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Preface

There is no shortage of books on Commutative Algebra, but the present book is
different. Most books are monographs, with extensive coverage. But there is one
notable exception: Atiyah and Macdonald’s 1969 classic [4]. It is a clear, concise,
and efficient textbook, aimed at beginners, with a good selection of topics. So it
has remained popular. However, its age and flaws do show. So there is need for an
updated and improved version, which the present book aims to be.

Atiyah and Macdonald explain their philosophy in their introduction. They say
their book “has the modest aim of providing a rapid introduction to the subject.
It is designed to be read by students who have had a first elementary course in
general algebra. On the other hand, it is not intended as a substitute for the more
voluminous tracts on Commutative Algebra. ... The lecture-note origin of this book
accounts for the rather terse style, with little general padding, and for the condensed
account of many proofs.” They “resisted the temptation to expand it in the hope
that the brevity of [the] presentation will make clearer the mathematical structure
of what is by now an elegant and attractive theory.” They endeavor “to build up to
the main theorems in a succession of simple steps and to omit routine verifications.”

Atiyah and Macdonald’s successful philosophy is wholeheartedly embraced below
(it is a feature, not a flaw!), and also refined a bit. The present book also “grew out
of a course of lectures.” That course was based primarily on their book, but has
been offered a number of times, and has evolved over the years, influenced by other
publications, especially [17], and the reactions of the students. That course had
as prerequisite a “first elementary course in general algebra” based on [3]. Below,
to further clarify and streamline the “mathematical structure” of the theory, the
theory is usually developed in its natural generality, where the settings are just
what is appropriate for the arguments.

Atiyah and Macdonald’s book comprises eleven chapters, split into forty-two
sections. The present book comprises twenty-six chapters; each chapter represents
a single lecture, and is self-contained. Lecturers are encouraged to emphasize the
meaning of statements and the ideas of proofs, especially those in the longer and
richer chapters, “waving their hands” and leaving the details for students to read
on their own and to discuss with others.

Atiyah and Macdonald “provided. .. exercises at the end of each chapter,” as well
as some exercises within the text. They “provided hints, and sometimes complete
solutions, to the hard” exercises. Furthermore, they developed a significant amount
of new material in the exercises. By contrast, in the present book, the exercises are
more closely tied in to the text, and complete solutions are given in the second part
of the book. Doing so lengthened the book considerably. The solutions fill nearly as
much space as the text. Moreover, seven chapters have appendices; they elaborate
on important issues, most stemming from Atiyah and Macdonald’s exercises.

There are 612 exercises below, including all of Atiyah and Macdonald’s. The
disposition of the latter is indicated in a special index. The 612 also include many
exercises that come from other publications and many that originate here. More-
over, 18 of the 612 did not appear in the last version of the book, that of March
11, 2018. Each of the 18 was placed at the very end of its chapter, so that, for
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convenience, all previous reference numbers remain unchanged. (However, (17.10),
(17.11), and (17.12) have become (17.12), (17.10), and (17.11).)

Here the exercises are tailored to provide a means for students to check, to solidify,
and to expand their understanding of the material. Nearly all the 610 exercises
are intentionally not difficult, tricky, or involved. Rarely do they introduce new
techniques, although some introduce new concepts, and many are used later. All
the exercises within the text are used right away. Another special index indicates
all the exercises that are used, and where.

Students are encouraged to try to solve lots of exercises, without first reading
the solutions. If they become stuck on an exercise, then they should review the
relevant material; if they remain stuck, then they should change tack by studying
the solution, possibly discussing it with others, but always making sure they can,
eventually, solve the whole exercise entirely on their own. In any event, students
should always read the given solutions, just to make sure they haven’t missed any
details; also, some solutions provide enlightening alternative arguments.

As to prioritizing the exercises, here is one reasonable order: first, those that
appear within the text; second, those that are used more often, as indicated in the
index, “Use of the Exercises...”; third, those whose solutions are less involved, as
indicated by their length; fourth, those whose statements sound interesting; fifth,
those stemming from the exercises in Atiyah and Macdonald’s book, as indicated in
the index, “Disposition....” Of course, no one should exhaust all the exercises of
one level of priority before considering exercises of lower level; rather, if there’s no
other good reason to choose one exercise over another, then the order of priorities
could serve as the deciding factor.

Instructors are encouraged to assign six exercises with short solutions, say a
paragraph or two long, per lecture, and to ask students to write up solutions in
their own words. Instructors are encouraged to examine students, possibly orally
at a blackboard, possibly via written tests, on a small, randomly chosen subset of
the assigned exercises. For use during each exam, instructors are urged to provide
each student with a copy of the book that omits the solutions. A reasonable way
to grade is to count the exercises as 30%, a midterm as 30%, and a final as 40%.

Atiyah and Macdonald explain that “a proper treatment of Homological Algebra
is impossible within the confines of a small book; on the other hand, it is hardly
sensible to ignore it completely.” So they “use elementary homological methods—
exact sequence, diagrams, etc.—but...stop short of any results requiring a deep
study of homology.” Again, their philosophy is embraced and refined in the present
book. Notably, below, elementary methods are used, not Tor’s as they do, to prove
the Ideal Criterion for flatness, and to prove that, over local rings, flat modules are
free. Also, projective modules are treated below, but not in their book.

In the present book, Category Theory is a basic tool; in Atiyah and Macdonald’s,
it seems like a foreign language. Thus they discuss the universal (mapping) property
(UMP) of localization of a ring, but provide an ad hoc characterization. They also
prove the UMP of tensor product of modules, but do not name it this time. Below,
the UMP is fundamental: there are many standard constructions; each has a UMP,
which serves to characterize the resulting object up to unique isomorphism owing
to one general observation of Category Theory. For example, the Left Exactness of
Hom is viewed simply as expressing in other words that the kernel and the cokernel
of a map are characterized by their UMPs; by contrast, Atiyah and Macdonald
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prove the Left Exactness via a tedious elementary argument.

Atiyah and Macdonald prove the Adjoint-Associativity Formula. They note it
says that Tensor Product is the left adjoint of Hom. From it and the Left Exactness
of Hom, they deduce the Right Exactness of Tensor Product. They note that this
derivation shows that any “left adjoint is right exact.” More generally, as explained
below, this derivation shows that any left adjoint preserves arbitrary direct limits,
ones indexed by any small category. Atiyah and Macdonald consider only direct
limits indexed by a directed set, and sketch an ad hoc argument showing that tensor
product preserves direct limit. Also, arbitrary direct sums are direct limits indexed
by a discrete category (it is not a directed set); hence, the general result yields that
Tensor Product and other left adjoints preserve arbitrary Direct Sum.

Below, left adjoints are proved unique up to unique isomorphism. Therefore,
the functor of localization of a module is canonically isomorphic to the functor of
tensor product with the localized base ring, as both are left adjoints of the same
functor, Restriction of Scalars from the localized ring to the base ring. There is an
alternative argument: since Localization is a left adjoint, it preserves Direct Sum
and Cokernel; whence, it is isomorphic to that tensor-product functor by Watts
Theorem, which characterizes all tensor-product functors as those linear functors
that preserve Direct Sum and Cokernel. Atiyah and Macdonald’s treatment is ad
hoc. However, they do use the proof of Watts Theorem directly to show that,
under the appropriate conditions, Completion of a module is Tensor Product with
the completed base ring.

Below, Direct Limit is also considered as a functor, defined on the appropriate
category of functors. As such, Direct Limit is a left adjoint. Hence, direct limits
preserve other direct limits. Here the theory briefly climbs to a higher level of
abstraction. The discussion is completely elementary, but by far the most abstract
in the book. The extra abstraction can be difficult, especially for beginners.

Below, filtered direct limits are treated too. They are closer to the kind of limits
treated by Atiyah and Macdonald. In particular, filtered direct limits preserve
exactness and flatness. Further, they appear in the following lovely form of Lazard’s
Theorem: in a canonical way, every module is the direct limit of free modules of
finite rank; moreover, the module is flat if and only if that direct limit is filtered.

Atiyah and Macdonald treat primary decomposition in a somewhat dated way.
First, they study primary decompositions of ideals. Then, in the exercises, they
indicate how to translate the theory to modules. Associated primes play a secondary
role: they are defined as the radicals of the primary components, then characterized
as the primes that are the radicals of annihilators of elements. Finally, when the
rings and modules are Noetherian, primary decompositions are proved to exist, and
associated primes to be annihilators themselves.

Below, as is standard nowadays, associated primes of modules are studied right
from the start; they are defined as the primes that are annihilators of elements.
Submodules are called primary if the quotient modules have only one associated
prime. Below, Atiyah and Macdonald’s primary submodules are called old-primary
submodules, and they are studied too, mostly in an appendix. In the Noetherian
case, the two notions agree; so the two studies provide alternative proofs.

Below, general dimension theory is developed for Noetherian modules; whereas,
Atiyah and Macdonald treat only Noetherian rings. Moreover, the modules below
are often assumed to be semilocal —that is, their annihilator lies in only finitely
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many maximal ideals — correspondingly, Atiyah and Macdonald’s rings are local.

There are several other significant differences between Atiyah and Macdonald’s
treatment and the one below. First, the Noether Normalization Lemma is proved
below in a stronger form for nested sequences of ideals; consequently, for algebras
that are finitely generated over a field, dimension theory can be developed directly
and more extensively, without treating Noetherian local rings first (see (21.25) for
the latter approach). Second, in a number of results below, the modules are assumed
to be finitely presented over an arbitrary ring, rather than finitely generated over a
Noetherian ring. Third, there is an elementary treatment of regular sequences below
and a proof of Serre’s Criterion for Normality; this important topic is developed
further in an appendix. Fourth, below, the Adjoint-Associativity Formula is proved
over a pair of base rings; hence, it yields both a left and a right adjoint to the functor
of restriction of scalars.

Many people have contributed to the quality of the present book. Pavel Etingof
and Bjorn Poonen lectured from an earlier edition (Bjorn did so twice), and Dan
Grayson, Antoni Rangachev, and Amnon Yekutieli read parts of it; all five have
made a number of good comments and suggestions, which were incorporated. In
particular, Bjorn provided a written list of 43 comments, to which, he said, the
following people contributed: Evan Chen, Andrew Dienes, Vanshika Jain, Kenny
Lau, Anna Rose Osofsky, Alan Peng. Many people have pointed out typos, which
were corrected. For this service to the community, the authors express the gratitude
of all, and welcome any future such remarks from anyone.

It is rarely easy to learn anything new of substance, value, and beauty, like
Commutative Algebra, but it is always satisfying, enjoyable, and worthwhile to do
so. The authors bid their readers much success in learning Commutative Algebra.

Allen B. Altman and Steven L. Kleiman
April 11, 2021
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1. Rings and ldeals

We begin by reviewing and developing basic notions and conventions to set the
stage. Throughout this book, we emphasize universal mapping properties (UMPs);
they are used to characterize notions and to make constructions. So, although
polynomial rings and residue rings should already be familiar in other ways, we
present their UMPs immediately, and use them extensively. We also discuss Boolean
rings, idempotents, and in Exercise (1.21), the Chinese Remainder Theorem.

A. Text

(1.1) (Rings). — Recall that a ring R is an Abelian group, written additively,
with an associative multiplication that is distributive over the addition.
Throughout this book, every ring has a multiplicative identity, denoted by 1.
Further, every ring is commutative (that is, xy = yx in it), with an occasional
exception, which is always marked (normally, it’s a ring of matrices).
As usual, the additive identity is denoted by 0. Note that, for any = in R,

z-0=0;

indeed, -0 =2(04+0) =2-0+ 2 -0, and « - 0 can be canceled by adding —(z - 0).
We allow 1 =0. If1=0, then R=0; indeed, z =2-1=2x-0=0 for any x.
A unit is an element u with a reciprocal 1/u such that u-1/u = 1. Alternatively,

1/u is denoted u~! and is called the multiplicative inverse of u. The units form

a multiplicative group, denoted R*.

For example, the ordinary integers form a ring Z, and its units are 1 and —1.

A ring homomorphism, or simply a ring map, ¢: R — R’ is a map preserving
sums, products, and 1. Clearly, ¢(R*) C R'*. We call ¢ an isomorphism if it is
bijective, and then we write ¢ : R -~ R’. We call ¢ an endomorphism if R’ = R.
We call ¢ an automorphism if it is bijective and if R’ = R.

If there is an unnamed isomorphism between rings R and R’, then we write
R = R’ when it is canonical; that is, it does not depend on any artificial choices,
so that for all practical purposes, R and R’ are the same— they are just copies of
each other. For example, the polynomial rings R[X] and R[Y] in variables X and
Y are canonically isomorphic when X and Y are identified. (Recognizing that an
isomorphism is canonical can provide insight and obviate verifications. The notion
is psychological, and depends on the context.) Otherwise, we write R ~ R’.

A subset R” C R is a subring if R” is a ring and the inclusion R” < R a ring
map. In this case, we call R a extension (ring) of R”, and the inclusion R < R
an extension (of rings) or a (ring) extension. For example, given a ring map
¢: R — R, its image Im(p) := ¢(R) is a subring of R’. We call ¢p: R — R’ an
extension of ¢”: R” — R, and we say that ¢” extends to ¢ if p|R" = ¢".

An R-algebra is a ring R’ that comes equipped with a ring map ¢: R — R/,
called the structure map. To indicate that R’ is an R-algebra without referring
to o, we write R'/R. For example, every ring is canonically a Z-algebra. An R-
algebra homomorphism, or R-map, R’ — R is a ring map between R-algebras
compatible with their structure maps.

A group G is said to act on R if there is a homomorphism given from G into the
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Rings and Ideals (1.2) /(1.4) Text

group of automorphisms of R. Normally, we identify each g € G with its associated
automorphism. The ring of invariants R is the subring defined by

RY :={zx € R|gx =2 forall gcG}.

Similarly, a group G is said to act on R'/R if G acts on R’ and each g € G is an
R-map. Note that R'“ is an R-subalgebra.

(1.2) (Boolean rings). — The simplest nonzero ring has two elements, 0 and 1. It
is unique, and denoted Fs.

Given any ring R and any set X, let RX denote the set of functions f: X — R.
Then RX is, clearly, a ring under valuewise addition and multiplication.

For example, take R := Fy. Given f: X — R, put S := f~1{1}. Then f(z) =1
ifx €S, and f(z) =0if x ¢ S; in other words, f is the characteristic function
Xs- Thus the characteristic functions form a ring, namely, Fx .

Given T' C X, clearly xs - X7 = Xsnr- Further, xs + xr = xsar, where SAT
is the symmetric difference:

SAT :=(SUT)—(SNT)=(S-T)U(T - S);

here S — T denotes, as usual, the set of elements of S not in 7. Thus the subsets
of X form a ring: sum is symmetric difference, and product is intersection. This
ring is canonically isomorphic to Fx .

A ring B is called Boolean if f2 = f for all f € B. If so, then 2f = 0 as
2f = (f + f)? = f?+2f + f? = 4f. For example, F is, plainly, Boolean.

Suppose X is a topological space, and give Fy the discrete topology; that is,
every subset is both open and closed. Consider the continuous functions f: X — Fs.
Clearly, they are just the xg where S is both open and closed. Clearly, they form
a Boolean subring of F¥. Conversely, Stone’s Theorem (13.44) asserts that every
Boolean ring is canonically isomorphic to the ring of continuous functions from a
compact Hausdorff topological space X to Fo, or equivalently, isomorphic to the ring
of open and closed subsets of X.

(1.3) (Polynomial rings). — Let R be a ring, P := R[X3,...,X,,] the polynomial
ring in n variables (see [3, pp.327-328] or [12, p.268]). Recall that P has this
Universal Mapping Property (UMP): given a ring map ¢: R — R’ and given
an element x; of R’ for each i, there is a unique ring map w: P — R’ with 7|R = ¢
and w(X;) = x;. In fact, since 7 is a ring map, necessarily 7 is given by the formula:

W(Z a(il,_4.7in)X{41 e XZL") = Z cp(a(ih._,in))z’f cee z;". (1.3.1)

In other words, P is universal among R-algebras equipped with a list of n elements:
P is one, and P maps uniquely to any other with the lists are respected.

Similarly, let X := {X}xca be any set of variables. Set P’ := R[X]; the elements
of P’ are the polynomials in any finitely many of the X,; sum and product are
defined as in P. Thus P’ contains as a subring the polynomial ring in any finitely
many X, and P’ is the union of these subrings. Clearly, P’ has essentially the
same UMP as P: given p: R — R’ and given x) € R’ for each A, there is a unique
m: P' = R with 71|R = ¢ and 7(X)) = xx.

(1.4) (Ideals). — Let R be a ring. Recall that a subset a is called an ideal if
()0 €a,
(2) whenever a,b € a, also a + b € a, and
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Rings and Ideals (1.5) /(1.5) Text

(3) whenever z € R and a € qa, also za € a.

Given a subset a C R, by the ideal (a) that a generates, we mean the smallest
ideal containing a. Given elements ay € R for A € A, by the ideal they generate,
we mean the ideal generated by the set {ay}. If A = (0, then this ideal consists just
of 0. If A ={1,...,n}, then the ideal is usually denoted by (a1,...,an).

Any ideal containing all the a) contains any (finite) linear combination )z ax
with )y € R and almost all 0. Form the set a, or Y Ray, of all such linear
combinations. Plainly, a is an ideal containing all ay, so is the ideal they generate.

Given an ideal a and elements a) that generate it, we call the a) generators.

Given a single element a, we say that the ideal (a) is principal. By the preceding
observation, (a) is equal to the set of all multiples za with z € R.

Given ideals ay for A € A, by their sum > a,, we mean the set of all finite linear
combinations Y xyay with ) € R and ay € ay. Plainly, Y a, is equal to the ideal
the a) generate, namely, the smallest ideal that contains all ay.

By the intersection () a,, we mean the intersection as sets. It is plainly an
ideal. If A = {), then (ay = R.

If A is finite, by their product ][] ay, we mean the ideal generated by all products
[Tax with ay € ay.

Given two ideals a and b, by the transporter of b into a, we mean the set

(a:6):={ze€R|xbCa}
Plainly, (a : b) is an ideal. Plainly,
abCanbCa+b, abCa+b, and acC (a:b).

Further, for any ideal ¢, the distributive law holds: a(b + ¢) = ab + ac.

Given an ideal a, notice a = R if and only if 1 € a. Indeed, if 1 € a, then
x=ux-1¢€ afor every x € R. It follows that a = R if and only if a contains a
unit. Further, if (z) = R, then z is a unit, since then there is an element y such
that xy = 1. If a # R, then a is said to be proper.

Given a ring map ¢: R — R/, denote by aR’ or a® the ideal of R’ generated by
the set ¢(a). We call it the extension of a.

Given an ideal a’ of R/, its preimage ¢~ !(a’) is, plainly, an ideal of R. We call
¢~ !(a’) the contraction of a’ and sometimes denote it by a’®.

(1.5) (Residue rings). — Let ¢: R — R’ be a ring map. Recall its kernel Ker(y)
is defined to be the ideal ¢ ~1(0) of R. Recall Ker(¢) = 0 if and only if ¢ is injective.

Conversely, let a be an ideal of R. Form the set of cosets of a:
R/a:={z+a|z € R}.

Recall that R/a inherits a ring structure, and is called the residue ring or quo-
tient ring or factor ring of R modulo a. Form the quotient map

k:R—R/a by kzr:=z+a.

The element kx € R/a is called the residue of x. Clearly, x is surjective, & is a
ring map, and k has kernel a. Thus every ideal is a kernel!

Note that Ker(¢) D a if and only if pa = 0.

Recall that, if Ker(y) D a, then there is a ring map : R/a — R’ with ¥k = ;

4



Rings and Ideals (1.6) / (1.6) Text

that is, the following diagram is commutative:

R —— R/a
v
R/

Conversely, if ¢ exists, then Ker(¢) D a, or pa =0, or aR’ = 0, since ka = 0.
Further, if v exists, then 1 is unique as k is surjective.
Finally, as x is surjective, if 1 exists, then 1 is surjective if and only if ¢ is so.
In addition, then 1 is injective if and only if a = Ker(y). Hence then ¥ is an
isomorphism if and only if p is surjective and a = Ker(p). Therefore, always

R/ Ker(y) == Im(p). (1.5.1)

In practice, it is usually more productive to view R/a not as a set of cosets,
but simply as another ring R’ that comes equipped with a surjective ring map
¢: R — R’ whose kernel is the given ideal a.

Finally, R/a has, as we saw, this UMP: «(a) = 0, and given ¢: R — R’ such that
p(a) = 0, there is a unique Ting map ¥: R/a — R’ such that ¥k = . In other
words, R/a is universal among R-algebras R’ such that aR’ = 0.

Above, if a is the ideal generated by elements ay, then the UMP can be usefully
rephrased as follows: k(ay) =0 for all \, and given ¢: R — R’ such that ¢(ay) =0
for all X\, there is a unique ring map ¢: R/a — R’ such that ¥k = .

The UMP serves to determine R/a up to unique isomorphism. Indeed, say R’,
equipped with ¢: R — R’, has the UMP too. Then ¢(a) = 0; so there is a unique
¥: R/a — R’ with ¥k = ¢. And k(a) = 0; so there is a unique ¢': R’ — R/a with
' = k. Then, as shown, (¢'9)k = k, but 1 0k = Kk where 1

R/a

P

R/a

is the identity map of R/a; hence, ¢'¢) = 1 by uniqueness. Similarly, ¢’ = 1 where
1 now stands for the identity map of R’. Thus v and v’ are inverse isomorphisms.

