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Abstract: The first measurement of the charged component of the underlying event using

the novel “jet-area/median” approach is presented for proton-proton collisions at centre-of-

mass energies of 0.9 and 7 TeV. The data were recorded in 2010 with the CMS experiment

at the LHC. A new observable, sensitive to soft particle production, is introduced and

investigated inclusively and as a function of the event scale defined by the transverse

momentum of the leading jet. Various phenomenological models are compared to data,

with and without corrections for detector effects. None of the examined models describe

the data satisfactorily.
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1 Introduction

In the theoretical description of nondiffractive inelastic proton-proton collisions, the main

momentum transfer occurs between only two partons. This simple picture is refined by the

inclusion of radiative effects in the form of initial- and final-state radiation. In addition,

the primary interaction is accompanied by the production of further particles in multiple-

parton interactions (MPIs) and in the hadronisation of the beam-beam remnants. The

extra activity in a collision, which cannot be uniquely separated from initial- and final-

state radiation, is referred to as the underlying event (UE).

Monte Carlo event generators simulate the UE based on phenomenological models,

which have been tuned to the data of various collider experiments, taking into account

the dependence of the UE on the centre-of-mass energy. The observation of substantial

deviations of the predictions from the data, in particular when extrapolating to different
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centre-of-mass energies, emphasises the need for measurements of the UE at different en-

ergies [1–6]. Retuned models allow for more precise measurements of observables based on

jets or relying on isolation cones, for example in diphoton events from QCD processes or

decays of the Higgs boson.

An unambiguous association of a specific particle to the reaction from which it origi-

nates is impossible. The investigation of the UE therefore requires a physically motivated

separation of hard and soft contributions through the definition of phase-space regions that

are dominated by either the hard or soft component of a collision. Traditionally, this is

done by geometrically subdividing an event into different regions (“towards”, “away”, and

“transverse”) with respect to the jet or particle leading in transverse momentum pT. At

the same time the pT of the leading object is defined to be the so-called “event scale”, i.e.

a measure of the momentum transfer in the hard partonic scattering. Studies using this

approach were performed at the Tevatron [1–3] and the Large Hadron Collider (LHC) [4–6].

A new technique based on the transverse momentum density per jet area, the jet-

area/median approach, was proposed in [7]. The jet area covered by a jet, the “catchment

area” [8], is determined in the plane of pseudorapidity η versus azimuthal angle φ as defined

in section 2. The exact size and shape of the area must be sensitive to the event-by-event

fluctuating soft hadronic activity of the UE. The most widely used jet algorithm at the

LHC, the anti-kT jet algorithm [9], is unsuited for such an analysis and is replaced by the

kT algorithm [10–13]. The separation of the soft from the hard component of a collision is

performed event by event by using the median of the distribution of transverse momentum

densities of all jets in an event.

The data analysed in this study were collected with the Compact Muon Solenoid

(CMS) detector at centre-of-mass energies of 0.9 and 7 TeV during the early LHC running

in 2010, in which the contamination of events by additional proton-proton collisions in

or close to the same bunch crossing, so-called pileup collisions, is very small. This jet

area technique can be exploited to correct jet energies for pileup contamination in other

measurements. The present paper is the first publication applying this new method in a

collider experiment.

In the following, section 2 defines the UE-sensitive observable based on jet areas. Sec-

tion 3 describes the experimental setup for data collection, triggering, vertex reconstruction,

and event selection. Section 4 gives details on the phenomenological models used for event

generation and on the detector simulation. The event reconstruction and the track and

jet selections are explained in section 5 and are followed by a description of the unfold-

ing technique in section 6. Sections 7 and 8 present the derivation of the measurement

uncertainties and the final results, which are then summarised in section 9.

2 Definition of the observable

CMS uses a right-handed coordinate system, with the origin at the nominal interaction

point, the x axis pointing to the centre of the LHC, the y axis pointing up (perpendicular

to the LHC plane), and the z axis along the anticlockwise-beam direction. The polar angle
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θ is measured from the positive z axis and the azimuthal angle φ is measured in the x-y

plane. The pseudorapidity η is then defined as η = − ln tan(θ/2).

