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CONTRAGREDIENT REPRESENTATIONS AND CHARACTERIZING THE
LOCAL LANGLANDS CORRESPONDENCE

By JEFFREY ADAMS and DAVID A. VOGAN JR.

Abstract. We consider the question: what is the contragredient in terms of L-homomorphisms? We
conjecture that it corresponds to the Chevalley automorphism of the L-group, and prove this in the
case of real groups. The proof uses a characterization of the local Langlands correspondence over R.
We also consider the related notion of Hermitian dual, in the case of GL(n,R).

1. Introduction. It is surprising that the following question has not been
addressed in the literature: what is the contragredient in terms of Langlands pa-
rameters?

Thus suppose G is a connected, reductive algebraic group defined over a local
field F , and G(F ) is its F -points. According to the local Langlands conjecture, as-
sociated to an admissible homomorphism φ from the Weil-Deligne group of F into
the L-group of G(F ) is an L-packet Π(φ), a finite set of (equivalence classes of) ir-
reducible admissible representations of G(F ). (If F is archimedean, “equivalence”
means “infinitesimal equivalence.” If F is non-archimedean, it means “equivalence
of smooth vectors.”) Conjecturally these L-packets partition the admissible dual.

So suppose π is an irreducible admissible representation, and π ∈ Π(φ). Let
π∗ be the contragredient, or dual, of π (see (7.1)). The question is: what is the
homomorphism φ∗ such that π∗ ∈ Π(φ∗)? We also consider the related question
of describing the Hermitian dual in terms of Langlands parameters. Both of the
questions come down to a characterization of the local Langlands correspondence.
For R this is the content of Sections 4 and 6, especially Definitions 6.6 and 6.15.

Let ∨G be the complex dual group of G. A Chevalley involution C of ∨G
satisfies C(h) = h−1, for all h in some Cartan subgroup of ∨G. The L-group

L
G of

G(F ) is a certain semidirect product ∨G�Γ where Γ is the absolute Galois group
of F (or other related groups). We can choose C so that it extends to an involution

of
L
G, acting trivially on Γ. We refer to this as the Chevalley involution of

L
G. See

Section 2.
We believe the contragredient should correspond to composition with the

Chevalley involution of
L
G. To avoid two levels of conjecture, we formulate this

as follows.
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658 J. ADAMS AND D. A. VOGAN JR.

CONJECTURE 1.1. Assume the local Langlands conjecture is known for both

π and π∗. Let C be the Chevalley involution of
L
G. Then

π ∈Π(φ)⇐⇒ π∗ ∈Π(C ◦φ).

Even the following weaker result is not known:

CONJECTURE 1.2. If Π is an L-packet, then so is Π∗ = {π∗ | π ∈Π}.
The local Langlands conjecture is only known, for fixed G(F ) and all π, in a

limited number cases, notably GL(n,F ) over any local field [11, 12], and for anyG
if F =R or C. See Langlands’s original paper [15], which is summarized in Borel’s
article [7]. On the other hand it is known for a restricted class of representations
for more groups, for example unramified principal series representations of a split
p-adic group [7, 10.4].

For discrete series L-packets of real groups, Conjecture 1.1 follows from [18,
Lemma 7.4.1], and it is known for some representations of some quasisplit p-adic
groups by [13]. It would be reasonable to impose Conjecture 1.1 as a condition on
the local Langlands correspondence in cases where it is not known.

We concentrate on the Archimedean case. Let WR be the Weil group of R. The
contragredient in this case can be realized either via the Chevalley automorphism

of
L
G, or via a similar automorphism of WR. Let C∗ be the multiplicative group

of nonzero complex numbers. By analogy with the Chevalley involution C of G,
there is a unique C

∗-conjugacy class of automorphisms CWR
of WR satisfying

CWR
(z) = z−1 for all z ∈ C

∗. See Section 2.

THEOREM 1.3. LetG(R) be the real points of a connected reductive algebraic

group defined over R, with L-group
L
G. Suppose φ : WR → L

G is an admissible
homomorphism, with associated L-packet Π(φ). Then

Π(φ)∗ =Π(C ◦φ) = Π(φ◦CWR
).

In particular Π(φ)∗ is an L-packet.

Here is a sketch of the proof.
It is easy to prove in the case of tori. See Section 3.
It is well known that an L-packet Π of (relative) discrete series representations

is determined by an infinitesimal and a central character. In fact something stronger
is true. Let Grad be the radical of G, i.e., the maximal central torus. Then Π is
determined by an infinitesimal character and a character of Grad(R), which we
refer to as a radical character.

In general it is easy to read off the infinitesimal and radical characters of
Π(φ), see [7] and Section 6.1. In particular for a relative discrete series parameter
Theorem 1.3 reduces to a claim about how C affects the infinitesimal and radical
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characters. For the radical character this reduces to the case of tori, and Theorem
1.3 follows in this case.

This is the heart of the matter, and the general case follows easily by parabolic
induction. In other words, the proof relies on the fact that the parameterization is
uniquely characterized by:

(1) Infinitesimal character,
(2) Radical character,
(3) Compatibility with parabolic induction.

In a sense this is the main result of the paper: a self-contained description of the
local Langlands classification, and its characterization by (1)–(3). See Sections 4
and 6. Use of the Tits group (see Section 5) simplifies some technical arguments.

Now consider GL(n,F ) for F a local field of characteristic 0. Since GL(n,F )
is split, an admissible homomorphism into the L-group is the same thing as a homo-
morphism into the dual group GL(n,C) (in which the Weil group acts semisimply);
that is, φ may be identified with an n-dimensional complex representation of the
Weil-Deligne group W ′

F . In this case L-packets are singletons, so write π(φ) for
the representation attached to φ.

For the Chevalley involution take C(g) = tg−1. Composing any finite-
dimensional representation into GL(n) with the inverse transpose gives the
contragredient representation; so C ◦φ is equivalent to the contragredient φ∗ of φ.
Over R Theorem 1.3 says that the Langlands correspondence commutes with the
contragredient:

π(φ∗)
 π(φ)∗.(1.4)

This is also true over a p-adic field [11, 12], in which case it is closely related to
the functional equations for L and ε factors.

We now consider a variant of (1.4) in the real case. Suppose π is an irreducible
representation of GL(n,R). Its Hermitian dual πh is the unique irreducible repre-
sentation, admitting a nonzero invariant sesquilinear pairing with π. The represen-
tation π admits a nonzero invariant Hermitian form if and only if π 
 πh. In this
case we say π is Hermitian. See Section 8.

The Hermitian dual arises naturally in the study of unitary representations: the
unitary dual is the subset of the fixed points of the involution π �→ πh, consisting
of those π for which the invariant form is definite. So it is natural to ask what the
Hermitian dual is on the level of Langlands parameters.

There is a natural notion of Hermitian dual of a finite-dimensional representa-
tion φ of any group: φh = tφ−1, and φ preserves a nondegenerate Hermitian form
if and only if φ
 φh.

The local Langlands correspondence for GL(n,R) commutes with the Hermit-
ian dual operation:
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THEOREM 1.5. Suppose φ is an n-dimensional semisimple representation of
WR. Then:

(1) π(φh) = π(φ)h,
(2) φ is Hermitian if and only if π(φ) is Hermitian,
(3) φ is unitary if and only if π(φ) is tempered.

See Section 8.
Return now to the setting of general real groups. The space X0 of conjugacy

classes of L-homomorphisms parametrizes L-packets of representations. By intro-
ducing some extra data we obtain a space X which parametrizes irreducible repre-
sentations [3]. Roughly speaking X is the set of conjugacy classes of pairs (φ,χ)
where φ ∈ X0 and χ is a character of the component group of Cent ∨G(φ(WR)). It
is natural to ask for the involution of X induced by the contragredient.

On the other hand, it is possible to formulate and prove an analogue of Theorem

1.5 for general real groups, in terms of an antiholomorphic involution of
L
G. Also,

the analogue of Theorem 1.5 holds in the p-adic case. All of these topics require
more machinery. In an effort to keep the presentation as elementary as possible we
defer them to later papers.

This paper is a complement to [2], which considers the action of the Chevalley

involution of G, rather than
L
G. See Remark 7.6.

