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Abstract

Coordinating agents to complete a set of tasks with
intercoupled temporal and resource constraints is
computationally challenging, yet human domain
experts can solve these difficult scheduling prob-
lems using paradigms learned through years of ap-
prenticeship. A process for manually codifying this
domain knowledge within a computational frame-
work is necessary to scale beyond the “single-
expert, single-trainee” apprenticeship model. How-
ever, human domain experts often have difficulty
describing their decision-making processes, caus-
ing the codification of this knowledge to become la-
borious. We propose a new approach for capturing
domain-expert heuristics through a pairwise rank-
ing formulation. Our approach is model-free and
does not require enumerating or iterating through a
large state-space. We empirically demonstrate that
this approach accurately learns multifaceted heuris-
tics on both a synthetic data set incorporating job-
shop scheduling and vehicle routing problems and
a real-world data set consisting of demonstrations
of experts solving a weapon-to-target assignment
problem.

Introduction
Resource scheduling and optimization is a costly, challeng-
ing problem that affects almost every aspect of our lives. In
healthcare, patients with non-urgent needs who experience
prolonged wait times have higher rates of treatment non-
compliance and missed appointments [Kehle et al., 2011;
Pizer and Prentice, 2011]. In military engagements, the
weapon-to-target assignment problem requires warfighters to
deploy minimal resources in order to mitigate as many threats
as possible while maximizing the duration of survival [Lee et
al., 2003].

The problem of optimal task allocation and sequencing
with upper- and lowerbound temporal constraints (i.e., dead-
lines and wait constraints) is NP-Hard (Bertsimas and Weis-
mantel 2005), and real-world scheduling problems quickly
become computationally intractable. However, human do-
main experts are able to learn from experience to develop

strategies, heuristics and rules-of-thumb to effectively re-
spond to these problems. The challenge we pose is to au-
tonomously learn the strategies employed by these domain
experts; this knowledge can be applied and disseminated
more efficiently with such a model than with a “single-expert,
single-apprentice” model.

Researchers have made significant progress toward captur-
ing domain-expert knowledge from demonstration [Berry et
al., 2011; Abbeel and Ng, 2004; Konidaris et al., 2011; Zheng
et al., 2015; Odom and Natarajan, 2015; Vogel et al., 2012;
Ziebart et al., 2008]. In one recent work [Berry et al., 2011],
an AI scheduling assistant, called PTIME, learned how users
prefer to schedule events. PTIME was subsequently able to
propose scheduling changes when new events occurred by
solving an integer program. Two limitations to this work
exist: PTIME requires users to explicitly rank their prefer-
ences about scheduling options to initialize the system, and
also uses a complete solver that, in the worst-case scenario,
must consider an exponential number of options.

Research focused on capturing domain knowledge based
solely on user demonstration has led to the development of
inverse reinforcement learning (IRL) [Abbeel and Ng, 2004;
Konidaris et al., 2011; Zheng et al., 2015; Odom and Natara-
jan, 2015; Vogel et al., 2012; Ziebart et al., 2008]. IRL serves
the dual purpose of learning an unknown reward function for
a given problem and learning a policy to optimize that reward
function. However, there are two primary drawbacks to IRL
for scheduling problems: computational tractability and the
need for an environment model.

The classical apprenticeship learning algorithm developed
by Abbeel and Ng in 2004 requires repeated solving of a
Markov decision process (MDP) until a convergence criterion
is satisfied. However, enumerating a large state-space, such as
that found in large-scale scheduling problems involving hun-
dreds of tasks and tens of agents, can quickly become com-
putationally intractable due to memory limitations. Approxi-
mate dynamic programming approaches exist that essentially
reformulate the problem as regression [Konidaris et al., 2011;
Mnih et al., 2015], but the amount of data required to regress
over a large state space remains challenging, and MDP-based
scheduling solutions exist only for simple problems [Wu et
al., 2011; Wang and Usher, 2005; Zhang and Dietterich,
1995].