The preceding proof is completely formal, and so works widely. There are many
more constructions to come, and each one has an associated UMP, which therefore
serves to determine the construction up to unique isomorphism.

Proposition (1.6). — Let R be a ring, P := R[X] the polynomial ring in one
variable, a € R, and w: P — R the R-algebra map defined by w(X) := a. Then

(1) Ker(r) = {F(X) € P | F(a) =0} = (X —a) and (2) P/(X —a) = R.

Proof: Set G := X —a. Given F € P, let’s show FF = GH + r with H € P and
r € R. By linearity, we may assume F := X™. If n > 1, then F = (G +a)X" !, so
F=GH+aX" ! with H := X" !. If n — 1 > 1, repeat with F:= X"~ !. Etc.

Then n(F) = n(G)m(H) + w(r) = r. Hence F € Ker(n) if and only if F = GH.
But 7(F) = F(a) by (1.3.1). Thus (1) holds. So (1.5.1) yields (2). O
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Rings and Ideals (1.7) /(1.9) Text

(1.7) (Degree of a polynomial). — Let R be a ring, P the polynomial ring in
any number of variables. Given a nonzero F' € P, recall that its (total) degree,
deg(F), is defined as follows: if F' is a monomial M, then its degree deg(M) is the
sum of its exponents; in general, deg(F’) is the largest deg(IM) of all monomials M
in F.

Given any G € P with F'G nonzero, notice that

deg(FG) < deg(F) + deg(G). (1.7.1)

Indeed, any monomial in FG is the product MN of a monomial M in F and a
monomial N in G. Further, deg(MIN) = deg(M) + deg(N) < deg(F) + deg(G).
However, equality need not hold. For example, suppose that there is only one
variable X, that F = aX™ + --- and G = bX"™ + --- with m = deg(F) and
n = deg(G), and that ab = 0. Then deg(F'G) < mn.
Note also that, if a # b, then the polynomial X? — (a + b)X has degree 2, but at
least three distinct zeros: 0, a, b.

(1.8) (Order of a polynomial). — Let R be a ring, P the polynomial ring in
variables X, for A € A, and (z)) € R® a vector. Let ey s P — P denote the
R-algebra map defined by ¢,y X, = X, +z, for all p € A. Plainly ¢(,,) is an
automorphism with inverse ¢(_z,). Fix a nonzero F' € P.

The order of F' at the zero vector (0), denoted ordg) F', is defined as the smallest
deg(M) of all the monomials M in F. In general, the order of F at the vector
(xx), denoted ord(,,)F, is defined by the formula: ord,,)F := ord)(¢(z,)F)-

Notice that ord,,)F" = 0 if and only if F(xx) # 0. Indeed, the equivalence is
obvious if (z)) = (0). Thus it always holds, as (¢(4,)F)(0) = F(zy).

Given p and x € R, form F), , by substituting = for X, in F. If F, ., # 0, then

Ord(xx)F < Ord(mA)szM. (1.8.1)
Indeed, if x, = 0, then F}, ;, is the sum of the terms without X, in F'. Hence,
if (xx) = (0), then (1.8.1) holds. But substituting 0 for X,, in ¢, F is the
same as substituting z, for X, in I and then applying ¢(,,) to the result; that is,
(P F) o = @@ Fu,z,- Thus (1.8.1) always holds.
Of course, F}, , lies in the polynomial subring in the variables X for all A # p.
Let (Z,) be the vector of xy for all A # p. If F, ,, # 0, then
ord(g ) Flue, = 0ord(z,) Fluz,- (1.8.2)
Plainly, (1.8.2) holds if (z) = (0). So it always holds, as p(,,)Fju.z, = ©(z,) Fpuz,-
Given any G € P with F'G nonzero, notice that
ord(m)FG > Ol"d(xk)F + OI‘d(mA)G, (1.8.3)

Indeed, if (zy) = (0), then the proof of (1.8.3) is similar to that of (1.7.1). But
(p(w)\)FG = QO(Z)\)F (p(w)\)G. Thus (1.8.3) always holds.

(1.9) (Nested ideals). — Let R be aring, a an ideal, and k: R — R/a the quotient
map. Given an ideal b D a, form the corresponding set of cosets of a:
b/a:={b+a]|beb}=r(b).

Clearly, b/a is an ideal of R/a. Also b/a = b(R/a).

Clearly, the operations b — b/a and b’ — k~1(b") are inverse to each other, and
establish a bijective correspondence between the set of ideals b of R containing a and
the set of all ideals b' of R/a. Moreover, this correspondence preserves inclusions.
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Rings and Ideals (1.10) / (1.13) Exercises

Given an ideal b D a, form the composition of the quotient maps
¢: R— R/a— (R/a)/(b/a).

Clearly, ¢ is surjective, and Ker(y¢) = b. Hence, owing to (1.5), ¢ factors through
the canonical isomorphism % in this commutative diagram:

R——— R/b

| o|=
R/a — (R/a)/(b/a)

(1.10) (ldempotents). — Let R be a ring. Let e € R be an idempotent; that is,
e? = e. Then Re is a ring with e as 1, because (ze)e = xe. But Re is not a subring
of R unless e = 1, although Re is an ideal.

Set ¢’ := 1 —e. Then ¢ is idempotent and ¢ - e’ = 0. We call ¢ and ¢/ comple-
mentary idempotents. Conversely, if two elements e1, e € R satisfy e; +e3 =1

and ejes = 0, then they are complementary idempotents, as for each 1,
ei=¢e;-1=¢ei(er+e) = e?.

We denote the set of all idempotents by Idem(R). Let ¢: R — R’ be a ring map.
Then ¢(e) is idempotent. So the restriction of ¢ to Idem(R) is a map

Idem(¢): Idem(R) — Idem(R').

Example (1.11). — Let R := R’ x R"” be a product of two rings: its operations
are performed componentwise. The additive identity is (0,0); the multiplicative
identity is (1,1). Set ¢’ := (1,0) and ¢’ := (0,1). Then ¢’ and ¢” are complementary
idempotents. The next proposition shows this example is the only one possible.

Proposition (1.12). — Let R be a ring, and €', €’ complementary idempotents. Set
R’ := Re’ and R"” := Re". Define ¢: R — R' x R" by o(x) := (xe, ze”). Then ¢
is a ring isomorphism. Moreover, R = R/Re"” and R"” = R/Re’.

Proof: Define a surjection ¢’': R — R’ by ¢'(z) := ze¢’. Then ¢’ is a ring map,
since xye’ = xye? = (ze')(ye'). Moreover, Ker(¢') = Re”, since if xe’ = 0, then
x=x-1=uxe+xze” =ze”. Thus (1.5.1) yields R’ = R/Re".

Similarly, define a surjection ¢”: R — R” by ¢”(x) := xe”. Then ¢” is a ring
map, and Ker(¢"”) = Re’. Thus R” = R/Re’.

So ¢ is a ring map. It’s surjective, since (xe’, 2'e”) = p(xe’ +2'€”). Tt’s injective,
since if ze’ = 0 and ze” = 0, then z = xe’+xe” = 0. Thus ¢ is an isomorphism. [J

B. Exercises

Exercise (1.13) . — Let ¢: R — R’ be a map of rings, «a, a;, as ideals of R, and
b, by, by ideals of R’. Prove the following statements:

(la) (a; +a2)¢ = a$ + as. (1Ib) (by + b2)c D b + bS.
) ( (2b) (by Nbg)c = bS N bS.
a) (alag)e = uﬁa;. (3b) (5152)6 D) bﬁbg
) ( (4b) (b1 : b2)® C (bf : bS).



Rings and Ideals (1.14) /(1.21) Exercises

Exercise (1.14) . — Let ¢: R — R’ be a map of rings, a an ideal of R, and b an
ideal of R’. Prove the following statements:
(1) Then a®® D a and b° C b. (2) Then a®® = a® and b°¢¢ = b°.

(3) If b is an extension, then b° is the largest ideal of R with extension b.
(4) If two extensions have the same contraction, then they are equal.

Exercise (1.15) . — Let R be a ring, a an ideal, X a set of variables. Prove:
(1) The extension a(R[X]) is the set a[X] of polynomials with coefficients in a.
(2) a(RX]) "R =a.

Exercise (1.16) . — Let R be a ring, a an ideal, and X a set of variables. Set
P := R[X]. Prove P/aP = (R/a)[X].

Exercise (1.17) . — Let R be aring, P := R[{X)}] the polynomial ring in variables
X, for A € A, and (x)) € R* a vector. Let T(zy): P — R denote the R-algebra
map defined by )X, 1=z, for all p € A. Show:

(1) Any F € P has the form F' =} ag,, .. i) (X, — xx,) (X, — @y, )i for

unique ag;, ... ;,) € R..

(2) Then Ker(m(5,)) = {F € P | F((zx)) =0} = {X\ — a:)\}>.

(3) Then m(,,) mduces an isomorphism P/{{X) — z)}) = R.

(4) Given F € P, its residue in P/{{X — zx}) is equal to F((scA))

(5) Let Y be a second set of variables. Then P[Y]/({Xy — zx}) =+ R[Y].

Exercise (1.18) . — Let R be a ring, P := R[X1,..., X,] the polynomial ring in
variables X;. Given F =Y a, . ;) X|' -+ Xi» € P, formally set

.....

OF/0X; = ijau,.. i)Xi - Xir/X;€P forj=1,...,n.  (1.18.1)

.....

Given (z1,...,2,) € R", set x := (21,...,2y), set a; := (0F/0X;)(x), and set
M= (X1 —21,..., Xy —2,). Show F =F(x)+ ) a;(X; x])+GW1thG€§m2
First show that, if F = (X1 —21)% --- (X,, — 2,,)%", then 8F/8X =i F/(X;—x;).

Exercise (1.19) . — Let R be a ring, X a variable, F € P := R[X], and a € R.
Set F' := OF/0X; see (1.18.1). We call a a root of F if F'(a) = 0, a simple root
if also F’(a) # 0, and a supersimple root if also F'(a) is a unit.

Show that a is a root of F' if and only if F' = (X — a)G for some G € P, and if
so, then G is unique: that a is a simple root if and only if also G(a) # 0; and that
a is a supersimple root if and only if also G(a) is a unit.

Exercise (1.20) . — Let R be a ring, P := R[Xy,...,X,] the polynomial ring,
F € P of degree d, and F; := Xl-d"’ + alXidi*1 + --- a monic polynomial in X,
alone for all 7. Find G, G; € P such that F = > | F;G; + G where G; = 0 or
deg(G;) < d — d; and where the highest power of X; in G is less than d;.

Exercise (1.21) (Chinese Remainder Theorem) . — Let R be a ring. Show:

(1) Let a and b be comaximal ideals; that is, a + b = R. Then
(a) ab=anb and (b) R/ab=(R/a) x (R/b).

(2) Let a be comaximal to both b and b’. Then «a is also comaximal to bb’.
(3) Given m,n > 1, then a and b are comaximal if and only if a™ and b™ are.
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Rings and Ideals (1.22) /(1.27) Exercises

(4) Let aq,...,a, be pairwise comaximal. Then:

(a) a; and ay - --a,, are comaximal;
(b) arN---Na, =ag---ap;
(c) R/(ar---an) == [[(R/as).

(5) Find an example where a and b satisfy (1)(a), but aren’t comaximal.

Exercise (1.22) . — First, given a prime number p and a k > 1, find the idempo-
tents in Z/(p*). Second, find the idempotents in Z/(12). Third, find the number

of idempotents in Z/(n) where n = vazl p;t with p; distinct prime numbers.

Exercise (1.23) . — Let R := R’ x R” be a product of rings, a C R an ideal. Show
a=a xa’ with o C R and a” C R" ideals. Show R/a = (R'/a’) x (R" /a").

Exercise (1.24) . — Let R be a ring; e, ¢’ idempotents (see (10.23) also). Show:
(1) Set a:= (e). Then a is idempotent; that is, a? = a.

(2) Let a be a principal idempotent ideal. Then a = (f) with f idempotent.

(3) Set ¢ :=e+ e —ee’. Then (e, ') = (¢), and €’ is idempotent.

(4) Let eq,...,e, be idempotents. Then (eq,...,e,) = (f) with f idempotent.

(5) Assume R is Boolean. Then every finitely generated ideal is principal.

T —

Exercise (1.25) . — Let L be a lattice, that is, a partially ordered set in which
every pair z, y € L has a sup zVy and an inf x Ay. Assume L is Boolean; that is:

(1) L has a least element 0 and a greatest element 1.
(2) The operations A and V distribute over each other; that is,

zAyVz)=(@Ay)V(eAz) and zV(yAz)=(zVy A(zV=2).
(3) Each « € L has a unique complement 2’; that is, Az’ =0 and zVa' = 1.

Show that the following six laws are obeyed:

rAx=z and xVz=uz. (idempotent)

2AN0=0, zAl=2 and zV1=1 zVv0=uz. (unitary)
zAy=yAx and zVy=yVz. (commutative)
cA(yNz)=(xAy)Az and zV(yVz)=(xVy) V= (associative)
=z and 0 =1, 1'=0. (involutory)

(xAny) =2'vy and (zVy) =2"AYy. (De Morgan’s)

Moreover, show that <y if and only if z =z A y.

Exercise (1.26) . — Let L be a Boolean lattice; see (1.25). For all 2,y € L, set
r+y:=(AY)V (' ANy) and zy:=zAY.

Show: (1) z+y = (zVy)a'Vy) and (2) (x +y) = (2’y) V (xy). Furthermore,

show L is a Boolean ring.

Exercise (1.27) . — Given a Boolean ring R, order R by x < y if z = xy. Show
R is thus a Boolean lattice. Viewing this construction as a map p from the set of
Boolean-ring structures on the set R to the set of Boolean-lattice structures on R,
show p is bijective with inverse the map A associated to the construction in (1.26).
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Rings and Ideals (1.28) / (1.30) Exercises

Exercise (1.28) . — Let X be a set, and L the set of all subsets of X, partially
ordered by inclusion. Show that L is a Boolean lattice and that the ring structure
on L constructed in (1.2) coincides with that constructed in (1.26).

Assume X is a topological space, and let M be the set of all its open and closed
subsets. Show that M is a sublattice of L, and that the subring structure on M of
(1.2) coincides with the ring structure of (1.26) with M for L.

Exercise (1.29) . — Let R be a nonzero ring, P := R[X1, ..., X,,] the polynomial
ring, V' C R™ the common zeros of polynomials F\ € P. Call such a V an
algebraic set. Denote by I(V') the ideal of all F' € P vanishing on V', and by R[V]
the R-algebra of all functions v: V' — R given by evaluating some G € P. Call I(V)
the ideal of V, and R[V] its coordinate ring. For all i, set & := X;|V € R[V];
so &;(u) = u; where u := (u1,...,uy,) € V. Finally, given v := (v1,...,0,,) € V,
set my = (&1 —v1,.. ., &m — Um) C R[V].

(1) Show R™ and () are algebraic sets.

(2) Show I(V) is the largest set I C P with V as zero set.

(3) Show P/I(V) = R[V].

(4) Show m, consists of the f € R[V] with f(v) =

(5) Given u:= (u1,...,Upy) € V with my =my, showu=v .

Exercise (1.30) . — In the setting of (1.29), let @ := R[Y3,...,Y,] be a second
polynomial ring, and W C R™ a second algebraic set Call a set map p: V — W
polynomial, or regular, if p(v) = (G1(v),...,Gn(v)) for some G, € P and
all v.€ V. If so, define p*: R[W] — R[V] by p *(g) == gop. For each i, set
G :==Y;|V € R[V]. Given an algebra map ¢: R[W]| — R[V], define p*: V. — W by
©*(v) == (w1, ..., wy,) with w; := (¢¢;)(v). Show:

(1) Let p: V — W be a polynomial map. Then p* is a well-defined algebra map.

(2) Let ¢: R[W] — R[V] be an algebra map. Then ¢* is well-defined polynomial.

(3) Then p — p* and ¢ — ¢* define inverse bijective correspondences between

the polynomial maps p: V — W and the algebra maps ¢: R[W] — R[V].
(4) Let p: V — W be a polynomial map, and v € V. Then (p*) 'm, = m, ().
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2. Prime ldeals

Prime ideals are the key to the structure of commutative rings. So we review the
basic theory. Specifically, we define prime ideals, and show their residue rings are
domains. We show maximal ideals are prime, and discuss examples. Finally, we
use Zorn’s Lemma to prove the existence of maximal ideals in every nonzero ring.

A. Text

(2.1) (Zerodivisors). — Let R be a ring. An element z is called a zerodivisor if
there is a nonzero y with xy = 0; otherwise, x is called a nonzerodivisor. Denote
the set of zerodivisors by z.div(R) and the set of nonzerodivisors by S.

(2.2) (Multiplicative subsets, prime ideals). — Let R be a ring. A subset S is
called multiplicative if 1 € S and if z,y € S implies zy € S.

For example, the subset of nonzerodivisors Sy is multiplicative.

An ideal p is called prime if its complement R — p is multiplicative, or equiva-
lently, if 1 ¢ p and if zy € p implies x € p or y € p.

(2.3) (Fields, domains). — A ring is called a field if 1 # 0 and if every nonzero
element is a unit. Standard examples include the rational numbers Q, the real
numbers R, the complex numbers C, and the finite field I, with ¢ elements.

A ring is called an integral domain, or simply a domain, if (0) is prime, or
equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field Frac(R), which consists of the
fractions z/y with z,y € R and y # 0. Conversely, any subring R of a field K,
including K itself, is a domain; indeed, any nonzero x € R cannot be a zerodivisor,
because, if xy = 0, then (1/z)(xy) = 0, so y = 0. Further, Frac(R) has this UMP:
the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into
L. For example, the ring of integers Z is a domain, and Frac(Z) =Q Cc R c C.

(2.4) (Polynomials over a domain). — Let R be a domain, X := {X}xea a set of
variables. Set P := R[X]. Then P is a domain too. In fact, given nonzero F, G € P,
not only is their product F'G nonzero, but also, as explained next, given a total
ordering of the variables, the grlex leading term of F'G is the product of the grlex
leading terms of F' and G, and

deg(FG) = deg(F) + deg(Q). (2.4.1)

Using the given ordering of the variables, order all the monomials M of the
same degree via the lexicographic order on exponents. Among the M in F with
deg(M) = deg(F), the largest is called the grlex leading monomial of F. Tts
grlex leading term is the product aM where a € R is the coefficient of M in F,
and a is called the grlex leading coefficient.

The grlez leading term of FG is the product of those aM and bN of F' and G, and
(2.4.1) holds, for the following reasons. First, ab # 0 as R is a domain. Second,

deg(MN) = deg(M) + deg(N) = deg(F') + deg(G).

Third, deg(MN) > deg(M'N’) for every pair of monomials M’ and N’ in F' and
G. Equality holds if and only if deg(M’) = deg(F') and deg(IN’) = deg(G). If so
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Prime ldeals (2.5) /(2.6) Text

and if either M’ £ M or N’ £ N, then M'N’ is strictly smaller than MIN. Thus
abMN is the grlex leading term of F'G, and (2.4.1) holds.

Similarly, as explained next, the griex hind term of F'G is the product of the grlex
hind terms of F and G. Further, given a vector (z) € R®, then

ord(“)FG = Ol"d(wk)F + OI‘d(IA)G, (2.4.2)

Among the monomials M in F' with ord(M) = ord(F'), the smallest is called the
grlex hind monomial of F'. The grlex hind term of F is the product aM where
a € R is the coeflicient of M in F.

It is easy to prove that the grlex hind term of FG is the product of the grlex
hind terms of F and G by adapting the reasoning with grlex leading terms given
above. Hence, if (z)) = (0), then (2.4.2) holds. Thus it holds in general, because
SD(Q?A)FG = Qo(xx)FSO(xA)C% see (1.8).

If FG =1, note F,G € R owing to (2.4.1). This observation can fail if R is not
a domain. For example, if a® =0 in R, then (1 +aX)(1 —aX) =1 in R[X].

The fraction field Frac(P) is called the field of rational functions, and is also
denoted by K(X) where K := Frac(R).

(2.5) (Unique factorization). — Let R be a domain, p a nonzero nonunit. We call
p prime if, whenever p | zy (that is, there exists z € R such that pz = xy), either
p|ax orp|y. Clearly, p is prime if and only if the ideal (p) is prime.

Given z,y € R, we call any d € R their greatest common divisor and write
d=gcd(z,y)ifd|z and d |y and if ¢ | x and ¢ | y implies ¢ | d. As R is a domain,
it’s easy to see that ged(z,y) is unique up to unit factor.

Plainly, if R is a UFD, then gcd(z,y) always exists.

We call p irreducible if, whenever p = xy, either = or y is a unit. If a nonzero
nonunit p is not irreducible, then it factors as p = x1y; where 1 and y; are both
also nonunits. If either x; or y; is not irreducible, then continue factoring z; and
y1 in any way until all factors are either irreducible or units. If this process stops,
then we say factoring terminates.

We call R a Unique Factorization Domain (UFD) or a factorial ring if (1)
factoring in R terminates, and (2) any factorization is unique up to order and units.
Plainly (1) implies every element is a finite product of irreducibles; the converse is
false [7, (1-3), p. 323].