We thank Kevin Buzzard for asking about the contragredient on the level of L-
parameters. We also thank the referee for carefully reading the paper and making
number of suggestions, such as changing the title, which substantially improved
the exposition.

2. The Chevalley involution. We discuss the Chevalley involution. This is
well known, although there isn’t a good reference for all of the details we need
(Chevalley cites the existence of this automorphism without proof in [9, page 23]).
For the convenience of the reader we give complete details. We also discuss a
similar involution of WR.

Throughout this paper G is a connected, reductive algebraic group. We may
identify it with its complex points, and write G(C) on occasion to emphasize this
point of view. For x ∈ G write int(x) for the inner automorphism int(x)(g) =
xgx−1.

PROPOSITION 2.1. Fix a Cartan subgroup H of G. There is an automorphism
C of G satisfying C(h) = h−1 for all h ∈H . For any such automorphism C2 = 1,
and, for every semisimple element g ∈G, C(g) is conjugate to g−1.

Suppose C1 andC2 are two such automorphisms defined with respect to Cartan
subgroups H1 and H2. Then C1 and C2 are conjugate by an inner automorphism
of G.
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The proof uses based root data and pinnings. For background see [19]. Fix a
Borel subgroup B of G, and a Cartan subgroup H ⊂ B. Let X∗(H),X∗(H) be
the character and co-character lattices of H , respectively. Let Π, ∨Π be the sets of
simple roots, respectively simple co-roots, defined by B.

The based root datum defined by (B,H) is (X∗(H),Π,X∗(H), ∨Π). There
is a natural notion of isomorphism of based root data. A pinning is a set P =

(B,H,{Xα|α ∈ Π}) where, for each α ∈ Π, Xα = 0 is contained in the α-root
space gα of g= Lie(G). Let Aut(G) be the group of algebraic (equivalently, holo-
morphic) automorphisms of G, Int(G) ⊂ Aut(G) the inner automorphisms, and
Out(G) = Aut(G)/ Int(G). Let Aut(P) be the subgroup of Aut(G) preserving P.
We refer to the elements of Aut(P) as P-distinguished automorphisms.

THEOREM 2.2. [19, Theorem 9.6.2] Suppose G,G′ are connected, reductive
complex groups. Fix pinnings P = (B,H,{Xα}) and P′ = (B′,H ′,{X ′α}). Let
Db,D

′
b be the based root data defined by (B,H) and (B′,H ′).

Suppose φ : Db → D′b is an isomorphism of based root data. Then there is a
unique isomorphism ψ : G→G′ taking P to P′ and inducing φ on the root data.

The only inner automorphism in Aut(P) is the identity, and there are isomor-
phisms

Out(G)
 Aut(Db)
 Aut(P) ⊂Aut(G).(2.3)

The following consequence of the theorem is quite useful.

LEMMA 2.4. Suppose τ ∈ Aut(G) restricts trivially to a Cartan subgroup H .
Then τ = int(h) for some h ∈H .

Proof. Fix a pinning (B,H,{Xα}). Then dτ(gα) = gα for all α. Therefore we
can choose h ∈H so that dτ(Xα) = Ad(h)(Xα) for all α ∈ Π. Then τ ◦ int(h−1)

acts trivially on Db and P. By the theorem τ = int(h). �

Proof of the Proposition. Choose a Borel subgroup B containing H and let
Db = (X∗(H),Π,X∗(H), ∨Π) be the based root datum defined by (B,H). Let
Bop be the opposite Borel, with corresponding root datum Dop

b = (X∗(H),−Π,
X∗(H),− ∨Π).

Choose a pinning P = (B,H,{Xα}). Let Pop = (H,Bop,{X−α|α ∈ Π})
where, for each simple root α ∈ Π, the root vector X−α ∈ g−α is determined by
the requirement α([Xα,X−α]) = 2.

Let φ : Db → D′b be the isomorphism of based root data given by −1 on
X∗(H). By Theorem 2.2 there is an automorphism CP of G taking P to Pop and
inducing φ. In particular CP(h) = h−1 for h ∈ H . This implies CP(gα) = g−α,
and since CP : P → Pop we have CP(Xα) =X−α. Since C2

P is an automorphism
of G taking P to itself and inducing the trivial automorphism of Db, the theorem
implies that xC2

P = 1.
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If g ∈G is any semisimple element, choose x so that xgx−1 ∈H . ThenC(g) =

(C(x−1)x)g−1(C(x−1)x)−1.
Suppose C1(h) = h−1 for all h ∈H . Then C1 ◦CP acts trivially on H , so by

the lemma C1 = int(h1)◦CP for some h1 ∈H , which implies C2
1 = 1.

For the final assertion choose g ∈ G so that gH1g
−1 = H2. Then int(g) ◦

C1 ◦ int(g−1) acts by inversion on H2. By the lemma int(g) ◦C1 ◦ int(g−1) =

int(h2) ◦C2 for some h2 ∈ H2. Choose t ∈ H2 so that t2 = h2. Then int(t−1g) ◦
C1 ◦ int(t−1g)−1 = C2. �

An involution satisfying the condition of the proposition is known as a Cheval-
ley involution. For P a pinning we refer to the involution CP of the proof as the
Chevalley involution defined by P. The proof shows that every Chevalley involu-
tion is equal to CP for some P, and all Chevalley involutions are conjugate. We
will abuse terminology slightly and refer to the Chevalley involution.

Remark 2.5. (1) The Chevalley involution satisfies: C(g) is conjugate to g−1

for all g ∈ G [16, Proposition 2.6]. (Lusztig proves the corresponding statement
over algebraically closed fields of arbitrary characteristic.)

(2) If G = GL(n), C(g) = tg−1 is a Chevalley involution. The group of fixed
points isGC =O(n,C), the complexified maximal compact subgroup of GL(n,R).
In other words, C is the Cartan involution for GL(n,R). In general the Chevalley
involution is the Cartan involution of the split real form of G.

(3) Suppose C ′ is any automorphism such that

C ′(g) is G-conjugate to g−1 for all semisimple g in G.(∗)

It is not hard to see, using Lemma 2.4, that C ′ = int(x) ◦C for some x ∈ G and
some Chevalley involution C . This means that the requirement (∗) characterizes
(via the canonical map Aut(G)→ Out(G)) the class of the Chevalley involutions
in Out(G).

(4) The Chevalley involution is inner if and only ifG is semisimple and−1 is in
the Weyl group, in which case C = int(g0) where g0 ∈ NormG(H) represents −1.
The proposition implies g2

0 is central, and independent of all choices. See Lemma
5.4.

LEMMA 2.6. Fix a pinning P. Then CP commutes with every P-distinguished
automorphism.

This is immediate from the uniqueness statement in Theorem 2.2.
Here is a similar involution ofWR. RecallWR = 〈C∗, j〉 with relations jzj−1 =

z and j2 =−1.

LEMMA 2.7. There is an involution CWR
of WR such that CWR

(z) = z−1 for
all z ∈ C

∗. Any two such automorphisms are conjugate by int(z) for some z ∈ C
∗.
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Proof. This is elementary. For z0 ∈ C
∗ define CW,z0(z) = z−1 (z ∈ C

∗) and
CW,z0(j) = z0j. From the relations this extends to an automorphism of WR if
and only if z0z0 = 1. Thus CW,1 is an automorphism, and CW,z0 = int(u)◦CW,1 ◦
int(u−1), provided (u/u)2 = z0. �

3. Tori. Let H be a complex torus, and fix an element γ ∈ 1
2X
∗(H). Let

Hγ = {(h,z) ∈H×C
∗ | [2γ](h) = z2}.(3.1a)

This is a two-fold cover of H via the map (h,z)→ h; write ζ for the nontrivial
element in the kernel of this map. We call this the γ-cover of H . A character of Hγ

is called genuine if it takes the value −1 on ζ . Note that

γ : Hγ −→ C
∗, (h,z) �−→ z(3.1b)

is a genuine character of Hγ , and is a canonical square root of the algebraic char-
acter 2γ of H . The genuine algebraic characters of Hγ may be identified with
symbols γ+X∗(H):

γ+κ0 : Hγ −→ C
∗, (h,z) �−→ κ0(h)z (κ0 ∈X∗(H)).(3.1c)

Now assume H is defined over R, with Cartan involution θ. The γ-cover of
H(R) is defined to be the inverse image of H(R) in Hγ .