IRL also requires a model of the environment for training.



At its most basic, reinforcement learning uses a Markovian
transition matrix that describes the probability of transition-
ing from an initial state to a subsequent state when taking
a given action. In order to address circumstances in which
environmental dynamics are unknown or difficult to model
within the constraints of a transition, researchers have devel-
oped Q-Learning and its variants, which have had much re-
cent success [Mnih et al., 2015]. However, these approaches
require the ability to “practice,” or explore the state-space by
querying a black-box emulator to solicit information about
how taking a given action in a specific state will change that
state.

Another method has been directly learning a function
that maps states to actions [Chernova and Veloso, 2007;
Terrell and Mutlu, 2012; Huang and Mutlu, 2014]. For exam-
ple, Ramanujam and Balakrishnan trained a discrete-choice
model using real data from air traffic controllers and showed
how this model can accurately predict the correct runway
configuration for an airport [Ramanujam and Balakrishnan,
2011]. Sammut et al. [Sammut et al., 1992] applied a de-
cision tree model for an autopilot to learn to control an air-
craft from expert demonstration. Action-driven learning tech-
niques offer great promise for learning policies from expert
demonstrators, but they have not been applied to complex
scheduling problems. In order for these methods to succeed,
one must model the scheduling problem in a way that allows
for efficient computation of a scheduling policy.

In this paper, we propose a technique, which we call “ap-
prenticeship scheduling,” to capture this domain knowledge
in the form of a scheduling policy. Our objective is to learn
scheduling policies through expert demonstration and vali-
date that schedules produced by these policies are of com-
parable quality to those generated by human or synthetic
experts. Our approach efficiently utilizes domain-expert
demonstrations without the need to train within an environ-
ment emulator. Rather than explicitly modeling a reward
function and relying upon dynamic programming or con-
straint solvers, which become computationally intractable for
large-scale problems of interest, our objective is to use action-
driven learning to extract the strategies of domain experts in
order to efficiently schedule tasks.

The key to our approach is the use of pairwise comparisons
between the actions taken (e.g., schedule agent a to complete
task τi at time t) and the set of actions not taken (e.g., un-
scheduled tasks at time t) to learn the relevant model param-
eters and scheduling policies demonstrated by the training
examples. We validate our approach using both a synthetic
data set of solutions for a variety of scheduling problems and
a real-world data set of demonstrations from human experts
solving a variant of the weapon-to-target assignment problem
[Lee et al., 2003]. The synthetic and real-world problem do-
mains we use to empirically validate our approach represent
two of the most challenging classes within the taxonomy es-
tablished by Korsah et al. [Korsah et al., 2013].

Problem Domain
We aimed to empirically demonstrate the generalizability of
our learning approach through application to a variety of

problem types. Korsah et al. provided a comprehensive tax-
onomy for classes of scheduling problems, which vary ac-
cording to formulation of constraints, variables and objective
or utility function [Korsah et al., 2013]. Within this taxon-
omy, there are four classes addressing interrelated utilities
and constraints: No Dependencies (ND (e.g., [Liu and Shell,
2013])), In-Schedule Dependencies (ID) (e.g., [Brunet et al.,
2008; Gombolay and Shah, 2014; Nunes and Gini, 2015]),
Cross-Schedule Dependencies (XD) (e.g., [Gombolay et al.,
2013]) and Complex Dependencies (CD) (e.g.,[Jones et al.,
2011]).

The Korsah et al. taxonomy also delineates between tasks
requiring one agent, i.e. “single-agent tasks” (SA); and tasks
requiring multiple agents, i.e. “multi-agent tasks” (MA).
Similarly, agents that perform one task at a time are “single-
task agents” (ST), and agents capable of performing multiple
tasks at the same time are “multi-task agents” (MT). Lastly,
the taxonomy distinguishes between “instantaneous assign-
ment” (IA), in which all task and schedule commitments
are made at the same time, and “time-extended assignment”
(TA), in which current and future commitments are planned.