Recall that (1) holds if and only if every ascending chain of principal ideals
(x1) C (x2) C --- stabilizes; see [3, (12.2.13), p.364]. Moreover, if (1) holds, then
(2) holds if and only if every irreducible element is prime; see [3, (12.2.14)(a),
p. 365]. Conversely, primes are, plainly, always irreducible.

Standard examples of UFDs include any field, the integers Z, and a polynomial
ring in n variables over a UFD; see [3, (12.2.14)(c), p. 365,(12.3.10), p.371], [12,
Cor. 18.23, p.297].

Lemma (2.6). — Let ¢: R — R’ be a ring map, and T C R’ a subset. If T is
multiplicative, then 0~ T is multiplicative; the converse holds if ¢ is surjective.

Proof: Set S := ¢~ !T. If T is multiplicative, then 1 € S as ¢(1) =1 € T, and
x,y € S implies zy € S as p(xy) = p(z)p(y) € T; thus S is multiplicative.

If S is multiplicative, then 1 € T as 1 € S and ¢(1) = 1; further, x,y € S implies
o(x), e(y), e(xy) € T. If ¢ is surjective, then every x’ € T is of the form 2’ = ¢(x)
for some z € S. Thus if ¢ is surjective, then T is multiplicative if o~ !T is. [l
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Prime ldeals (2.7) / (2.16) Text

Proposition (2.7). — Let ¢: R — R’ be a ring map, and q C R’ an ideal. Set
p = lq. If q is prime, then p is prime; the converse holds if  is surjective.

Proof: By (2.6), R — p is multiplicative if and only if R’ — ¢ is. So the assertion
results from the definition (2.2). O

Corollary (2.8). — Let R be a ring, p an ideal. Then p is prime if and only if R/p
is a domain.

Proof: By (2.7), p is prime if and only if (0) C R/p is. So the assertion results
from the definition of domain in (2.3). O

Exercise (2.9) . — Let R be a ring, P := R[X,Y] the polynomial ring in two sets
of variables X and Y. Set p := (X). Show p is prime if and only if R is a domain.

Definition (2.10). — Let R be a ring. An ideal m is said to be maximal if m is
proper and if there is no proper ideal a with m ; a.

Example (2.11). — Let R be a domain, R[X,Y] the polynomial ring. Then (X)
is prime by (2.9). However, (X) is not maximal since (X) & (X,Y’). Moreover,
(X,Y) is maximal if and only if R is a field by (1.17)(3) and by (2.14) below.

Proposition (2.12). — A ring R is a field if and only if (0) is a mazimal ideal.

Proof: Suppose R is a field. Let a be a nonzero ideal, and a a nonzero element
of a. Since R is a field, a € R*. So (1.4) yields a = R.

Conversely, suppose (0) is maximal. Take x # 0. Then (x) # (0). So (z) = R.
So z is a unit by (1.4). Thus R is a field. O

Corollary (2.13). — Let R be a ring, m an ideal. Then m is mazimal if and only
if R/m is a field.

Proof: Clearly, m is maximal in R if and only if (0) is maximal in R/m by (1.9).
Thus (2.12) yields the assertion. O

Example (2.14). — Let R be a ring, P the polynomial ring in variables X, and
xzx € R for all A. Set m := ({Xx —zx}). Then P/m = R by (1.17)(3). Thus m is
maximal if and only if R is a field by (2.13).

Corollary (2.15). — In a ring, every maximal ideal is prime.

Proof: A field is a domain by (2.3). So (2.8) and (2.13) yield the result. O

(2.16) (Coprime elements). — Let R be a ring, and x,y € R. We say « and y are
(strictly) coprime if their ideals (z) and (y) are comaximal.

Plainly, = and y are coprime if and only if there are a,b € R such that ax+by = 1,
if and only if, given any z € R, there are a,b € R such that ax + by = z.

Plainly, = and y are coprime if and only if there is b € R with by =1 (mod (z)),
if and only if the residue of y is a unit in R/(x).

Fix m,n > 1. By (1.21)(3), « and y are coprime if and only if ™ and y" are.

If x and y are coprime, then their images in any algebra R’ are too.
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Prime ldeals (2.17) /(2.21) Text

(2.17) (PIDs). — A domain R is called a Principal Ideal Domain (PID) if
every ideal is principal. Examples include a field k, the polynomial ring k[ X] in one
variable, and the ring Z of integers. A PID is a UFD; see [3, (12.2.14)(b), p. 365],
(12, Thm. 18.11, p. 291].

Let R be a PID, p a nonzero prime ideal. Say p = (p). Then p is prime by (2.5),
so irreducible. Now, let ¢ € R be irreducible. Then (g) is maximal for this reason:
if (¢) S (x), then ¢ = zy for some nonunit y; so 2 must be a unit as ¢ is irreducible.
So R/{q) is a field by (2.13). Also (g) is prime by (2.15); so ¢ is prime by (2.5).
Thus every irreducible element is prime, and every nonzero prime ideal is maximal.

Exercise (2.18) . — Show that, in a PID, nonzero elements = and y are relatively
prime (share no prime factor) if and only if they’re coprime.

Example (2.19). — Let R be a PID, and p € R a prime. Set k := R/(p). Let X
be a variable, and set P := R[X]. Take G € P; let G’ be its image in k[X]; assume
G’ is irreducible. Set m := (p, G). Then P/m == k[X]/(G’) by (1.16) and (1.9),
and k[X]/(G’) is a field by (2.17); hence, m is maximal by (2.13).

Theorem (2.20). — Let R be a PID. Let P := R[X] be the polynomial ring in one
variable X, and p a nonzero prime ideal of P.

(1) Then p = (F') with F' prime, or p is maximal.

(2) Assume p is mazimal. Then either p = (F) with F prime, or p = (p, G) with
p € R prime, pR=pN R, and G € P prime with image G' € (R/pR)[X] prime.

Proof: Recall that R is a UFD, and so P is one too; see (2.17) and (2.5).

If p = (F') for some F € P, then F is prime as p is. So assume p # (F') for all F.

Take F; € p nonzero. As p is prime, p contains a prime factor F] of F;. Replace
Fy by F{. Asp # (F1), there’s a prime Fy € p — (F}). Set K := Frac(R). By
Gauss’s Lemma, Iy and Fy are also prime in K[X]; see [3, (12.3.9)(c) p.371] or
[12, Thm.18.15, p.295]. So Fy and F; are relatively prime in K[X]. So (2.17)
and (2.18) yield G1,G2 € P and ¢ € R with (G1/¢)F1 + (G2/c)Fy = 1. So
c=G1F1 + GoF; € RNp. Hence RNp # 0. But RNy is prime, and R is a PID;
so RNp = pR where p is prime. Also pR is maximal by (2.17).

Set k := R/pR. Then k is a field by (2.13). Set q := p/pR C k[X]. Then
k[X]/q = P/p by (1.16) and (1.9). But p is prime; so P/p is a domain by (2.8).
So k[X]/q is a domain too. So g is prime also by (2.8). So g is maximal by (2.17).
So p is maximal by (1.9). In particular, (1) holds.

Since k[X] is a PID and q is prime, q = (G’) where G’ is prime in k[X]. Take
G € p with image G’. Then p = (p, G) as p/(p) = (G'). Say G = [[G; with
G; € P prime. So G’ = [[ G} with G} the image of G; in k[X]. But G’ is prime.
So (G") = (GY) for some j. So replace G’ by G’ and G by G;. Then G is prime.

Finally, p = (F) and p = (p, G) can’t both hold. Else, F' | p. So deg(F) = 0 by
(2.4.1). So (F) = (p). Sop = (p). So G’ =0, a contradiction. Thus (2) holds. O

Theorem (2.21). — FEvery proper ideal a is contained in some mazimal ideal.

Proof: Set 8§ := {ideals b | b D aand b # 1}. Then a € §, and § is partially
ordered by inclusion. Given a totally ordered subset {by} of §, set b := Jb). Then
b is clearly an ideal, and 1 ¢ b; so b is an upper bound of {b)} in 8. Hence by
Zorn’s Lemma [17, pp. 25, 26], [15, p. 880, p. 884], 8 has a maximal element, and it
is the desired maximal ideal. [l

14



Prime ldeals (2.22) / (2.35) Exercises

Corollary (2.22). — Let R be a ring, * € R. Then x is a unit if and only if x
belongs to no maximal ideal.

Proof: By (1.4), x is a unit if and only if (x) is not proper. Apply (2.21). O

B. Exercises

Exercise (2.23) . — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a C por b C p; and (2) anb C p; and (3) ab C p.

Exercise (2.24) . — Let R be a ring, p a prime ideal, and my, ..., m, maximal
ideals. Assume my ---m, = 0. Show p = m; for some i.

Exercise (2.25) . — Let R be a ring, and p,ay,...,a, ideals with p prime. Show:
(1) Assume p D ()i, a;. Then p D a; for some j,
(2) Assume p = (i_, a;. Then p = a; for some j,

Exercise (2.26) . — Let R be a ring, 8 the set of all ideals that consist entirely of

zerodivisors. Show that 8 has maximal elements and they’re prime. Conclude that
z.div(R) is a union of primes.

Exercise (2.27) . — Given a prime number p and an integer n > 2, prove that the
residue ring Z/(p™) does not contain a domain as a subring.
Exercise (2.28) . — Let R := R’ x R” be a product of two rings. Show that R is

a domain if and only if either R’ or R” is a domain and the other is 0.

Exercise (2.29) . — Let R := R’ X R” be a product of rings, p C R an ideal. Prove
p is prime if and only if either p = p’ x R” with p’ C R’ prime or p = R’ x p” with
p” C R” prime. What if prime is replaced by mazimal?

Exercise (2.30) . — Let R be a domain, and x,y € R. Assume (x) = (y). Show
x = uy for some unit u.

Exercise (2.31) . — Let k be a field, R a nonzero ring, ¢: k — R a ring map.
Prove ¢ is injective.
Exercise (2.32) . — Let R be a ring, p a prime, X a set of variables. Let p[X]
denote the set of polynomials with coefficients in p. Prove these statements:
(1) pR[X] and p[X] and pR[X] + (X) are primes of R[X], which contract to p.
(2) Assume p is maximal. Then pR[X] + (X) is maximal.

Exercise (2.33) . — Let R be a ring, X a variable, H € P := R[X], and a € R.
Given n > 1, show (X —a)™ and H are coprime if and only if H(a) is a unit.

Exercise (2.34) . — Let R be a ring, X a variable, F € P := R[X], and a € R.
Set F' := OF/0X; see (1.18.1). Show the following statements are equivalent:

(1) a is a supersimple root of F.

(2) a is aroot of F, and X — a and F’ are coprime.

(3) F = (X —a)@ for some G in P coprime to X — a.
Show that, if (3) holds, then G is unique.

Exercise (2.35) . — Let R be a ring, X a variable, F(X) a polynomial of degree
d. Show: (1) Assume R is a domain. Then F has at most d (distinct) zeros in R.
(2) Take R :=Z/{6) and F := X? + X. Then F has more than d zeros in R.
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Prime ldeals (2.36) / (2.45) Exercises

Exercise (2.36) . — Let R be a ring, p a prime; X a set of variables; F, G € R[X].
Let ¢(F), ¢(G), c(F Q) be the ideals of R generated by the coefficients of F, G, FG.
Show: (1) Assume p 2 ¢(F) and p 2 ¢(G). Then p 2 ¢(FG).

(2) Then ¢(F) = R and ¢(G) = R if and only if ¢(FG) = R.

Exercise (2.37) . — Let B be a Boolean ring. Show that every prime p is maximal,
and that B/p = Fo.

Exercise (2.38) . — Let R be a ring. Assume that, given any = € R, there is an
n > 2 with 2" = z. Show that every prime p is maximal.

Exercise (2.39) . — Prove the following statements or give a counterexample.

(1) The complement of a multiplicative subset is a prime ideal.

(2) Given two prime ideals, their intersection is prime.

(3) Given two prime ideals, their sum is prime.

(4) Given a ring map ¢: R — R’, the operation ¢~
to maximal ideals of R.

(5) In (1.9), an ideal n’ C R/a is maximal if and only if x~'n’ C R is maximal.

I carries maximal ideals of R’

Exercise (2.40) . — Preserve the setup of (2.20). Let F:= ao X" +---+a, be a
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p t ag. Show that (F') is not maximal.

Exercise (2.41) . — Preserve the setup of (2.20). Let (0) S p1 & --- G pn be
a chain of primes in P. Show n < 2, with equality if the chain is maximal —
or, not a proper subchain of a longer chain—and if R has infinitely many primes.

Exercise (2.42) (Schwartz—Zippel Theorem with multiplicities) . — Let R be a
domain, T'C R a subset of g elements, P := R[X}, ..., X,] the polynomial ring in
n variables, and F' € P a nonzero polynomial of degree d. Show:

(1) Induction on n yields »_ porde,,. . 2,)F < dg" 1.

(2) Then at most dg"~ ! points (z1,...,x,) € T" satisfy F(z1,...,2,) = 0.
(3) Assume d < g. Then F(zq,...,x,) # 0 for some z; € T;.

Exercise (2.43) . — Let R be a domain, P := R[X},..., X,] the polynomial ring,
F € P nonzero, and T; C R subsets with ¢; elements for i = 1,...,n. For all i,
assume that the highest power of X; in F' is at most t; — 1. Show by induction on
n that F(xzq,...,z,) # 0 for some z; € T;.

Exercise (2.44) (Alon’s Combinatorial Nullstellensatz [1]) . — Let R be a domain,
P := R[X4,...,X,] the polynomial ring, F' € P nonzero of degree d, and T; C R a
subset with ¢; elements for i = 1,...,n. Let M := [}, X/ be a monomial with
m; < t; for all i. Assume F vanishes on T} X - - - x T,. Set F;(X;) :=[] (X;—x).

(1) Find G; € P with deg(G;) < d —t; such that F =Y | F;,G,.

(2) Assume M appears in F'. Show deg(M) < d.

(3) Assume R is a field K. Set a := (F,...,F,) and t := [[_, ¢;. Define the
evaluation map ev: P — K* by ev(G) := (G(z1,...,3,)) where (z1,...,2,) runs
over Ty x - -- x T,,. Show that ev induces a K-algebra isomorphism ¢: P/a == K*.

zeT;

Exercise (2.45) (Cauchy—Davenport Theorem) . — Let A, B C F, be nonempty
subsets. Set C:={a+b|a€ Aandbe B}. Say A, B, C have «, 3, v elements.

Show: (1) Assume C' G F,,. Set F(X,Y) :=[].cc(X +Y —¢) and M := X" Y™
16



Prime ldeals (2.46) / (2.46) Exercises

where my := a—1 and mgy := y—a+1. Then (2.44)(2) yields v > a+ 5 —1.
(2) Then v > min{a+ 5 — 1, p}.
Exercise (2.46) (Chevalley-Warning Theorem) . — Let P := Fy[X1,...,X,] be
the polynomial ring, Fy,...,F, € P, and (c1,...,¢,) € [y a common zero of the
F;. Assume n > """ deg(F;). Set
Gr=[Ja-F", Go:=6]] JI (Xj—¢, and F:=Gi-Gs,
i=1 j=1 c€Fg, c#c;
and choose § so that F(cy,...,c,) = 0. Show:
(1) Then X¢™"'... X4~ has coefficient —§ in F, and § # 0.
(2) Then owing to (1) and (2.44)(2), the F; have another common zero.
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3. Radicals

Two radicals of a ring are commonly used in Commutative Algebra: the Jacobson
radical, which is the intersection of all maximal ideals, and the nilradical, which is
the set of all nilpotent elements. Closely related to the nilradical is the radical of
a subset. We define these three radicals, and discuss examples. In particular, we
study local rings; a local ring has only one maximal ideal, which is then its Jacobson
radical. We prove two important general results: Prime Avoidance, which states
that, if an ideal lies in a finite union of primes, then it lies in one of them, and
the Scheinnullstellensatz, which states that the nilradical of an ideal is equal to the
intersection of all the prime ideals containing it.

A. Text

Definition (3.1). — Let R be a ring. Its (Jacobson) radical rad(R) is defined to
be the intersection of all its maximal ideals.

Proposition (3.2). — Let R be a ring, a an ideal, * € R, and u € R*. Then
z € rad(R) if and only if uw— xy € R* for all y € R. In particular, the sum of an
element of rad(R) and a unit is a unit, and a C rad(R) if 1 —a C R*.

Proof: Assume z € rad(R). Given a maximal ideal m, suppose v — zy € m.
Since x € m too, also u € m, a contradiction. Thus v — zy is a unit by (2.22). In
particular, taking y := —1 yields u + x € R*.

Conversely, assume x ¢ rad(R). Then there is a maximal ideal m with = ¢ m.
So (z) +m = R. Hence there exist y € R and m € m such that zy + m = u. Then
u—2xy =m € m. So u — xy is not a unit by (2.22), or directly by (1.4).

In particular, given y € R, set a := u~'xy. Then u — 2y = u(l —a) € R* if
1—a€ R*. Also a € aif z € a. Thus the first assertion implies the last. O

Corollary (3.3). — Let R be a ring, a an ideal, k: R — R/a the quotient map.
Assume a C rad(R). Then Idem(k) is injective.

Proof: Given e,¢’ € Idem(R) with k(e) = k(¢'), set  := e —¢’. Then
23 =€ —3e%’ +3ee? — e =e—¢ =u.

Hence z(1 — 2%) = 0. But k(z) = 0; so € a. But a C rad(R). Hence 1 — 22 is a
unit by (3.2). Thus « = 0. Thus Idem(k) is injective. O

Definition (3.4). — A ring is called local if it has exactly one maximal ideal, and
semilocal if it has at most finitely many maximal ideals.

By the residue field of a local ring A, we mean the field A/m where m is the
(unique) maximal ideal of A.

Lemma (3.5) (Nonunit Criterion). — Let A be a ring, n the set of nonunits. Then
A is local if and only if n is an ideal; if so, then n is the mazximal ideal.

Proof: Every proper ideal a lies in n as a contains no unit. So, if n is an ideal,
then it is a maximal ideal, and the only one. Thus A is local.

Conversely, assume A is local with maximal ideal m. Then A —n = A — m by
(2.22). So n =m. Thus n is an ideal. O
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Radicals (3.6) /(3.9) Text

Example (3.6). — The product ring R’ x R” is not local by (3.5) if both R’ and
R’ are nonzero. Indeed, (1,0) and (0, 1) are nonunits, but their sum is a unit.

Example (3.7). — Let R be a ring. A formal power series in the n variables
X1,...,X, is a formal infinite sum of the form > a(i)Xfl -+ Xn where ay € Rand
where (i) := (i1,...,i,) with each i; > 0. The term a(y where (0) := (0,...,0)
is called the constant term. Addition and multiplication are performed as for
polynomials; with these operations, these series form a ring R[[X1,..., X,]].

Set P := R[[X1,...,X,]] and a := (Xi,...,X,,). Then 3 a@Xi' -+ Xi — a()
is a canonical surjective ring map P — R with kernel a; hence, P/a = R.

Given an ideal m C R, set n:= a+mP. Then (1.9) yields P/n = R/m.

A power series F' is a unit if and only if its constant term aq) is a unit. Indeed,

if FF' =1, then a(o)a’(o) = 1 where a’(o) is the constant term of F’. Conversely, if

a(g) is a unit, then F' = apy(1 — G) with G € a. Set F' := a&ﬁ(l +G+ G2+
this sum makes sense as the component of degree d involves only the first d + 1
summands. Clearly F' - F' = 1.

Suppose R is a local ring with maximal ideal m. Given a power series F ¢ n, its
constant term lies outside m, so is a unit by (2.22). So F itself is a unit. Hence
the nonunits constitute n. Thus (3.5) implies P is local with mazimal ideal n.

Example (3.8). — Let k be a ring, and A := k[[X]] the formal power series ring in
one variable. A formal Laurent series is a formal sum of the form > °  a; X"
with a; € k and m € Z. Plainly, these series form a ring k{{ X }}. Set K := k{{X}}.

Set F:=5>2 a; X" Ifa_,, € kX, then F € K*; indeed, F = a_,, X ™(1-G)
where G € A, and F-a” L X"(1+G+G*+---) = 1.

Assume k is a field. If F # 0, then F = X ™H with H := a_,,(1 - G) € A*.
Let a C A be a nonzero ideal. Suppose F' € a. Then X~™ € a. Let n be the
smallest integer such that X™ € a. Then —m > n. Set E := X ™ "H. Then
E e Aand F=X"E. Hence a = (X™). Thus A is a PID.

Further, K is a field. In fact, K = Frac(A) because any nonzero F' € K is of the
form F = H/X™ where H, X™ € A.

Let A]Y] be the polynomial ring in one variable, and ¢: A < K the inclusion.
Define p: A[Y] — K by ¢|A = ¢ and p(Y) := X~ !. Then ¢ is surjective. Set
m := Ker(¢). Then m is maximal by (2.13) and (1.5). So by (2.20), m has
the form (F) with F irreducible, or the form (p,G) with p € A irreducible and
G € A[Y]. But mn A = (0) as ¢ is injective. So m = (F'). But XY — 1 belongs to
m, and is clearly irreducible; hence, XY — 1 = F'H with H a unit. Thus (XY — 1)
is maximal.

In addition, (X,Y) is maximal. Indeed, A[Y]/(Y) = A by (1.6)(2), and so (3.7)
yields A[Y]/(X,Y) = A/(X) = k. However, (X,Y’) is not principal, as no nonunit
of A[Y] divides both X and Y. Thus A[Y] has both principal and nonprincipal
mazimal ideals, the two types allowed by (2.20).