The adopted standard for jet clustering in the LHC experiments is the anti-kT jet

algorithm [9]. Although it follows a sequential recombination procedure, the jets leading

in pT resemble in shape the jets reconstructed using algorithms with fixed cone sizes [14]

because it starts clustering with the hardest (highest pT) objects. Hence, it is less sensitive

to details of the distribution of softer objects in an event and less suited for an investigation

of the UE. In contrast, the kT jet algorithm clusters the softest objects first, trying to

undo the effects of parton showering [10–12]. This approach to jet clustering leads to

nonuniform catchment areas of kT jets, which can be evaluated by applying the active area

clustering technique as described in [8]. In this analysis of the UE, jets are reconstructed

using the kT algorithm with a distance parameter R of 0.6 as implemented in the fastjet

package [13, 15], which at the same time performs the jet-area determination. For this

purpose, the event in question is overlaid with a uniform grid of artificial, extremely soft

“ghost particles” in the η-φ plane as indicators of a jet’s domain of influence or catchment

area. They are fed into the jet algorithm together with the measured tracks or charged

particles but without impact on the reconstructed physical jets. This is guaranteed by

the use of an infrared- and collinear-safe jet algorithm and the smallness of the transverse

momentum of the ghost particles, which is of the order of 10−100 GeV. The number of

ghosts, N ghosts
j , clustered into a jet j is then a measure of the jet area Aj :

Aj =
Nghosts

j

ρghosts
=
Nghosts

j

Nghosts
tot

Atot , (2.1)

where ρghosts is the ghost density, defined as the total number of ghosts Nghosts
tot divided by

the total area Atot within the acceptance. In this study, Atot is set equal to 8π according

to the ranges of 0 ≤ φ < 2π and |η| ≤ 2. In order to limit boundary effects, the directions

of the jets axes are restricted to |η| < 1.8 while tracks are used up to |η| = 2.3. The

distribution of ghosts extends up to |η| = 5. Here it is important to note that empty areas

within the acceptance are covered by jets which consist solely of ghost particles. These

“ghost jets” have a well-defined area but vanishing transverse momentum.

A measure of the soft activity in an event is then given by the median ρ of the distri-

bution of the jet transverse momentum per jet area for all jets in an event [7]:

ρ = median
j ∈ jets

{
pTj

Aj

}
. (2.2)

The choice of the median is motivated by its robustness to outliers in the distribution.

These outliers are in particular the leading jets originated by the hard partonic interaction.

The observable ρ thus naturally isolates UE contributions by assuming that the majority of

the event is either empty or dominated by soft contributions and that the hard component

of the interaction is well contained within the leading jets. In contrast to the conventional

approach, no explicit geometrical subdivision of the event is necessary. The separation of

the hard and soft components is done event by event through the area clustering for the kT
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algorithm and the use of the median. An advantage of this novel method is that it can easily

be extended to event topologies other than the minimum-bias events investigated here.

In the proposal for a measurement of ρ in collider experiments [7], no kinematic se-

lection was imposed on the input particles for the jet clustering. Unfortunately, this is

not realistic experimentally because of threshold effects and a limited detector acceptance.

Typically in minimum-bias events with a low average charged-particle multiplicity, large

parts of the detector do not contain any physical particles and are therefore covered by

ghost jets. As each ghost jet contributes one entry at pTj/Aj = 0, events with a majority of

ghost jets have ρ = 0, corresponding to zero UE activity. In order to increase the sensitivity

to low UE activity, an adjusted observable ρ′ is introduced, which takes into account only

jets containing at least one physical particle:

ρ′ = median
j ∈ physical jets

{
pTj

Aj

}
· C . (2.3)

Here, the event occupancy C, defined as the area
∑

j Aj covered by physical jets

divided by the total area Atot, is a measure of the “nonemptiness” of an event. While in

ρ the ghost jets account for empty regions in the detector in the derivation of the median,

the scaling factor C has a similar effect on ρ′ by shifting events with low activity towards

smaller values of ρ′. In the limit of full coverage of the detector with physical jets, ρ and

ρ′ are identical.

