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MODIFIED MIXED REALIZATIONS, NEW ADDITIVE

INVARIANTS, AND PERIODS OF DG CATEGORIES

GONÇALO TABUADA

Abstract. To every scheme, not necessarily smooth neither proper, we can
associate its different mixed realizations (de Rham, Betti, étale, Hodge, etc)
as well as its ring of periods. In this note, following an insight of Kontsevich,
we prove that, after suitable modifications, these classical constructions can
be extended from schemes to the broad setting of dg categories. This leads
to new additive invariants of dg categories, which we compute in the case of
differential operators, as well as to a theory of periods of dg categories. Among
other applications, we prove that the ring of periods of a scheme is invariant
under projective homological duality. Along the way, we explicitly describe
the modified mixed realizations using the Tannakian formalism.

1. Modified mixed realizations

Given a perfect field k and a commutative Q-algebra R, Voevodsky introduced
in [49, §2] the category of geometric mixed motives DMgm(k;R). By construction,
this R-linear rigid symmetric monoidal triangulated category comes equipped with
a ⊗-functor M(−)R : Sm(k) → DMgm(k;R), defined on smooth k-schemes of finite
type, and with a ⊗-invertible object T := R(1)[2] called the Tate motive. Moreover,
when k is of characteristic zero, the preceding functor can be extended from Sm(k)
to the category Sch(k) of all k-schemes of finite type. Recall also the construction
of Voevodsky’s big category of mixed motives DM(k;R). This R-linear symmet-
ric monoidal triangulated category admits arbitrary direct sums and DMgm(k;R)
identifies with its full triangulated subcategory of compact objects.

A differential graded (=dg) category A, over a base field k, is a category enriched
over complexes of k-vector spaces; see §5.1. Every (dg) k-algebra A gives naturally
rise to a dg category with a single object. Another source of examples is provided
by schemes since the category of perfect complexes of every quasi-compact quasi-
separated k-schemeX admits a canonical dg enhancement perfdg(X); see [20, §4.4].
Let us denote by dgcat(k) the category of (small) dg categories and by Hmo(k) its
localization at the class of derived Morita equivalences.

Given an R-linear symmetric monoidal additive category with arbitrary direct
sums M and a ⊗-invertible object O ∈ M, consider the commutative monoid
⊕m∈ZO⊗m in M and the category of (right) ⊕mO⊗m-modules Mod(⊕mO⊗m). In
what follows, we write γ : M → Mod(⊕mO⊗m) for the base-change functor.

Definition 1.1 ((Modified) mixed realization). A mixed realization is an R-linear
lax ⊗-functor H : DM(k;R) → M such that H(⊕mT⊗m) ≃ ⊕mH(T)⊗m. The
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2 GONÇALO TABUADA

associated modified mixed realization is the following composition

H: Sm(k)
M(−)R
−→ DMgm(k;R)

(−)∨

−→ DMgm(k;R)
H
−→ M

γ
−→ Mod(⊕mH(T)⊗m) ,

where (−)∨ stands for the (contravariant) duality autoequivalence.

In what follows, given a smooth k-scheme of finite type X , we will write H(X)
instead of H(M(X)∨R). Our first main result is the following:

Theorem 1.2. Let k be a perfect field and R a commutative Q-algebra. Given a
mixed realization H, there exists a functor Hnc making the diagram commute:

(1.3) Sm(k)

X 7→perfdg(X)

��

H // Mod(⊕mH(T)⊗m)

Hmo(k) Hnc

;;

.

When k is of characteristic zero, the same holds with Sm(k) replaced by Sch(k).

Intuitively speaking, Theorem 1.2 shows that as soon as we ⊗-trivialize the image
of the Tate motive H(T), the modified mixed realization H factors through perfect
complexes! This result is inspired by Kontsevich’s definition of noncommutative
étale cohomology theory; consult the notes [23].

Corollary 1.4 (Derived Morita invariance). Let X and Y be two smooth k-schemes
of finite type and H a mixed realization. If perfdg(X) ≃ perfdg(Y ) in Hmo(k), then

H(X) ≃ H(Y ) in Mod(⊕mH(T)⊗m). When k is of characteristic zero, the same
holds without the smoothness assumption.

2. Examples of modified mixed realizations

Let R be a field extension of Q and (C,⊗,1) an R-linear neutral Tannakian cat-
egory equipped with a ⊗-invertible “Tate” object 1(1). In what follows, we write
Gal(C) for the Tannakian group of C and Gal0(C) for the kernel of the homomor-
phism Gal(C) ։ Gm, where Gm is the Tannakian group of the smallest Tannakian
subcategory of C containing 1(1).

Let H : DM(k;R) → D(Ind(C)) be an R-linear triangulated ⊗-functor with val-
ues in the derived category of ind-objects of C. Assume that H preserves arbitrary
direct sums and sends R(1) to 1(1). Given such a functor, let H∗ be its com-
position with the total cohomology functor D(Ind(C)) → GrZ(Ind(C)). Note that
H∗(T) = H2(P1)⊗(−1) and that H and H∗ are mixed realizations.

Recall from the Tannakian formalism that, since C is an R-linear neutral Tan-
nakian category, GrbZ(C) is ⊗-equivalent to the R-linear category RepZ(Gal(C)) of
finite dimensional Z-graded continuous representations of Gal(C). Recall also that
the inclusion Gal0(C) ⊂ Gal(C) gives rise to the following restriction functor

RepZ(Gal(C)) −→ RepZ/2(Gal0(C)) {Vn}n∈Z 7→ (⊕nV2n,⊕nV2n+1) ,(2.1)

where RepZ/2(Gal0(C)) stands for the category of finite dimensional Z/2-graded

continuous representations of Gal0(C). Our second main result is the following:

Theorem 2.2. Under the above assumptions, the restriction of the base-change

functor GrZ(Ind(C))
γ
→ Mod(⊕mH2(P1)⊗(−m)) to GrbZ(C) admits a factorization:

GrbZ(C) ≃ RepZ(Gal(C))
(2.1)
−→ RepZ/2(Gal0(C)) ( Mod(⊕mH2(P1)⊗(−m)) .
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Consequently, whenever the functor H preserves compact objects, the modified mixed
realization associated to H∗ is given by

H∗ : Sm(k) −→ RepZ/2(Gal0(C)) X 7→ (⊕nH
2n(X),⊕nH

2n+1(X)) .

Moreover, when k is of characteristic zero we can replace Sm(k) by Sch(k).

Modified Nori realization. Let k be a field of characteristic zero, equipped
with an embedding k →֒ C, and R a field extension of Q. Recall from [11, §2][17,
§8] the construction of the R-linear neutral Tannakian category of Nori mixed
motives NMM(k;R) and of its ⊗-invertible Tate object 1(1). As proved in [11,
Prop. 7.11], there exists an R-linear triangulated ⊗-functor HN from DM(k;R) to
D(Ind(NMM(k;R))) which satisfies the conditions of Theorem 2.2. Consequently,
the modified mixed realization associated to H∗

N is given by

H∗
N : Sch(k) −→ RepZ/2(Gal0(NMM(k;R))) X 7→ (⊕nH

2n
N (X),⊕nH

2n+1
N (X)) .

Modified Jannsen realization. Recall from [18, Part I] the construction of the
R-linear neutral Tannakian category of Jannsen mixed motives JMM(k;R) and of
its Tate object 1(1). As explained in [17, Prop. 10.3.3], the universal property
of Nori’s category of mixed motives yields an exact ⊗-functor from NMM(k;R) to
JMM(k;R). The compositionHJ ofHN with the functor from D(Ind(NMM(k;R)))
to D(Ind(JMM(k;R))) satisfies the conditions of Theorem 2.2. Consequently, the
modified mixed realization associated to H∗

J is given by

H∗
J : Sch(k) −→ RepZ/2(Gal0(JMM(k;R))) X 7→ (⊕nH

2n
J (X),⊕nH

2n+1
J (X)) .

Modified de Rham realization. Let Vect(k) be the k-linear neutral Tannakian
category of finite dimensional k-vector spaces, equipped with 1(1) := k. In this case,
the Tannakian group Gal0(Vect(k)) is trivial and RepZ/2(Gal0(Vect(k))) reduces to

the category of finite dimensional Z/2-graded k-vector spaces VectZ/2(k). Recall
that JMM(k;Q) comes equipped with an exact de Rham realization ⊗-functor from
JMM(k;Q) to Vect(k). The composition HdR of HJ with the induced functor from
D(Ind(JMM(k;Q))) to D(Ind(Vect(k))) satisfies the conditions of Theorem 2.2.
Consequently, the modified mixed realization associated to H∗

dR is given by

H∗
dR : Sch(k) −→ VectZ/2(k) X 7→ (⊕nH

2n
dR(X),⊕nH

2n+1
dR (X)) .