Proposition (3.9). — Let R be a ring, S a multiplicative subset, and a an ideal
withanN S =10. Set 8§ :={ideals b | b Daand bNS =0}. Then 8 has a mazimal
element p, and every such p is prime.

Proof: Clearly, a € 8, and § is partially ordered by inclusion. Given a totally
ordered subset {b)} of 8, set b :=(Jby. Then b is an upper bound for {b)} in 8.
So by Zorn’s Lemma, § has a maximal element p. Let’s show p is prime.
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Radicals (3.10) / (3.14) Text

Take z,y € R —p. Then p + (x) and p + (y) are strictly larger than p. So there
are p,q € p and a,b € R with p+ax € S and ¢+ by € S. Since S is multiplicative,
pq + pby + qax + abxy € S. But pg+ pby + gax € p, so xy ¢ p. Thus p is prime. O

Exercise (3.10) . — Let ¢: R — R’ be a ring map, p an ideal of R. Show:
(1) there is an ideal q of R’ with ¢~1(q) = p if and only if ¢~} (pR’) = p.
(2) if p is prime with ¢ ~!(pR’) = p, then there’s a prime q of R’ with ¢ ~!(q) = p.

(3.11) (Saturated multiplicative subsets). — Let R be a ring, and S a multiplica-
tive subset. We say S is saturated if, given xz,y € R with zy € S, necessarily
z,y €S.

For example, the following statements are easy to check. The group of units R*
and the subset of nonzerodivisors Sy are saturated multiplicative subsets. Further,
let o: R — R’ be a ring map, T C R’ a subset. If T is saturated multiplicative,
then so is o~ 'T. The converse holds if o is surjective.

Lemma (3.12) (Prime Avoidance). — Let R be a ring, a a subset of R that is
stable under addition and multiplication, and p1,...,p, ideals such that ps,...,pn
are prime. If a ¢ p; for all j, then there is an x € a such that x ¢ p; for all j; or
equivalently, if a C \J;_, p;, then a C p; for some i.

Proof: Proceed by induction on n. If n = 1, the assertion is trivial. Assume that
n > 2 and by induction that, for every ¢, there is an x; € a such that x; ¢ p; for all
j #i. We may assume x; € p; for every i, else we're done. If n = 2, then clearly
x1+x2 ¢ pjfor j =1,2. If n > 3, then (x1 - xp_1)+a, ¢ p; for all j as, if j = n,
then z,, € p,, and p,, is prime, and if j < n, then z,, ¢ p; and x; € p;. O

(3.13) (Other radicals). — Let R be a ring, a a subset. Its radical /a is the set
Va:={x € R|z" € a for some n =n(z) > 1}.

Notice a C v/a and v/v/a = y/a. Given a subset b C a, notice Vb C \/a.

If a is an ideal and a = /a, then a is said to be radical. For example, suppose
a = (\px with all py prime. If 2™ € a for some n > 1, then = € py for all A\. So
v/a C a. Thus a is radical. This example is the only one by (3.14) below.

We call \/@ the nilradical, and sometimes denote it by nil(R). We call an
element z € R nilpotent if z belongs to \/@, that is, if 2 = 0 for some n > 1.
We call an ideal a nilpotent if a™ = 0 for some n > 1.

Recall that every maximal ideal is prime by (2.15) and that rad(R) is defined
to be the intersection of all the maximal ideals. Thus y/rad(R) = rad(R).

However, (0) C rad(R). So 1/(0) C y/rad(R). Thus
nil(R) C rad(R) (3.13.1)

We call R reduced if nil(R) = (0), that is, if R has no nonzero nilpotents.
Theorem (3.14) (Scheinnullstellensatz). — Let R be a ring, a an ideal. Then
\/a = ﬂp)a p

where p runs through all the prime ideals containing a. (By convention, the empty
intersection is equal to R.)
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Radicals (3.15) / (3.20) Text

Proof: Take z ¢ y/a. Set S := {l,x,2% ...}. Then S is multiplicative, and
ansS = 0. By (3.9), thereis a p D a, but ¢ p. So x ¢ 5, p. Thus

Va2 My b
Conversely, take » € V/a. Say 2" € a C p. Then x € p. Thus Va=[,5 p. O

Proposition (3.15). — Let R be a ring, a an ideal. Then +/a is an ideal.

Proof: Take x,y € \/a; say " € a and y™ € a. Then
(x + y)"-l‘m—l = Zi+j:m+n—1 ("+7j7_'/—1)xiyj. (3‘15‘1)

This sum belongs to a as, in each summand, either z* or 37 does, since, if i <n —1
and j <m—1, theni+j <m-+n—2. Thus z+y € v/a. So clearly v/a is an ideal.

Alternatively, given any collection of ideals ay, note that () ay is also an ideal.
So v/a is an ideal owing to (3.14). O

Exercise (3.16) . — Use Zorn’s lemma to prove that any prime ideal p contains a
prime ideal g that is minimal containing any given subset s C p.

(3.17) (Minimal primes). — Let R be a ring, a an ideal, p a prime. We call p a
minimal prime of a, or over a, if p is minimal in the set of primes containing a.
We call p a minimal prime of R if p is a minimal prime of (0).

Owing to (3.16), every prime of R containing a contains a minimal prime of a.
So owing to the Scheinnullstellensatz (3.14), the radical y/a is the intersection of
all the minimal primes of a. In particular, every prime of R contains a minimal
prime of R, and nil(R) is the intersection of all the minimal primes of R.

Proposition (3.18). — A ring R is reduced and has only one minimal prime if and
only if R is a domain.

Proof: Suppose R is reduced, or (0) = 1/(0), and has only one minimal prime q.
Then (3.17) implies (0) = q. Thus R is a domain. The converse is obvious. O

Exercise (3.19) . — Let R be a ring, a an ideal, X a variable, R[[X]] the formal
power series ring, 9 C R[[X]] an ideal, F := Y a,X™ € R[[X]]. Set m:=MN R
and 2 := { Y b,X" | b, € a}. Prove the following statements:

(1) If F is nilpotent, then a,, is nilpotent for all n. The converse is false.

(2) Then F € rad(R[[X]]) if and only if ag € rad(R).

(3) Assume X € M. Then X and m generate 9.

(4) Assume 97 is maximal. Then X € 9t and m is maximal.

(5) If a is finitely generated, then aR[[X]] = . However, there’s an example of
an R with a prime ideal a such that aR[[X]] # 2L

Example (3.20). — Let R be a ring, R[[X]] the formal power series ring. Then
every prime p of R is the contraction of a prime of R[[X]]. Indeed, pR[[X]|NR = p.
So by (3.10)(2), there’s a prime ¢ of R[[X]] with qNR = p. In fact, a specific choice
for q is the set of series > a, X" with a,, € p. Indeed, the canonical map R — R/p
induces a surjection R[[X]] — (R/p)[[X]] with kernel g; so R[[X]]/q = (R/p)[[X]].
Plainly (R/p)[[X]] is a domain. But (3.19)(5) shows q may not be equal to pR[[X]].
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B. Exercises

Exercise (3.21) . — Let R be a ring, a C rad(R) an ideal, w € R, and w’ € R/a
its residue. Prove that w € R* if and only if w’ € (R/a)*. What if a ¢ rad(R)?

Exercise (3.22) . — Let A be a local ring, e an idempotent. Show e =1 or e = 0.

Exercise (3.23) . — Let A be a ring, m a maximal ideal such that 1+ m is a unit
for every m € m. Prove A is local. Is this assertion still true if m is not maximal?

Exercise (3.24) . — Let R be a ring, S a subset. Show that S is saturated multi-
plicative if and only if R — S is a union of primes.

Exercise (3.25) . — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset

S:={x € R|thereis y € R with zy € S }.

Show: (1) (a) that S O S, and (b) that S is saturated multiplicative, and (c) that
any saturated multiplicative subset T" containing S also contains S.
(2) Set U := Uprg—p p- Then R— S =U.
(3) Let a be an ideal; assume S =1+ a; set W :=J,5, p. Then R — S=Ww.
(4) Let f,g € R. Then Sy C S, if and only if \/(f) D 1/(g)-
Exercise (3.26) . — Let R be a nonzero ring, S a subset. Show S is maximal in
the set & of multiplicative subsets T of R with 0 ¢ T if and only if R — S is a
minimal prime of R.

Exercise (3.27) . — Let k be a field, X for A € A variables, and A, for 7 € II
disjoint subsets of A. Set P := k[{Xx}aea] and pr := ({Xx}ren,) for all 7 € IL.
Let F, G € P be nonzero, and a C P a nonzero ideal. Set U := J . b. Show:
(1) Assume F € p, for some 7 € II, Then every monomial of F is in p,.
(2) Assume there are 7, p € II such that F'+ G € p, and G € p, but p, contains
no monomial of F. Then p, contains every monomial of ' and of G.
(3) Assume a C U. Then a C p, for some 7 € II.

Exercise (3.28) . — Let k be a field, 8 C k a subset of cardinality d at least 2.
Show: (1) Let P := k[X1,...,X,] be the polynomial ring, F' € P nonzero. Assume
the highest power of any X; in F' is less than d. Then owing to induction on
n, there are ay,...,a, € 8§ with F(ay,...,a,) # 0.
(2) Let V be a k-vector space, and W1, ..., W, proper subspaces. Assume r < d.
Then | J, W; # V.
(3) In (2), let W C |J; W; be a subspace. Then W C W; for some 1.
(4) Let R be a k-algebra, and a,a1,...,a, ideals with a C (J;_, a;. Then a C a;
for some 1.

Exercise (3.29) . — Let k be a field, R := k[X,Y] the polynomial ring in two
variables; m := (X, Y’). Show m is a union of strictly smaller primes.

Exercise (3.30) . — Find the nilpotents in Z/(n}). In particular, take n = 12.

Exercise (3.31) (Nakayama’s Lemma for nilpotent ideals) . — Let R be a ring, a
an ideal, M a module. Assume aM = M and a is nilpotent. Show M = 0.

Exercise (3.32) . — Let R be a ring; a, b ideals; p a prime. Show:
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(1) Vab=+vanb=+van+vb. (2) va=Rifand only if a = R.
(3) Va+b=1/va+Vb. (4) vVp* =p forall n > 0.

Exercise (3.33) . — Let R be a ring. Prove these statements: (1) Assume every
ideal not contained in nil(R) contains a nonzero idempotent. Then nil(R) = rad(R).
(2) Assume R is Boolean. Then nil(R) = rad(R) = (0).

Exercise (3.34) . — Let ¢,¢’ € Idem(R). Assume +/(e) = \/(e’). Show e = ¢'.

Exercise (3.35) . — Let R be a ring, a;, as comaximal ideals with ajas C nil(R).
Show there are complementary idempotents e; and ey with e; € a;.

Exercise (3.36) . — Let R be a ring, a an ideal, x: R — R/a the quotient map.
Assume a C nil(R). Show Idem(k) is bijective.

Exercise (3.37) . — Let R be a ring. Prove the following statements equivalent:

(1) R has exactly one prime p;
(2) every element of R is either nilpotent or a unit;
(3) R/nil(R) is a field.

Exercise (3.38) . — Let R be a ring, a and b ideals. Assume that b is finitely
generated modulo a and that b C v/a. Show there’s n > 1 with b™ C a.

Exercise (3.39) . — Let ¢: R — R’ be a ring map, a C R and b C R’ subsets.
Prove these two relations: (1) (pv/a)R' C /(pa)R’ and (2) ¢~ 'vb = /p~1b.
Exercise (3.40) . — Let R be a ring, q an ideal, p a prime. Assume p is finitely
generated modulo q. Show p = ,/q if and only if there’s n > 1 with p D q D p".
Exercise (3.41) . — Let R be a ring. Assume R is reduced and has finitely many
minimal prime ideals py,...,p,. Prove p: R — [[(R/p;) is injective, and for each

i, there is some (x1,...,x,) € Im(p) with z; # 0 but z; = 0 for j # 1.

Exercise (3.42) . — Let R be a ring, X a variable, F':= > " ja;X". Show:
(1) Then F is nilpotent if and only if ag, ..., a, are nilpotent.
(2) Then F is a unit if and only if ag is a unit and ay, ..., a, are nilpotent.

Exercise (3.43) . — Generalize (3.42) to the polynomial ring P := R[X1,...,X,].
Exercise (3.44) . — Let R be a ring, R’ an algebra, X a variable. Show:
(1) nil(R)R' C nil(R') and (2) rad(R[X]) = nil(R[X]) = nil(R)R[X].
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4. Modules

In Commutative Algebra, it has proven advantageous to expand the study of rings
to include modules. Thus we obtain a richer theory, which is more flexible and more
useful. We begin the expansion here by discussing residue modules, kernels, and
images. In particular, we identify the UMP of the residue module, and use it to
construct the Noether isomorphisms. We also construct free modules, direct sums,
and direct products, and we describe their UMPs.

A. Text

(4.1) (Modules). — Let R be a ring. Recall that an R-module M is an Abelian
group, written additively, with a scalar multiplication, R x M — M, written
(z,m) — xm, which is

(1) distributive, (m +n) = zm + azn and (z + y)m = xm + ym,

(2) associative, z(ym) = (zy)m, and

(3) unitary, 1-m =m.

For example, if R is a field, then an R-module is a vector space. Moreover, a
Z-module is just an Abelian group; multiplication is repeated addition.

Asin (1.1), for any x € R and m € M, we have -0 =0 and 0-m = 0.

A submodule N of M is a subgroup that is closed under multiplication; that
is, zn € N for all x € R and n € N. For example, the ring R is itself an R-module,
and the submodules are just the ideals. Given an ideal a, let a/NV denote the smallest
submodule containing all products an with ¢ € a and n € N. Similar to (1.4),
clearly aN is equal to the set of finite sums Y a;n; with a; € a and n; € N.

Given m € M, define its annihilator, denoted Ann(m) or Anng(m), by

Ann(m) := {z € R | 2m = 0}.
Furthermore, define the annihilator of M, denoted Ann(M) or Anng(M), by
Ann(M) :={x € R|am =0 for all m € M}.

Plainly, Ann(m) and Ann(M) are ideals.

We call the intersection of all maximal ideals containing Ann(M) the radical of
M, and denote it by rad(M) or radgr(M). Note that, owing to (1.9), reduction
sets up a bijective correspondence between the maximal ideals containing Ann(M)
and the maximal ideals of R/ Ann(M); hence,

rad(R/ Ann(M)) = rad(M)/ Ann(M). (4.1.1)

If R is local with maximal ideal m and if M # 0, notice m = rad(M).

Given a submodule N of M, note Ann(M) C Ann(N). Thus rad(M) C rad(N).
Similarly, Ann(M) C Aun(M/N). Thus rad(M) C rad(M/N).

We call M semilocal if there are only finitely many maximal ideals containing
Ann(M). Trivially, if R is semilocal, then so is M. Moreover, owing to the bijective
correspondence between maximal ideals noted above, M is semilocal if and only if
R/ Ann(M) is a semilocal ring.

Given a set X := {X)}rca of variables, form the set of “polynomials”:

M[X] = {Z?:o m;M; | m; € M and the M; monomials in the XA}
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Canonically, M[X] is an R[X]-module.
(4.2) (Homomorphisms). — Let R be a ring, M and N modules. Recall that a

homomorphism, or R-linear map, or simply R-map, is a map a: M — N with
alzm + yn) = x(am) + y(an).
Associated to a homomorphism a: M — N are its kernel and its image
Ker(a) :=a '(0) c M and Im(a):=a(M)C N.

They are defined as subsets, but are obviously submodules.

Let ¢: Ker(a) — M be the inclusion. Then Ker(a) has this UMP: axv = 0, and
given a homomorphism 5: K — M with af8 = 0, there is a unique homomorphism
v: K — Ker(«) with ¢y = 3 as shown below

Ker(a) — M —— N
Sl AT
K

A homomorphism « is called an isomorphism if it is bijective. If so, then we
write a: M -~ N. Then the set-theoretic inverse a=': N — M is a homomor-
phism too. So « is an isomorphism if and only if there is a set map B: N — M
such that Ba = 1y and aff = 1n, where 1), and 1y are the identity maps, and
then B = a~!. If there is an unnamed isomorphism between M and N, then we
write M = N when it is canonical (that is, it does not depend on any artificial
choices), and we write M ~ N otherwise.

The set of homomorphisms « is denoted by Hompg (M, N) or simply Hom (M, N).
It is an R-module with addition and scalar multiplication defined by

(a4 B8)m:=am+ pm and (za)m :=z(am)= a(zm).
Homomorphisms «: L — M and §: N — P induce, via composition, a map
Hom(c, 8): Hom(M, N) — Hom(L, P),

which is obviously a homomorphism. When « is the identity map 1,;, we write
Hom(M, ) for Hom(1,s, 8); similarly, we write Hom(c, N) for Hom(a, 15).

Exercise (4.3) . — Let R be a ring, M a module. Consider the set map
p: Hom(R, M) — M defined by p(0) :=0(1).
Show that p is an isomorphism, and describe its inverse.

(4.4) (Endomorphisms). — Let R be a ring, M a module. An endomorphism of
M is a homomorphism «: M — M. The module of endomorphisms Hom (M, M) is
also denoted Endg(M). It is a ring, usually noncommutative, with multiplication
given by composition. Further, Endg(M) is a subring of Endz(M).

Given = € R, let uy: M — M denote the map of multiplication by x, defined by
tz(m) := xzm. It is an endomorphism. Further, x — p, is a ring map

UR: R— EHdR(M) - Endz(M)

(Thus we may view g as representing R as a ring of operators on the Abelian
group M.) Note that Ker(ugr) = Ann(M).
Conversely, given an Abelian group N and a ring map

v: R — Endz(N),
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we obtain a module structure on N by setting zn := (vz)(n). Then pup = v.
We call M faithful if up: R — Endgr(M) is injective, or Ann(M) = 0. For
example, R is a faithful R-module, as x -1 = 0 implies z = 0.

(4.5) (Algebras). — Fix two rings R and R'.

Suppose R’ is an R-algebra with structure map ¢. Let M’ be an R’-module.
Then M’ is also an R-module by restriction of scalars: zm := ¢(z)m. In other
words, the R-module structure on M’ corresponds to the composition

R % R 2% Endy(M).
In particular, R’ is an R'-module, so R’ is an R-module; further,
(xy)z = x(yz) forallz € R andy,z € R'. (4.5.1)

Indeed, R’ is an R’-module, so an R-module by restriction of scalars; further,
(zy)z = x2(yz) since (¢(x)y)z = p(x)(yz) by associativity in R'.

Conversely, suppose R’ is an R-module satisfying (4.5.1). Then R’ has an R-
algebra structure that is compatible with the given R-module structure. Indeed,
define ¢: R — R’ by ¢(z) :==x - 1. Then p(x)z = zz as (z- 1)z = x(1- z). So the
composition pr¢: R — R’ — Endz(R') is equal to ur. Hence ¢ is a ring map,
because pur is one and pg is injective by (4.4). Thus R’ is an R-algebra, and
restriction of scalars recovers its given R-module structure.

Suppose that R' = R/a for some ideal a. Then an R-module M has a compatible
R/-module structure if and only if aM = 0; if so, then the R’-structure is unique.
Indeed, the ring map pr: R — Endy (M) factors through R’ if and only if pr(a) =0
by (1.5), so if and only if aM = 0; as Endz (M) may be noncommutative, we must
apply (1.5) to ugr(R), which is commutative.

For a second example, suppose R’ is the polynomial ring in one variable R[X].
Fix an R-module M. Then to give a compatible R[X]-module structure is the
same as to give an endomorphism y: M — M, because to give a factorization
tr: R — R[X] — Endg(M) is the same as to give an x € Endr(M).

Again suppose R’ is an arbitrary R-algebra with structure map . A subalgebra
R” of R’ is a subring such that ¢ maps into R”. The subalgebra generated by
x) € R’ for A € A is the smallest R-subalgebra that contains all . We denote it
by R[{xA}], or simply by R[z1,...,2,] if A ={1,...,n}, and call the z) algebra
generators. This subalgebra plainly contains all polynomial combinations of the
2 with coefficients in R. In fact, the set R” of these polynomial combinations is
itself, plainly, an R-subalgebra; hence, R” = R[{z)}].

We say R’ is a finitely generated R-algebra or is algebra finite over R if
there exist x1,...,2, € R such that R’ = R[x1,...,z,].

(4.6) (Residue modules). — Let R be a ring, M a module, M’ C M a submodule.
Form the set of cosets, or set of residues,

M/M'" :={m+M'"|me M}.

Recall that M /M’ inherits a module structure, and is called the residue module,
or quotient, of M modulo M’. Form the quotient map

k: M — M/M'" by k(m):=m+ M.

Clearly & is surjective, « is linear, and x has kernel M.
Let a: M — N be linear. Note that Ker(a)) D M’ if and only if a(M’) = 0.
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Recall that, if Ker(a) D M’, then there exists a homomorphism B: M/M' — N
such that Sk = «; that is, the following diagram is commutative:

M —— M/M’
X‘Bl
N

Conversely, if 8 exists, then Ker(a) D M', or a(M') =0, as x(M') = 0.

Further, if 8 exists, then 8 is unique as k is surjective.