3 Detector description and event selection

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter. Within the field volume are a silicon pixel and strip tracker, a crystal electro-

magnetic calorimeter, and a brass/scintillator hadron calorimeter. Muons are measured in

gas-ionisation detectors embedded in the steel return yoke. Extensive forward calorimetry

complements the coverage provided by the barrel and endcap detectors. In the following,

only the parts of the detector that are most important for this analysis will be presented.

A more detailed description can be found in ref. [16].

The inner tracker measures charged particles within the pseudorapidity range |η| < 2.5.

It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in

the 3.8 T field of the superconducting solenoid. It provides an impact parameter resolution

of ∼15µm and a transverse momentum resolution of about 1.5% for 100 GeV particles.

Two subsystems of the first-level trigger system are used in this analysis: the Beam

Pick-up Timing for eXperiments (BPTX) and the Beam Scintillator Counters (BSC). The

two BPTX devices, which are installed around the beam pipe at a distance of ±175 m

from the interaction point, are designed to provide precise information on the structure

and timing of the LHC beams with a time resolution better than 0.2 ns. The two BSCs,

each consisting of a set of 16 scintillator tiles, are located along the beam line on each side

of the interaction point at a distance of 10.86 m and are sensitive in the range 3.23 < |η| <
4.65. They provide information on hits and coincidence signals with an average detection

efficiency of 96.3% for minimum-ionising particles and a time resolution of 3 ns.
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For an analysis of the UE, only data with not more than one collision per bunch

crossing, i.e. without pileup, are suitable. Therefore data taken during periods with low

instantaneous luminosity, between March and August 2010, at centre-of-mass energies of

0.9 and 7 TeV are used.

The high-level trigger selection requires at least one track to be reconstructed in the

silicon pixel detector with a minimum transverse momentum of 0.2 GeV. This high-level

trigger path is seeded by the BPTX and BSC level-1 triggers. In order to minimise the

contamination caused by additional interactions within the same LHC bunch crossing,

only events with exactly one reconstructed vertex are used in this analysis. The position

of this vertex must be fitted from at least four tracks and its z component must lie within

10 cm of the centre of the reconstructed luminous region for the given data-taking run [17].

The effect of pileup collisions that remained undetected because of inefficiencies in the

primary vertex reconstruction is estimated to be negligible compared to other sources of

systematic uncertainty.

Even though this analysis contains data taken at two different centre-of-mass energies,

all event selection and trigger criteria are identical throughout to guarantee compatibility

of the results and consistency with the conventional UE measurement [4].

4 Event generators and simulation

The generator predictions that are compared with the data were produced with three

different tunes of the PYTHIA program version 6.4.22 [18], and one from PYTHIA ver-

sion 8.145 [19]. The matrix elements chosen for the event generation reflect the minimum-

bias event selection in data. A simulation of the CMS detector, based on the Geant4

package [20], is applied. As Monte Carlo methods are used in both steps, we refer to “gen-

erator” when particle-level generator information is concerned, while “simulation” refers

to a simulation of the CMS detector response.

The PYTHIA 6 tune D6T [21, 22] was the default tune within the CMS Collaboration

prior to the LHC operation. It is based on the CTEQ6L1 [23] parton distribution functions

(PDFs) and was tuned to describe measurements of the UA5 Collaboration at the SppS

collider and the Tevatron experiments.

As a consequence of the higher particle multiplicities observed in LHC collision data at

0.9 TeV and 7 TeV [24–28] compared to existing model predictions, the new tunes Z1 [29]

and Z2 were developed. Both tunes employ a new model for MPIs and a fragmentation

function derived with the professor [30] tool, as well as pT-ordered parton showers. The

main difference between the two tunes is the usage of the CTEQ5L PDFs [31] in Z1 and

the CTEQ6L1 PDFs [23] in Z2. Using different PDF sets requires the adjustment of the

parameter that defines the minimal momentum transfer in MPIs in order to keep the cross

section of the additional scatterings constant. Tune 4C [32] of PYTHIA version 8 also uses

a new MPI model, which is interleaved with parton showering, and the CTEQ6L1 PDFs.