Modified Betti realization. Let Vect(Q) be the Q-linear neutral Tannakian
category of finite dimensional Q-vector spaces, equipped with 1(1) := Q. Recall
that JMM(k;Q) comes equipped with an exact Betti realization ⊗-functor from
JMM(k;Q) to Vect(Q). The composition HB of HJ with the induced functor from
D(Ind(JMM(k;Q))) to D(Ind(Vect(Q))) satisfies the conditions of Theorem 2.2.
Consequently, the modified mixed realization associated to H∗

B is given by

H∗
B : Sch(k) −→ VectZ/2(Q) X 7→ (⊕nH

2n
B (X),⊕nH

2n+1
B (X)) .

Modified de Rham-Betti realization. Let Vect(k,Q) be the Q-linear neutral
Tannakian category of triples (V,W, ω) (where V is a finite dimensional k-vector
space, W a finite dimensional Q-vector space, and ω an isomorphism V ⊗k C →
W ⊗Q C), equipped with the Tate object 1(1) := (k,Q, ·(2πi)−1). Recall that
JMM(k;Q) comes equipped with an exact de Rham-Betti realization ⊗-functor
from JMM(k;Q) to Vect(k,Q). The composition HdRB of HJ with the functor
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from D(Ind(JMM(k;Q))) to D(Ind(Vect(k,Q))) satisfies the conditions of Theorem
2.2. Consequently, the modified mixed realization associated to H∗

dRB is given by

H∗
dRB : Sch(k) −→ RepZ/2(Gal0(Vect(k,Q))) X 7→ (⊕nH

2n
dRB(X),⊕nH

2n+1
dRB (X)) .

Modified Étale realization. Given a prime l, let Repl(Gal(k/k)) be the Ql-
linear neutral Tannakian category of finite dimensional l-adic representations of the
absolute Galois group of k, equipped with the Tate object 1(1) := limnµln . Recall
that JMM(k;Q) comes equipped with an exact étale realization ⊗-functor from
JMM(k;Q) to Repl(Gal(k/k)). The composition Het of HJ with the functor from

D(Ind(JMM(k;Q))) to D(Ind(Repl(Gal(k/k)))) satisfies the conditions of Theorem
2.2. Consequently, the modified mixed realization associated to H∗

et is given by

H∗
et : Sch(k) −→ RepZ/2(Gal0(k/k)) X 7→ (⊕nH

2n
et (X),⊕nH

2n+1
et (X)) .

Remark 2.3. The preceding functor was suggested by Kontsevich in [23].

Modified Hodge realization. Recall from [38, §1] the construction of the Q-
linear neutral Tannakian category of mixed Q-Hodge structures MHS(Q) and of
its ⊗-invertible Tate object 1(1). Recall that JMM(k;Q) comes equipped with an
exact Hodge realization ⊗-functor from JMM(k;Q) to MHS(Q). Let us denote by
The composition HHod of HJ with the induced functor from D(Ind(JMM(k;Q)))
to D(Ind(MHS(Q))) satisfies the conditions of Theorem 2.2. Consequently, the
modified mixed realization associated to HHod is given by

H∗
Hod : Sch(k) −→ RepZ/2(Gal0(MHS(Q))) X 7→ (⊕nH

2n
Hod(X),⊕nH

2n+1
Hod (X)) .

Remark 2.4 (Modified pure R-Hodge structures). Recall from [38, pages 33-34] the
construction of the R-linear neutral Tannakian category of pure R-Hodge structures
HS(R) and of its ⊗-invertible Tate object 1(1). In this case, the Tannakian group
Gal(HS(R)) is the Hodge-Deligne circle ResC/R(Gm) and Gal0(HS(R)) the unitary
group U(1). Base-change along Q ⊂ R gives then rise to the modified realization

(H∗
Hod)R : SmProj(k) −→ RepZ/2(U(1)) X 7→ (⊕nH

2n
Hod(X)R,⊕nH

2n+1
Hod (X)R) ,

where SmProj(k) stands for the category of smooth projective k-schemes.

3. New additive invariants

Let A,B ⊆ C be dg categories yielding a semi-orthogonal decomposition H0(C) =
〈H0(A),H0(B)〉 in the sense of Bondal-Orlov [8]. A functor E : Hmo(k) → M,
with values in an additive category, is called an additive invariant if, for every dg
categoriesA,B ⊆ C, the inclusions A,B ⊆ C induce an isomorphism E(A)⊕E(B) ≃
E(C). Examples of additive invariants include algebraic K-theory, cyclic homology
and all its variants, topological Hochschild homology, etc; consult [40, §2.2]. As an
application of Theorem 1.2, we obtain several new examples of additive invariants:

Proposition 3.1. Given a mixed realization H, the associated functor Hnc (as in
Theorem 1.2) is an additive invariant. Moreover, the following holds:
(i) Given a smooth k-scheme of finite type Y and a smooth closed subscheme

X →֒ Y , we have an isomorphism between Hnc(perfdg(Y )X) and H(X) where
perfdg(Y )X stands for the full dg subcategory of perfdg(Y ) consisting of those
perfect complexes which are supported on X;

(ii) Given a dg category A, we have Hnc(A[t]) ≃ Hnc(A) where A[t] := A⊗ k[t].
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By combining Proposition 3.1 with the modified mixed realizations of §2, we
hence obtain the new additive invariants Hnc

N , Hnc
J , Hnc

dR, H
nc
B , Hnc

dRB, H
nc
et , H

nc
Hod.

Note that Theorem 1.2 determines the value of Hnc at the dg categories of the form
perfdg(X). Moreover, Proposition 3.1(i) shows that in order to compute H(X) we
can first embed X into any ambient smooth k-scheme Y and then use the associ-
ated dg category perfdg(Y )X . In what follows, we compute the value of the new
additive invariants Hnc at some “truly noncommutative” dg categories.

Example 3.2 (Finite dimensional algebras of finite global dimension). Let A be a
finite dimensional k-algebra of finite global dimension. We write r for the number of
simple (right) A-modules and Cj for the center of the division k-algebra EndA(Sj)
associated to the simple (right) A-module Sj . By combining Proposition 3.1 with
[45, pages 386-387], we obtain the computationHnc(A) ≃ ⊕r

j=1H(Spec(Cj)). When

k is algebraically closed, we have Cj = k and hence Hnc(A) ≃ ⊕r
j=1H(Spec(k)).

Proposition 3.3 (Calkin algebra). Given a mixed realization H as in Theorem
2.2, we have the following isomorphism of Z/2-graded representations

(H∗)nc(Σ(X)) ≃ (⊕nH
2n+1(X),⊕nH

2n(X)) ∈ RepZ/2(Gal0(C)) ,

where Σ stands for the Calkin algebra and Σ(X) := perfdg(X)⊗ Σ.

Roughly speaking, Proposition 3.3 shows that the assignment X 7→ Σ(X) cor-
responds to switching the degrees of the Z/2-graded representation H∗(X). Our
third main result is the following computation:

Theorem 3.4 (Differential operators). Let k be a field of characteristic zero, X a
smooth k-scheme of finite type, and DX the sheaf of differential operators on X.
Assume that there exists a filtration by closed subschemes

(3.5) ∅ = X−1 →֒ X0 →֒ · · · →֒ Xj →֒ · · · →֒ Xr−1 →֒ Xr = X

such that Xj\Xj−1, 0 ≤ j ≤ r, are smooth affine k-schemes of finite type1. Under
these assumptions, Hnc(perfdg(DX)) ≃ H(X) for every mixed realization H.

Example 3.6 (Weyl algebras). In the particular case where X = Ar, DX identifies
with the rth Weyl algebra Wr. Since the functor H is A1-homotopy invariant, it
follows then from Theorem 3.4 that Hnc(Wr) ≃ H(Spec(k)).

Example 3.7 (Lie algebras). Let G be a connected semisimple algebraic C-group,
B a Borel subgroup of G, g the Lie algebra of G, and Uev(g)/I the quotient of
the universal enveloping algebra of g by the kernel of the trivial character. Thanks
to Beilinson-Bernstein’s celebrated “localisation” result [4], it follows then from
Theorem 3.4 that Hnc(Uev(g)/I) ≃ Hnc(perfdg(DG/B)) ≃ H(G/B).