In this work, we demonstrate our approach for two of the
most difficult classes of scheduling problems defined within
this taxonomy: XD [ST-SA-TA] and CD [MT-MA-TA].
The first problem we consider is the vehicle routing problem
with time windows, temporal dependencies and resource con-
straints (VRPTW-TDR), which is an XD [ST-SA-TA]-class
problem. Depending upon parameter selection, this family
of problems encompasses the traveling salesman, job-shop
scheduling, multi-vehicle routing and multi-robot task alloca-
tion problems, among others. The second problem is a more
complex variant of the weapon-to-target assignment problem
(WTA) [Lee et al., 2003], which falls under the CD [MT-
MA-TA] class.

Model for Apprenticeship Learning
In this section, we present a framework for learning, via ex-
pert demonstration, a scheduling policy that correctly deter-
mines which task to schedule as a function of task state.

Many approaches to learning via demonstration, such as re-
inforcement or inverse reinforcement learning, are based on
Markov models [Busoniu et al., 2008; Barto and Mahadevan,
2003; Konidaris and Barto, 2007; Puterman, 2014]. Markov
models, however, do not capture the temporal dependencies
between states and are computationally intractable for large
problem sizes. In order to determine which tasks to schedule
at which times, we draw inspiration from the domain of web
page ranking [Page et al., 1999], or predicting the most rele-
vant web page in response to a search query. One important
component of page ranking is capturing how pages relate to
one another as a graph with nodes (representing web pages)
and directed arcs (representing links between those pages)
[Page et al., 1999]. This connectivity is a suitable analogy
for the complex temporal dependencies (precedence, wait and
deadline constraints) relating tasks within a scheduling prob-
lem.

Recent approaches to page ranking have focused on pair-
wise and listwise models, which each have advantages over



pointwise models [Valizadegan et al., 2009]. In listwise rank-
ing, the goal is to generate a ranked list of web pages di-
rectly [Cao et al., 2007; Valizadegan et al., 2009; Volkovs and
Zemel, 2009], while a pairwise approach determines ranking
based on pairwise comparisons between individual pages [Jin
et al., 2008; Pahikkala et al., 2007]. We chose the pairwise
formulation to model the problem of predicting the best task
to schedule at time t.

The pairwise model has key advantages over the listwise
approach: First, classification algorithms (e.g., support vector
machines) can be directly applied [Cao et al., 2007]. Second,
a pairwise approach is non-parametric, in that the cardinality
of the input vector is not dependent upon the number of tasks
(or actions) that can be performed in any instance. Third,
training examples of pairwise comparisons in the data can be
readily solicited. From a given observation during which a
task was scheduled, we only know which task was most im-
portant – not the relative importance between all tasks. Thus,
we create training examples based on pairwise comparisons
between scheduled and unscheduled tasks. A pairwise ap-
proach is more natural because we lack the necessary context
to determine the relative rank between two unscheduled tasks.

Consider a set of tasks, τi ∈ τ , in which each task has a set
of real-valued features, γτi . Each scheduling-relevant feature
γjτi may represent, for example, the deadline, the earliest time
the task is available, the duration of the task, which resource
r is required by this task, etc.

Next, consider a set of m observations, O =
{O1, O2, . . . , Om}. Observation Om consists of a feature
vector {γτ1 , γτ2 , . . . , γτn} describing the state of each task,
the task scheduled by the expert demonstrator (including a
null task, τ∅, if no task was scheduled) and the time at which
an action was taken. The goal is to learn a policy that cor-
rectly determines which task to schedule as a function of the
task state.