During simulation and reconstruction, the simulated samples take into account an

imperfect alignment as well as nonoperational channels of the tracking system.
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5 Reconstruction

For the purpose of measuring the soft activity of the UE, the data are analysed down to

very small transverse momenta of 0.3 GeV, exploiting the capabilities of the CMS tracking

detectors. A potential neutral component of the UE, measurable only with the calorimeters,

is neglected. Consequently, the jet clustering is performed on reconstructed tracks either

from data or simulated events (track jets), and also on stable charged particles in generator

events (charged-particle jets). Generator particles with mean lifetimes τ such that cτ >

10 mm are considered to be stable.

5.1 Track selection

The performance and technical details of the CMS tracking with first collision data is

described in [17]. The track selection of this analysis follows that of the conventional UE

measurement as discussed in [4]. In detail, the following criteria are applied:

• high-purity track quality [17];

• transverse momentum pT > 0.3 GeV;

• pseudorapidity |η| < 2.3;

• transverse impact parameter dxy < 0.2 cm;

• longitudinal impact parameter dz < 1 cm;

• relative track pT uncertainty (σpT/pT) · max(1, χ2/Ndof) < 0.2, where Ndof denotes

the number of degrees of freedom in the track fit.

These impact parameters are determined with respect to the primary vertex.

5.2 Charged generator particles

The influence of the detector on a particular observable is estimated by comparing the

predictions, as given by a particle generator, before and after detector simulation, includ-

ing trigger effects. To achieve a good correspondence to the track selection, the generated

stable charged particles are required to satisfy pT > 0.3 GeV and |η| < 2.3. This mini-

mum transverse momentum threshold and the restriction to charged particles significantly

reduces the number of particles entering the clustering process.

5.3 Jet selection

No further selection on the transverse momenta of the jets is imposed. Because of the

selection criteria on the input objects, however, they are implicitly restricted to be larger

than 0.3 GeV. To avoid boundary effects in the jet-area determination, the absolute pseu-

dorapidity of the jet axis is required to be smaller than 1.8, which is to be compared with

|η| < 2.3 for the input objects.
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6 Detector unfolding

In order to compare data with theoretical predictions, the measurement must be corrected

for detector response and resolution effects. In abstract terms, the connection between

a true and the reconstructed distribution is expressed by a folding integral, which must

be inverted to correct for the detector effects. Commonly, this procedure is referred to

as unfolding or deconvolution. The technique adopted here to unfold the ρ′ distribution

is the iterative Bayesian approach [33] as implemented in the RooUnfold framework [34].

For this method the relevant distributions of a given observable are analysed before and

after detector simulation and the detector response is expressed as a response matrix. To

improve the statistical stability of the unfolding procedure, a wider binning and a reduced

ρ′ range are used compared to the uncorrected distributions.

It is found that the response matrices derived from different event generator tunes

yield different results after the unfolding of the data distribution, which is a consequence

of the difference in track multiplicities of the tunes. The tune Z2, which yields the best

description of track-based observables, is used to unfold detector effects, while the others

are employed only to derive the systematic uncertainties arising from this procedure.

7 Systematic uncertainties

The following sources of systematic uncertainties are considered: the trigger efficiency

bias, the influence of the track selection, track misreconstruction and the reconstruction

efficiency, the track jet pT response, nonoperational tracker channels, and the tune depen-

dence in the unfolding procedure.

Since most of the effects are found to be ρ′-dependent, suitable parametrisations are

chosen to quantify them. From these parametrisations, the uncertainties are derived bin by

bin by adding the different effects in quadrature. For variations in the requirements, for ex-

ample from decreasing and increasing the track pT requirement, symmetrised uncertainties

are derived in the form of the average of the observed absolute deviations from the baseline

scenario. Representative numbers for the uncertainties are summarised in table 1 apart

from the trigger efficiency bias, which is found to be negligible, since the event selection

criterion of at least four tracks required for a well reconstructed primary vertex is stricter

than the trigger condition.