LEMMA 3.2. [6, Proposition 5.8] Given γ ∈ 1
2X
∗(H), the genuine characters

of H(R)γ are canonically parametrized by the set of pairs (λ,κ) with

λ ∈ Hom(h,C), κ ∈ γ+X∗(H)/(1− θ)X∗(H),

subject to the requirement (1+ θ)λ= (1+ θ)κ.

Write χ(λ,κ) for the character defined by (λ,κ). This character has differen-
tial λ, and its restriction to the maximal compact subgroup is the restriction of the
character κ of Hγ . A little more precisely, fix κ0 ∈X∗(H) so that γ+κ0 is a rep-
resentative of κ. Then the restriction of χ(λ,κ) to the maximal compact subgroup
of H(R)γ is the restriction of the algebraic character γ+κ0 defined in (3.1).

Let ∨H be the dual torus. This satisfies: X∗( ∨H) = X∗(H), X∗( ∨H) =

X∗(H). If H is defined over R, with Cartan involution θ, then θ may be viewed as
an involution of X∗(H); its adjoint θt is an involution of X∗(H) =X∗( ∨H). Let
∨θ be the automorphism of ∨H induced by −θt.

The L-group of H is defined as
L
H = 〈 ∨H, ∨δ〉 where ∨δ2 = 1 and ∨δ acts

on ∨H by ∨θ. Part of the data is the distinguished element ∨δ (more precisely its
conjugacy class).

More generally an E-group for H is a group
E
H = 〈 ∨H, ∨δ〉, where ∨δ acts

on ∨H by ∨θ, and ∨δ2 ∈ ∨H ∨θ. Such a group is determined up to isomorphism by



664 J. ADAMS AND D. A. VOGAN JR.

the image of ∨δ2 in ∨H ∨θ/{h ∨θ(h) | h ∈ ∨H}. Again the data includes the ∨H
conjugacy class of ∨δ. See [6, Definition 5.9].

A homomorphism φ : WR → E
H is said to be admissible if it is continuous

and φ(j)∈ LH\ ∨H . Conjugacy classes of admissible homomorphisms parametrize
genuine representations of H(R)γ .

LEMMA 3.3. [6, Theorem 5.11] In the setting of Lemma 3.2, suppose (1−
θ)γ ∈X∗(H). View γ as an element of 1

2X∗(
∨H). Let

E
H = 〈 ∨H, ∨δ〉 where ∨δ

acts on ∨H by ∨θ, and ∨δ2 = exp(2πiγ) ∈ ∨H ∨θ.
There is a canonical bijection between the irreducible genuine characters of

H(R)γ and ∨H-conjugacy classes of admissible homomorphisms φ : WR→ E
H .

If
E
H is the L-group of H then (by restricting to H(R) ⊂ H(R)γ) we can

replace genuine characters of H(R)γ with characters of H(R).

Sketch of proof. An admissible homomorphism φ may be written in the form

φ(z) = zλz
∨θ(λ)

φ(j) = exp(2πiμ) ∨δ
(3.4)

for some λ,μ∈ ∨h. Then φ(j)2 = exp(2πi(μ+ ∨θμ)+γ) and φ(−1) = exp(πi(λ−
∨θλ)), so φ(j2) = φ(j)2 if and only if

κ :=
1
2
(1− ∨θ)λ− (1+ ∨θ)μ ∈ γ+X∗( ∨H) = γ+X∗(H).(3.5)

In this case (1+ θ)λ= (1+ θ)κ; take φ to χ(λ,κ). �

Write χ(φ) for the genuine character of H(R)γ associated to φ.
The Chevalley involution C of ∨H (i.e., inversion) extends to an involution of

E
H = 〈 ∨H, ∨δ〉, fixing ∨δ (this uses the fact that exp(2πi(2γ)) = 1).

Here is the main result in the case of (covers of) tori.

LEMMA 3.6. Suppose φ : WR → E
H is an admissible homomorphism, with

corresponding genuine character χ(φ) of H(R)γ . Then

χ(C ◦φ) = χ(φ)∗.(3.7)

Proof. Suppose φ is given by (3.4), so χ(φ) = χ(λ,κ) with κ as in (3.5). Then

(C ◦φ)(z) = z−λz−
∨θ(λ)

(C ◦φ)(j) = exp(−2πiμ) ∨δ.
(3.8)

By (3.5) χ(C ◦φ) = χ(−λ,−κ) = χ(λ,κ)∗. �
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4. L-packets without L-groups. Suppose G is defined over R, with real
points G(R). This means that G(R) =G(C)σ where σ is an antiholomorphic invo-
lution. (Antiholomorphic means that if f is a locally defined holomorphic function
on G(C), then g �→ f(σ(g)) is also holomorphic.) Fix a Cartan involution θ of G
corresponding to G(R), and let K = Gθ . This means that θ and σ commute, and
K(R) =K∩G(R) =Kσ =G(R)θ is a maximal compact subgroup of G(R), with
complexification K. We have the following picture, where each arrow represents
taking the fixed points with respect to the given involution.

G

σ

����
���

���
���

θ

�����
���

���
�

Gθ =K

σ
���

��
��

��
��

� G(R) =Gσ

θ�����
���

���
�

K(R)

We say that θ corresponds to σ, and vice-versa.
We work entirely in the algebraic setting. We consider (g,K)-modules, and

write (π,V ) for a (g,K)-module with underlying complex vector space V . The
set of equivalence classes of irreducible (g,K)-modules is a disjoint union of L-
packets. In this section we describe L-packets in terms of data for G itself. For the
relation with L-parameters see Section 6.

Suppose H is a θ-stable Cartan subgroup of G. After conjugating by K we
may assume it is defined over R, which we always do without further comment.

The imaginary roots Δi, i.e., those fixed by θ, form a root system. Let ρi be
one-half the sum of a set Δ+

i of positive imaginary roots. The two-fold cover Hρi

ofH is defined as in Section 3. It is convenient to eliminate the dependence on Δ+
i :

define H̃ to be the inverse limit of {Hρi} over all choices of Δ+
i . The inverse image

of H(R) in Hρi is denoted H(R)ρi , and take the inverse limit to define H̃(R).
(The existence and uniqueness of the maps defining the inverse limit follows from
standard facts about systems of positive roots.)

Definition 4.1. An L-datum is a pair (H,χ) where H is a θ-stable Cartan sub-

group of G, χ is a genuine character of H̃(R), and 〈dχ, ∨α〉 = 0 for all imaginary
roots. The Cartan subgroup is included in this notation for convenience, but it is
implicit in the character χ; so we may speak of χ as an L-datum.

Associated to each L-datum is an L-packet. We start by defining relative dis-
crete series L-packets.

We say H(R) is relatively compact if H(R)∩Gd is compact, where Gd is the
derived group of G. (It is equivalent to require that all of the roots of H in G be
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imaginary.) Then G(R) has relative discrete series representations if and only if it
has a relatively compact Cartan subgroup.

Suppose H(R) is relatively compact. Choose a set of positive roots Δ+ and
define the Weyl denominator

D(Δ+,h) = eρ(h)
∏

α∈Δ+

(1− e−α(h)) (h ∈H(R)ρ).(4.2)

This is a genuine function, i.e., it satisfies D(Δ+, ζh) =−D(Δ+,h), and we view

it as a function on H̃(R).
Let q = 1

2 dim(Gd/K ∩Gd). Let W (K,H) = NormK(H)/H ∩K; this is iso-
morphic to the real Weyl group W (G(R),H(R)) = NormG(R)(H(R))/H(R).

Definition 4.3. Suppose (H,χ) is an L-datum with H(R) relatively compact.
Let π = π(χ) be the unique (up to equivalence) nonzero relative discrete series
representation whose character restricted to the regular elements of H(R) is

Θπ(h) = (−1)qD(Δ+, h̃)−1
∑

w∈W (K,H)

sgn(w)(wχ)(h̃).(4.4)

Here h̃ ∈ H̃(R) is any inverse image of h, and Δ+ makes dχ dominant. Every
relative discrete series representation is obtained this way, and π(χ)
 π(χ′) if and
only if χ and χ′ are W (K,H)-conjugate.

