)) with s ≥

[
n
2

]
+ 4, to the initial value problem (1.4) (with β = 0) exists then it

is unique. This argument makes explicit use of the fact that the target is compact
and isometrically embedded into some Euclidean space. We present and extend
here part of an argument that appears in the proof of Theorem 4.1 in [32]. These
inequalities yield uniqueness and continuous dependence on the initial data for gen-
eral β ≥ 0. Let u1, u2 ∈ C([0, T0], H

s+1(Rn, N)) be solutions of (1.4) with initial
data u0

1, u
0
2 ∈ Hs+1(Rn, N) with s ≥

[
n
2

]
+ 4. Following the notation in [32] let

V = ∇u1 and W = ∇u2. Let Ṽ (x) represent the parallel transport of V to the
point u2(x) along the unique geodesic joining the points. McGahagan proves (see
end of the proof of Theorem 4.1 in [32]) that whenever ‖u0

1 − u0
2‖

H[n
2 ]+4

is small

enough (depending only on the geometry of N) and β = 0, then

d

dt

(
‖W − Ṽ ‖2

L2 + ‖u1 − u2‖2
L2

)
≤ C

(
‖W − Ṽ ‖2

L2 + ‖u1 − u2‖2
L2

)
, (5.108)

where C depends on the H [n
2 ]+4 norms of u1 and u2. In the case that u0

1 = u0
2

McGahagan concludes (using Gronwall’s) that ‖W − Ṽ ‖2
L2 = ‖u1 − u2‖2

L2 = 0, and
that therefore u1 = u2 a.e.. In appendix A we show that the inequality (5.108) (and
therefore also the uniqueness result) remains true for all β ≥ 0.

Since the unique solution is constructed as a limit of solutions of equation (5.2)
letting ε → 0, the estimate in Theorem 5.5 yields that

sup
0≤t≤T0

‖∇u(t)‖Hs ≤ 3‖∇u0‖Hs . (5.109)

To prove the continuous dependence on the initial data note that, in general,
(5.108) yields

‖W − Ṽ ‖2
L2(t) + ‖u1 − u2‖2

L2(t) ≤ eCt

(
‖W 0 − Ṽ 0‖2

L2 + ‖u0
1 − u0

2‖2
L2

)
, (5.110)

where W 0 = ∇u0
2 and Ṽ 0(x) is the parallel transport of V 0 = ∇u0

1 to u0
2(x). Since

‖W − Ṽ ‖2
L2(t) . ‖∂u1 − ∂u2‖2

L2(t) + ‖u1 − u2‖2
L2(t), (5.111)

and

‖∂u1 − ∂u2‖2
L2(t) . ‖W − Ṽ ‖2

L2(t) + ‖u1 − u2‖2
L2(t), (5.112)

(5.110) yields

‖∂u1 − ∂u2‖2
L2(t) + ‖u1 − u2‖2

L2(t) . eCt

(
‖∂u0

1 − ∂u0
2‖2

L2 + ‖u0
1 − u0

2‖2
L2

)
. (5.113)

Note that (5.113) ensures that C([0, T0], H
s+1(Rn, N)) solutions to (1.4) with s ≥[

n
2

]
+ 4 depend continuously in H1 on the initial data. To show continuous depen-

dence in Hs′

for s′ < s we need to use a classic interpolation inequality in R
n. If

vi = ω◦ui for i = 1, 2, where ω denotes the embedding of N into R
p then combining

(4.52) and (5.113) we have

‖∂v1 − ∂v2‖2
L2(t) + ‖v1 − v2‖2

L2(t) . eCt

(
‖∂v0

1 − ∂v0
2‖2

L2 + ‖v0
1 − v0

2‖2
L2

)
. (5.114)
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Interpolation, Lemma 4.5, Lemma 4.6, (5.109) and (5.114) yield for s′ < s

‖∂v1 − ∂v2‖Hs′ (t) . ‖∂v1 − ∂v2‖
s′

s

Hs(t)‖∂v1 − ∂v2‖1− s′

s

L2 (t) (5.115)

.