We deconstruct the problem into two steps: 1): For each
agent/resource pair, determine the candidate next task to
schedule; and 2): For each task, determine whether to sched-
ule the task from the current state. In order to learn to cor-
rectly assign the next task to schedule, we transform each ob-
servation Om into a new set of observations by performing
pairwise comparisons between the scheduled task τi and the
set of unscheduled tasks (Equations 1-2). Equation 1 creates a
positive example for each observation in which a task τi was
scheduled. This example consists of the input feature vec-
tor, φm〈τi,τx〉, and a positive label, ym〈τi,τx〉 = 1. Each element
of the input feature vector φm〈τi,τx〉 is computed as the differ-
ence between the corresponding values in the feature vectors
γτi and γτx , describing scheduled task τi and unscheduled
task τx. Equation 2 creates a set of negative examples with
ym〈τx,τi〉 = 0. For the input vector, we take the difference of
the feature values between unscheduled task τx and scheduled
task τi.

This feature set is then augmented to capture additional
contextual information important for scheduling, which may
not be captured in examples consisting solely of differences
between task features. For example, a scheduling policy may
change based on progress toward task completion; i.e., the

proportion of tasks completed so far. To provide this high-
level information, we include ξτ , the set of contextual, high-
level features describing the set of tasks for observation Om,
in (Equations 1-2).

Our technique relies upon the ability of domain experts to
articulate an appropriate set of features for the problem. We
believe this to be a reasonable limitation. Results from prior
work have indicated that domain experts are adept at describ-
ing the (high-level, contextual and task-specific) features used
in their decision-making; however, it is more difficult for ex-
perts to describe how they reason about these features [Cheng
et al., 2006; Raghavan et al., 2006]. In future work, we aim
to extend our approach to include feature learning rather than
relying upon experts to enumerate the important features they
reason about in order to construct schedules.

Given these observationsOm and their associated features,
we can train a classifier fpriority(τi, τx) ∈ {0, 1} to pre-
dict whether it is better to schedule task τi as the next task
rather than τx. With this pairwise classifier, we can determine
which single task τi is the highest-priority task τ∗i according
to Equation 3 by determining which task has the highest cu-
mulative priority in comparison to the other tasks in τ .

In this work, we train a single classifier fpriority(τi, τx) to
model the behavior of the set of all agents rather than train one
fpriority(τi, τx) for each agent. fpriority(τi, τx) is a function
of all features associated with the agents; as such, agents need
not be interchangeable, and different sets of features may be
associated with each agent.

Next, we must learn to predict whether τ∗i should be sched-
uled or the agent should remain idle. We train a second classi-
fier, fact(τi) ∈ {0, 1}, that predicts whether or not τi should
be scheduled. The observations set, O, consists of either ex-
amples in which a task was scheduled or those in which no
task was scheduled. To train this classifier, we construct a
new set of examples according to Equation 4, which assigns
positive labels to examples from Om in which a task was
scheduled and negative labels to examples in which no task
was scheduled.

Finally, we construct a scheduling algorithm to act as an
apprentice scheduler (Algorithm 1). This algorithm takes as
input the set of tasks τ , agents A, temporal constraints (i.e.,
upper- and lowerbound temporal constraints) relating tasks in
the problem TC, and the set of task pairs that require the
same resources and can therefore not be executed at the same
time, τR. Lines 1- 2 iterate over each agent at each time
step. In Line 3, the highest-priority task τ∗i is determined for
a particular agent. In Lines 4- 5, τ∗i is scheduled if fact(τ∗i )
predicts that τ∗i should be scheduled at the current time.
Note that iteration over agents (Line 2) can be performed
according to a specified ordering, or one can alternatively
learn a more general priority function to select and sched-
ule the best agent/task pair using fpriority (〈τi, a〉 , 〈τx, a′〉),
fact

(
〈τi, a〉∗

)
. In the latter case, the features γτi are mapped

to agent/task pairs rather than tasks.
One benefit of the pairwise ranking formulation is the abil-

ity to apply any of a number of standard machine learn-
ing classification techniques to learn fpriority(τi, τx) and
fact(τi). In our experimental evaluation, we compared the
performance of a decision tree, support vector machine and



other common classification techniques.