The L-packet of (H,χ) is

ΠG(χ) = {π(wχ) | w ∈W (G,H)/W (K,H)}.(4.5)

It is a basic result of Harish-Chandra that π(χ) exists and is characterized
(among relative discrete series representations) by this character formula. This ver-
sion of the character formula is a slight variant of the usual one, because of the use

of H̃(R). See [6] or [1].
By (4.4) the representations in ΠG(χ) all have infinitesimal character dχ. If

ρ= ρi is one-half the sum of any choice of positive roots (all roots are imaginary),
χ⊗ eρ factors to H(R), and the central character of ΠG(χ) is (χ⊗ eρ)|Z(G(R)).

Since 2ρ= 2ρi is a sum of roots, e2ρ is trivial on the center Z of G, and there
is a canonical splitting of the restriction of H̃ to Z: z→ (z,1) ∈Hρ 
 H̃ . Using
this splitting the central character of the packet is simply χ|Z(G(R)).

We are going to show that (as is well known) Π(χ) is precisely the set of
relative discrete series representations with the same infinitesimal and central char-
acters as π(χ). In fact something stronger is true.

Let Grad be the radical of G. This maximal central torus is the identity com-
ponent of the center, and is defined over R. By a radical character we mean a
character of Grad(R), and the radical character of an irreducible representation is
the restriction of its central character to Grad(R).
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PROPOSITION 4.6. An L-packet of relative discrete series representations is
uniquely determined by an infinitesimal and a radical character.

What appears in the proof is in fact just the “split radical character,” the char-
acter of the maximal split torus in the center of G; more precisely, the character on
the elements of order two in that split torus.

The proof will be based on the following structural fact.

LEMMA 4.7. Suppose H(R) is a relatively compact Cartan subgroup ofG(R).
Then

Grad(R)⊂ Z(G(R))⊂Grad(R)H(R)0 =H(R).(4.8)

Proof. Let A be a maximal split subtorus of H (i.e., θ(a) = a−1 for all a ∈A).
Since H(R) is relatively compact, A is contained in the radical Grad ofG. It is well
known that H(R) =A(R)H(R)0. (Such a statement is true for reductive groups [8,
Theorem 14.4], with A a maximal split torus; for tori it is elementary.) Therefore
H(R) = A(R)H(R)0 = Grad(R)H(R)0. Since Z(G(R)) ⊂H(R) this proves the
lemma. �

Proof of Proposition 4.6. Suppose (H,χ) is an L-datum as in Definition 4.3,
and Π = ΠG(χ) the corresponding L-packet of relative discrete series represen-
tations. Write λ ∈ Hom(h,C) for the differential of χ. The infinitesimal charac-
ter χinf of the L-packet has as representatives exactly all the weights wλ, with
w ∈W (G,H).

Write χ= (λ,κ) as in Lemma 3.2. The L-packet of γ by definition consists of
the representations π(wλ,wκ) (with w ∈W (G,H)). The set of all relative discrete
series of infinitesimal character χinf is equal to

{π(wλ,wκ+κ1)}.

Here the modification term κ1 is (by Lemma 3.2) subject to the requirement
(1+ θ)κ1 = 0; that is,

κ1 ∈X∗(H)−θ/(1− θ)X∗(H).

The right side here is the group of characters of

Hθ/Hθ
0 =A(R)θ/(A(R)∩Hθ

0 ).

We have therefore shown that every relative discrete series representation π1 of
infinitesimal character λ arises by changing the radical character of some π(wχ)
by κ1. If the radical character is unchanged—that is, if π(χ) and π1 have the same
radical character—then κ1 belongs to (1− θ)X∗(H), and π1 = π(wχ) belongs to
the L-packet of π. �
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The following converse to Proposition 4.6 follows immediately from the defi-
nitions.

LEMMA 4.9. Assume G(R) has a relatively compact Cartan subgroup, and
fix one, denoted H(R). Suppose χinf,χrad are infinitesimal and radical characters,
respectively. Choose λ ∈ Hom(h,C) defining χinf via the Harish-Chandra homo-
morphism. Then the L-packet of relative discrete series representations defined by
χinf,χrad is nonzero if and only if λ is regular, and there is a genuine character of

H̃(R) satisfying:
(1) dχ= λ

(2) χ|Grad(R) = χrad.
The conditions are independent of the choices of H(R) and λ.

In (2) we have used the splitting Z(G(R))→ H̃(R) discussed after (4.5).
We now describe general L-packets. See [1, Section 13] or [5, Section 6].

Definition 4.10. Suppose (H,χ) is an L-datum. Let A be the identity compo-
nent of {h ∈H | θ(h) = h−1} and set M = CentG(A). Let a = Lie(A). Choose a
parabolic subgroup P =MN satisfying

Re〈dχ|a, ∨α〉 ≥ 0 for all roots of h in Lie(N).

Then P is defined over R, and H(R) is a relatively compact Cartan subgroup of
M(R). Let ΠM (χ) be the L-packet of relative discrete series representations of
M(R) as in Definition 4.3. Define

ΠG(γ) =
⋃

π∈ΠM (χ)

{
irreducible quotients of IndG(R)

P (R)(π)
}
.(4.11)

Here we use normalized induction, and pull π back to P (R) via the map P (R)→
M(R) as usual.

By the discussion following Definition 4.3, and basic properties of induction,
the infinitesimal character of ΠG(χ) is dχ, and the central character is χ|Z(G(R)).

5. The Tits group. We need a few structural facts provided by the Tits
group.

Fix a pinning P = (B,H,{Xα}) (see Section 2). For α ∈ Π define X−α ∈
g−α by [Xα,X−α] = ∨α as in Section 2. Define σα ∈W = exp(π2 (Xα−X−α)) ∈
NormG(H). The image of σα in W =W (G,H) is the simple reflection sα. Let
H2 = {h ∈H |h2 = 1}.

Definition 5.1. The Tits group defined by P is the subgroup T of G generated
by H2 and {σα | α ∈Π}.
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PROPOSITION 5.2. [20] The Tits group T has the given generators, and rela-
tions:

(1) σαhσ−1
α = sα(h),

(2) the braid relations among the σα,
(3) σ2

α = ∨α(−1).
If w ∈W then there is a canonical representative σw of w in T defined as follows.
Suppose w = sα1 . . . sαn is a reduced expression with each αi ∈ Π. Then σw =

σα1 . . .σαn , independent of the choice of reduced expression.

LEMMA 5.3. If w0 is the long element of the Weyl group, then σw0 is fixed by
any P-distinguished automorphism.

Proof. Suppose w0 = sα1 . . . sαn is a reduced expression. If γ ∈ Aut(P) it in-
duces an automorphism of the Dynkin diagram, so sγ(α1) . . . sγ(αn) is also a reduced
expression for w0. Therefore γ(σw0) = γ(σα1 . . .σαn) = σγ(α1) . . .σγ(αn) = σw0 by
the last assertion of Proposition 5.2. �

Let ∨ρ be one-half the sum of the positive coroots.

LEMMA 5.4. For any w ∈W we have

σwσw−1 = exp(πi( ∨ρ−w ∨ρ)).(5.5)

In particular if w0 is the long element of the Weyl group,

σ2
w0

= exp(2πi ∨ρ) ∈ Z(G).(5.6)

This element of Z(G) is independent of the choice of positive roots, and is fixed by
every automorphism of G.

Proof. We proceed by induction on the length of w. If w is a simple reflection
sα then sα ∨ρ= ∨ρ− ∨α, and this reduces to Proposition 5.2(3).

Write w = sαu with α simple and �(w) = �(u)+1. Then σw = σασu, w−1 =

u−1sα, (σw)−1 = σu−1σα, and

σwσw−1 = σασuσu−1σα

= σασuσu−1σ−1
α exp(πi ∨α)

= σα exp(πi( ∨ρ−u ∨ρ))σ−1
α exp(πi ∨α) (by the inductive step)

= exp(πi(sα
∨ρ−w ∨ρ))exp(πi ∨α)

= exp(πi( ∨ρ− ∨α−w ∨ρ))exp(πi ∨α)

= exp(πi( ∨ρ−w ∨ρ)).