The only track selection criterion identified to have a significant impact on the ob-

servable is the minimal track pT. Varying the threshold value of 300 MeV by ±10% in-

duces a systematic uncertainty on the ρ′ distribution of about 2.0% at 7 TeV and 3.0% at

0.9 TeV. For the lowest ρ′ bins, the effect increases dramatically to ±15% at 7 TeV and

±16% at 0.9 TeV.

The potential mismatch between the number of reconstructed tracks and the number

of charged particles is estimated from simulated events to be 5%. A similar number is found

for the reconstruction efficiency of nonisolated muons in data [35]. To quantify the influence

of the tracking efficiency on ρ′, a random track from an independent sample is added to the

analysed sample with a probability of 5% per existing track. Thus, the kinematic variables
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Systematic effect

√
s = 0.9 TeV

√
s = 7 TeV

typ. size max. size typ. size max. size

Track selection ±3.0 ±16 (low ρ′) ±2.0 ±15 (low ρ′)

Track reconstruction ±0.5 ±3.0 (low ρ′) ±0.5 ±2.5 (low ρ′)

Track-jet pT response ±4.0 ±5.0 (low ρ′) ±2.0 ±4.0 (low ρ′)

Nonoperational tracker channels ±2.5 −3.0 (low ρ′) ±1.0 +1.5 (low ρ′)

Unfolding & tune dependence ±9 ±10 (high ρ′) ±4 ±16 (high ρ′)

Table 1. Summary of systematic uncertainties on the ρ′ distributions (in percent).

of the additional track follow the distributions predicted by the simulation. The effect of

dropping each track with a probability of 5% is also studied. The total resulting influence

on ρ′ for adding false or losing real tracks is found to be around 0.5% in most bins.

The response of the track jet pT measurement compared to charged-particle jets is

another source of uncertainty. It is studied by shifting the pT of each jet in the events

by ±1.7%. This number corresponds to the width of the transverse momentum response

distribution when comparing jets from generated charged particles and their corresponding

reconstructed track jets. As expected in the case of systematically increased transverse

momenta, the ρ′ spectrum is shifted towards higher values and vice versa. The magnitude

of the effect is dependent on ρ′ and ranges from about 4% for small ρ′ to about 2.0% for

large ρ′ at
√
s = 7 TeV. In the case of

√
s = 0.9 TeV, the effect is more pronounced but it

remains smaller than 5%.

Further sources of uncertainties are nonoperational tracker channels and imperfect

alignment of the tracker components. These effects are studied by means of a special

simulated data set, which assumes perfect alignment and all channels functional. Small

values of ρ′ are affected most, with a total systematic uncertainty of 1.0% at 7 TeV and

2.5% at 0.9 TeV on average.

The uncertainty arising from the response matrix in the unfolding procedure is evalu-

ated by investigating the differences in the response in the different tunes. The measured

distribution is unfolded with all four response matrices, and the average deviation of the

D6T, Z1, and 4C results from those obtained with the Z2 tune are taken as the system-

atic uncertainty, which amounts to roughly 4% at 7 TeV and 9% at 0.9 TeV, increasing for

higher ρ′ values.

8 Results

As in conventional UE measurements it is possible for the ρ′ observable to be investigated

not only inclusively but also as a function of the hardness of an event, which is given by the

“event scale”. In the conventional approach, this scale is usually defined by the transverse

momentum of either the hardest track or hardest jet. In the present study, the natural

choice for the event scale is the transverse momentum of the jet leading in pT within the

acceptance. In the next two subsections the inclusive and the event-scale-dependent results
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on ρ′ are presented without correction for detector effects. The unfolded results follow in

subsection 8.3.

8.1 Inclusive measurement

Figure 1 shows the uncorrected inclusive ρ′ distributions for data in comparison to the

PYTHIA 6 tunes Z1, Z2, D6T, and the PYTHIA 8 tune 4C. The distributions are nor-

malised to the observed number of events. All predictions deviate significantly from the

measurements at both centre-of-mass energies, in particular for ρ′ values larger than about

0.5 GeV. At
√
s = 0.9 TeV PYTHIA 6 Z2 overshoots the data while PYTHIA 6 D6T

and PYTHIA 8 4C are systematically too low. In comparison, PYTHIA 6 Z1 is closer

to the measurement with some overestimation in the range of ρ′ from 0.5 to 1.5 GeV at√
s = 0.9 TeV and a similar behaviour from 1.0 to 2.0 GeV at

√
s = 7 TeV. For higher ρ′,

Z1 undershoots the data. While PYTHIA 8 4C continues to exhibit too little UE activity

at the higher centre-of-mass energy of 7 TeV, PYTHIA 6 D6T describes the data somewhat

better. PYTHIA 6 Z2 changes from severely overestimating the UE to an underestimation

at 7 TeV, hinting at a problem with the energy dependence of the UE in this tune.