Thus, as k is surjective, if 8 exists, then B is surjective if and only if o is so.
In addition, then f8 is injective if and only if M’ = Ker(a). Therefore, § is an
isomorphism if and only if o is surjective and M’ = Ker(«). In particular, always

M/ Ker(a) == Im(a). (4.6.1)

In practice, it is usually more productive to view M /M’ not as a set of cosets, but
simply another module M"” that comes equipped with a surjective homomorphism
a: M — M" whose kernel is the given submodule M.

Finally, as we have seen, M /M’ has the following UMP: x(M') = 0, and given
a: M — N such that a(M') = 0, there is a unique homomorphism 3: M/M' — N
such that fx = a. Formally, the UMP determines M /M’ up to unique isomorphism.

(4.7) (Cyclic modules). — Let R be a ring. A module M is said to be cyclic if
there exists m € M such that M = Rm. If so, form a: R — M by x — xm; then
« induces an isomorphism R/ Ann(m) == M as Ker(a) = Ann(m); see (4.6.1).
Note that Ann(m) = Ann(M). Conversely, given any ideal a, the R-module R/a is
cyclic, generated by the coset of 1, and Ann(R/a) = a.

(4.8) (Noether Isomorphisms). — Let R be a ring, N a module, and L and M
submodules.
First, assume L C M. Form the following composition of quotient maps:

a: N = N/L — (N/L)/(M/L).

Clearly « is surjective, and Ker(a) = M. Hence owing to (4.6), « factors through
the isomorphism 3 in this commutative diagram:

N —— N/M
| 8= (4.8.1)
N/L — (N/L)/(M/L)
Second, no longer assuming L C M, set
L+M:={{+m|leLl, meM}CN.

Plainly L + M is a submodule. It is called the sum of L and M.

Form the composition o’ of the inclusion map L — L+ M and the quotient map
L+ M — (L+ M)/M. Clearly o is surjective and Ker(a') = LN M. Hence owing
to (4.6), o factors through the isomorphism (' in this commutative diagram:

L —— L)(LNM)
l g'lz (4.8.2)
L+M — (L+M)/M
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The isomorphisms of (4.6.1) and (4.8.1) and (4.8.2) are called Noether’s
First, Second, and Third Isomorphisms.

(4.9) (Cokernels, coimages). — Let R be a ring, o: M — N a linear map. Asso-
ciated to « are its cokernel and its coimage,

Coker(o) := N/Im(or) and Coim(w) := M/ Ker(a);

they are quotient modules, and their quotient maps are both denoted by x.
Note (4.6) yields the UMP of the cokernel: ko = 0, and given a map 8: N — P
with Ba = 0, there is a unique map v: Coker(a) — P with yx = B as shown below

M —*— N - Coker(a)
oA
P

Further, (4.6.1) becomes Coim(a) == Im(«r). Moreover, Im(a) = Ker(x).

(4.10) (Generators, free modules). — Let R be a ring, M a module. Given a
subset N C M, by the submodule (N) that N generates, we mean the smallest
submodule containing N.

Given elements my € M for A € A, by the submodule they generate, we mean
the submodule generated by the set {my}. If A = (), then this submodule consists
just of 0. If A = {1,...,n}, then the submodule is usually denoted by (mi, ..., m,).

Any submodule containing all the m) contains any (finite) linear combination
>~ axymy with ) € R and almost all 0. Form the set N, or > Rmy, of all such linear
combinations. Plainly, N is a submodule containing all my, so is the submodule
they generate.

Given a submodule N and elements my € N that generate IV, we refer to the
m) as generators of N.

Given a number of submodules Ny, by their sum ) Ny, we mean the set of all
finite linear combinations > xymy with )y € R and m) € Ny. Plainly, > N, is
equal to the submodule the N, generate, namely, the smallest submodule that
contains all V.

By the intersection (| N,, we mean the intersection as sets. It is, plainly, a
submodule.

Elements m) € M are said to be free or linearly independent if, whenever
d~aymy =0, also z = 0 for all A\. The m,, are said to form a (free) basis of M
if they are free and generate M if so, then we say M is free on the m.

We say M is finitely generated if it has a finite set of generators.

We say M is free if it has a free basis. If so, then by either (5.32)(2) or (10.5)
below, any two free bases have the same number ¢ of elements, and we say M is
free of rank /, and we set rank(M) := /.

For example, form the set of restricted vectors

R®M .= {(z) | zx € R with xy = 0 for almost all A}.

It is a module under componentwise addition and scalar multiplication. It has a
standard basis, which consists of the vectors e,, whose Ath component is the value

of the Kronecker delta function; that is,
1, if A=y
= (6 h Suni=1< ’
@u = (Oun) - where 9, {0, it A £ g
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Clearly the standard basis is free. If A has a finite number £ of elements, then R®A
is often written R’ and called the direct sum of £ copies of R.

For instance, Z®" is just the free Abelian group on A.

The free module R®A has the following UMP: given a module M and elements
my € M for A € A, there is a unique R-map

a: R®N — M with afey) = my for each \ € A;

namely, a((x,\)) = a(z a:,\eA) =Y xxmy. Note the following obvious statements:
(1) « is surjective if and only if the my generate M.
(2) « is injective if and only if the my are linearly independent.
(3) a is an isomorphism if and only if the my form a free basis.

Thus M is free of rank ¢ if and only if M ~ R".

Example (4.11). — Take R := Z and M := Q. Then any two z,y in M are not
free; indeed, if x = a/b and y = —c¢/d, then bex + ady = 0. So M is not free.

Also M is not finitely generated. Indeed, given any my/nq,...,m,/n,. € M, let d
be a common multiple of ny, ..., n,. Then (1/d)Z contains every linear combination
x1(my/ny) + -+ xe(me/ne), but (1/d)Z # M.

Moreover, QQ is not algebra finite over Z. Indeed, let p € Z be any prime not
dividing nq - --n,. Then 1/p ¢ Z[m1/n1,...,m./n.].

Theorem (4.12). — Let R be a PID, E a free module, {ex}ren a (free) basis, and
F a submodule. Then F' is free, and has a basis indexed by a subset of A.

Proof: Well order A. For all A\, let m\: E — R be the Ath projection. For all p,
set B, = GBASM Rey and F, := FNE,. Then 7, (F,) = (a,) for some a, € R as
R is a PID. Choose f, € F, with m,(f.) = a,. Set Ao :={pn € A|a, #0}.

Say >, Cufu = 0 for some ¢, € R. Set Ay := {u € Ao | ¢, # 0}. Suppose
A1 # 0. Note Ay is finite. Let pq be the greatest element of A;. Then 7, (f,) =0
for p < p1 as f, € E,. So mu, (O cufu) = cuiayu, . So ¢y au, =0. But ¢, # 0 and
a,, # 0, a contradiction. Thus {f,}.ca, is linearly independent.

Note F' = Uyep, Fr- Given A € Ag, set Ay := {u € Ag | p < A}. Suppose A is
least such that {f,}uea, does not generate . Given f € Fy, say f =3 ) cuep
with ¢, € R. Then m»(f) = cx. But mx(Fx) = (ar). So ¢y = byay for some by € R.
Set g := f —bxfr. Then g € F), and wx(g) = 0. So g € F, for some v € Ay
with v < A. Hence g = > .\ bufy for some b, € R. So f =3 ) bufu, a
contradiction. Hence {f,},ea, generates Fx. Thus {f,}.ea, is a basisof F. O

(4.13) (Direct Products, Direct Sums). — Let R be a ring, A a set, M a module
for A € A. The direct product of the M) is the set of arbitrary vectors:
[T My == {(mx) | ma € My}

Clearly, [[ M, is a module under componentwise addition and scalar multiplication.
The direct sum of the M, is the subset of restricted vectors:
@ My :={(my) | mx =0 for almost all A} C [ M.

Clearly, € M, is a submodule of [ My. Clearly, @ M = [[ M, if A is finite.
If A ={X\,...,\n}, then @ M, is also denoted by My, @ --- & M),,. Further, if
My = M for all A, then @ M, is also denoted by M*?, or by M™ if A has just n
elements.
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The direct product comes equipped with projections
Tt [[Mx — M, given by WK((mA)) = M.
It is easy to see that [[ My has this UMP: given R-maps «: L — My, there’s a

unique R-map o: L — ] M\ with w0 = o, for all & € A; namely, a(n) = (ax(n)).
Often, « is denoted (a). In other words, the 7 induce a bijection of sets,

Hom (L, [ M) == [THom(L, M,). (4.13.1)

Clearly, this bijection is an isomorphism of modules.
Similarly, the direct sum comes equipped with injections

m, if A = k;
0, if XA # k.

It’s easy to see it has this UMP: given R-maps B.: M, — N, there’s a unique
R-map B: @ M) — N with Bi,, = B for all kK € A; namely, B((mA)) =" Ba(my).
Often, S is denoted > By; often, (8,). In other words, the ¢, induce this bijection:

Hom (@ My, N) == [[Hom(M,, N). (4.13.2)

Clearly, this bijection of sets is an isomorphism of modules.

For example, if My = R for all \, then @ My = R®* by construction. Further,
if Ny := N for all \, then Hom(R®A, N) =[] Ny by (4.13.2) and (4.3).

Given maps ay: My — Ny, form the maps a7, : [[ My — N,. The UMP yields
a unique map [[ax: [[ My — [[ Ny satisfying 7, ([[ar) = a,m, for all p € A.
Note (IT ax)((ma)) = (ax(my)).

Similarly, the maps ¢, : M, — @ Ny induce a map @ ayx: @ My — @ N,,
unique with (€ ay )i, = txay for all k. Again note (@ an)((my)) = (ar(my)).

te: My, = @ M, given by t.(m) := (my) where my := {

B. Exercises

Exercise (4.14) . — Let R be a ring, a and b ideals, M and N modules. Set

ru(M)::{meM‘acm}.

Show: (1) Assume a D b. Then I';(M) C T'y(M).
(2) Assume M C N. Then I'y(M) =T«(N) N M.
(3) Then I'a(T'y(M)) = Lo (M) = T'a(M) NTp(M).
(4) Then Tq(M) =T z(M).
(5) Assume a is finitely generated. Then I'(M) = {J,,s;{m € M |a"m =0}.

Exercise (4.15) . — Let R be a ring, M a module, z € rad(M), and m € M.
Assume (1 4+ 2)m = 0. Show m = 0.
Exercise (4.16) . — Let R be a ring, M a module, N and N, submodules for

A €A, and a, ay, b ideals for A € A. Set (N :a):={m € M | am C N}. Show:

(1) (N :a)is a submodule. (2) N C (N :a).

(3) (N:a)aC N. (4) (N:a):b)=(N:ab)=((N:0):a).

(B3) (NNr:a) =NNa:a). (6) (N:Xan) =N(N:ay).
Exercise (4.17) . — Let R be a ring, M a module, N, N, L, Ly submodules for
A€A Set (N:L):={x€ R|xzL C N}. Show:
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(1) (N : L) is an ideal. (2) (N:L)=Ann((L+ N)/N).
(3) (0: L) =Ann(L). (4) (N:L)y=RifLCN
(5) (ﬂNAL):ﬂ(N)\L) (6) (NZL)\):H(NL)\)

Exercise (4.18) . — Let R be a ring, X := {X\} a set of variables, M a module,
N a submodule. Set P := R[X]. Prove these statements:

(1) MI[X] is universal among P-modules @ with a given R-map a: M — @;
namely, there’s a unique P-map §: M[X] = Q with §|M = a.

(2) M[X] has this UMP: given a P-module @ and R-maps a: M — @ and
Xx: @ — @ for all A\, there’s a unique R-map f: M[X] — @ with 5|M = « and
Bux, = xf8 for all \.

(3) MIX]/N[X] = (M/N)[].

Exercise (4.19) . — Let R be a ring, X a set of variables, M a module, and
Ni,..., N, submodules. Set N = [ N;. Prove the following equalities:
(1) Ann(M[X]) = Ann(M)[X]. (2) N[X] = ﬂNi[DC}

Exercise (4.20) . — Let R be aring, M a module, X a variable, F' € R[X]. Assume
there’s a nonzero G € M[X] with FG = 0. Show there’s a nonzero m € M with
Fm = 0. Proceed as follows. Say G = mg + m1 X + --- + msX*® with mg # 0.
Assume s is minimal among all possible G. Show Fm, =0 (so s = 0).

Exercise (4.21) . — Let R be a ring, a and b ideals, and M a module. Set
N := M/aM. Show that M/(a+ b)M = N/bN.

Exercise (4.22) . — Show that a finitely generated free module F has finite rank.
Exercise (4.23) . — Let R be a domain, and = € R nonzero. Let M be the
submodule of Frac(R) generated by 1, x~!, 72 .... Suppose that M is finitely

generated. Prove that 2! € R, and conclude that M = R.

Exercise (4.24) . — Let A be an infinite set, Ry a nonzero ring for A € A. Endow
[ Rx and @ Ry with componentwise addition and multiplication. Show that [ R
has a multiplicative identity (so is a ring), but that @ Ry does not (so is not a ring).

Exercise (4.25) . — Let R be aring, M a module, and M’ M" submodules. Show
that M = M’ & M" if and only if M = M’ + M" and M' N M" = 0.

Exercise (4.26) . — Let L, M, and N be modules. Consider a diagram

a B
L=zMz=ZN

p o

where «, (3, p, and ¢ are homomorphisms. Prove that

M=L&N and a=.i.p, B=7N, O=1tN, p=TL
if and only if the following relations hold:
Ba=0, Bo=1, po =0, pal, and ap+ o8 = 1.

Exercise (4.27) . — Let L be a module, A a nonempty set, M, a module for A € A.
Prove that the injections ¢, : M,; — € M) induce an injection

@ Hom(L, M) < Hom(L, @ M,),
and that it is an isomorphism if L is finitely generated.
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Exercise (4.28) . — Let a be an ideal, A a nonempty set, M a module for A € A.
Prove a(€ M,) = @ aMy. Prove a(J] M) = [[aM, if a is finitely generated.

Exercise (4.29) . — Let R be aring, A aset, M) a module for A € A, and Ny C M),
a submodule. Set M := @ M, and N := @ N, and Q := @ M,/N,. Show
M/N = Q.
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5. Exact Sequences

In the study of modules, the exact sequence plays a central role. We relate it to
the kernel and image, the direct sum and direct product. We introduce diagram
chasing, and prove the Snake Lemma, which is a fundamental result in homological
algebra. We define projective modules, and characterize them in four ways. Finally,
we prove Schanuel’s Lemma, which relates two arbitrary presentations of a module.

In an appendix, we use determinants to study Fitting ideals and free modules. In
particular, we prove that the rank of a free module is invariant under isomorphism;
more proofs are given in (8.25)(2) and (10.5)(2). We also prove the Elementary
Divisors Theorem for a nested pair N C M of free modules with IV of rank n over a

PID; it asserts that M has a (free) basis containing elements 1, . .., z, with unique
multiples dyx1, ..., dyz, that form a basis of N; also, d; | d;;1 for i < n.

A. Text

Definition (5.1). — A (finite or infinite) sequence of module homomorphisms

oo My SN M2 Mg — e
is said to be exact at M, if Ker(o;) = Im(a;—1). The sequence is said to be exact

if it is exact at every M;, except an initial source or final target.

Example (5.2). — (1) A sequence 0 — L = M is exact if and only if « is injective.
If so, then we often identify L with its image «(L).
Dually —that is, in the analogous situation with all arrows reversed —a se-

quence M P N = 0 is exact if and only if 3 is surjective.

(2) A sequence 0 — L % M Py N is exact if and only if L = Ker(8), where ‘=’
means “canonically isomorphic.” Dually, a sequence L — M i N — 0 is exact if
and only if N = Coker(a)) owing to (1) and (4.6.1).

(5.3) (Short exact sequences). — A sequence 0 — L % M Ly N = 0is exact if
and only if « is injective and N = Coker(«), or dually, if and only if 3 is surjective
and L = Ker(B). If so, then the sequence is called short exact, and often we
regard L as a submodule of M, and N as the quotient M/L.

For example, the following sequence is clearly short exact:

0L LN N—0 where
(D) :=(1,0) and wn(l,n):=n.

Proposition (5.4). — For X\ € A, let My — My — MY be a sequence of module
homomorphisms. If every sequence is exact, then so are the two induced sequences

DM —-PM—-PM! and [[M,—[[M\—IIM.
Conversely, if either induced sequence is exact then so is every original one.

Proof: The assertions are immediate from (5.1) and (4.13). O

Exercise (5.5) . — Let 0 - M’ — M — M" — 0 be a short exact sequence. Prove
that, if M’ and M" are finitely generated, then so is M.
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Proposition (5.6). — Let 0 — M’ % M By M" = 0 be a short ezact sequence,
and N C M a submodule. Set N' := o~1(N) and N" := B(N). Then the induced
sequence 0 — N' — N — N — 0 is short exact.

Proof: It is simple and straightforward to verify the asserted exactness. O

(5.7) (Retraction, section, splits). — We call a linear map p: M — M’ a retrac-
tion of another a: M’ — M if pa = 134, Then « is injective and p is surjective.
Dually, we call a linear map o: M"” — M a section of another 8: M — M" if
Bo = 1pr. Then § is surjective and o is injective..
We say that a 3-term exact sequence M’ = M LN Y splits if there is an iso-
morphism ¢: M == M’ @& M" with pa = 1p and 8 = w0 .

(e

Proposition (5.8). — Let M’ — M By M" be a 3-term ezact sequence. Then the
following conditions are equivalent:

(1) The sequence splits.

(2) There exists a retraction p: M — M’ of a, and 8 is surjective.

(3) There exists a section o: M" — M of 8, and « is injective.

Proof: Assume (1). Then there exists p: M —== M’ @ M" such that pa = 1y
and B = . Set p = marp and o := @ tiprr. Then plainly (2) and (3) hold.

Assume (2). Set ¢/ := 1 — ap. Then o’a = a — apa. But pa =1y as pis a
retraction. So o’a = 0. Hence there exists o: M"” — M with o8 = ¢’ by (5.2)(2)
and the UMP of (4.9). Thus 1 = ap + of.

Hence 8 = Sap + BoB. But fa = 0 as the sequence is exact. So § = fo. But
B is surjective. Thus 1+ = Bo; that is, (3) holds.

Similarly, o = apo 4+ ofo. But fo = 15 as (3) holds. So 0 = apo. But «a is
injective, as p is a retraction of it. Thus po = 0. Thus (4.26) yields (1).

Assume (3). Then similarly (1) and (2) hold. O

Example (5.9). — Let R be a ring, R’ an R-algebra, and M an R’-module. Set
H := Hompg(R',M). Define a: M — H by a(m)(z) := xm, and p: H — M by
p(0) :=0(1). Then p is a retraction of «, as p(a(m)) = 1-m. Let 8: H — Coker(«)
be the quotient map. Then (5.8) implies that M is a direct summand of H with
a =1y and p =Ty

Lemma (5.10) (Snake). — Consider this commutative diagram with ezact rows:
VN VNN Y (N

A e
0— N 25 N2 N
It yields the following exact sequence:

Ker(y') 2 Ker(y) LN Ker(y") LN Coker(v") S0—/> Coker(7) w—,> Coker(y").  (5.10.1)
Moreover, if a is injective, then so is p; dually, if B’ is surjective, then so is v'.

Proof: Clearly o restricts to a map ¢, because a(Ker(y')) C Ker(y) since
o'y (Ker(y')) = 0. By the UMP discussed in (4.9), o’ factors through a unique
map ¢’ because M’ goes to 0 in Coker(y). Similarly, 5 and " induce corresponding
maps ¢ and ¢’. Thus all the maps in (5.10.1) are defined except for 0.

To define 9, chase an m" € Ker(y") through the diagram. Since § is surjective,
there is m € M such that S(m) = m”. By commutativity, v 8(m) = 8’y(m). So
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B'v(m) = 0. By exactness of the bottom row, there is a unique n’ € N’ such that
o/ (n') = (m). Define 9(m”) to be the image of n’ in Coker(y').

To see 9 is well defined, choose another m; € M with S(m1) = m”. Let n} € N’
be the unique element with o/(n}) = v(mq) as above. Since 8(m — m;) = 0, there
is an m’ € M’ with a(m') = m — my. But &/ = va. So &/+'(m’) = o/ (n' —n}).
Hence v/ (m') = n' — nf since o is injective. So n’ and n} have the same image in
Coker(v'). Thus 0 is well defined.

Let’s show that (5.10.1) is exact at Ker(y”). Take m” € Ker(y”). As in the
construction of 9, take m € M such that 8(m) = m” and take n’ € N’ such that
o/ (n') = y(m). Suppose m” € Ker(9). Then the image of n’ in Coker(y') is equal
to 0; so there is m’ € M’ such that +/'(m’) = n’. Clearly va(m’) = ’4'(m’). So
ya(m') = o/ (n') = v(m). Hence m — a(m’) € Ker(y). Since S(m — a(m/)) =m”,
clearly m” = ¢¥(m — a(m’)); so m” € Im(¢). Hence Ker(9) C Im(v).

Conversely, suppose m” € Im(v). We may assume m € Ker(y). So v(m) = 0 and
o/(n') = 0. Since ' is injective, n’ = 0. Thus d(m”) = 0, and so Im(z)) C Ker(9).
Thus Ker(9) is equal to Im(v)); that is, (5.10.1) is exact at Ker(y").

The other verifications of exactness are similar or easier.