Remark 3.8. Theorem 3.4 does not holds for every additive invariant! For example,
in the case of Hochschild homology we have HHn(perfdg(DX)) ≃ H2d−n

dR (X) for ev-

ery smooth affine k-scheme X of dimension d; see [51, Thm. 2]. Since H2d
dR(X) = 0,

this implies that HH(perfdg(DX)) 6≃ HH(perfdg(X)). More generally, we have
HH(perfdg(DX)) 6≃ HH(A) for every commutative k-algebra A.

1Thanks to the Bialynicki-Birula decomposition [6], this holds, for example, for every smooth
projective k-scheme X equipped with a Gm-action in which the fixed points are isolated (e.g.
projective homogeneous varieties, toric varieties, symmetric varieties, etc).
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4. Periods of dg categories

Let k be a field of characteristic zero, equipped with an embedding k →֒ C, and
C[t, t−1] the Z-graded C-algebra of Laurent polynomials with t of degree 1.

Given an object (V,W, ω) of Vect(k,Q), let P (V,W, ω) ⊆ C be the subset of
entries of the matrix representations of ω (with respect to basis of V and W ); see

[17, §9.2]. In the same vein, given an object {(Vn,Wn, ωn)}n∈Z of GrbZ(Vect(k,Q)),
let P({(Vn,Wn, ωn)}n∈Z) be the Z-graded k-subalgebra of C[t, t−1] generated in
degree n by the elements of the set P (Wn,Wn, ωn). In the case of a k-scheme of
finite type X , P(X) := P(H∗

dRB(X)) is called the Z-graded algebra of periods of X .
This algebra, originally introduced by Grothendieck in the sixties, plays nowadays
a key role in the study of transcendental numbers; see [17, 25].

Consider the Z/2-graded C-algebra C2πi
Z/2 := C[t, t−1]/〈1− (2πi)t2〉 and the asso-

ciated quotient homomorphism φ : C[t, t−1] ։ C2πi
Z/2.

The category Ind(Vect(k,Q)) is equivalent to the category of triples (V,W, ω),
where V is a (not necessarily finite dimensional) k-vector space,W a Q-vector space,
and ω an isomorphism V ⊗k C → W ⊗Q C. Given an object {(Vn,Wn, ωn)}n∈Z of
GrZ(Ind(Vect(k,Q))), let us denote by Pnc({(Vn,Wn, ωn)}n∈Z) the Z/2-graded k-
subalgebra of C2πi

Z/2 generated in degree 0, resp. degree 1, by the elements of the set

∪n∈ZP (V2n,W2n, ω2n)(2πi)
−n resp. ∪n∈Z P (V2n+1,W2n+1, ω2n+1)(2πi)

−n .

Making use of the new additive invariant Hnc
dRB, we can now extend Grothendieck’s

theory of periods from schemes to the broad setting of dg categories.

Definition 4.1. Let A be a dg category. The Z/2-graded algebra of periods Pnc(A)
of A is the Z/2-graded k-algebra Pnc((H∗

dRB)
nc(A)).

Given dg categoriesA and B, let Pnc(A)⋄Pnc(B) be the Z/2-graded k-subalgebra
of C2πi

Z/2 generated by Pnc(A) and Pnc(B). Our fourth main result is the following:

Theorem 4.2. The following implications hold:
(i) If A ≃ B in Hmo(k), then Pnc(A) = Pnc(B);
(ii) If (H∗

dRB)
nc(A) ≃ H∗

dRB(X) for some X ∈ Sch(k), then Pnc(A) = φ(P(X));
(iii) If A,B ⊆ C are dg categories yielding a semi-orthogonal decomposition H0(C) =

〈H0(A),H0(B)〉, then Pnc(C) = Pnc(A) ⋄ Pnc(B).

Corollary 4.3 (Derived Morita invariance). Let X and Y be two k-schemes of
finite type. If perfdg(X) ≃ perfdg(Y ) in Hmo(k), then φ(P(X)) = φ(P(Y )).

Intuitively speaking, Theorem 4.2 and Corollary 4.3 show that as soon as we
trivialize the graded polynomial 1 − (2πi)t2 ∈ C[t, t−1], the resulting theory of
periods factors through perfect complexes!

Example 4.4 (Finite dimensional algebras of finite global dimension). Let A be a
finite dimensional k-algebra of finite global dimension. Recall from Example 3.2
that (H∗

dRB)
nc(A) ≃ ⊕r

j=1H
∗
dRB(Spec(Cj)) for finite field extensions Cj/k. The-

orem 4.2 then implies that Pnc(A) = φ(P(Πr
j=1Spec(Cj))). As explained in [17,

§12.3], since Spec(Cj) is 0-dimensional, P(Πr
j=1Spec(Cj)) agrees with the field ex-

tension k(∪r
j=1Cj). Consequently, we conclude that Pnc(A) = k(∪r

j=1Cj). In the

case where k ⊆ Q, we hence obtain solely algebraic numbers.

As the following example illustrates, in some cases Theorem 4.2 furnishes “non-
commutative models” for the algebra of periods:
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Example 4.5 (Quadric fibrations). Let q : Q → S be a flat quadric fibration of
relative dimension d. As proved in [26, Thm. 4.2], we have a semi-orthogonal
decomposition perf(Q) = 〈perf(F), perf(S)0, . . . , perfdg(S)d−1〉, where F stands for
the sheaf of even parts of the Clifford algebra associated to q and perf(S)j ≃ perf(S)
for every 0 ≤ j ≤ d− 1. Assuming that perf(S) admits a full exceptional collection
(e.g. S = Pn), we hence conclude from Theorem 4.2 that

φ(P(Q)) = Pnc(perfdg(F)) ⋄ Pnc(k) ⋄ · · · ⋄ Pnc(k) = Pnc(perfdg(F)) .

Roughly speaking, Example 4.5 shows that modulo 2πi all the information about
the periods of Q is encoded in the “noncommutative model” perfdg(F).

As a further application of Theorem 4.2, we have the following homological pro-
jective duality (=HPD) invariance result: let X be a smooth projective k-scheme
equipped with an ample line bundle OX(1) andX → P(V ) the associated morphism
where V = H0(X,OX(1))∗. Assume that perf(X) admits a Lefschetz decomposi-
tion perf(X) = 〈A0,A1(1), . . . ,Ai−1(i − 1)〉 with respect to OX(1) in the sense of
[27, Def. 4.1]. Following [27, Def. 6.1], let Y be the HP-dual2 of X and OY (1) and
Y → P(Y ∗) the associated ample line bundle and morphism, respectively.

Theorem 4.6 (HPD-invariance). Let X and Y be as above. Given a linear subspace
L ⊂ V ∗, consider the associated linear sections3 XL := X ×P(V ) P(L

⊥) and YL :=
Y ×P(Y ∗) P(L). Assume that the triangulated category A0 is generated by exceptional

objects, that dim(XL) = dim(X)−dim(L), and that dim(YL) = dim(Y )−dim(L⊥).
Under these notations and assumptions, we have φ(P(XL)) = φ(P(YL)).

Intuitively speaking, Theorem 4.6 shows that modulo 2πi the algebra of peri-
ods is invariant under homological projective duality. To the best of the author’s
knowledge, this invariance result is new in the literature.

Example 4.7. The assumptions of Theorem 4.6 are known to hold in the case of
linear duality, Veronese-Clifford duality, Grassmannian-Pfaffian duality, spinor du-
ality, etc; consult [28, §4][29, §10-11] and the references therein. In the case of
Grassmannian-Pfaffian duality, we hence conclude, for example, that φ(P(XL)) =
φ(P(YL)) when XL is a K3 surface and YL a Pfaffian cubic 4-fold, when XL and
YL are two non-birational Calabi-Yau 3-folds, when XL is a Fano 3-fold and YL a
cubic 3-fold, when XL is a Fano 4-fold of index 1 and YL a surface of degree 42,
when XL is a Fano 5-fold of index 2 and YL a curve of genus 43, etc.

5. Preliminaries

Throughout the note k will be a perfect field and R a commutative Q-algebra.

5.1. Dg categories. Let (C(k),⊗, k) be the category of (cochain) complexes of
k-vector spaces. A dg category A is a category enriched over C(k) and a dg functor
F : A → B is a functor enriched over C(k); consult the survey [20].