(
‖∂v1‖

s′

s

Hs(t) + ‖∂v2‖
s′

s

Hs(t)

)
‖∂v1 − ∂v2‖1− s′

s

L2 (t)

.

(
‖u0

1‖m
Hs + ‖u0

2‖m
Hs

)
‖∂v1 − ∂v2‖1− s′

s

L2 (t)

.

(
‖u0

1‖m
Hs + ‖u0

2‖m
Hs

)
eCt

(
‖∂v0

1 − ∂v0
2‖L2 + ‖v0

1 − v0
2‖L2

)1− s′

s

Inequalities (5.114) and (5.115) prove that if u1, u2 ∈ C([0, T0], H
s+1(Rn, N)) are

solutions to (1.4) and ‖u0
1 − u0

2‖
H[n

2 ]+4
is small enough then the functions v1 =

ω ◦ u1 and v2 = ω ◦ u2, which are solutions to the ambient equation, depend
continuously in the Hs′+1(Rn, Rp)-norm on the initial data for s′ < s. As mentioned
in the introduction by means of the standard Bona-Smith regularization procedure
([8, 19, 22]) one can prove that the dependence on the initial data is continuous in
Hs+1(Rn, Rp). It is in this sense that we express the well-posedness of (1.4). This
concludes the proof Theorem 1.

Appendix A. Proof of (5.108) for β ≥ 0. Since the proof follows closely the one
of Theorem 4.1 in [32] we only sketch the main ideas here.

We let u1, u2 ∈ C([0, T0], H
s+1(Rn, N) be two solutions of (1.4) with initial

data u0
1 respectively u0

2 and we assume that ||u0
1 − u0

2||
H[ n

2 ]+4
is small. As in [32]

we let γ(x; x, t) be the unique length minimizing geodesic (parametrized by ar-
clength s ∈ [0, l(x, t)]) between u1(x, t) and u2(x, t), where γ(0; x, t) = u1(x, t) and
γ(l(x, t); x, t) = u2(x, t) (the existence of the geodesic follows from the argument
on page 392 in [32]; note that this argument is also applicable if u0

1 and u0
2 are

only close to each other in Ln). Moreover we define Vk = ∂ku1, Wk = ∂ku2 and
V̄k = X(l, 0)Vk as the parallel transport of Vk to the point u2. In the following we
let X(l, 0) =: X .

In [32], page 391, the following commutator formulas are derived: ∀F ∈ Tu1N
we have

XJ(u1)F = J(u2)XF,

[Dk, X ]F =

∫ l

0

X(l, τ)R(∂kγ, ∂sγ)X(τ, 0)Fdτ. (A.1)

Additionally the estimates

||[Dt, X ]V ||L2 + ||[D, X ]∂tu1||L2 + ||D[Dk, X ]Vk||L2

≤c(||W − V̄ ||L2 + ||u1 − u2||L2 (A.2)

have been derived in [32] (see estimates (42), (43) and page 395). In the following
we also need the fact that

||[Dk, X ]Vk||2L2 ≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2). (A.3)

In order to see this we note that

||[Dk, X ]Vk||2L2 ≤c||l∇kγVk||2L2 .
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For n ≥ 3 we can use the Sobolev embedding theorem and Hölder’s inequality to
get (note that |∇γ| ≤ c(|V | + |W |))

||[Dk, X ]Vk||2L2 ≤c||∇l||2L2 |||V |(|V | + |W |)||2Ln

≤c||W − V̄ ||2L2 .

In the case n = 2 one argues with the help of the Brezis-Wainger theorem as in [32],
page 395.

Now we are finally able to prove (5.108). Since u1 and u2 are both solutions of
(1.4) we get

∂tu2 − (J(u2) + β)τ(u2) − X
(
∂tu1 − (J(u1) + β)τ(u1)

)
= 0.

Using the previous definitions and the commutator formula (A.1) we can rewrite
this equation as follows

∂tu2 − X∂tu1 − J(u2)(DkWk − XDkVk) = β(DkWk − XDkVk).