The last two assertions are clearly true. O

Theorem (5.11) (Left exactness of Hom). — (1) Let M/ - M — M" — 0 be a
sequence of linear maps. Then it is exact if and only if, for all modules N, the
following induced sequence is exact:

0 — Hom(M",N) — Hom(M, N) — Hom(M', N). (5.11.1)

(2) Let 0 - N" — N — N" be a sequence of linear maps. Then it is exact if and
only if, for all modules M, the following induced sequence is exact:

0 — Hom(M, N') — Hom(M, N) — Hom(M, N").

[e3

Proof: By (5.2)(2), the exactness of M’ — M By M" — 0 means simply that
M" = Coker(a). On the other hand, the exactness of (5.11.1) means that a
© € Hom(M, N) maps to 0, or equivalently pa = 0, if and only if there is a unique
v: M"” — N such that v8 = ¢. So (5.11.1) is exact if and only if M" has the
UMP of Coker(«), discussed in (4.9); that is, M = Coker(«). Thus (1) holds.

The proof of (2) is similar—in fact, dual. O
Definition (5.12). — A (free) presentation of a module M is an exact sequence

G>F—>M-—0

with G and F free. If G and F are free of finite rank, then the presentation is called
finite. If M has a finite presentation, then M is said to be finitely presented.

Proposition (5.13). — Let R be a ring, M a module, my for A\ € A generators.
Then there is an exact sequence 0 — K — R®MN M — 0 with a(ey) = my, where
{ex} is the standard basis, and there is a presentation R®* — REAMNLM — 0,

Proof: By (4.10)(1), there is a surjection a: R®* — M with a(ey) = my. Set
K := Ker(a). Then 0 - K — R®* — M — 0 is exact by (5.3). Take a set of
generators {k, },ex of K, and repeat the process to obtain a surjection R®* —» K.
Then R®* — R®N — M — 0 is a presentation. O
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Definition (5.14). — A module P is called projective if, given any surjective
linear map B: M —» N, every linear map o: P — N lifts to one v: P — M,
namely, o = 3.

Exercise (5.15) . — Show that a free module R®" is projective.

Theorem (5.16). — The following conditions on an R-module P are equivalent:

(1) The module P is projective.

(2) Every short exact sequence 0 — K — M — P — 0 splits.

(3) There is a module K such that K ® P is free.

(4) Every exact sequence N' — N — N" induces an exact sequence

Hom(P, N') — Hom(P, N) — Hom(P, N"). (5.16.1)
(5) Every surjective homomorphism : M — N induces a surjection
Hom(P, 8): Hom(P, M) — Hom(P, N).

Proof: Assume (1). In (2), the surjection M — P and the identity P — P
yield a section P — M. So the sequence splits by (5.8). Thus (2) holds.
Assume (2). By (5.13), there is an exact sequence 0 — K — R®A — P — 0.

Then (2) implies K @ P ~ R®A. Thus (3) holds.

Assume (3); say K & P ~ R®A. For each A € A, take a copy N — N\ — N
of the exact sequence N’ — N — N” of (4). Then the induced sequence

TN, =TI N = [I VY.
is exact by (5.4). But by the end of (4.13), that sequence is equal to this one:
Hom(R®®, N') — Hom(R®*, N) — Hom(R®*, N").

But K @ P ~ R®*. So owing to (4.13.2), the latter sequence is also equal to
Hom(K, N') & Hom(P, N') — Hom(K, N) & Hom(P, N) — Hom(K, N") & Hom(P, N").
Hence (5.16.1) is exact by (5.4). Thus (4) holds.

Assume (4). Then every exact sequence M SN o 0 induces an exact sequence

Hom(P, M) 2082,
In other words, (5) holds.

Assume (5). Then every o € Hom(P, N) is the image under Hom(P, 3) of some
v € Hom(P, M). But, by definition, Hom(P, 8)(v) = 8. Thus (1) holds. O

Hom(P, N) — 0.

Lemma (5.17) (Schanuel’s). — Any two short exact sequences

./
7

0L5PSM—=0 and 0L 5P 25 M—0
with P and P’ projective are essentially isomorphic; namely, there’s a commutative
diagram with vertical isomorphisms:

0= LapP 2 pep 29 o

2‘15 2l7 :llM
0= Pal 2% pap L9 v o
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Proof: First, let’s construct an intermediate isomorphism of exact sequences:

0= Lap & peap 29 4 g

ST

0 K PoP —5 M — 0

Take K := Ker(aa’). To form 6, recall that P’ is projective and « is surjective. So
there is a map 7: P’ — P such that o/ = am. Take 6 := ({ 7).
Then 6 has ((1) _71‘) as inverse. Further, the right-hand square is commutative:

(@0)0=(x0)(§7) = (aan) = (ad).

So # induces the desired isomorphism A: K =5 L & P'.
Symmetrically, form an isomorphism 6': P @& P’ = P & P, which induces an
isomorphism \: K = P @ L. Finally, take v := 0’0~! and 3 := M\~ L. O

Exercise (5.18) . — Let R be a ring, and 0 - L — R” - M — 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

Proposition (5.19). — Let 0 — L = M By N = 0 be a short ezact sequence with
L finitely generated and M finitely presented. Then N is finitely presented.

Proof: Let R be the ground ring, u: R™ — M any surjection. Set v := (u, set
K :=Kerv, and set A := p|K. Then the following diagram is commutative:

02K —>R" 5 N—=0

] 1]
0 —=L-5M2L2 N0

The Snake Lemma (5.10) yields an isomorphism Ker A = Ker . But Ker p is
finitely generated by (5.18). So Ker A is finitely generated. Also, the Snake Lemma
implies Coker A = 0 as Coker u = 0; s0o 0 - Ker A\ — K 2 L — 0 is exact. Hence
K is finitely generated by (5.5). Thus N is finitely presented by (5.18). O

Proposition (5.20). — Let 0 — L % M By N = 0 be a short evact sequence with
L and N finitely presented. Then M is finitely presented too.

Proof: Let R be the ground ring, A\: R® — L and v: R® — N any surjections.
Define v: R® — M by v := a). Note R" is projective by (5.15), and define
§: R" — M by lifting v along 3. Define p: R*® R" — M by p := 4+ 6. Then the
following diagram is, plainly, commutative, where ¢ := tp¢ and 7 := wgn:

0— R 5 ROGR" 5 R — 0
ool ]

0L —sMmM—L3N_—0

Since A and v are surjective, the Snake Lemma (5.10) yields an exact sequence
0 — Ker A — Keru — Kerv — 0,

and implies Coker i = 0. Also, Ker A and Kerv are finitely generated by (5.18).
So Ker i is finitely generated by (5.5). Thus M is finitely presented by (5.18). O
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B. Exercises

Exercise (5.21) . — Let M’ and M" be modules, N C M’ a submodule. Set
M := M @® M". Using (5.2)(1) and (5.3) and (5.4), prove M/N = M'/N & M".

Exercise (5.22) . — Let M’, M" be modules, and set M := M’ @ M". Let N be
a submodule of M containing M’, and set N := NN M". Prove N =M' @& N".

Exercise (5.23) (Five Lemma) . — Consider this commutative diagram:

My =% Mz =% My =% M; =% M,

’Y4l %J, ’Yzl ’Yll ’YOJ/
Ny 25 Ny 2 N, 2 Ny AL N

Assume it has exact rows. Via a chase, prove these two statements:

(1) If 43 and 7, are surjective and if g is injective, then s is surjective.
(2) If v3 and ~; are injective and if 74 is surjective, then v, is injective.

Exercise (5.24) (Nine Lemma) . — Consider this commutative diagram:
0 0 0
0 —>L —L—L"—0

0—-M —-M—>M —0 (5.24.1)

0 —N —N—N'—0

0 0 0

Assume all the columns are exact and the middle row is exact. Applying the Snake
Lemma (5.10), show that the first row is exact if and only if the third is.

Exercise (5.25) . — Referring to (4.8), give an alternative proof that § is an
isomorphism by applying the Snake Lemma (5.10) to the diagram
00— M N N/M —— 0

[ ’|

0 — M/L — N/L 2 (N/L)/(M/L) — 0

Exercise (5.26) . — Consider this commutative diagram with exact rows:

VRN VNS V

a/l al a//l
NEL NS N
Assume o/ and v are surjective. Given n € N and m” € M” with o (m") = +'(n),
show that there is m € M such that a(m) = n and v(m) = m”.

Exercise (5.27) . — Let R be a ring. Show that a module P is finitely generated
and projective if and only if it’s a direct summand of a free module of finite rank.
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Exercise (5.28) . — Let R be a ring, P and N finitely generated modules with P
projective. Prove Hom (P, N) is finitely generated, and is finitely presented if N is.

Exercise (5.29) . — Let R be a ring, X1, Xs,... infinitely many variables. Set
P := R[X1,Xq,...] and M := P/(X1,X2,...). Is M finitely presented? Explain.

Exercise (5.30) . — Let 0 - L 5 M L, N = 0 be a short exact sequence with
M finitely generated and N finitely presented. Prove L is finitely generated.

C. Appendix: Fitting ldeals

(5.31) (The ldeals of Minors). — Let R be a ring, A := (a;j) an m x n matrix
with a;; € R. Given r € Z, let I,.(A) denote the ideal generated by the r x r minors
of A; by convention, we have

L(A) = 0y, if r > min{m,n}; (5.31.1)
R, ifr<o. R

Let B := (b;;) be an r x r submatrix of A. Let B;; be the (r — 1) x (r — 1)
submatrix obtained from B by deleting the ith row and the jth column. For any
i, expansion yields det(B) = Z;Zl(—l)”jsz det(B;;). So I, (A) C I,_1(A). Thus

R=I(A)>DhL(A)D: . (5.31.2)

Let U be an invertible m x m matrix. Then det(U) is a unit, as UV = I yields
det(U)det(V) = 1. So I,,(U) = R. Thus I,(U) = R for all » < m.

Proposition (5.32). — Let R be a nonzero ring, and a: R™ — R™ a linear map.
(1) If « is injective, then n < m. (2) If « is an isomorphism, then n = m.

Proof: For (1), assume n > m, and let’s show « is not injective.

Let A be the matrix of a. Note (5.31.1) yields I,(A) = (0) for p > m and
Iy(A) = R. Let r be the largest integer with Ann(Z,.(A)) = (0). Then 0 <7 <m.

Take any nonzero x € Ann(l,41(A)). If r =0, set z := (,0,...,0). Then z # 0
and «a(z) = 0; so a is not injective. So assume r > 0.

As x # 0, also ¢ Ann([.(A)). So there’s an r x r submatrix B of A with
xdet(B) # 0. By renumbering, we may assume that B is the upper left r x r
submatrix of A. Let C be the upper left (r + 1) x (r 4+ 1) submatrix if r» < m; if
r =m, let C be the left r x (r + 1) submatrix augmented at the bottom by a row
of r 4+ 1 zeros.

Let ¢; be the cofactor of a(,41); in det(C); so det(C) = Z:ill a(r4+1)iCi- Then
¢r+1 = det(B). So x¢pq11 #0. Set z :=x(cq,...,¢r41,0,...,0). Then z # 0.

Let’s show a(z) = 0. Given 1 < k < m, denote by Ay the kth row of A, by D
the matrix obtained by replacing the (r+ 1)st row of C with the first (r + 1) entries
of A, and by z- Ay the dot product. Then z- Ay = xzdet(D). If £ < r, then D has
two equal rows; so z- Ay =0. If £ > r+1, then D is an (r+1) x (r+1) submatrix
of A;soz-Ap=0aszl,11(A) =0. Thus a(z) = 0. Thus « is not injective. Thus

(1) holds.
For (2), apply (1) to a~! too; thus also m < n. Thus (2) holds. O
Lemma (5.33). — Let R be a ring, A an m X n matriz, B an n x p matriz, U be

an invertible m x m matriz, and 'V an invertible n X n matriz. Then for all r,
(1) I,(AB) Cc I.(A)I.(B) and (2) I.(UAV)=1.(A).
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Proof: As a matter of notation, given a p x ¢ matrix X := (z;;), denote its jth
column by X7. Given sequences I := (iy,...,4,) with 1 <43 < --- < i, < p and
J = (jla”wj?‘) with 1 SJI < <j7‘ Sqa set

Tiq 41 s Tgy g, Tyl - Tign
X7y = and Xj:=
Ti,. 51 s TG, Ti1 - Tim

For (1), say A = (a;;) and B = (b;;). Set C := AB. Given I := (i1,...,1,)
with 1 <4y < -+ <i, <mand K := (k1,...,k,) with 1 <k; <--- <k, <p, note

det(C]K) = det(C’}K, feny O;K)

_ det<z Ab A;‘rbj,,,k,.)

j1=1 Jjr=1

= Z det(A‘}l geey A‘}T) ° bjlk'1 e bj'rk:ﬂ"'

J1yeedr=1

In the last sum, each term corresponds to a sequence J := (J1,. -+, Jr) with

1 < j; < n. If two j; are equal, then det(A7',...,A}") = 0 as two columns are
equal. Suppose no two j; are equal. Then J is a permutation o of H := (hy, ..., h,;)

with 1 < hy < -+ < h, <g¢;s0 j; = oc(h;). Denote the sign of o by (—1)?. Then
det(A},...,A}) = (=1)7 det(Arp).
But det(Bur) = >, (=1)7bo(hy )k, -+ - Do (h, )k, - Hence
det(Crg) = >y det(Ary) det(Brx).
Thus (1) holds.
For (2), note I,(W) = R for W = U, U1, V, V=1 and r < min{m,n} by
(5.31). So (1) implies
I.(A) = I,(UT'UAVV ™) € I(UAV) C I.(A).
Thus (2) holds. O

Lemma (5.34) (Fitting). — Let R be a ring, M a module, v an integer, and

[0

RS R M0 and RTS RP I M -0
presentations. Represent o, 5 by matrices A, B. Then I,_.(A) = I,_.(B).

Proof: First, assume m = p and p = 7. Set K := Ker(p). Then Im(a) = K
and Im(8) = K by exactness; so Im(a) = Im(8). But Im(«) is generated by the
columns of A. Hence each column of B is a linear combination of the columns of
A. So there’s a matrix C with AC = B. Set s :=m —r. Then (5.33)(1) yields

I;(B) = I,(AC) C I,(A)I;(C) C I;(A).
Symmetrically, I;(A) C I;(B). Thus I;(A) = I;(B), as desired.

Second, assume m = p and that there’s an isomorphism ~: R™ — RP with
7wy = u. Represent v by a matrix G. Then R" 2% R Iy M — 0 is a presentation,
and GA represents ya. So, by the first paragraph, I,(B) = I;(GA). But G is
invertible. So I,(GA) = I;(A) by (5.33)(2). Thus I;(A) = I5(B), as desired.

Third, assume that g =n -+t and p = m+t for some t > 1 and that § = a® 1x:
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and m =y + 0. ThenB:(A 0"”).

0 I

Given an s x s submatrix C of A, set D := (Oi OI": ). Then D is an (s+1) x (s+t)
submatrix of B, and det(D) = det(C). Thus I;(A) C I;4++(B).

For the opposite inclusion, given an (s +t) x (s + t) submatrix D of B, assume
det(D) # 0. If D includes part of the (m +4)th row of B, then D must also include
part of the (n + ¢)th column, or D would have an all zero row. Similarly, if D
includes part of the (n 4 4)th column, then D must include part of the (m + i)th
row. So D(Ogh OI’;") where h := s+t — k for some k < ¢t and for some h x h
submatrix C of A. But det(D) = det(C). So det(D) € I,(A). But I(A) C I,(A)
by (5.31.2). So det(D) € I,(A). Thus I;4+(B) C I,(A). Thus I,+,(B) = I;(A),
or I,—r(A) =I,_.(B), as desired.

Finally, in general, Schanuel’s Lemma (5.17) yields the commutative diagram

R @ Rp 2O pmog ge B0 Ay

EJ{V =|1m

Rm @ Re 2P pmogy pp 0T Ap 0
Thus, by the last two paragraphs, I,,_,(A) = I,_.(B), as desired. O

(5.35) (Fitting Ideals). — Let R be a ring, M a finitely presented module, r an

integer. Take any presentation R” = R™ — M — 0, let A be the matrix of «,
and define the rth Fitting ideal of M by

Fo(M) := In_(A).

It is independent of the choice of presentation by (5.34).
By definition, F,.(M) is finitely generated. Also, (5.31.2) and (5.31.1) yield

(0) =F_1(M) C Fo(M)C---C F,(M) =R. (5.35.1)

Exercise (5.36) . — Let R be a ring, and aq,...,a, € R with {(a1) D -+ D (am).
Set M := R/{a1) ®---® R/{am). Show that F.(M) = (a1 - am—r).

Exercise (5.37) . — In the setup of (5.36), assume a; is a nonunit. Show:

(1) Then m is the smallest integer such that F,,(M) = R.

(2) Let n be the largest integer with F,, (M) = (0); set k := m —n. Assume R
is a domain. Then (a) a; # 0 for i < k and a; = 0 for i > k, and (b) each a; is
unique up to unit multiple.

Theorem (5.38) (Elementary Divisors). — Let R be a PID, M a free module, N
a free submodule of rank n < co. Then there’s a decomposition M = M’ & M", a
basis x1,...,xy of M', and dy,...,d, € R, unique up to unit multiple, with
M’:Rxl@---@Rxn, N = Rdyx1®--- ® Rd,xp, dl“dn#o
Moreover, set Q :={m € M | xm € N for some nonzero x € R}. Then M' = Q.

Proof: Let’s prove existence by induction on n. For n = 0, take M’ := 0; no d;
or x; are needed. So M" = M, and the displayed conditions are trivially satisfied.

Let {exr} be a basis of M, and m\: M — R the Ath projection.

Assume n > 0. Given any nonzero z € N, write z = Y ¢yey for some ¢\ € R.
Then some ¢y, # 0. But ¢y, = 7, (2). Thus w5, (N) # 0.

Consider the set § of nonzero ideals of the form «(N) where a: M — R is a linear
map. Partially order 8 by inclusion. Given a totally ordered subset {a,(N)}, set
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b:=Ja,(N). Then b is an ideal. So b = (b) for some b € R as R is a PID. Then
b € ay,(N) for some v. So o, (N) = b. By Zorn’s Lemma, 8 has a maximal element,
say a1(N). Fix dy € R with a1(N) = (d1), and fix yy € N with oy (y1) = ds.

Given any linear map 5: M — R, set b:= (y1). Then (dy) + (b) = (c) for some
c € R, as R is a PID. Write ¢ = dd; + eb for d,e € R, and set v := day + ef.
Then v(N) D {v(y1)). But v(y1) = ¢. So {¢) C v(N). But (d1) C {(c). Hence, by
maximality, (di) = y(N). But (b) C {(¢). Thus B(y1) = b € (d1).

Write y1 = 3 caey for some ¢y € R. Then 7y (y1) = cx. But ¢x = did) for some
dy) € R by the above paragraph with 8 := my. Set x1 := > dyex. Then y; = dyx;.

So a1(y1) = dyag(z1). But ay(y1) = di. So diag(z1) = di. But R is a domain
and d1 75 0. Thus 0[1(.’131) =1.

Set M; := Ker(ay1). As ai(x1) = 1, clearly Rzy N My = 0. Also, given x € M,
write © = ai(x)z1 + (x — ay(x)z1); thus @ € Rzy + M;. Hence (4.25) implies
M = Rxy @ M. Further, Rz and M; are free by (4.12). Set Ny := M; N N.

Recall dyzy = y; € N. So N D Rdyxy & N;p. Conversely, given y € N, write
y = bry +mq with b € R and m; € M;. Then a;1(y) = b, so b € (d1). Hence
y € Rdix1 + N1. Thus N = Rdix1 & N;.

Define ¢: R — Rdyz1 by ¢(a) = adyzy. If p(a) =0, then ady =0 as ag(z1) =1,
and so a = 0 as d; # 0. Thus ¢ is injective, so a isomorphism.

Note N; ~ R™ with m < n owing to (4.12) with N for E. Hence N ~ R™+1,
But N ~ R". So (5.32)(2) yields m + 1 = n.

By induction on n, there exist a decomposition My = M{®&M", a basis xa, ..., T,
of M/ and da, ..., d, € R with
M| =Rus® -+ @® Ry, Ni=Rdows® - ® Rdntn, do| | dy#0.

Then M = M' & M" and M' = Rx1 ® ---® Rz, and N = Rd1z1 © --- ® Rd,xp,.
Now, Rz is free, and zs,...,z, form a basis of Mj, and M’ = Rz, & M]; thus,
r1,...,T, form a basis of M;.

Next, consider the projection 7: M; — R with n(z;) = do; for j <2 < n and
w|M" = 0. Define p: M — R by p(axz1+m1) := a+m(m1). Then p(diz1) = dy. So
p(N) D (di) = a1(N). By maximality, p(N) = a1(N). But dy = p(d222) € p(N).
Thus d2 S <d1>, that iS, d1 ‘ dg. Thus dl | s | dn # 0.

Moreover, given m € M’, note xm € N where z := dy---dy; so M' C Q.
Conversely, given m € @, say xm € N with € R nonzero. Say m = m’ + m/
with m’ € M’ and m” € M”. Then 2m” = xm —am’ € M’ as N C M'. But
M NM" =0. Soxm” = 0. But M is free, x is nonzero, and R is a domain. So
m’"=0. Som=m'e€ M'. Thus M’ D Q. Thus M" = Q.