8.2 Event scale dependence

Figure 2 shows as examples the uncorrected ρ′ distributions in the two slices of the leading

jet pT of 3 < pT,leading < 6 GeV (left) and 9 < pT,leading < 12 GeV (right) at
√
s = 7 TeV. Of

course, the additional binning in the hardness of the events effectively limits the accessible

range in ρ′ as well. The observed deviations of PYTHIA 6 Z2 or PYTHIA 8 4C from

the measurements remain similar when going from an inclusive view to slices in event

scale. In contrast to this, the comparison of PYTHIA 6 D6T and Z1 relative to the data

does change. This can be seen even more clearly when concentrating on gross features of

the distributions such as the peak values, means, or widths, which depend visibly on the

event scale.

For completeness figure 3 presents the mean values 〈ρ′〉 for all slices possible at 0.9

and 7 TeV centre-of-mass energy versus the leading jet pT as event scale. In accordance

with expectations from similar UE studies in the conventional approach, a steep rise at

small event scales as well as a saturation or plateau region at high scales are exhibited.

The increase of the UE activity with higher centre-of-mass energies is visible from the

heights of the plateau regions, which roughly correspond to a ratio of 1.8, in agreement

with observations of a ratio around 2 for conventional observables in [4].

With respect to the tune comparisons at 0.9 and 7 TeV, PYTHIA 8 4C always un-

dershoots the average UE activity as characterised by 〈ρ′〉, PYTHIA 6 Z1 changes from

agreement with data to an underestimation, Z2 from an overestimation to an underesti-

mation, and D6T from a systematic underestimation to an overestimation for event scales

larger than 10 GeV at 7 TeV centre-of-mass energy.

8.3 Unfolded results

Figure 4 compares the inclusive ρ′ distributions, unfolded with the Bayesian method, to

the PYTHIA 6 tunes Z1, Z2, D6T, and the PYTHIA 8 tune 4C, but this time at the
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Figure 1. Uncorrected inclusive ρ′ distributions for data and simulation (upper row), and ratios

of the PYTHIA 6 tunes Z1, Z2, D6T, and the PYTHIA 8 tune 4C relative to data (lower row)

at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right). The dark grey shaded band corresponds to the

systematic uncertainty and the light grey shaded band to the quadratic sum of the systematic and

statistical uncertainty. The reach in ρ′ is different at the two centre-of-mass energies.

level of stable charged particles. Because of the response differences among the tunes, a

substantial systematic uncertainty is introduced by the unfolding, which is indicated in

figure 4 by the difference between the dark and light grey shaded bands. Also the range

in ρ′ had to be limited to ρ′ < 2.0 GeV for
√
s = 0.9 TeV and ρ′ < 3.2 GeV for

√
s = 7 TeV

to ensure the stability of the procedure. Nevertheless, the shape of the ρ′ distributions is

rather well preserved during the unfolding process and the same conclusions can be drawn

as from the comparison of the uncorrected observable.

For the purpose of deriving the event scale dependence of 〈ρ′〉, the ρ′ distribution

in each slice of jet pT must be unfolded independently using separate response matrices.

The result is presented in figure 5 where the error bars are dominated by the uncertainty

introduced through the unfolding procedure. Again, the observations are consistent with

the uncorrected case as shown in figure 3 and the ratio of the plateau heights roughly

corresponds to a factor of 1.8 between 0.9 and 7 TeV centre-of-mass energy.
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Figure 2. Uncorrected ρ′ distributions in the two slices of leading track jet transverse momentum,

3 < pT,leading < 6 GeV (left) and 9 < pT,leading < 12 GeV (right) at
√
s = 7 TeV. The reach in

ρ′ is different for the two slices in leading track jet pT. The lower plots show the ratios of the

different generator tunes to the reconstructed data. The dark grey shaded band corresponds to the

systematic uncertainty and the light grey shaded band to the quadratic sum of the systematic and

statistical uncertainty.