Multiplying this equation with (DkWk − XDkVk ∈ Tu2N) and integrating we get

∫

Rn

〈∂tu2 − X∂tu1, DkWk − XDkVk〉 = β

∫

Rn

|DkWk − XDkVk|2.

Next we calculate
∫

Rn

〈∂tu2 − X∂tu1, DkWk − XDkVk〉

= −
∫

Rn

〈Dk(∂tu2 − X∂tu1), Wk − XVk〉 −
∫

Rn

〈∂tu2 − X∂tu1, [X, Dk]Vk〉

= −
∫

Rn

〈∂tWk − X∂tVk, Wk − XVk〉 −
∫

Rn

〈[Dk, X ]∂tu1, Wk − XVk〉 − I

= − 1

2
∂t

∫

Rn

|Wk − XVk|2 +

∫

Rn

〈[X, ∂t]Vk, Wk − XVk〉 − I − II

= − 1

2
∂t

∫

Rn

|Wk − XVk|2 − I − II + III.

Combining this with the above equality we conclude

1

2
∂t

∫

Rn

|Wk − XVk|2 + β

∫

Rn

|DkWk − XDkVk|2 = −I − II + III.

Next we estimate the three terms on the right hand side. We start with

|II| ≤c||Wk − XVk||L2 ||[Dk, X ]∂tu1||L2

≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2),

where we used (A.2) in the last line. Using the same arguments we also get

|III| ≤c||Wk − XVk||L2 ||[X, ∂t]Vk||L2

≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2).
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In order to estimate I we use equation (1.4), the fact that ∇J = 0 and (A.1) to
rewrite

−I = −
∫

Rn

〈∂tu2 − X∂tu1, [X, Dk]Vk〉

= −
∫

Rn

〈(J(u2) + βτ (u2) − X(J(u1) + β)τ(u1), [X, Dk]Vk〉

= −
∫

Rn

〈(J(u2) + β)
(
DkWk − Dk(XVk) − [X, Dk]Vk

)
, [X, Dk]Vk〉

=

∫

Rn

〈(J(u2) + β)(Wk − XVk), Dk([X, Dk]Vk)〉 + β

∫

Rn

|[X, Dk]Vk|2.

Using Hölder’s inequality, (A.2) and (A.3) we get

|I| ≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2).

Altogether this implies

1

2
∂t

∫

Rn

|W − V̄ |2 + β

∫

Rn

|DkWk − XDkVk|2 ≤ c(||W − V̄ ||2L2 + ||u1 − u2||2L2).

(A.4)

Next we need to estimate 1
2∂t

∫
Rn |u1 − u2|2. In order to do this we argue as in

[32] and we consider N to be isometrically embedded into R
p and we extend J as

a continuous linear operator on R
p. In the following we denote the second funda-

mental form of the embedding N →֒ R
p by A. With the help of these conventions

we calculate

1

2
∂t

∫

Rn

|u1 − u2|2 =

∫

Rn

〈∂t(u1 − u2), u1 − u2〉

=

∫

Rn

〈J(u1)∆u1 − J(u2)∆u2, u1 − u2〉 + β

∫

Rn

〈∆u1 − ∆u2, u1 − u2〉

+

∫

Rn

〈(J(u1) + β)A(u1)(∇u1,∇u1) − (J(u2) + β)A(u2)(∇u2,∇u2), u1 − u2〉.

Arguing as in [32], page 296, we get the estimate
∫

Rn

〈(J(u1) + β)A(u1)(∇u1,∇u1) − (J(u2) + β)A(u2)(∇u2,∇u2), u1 − u2〉

+

∫

Rn

〈J(u1)∆u1 − J(u2)∆u2, u1 − u2〉

≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2).

Moreover we note that

β

∫

Rn

〈∆u1 − ∆u2, u1 − u2〉 = −β||∇u1 −∇u2||2L2

and hence we conclude

1

2
∂t

∫

Rn

|u1 − u2|2 + β||∇u1 −∇u2||2L2 ≤c(||W − V̄ ||2L2 + ||u1 − u2||2L2). (A.5)

Combining (A.4) and (A.5) finishes the proof of of (5.108) for general β ≥ 0.
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