Algorithm 1 Pseudocode for an Apprentice Scheduler
ApprenticeScheduler(τ ,A,TC,τR)

1: for t = 0 to T do
2: for all agents a ∈ A do
3: τ∗i ← argmax

τi∈τ

∑
τx∈τ

fpriority(τi, τx)

4: if fact(τ∗i ) == 1 then
5: Schedule τ∗i
6: end if
7: end for
8: end for

rankθm〈τi,τx〉 := [ξτ , γτi − γτx ] , y
m
〈τi,τx〉 = 1,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (1)

rankθm〈τx,τi〉 := [ξτ , γτx − γτi ] , y
m
〈τx,τi〉 = 0,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (2)

τ̂∗i = argmax
τi∈τ

∑
τx∈τ

fpriority (τi, τx) (3)

actφmτi := [ξτ , γτi ] ,

ymτi =

 1 : τi scheduled in Om ∧
τi scheduled in Om+1

0 : τ∅ scheduled in Om
(4)

Data Sets
Next, we validate that schedules produced by our learned
policies are of comparable quality to those generated by hu-
man or synthetic experts. We considered a synthetic data set
from the XD [ST-SA-TA] class of problems and a real-world
data set from the CD [MT-MA-TA] class of problems defined
by Korsah et al. [Korsah et al., 2013].

Synthetic Data Set
For our first investigation, we generated a synthetic data set of
scheduling problems in which agents were assigned to com-
plete a set of tasks. Tasks were related through precedence or
wait constraints as well as deadline constraints, which could
be absolute (relative to the start of the schedule) or relative
to another task’s start or finish time. Agents were required to
access a set of shared resources to execute each task (e.g., the
task’s physical location). Agents and tasks had defined start-
ing locations, and task locations were static. Each agent trav-
eled at a constant speed between task locations, and agents
were only able to perform tasks when present at the corre-
sponding task location. Task completion times were poten-
tially non-uniform and agent-specific, as would be the case
for heterogeneous agents. An agent that was incapable of
performing a task was assumed to have an infinite comple-
tion time for that task. The objective was to minimize the
makespan or other time-based performance measures.

This problem definition spans a range of scheduling prob-
lems, including the traveling salesman, job-shop scheduling,
multi-vehicle routing and multi-robot task allocation prob-
lems, among others. We describe this range as a vehicle
routing problem with time windows, temporal dependencies,
and resource constraints (VRPTW-TDR), which falls within
the XD [ST-SA-TA] class in the taxonomy by [Korsah et al.,
2013]: agents perform tasks sequentially (ST), each task re-
quires one agent (SA) and commitments are made over time
(TA).

To generate our synthetic data set, we developed a mock
scheduling expert that applies one of a set of context-
dependent rules based on the composition of the given
scheduling problem. This behavior was based upon rules
presented in prior work addressing these types of prob-
lems [Gombolay et al., 2013; Gombolay and Shah, 2014;
Solomon, 1987; Tan et al., 2001]. Our objective was to
show that our apprenticeship scheduling algorithm learns
both context-dependent rules and how to identify the asso-
ciated context for their correct application.

The mock scheduling expert functions as follows: First,
the algorithm collects all alive and enabled tasks τi ∈ τAE
as defined by [Muscettola et al., 1998]. Consider a pair of
tasks τi and τj , with start and finish times si, fi and sj , fj ,
respectively, such that there is a wait constraint requiring τi
to start at leastW〈τj ,τi〉 units of time after τj . A task τi is alive
and enabled if t ≥ fj +Wτj ,τi for all such τj and W〈τj ,τi〉 in
τ .