(5.7)

The final assertion is easy. �

We thank Marc van Leeuwen for this proof.
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We only need what follows for the part of the main theorem involving the
Chevalley involution τ of WR. Let C =CP be the Chevalley involution defined by
P.

LEMMA 5.8. C(σw) = (σw−1)−1

Proof. We proceed by induction on the length of w.
Since C(Xα) =X−α (α ∈Π), we conclude C(σα) = σ−1

α .
Suppose w = sαu with length(w) = length(u) + 1. Then σw = σασu, and

C(σw)=C(σα)C(σu)=σ
−1
α (σu−1)−1. On the other handw−1 =u−1sα, so σw−1 =

σu−1σα, and taking the inverse gives the result. �

Fix a P-distinguished involution τ of G. Consider the semidirect product G�

〈δ〉 where δ2 = 1 and δ acts on G by τ . By Lemma 2.6, C = CP extends to the
semidirect product, fixing δ. Since τ normalizes H and B, it defines an automor-
phism of W , satisfying τ(σw) = στ(w).

LEMMA 5.9. Suppose w ∈W satisfies wτ(w) = 1. Then
(a) C(σwδ) = (σwδ)

−1.
(b) Suppose g ∈ NormG(H) is a representative of w. Then C(gδ) is H-

conjugate to (gδ)−1.

Proof. By the previous lemma, and using τ(w) =w−1, we compute

C(σwδ)σwδ = (σw−1)−1στ(w) = (στ(w))
−1στ(w) = 1.

For (b) write g = hσwδ with h ∈ H . Then C(g) = C(hσwδ) = h−1(σwδ)
−1 =

h−1(hσwδ)
−1h. �

6. L-parameters. Fix a Cartan involution θ ofG. Let ∨G be the connected,

complex dual group of G. The L-group
L
G of G is 〈 ∨G, ∨δ〉 where ∨δ2 = 1, and

∨δ acts on ∨G by a homomorphism ∨θ0, which we now describe. See [7, 6], or
[4, Section 2].

Fix Borel and Cartan subgroups B0,H0 and let

Db = (X∗(H0),Π,X∗(H0),
∨Π)

be the corresponding based root datum. Similarly choose ∨B0,
∨H0 for ∨G to de-

fine ∨Db. We identify X∗(H0) = X∗( ∨H0) and X∗(H0) = X∗( ∨H0). Also fix a
pinning ∨P = ( ∨B0,

∨H0,{X ∨α}) for ∨G. See Section 2.
An automorphism μ of Db consists of a pair

(τ,τ t) ∈ Aut(X∗(H0))×Aut(X∗(H0)),
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where the transpose is defined with respect to the perfect pairing

X∗(H0)×X∗(H0)−→ Z.

By definition τ and τ t preserve Π, ∨Π respectively. Interchanging (τ,τ t) defines a
transpose isomorphism Aut(Db)
Aut( ∨Db), denoted μ→ μt. Compose with the
embedding Aut( ∨Db) ↪→ Aut( ∨G) defined by ∨P (Section 2) to define a map:

μ−→ μt : Aut(Db) ↪→ Aut( ∨G).(6.1)

Suppose σ is a real form corresponding to θ (see the beginning of Section 4).
Choose g ∈ G conjugating σ(B0) to B0 and σ(H0) to H0. Then τ = int(g) ◦σ ∈
Aut(Db). Let ∨θ0 = τ t ∈ Aut( ∨G). See [7]. For example, if G(R) is split, taking

B0,H0 defined over R shows that
L
G= ∨G×Γ (direct product).

Alternatively, using θ itself gives a version naturally related to the most com-
pact Cartan subgroup. Let γ be the image of θ in Out(G)
Aut(Db). The automor-
phism−w0 ofX∗(H), taking γ to−(w0(γ)), induces an automorphism ofDb, also
denoted −w0. Thus −w0γ ∈ Aut(Db), and we may define:

∨θ0 = (−w0γ)
t ∈Aut( ∨G).(6.2)

This is the approach of [6, 4]. It is not hard to see the elements τ,γ ∈ Aut(Db)

satisfy τ =−w0γ, so the two definitions of
L
G agree.

LEMMA 6.3. The following conditions are equivalent:
(1) G(R) has a compact Cartan subgroup,
(2) ∨θ0 is inner to the Chevalley involution,

(3) there is an element y ∈ LG\ ∨G such that yhy−1 = h−1 for all y ∈ ∨H0.

Proof. The equivalence of (2) and (3) is immediate. Let C be the Chevalley in-
volution of ∨G with respect to ∨P. It is easy to see (6.2) is equivalent to: the image
of ∨θ0 ◦C in Out( ∨G)
Aut( ∨Db) is equal to γt. So the assertion is that G(R) has
a compact Cartan subgroup if and only if γ = 1, i.e., θ is an inner automorphism.
The direction ⇒ holds by Lemma 2.4. For the other direction, if θ = int(x) for
x ∈G(C), let H be any Cartan subgroup of G containing x. Then θx acts trivially
on H , i.e., H is the complexification of a compact Cartan subgroup of G(R). �

A homomorphism φ : WR→ L
G is said to be quasiadmissible if it is continu-

ous, φ(C∗) consists of semisimple elements, and φ(j) ∈ L
G\ ∨G [7, 8.2]. We will

see in Sections 6.2 and 6.3 that every quasiadmissible homomorphism is associated
to an L-packet ΠG(φ), which depends only on the ∨G-conjugacy class of φ. We
say φ is admissible if it satisfies the additional relevancy condition [7, 8.2(ii)]. The
admissible condition (unlike quasiadmissibility) is sensitive to the real form of G,
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and guarantees that ΠG(φ) is nonempty. If G(R) is quasisplit every quasiadmissi-
ble homomorphism is admissible.

After conjugating by ∨Gwe may assume φ(C∗)⊂ ∨H0. Let ∨S be the central-
izer of φ(C∗) in ∨G. Since φ(C∗) is connected, abelian and consists of semisimple
elements, ∨S is a connected reductive complex group, and ∨H0 is a Cartan sub-
group of ∨S. Conjugation by φ(j) is an involution of ∨S, so φ(j) normalizes a
Cartan subgroup of ∨S. Equivalently some ∨S-conjugate of φ(j) normalizes ∨H0;
after this change we may assume φ(WR)⊂ Norm ∨G(

∨H0).
Therefore

φ(z) = zλzλ
′

(for some λ,λ′ ∈X∗( ∨H0)⊗C, λ−λ′ ∈X∗( ∨H0))(6.4)(a)

φ(j) = hσw
∨δ (for some w ∈W,h ∈ ∨H0).(6.4)(b)

Here (a) is shorthand for φ(es) = exp(sλ+ sλ′) ∈ ∨H0 (s ∈ C), and the condition
on λ−λ′ guarantees this is well defined. In (b) we’re using the element σw of the
Tits group representing w (Proposition 5.2).

Conversely, given λ,λ′,w and h, (a) and (b) give a well-defined homomor-

phism φ : WR→ L
G if and only if

∨θ := int(hσw
∨δ) is an involution of ∨H0,(6.4)(c)

λ′ = ∨θ(λ),(6.4)(d)

h ∨θ(h)(σw ∨θ0(σw)) = exp
(
πi(λ− ∨θ(λ))).(6.4)(e)

Furthermore (c) is equivalent to

w ∨δ(w) = 1.(6.4)(c′)

6.1. Infinitesimal and radical characters. We attach two invariants to an
admissible homomorphism φ. Suppose φ is as in (6.4).

Infinitesimal character of φ. View λ as an element of X∗(H0)⊗C via the
identification X∗( ∨H0) = X∗(H0). The W (G,H0)-orbit of λ is independent of
all choices, so it defines an infinitesimal character for G, denoted χinf(φ), via the
Harish-Chandra homomorphism.

Radical character of φ. Recall (Section 4) Grad is the radical of G, and the
radical character of a representation is its restriction to Grad(R).