Let A be a dg category. The opposite dg category Aop has the same objects
as A and Aop(x, y) := A(y, x). The category H0(A) has the same objects as A
and H0(A)(x, y) := H0(A(x, y)), where H0 stands for 0th cohomology. A right
dg A-module is a dg functor Aop → Cdg(k) with values in the dg category Cdg(k)
of complexes of k-vector spaces. Let us denote by C(A) the category of right dg

2In general, the HP-dual of X is a noncommutative variety in the sense of [28, §2.4].
3These linear sections are not necessarily smooth.
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A-modules. Following [20, §3.2], the derived category D(A) of A is defined as the
localization of C(A) with respect to the objectwise quasi-isomorphisms. We write
Dc(A) for the triangulated subcategory of compact objects.

A dg functor F : A → B is called a derived Morita equivalence if it induces an
equivalence of categories D(A) ≃ D(B); see [20, §4.6]. As proved in [44, Thm. 5.3],
dgcat(k) admits a Quillen model structure whose weak equivalences are the derived
Morita equivalences. Let us denote by Hmo(k) the associated homotopy category.

The tensor product A⊗B of dg categories is defined as follows: the set of objects is
the cartesian product and (A⊗B)((x,w), (y, z)) := A(x, y)⊗B(w, z). As explained
in [20, §2.3], this construction gives rise to a symmetric monoidal structure on
dgcat(k), which descends to the homotopy category Hmo(k). A dg A-B-bimodule
B is a dg functor A⊗ Bop → Cdg(k) or equivalently a right dg (Aop ⊗ B)-module.

Foloowing Kontsevich [21, 22, 24], a dg category A is called smooth if the dg
A-A-bimodule A ⊗ Aop → Cdg(k), (x, y) 7→ A(y, x), belongs to Dc(Aop ⊗ A) and
proper if

∑
n dimHnA(x, y) < ∞ for any pair of objects (x, y). Examples include

finite dimensional k-algebras of finite global dimension (when k is perfect) and dg
categories of perfect complexes perfdg(Y ) associated to smooth proper k-schemes Y .

5.2. Orbit categories. Let (M,⊗,1) be an R-linear symmetric monoidal additive
category and O ∈ M a ⊗-invertible object. The associated orbit category M/−⊗O

has the same objects as M and morphisms HomM/−⊗O
(a, b) defined by the direct

sum ⊕m∈ZHomM(a, b⊗O⊗m). Given objects a, b, c and morphisms

f = {fm}m∈Z ∈ ⊕mHomM(a, b⊗O⊗m) g = {gm}m∈Z ∈ ⊕mHomM(b, c⊗O⊗m) ,

the jth-component of g ◦ f is defined as
∑

m(gj−m ⊗ O⊗m) ◦ fm. The functor
π : M → M/−⊗O defined by a 7→ a and f 7→ f = {fm}m∈Z, where f0 = f and
fm = 0 if m 6= 0, is endowed with an isomorphism π ◦ (− ⊗ O) ⇒ π and is 2-
universal among all such functors. The category M/−⊗O is R-linear, additive, and
inherits from M a symmetric monoidal structure making π symmetric monoidal.

6. Proof of Theorem 1.2

Let SH(k) be the Morel-Voevodsky’s stable A1-homotopy category of (P1,∞)-
spectra [32, 50] and DA(k;R) the R-coefficients variant introduced in [3, §4]. Re-
call from loc. cit. that these categories are related by a triangulated ⊗-functor
(−)R : SH(k) → DA(k;R). As proved in [37], the E∞-ring spectrum KGL ∈ SH(k)
representing homotopy K-theory admits a strictly commutative model. Therefore,
we can consider the closed symmetric monoidal Quillen model categoryMod(KGLR)
of KGLR-modules. Let us denote by Ho(Mod(KGLR)) the associated homotopy
category. By construction, we have the following composition

(6.1) Sm(k)
Σ∞(−+)
−→ DA(k;R)

−∧KGLR−→ Ho(Mod(KGLR)) .

Lemma 6.2. (i) The triangulated category Ho(Mod(KGLR)) is compactly gener-
ated by the objects Σ∞(Y+)R ∧ KGLR with Y a smooth projective k-scheme.
Moreover, these latter objects are strongly dualizable and self-dual.

(ii) The objects Σ∞(X+)R ∧KGLR, with X ∈ Sm(k), are strongly dualizable.

Proof. (i) As proved in [3, Prop. 2.2.27-2], the triangulated category DA(k;R) is
compactly generated by the objects Σ∞(Y+)R(m) with Y a smooth projective k-
scheme and m ∈ Z. Thanks to the periodicity isomorphism KGLR ≃ KGLR(1)[2],
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we then conclude that the category Ho(Mod(KGLR)) is compactly generated by the
objects Σ∞(Y+)∧KGLR. The fact that these latter objects are strongly dualizable
and self-dual is proved in [42, Lem. 8.22].

(ii) It is well-known that the strongly dualizable objects of a closed symmetric
monoidal triangulated category are stable under distinguished triangles and direct
summands. Therefore, since the objects Σ∞(X+)R ∧KGLR, with X ∈ Sm(k), are
compact, the proof follows now from item (i). �

Recall from [41, §2][39, §4] the construction of the category of noncommutative
mixed motives Mot(k;R). By construction, this closed symmetric monoidal trian-
gulated comes equipped with a ⊗-functor U(−)R : Hmo(k) → Mot(k;R). Moreover,
it is naturally enriched over the derived category D(R); we denote this enrichment
by HomD(R)(−,−). Given dg categoriesA and B, with A smooth and proper, recall

from [39, Prop. 4.4] that we have a natural isomorphism

(6.3) HomD(R)(U(A)R, U(B)R) ≃ KH(Aop ⊗ B) ∧HR ,

where KH(Aop ⊗ B) stands for the homotopy K-theory spectrum of Aop ⊗ B and
HR for the Eilenberg-MacLane ring spectrum of R.

Proposition 6.4. There exists an R-linear fully-faithful triangulated ⊗-functor Φ
making the following diagram commute

(6.5) Sm(k)

(6.1)

��

X 7→perfdg(X)
// Hmo(k)

U(−)R

��

Ho(Mod(KGLR))

Hom(−,KGLR)

��
Ho(Mod(KGLR))

Φ
// Mot(k;R) ,

where Hom(−,−) stands for the internal Hom. The functor Φ preserves moreover
arbitrary direct sums.

Proof. As proved in [42, Cor. 2.5(ii)], there exists an R-linear fully-faithful trian-
gulated ⊗-functor Φ making the following diagram commute:

Sm(k)

Σ∞(−+)R

��

X 7→perfdg(X)
// Hmo(k)

U(−)R

��
DA(k;R)

−∧KGLR

��

Mot(k;R)

Hom(−,U(k)R)

��
Ho(Mod(KGLR))

Φ
// Mot(k;R) .

The functor Φ preserves moreover arbitrary direct sums. The proof will consist on
“moving” the internal Hom from the right hand-side to the left-hand side.

Recall from [42, §7-8] the construction of the closed symmetric monoidal triangu-
lated category DA(k;Mot(k;R)), of theE∞-object in KGLnc;R in DA(k;Mot(k;R)),
which admits a strictly commutative model, of the closed symmetric monoidal
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Quillen model category Mod(KGLnc;R) of KGLnc;R-modules, and of the homotopy
category Ho(Mod(KGLnc;R)). By construction, we have an adjunction of categories

(6.6) Ho(Mod(KGLnc;R))

forget

��
DA(k;Mot(k;R)) .

−⊗KGLnc;R

OO

Recall also from [49, page 535] that we have also a commutative diagram

(6.7) DA(k;Mot(k;R))
−⊗KGLnc;R // Ho(Mod(KGLnc;R))

DA(k;R)
−∧KGLR

//

OO

Ho(Mod(KGLR)) ,

OO

where the vertical left hand-side functor is induced by the change of coefficients from
R to Mot(k;R) and the vertical right hand-side functor is obtained by left Kan ex-
tension. By construction, the categories DA(k;Mot(k;R)) and Ho(Mod(KGLnc;R))
are enriched over noncommutative mixed motives Mot(k;R); we denote this enrich-
ment by HomMot(k;R)(−,−). As explained in [42, §8], Φ is defined as the composi-

tion of the vertical right hand-side functor in (6.7) with HomMot(k;R)(KGLnc;R,−).

We now claim that the following two compositions (of the diagram (6.5))

Sm(k)
X 7→perfdg(X)

// Hmo(k)
U(−)R // Mot(k;R)

Sm(k)
(6.1) // Ho(Mod(KGLR))

Hom(−,KGLR) // Ho(Mod(KGLR))
Φ // Mot(k;R)

can be described by the same formula:

(6.8) X 7→ HomMot(k;R)(KGLnc;R,Hom(Σ∞(X+)⊗KGLnc;R,KGLnc;R)) .