9 Summary

The jet-area/median approach to measuring the underlying event has been studied for

the first time in a collider experiment at the two centre-of-mass energies of 0.9 and 7 TeV

with the CMS detector. The measured distributions of the observable ρ′, based on this

approach, are unfolded for detector effects and compared to predictions of several Monte

Carlo event generator tunes before and after detector simulation. The substantial discrep-

ancies observed among the various predictions and also between the predictions and the

data demonstrate the sensitivity of the method and indicate the need for improved tunes at

both centre-of-mass energies. None of the examined models describe the data satisfactorily.

Overall, PYTHIA 6 Z1 gives the best description of the data with some residual un-

derestimation at
√
s = 7 TeV. PYTHIA 6 Z2 varies from severely overshooting the data

at 0.9 TeV to falling short of the data at 7 TeV, hinting at an inadequate setting of the
√
s

– 11 –



J
H
E
P
0
8
(
2
0
1
2
)
1
3
0

 [GeV]
T

leading jet p
0 5 10 15 20 25

 [G
eV

]
〉'ρ〈

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0 Pythia 6 Z1

Pythia 6 Z2

Pythia 6 D6T

Pythia 8 4C

Uncorrected Data

|< 1.8η|
, R=0.6Tk

track jets
 = 0.9 TeVs

> 0.3 GeV
T

p

CMS

 [GeV]
T

leading jet p
0 5 10 15 20 25 30

 [G
eV

]
〉'ρ〈

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pythia 6 Z1

Pythia 6 Z2

Pythia 6 D6T

Pythia 8 4C

Uncorrected Data

|< 1.8η|
, R=0.6Tk

track jets
 = 7 TeVs

> 0.3 GeV
T

p

CMS

Figure 3. Mean values of the uncorrected ρ′ distributions versus leading track jet transverse

momentum at
√
s = 0.9 TeV (left) and

√
s = 7 TeV (right) in comparison to the predictions by

the different generator tunes. The error bars, which are mostly smaller than the symbol sizes,

correspond to the quadratic sum of the systematic and statistical uncertainty.

dependence for the UE model. PYTHIA 8 4C almost always underestimates the UE activ-

ity, while PYTHIA 6 D6T does so only at 0.9 TeV or at small event scales but then rises

too steeply with increasing hardness of the events. The general pattern of deviations from

data by the considered PYTHIA tunes is similar to that observed with the conventional

approach [4].

The mean 〈ρ′〉 has also been investigated as a function of the transverse momentum

of the leading jet. In agreement with the conventional analysis, a steep rise of the UE

activity with increasing leading jet transverse momentum up to about 10 GeV is observed.

For higher transverse momenta a plateau is reached. The ratio of the UE activity in this

saturation region at 7 TeV to that at 0.9 TeV is approximately 1.8, which is close to the

ratios of around 2 measured with the conventional observables.

In conclusion, the new observable ρ′ based on the jet-area/median approach has been

demonstrated to be sensitive to soft hadronic activity and offers an alternative view of the

UE. The method is not restricted to minimum-bias events as examined here but can also

be applied to different event topologies.
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M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen,
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G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b,

L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b,

G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,1, P. Giacomellia,

– 21 –



J
H
E
P
0
8
(
2
0
1
2
)
1
3
0

C. Grandia, L. Guiducci, S. Marcellinia, G. Masettia, M. Meneghellia,b,1, A. Montanaria,

F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b,

G. Sirolia,b, R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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nológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada,

M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos,

D. Domı́nguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando,

J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez,

M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares,

C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias,

J. Piedra Gomez32, J.M. Vizan Garcia

Instituto de F́ısica de Cantabria (IFCA), CSIC-Universidad de Cantabria,

Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros,

M. Felcini33, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo,

A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez,
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