Dual to the inclusion ι : Grad ↪→ G is a surjection ∨ι : ∨G� ∨[Grad]. For an

L-group for Grad we can take
L
Grad = 〈 ∨[Grad],

∨δ〉. Thus ∨ι extends to a natural

surjection ∨ι :
L
G→ L

Grad (taking ∨δ to itself). Then ∨ι ◦ φ : WR → L
Grad, and

this defines a character of Grad(R) by the construction of Section 3. We denote this
character χrad(φ). See [7, 10.1] and [15, page 20].
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6.2. Relative Discrete Series L-packets. By a Levi subgroup of
L
G we

mean the centralizer
d
M of a torus ∨T ⊂ ∨G, which meets both components of

L
G [7, Lemma 3.5]. We will soon see that an L-packet ΠG(φ) consists of relative

discrete series representations if and only if φ(WR) is not contained in a proper
Levi subgroup.

LEMMA 6.5. Suppose φ is as in (6.4). If φ(WR) is not contained in a proper
Levi subgroup then λ is regular and G(R) has a relatively compact Cartan sub-
group.

See [7, Lemma 11.1] and [15, Lemmas 3.1 and 3.3].

Proof. Assume φ(WR) is not contained in a proper Levi subgroup. Let ∨S =

Cent ∨G(φ(C∗)) as in the discussion preceding (6.4). Then ∨θ = int(φ(j)) is an
involution of ∨S, and of its derived group ∨Sd. There cannot be a torus in ∨Sd,
fixed (pointwise) by ∨θ; its centralizer would contradict the assumption. Since any
involution of a semisimple group fixes a torus, this implies ∨Sd = 1, i.e., ∨S =
∨H0, which implies λ is regular.

Similarly, there can be no torus in ∨H0 ∩ ∨Gd fixed by ∨θ. This implies
∨θ(h) = h−1 for all h ∈ ∨H0∩ ∨Gd. By Lemma 6.3 applied to the derived group,
G(R) has a relatively compact Cartan subgroup. �

Definition 6.6. In the setting of Lemma 6.5, ΠG(φ) is the L-packet of relative
discrete series representations determined by infinitesimal character χinf(φ) and
radical character χrad(φ) (see Proposition 4.6).

LEMMA 6.7. ΠG(φ) is nonempty.

Proof. After conjugating θ if necessary we may assume H0 is θ-stable. Write
φ as in (6.4)(a) and (b). By the discussion of infinitesimal character above χinf(φ)

is defined by λ, viewed as an element of X∗(H0)⊗C.
Choose positive roots making λ dominant. By Lemma 4.9 it is enough to con-

struct a genuine character of H(R)ρ satisfying dΛ = λ and Λ|Grad(R) = χrad. For
this we apply Lemma 3.3, using the fact that φ(WR)⊂ 〈 ∨H0,σw

∨δ〉. We begin by
identifying 〈 ∨H0,σw

∨δ〉 as an E-group.
First we claim w = w0. By (6.4)(b) and (c) ∨θ| ∨H0 = w ∨θ0| ∨H0 . By (6.2), for

h ∈ ∨H0∩ ∨Gd we have:

∨θ(h) =w ∨θ0(h) = w(−w0γ
t)(h) = ww0γ

t(h)−1.(6.8)

SinceGd(R) has a compact Cartan subgroup, γ is trivial onH0∩Gd and γt(h)= h.
On the other hand, as in the proof of Lemma 6.5, ∨θ(h) = h−1. Therefore ww0 = 1,
i.e., w = w0.
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Next we compute

(σw0
∨δ)2 = w0θ0(w0)

= w2
0 (by (5.3), since ∨θ0 is distinguished)

= exp(2πiρ) (by (5.6)).

(6.9)

Thus, in the terminology of Section 3, 〈 ∨H0,σw0
∨δ〉 is identified with the E-

group for H defined by ∨ρ. Consequently φ : WR→ 〈 ∨H0,σw0
∨δ〉 defines a gen-

uine character χ of H(R)ρ.
By construction dχ = λ. The fact that χ|Grad(R) = χrad is a straightforward

check. Here are the details.
Write h of (6.4)(b) as h= exp(2πiμ). We use the notation of Section 3, espe-

cially (3.4). Using the fact that σw0
∨δ is the distinguished element of the E-group

of H0 we have χ= χ(λ,κ) where

κ=
1
2
(1− ∨θ)λ− (1+ ∨θ)μ ∈ ρ+X∗(H0).(6.10)

Write p : X∗(H0)→ X∗(Grad) for the map dual to inclusion Grad → H0. Recall
(Section 4) there is a canonical splitting of the cover of Z(G(R)); using this split-
ting χ(ρ,ρ)|Z(G(R)) = 1, and

χ|Grad(R) = χ(p(λ),p(κ−ρ)).

On the other hand, by the discussion of the character of Grad(R) above, the
E-group of Grad is 〈 ∨Grad,

∨δ〉. The map p : X∗(H0) → X∗(Grad) is identified
with a map p : X∗( ∨H0)→X∗( ∨Grad). Then ∨ι(φ(j)) = ∨ι(hσw ∨δ) = ∨ι(h) ∨δ=
exp(2πip(μ)) ∨δ. Let

κ′ =
1
2
(1− ∨θ)p(λ)− (1+ ∨θ)p(μ) ∈X∗(Grad)

Thus κ′ = p(κ− ρ). By the construction of Section 3 applied to φ : WR→ ∨Grad,
χrad = χ(p(λ),κ′) = χ(p(λ),p(κ−ρ)) = χ|Grad(R). �

Remark 6.11. The fact that (σw0
∨δ)2 = exp(2πiρ) is the analogue of [15,

Lemma 3.2].

We can read off the central character of the L-packet from the construction. We
defer this until we consider general L-packets (Lemma 6.17).

6.3. General L-packets. See [7, Section 11.3] and [15, pages 40–58].

Recall (see the beginning of the previous section) a Levi subgroup
d
M of

L
G is

the centralizer of a torus ∨T , which meets both components of
L
G. An admissible
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homomorphism φ may factor through various Levi subgroups
d
M . We first choose

d
M so that φ : WR→ d

M defines a relative discrete series L-packet of M .
Choose a maximal torus ∨T ⊂ Cent ∨G(φ(WR)) and define

∨M = Cent ∨G(
∨T ), dM = CentL

G
( ∨T ).(6.12)

Then
d
M = 〈 ∨M,φ(j)〉, so

d
M is a Levi subgroup, and φ(WR)⊂ d

M .
Suppose φ(WR) ⊂ Centd

M
( ∨U) where ∨U ⊂ ∨M is a torus. Then ∨U cen-

tralizes φ(WR) and ∨T , so ∨U ∨T is a torus in Cent ∨G(φ(WR)). By maximal-

ity ∨U ⊂ ∨T and Centd
M
( ∨U) =

d
M . Therefore φ(WR) is not contained in any

proper Levi subgroup of
d
M .

LEMMA 6.13. The group
d
M is independent of the choice of ∨T , up to conju-

gation by Cent ∨G(φ(WR)).

Proof. Conjugation by φ(j) defines an involution of the connected reduc-
tive group ∨S = Cent ∨G(φ(C∗)) (see the discussion after Lemma 6.3), and
Cent ∨G(φ(WR)) is the fixed points of this involution. Thus ∨T is a maximal torus
in (the identity component of) this reductive group, and any two such tori are
conjugate by Cent ∨G(φ(WR)). �

The idea is to identify
d
M with the L-group of a Levi subgroup M ′(R) of

G(R). Then, since φ(WR) ⊂ d
M is not contained in any proper Levi subgroup, it

defines a relative discrete series L-packet for M ′(R). We obtain ΠG by induction.
Here are the details.

We need to identify
d
M = 〈 ∨M,φ(j)〉 with an L-group. A crucial technical

point is that after conjugating we may assume
d
M = 〈 ∨M, ∨δ〉, making this iden-

tification clear.

LEMMA 6.14. [7, Section 3.1] Suppose S is a ∨θ0-stable subset of ∨Π. Let
∨MS be the corresponding Levi subgroup of ∨G: ∨H0 ⊂ ∨MS , and S is a set of

simple roots of ∨H0 in ∨MS . Let
d
MS = ∨MS� 〈 ∨δ〉, a Levi subgroup of

L
G.

Let MS ⊃H0 be the Levi subgroup of G with simple roots {α | ∨α ∈ S} ⊂Π.

Suppose some conjugate M ′ of MS is defined over R. Write
L
M ′ = ∨M ′

�〈 ∨δM ′ 〉.
Then conjugation induces an isomorphism

L
M ′ 
 d

MS , taking ∨δM ′ to ∨δ.
Any Levi subgroup of

L
G is ∨G-conjugate to

d
MS for some ∨θ0-stable set S.