In what concerns the first composition, we have the following isomorphisms

HomMot(k;R)(KGLnc;R,Hom(Σ∞(X+)⊗KGLnc;R,KGLnc;R))(6.9)

≃ HomMot(k;R)(Σ
∞(X+)⊗KGLnc;R,KGLnc;R))(6.10)

≃ HomMot(k;R)(Σ
∞(X+),KGLnc;R))(6.11)

≃ U(perfdg(X))R ,(6.12)

where (6.10) follows from the classical (⊗,Hom) adjunction, (6.11) from the above
adjunction (6.6), and (6.12) from [49, Prop. 7.26]. In what concerns the second
composition, the noncommutative mixed motive (6.9) identifies with

HomMot(k;R)(KGLnc;R,Hom(Σ∞(X+)⊗KGLR,KGLR))

since the object Σ∞(X+)R ∧KGLR is strongly dualizable (see Lemma 6.2(ii)), the
vertical right hand-side functor in (6.7) is symmetric monoidal, and the diagram
(6.7) is commutative. This finishes the proof of Proposition 6.4. �

Let HZ ∈ SH(k) be the E∞-ring spectrum representing motivic cohomology. On
the one hand, we have KGLR ≃ ⊕m∈ZHZR(m)[2m]; see [7][35, §6]. On the other
hand, Voevodsky’s big category of mixed motives DM(k;R) identifies with the ho-
motopy category Ho(Mod(HZR)) of HZR-modules; see [36]. Under this identifica-
tion, the Tate object T := R(1)[2] corresponds to the HZR-module HZR(1)[2]. Since
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the motives M(X)R, with X ∈ Sm(k), are strongly dualizable, base-change along
HZR → KGLR gives then rise to an R-linear triangulated ⊗-functor −∧HZR

KGLR

making the following diagram commute:

(6.13) Sm(k)

M(−)R

��

Sm(k)

(6.1)

��
DM(k;R)

Hom(−,M(Spec(k))R)

��

Ho(Mod(KGLR))

Hom(−,KGLR)

��
DM(k;R)

−∧HZR
KGLR

// Ho(Mod(KGLR)) .

We now have all the ingredients necessary for the construction of the functor Hnc.
Thanks to Lemma 6.2, the triangulated category Ho(Mod(KGLR)) is compactly

generated. Therefore, since the triangulated functor Φ preserves arbitrary direct
sums, we conclude from [33, Thm. 8.4.4] that it admits a right adjoint Φr.

As mentioned above, we have KGLR ≃ ⊕m∈ZHZR(m)[2m]. Therefore, since
by assumption H is lax ⊗-functor and H(⊕mT⊗m) ≃ ⊕mH(T)⊗m, we have the
following commutative diagram

(6.14) DM(k;R)

−∧HZR
KGLR

��

DM(k;R)

γ

��

H // M

γ

��
Ho(Mod(KGLR)) ι

// Mod(⊕mT⊗m)
H′

// Mod(⊕mH(T)⊗m) ,

where ι stands for the canonical functor and H ′ for the R-linear lax ⊗-functor
naturally associated to H . The searched functor Hnc can now be defined as:

(6.15) Hmo(k)
U(−)R
→ Mot(k;R)

Φr

→ Ho(Mod(KGLR))
H′◦ι
−→ Mod(⊕mH(T)⊗m) .

The commutativity of diagram (1.3) follows now from the commutativity of dia-
grams (6.5) and (6.13)-(6.14), and from the fact that the functor Φ is fully-faithful.
This concludes the proof of the first claim of Theorem 1.2.

Let us now assume that k is of characteristic zero and prove the second claim of
Theorem 1.2. Recall that a cartesian square of k-schemes of finite type

(6.16) Z ×X V

��

// V

p

��
Z

i
// X

is called an abstract blow-up square if i is a closed embedding and p a proper map
inducing an isomorphism p−1(X\Z)red ≃ (X\Z)red. Consider the composition

Γ1 : Sch(k)
(6.1)
−→ Ho(Mod(KGLR))

Hom(−,KGLR)
−→ Ho(Mod(KGLR))

as well as the composition

Γ2 : Sch(k)
X 7→perfdg(X)

−→ Hmo(k)
U(−)R
−→ Mot(k;R)

Φr

−→ Ho(Mod(KGLR)) .
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Given a k-scheme of finite type X , Hironaka’s resolution of singularities (see [15,
Thm. 1]) yields a finite sequence of proper maps

Xr
pr
−→ Xr−1 −→ · · · −→ Xj

pj

−→ Xj−1 −→ · · · −→ X1
p1
−→ X0 := X

with Xr smooth and Xj obtained from Xj−1 by an abstract blow-up square

Zj−1 ×Xj−1 Xj

��

// Xj

pj

��
Zj−1

// Xj−1

with Zj−1 smooth. Using the commutativity of diagram (6.5), the fully-faithfulness
of the functor Φ, and the fact that the k-schemes Xr, Zr−1, and Zr−1 ×Xr−1 Xr

are smooth, we can then inductively apply Lemma 6.17 below in order to conclude
that Γ1(X) ≃ Γ2(X). Consequently, by definition of H and Hnc, we have H(X) ≃
Hnc(perfdg(X)) in Mod(⊕mH(T)⊗m). This finishes the proof of Theorem 1.2.

Lemma 6.17. The following commutative squares

(6.18) Γ1(X)
Γ1(p) //

Γ1(i)

��

Γ1(V )

��

Γ2(X)
Γ2(p) //

Γ2(i)

��

Γ2(V )

��
Γ1(Z) // Γ1(Z ×X V ) Γ2(Z) // Γ1(Z ×X V ) ,

obtained by applying Γ1 and Γ2 to (6.16), are homotopy cartesian.

Proof. As explained in [48, §4], the functor Σ∞(−+) satisfies descent along ab-
stract blow-up squares, i.e. it sends abstract blow-up squares to homotopy cartesian
squares. Moreover, the objects Σ∞(X+), with X ∈ Sch(k), are compact in SH(k).
Making use of Lemma 6.2, we then conclude that the objects Σ∞(X+)R ∧ KGLR,
with X ∈ Sch(k), are strongly dualizable in Ho(Mod(KGLR)). This implies that
the left-hand side square in (6.18) is homotopy cartesian.

Given k-schemes of finite type X and Y , with Y moreover smooth projective,
we have natural isomorphisms

HomD(R)(U(perfdg(Y ))R, U(perfdg(X))R)

≃ KH(perfdg(Y )op ⊗ perfdg(X)) ∧HR(6.19)

≃ KH(perfdg(Y )⊗ perfdg(X)) ∧HR(6.20)

≃ KH(Y ×X) ∧HR ,(6.21)

where (6.19) is a particular case of (6.3), (6.20) follows from the derived Morita
equivalence perfdg(Y )op ≃ perfdg(Y ),G 7→ Hom(G,OY ), and (6.21) from the de-
rived Morita equivalence perfdg(Y )⊗perfdg(X) ≃ perfdg(Y ×X), (G,H) 7→ G⊠H,
proved in [46, Lem. 4.26]. By applying the functor HomD(R)(U(perfdg(Y ))R,−) to

perfdg(X)

i∗

��

p∗

// perfdg(V )

��
perfdg(Z) // perfdg(Z ×X V ) ,



MODIFIED MIXED REALIZATIONS, ADDITIVE INVARIANTS, AND PERIODS 13

we hence obtain the following commutative square:

(6.22) KH(Y ×X) ∧HR
p∗

//

i∗

��

KH(Y × V ) ∧HR

��
KH(Y × Z) ∧HR // KH(Y × (Z ×X V )) ∧HR .

As proved in [14, Thm. 3.5], homotopy K-theory satisfies descent along abstract
blow-up squares. Therefore, since −∧HR preserves homotopy (co)cartesian squares
and Y × (6.16) is also an abstract blow-up square, the preceding square (6.22) is
homotopy cartesian. Lemma 6.2, combined with the commutative diagram (6.5),
allows us then to conclude that the right-hand side square in (6.18) is homotopy
cartesian. This finishes the proof of Lemma 6.17. �

7. Proof of Theorem 2.2

Note that ⊕mH2(P1)⊗(−m) belongs to GrZ(Ind(C)), that H2(P1)⊗(−1) belongs

to GrbZ(C), and that we have the following adjunction of categories:

(7.1) Mod(⊕mH2(P1)⊗(−m))

forget

��
GrZ(Ind(C)) .

γ

OO

Given any object a := {an}n∈Z of GrbZ(C), we have a natural isomorphism

γ(a⊗H2(P1)⊗(−1)) := a⊗H2(P1)⊗(−1) ⊗ (⊕mH2(P1)⊗(−m))

≃ a⊗ (⊕mH2(P1)⊗(−m)) =: γ(a) .