Next, the heuristic iterates over each agent to identify the
highest-priority task, τ∗i , to schedule for that agent. The algo-
rithm determines which scheduling rule is most appropriate to
apply for each agent. If agent speed is sufficiently slow (≤ 1
m/s), travel time will become the major bottleneck. If agents
move quickly but utilize one or more resources R heavily (∑
τi

∑
τx

1Rτi=Rτx ≥ c for some constant c), use of these re-
sources can become the bottleneck. Otherwise, task durations
and associated wait constraints are generally most important.

If the algorithm identifies travel distance as the primary
bottleneck, it chooses the next task by applying a priority rule
well-suited for vehicle routing that minimizes a weighted,
linear combination of features [Gambardella et al., 1999;
Solomon, 1987] comprised of the distance and angle relative
to the origin between agent a and τx. This rule is depicted in
Equation 5, where ~lx is the location of τx, ~la is the location
of agent a, θxa is the relative angle between the vector from
origin to the agent location and the origin to the location of
τx and α1 and α2 are weighting constants.

τ∗i ← argmin
τx∈τAE

(
‖~lx −~la‖+ α1θxa + α2‖~lx −~la‖θxa

)
(5)

If the algorithm identifies resource contention as the most
important bottleneck, it employs a rule to mitigate resource-
contention in multi-robot, multi-resource problems based on
prior work in scheduling for multi-robot teams [Gombolay et
al., 2013]. Specifically, the algorithm uses Equation 6 to se-
lect the high-priority task to schedule next, where dτx is the



deadline of τx and α3 is a weighting constant.

τ∗i ← argmax
τx∈τAE

((∑
τi

∑
τx

1Rτi=Rτx

)
− α3dτx

)
(6)

If the algorithm decides that temporal requirements are the
major bottleneck, it employs an Earliest Deadline First rule
(Equation 7), which performs well across many scheduling
domains [Chen and Askin, 2009; Gombolay et al., 2013;
Gombolay and Shah, 2014].

τ∗i ← argmin
τx∈τAE

dτx (7)

After selecting the most important task, τ∗i , the algorithm de-
termines whether the resource required for τ∗i , Rτ∗

i
, is idle

and whether the agent is able to travel to the task location by
time t. If these constraints are satisfied, the heuristic sched-
ules task τ∗i at time t. (An agent is able to reach task τ∗i if
t ≥ fj + k (li − lj) /‖li − lj‖ for all τj ∈ τ that the agent
has already completed, where k is the agent’s speed.)

We constructed the synthetic data set for two homogeneous
agents and 20 partially ordered tasks located within a 20 x 20
grid.

Real-World Data Set
We collected a real-world data set consisting of human
demonstrators of various skill levels solving the anti-ship
missile defense (ASMD) weapon-to-target assignment prob-
lem. In this problem, one must determine how to deploy a
set of soft kill weapons, or decoys, to prevent enemy anti-
ship missiles from impacting one’s own ship. These decoys
represent the agents, and the neutralization of each missile
represents a task. The effectiveness Eai of deploying a decoy
a against target τi at a given location ~xa = [x, y, θ] and time t
is dependent upon the time history of all other decoy deploy-
ments h. Decoys are able to distract many missiles (MT), and
many decoys can be used to distract the same missile at var-
ious points of its trajectory. Task allocation and scheduling
commitments are made over time (TA). The key challenge
of this problem is that the time history of how decoys have
been deployed thus far affects the future effectiveness of de-
coys, as well as where and when they should be deployed.
Agents and tasks have defined starting locations. Each task
(missile) is modeled as a dynamical system with a homing
function Fτ (h, t) that guides the missile toward its target and
is a function of the current time and the time history of pre-
vious decoy deployments. Decoys travel at a constant speed
to their target locations xg from the ship that deploys them.
This ASMD problem falls into the CD [MT-MA-TA] class
variant.