We refer to the Levi subgroups
d
MS of the lemma (where S is ∨θ0-stable) as

standard Levi subgroups.
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Definition 6.15. Suppose φ : WR → L
G is an admissible homomorphism.

Choose a maximal torus ∨T in Cent ∨G(φ(WR)), and define ∨M,
d
M by (6.12).

After conjugating by ∨G, we we may assume
d
M is a standard Levi subgroup.

Let M(C) be the corresponding standard Levi subgroup of G(C).
Assume there is a subgroup M ′ conjugate to M , which is defined over R;

otherwise define Π(φ) to be empty. Let ΠM ′(φ) be the L-packet for M ′(R) defined

by φ : WR→ d
M 
 L

M ′. (cf. Lemma 6.14). Define the L-packet for G attached to
φ, denoted ΠG(φ), by induction from ΠM ′(φ) as in Definition 4.10.

LEMMA 6.16. The L-packet ΠG(φ) is independent of all choices.

Proof. By Lemma 6.13 the choice of ∨T is irrelevant: another choice leads to

an automorphism of
d
M fixing φ(WR) pointwise.

It is straighforward to see that the other choices, including another Levi sub-
group M ′′, would give an element g ∈G(C) such that int(g) : M ′ →M ′′ is defined
over R, and this isomorphism takes ΠM ′(φ) to ΠM ′′(φ).

First of all we claim M ′(R) and M ′′(R) are G(R)-conjugate. To see this,
let H ′(R) be a relatively compact Cartan subgroup of M ′(R). Then H ′′(R) =
gH ′(R)g−1 is a relatively compact Cartan subgroup of M ′′(R). In fact H ′(R) and
H ′′(R) are G(R)-conjugate: two Cartan subgroups of G(R) are G(C)-conjugate if
and only if they are G(R)-conjugate. Therefore M ′(R),M ′′(R), being the central-
izers of the split components of H ′(R) and H ′′(R), are also G(R)-conjugate.

Therefore, since the inductive step is not affected by conjugating by
G(R), we may assume M ′ = M ′′. Then g ∈ NormG(C)(M

′), and furthermore
g ∈ NormG(C)(M

′(R)).
Now gH ′(R)g−1 is another relatively compact Cartan subgroup of M ′(R),

so after replacing g with gm for some m ∈ M ′(R) we may assume g ∈
NormG(C)(H

′(R)). It is well known that

NormG(C)(H
′(R)) = NormM ′(C)(H

′(R))NormG(R)(H
′(R)).

For example see [22, Proposition 3.12] (where the group in question is denoted
W (R)θ), or [17, Theorem 2.1]. Since conjugation byM ′(C) does not change infin-
itesimal or central characters, by Proposition 4.6 it preserves ΠM ′(φ) (see Lemma
6.18). As above G(R) has no effect after the inductive step. This completes the
proof. �

We now give the formula for the central character of ΠG(φ). This follows
immediately from the preceding discussion, and (6.10) applied to M .

LEMMA 6.17. Write φ as in (6.4)(a) and (b), and suppose h= exp(2πiμ), with
μ ∈X∗( ∨H0)⊗C
X∗(H0)⊗C. Let ρi be one-half the sum of any set of positive
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roots of {α | ∨θα=−α}, Set

τ =
1
2
(1− ∨θ)λ− (1+ ∨θ)μ+ρi ∈X∗(H0).

Then the central character of ΠG(φ) is τ |Z(G(R)).
For the local Langlands classification to be well-defined it should be natural

with respect to automorphisms of G. This is the content of the next lemma.
Suppose τ ∈ Aut(G) is an involution which commutes with θ. The automor-

phism τ acts on the pair (g,K), and defines an involution on the set of irreducible
(g,K)-modules, which preserves L-packets.

On the other hand, consider the image of τ under the sequence of maps
Aut(G)→ Out(G) 
 Aut(Db)→ Aut( ∨G); the final arrow is the transpose (6.1).

This extends to an automorphism of
L
G which we denote τ t. For example τ t = 1

if and only if τ is an inner automorphism.

LEMMA 6.18. Suppose φ is an admissible homomorphism. Then ΠG(φ)
τ =

ΠG(τ
t ◦φ).

Remark 6.19. Suppose τ is an inner automorphism ofG=G(C). It may not be
inner for K, and therefore it may act nontrivially on irreducible representations. So
it isn’t entirely obvious that τ preserves L-packets (which it must by the lemma).

For example int(diag(i,−i)) normalizes SL(2,R), and K(R) = SO(2), and
interchanges the two discrete series representations in an L-packet.

Proof. This is straightforward from our characterization of the correspon-
dence. Suppose τ is inner. Then it preserves infinitesimal and radical characters,
and commutes with parabolic induction. Therefore it preserves L-packets. On the
other hand τ t = 1.

In general, this shows (after modifying τ by an inner automorphism) we may
assume τ is distinguished. Then it is easy to check the assertion on the level of
infinitesimal and radical characters, and it commutes with parabolic induction. The
result follows. We leave the details to the reader. �

7. Contragredient. Suppose (π,V ) is a (g,K)-module. Define a(g,K)-
module structure on HomC(V,C) by

π∗(X)(f)(v) =−f(π(X)v) (v ∈ V,X ∈ g)(7.1)(a)

and

π(k)(f)(v) = f(π(k−1)v) (v ∈ V,k ∈K).(7.1)(b)

Then the dual of (π,V ) is defined to be the (g,K)-module (π∗,V ∗), where V ∗ ⊂
HomC(V,C) is the subspace of K-finite functionals. See [21, Definition 8.5.1].
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Following [10] we say that a (g,K)-module (π′,V ′) is contragredient to (π,V )

if there is a nondegenerate bilinear form B : V ×V ′ →C, respecting the actions of
g andK. If (π,V ) is irreducible then (π′,V ′) is contragredient to (π,V ) if and only
if (π′,V ′) is isomorphic to the dual (π∗,V ∗). Consequently we follow the common
practice of using the terms “dual” and “contragredient” interchangeably.

The proof of Theorem 1.3 is now straightforward. We restate the theorem here.

THEOREM 7.2. LetG(R) be the real points of a connected reductive algebraic

group defined over R, with L-group
L
G. Let C be the Chevalley involution of

L
G

(Section 2) and let CWR
be the Chevalley involution of WR (Lemma 2.7). Suppose

φ : WR→ L
G is an admissible homomorphism, with associated L-packet Π(φ). Let

Π(φ)∗ = {π∗ | π ∈Π(φ)}. Then:
(a) Π(φ)∗ =Π(C ◦φ)
(b) Π(φ)∗ =Π(φ◦CWR

).

Proof. Let P = ( ∨B0,
∨H0,{X ∨α}) be the pinning used to define

L
G. After

conjugating by ∨G we may assume C = CP (Proposition 2.1). As in the discus-
sion before (6.4), we are free to conjugate φ so that φ(C∗) ∈ ∨H0, and φ(WR) ⊂
Norm ∨G(

∨H0).
First assume Π(φ) is an L-packet of relative discrete series representations.

Then Π(φ) is determined by its infinitesimal character χinf(φ) and its radical char-
acter χrad(φ) (Definition 6.6). It is easy to see that the infinitesimal character
of Π(φ)∗ is −χinf(φ), and the radical character is χrad(φ)

∗. So it is enough to
show χinf(C ◦φ) =−χinf(φ) and χrad(C ◦φ) = χrad(φ)

∗. The first is obvious from
(6.4)(a), the definition of χinf(φ), and the fact that C acts by −1 on the Lie algebra
of ∨H0. The second follows from the fact that C factors to the Chevalley involution

of
L
Grad, and the torus case (Lemma 3.6).
Now suppose φ is any admissible homomorphism such that ΠG(φ) is

nonempty. As in Definition 4.10 we may assume φ(WR) ⊂ d
M where

d
M is

a standard Levi subgroup of
L
G. Choose M ′ as in Definition 6.15 and write

ΠM ′ =ΠM ′(φ) as in that Definition.
Write socle (resp. co-socle) for the set of irreducible submodules (resp. quo-

tients) of an admissible representation.
Choose P =M ′N as in Definition 4.10 to define

ΠG(φ) = cosocle
(

IndG(R)
P (R)

(ΠM ′)
)
=

⋃

π∈ΠM ′

cosocle
(

IndG(R)
P (R)

(π)
)
.(7.3)(a)

It is immediate from the definitions that CP restricts to the Chevalley involu-
tion of ∨M . Therefore by the preceding case ΠM ′(C ◦φ) = ΠM ′(φ)∗. Compute
ΠG(C ◦φ) using Definition 4.10; this time the positivity condition in Definition
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4.10 forces us to to use the opposite parabolic P =M ′N :

ΠG(C ◦φ) = cosocle
(

IndG(R)

P (R)
(ΠM ′(φ)∗)

)
.(7.3)(b)

Here is the proof of part (a), we justify the steps below.