Therefore, thanks to the universal property of orbit categories (see §5.2), there
exists an R-linear ⊗-functor γ′ making the diagram commute:

(7.2) GrbZ(C) ⊂ GrZ(Ind(C))

π

��

γ // Mod(⊕mH2(P1)⊗(−m))

GrbZ(C)/−⊗H2(P1)⊗(−1)
γ′

::

.

Given objects a, b of GrbZ(C), we have natural isomorphisms

HomMod(⊕mH2(P1)⊗(−m))(γ(a), γ(b))
(7.1)
≃ HomGrZ(Ind(C))(a, b⊗⊕mH2(P1)⊗(−m))

≃ ⊕m∈ZHomGrb
Z
(C)(a, b⊗H2(P1)⊗(−m))(7.3)

= HomGrb
Z
(C)/

−⊗H2(P1)⊗(−1)
(π(a), π(b)) ,

where (7.3) follows from the fact that the functor b⊗− preserves arbitrary direct

sums and that the objects of GrbZ(C) are compact in GrZ(Ind(C)). This implies that
the functor γ′ in diagram (7.2) is moreover fully-faithful.

Recall from the Tannakian formalism that, since C is an R-linear neutral Tan-
nakian category, GrbZ(C) is ⊗-equivalent to the R-linear category Rep(Gal(C)×Gm)
of finite dimensional continuous representations of Gal(C)×Gm. The weight grad-
ing ω, induced by the canonical morphism Gm → Gal(C)×Gm, and the ⊗-invertible
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object H2(P1)⊗(−1) equip GrbZ(C) with a neutral Tate triple structure in the sense
of Deligne-Milne [10, §5]. Therefore, as proved in [31, Prop. 14.1], the orbit cat-

egory GrbZ(C)/−⊗H2(P1)⊗(−1) becomes a neutral Tannakian category. Moreover, its
Tannakian group is given by the kernel of the homomorphism

(7.4) Gal(GrbZ(C)) = Gal(C)×Gm
// // Gm ,

where the right-hand side copy of Gm is the Tannakian group of the smallest Tan-
nakian subcategory of GrbZ(C) containing H2(P1)⊗(−1). Note that the first com-
ponent of (7.4) is the homomorphism Gal(C) ։ Gm introduced in §2, while the
second component Gm → Gm is multiplication by 2. This implies that the kernel of
(7.4) is equal to Gal0(C)× µ2. Consequently, thanks to the Tannakian formalism,

GrbZ(C)/−⊗H2(P1)⊗(−1) is ⊗-equivalent to the R-linear category Rep(Gal0(C) × µ2)

of finite dimensional continuous representations of Gal0(C) × µ2. Finally, under
the ⊗-equivalences of categories between Rep(Gal(C)×Gm) and RepZ(Gal(C)) and
Rep(Gal0(C) × µ2) and RepZ/2(Gal0(C)), respectively, the functor π in (7.2) iden-

tifies with the restriction functor (2.1). This concludes the proof of Theorem 2.2.

8. Proof of Proposition 3.1

Recall from (6.15) the definition of the functorHnc := H ′◦ι◦Φr◦U(−)R. By con-
struction, the functors Φr, H ′, and ι, are additive. Therefore, since U(−)R is an ad-
ditive invariant (see [40, §8.4.5]), we conclude that Hnc is also an additive invariant.
In what concerns item (i), we have an isomorphism between U(perfdg(Y )X)R and
U(perfdg(X))R in Mot(k;R). Hence, the proof follows from the definition of Hnc

and from Theorem 1.2. Item (ii) follows from the isomorphism U(A[t])R ≃ U(A)R
in Mot(k;R) (see [41, §2]) and from the definition of Hnc.

9. Proof of Proposition 3.3

As proved in [43, Thm. 1.2], there is an isomorphism between U(Σ(X))R and
Σ(U(perfdg(X))R) in the triangulated category of noncommutative mixed motives
Mot(k;R). Therefore, the proof follows from the definition of (H∗)nc.

10. Proof of Theorem 3.4

Consider the canonical dg functor − ⊗OX
DX : perfdg(X) → perfdg(DX). The

proof will consist on showing that the image of U(perfdg(X))R → U(perfdg(DX))R
under the functor Φr (see §6) is invertible. By construction of Hnc, this implies
that Hnc(perfdg(DX)) ≃ H(X) for every mixed realization H .

Following Lemma 6.2(i), the triangulated category Ho(Mod(KGLR)) is com-
pactly generated by the strongly dualizable and self-dual objects Σ∞(Y+) ∧KGLR

with Y a smooth projective k-scheme. Therefore, thanks to the commutative dia-
gram (6.5), in order to show that the image of U(perfdg(X))R → U(perfdg(DX))R
under Φr is invertible, it suffices to show that the induced morphisms

HomD(R)(U(perfdg(Y ))R, U(perfdg(X))R −→ U(perfdg(DX))R)

are invertible. As mentioned in §6, the preceding morphism identifies with

KH(perfdg(Y )op ⊗ perfdg(X)) ∧HR −→ KH(perfdg(Y )op ⊗ perfdg(DX)) ∧HR .
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Using the derived Morita equivalence perfdg(Y )op ≃ perfdg(Y ),G 7→ Hom(G,OY ),
we then conclude from Theorem 10.1 below that the preceding morphism is invert-
ible. This finishes the proof of Theorem 3.4.

Theorem 10.1. Given smooth k-schemes of finite type X and Y , with X as in
Theorem 3.4, the induced morphism is invertible:

(10.2) KH(perfdg(Y )⊗ perfdg(X)) −→ KH(perfdg(Y )⊗ perfdg(DX)) .

The remainder of this section is devoted to the proof of Theorem 10.1. We
will consider (10.2) as a morphism in two variables (Y the first variable and X
the second variable) and divide the proof into three main steps: (i) reduction to
the affine case in the first variable; (ii) reduction to the affine case in the second
variable; (iii) proof of the affine case. We start with step (i). Given any dg functor
A → B, consider the induced morphism

αY : KH(perfdg(Y )⊗A) −→ KH(perfdg(Y )⊗ B) .

Proposition 10.3. If αY is invertible when Y = Spec(B) is a smooth affine scheme
of finite type, then αY is invertible for every smooth scheme of finite type Y .

Proof. In order to simplify the exposition, let KH(Y ;A) := KH(perfdg(Y ) ⊗ A);
similarly with A replaced by B. Given a Zariski open cover U1∪U2 = Y ′ of a smooth
k-scheme of finite type Y ′, let us write U12 for the intersection U1 ∩U2. Thanks to
the induction principle [9, Prop. 3.3.1], in order to prove Proposition 10.3 it suffices
to prove the following condition: if αU1 , αU2 , and αU12 are invertible, then αY ′ is
also invertible. Consider the commutative diagram:

(10.4) KH(Y ′;B)

��

// KH(U1;B)

��

KH(Y ′;A)

αY ′
hh◗◗◗◗◗◗◗◗

//

��

KH(U1;A)

αU1
55❧❧❧❧❧❧❧❧

��
KH(U2;A) //

αU2

vv♠♠♠
♠♠
♠♠
♠

KH(U12;A)
αU12

))❘❘
❘❘

❘❘
❘❘

KH(U2;B) // KH(U12;B) .

We claim that the “front” and “back” squares of (10.4) are homotopy cartesian.
Note that this implies the preceding condition and consequently finishes the proof
of Proposition 10.3. We will focus ourselves solely in the “back” square; the proof
of the other case is similar. Consider the following commutative diagram

(10.5) perfdg(Y
′)Z

��

// perfdg(Y
′)

��

// perfdg(U1)

��
perfdg(U2)Z // perfdg(U2) // perfdg(U12)

in Hmo(k), where Z stands for the closed complement Y ′\U1 = U2\U12. As ex-
plained in [47, §5], both rows of (10.5) are short exact sequences of dg categories
(see [20, §4.6]). Moreover, the induced dg functor perfdg(Y

′)Z → perfdg(U2)Z is a
derived Morita equivalence; see [47, Thm. 2.6.3]. As proved in [12, Prop. 1.6.3], the
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functor − ⊗ A preserves short exact sequences of dg categories. Therefore, (10.5)
gives rise to the commutative diagram

(10.6) perfdg(Y
′)Z ⊗A

≃

��

// perfdg(Y
′)⊗A

��

// perfdg(U1)⊗A

��
perfdg(U2)Z ⊗A // perfdg(U2)⊗A // perfdg(U12)⊗A ,

where both rows are short exact sequences of dg categories and the left vertical mor-
phism is an isomorphism. Since homotopy K-theory sends short exact sequences
of dg categories to homotopy cofiber sequences of spectra (see [41, §5.3]), we then
conclude from (10.6) that the “back” square of (10.4) is homotopy cartesian. �

Remark 10.7. (i) By applying Proposition 10.3 to perfdg(X) → perfdg(DX), we
conclude that it suffices to prove Theorem 10.1 in the particular case where
Y = Spec(B) is a smooth affine k-scheme of finite type.