Data was collected from domain experts playing a seri-
ous game, called Strike Group Defender1 (SGD), for ASMD
training. Game scenarios involved five types of decoys and
10 types of threats. The threats were randomly generated for
each played scenario, thereby promoting the development of
strategies that were robust to a varied distribution of threat

1SGD was developed by Pipeworks Studio in Eugene, Oregon,
USA.

scenarios. Each decoy had a specified effectiveness against
each threat type. Players attempted to deploy a set of decoys
using the correct types at the correct locations and times in
order to distract incoming missiles. Threats were launched
over time; an effective deployment at time t could become
counterproductive in the future as new enemy missiles were
launched.

Games were scored as follows: 10, 000 points were re-
ceived each time a threat was neutralized and 2 points were
received for each second a threat spent homing in on a de-
coy. 5, 000 points were deducted for each threat impact and
1 point was deducted for each second a threat spent homing
in the players ship. 25-1, 000 points were subtracted for each
decoy deployment, with the deducted point value depending
upon the decoy type.

The collected data set consisted of 311 games played by 35
humans across 45 threat configurations, or “levels”. From this
set, we also separately analyzed 16 threat configurations such
that each configuration included at least one human demon-
stration in which the ship was protected from all enemy mis-
siles. For these 16 threat configurations, there were 162 total
games played by 27 unique human demonstrators. The player
cohort consisted of technical fellows and associates, as well
as contractors at a federally funded research and development
center (FFDRC), and their expertise varied from “generally
knowledgeable about the ASMD problem” to “domain ex-
perts” with professional experience or training in ASMD.

Empirical Evaluation
In this section, we evaluate our prototype for apprenticeship
scheduling on the synthetic and real-world data sets.

Synthetic Data Set
We trained our model using a decision tree, KNN classifier,
logistic regression (logit) model, support vector machine with
a radial basis function kernel (SVM-RBF) and a neural net-
work to learn fpriority(., .) and fact(.). We randomly sam-
pled 85% of the data for training and 15% for testing.

We defined the features as follows: The high-level feature
vector of the task set, ξτ , was comprised of the agents’ speed
and the degree of resource contention

∑
τi

∑
τx

1Rτi=Rτx .
The task-specific feature vector γτi was comprised of the
task’s deadline, a binary indicator for whether or not the task’s
precedence constraints had been satisfied, the number of other
tasks sharing the given task’s resource, a binary indicator for
whether or not the given task’s resource was available, the
travel time remaining to reach the task location, the distance
agent a would travel to reach τi and the angular difference
between the vector describing the location of agent a and the
vector describing the position of τi relative to agent a.

We compared the performance of our pairwise approach
with a pointwise approach and a naı̈ve approach. In the point-
wise approach, training examples for selecting the highest-
priority task were of the form rankφmτi := [ξτ , γτi ]. The label
γmτi was equal to 1 if task τi was scheduled in observation
m, and was 0 otherwise. In the naı̈ve approach, examples
were comprised of an input vector that concatenated the high-
level features of the task set and the task-specific features of



Figure 1: Sensitivity of machine learning techniques using
the pairwise, pointwise and naı̈ve approaches.

Figure 2: Specificity of machine learning techniques using
the pairwise, pointwise and naı̈ve approaches.

the form rankφm := [ξτ , γτ1 , γτ2 , . . . , γτn ]; labels ym were
given by the index of the task τi scheduled in observation m.

Figures 1-2 depict the sensitivity (true positive rate) and
specificity (true negative rate) of the model, respectively. We
found that a pairwise model outperformed the pointwise and
naı̈ve approaches. Within the pairwise model, a decision tree
yielded the best performance: The trained decision tree was
able to identify the correct task and when to schedule that task
95% of the time, and was able to accurately predict when no
task should be scheduled 96% of the time.