ΠG(C ◦φ)∗ =
[

cosocle
(

IndG(R)

P (R)

(
ΠM ′(φ)∗

))]∗

=
[

cosocle
(

IndG(R)

P (R)

(
ΠM ′(φ)

)∗)]∗

=
[

socle
(

IndG(R)

P (R)

(
ΠM ′(φ)

))∗]∗

= cosocle
(

IndG(R)
P (R)

(
ΠM ′(φ)

))
=ΠG(φ).

(7.3)(c)

The first step is just the contragredient of (7.3)(b). For the second, integration
over G(R)/P (R) is a pairing between IndG(R)

P (R)(π
∗) and IndG(R)

P (R)(π)
∗, and gives

IndG(R)
P (R)

(π∗)
 IndG(R)
P (R)

(π)∗.(7.4)

For the next step use cosocle(X∗) = socle(X)∗. Then the double dual cancels for
irreducible representations, and it is well known that the theory of intertwining
operators gives:

socle
(

IndG(R)

P (R)
(π)

)
= cosocle

(
IndG(R)

P (R)
(π)

)
.(7.5)

Finally plugging in (7.3)(a) gives part (a) of the theorem.
For (b) we show that C ◦φ is ∨G-conjugate to φ◦ τ .
Recall τ is any automorphism ofWR acting by inverse on C

∗, and any two such
τ are conjugate by int(z) for z ∈C

∗. Therefore the statement is independent of the
choice of τ . It is convenient to choose τ(j) = j−1, i.e., τ = τ−1 in the notation of
the proof of Lemma 2.7.

By (6.4)(a) (C ◦φ)(z) =C(φ(z)) = z−λz−λ′ . Recall (Lemma 2.7) that τ(z) =
z−1 for all z ∈C∗ ⊂WR, so (φ◦τ)(z) = φ(z−1) = z−λz−λ′ . Therefore it is enough
to show C(φ(j)) is ∨H0-conjugate to φ(τ(j)), which equals φ(j)−1 by our choice
of τ .

Since φ(j) normalizes ∨H0, φ(j) = g ∨δ with g ∈ Norm ∨G(
∨H0). Then

g ∨δ(g)φ(j)2 = φ(−1) ∈ ∨H0. Therefore the image w of g in W satisfies
wθ0(w) = 1. Apply Lemma 5.9(b). �

Remark 7.6. The main result of [2], together with Lemma 6.18, gives an al-
ternative proof of Theorem 1.3. By [2, Theorem 1.2], there is a “real” Chevalley
involution CR of G, which is defined over R. This satisfies: πCR 
 π∗ for any irre-

ducible representation π. The transpose automorphism Ct
R

of
L
G of Lemma 6.18

is the Chevalley automorphism of
L
G. Then Lemma 6.18 applied to CR implies

Theorem 1.3.
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8. Hermitian Dual. Suppose π is an admissible representation of G(R).
We briefly recall what it means for π to have an invariant Hermitian form, and the
notion of the Hermitian dual of π. See [14] for details, and for the connection with
unitary representations.

Let σ be the antiholomorphic involution of G with fixed points g(R) =

Lie(G(R)). We can and do assume that σ commutes with the Cartan involution θ,
and write σ for the corresponding automorphism of K(C), so K(C)σ is a maximal
compact subgroup of K(R).

We say a (g,K)-module (π,V ), or simply π, is Hermitian if there is a nonde-
generate Hermitian form ( , ) on V , satisfying

(π(X)v,w)+ (v,π(σ(X))w) = 0 (v,w ∈ V,X ∈ g),(8.1)(a)

and

(π(k)v,π(σ(k))w) = (v,w) (v,w ∈ V,k ∈K).(8.1)(b)

Define the Hermitian dual (πh,V h) as follows (compare (7.1)). Define a rep-
resentation of g on the space of conjugate-linear functions V → C by

πh(X)(f)(v) =−f(π(σ(X))v) (v ∈ V,X ∈ g)(8.2)(a)

and

πh(k)(f)(v) = f(π(σ(k−1))v) (v ∈ V,k ∈K).(8.2)(b)

Let V h be the K-finite functions; then (πh,V h) is a (g,K)-module. If π is irre-
ducible then π is Hermitian if and only if π 
 πh.

Fix a Cartan subgroup H ofG. Identify an infinitesimal character χinf with (the
Weyl group orbit of) an element λ∈Hom(h,C), by the Harish-Chandra homomor-
phism. Define λ→ λ with respect to the real form X∗(H)⊗R of Hom(h,C), and
write χinf for the corresponding action on infinitesimal characters. This is well-
defined, independent of all choices.

For simplicity we restrict to GL(n,R) from now on.

LEMMA 8.3. Suppose π is an admissible representation of GL(n,R), admit-
ting an infinitesimal character χinf(π), and a central character χ(π). Then:

(a) χinf(π
h) =−χinf(π),

(b) χ(πh) = χ(π)h,
(c) suppose P (R) =M(R)N(R) is a parabolic subgroup of GL(n,R), and

πM is an admissible representation ofM(R). Then IndG(R)
P (R)(π

h
M )
 IndG(R)

P (R)(πM )h.

In (b) χ(π)h refers to the Hermitian dual of the one-dimensional representation
of Z(G(R)) = R

∗.
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Proof. The first assertion is easy if π is a minimal principal series representa-
tion. Since any irreducible representation embeds in a minimal principal series, (a)
follows. Statement (b) is elementary, and (c) is an easy variant of (7.4). We leave
the details to the reader. �

Now suppose φ is a finite-dimensional representation ofWR on a complex vec-
tor space V . Define a representation φh on the space V h of conjugate linear func-
tions V → C by: φ(w)(f)(v) = f(φ(w−1)v) (w ∈WR,f ∈ V h,v ∈ V ). Choosing

dual bases of V,V h, identify GL(V ),GL(V h) with GL(n,C), to write φh = tφ
−1

.
It is elementary that φ has a nondegenerate invariant Hermitian form if and

only if φ
 φh.
Recall from the introduction that irreducible admissible representations of

GL(n,R) are parametrized by equivalence classes of n-dimensional semisimple
representations of WR. Write φ→ π(φ) for this correspondence.

LEMMA 8.4. Suppose φ is an n-dimensional semisimple representation ofWR.
Then

(1) χinf(φ
h) =−χinf(φ),

(2) χrad(φ
h) = χrad(φ)

h.

Proof. Let ∨H be the diagonal torus in GL(n,C). As in (6.4), write φ(z) =

zλzλ
′
, so χinf(φ) = λ. On the other hand φh(z) = zλzλ

′−1
, and it is easy to see this

equals z−λ′z−λ, where λ is complex conjugatation with respect to X∗( ∨H)⊗R.
Therefore χinf(φ

h) = −λ′. Then (1) follows from the fact that, by (6.4)(d), λ is
GL(n,C)-conjugate to λ′.

The second claim comes down to the case of tori, which we leave to the reader.
�

Proof of Theorem 1.5. The equivalence of (1) and (2) follow from the preced-
ing discussion. For (3), it is well known (and a straightforward exercise) that π(φ)
is tempered if and only if φ(WR) is bounded [7, 10.3(4)], which is equivalent to φ
being unitary.

The proof of (1) is parallel to that of Theorem 1.3, using the previous two
lemmas, and our characterization of the Langlands classification in terms of infini-
tesimal character, radical character, and compatibility with parabolic induction. We
leave the few remaining details to the reader. �
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