(ii) Proposition 10.3 holds mutatis mutandis without the smoothness assumption.

We address now step (ii). Given a dg categoryA, consider the induced morphism

βX : KH(A⊗ perfdg(X)) −→ KH(A⊗ perfdg(DX)) .

Proposition 10.8. If βX is invertible when X = Spec(A) is a smooth affine scheme
of finite type, then βX is invertible for every smooth scheme as in Theorem 3.4.

Proof. In order to simplify the exposition, let KH(A;X) := KH(A⊗ perfdg(X));
similarly with X replaced by DX . Let X ′ be a smooth k-scheme of finite type,
i : Z →֒ X ′ a smooth closed subscheme, and j : U →֒ X ′ the open complement of Z.
On the one hand, since homotopy K-theory is A1-homotopy invariant and sends
short exact sequences of dg categories to homotopy cofiber sequences, [46, Thm. 1.9
and Rk. 1.11(G2)] yields an homotopy cofiber sequence of spectra

KH(A;Z)
i∗−→ KH(A;X ′)

j∗

−→ KH(A;U) .

On the other hand, we have a short exact sequence of dg categories (see [13, §3.1.4]):

perfdg(DZ)
idR,∗
−→ perfdg(DX′)

j∗

−→ perfdg(DU ) .

Hence, as in the proof of Proposition 10.3, we obtain the homotopy cofiber sequence

KH(A;DZ)
idR,∗
−→ KH(A;DX′)

j∗

−→ KH(A;DU ) .

In the particular case where X ′ := X\Xj−1 and Z := Xj\Xj−1, the above (general)
considerations lead to the following commutative diagram:

(10.9) KH(A;DXj\Xj−1
)

idR,∗ // KH(A;DX\Xj−1
)

j∗ // KH(A;DX\Xj
)

KH(A;Xj\Xj−1)

βXj\Xj−1

OO

i∗
// KH(A;X\Xj−1)

βX\Xj−1

OO

j∗
// KH(A;X\Xj) .

βX\Xj

OO

Making use of the commutative diagrams (10.9), of the filtration (3.5), and of the
fact that Xj\Xj−1, 0 ≤ j ≤ r, are smooth affine k-schemes of finite type, the proof
follows now from a descending induction argument on the index j. �
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Remark 10.10. By applying Proposition 10.8 to the dg category perfdg(X), we
conclude that it suffices to prove Theorem 10.1 in the particular case where X =
Spec(A) is a smooth affine k-scheme of finite type.

Finally, we address step (iii). Let X = Spec(A) and Y = Spec(B) be two smooth
affine k-schemes of finite type. Thanks to Remarks 10.7 and 10.10, the proof of
Theorem 10.1 follows now from the following result:

Proposition 10.11. The induced morphism KH(B ⊗A) → KH(B ⊗DA), where
DA stands for the k-algebra of differential operators on A, is invertible.

Proof. Let us denote by T ∗X = Spec(C) be the cotangent bundle of X . Recall that
we have an increasing filtration 0 = F−1DA ⊂ F0DA ⊂ · · · ⊂ FjDA ⊂ · · · ⊂ DA of
DA given by the order of the differential operators. In particular, F0DA = A. This
filtration is exhaustive, i.e. DA = ∪∞

j=−1FjDA, and the associated graded algebra

gr(DA) is isomorphic to C. Consequently, by applying the functor B ⊗ − to the
preceding filtration we obtain an increasing exhaustive filtration

0 = B ⊗ F−1DA ⊂ B ⊗ F0DA ⊂ · · · ⊂ B ⊗ FjDA ⊂ · · · ⊂ B ⊗DA

of B ⊗DA with F0(B ⊗DA) = B ⊗A and gr(B ⊗DA) ≃ B ⊗ C.
Since the affine k-schemes X , Y , and T ∗X , are smooth and of finite type, the k-

algebras A, B, and C are Noetherian and of finite global dimension. Consequently,
the k-algebras B⊗A and B⊗C are also Noetherian and of finite global dimension.
Making use of [34, §6 Thm. 7] (see also [16, Thm. 1.1]), we then conclude that the
morphismK(B⊗A) → K(B⊗DA), induced by the inclusion F0(B⊗DA) ⊂ B⊗DA,
is invertible. Since the k-algebras B ⊗A and B ⊗DA are regular Noetherian4, the
proof follows now from the isomorphismsK(B⊗A) ≃ KH(B⊗A) andK(B⊗DA) ≃
KH(B ⊗DA) between algebraic K-theory and homotopy K-theory. �

11. Proof of Theorem 4.2

If A ≃ B in Hmo(k), then (H∗
dRB)

nc(A) = (H∗
dRB)

nc(B). Therefore, item (i)
follows from Definition 4.1. Let us now prove item (ii). Recall from the proof of
Theorem 2.2 that we have the following adjunction of categories:

(11.1) Mod(⊕mH2
dRB(P

1)⊗(−m))

forget

��
GrZ(Ind(Vect(k,Q))) .

γ

OO

Recall also from §2 that H∗
dRB(X) belongs to the full subcategory GrbZ(Vect(k,Q)).

The proof of item (ii) is then a consequence of the following equalities

Pnc(A) := Pnc(forget((H∗
dRB)

nc(A)))

= Pnc(forget(H∗
dRB(X)))(11.2)

= Pnc(H∗
dRB(X)⊗ (⊕mH2

dRB(P
1)⊗(−m)))(11.3)

= Pnc(⊕m(H∗
dRB(X)⊗H2

dRB(P
1)⊗(−m)))(11.4)

= Pnc(H∗
dRB(X))(11.5)

= φ(P(H∗
dRB(X))) = φ(P(X)) ,(11.6)

4The global dimension of DA is equal to the dimension of X = Spec(A).
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where (11.2) follows from the assumption (H∗
dRB)

nc(A) ≃ H∗
dRB(X), (11.3) from ad-

junction (11.1), (11.4) from the fact that H∗
dRB(X)⊗ − preserves arbitrary direct

sums, (11.5) from Lemma 11.7 below, and (11.6) from Proposition 11.10 below.

Lemma 11.7. For every object {(Vn,Wn, ωn)}n∈Z of GrbZ(Vect(k,Q)), we have an
equality of Z/2-graded k-algebras:

Pnc({(Vn,Wn, ωn)}n∈Z) = Pnc(⊕m∈Z({(Vn,Wn, ωn)}n∈Z ⊗H2
dRB(P

1)⊗(−m))) .

Proof. Let (V,W, ω) and (V ′W ′, ω′) be two objects of Vect(k,Q). In order to sim-
plify the exposition, let us denote by P (V,W, ω)+P (V ′,W ′, ω′) the set of complex
numbers of the form p+p′, with p ∈ P (V,W, ω) and p′ ∈ P (V ′,W ′, ω′). Recall from
§2 that H2

dRB(P
1)⊗(−m) is the shifted triple (k,Q, ·(2πi)−m)[−2m]. Consequently,

the nth component of {(Vn,Wn, ωn)}n∈Z ⊗H2
dRB(P

1)⊗(−m) is given by

(11.8) (Vn+2m,Wn+2m, ωn+2m)⊗ (k,Q, ·(2πi)−m) .

Similarly, the nth component of ⊕m∈Z({(Vn,Wn, ωn)}n∈Z ⊗H2
dRB(P

1)⊗(−m)) is

(11.9) ⊕m∈Z (Vn+2m,Wn+2m, ωn+2m)⊗ (k,Q, ·(2πi)−m) .