In order to more fully understand the performance of a de-
cision tree trained with a pairwise model as a function of the
number and quality of training examples, we trained deci-
sion trees with our pairwise model using 15, 150 and 1,500
demonstrations. The sensitivity and specificity depicted in
Figures 3-4 for 15 and 150 demonstrations are the mean sen-
sitivity and specificity of 10 models trained via random sub-
sampling without replacement. We also varied the quality of
the training examples, assuming the demonstrator was operat-
ing under an ε-greedy approach with a (1 − ε) probability of
selecting the correct task to schedule and selecting another
task from a uniform distribution otherwise. This assump-
tion is conservative; a demonstrator making an error would
be more likely to pick the second- or third-best task than to
select a task at random.

Training a model based on pairwise comparison between
the scheduled task and unscheduled tasks effectively pro-

Figure 3: Sensitivity for a pairwise decision tree varying the
number and proportion of correct demonstrations.

Figure 4: Specificity for a pairwise decision tree varying the
number and proportion of correct demonstrations.

duced policies of comparable quality to those generated by
the synthetic expert. The decision tree model performed well
due to the modal nature of the multifaceted scheduling heuris-
tic. Note that this dataset was composed of scheduling strate-
gies with mixed discrete-continuous functional components;
performance could potentially be improved upon in future
work by combining decision trees with logistic regression.
This hybrid learning approach has been successful in prior
machine learning classification tasks [Landwehr et al., 2005]
and can be readily applied to this apprenticeship scheduling
framework. There is also an opportunity to improve perfor-
mance through hyper-parameter tuning (e.g. to select the
minimum number of examples in each leaf of the decision
tree). Comprehensive investigation of the relative benefits for
a range of learning techniques is left for future work.

Real-World Data Set
We trained and tested a decision tree on our pairwise schedul-
ing model via leave-one-out cross-validation using 16 real
demonstrations in which a player successfully protected the
ship from all enemy missiles. Each demonstration origi-
nated from a unique threat scenario. Features for each de-
coy/missile pair (or null decoy deployment due to inaction)
included indicators for whether a decoy had been placed
such that a missile was successfully distracted by that decoy,
whether a missile would be lured into hitting the ship due to
decoy placement, or whether a missile would be unaffected
by decoy placement.

Across all 16 scenarios, the mean player score was 74, 728
± 26, 824. With only 15 examples of expert human demon-
strations, our apprenticeship scheduling model achieved a
mean score of 87, 540, with a standard deviation of 16, 842.

We performed statistical analysis to evaluate our hypothe-
sis that the scores produced by the learned policy would be



statistically significantly better than the scores achieved by
the human demonstrators. The null hypothesis stated that the
number of scenarios in which the apprenticeship scheduling
model achieved superior performance would be less than or
equal to the number of scenarios in which the mean score of
the human demonstrators was superior to that of the appren-
ticeship scheduler. We set the significance level at α = 0.05,
which means that the risk of identifying a difference between
the mean scores earned by the apprenticeship scheduler and
the set of human performers when no such difference exists
is less than 5%.

Results from a binomial test rejected the null hypothesis,
indicating that the learned scheduling policy performed bet-
ter than the human demonstrators in significantly more sce-
narios (12 versus 4 scenarios; p < 0.011). In other words,
we can say with 95% certainty that the apprenticeship sched-
uler outperformed the average human player for the majority
of the presented missile defense scenarios. This promising
result was achieved using a relatively small training set, and
suggests that learned policy can form the basis for a training
tool to improve the average player’s score.

Conclusions
We proposed a technique for apprenticeship scheduling that
relies on a pairwise comparison of scheduled and unsched-
uled tasks to learn a model for task prioritization. We val-
idated our apprenticeship scheduling algorithm using both
a synthetic data set covering a variety of scheduling prob-
lems with lower- and upperbound temporal constraints, re-
source constraints and travel distance considerations; and a
real-world data set in which human demonstrators solved a
variant of the weapon-to-target assignment problem. Our ap-
proach was able to learn scheduling policies of superior qual-
ity, on average, to those generated by human experts during
an anti-ship missile defense task.
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