Finally, note M'/N = R/{(d;) ® --- ® R/(d») by (5.3) and (5.4). Thus, by
(5.37)(2), each d; is unique up to unit multiple. O

Theorem (5.39). — Let A be a local ring, M a finitely presented module.
(1) Then M can be generated by m elements if and only if F,,(M) = A.
(2) Then M is free of rank m if and only if Fr(M) = A and F,,,—1(M) = (0).

Proof: For (1), assume M can be generated by m elements. Then (5.13) yields
a presentation A" <> A™ — M — 0 for some n. So F,,(M) = A by (5.31.1).

For the converse, assume Fj,(M) = A for some k < m. Then F,,,_1(M) = A by
(5.35.1). Hence one entry of the matrix (a;;) of & does not belong to the maximal
ideal, so is a unit by (3.5). By (5.33)(2), we may assume a1; = 1 and the other
entries in the first row and first column of A are 0. Thus A = ((1) ]%) where B is an
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(m —1) x (s — 1) matrix. Then B defines a presentation A5~1 — A™~1 — M — 0.
So M can be generated by m — 1 elements. Repeating, we see that M can be
generated by k elements, as desired. Thus (1) holds.

In (2), if M is free of rank m, then there’s a presentation 0 — A™ — M — 0;
s0 Fp (M) = A and F,,,_1(M) = (0) by (5.35). Conversely, if F,,,(M) = A, then
(1) and (5.13) yield a presentation A* % A™ — M — 0 for some s. If also
F,,—1(M) = (0), then a = 0 by (5.35). Thus M is free of rank m; so (2) holds. O

Proposition (5.40). — Let R be a ring, and M a finitely presented module. Say
M can be generated by m elements. Set a := Ann(M). Then

(1) aF. (M) C F._1(M) for allr >0 and (2) a™ C Fo(M) C a.

Proof: As M can be generated by m elements, (5.13) yields a presentation
A &A™ B M — 0 for some n. Say a has matrix A.

In (1), if » > m, then trivially aF,.(M) C F,_1(M) owing to (5.35.1). So
assume 7 < m and set s :=m —r 4+ 1. Given z € a, form the sequence

R"+mﬁ)Rmi)M—>0W1th5:04+le7”

Note that this sequence is a presentation. Also, the matrix of 8 is (A|z1,,), obtained
by juxtaposition, where I,, is the m x m identity matrix.

Given an (s — 1) x (s — 1) submatrix B of A, enlarge it to an s X s submatrix B’
of (A|xI,,) as follows: say the ith row of A is not involved in B; form the m x s
submatrix B” of (A|zI,,) with the same columns as B plus the ith column of zI,,
at the end; finally, form B’ as the s x s submatrix of B” with the same rows as B
plus the ith row in the appropriate position.

Expanding along the last column yields det(B’) = +x det(B). By construction,
det(B’) € I (Alzl,,). But I;(A|zL,) = I5(A) by (5.34). Furthermore, z € a is
arbitrary, and I,,,(A) is generated by all possible det(B). Thus (1) holds.

For (2), apply (1) repeatedly to get a*F,.(M) C F,_;(M) for all r and k. But
Fo(M) = R by (5.35.1). So a™ C Fy(M).

For the second inclusion, given any m x m submatrix B of A, say B = (b;;). Let
e; be the ith standard basis vector of R™. Set m; := u(e;). Then > b;;m; = 0
for all i. Let C be the matrix of cofactors of B: the (i,7)th entry of C is (—1)+
times the determinant of the matrix obtained by deleting the jth row and the ith
column of B. Then CB = det(B)I,,,. Hence det(B)m; = 0 for all i. So det(B) € a.
But I,,,(A) is generated by all such det(B). Thus Fy(M) C a. Thus (2) holds. O

D. Appendix: Exercises

Exercise (5.41) (Structure Theorem) . — Let R be a PID, M a finitely generated
module. Set T := {m € M | zm = 0 for some nonzero x € R}. Show:

(1) Then M has a free submodule F' of finite rank with M =T @ F.

(2) Then T ~ @?:1 R/(d;) with the d; nonzero nonunits in R, unique up to unit
multiple, and d; | dj41 for 1 < j < n.

(3) Then T =~ @;%, M(p;) with M(p;) :== @_, R/(p;""), the p; primes in R,
unique up to unit multiple, and the e;; unique with 0 < e;; < ;541 and 1 < e;p,.

(4) If M isn’t finitely generated, there may be no free F with M =T & F.
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Exercise (5.42) . — Criticize the following misstatement of (5.8): given a 3-term
exact sequence M' % M LN M", there is an isomorphism M ~ M’ ® M" if and
only if there is a section o: M" — M of 8 and « is injective.

Moreover, show that this construction (due to B. Noohi) yields a counterexample:
For each integer n > 2, let M,, be the direct sum of countably many copies of
Z/{n). Set M := €D M,,. Then let p be a prime number, and take M’ to be a cyclic
subgroup of order p of one of the components of M isomorphic to Z/(p?).
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6. Direct Limits

Category theory provides the right abstract setting for certain common concepts,
constructions, and proofs. Here we treat adjoints and direct limits. We elaborate
on two key special cases of direct limits: coproducts (direct sums) and coequalizers
(cokernels). From them, we construct arbitrary direct limits of sets and of modules.
Further, we prove direct limits are preserved by left adjoints; hence, direct limits
commute with each other, and in particular, with coproducts and coequalizers.

Although this chapter is the most abstract of the entire book, all the material
here is elementary, and none of it is very deep. In fact, the abstract statements here
are, largely, just concise restatements, in more expressive language, of the essence
of some mundane statements in Commutative Algebra. Experience shows that it
pays to learn this more abstract language, but that doing so requires determined,
yet modest effort.

A. Text

(6.1) (Categories). — A category C is a collection of elements, called objects.
Each pair of objects A, B is equipped with a set Home (A, B) of elements, called
maps or morphisms. We write a: A — B or A % B to mean o € Home (A, B).
Further, given objects A, B, C, there is a composition law
Home(A, B) x Home(B,C) — Home(A4,C), written (a, ) — Ba,
and there is a distinguished map 15 € Home (B, B), called the identity such that
(1) composition is associative, or v(f«a) = (yf5)a for v: C — D, and
(2) 1p is unitary, or 1ga = o and 815 = S.
We say « is an isomorphism with inverse 5: B — A if af =1 and Ba = 14.
For example, four common categories are those of sets ((Sets)), of rings ((Rings)),
of R-modules ((R-mod)), and of R-algebras ((R-alg)); the corresponding maps are
the set maps, and the ring, R-module, and R-algebra homomorphisms.
Given categories € and €', their product € x €' is the category whose objects
are the pairs (A, A’) with A an object of € and A" an object of €’ and whose maps
are the pairs (o, ') of maps « in € and o in €.

(6.2) (Functors). — A map of categories is known as a functor. Namely, given
categories € and €, a (covariant) functor F': ¢ — €’ is a rule that assigns to
each object A of € an object F'(A) of €’ and to each map o: A — B of € a map
F(a): F(A) — F(B) of €’ preserving composition and identity; that is,

(1) F(Ba) = F(B)F(«) for maps a: A — B and 5: B — C of €, and

(2) F(14) = 1p(a) for any object A of C.

We also denote a functor F' by F(e), by A— F(A), or by A — Fa.

Note that a functor F' preserves isomorphisms. Indeed, if a8 = 15 and Sa = 14,
then F(a)F(f) = F(1p) = 1pp) and F(B)F(a) = 1p(a)-

For example, let R be a ring, M a module. Then clearly Hompg (M, o) is a functor
from ((R-mod)) to ((R-mod)). A second example is the forgetful functor from
((R-mod)) to ((Sets)); it sends a module to its underlying set and a homomorphism
to its underlying set map.
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A map of functors is known as a natural transformation. Namely, given two func-
tors F, F': C = @', a natural transformation 6: F — F’ is a collection of maps
0(A): F(A) — F'(A), one for each object A of €, such that §(B)F(«a) = F'(a)8(A)
for every map a: A — B of C; that is, the following diagram is commutative:

F(a)

F(A) 29 prp)

For example, the identity maps 1p(4) trivially form a natural transformation 1p
from any functor F to itself. We call F' and F’ isomorphic if there are natural
transformations 6: F — F’ and 0': F/ — F with 0’0 = 1r and 00’ = 15..

A contravariant functor G from € to € is a rule similar to F, but G reverses the
direction of maps; that is, G(«a) carries G(B) to G(A), and G satisfies the analogues

of (1) and (2). For example, fix a module N; then Hom(e, N) is a contravariant
functor from ((R-mod)) to ((R-mod)).

(6.3) (Adjoints). — Let F': € — € and F’: ¢’ — € be functors. We call (F, F’)
an adjoint pair, I the left adjoint of F’, and F” the right adjoint of F if, for
every pair of objects A € € and A’ € €, there is given a natural bijection

Home (F(A), A') ~ Home(A, F'(4")). (6.3.1)

Here natural means that maps B —+ A and A’ — B’ induce a commutative
diagram:
Home (F(A), A’) ~ Home(A, F'(A))

| |

Home/ (F(B), B') ~ Home(B, F'(B'))

Naturality serves to determine an adjoint up to canonical isomorphism. Indeed,
let F' and G be two left adjoints of F’. Given A € €, define 8(A): G(A) — F(A)
to be the image of 1p(4) under the adjoint bijections

Home/ (F(A), F(A)) ~ Home(A, F'F(A)) ~ Home (G(A), F(A)).

To see that 6(A) is natural in A, take a map «: A — B. It induces the following
diagram, which is commutative owing to the naturality of the adjoint bijections:

Home: (F'(A), F(A)) ~ Home(A, F'F(A)) ~ Home/ (G(A), F(A))

| l |

Home/ (F(A), F(B)) ~ Home(A, F'F(B)) ~ Home/ (G(A),

| | |

(A), F
Home/ (F(B), F(B)) ~ Home(B, F'F(B)) ~ Home/ (G(B), F(B))

Chase after 1p(4) and 1p(p). Both map to F(a) € Home/(F(A), F(B)). So
both map to the same image in Home/ (G (A), F(B)). But clockwise, 15(4) maps to
F(a)0(A); counterclockwise, 1p(g) maps to 6(B)G(a). So 0(B)G(a) = F(a)f(A).
Thus the 6(A) form a natural transformation §: G — F.

Similarly, there is a natural transformation 6’: F — G. It remains to show
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0'0 = 1 and 66’ = 1p. But, by naturality, the following diagram is commutative:

Home/ (F(A), F(A)) ~ Home(A, F'F(A)) ~ Home(G(A), F(A))

| l |

Home/ (F(A), G(A)) ~ Home(A, F'G(A)) ~ Home(G(A), G(A))

2

Chase after 1p(4). Clockwise, its image is 6'(A)0(A) in the lower right corner.
Counterclockwise, its image is 1¢(4), owing to the definition of 6. Thus 6’0 = 1.
Similarly, 0’ = 1, as required.

For example, the “free module” functor is the left adjoint of the forgetful functor
from ((R-mod)) to ((Sets)), since owing to (4.10),

I’IOIII((}:@_mOd))(REBA7 M) = Hom((Sets))(A7 M).

Similarly, the “polynomial ring” functor is the left adjoint of the forgetful functor
from ((R-alg)) to ((Sets)), since owing to (1.3),

Hom((R_alg)) (R[Xl, . ,Xn}, R/) = Hom((sets)) ({Xl, ce ,Xn}, R/)

(6.4) (Direct limits). — Let A, € be categories. Assume A is small; that is, its
objects form a set. Given a functor A\ — M) from A to C, its direct limit or
colimit, denoted lim M) or h_r)nAeA M, is defined to be the object of € universal
among objects P equipped with maps 3,: M, — P, called insertions, that are
compatible with the transition maps aj;: M,; — M, which are the images of the
maps of A. (Note: given x and p, there may be more than one map x — u, and so
more than one transition map O‘Z') In other words, there is a unique map S such
that all of the following diagrams commute:

My, = M, =2 Tim My

T

pP—sp L, p
To indicate this context, the functor A — M, is often called a direct system.

As usual, universality implies that, once equipped with its insertions «,, the limit
lim M) is determined up to unique isomorphism, assuming it exists. In practice,
there is usually a canonical choice for hﬂM A, given by a construction. In any case,
let us use hﬂ M) to denote a particular choice.

We say that C has direct limits indexed by A if, for every functor A — M),
from A to €, the direct limit lim M, exists. We say that C has direct limits if it
has direct limits indexed by every small category A.

Given a functor F': € — €', note that a functor A — M, from A to € yields a
functor A — F(M,) from A to €’. Furthermore, whenever the corresponding two
direct limits exist, the maps F(ay): F(M,) — F(hﬂ M) induce a canonical map

(o) hﬂF(M)\) *)F(th)\) (6.4.1)

If pp is always an isomorphism, we say F preserves direct limits. At times, given
lim My, we construct th(M,\) by showing F(hgl M) has the requisite UMP.
Assume € has direct limits indexed by A. Then, given a natural transformation

47



Direct Limits (6.5) / (6.7) Text

from A — M), to A — Ny, universality yields unique commutative diagrams
M, — @ M),

Lo

N, — li_r>nN,\

To put it in another way, form the functor category C*: its objects are the
functors A — M), from A to C; its maps are the natural transformations (they form
a set as A is one). Then taking direct limits yields a functor lim from €* to C.

In fact, it is just a restatement of the definitions that the “direct limit” functor
li_rr>1 is the left adjoint of the diagonal functor

A: e —CM
By definition, A sends each object M to the constant functor AM, which has the
same value M at every A € A and has the same value 1, at every map of A; further,

A carries a map v: M — N to the natural transformation Ay: AM — AN, which
has the same value v at every A € A.

(6.5) (Coproducts). — Let C be a category, A a set, and M, an object of € for
each A € A. The coproduct [],., M., or simply [[ My, is defined as the object
of € universal among objects P equipped with a map 8,,: M, — P for each u € A.
The maps ¢, : M, — [[ M) are called the inclusions. Thus, given such a P, there
exists a unique map §: [[ My — P with S, = 8, for all p € A.

If A = (), then the coproduct is an object B with a unique map 3 to every other
object P. There are no p in A, so no inclusions ¢,: M, — B, so no equations
Bt = By to restrict 8. Such a B is called an initial object.

For instance, suppose € = ((R-mod)). Then the zero module is an initial object.
For any A, the coproduct [[ M) is just the direct sum € M, (a convention if
A = ). Next, suppose € = ((Sets)). Then the empty set is an initial object. For
any A, the coproduct [ M) is the disjoint union | | M (a convention if A = ().

Note that the coproduct is a special case of the direct limit. Indeed, regard A as
a discrete category: its objects are the A € A, and it has just the required maps,
namely, the 1. Then thM » = |1 M with the insertions equal to the inclusions.

(6.6) (Coequalizers). — Let o, o': M = N be two maps in a category C. Their
coequalizer is defined as the object of € universal among objects P equipped with
a map 1n: N — P such that na = no’.

For instance, if ¢ = ((R-mod)), then the coequalizer is Coker(aw — o). In partic-
ular, the coequalizer of « and 0 is just Coker(a).

Suppose € = ((Sets)). Take the smallest equivalence relation ~ on N with
a(m) ~ o'(m) for all m € M; explicitly, n ~ n’ if there are elements mq, ..., m,
with a(my) = n, with o/(m,) = n/, and with a(m;) = o’(m;—1) for 1 < i < r.
Clearly, the coequalizer is the quotient N/~ equipped with the quotient map.

Note that the coequalizer is a special case of the direct limit. Indeed, let A be
the category consisting of two objects k, u and two nontrivial maps ¢, ¢': K = .
Define A — M) in the obvious way: set M, := M and M, := N; send ¢ to a and
¢’ to . Then the coequalizer is li_n>1M,\.

Lemma (6.7). — A category C has direct limits if and only if € has coproducts and
coequalizers. If a category C has direct limits, then a functor F: C — €' preserves
them if and only if F' preserves coproducts and coequalizers.
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Proof: If C has direct limits, then € has coproducts and coequalizers because they
are special cases by (6.5) and (6.6). By the same token, if F': € — € preserves
direct limits, then F' preserves coproducts and coequalizers.

Conversely, assume that C has coproducts and coequalizers. Let A be a small
category, and A — M) a functor from A to €. Let X be the set of all transition maps
aﬁ: My — M,,. For each o := aﬁ € %, set M, := My. Set M :=[], .5, M; and
N := [ yca M. For each o, there are two maps M, := My — N: the inclusion
) and the composition Luozf;. Correspondingly, there are two maps a,a’: M — N.
Let C be their coequalizer, and n: N — C the insertion.

Given maps 3y : M) — P with Bﬂa;} = [, there is a unique map : N — P with
Bix = B by the UMP of the coproduct. Clearly Ba = Sa’; so 8 factors uniquely
through C by the UMP of the coequalizer. Thus C' = @M A, as desired.

Finally, if F: € — €’ preserves coproducts and coequalizers, then F preserves
arbitrary direct limits as F' preserves the above construction. (Il

Theorem (6.8). — The categories ((R-mod)) and ((Sets)) have direct limits.

Proof: The assertion follows from (6.7) because ((R-mod)) and ((Sets)) have
coproducts by (6.5) and have coequalizers by (6.6). O

Theorem (6.9). — Ewvery left adjoint F': C — €' preserves direct limits.

Proof: Let A be a small category, A — M, a functor from A to € such that h_r)n M,
exists. Given an object P’ of €, consider all possible commutative diagrams

F(a”® a
FM) 2 P,y SO i My)
P’ : P : P’
where aj is any transition map and «, is the corresponding insertion. Given the

/. we must show there is a unique /3.
Say F' is the left adjoint of F': @ — €. Then giving (6.9.1) is equivalent to
giving this corresponding commutative diagram:

M, o, M, = lim M)
[l |
F'(P') & F/(P') & F'(P')
However, given the ,, there is a unique S by the UMP of hng A ([

Proposition (6.10). — Let C be a category, A and ¥ small categories. Assume C
has direct limits indexed by X. Then the functor category C» does too.

Proof: Let o + (A = M,,) be a functor from ¥ to C*. Then a map ¢ — 7 in
Y. yields a natural transformation from A — M,y to A — M,). So amap A — u in
A yields a commutative square

Mo)\ — Mgu

l l (6.10.1)
M.\ — My,
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in a manner compatible with composition in . Hence, with A\ fixed, the rule
o — M, is a functor from ¥ to C.

By hypothesis, li_r>ngGE M, exists. So A — 11_1)1&0ez M, is a functor from A to

C. Further, as 7 € X varies, there are compatible natural transformations from the
A= M.\ to A — @UEZ M. Finally, the latter is the direct limit of the functor

7+ (A = M;y) from ¥ to G, because, given any functor A — Py from A to €
equipped with, for 7 € X, compatible natural transformations from the A — M,
to A — Py, there are, for A € A, compatible unique maps @062 My — P g

Theorem (6.11) (Direct limits commute). — Let C be a category with direct limits
indezed by small categories ¥ and A. Let 0 — (A — M,)) be a functor from ¥ to
CA. Then

hgaez li—n>q/\eA Moy = hﬂAeA h%mtrez Mo x.
Proof: By (6.4), the functor lim, - €A — € s a left adjoint. By (6.10), the
category G has direct limits indexed by ¥. So (6.9) yields the assertion. O

Corollary (6.12). — Let A be a small category, R a ring, and C either ((Sets)) or
((R-mod)). Then functor h_n>1 CA — C preserves coproducts and coequalizers.

Proof: By (6.5) and (6.6), both coproducts and coequalizers are special cases
of direct limits, and € has them. So (6.11) yields the assertion. O

B. Exercises

Exercise (6.13) . — (1) Show that the condition (6.2)(1) is equivalent to the
commutativity of the corresponding diagram:

Home(B,C) — Home (F(B), F(C))

l l (6.13.1)
Home(A,C) — Home (F(A), F(C))

(2) Given v: C — D, show (6.2)(1) yields the commutativity of this diagram:
Home(B,C) — Home (F(B), F(C))

| |

Home(A4, D) — Home (F(A), F(D))

Exercise (6.14) . — Let € and €’ be categories, F: € — € and F': ¢’ — C an
adjoint pair. Let ¢4 4: Home/ (FA, A’) =5 Home (A, F'A’) denote the natural
bijection, and set 74 := w4 ra(1ra). Do the following:

(1) Prove n4 is natural in A; that is, given g: A — B, the induced square

A F'RA
gl lF’Fg
B F'FB

is commutative. We call the natural transformation A — 74 the unit of (F, F").
(2) Given f': FA — A, prove o4 a/(f') = F'f ona.
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(3) Prove the canonical map n4: A — F'F A is universal from A to F’; that is,
given f: A — F'A’, there is a unique map f': FA — A’ with F'f' ons = f.

(4) Conversely, instead of assuming (F, F’) is an adjoint pair, assume given a
natural transformation 7n: le¢ — F'F satisfying (1) and (3). Prove the equation in
(2) defines a natural bijection making (F, F’) an adjoint pair, whose unit is 7.

(5) Identify the units in the two examples in (6.3): the “free module” functor
and the “polynomial ring” functor.

(Dually, we can define a counit ¢: F'F’ — 1e/, and prove analogous statements.)

Exercise (6.15) . — Show that the canonical map ¢p: th(M)\) — F(h_r)n M)
of (6.4.1) is compatible with any natural transformation 6: F' — G.