Note that since {(Vn,Wn, ωn)}n∈Z belongs to GrbZ(Vect(k,Q)), the direct sum (11.9)
is finite. On the one hand, we have P ((11.8)) = P (Vn+2m,Wn+2m, ωn+2m)(2πi)−m.
On the other hand, P ((11.9)) = +m∈ZP (Vn+2m,Wn+2m, ωn+2m)(2πi)−m; see [17,
Prop. 9.2.4]. Consequently, the following equalities

∪n∈ZP (⊕m∈Z(V2(n+m),W2(n+m), ω2(n+m))⊗ (k,Q, ·(2πi)−m))(2πi)−n

= ∪n∈Z(+m∈ZP (V2(n+m),W2(n+m), ω2(n+m))(2πi)
−m)(2πi)−n

= ∪n∈Z(+m∈ZP (V2(n+m),W2(n+m), ω2(n+m))(2πi)
−(n+m))

allow us to conclude that every degree 0, resp. degree 1, generator of the Z/2-
graded k-algebra Pnc(⊕m∈Z({(Vn,Wn, ωn)}n∈Z ⊗ H2

dRB(P
1)⊗(−m))) is a k-linear

combination of degree 0, resp. degree 1, generators of the Z/2-graded k-algebra
Pnc({(Vn,Wn, ωn)}n∈Z). This implies that these two algebras are the same. �

Proposition 11.10. For every object {(Vn,Wn, ωn)}n∈Z of GrbZ(Vect(k,Q)), we
have an equality of Z/2-graded k-algebras:

(11.11) Pnc({(Vn,Wn, ωn)}n∈Z) = φ(P({(Vn,Wn, ωn)}n∈Z)) .

Proof. Recall from §4 the definition of C2πi
Z/2. Note that the underlying Z/2-graded

C-vector space of C2πi
Z/2 is C0 ⊕ C1 and that the multiplication law is given by

(11.12) (λ0, λ1) · (λ
′
0, λ

′
1) = (λ0λ

′
0 + λ1λ

′
1(2πi)

−1, λ0λ
′
1 + λ1λ

′
0) .

Recall also from §4 that the Z-graded k-algebra P({(Vn,Wn, ωn)}n∈Z) is gen-
erated in degree 2n by the elements of the set P (V2n,W2n, ω2n) and in degree
2n+ 1 by the elements of the set P (V2n+1,W2n+1, ω2n+1). Via the above descrip-
tion (11.12), the image of P (V2n,W2n, ω2n) under the quotient homomorphism
φ : C[t, t−1] ։ C2πi

Z/2 corresponds to the subset P (V2n,W2n, ω2n)(2πi)
−n ⊆ C0.

Similarly, the image of P (V2n+1,W2n+1, ω2n+1) under φ corresponds to the subset
P (V2n+1,W2n+1, ω2n+1)(2πi)

−n ⊆ C1. By definition of Pnc({(Vn,Wn, ωn)}n∈Z),
we then obtain the searched equality (11.11). �
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Given two objects (V,W, ω) and (V ′,W ′, ω′) of the category Ind(Vect(k,Q)),
the subset P ((V,W, ω)⊕ (V ′,W ′, ω′)) ⊆ C consists of the complex numbers of the
form p + p′, with p ∈ P (V,W, ω) and p′ ∈ P (V ′,W ′, ω′). Therefore, given objects
{(Vn,Wn, ωn)}n∈Z and {(V ′

n,W
′
n, ω

′
n)}n∈Z of GrZ(Ind(Vect(k,Q))), we observe that

the Z/2-graded k-algebra Pnc({(Vn,Wn, ωn)}n∈Z⊕{(V ′
n,W

′
n, ω

′
n)}n∈Z) agrees with

the smallest Z/2-graded k-subalgebra

Pnc({(Vn,Wn, ωn)}n∈Z) ⋄ P
nc({(V ′

n,W
′
n, ω

′
n)}n∈Z) ⊆ C2πi

Z/2

containing Pnc({(Vn,Wn, ωn)}n∈Z) and Pnc({(V ′
n,W

′
n, ω

′
n)}n∈Z).

Let A,B ⊆ C be dg categories yielding a semi-orthogonal decomposition H0(C) =
〈H0(A),H0(B)〉. Proposition 3.1 implies that (H∗

dRB)
nc(C) is isomorphism to the

direct sum (H∗
dRB)

nc(A)⊕ (H∗
dRB)

nc(B). By applying Pnc(−), the above consider-
ations allow us then to conclude that Pnc(C) = Pnc(A) ⋄ Pnc(B). This proves item
(iii) and finishes the proof of Theorem 4.2.

Remark 11.13 (Periods of noncommutative mixed motives). Recall from §6 that
the new additive invariant Hnc

dRB factors through the functor U(−)R. Therefore,
similarly to Definition 4.1, we can define the Z/2-graded algebra of periods Pnc(N)
of every noncommutative mixed motive N ∈ Mot(k;R). Here is an example: let k

be a number field. Recall from [1, §20.3] that the 1-motives K(q) := [Z
17→q
−→ Gm],

with q ∈ k×, are called the Kummer motives. Following (6.3), the morphisms in the
triangulated category Mot(k;Q) from U(k)Q and U(k)Q[−1] are in bijection with
the elements of K1(k)Q = k× ⊗Q. Therefore, we can consider the triangle:

U(k)Q[−2] −→ Knc(q) −→ U(k)Q
q

−→ U(k)Q[−1] .

Since K(q), considered as an object of DMgm(k;Q), is an extension of Q(0) by Q(1),
we have an isomorphism between (H∗

dRB)
nc(Knc(q)) and H∗

dRB(K(q)). Making use
of (the generalization of) Theorem 4.2(ii), we then conclude that Pnc(Knc(q)) =
φ(P(K(q))). As explained in [1, §23.3.3], the transcendental number log(q) belongs
to P(K(q))1. Consequently, it belongs also to Pnc(Knc(q))1.

12. Proof of Theorem 4.6

By definition of perf(X) = 〈A0,A1(1), . . . ,Ai−1(i−1)〉, we have a chain of admis-
sible triangulated subcategories Ai−1 ⊆ · · · ⊆ A1 ⊆ A0 and Ar(r) := Ar ⊗ OX(r).
Let ar be the right orthogonal complement to Ar+1 in Ar; these are called the prim-
itive subcategories in [27, §4]. Note that we have semi-orthogonal decompositions:

Ar = 〈ar, ar+1, . . . , ai−1〉 0 ≤ r ≤ i− 1 .(12.1)

As proved in [27, Thm. 6.3], the category perf(Y ) admits a HP-dual Lefschetz
decomposition perf(Y ) = 〈Bj−1(1− j),Bj−2(2− j), . . . ,B0〉 with respect to OY (1);
as above we have a chain Bj−1 ⊆ Bj−2 ⊆ · · · ⊆ B0 of admissible triangulated
subcategories. Moreover, the primitive subcategories br coincide with ar; in this
case we have semi-orthogonal decompositions:

Br = 〈a0, a1, . . . , adim(V )−r−2〉 0 ≤ r ≤ j − 1 .(12.2)

Furthermore, there exists a triangulated CL and semi-orthogonal decompositions

(12.3) perf(XL) = 〈CL,Adim(L)(1), . . . ,An(i− dim(L))〉

(12.4) perf(YL) = 〈Bj−1(dim(L⊥)− j), . . . ,Bdim(L⊥)(−1),CL〉 .
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Let us denote by C
dg
L ,Adg

r , adgr the dg enhancement of CL,Ar, ar induced from

perfdg(XL). Similarly, let C
dg′

L ,Bdg
r , adg

′

r be the dg enhancement of CL,Br, ar in-
duced from perfdg(YL). Since the functor perf(XL) → CL → perf(YL), as well
as the identification between ar and br, is of Fourier-Mukai type, we have de-

rived Morita equivalences C
dg
L ≃ C

dg′

L and adgr ≃ adg
′

r . By combining the semi-
orthogonal decompositions (12.1) and (12.3), resp. (12.2) and (12.4) and the equal-
ity dim(V ) = dim(L) + dim(L⊥), with Theorem 4.2 we hence conclude that

(12.5) φ(P(XL)) = Pnc(Cdg
L ) ⋄ Pnc(adgdim(L)) ⋄ · · · ⋄ P

nc(adgi−1)

(12.6) φ(P(YL)) = Pnc(adg0 ) ⋄ · · · ⋄ Pnc(adim(L)−2) ⋄ P
nc(Cdg

L ) .

On the one hand, the assumption that A0 is generated by exceptional objects implies

that Pnc(Adg
0 ) = k. On the other hand, the semi-orthogonal decomposition (12.1)

(with r = 0) implies that Pnc(Adg
0 ) = Pnc(adg0 ) ⋄ · · · ⋄ Pnc(adgi−1). This allows us to

conclude that Pnc(adgr ) = k for every 0 ≤ r ≤ i − 1. Therefore, from (12.5)-(12.6)
we obtain the searched equality φ(P(XL)) = φ(P(YL)). This finishes the proof.
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