Exercise (6.16) . — Let a: L — M and 8: L — N be two maps in a category C.
Their pushout is defined as the object of € universal among objects P equipped
with a pair of maps v: M — P and 6: N — P such that va = §3. Express the
pushout as a direct limit. Show that, in ((Sets)), the pushout is the disjoint union
M U N modulo the smallest equivalence relation ~ with m ~ n if there is £ € L
with a(¢) = m and B(¢) = n. Show that, in ((R-mod)), the pushout is equal to the
direct sum M @ N modulo the image of L under the map (o, —f).

Exercise (6.17) . — Let R be a ring, M a module, N a submodule, X a set of
variable. Prove M — M][X] is the left adjoint of the restriction of scalars from
R[X] to R. As a consequence, reprove the equation (M/N)[X] = M[X]/N[X].
Exercise (6.18) . — Let € be a category, ¥ and A small categories. Prove:
(1) Then €A = (€M) with (o, \) — M, corresponding to o ~— (A > M,).
(2) Assume € has direct limits indexed by ¥ and by A. Then € has direct limits
indexed by 31 x A, and lim, iy oy = @(J,A)EEXA.

Exercise (6.19) . — Let A — M, and A — N be two functors from a small
category A to ((R-mod)), and {6): M) — N\} a natural transformation. Show
@Coker(%\) = Coker(lim My — h_r)nNA).
Show that the analogous statement for kernels can be false by constructing a

counterexample using the following commutative diagram with exact rows:

727 —7/2 —0

| e

727 -57/2 —0

Exercise (6.20) . — Let R be a ring, M a module. Define the map
D(M): M — Hom(Hom(M, R), R) by (D(M)(m))(c) :=a(m).

If D(M) is an isomorphism, call M reflexive. Show:

(1) D : 1((R-mod)) —* Hom(Hom(o, R), R) is a natural transformation.

(2) Let M; for 1 <i <n be modules. Then D(P;_, M;) = D, D(M;).

(3) Assume M is finitely generated and projective. Then M is reflexive.
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7. Filtered Direct Limits

Filtered direct limits are direct limits indexed by a filtered category, which is
a more traditional sort of index set. After making the definitions, we study an
instructive example where the limit is Q. Then we develop an alternative construc-
tion of filtered direct limits for modules. We conclude that forming them preserves
exact sequences, and so commutes with forming the module of homomorphisms out
of a fixed finitely presented source.

A. Text

(7.1) (Filtered categories). — We call a nonempty small category A filtered if

(1) given objects x and A, for some p there are maps k — p and A\ — pu,
(2) given two maps o, 7: 7 = K with the same source and the same target, for
some u there is a map ¢: kK — pu such that o = ¢7.

Given a category C, we say a functor A — M) from A to C is filtered if A is
filtered. If so, then we say the direct limit lim M), is filtered if it exists.

For example, let A be a nonempty partially ordered set. Suppose A is directed;
that is, given x, A € A, there is a p with x < p and A < u. Regard A as a category
whose objects are its elements and whose sets Hom(k, ) consist of a single element
if Kk < A, and are empty if not; morphisms can be composed, because the ordering
is transitive. Clearly, the category A is filtered.

Exercise (7.2) . — Let R be a ring, M a module, A a set, M, a submodule for
each A € A. Assume | M) = M. Assume, given A, u € A, there is v € A such that
My, M,, C M,. Order A by inclusion: A < p if My C M,,. Prove M = liglM)\.

Example (7.3). — Let A be the set of all positive integers, and for each n € A, set
M, :={r/n|re€Z} C Q. Then UM, = Q and M,,, M,, C My,,. Then (7.2)
yields Q = hAan where A is ordered by inclusion of the M,,.

However, M,, C M, if and only if 1/m = s/n for some s, if and only if m | n.
Thus we may view A as ordered by divisibility of the n € A.

For each n € A, set R, := Z, and define ,,: R, — M, by B,(r) := r/n. Clearly,
Br is a Z-module isomorphism. And if n = ms, then this diagram is commutative:

R,, 25 R,

B’IYLl: m B’ILJ/z (7.301)
M,, < M,

m

where (15 is the map of multiplication by s and ¢,

where the transition maps are the pus.

Theorem (7.4). — Let A be a filtered category, R a ring, and C either ((Sets)) or
((R-mod)) or ((R-alg)). Let A — My be a functor from A to C. Define a relation
~ on the set-theoretic disjoint union | | My as follows: my ~ mq for m; € My, if
there are transition maps oz;)i: My, — M, such that aﬁlml = a;\fmz. Then ~ 1is
an equivalence relation. Set M := (|_| M,\)/N. Then M = @MA, and for each p,
the canonical map «,: M, — M is equal to the insertion map M, — liLnMA.
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Proof: Clearly ~ is reflexive and symmetric. Let’s show it is transitive. Given
m; € M)y, for ¢« = 1,2,3 with m; ~ my and my ~ mg, there are afli fori=1,2
and a)i for i = 2,3 with o/\lml = a’\2m2 and a)?my = aj?ms. Then (7.1)(1)
yields o/ and aj. Possibly, a”a’\2 # aZa)?, but in any case, (7.1)(2) yields o

with o (aka)?) = of (aap?). In sum, we have this diagram of indices:

A

Hence, (afa )a my = (agaZ)af,‘3m3. Thus my ~ mg.

Ife= (( od)) define addition in M as follows. Given m; € M), for i = 1,2,
there are ) by (7.1)(1). Set

. A A
ax,mi + ay,meo = au(aulml + auzmg).

We must check that this addition is well defined.
First, conbider L Suppose there are o too. Then (7.1)(1) yields at and aj

b
Possibly, aka) # afapi, but (7.1)(2) yields af with af (akay') = af (aZa{}l) and
then o2 Wlth o (ahakan?) = aZ (o apa,, ). In sum, we have this diagram:

VS, e

Therefore, (aZabak)(apmy 4+ ap?my) = (aZabak)(a)my 4+ a)?my). Thus both p

ag

and v yield the sarﬁe value for ay,m1 + ay,ma.

Second, suppose m; ~ m} € M ;- Then a similar, but easier, argument yields
Qax, M1+ ax,macy, = m) + ax,mz. Thus addition is well defined on M.

Define scalar multiplication on M similarly. Then clearly M is an R-module.

If € = ((R-alg)), then we can see similarly that M is canonically an R-algebra.

Finally, let 8x: My — N be maps with Sya5 = B, for all af. The ) induce
a map | |[My — N. Suppose m; ~ mg for ml € M,,; that is, aﬁlml = affmg

p

for some af;i. Then Bx,m1 = Bx,m2 as ﬁ# = B,. So there is a unique map
B: M — N with Bay = 8, for all \. Further if € = ((R-mod)) or € = ((R-alg)),
then clearly 8 is a homomorphism. The proof is now complete. O

Corollary (7.5). — Preserve the conditions of (7.4).

(1) Given m € liﬂM,\, there are A and my € M)y such that m = aymy.

A

0 such

(2) Given m; € My, for i = 1,2 such that ax,my = ax,me, there are o
that a,’)lml = aff mo.
(3) Suppose € = ((R—mod)) or € = ((R—alg)). Then given A\ and my € M)y

such that axmy = 0, there is aﬁ such that af)m,\ =0.

Proof: The assertions follow directly from (7.4). Specifically, (1) holds, since
li_r)nM,\ is a quotient of the disjoint union | | M. Further, (2) holds owing to the
definition of the equivalence relation involved. Finally, (3) is the special case of (2)
where my := m) and mo = 0. [l
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Definition (7.6). — Let R be a ring. We say an algebra R’ is finitely presented
it R ~ R[X1,...,X,]/a for some variables X; and finitely generated ideal a.

Proposition (7.7). — Let A be a filtered category, R a ring, C either ((R-mod)) or
((R-alg)), A = My a functor from A to C. Given N € @, form the map (6.4.1),

0: lim Hom(N, My) — Hom(N, lim My).

If N is finitely generated, then 0 is injective.
The following conditions are equivalent:

;

(a) N is finitely presented;
(b

(c

(2

) 0 is bijective for all filtered categories A and all functors A — My;
) 6 is surjective for all directed sets A and all X — M.

Proof: Given a transition map a My — M, set ﬁ>‘ = Hom(N, « ) Then the
5’\ are the transition maps of h_n)l Hom(N M,). Denote by ay and S, the insertions
of lim M, and li%mHom(N, M,y).

For (1), let ny,...,n, generate N. Given ¢ and ¢’ in ligHom(N, M) with
0(¢) = 0(¢"), note that (7.5)(1) yields A and px: N — M, and pand ¢}, : N — M,
with Bx(px) = ¢ and B.(¢),) = ¢'. Then 0(¢) = axpx and 0(¢') = a.yp), by

. p p }
constructlen of 6. Henc}e axP ;T aupy,. So c;Ago)\(ni) = o;#golu(ni) for all .2. So
(7.5)(2) yields A\; and a3, and o) such that ay pa(ni) = o ¢, (n;) for all 4.

Consider this commutative diagram in which v and the ;)¢ are to be constructed:

NS

M—)M)\ > M,

OM

Let’s prove, by induction on %, that there are v; and maps ai‘i and af. such that
o oa(nj) = oy, (nj) for 1 < j <. Indeed, given v;_; and o) and o, by
(7.1)(1), there are p; and ap; " and a);. By (7.1)(2), there are v; and o such that

pi AVi=1 X AP N A p o Pi Ay Ai )\ . Pi AN A
adiap, o, = 1apla)\, and ofioy ok =a Diapiak . Set ap = alianiay,
. by
and of) = ooy aX . Then ozl, or(ng) = ol ), (n;) for 1 < j <4, as desired.

Set v := v,. Then aygp)\(nz) = aliy),(n;) for all i. Hence oy = aly),. But

¢ = Balpr) = BB (02) = Buladpr).
Similarly, ¢’ = B, (af},). Hence ¢ = ¢'. Thus ¢ is injective. Notice that this proof
works equally well for ((R—mod)) and ((R-alg)). Thus (1) holds.

For (2), let’s treat the case € = ((R-mod)) first. Assume (a). Say N ~ F/N’
where F := R" and N’ is finitely generated, say by nf,...,n}. Let n; be the image
in N of the ith standard basis vector e; of F. For all j, there’s a linear polynomial
Lj with L;(0,...,0) =0 and Lj(e1,...,e,) =n}. So Lj(ny,...,n,) = 0.

Given ¢: N — lim My, set m; := o(n;) for 1 < i < r. Repeated use of (7.5)(1)
and (7.1)(1) yields A and my; € My with aymy; = m; for all i. So for all j,

ax(Li(mxai,...,mar)) = Lij(ma,...,my) = @(Lj(ni,...,n.)) =0.
Hence repeated use of (7.5)(2) and (7.1)(1), (2) yields p and af‘t with, for all j,
aﬁ(Lj(mM, ceeymy)) = 0.
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Therefore, there is ¢, : N — M, with ¢,(n;) := aj(mx;) by (4.10) and (4.6).
Set v := B,(¢u). Then 0(¢)) = a,p,. Hence 8(1))(n;) = m; := ¢(n;) for all i. So
0(¢) = ¢. Thus 0 is surjective. So (1) implies @ is bijective. Thus (b) holds.

Trivially (b) implies (c).

Finally, assume (c). Take A to be the directed set of finitely generated submodules
Ny of N. Then N = ligN,\ by (7.2). However, 6 is surjective. So there is
(RS lingom(N, Ny) with 0(¢) = 1n. So (7.5)(1) yields A and ¢, € Hom(N, Ny)
with Ba(¥x) = 9. Hence axty = (). So axiyn = 1ny. So ay is surjective. But
ay: Ny — N is the inclusion. So Ny = N. Thus N is finitely generated. Say
ni,...,n, generate N. Set F' := R" and let e; be the ith standard basis vector.

Define k: F' — N by x(e;) := n; for all i. Set N’ := Ker(x). Then F/N' = N.
Let’s show N’ is finitely generated.

Take A to be the directed set of finitely generated submodules N of N’. Then
N' = hﬂN/’\ by (7.2). Set N, := F/N}. Then N = lim N by (6.19). Here the a),
and the a) are the quotient maps. Since 6 is surjective, there is ¥» € Hom(N, N,)
with 0(v0) = 1n. So (7.5)(1) yields A and ) € Hom(N, Ny) with Sy (¢¥y) = 9.
Hence axthy = 0(¢). So axty = 1y. Set ¢, := ajiy for all y; note ¢, is well
defined as A is directed. Then a1, = axyyy = 1 for all p. Let’s show there is p
with 'I/JMCV'u = 1N/L'

For all v and ¢, let ny,; be the image in N, of e;. Then axny; = ax(Paarny;)
as axty = ly. Hence repeated use of (7.5)(2) and (7.1)(1) yields u such that
a;\LnM = aﬁ(w,\aAnAi) for all . Hence n,; = (¢¥uu)n,:. But the n,; generate N,
for all 7. So Iy, = Yuay, as desired.

So a,: Ny — N is an isomorphism. So N, = N’. Thus N’ is finitely generated.
Thus (a) holds for ((R-mod)).

In the case € = ((R-alg)), replace F' by a polynomial ring R[X7,...,X,], the
submodule N’ by the appropriate ideal a, and the n; by polynomials that generate
a. With these replacements, the above proof shows (a) implies (b). As to (¢) implies
(a), first take the N to be the finitely generated subalgebras; then the above proof
of finite generation works equally well as is. The rest of the proof works after we
replace F' by a polynomial ring, the e; by the variables, N’ by the appropriate ideal,
and the N} by the finitely generated subideals. O

(7.8) (Finite presentations). — Let R be a ring, R’ a finitely presented algebra.
The proof of (7.7)(2) shows that, for any presentation R[X,...,X,]/a of R/,
where R[X1,...,X,] is a polynomial ring and a is an ideal, necessarily a is finitely
generated. Similarly, for a finitely presented module M, that proof gives another
solution to (5.18), one not requiring Schanuel’s Lemma.

Theorem (7.9) (Exactness of Filtered Direct Limits). — Let R be a ring, A a
filtered category. Let C be the category of 3-term exact sequences of R-modules: its
objects are the 3-term exact sequences, and its maps are the commutative diagrams

L — M —N

|l

L' —- M — N
Then, for any functor A — (L LN My 2 Ny) from A to C, the induced sequence
li_n>qL,\ ﬁ) ligM,\ 2 ligﬂN,\ is exact.
55



Filtered Direct Limits (7.10) / (7.10) Text

Proof: Abusing notation, in all three cases denote by af the transition maps
and by «) the insertions. Then given ¢ € li_n}L,\, there is £y € Ly with a)fy =/
by (7.5)(1). By hypothesis, vA8xfx = 0; so ¢ = 0. In sum, we have the figure
below. Thus Im(8) C Ker(y).

by ——— 0
e >0 — @ by
Ii ! % |
e e e hgrl
{———0

For the opposite inclusion, take m € ligM,\ with ym = 0. By (7.5)(1), there is
my € My with aymy = m. Now, ayyamy = 0 by commutativity. So by (7.5)(3),
there is a;) with afn)\mA = 0. So 'yua;)m)\ = 0 by commutativity. Hence there is
¢, € L, with 8,0, = a;\LmA by exactness. Apply «,, to get

_ _ A _
Bayl, = aupul, = auamy =m.

In sum, we have this figure:

. s ® NS h_rr)l
Thus Ker(v) C Im(8). So Ker(y) = Im(8) as asserted. O

(7.10) (Hom and direct limits again). — Let A a filtered category, R a ring, N a
module, and A — M) a functor from A to ((R-mod)). Here is an alternative proof
that the map 0(N) of (6.4.1) is injective if N is finitely generated and bijective if
N is finitely presented.

If N := R, then 0(N) is bijective by (4.3). Assume N is finitely generated, and
take a presentation R®* — R™ — N — 0 with ¥ finite if N is finitely presented.
It induces the following commutative diagram:

0 — lim Hom(N, M) — lim Hom(R", My) — hﬂHom(R@Z, M)
6(N)l 9(R")l: H(R@Z)l
0 — Hom(N, lim My) — Hom(R", lim My) — Hom(R%*, lim M)
The rows are exact owing to (5.11), the left exactness of Hom, and to (7.9), the
exactness of filtered direct limits. Now, Hom preserves finite direct sums by (4.13),

and direct limit does so by (6.12) and (6.5); hence, §(R") is bijective, and §( R®*)
is bijective if ¥ is finite. A diagram chase yields the assertion.
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B. Exercises

Exercise (7.11) . — Show that every module M is the filtered direct limit of its
finitely generated submodules.

Exercise (7.12) . — Show that every direct sum of modules is the filtered direct
limit of its finite direct subsums.

Exercise (7.13) . — Keep the setup of (7.3). For each n € A, set N, := Z/(n); if
n = ms, define a: N,;, = N,, by o(x) := xzs (mod n). Show lim Ny, = Q/Z.

Exercise (7.14) . — Let M := lim M be a filtered direct limit of modules, with
transition maps a;\L: My — M,, and insertions ay: My — M.
(1) Prove that all ary are injective if and only if all o, are. What if lim M isn’t

filtered?
(2) Assume that all «y are injective. Prove M = |Jax M.

Exercise (7.15) . — Let R be a ring, a a finitely generated ideal, M a module.
Show I'q(M) = lingom(R/a”7 M).

Exercise (7.16) . — Let R := lim Ry be a filtered direct limit of rings. Show:

(1) Then R = 0 if and only if Ry = 0 for some A.

(2) Assume each R) is a domain. Then R is a domain.

(3) Assume each R) is a field. Then each insertion ay: Ry — R is injective,
R =JaxRy, and R is a field.

Exercise (7.17) . — Let M := lim My be a filtered direct limit of modules, with
transition maps a;}: My — M, and insertions ay: My — M. For each A, let
Ny C M)y be a submodule, and let N C M be a submodule. Prove that Ny = a;lN
for all A if and only if (a) Ny = (af;)’lNM for all ozf; and (b) [JaxNy = N.

Exercise (7.18) . — Let R := ligRA be a filtered direct limit of rings, ay C Ry an

ideal for each . Assume a,’)aA C a, for each transition map af). Set a := lima,.

If each ay is prime, show a is prime. If each a) is maximal, show a is maximal.

Exercise (7.19) . — Let M := lim M) be a filtered direct limit of modules, with
transition maps o, : My — M, and insertions ax: My — M. Let Nx C M) be a
be a submodule for all . Assume a;\LNA C N, for all af;. Prove li_rr>1N,\ = JaaNx.

Exercise (7.20) . — Let R := lim Ry be a filtered direct limit of rings. Prove that
@nil(RA) = nil(R).

Exercise (7.21) . — Let R := lim Ry be a filtered direct limit of rings. Assume
each ring R) is local, say with maximal ideal my, and assume each transition map
a;}: Ry — R, is local. Set m := limm,. Prove that R is local with maximal ideal
m and that each insertion ay: Ry — R is local.

Exercise (7.22) . — Let A and A’ be small categories, C: A’ — A a functor.
Assume A’ is filtered. Assume C is cofinal; that is,

(1) given A € A, there is a map A — CX for some X € A’, and

(2) given 9, ¢: A = CN, there is x: X — M| with (Cx)v = (Cx)e.
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Let A — M, be a functor from A to € whose direct limit exists. Show that
iy, o Moy =lim, | My;
more precisely, show that the right side has the UMP characterizing the left.

Exercise (7.23) . — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.

58



8. Tensor Products

Given two modules, their tensor product is the target of the universal bilinear
map. We construct the product, and establish various properties: bifunctoriality,
commutativity, associativity, cancellation, and most importantly, adjoint associa-
tivity; the latter relates the product to the module of homomorphisms. With one
factor fixed, tensor product becomes a linear functor. We prove Watt’s Theorem:;
it characterizes “tensor-product” functors as those linear functors that commute
with direct sums and cokernels. Lastly, we discuss the tensor product of algebras.

A. Text

(8.1) (Bilinear maps). — Let R a ring, and M, N, P modules. We call a map
a:MxN—P
bilinear if it is linear in each variable; that is, given m € M and n € N, the maps
m' = a(m/;n) and n'+— a(m,n’)

are R-linear. Denote the set of all these maps by Bilg(M, N; P). It is clearly an
R-module, with sum and scalar multiplication performed valuewise.

(8.2) (Tensor product). — Let R be a ring, and M, N modules. Their tensor
product, denoted M ® g N or simply M ® N, is constructed as the quotient of the
free module R®#M*N) modulo the submodule generated by the following elements,
where (m,n) stands for the standard basis element e(,, ,):

(m + m/v n) - (m7 n) - (m/’ ’I’L) and (m7 n+ n/) - (m7 ’I’L) - (man/)7 (8 9 1)

(xm, n) —x(m,n) and (m, xn) — x(m,n) -

for all m,m’ € M and n,n’ € N and x € R.

The above construction yields a canonical bilinear map

B: MxN— M®N.
Set m @ n := B(m,n).

Theorem (8.3) (UMP of tensor product). — Let R be a ring, M, N modules.
Then B: M x N — M ® N is the universal bilinear map with source M x N; in
fact, B induces, not simply a bijection, but a module isomorphism,

0: Homp(M ®p N, P) - Bilg(M, N; P). (8.3.1)

Proof: Note that, if we follow any bilinear map with any linear map, then the
result is bilinear; hence, 6 is well defined. Clearly, 6 is a module homomorphism.
Further, 6 is injective since M ®g N is generated by the image of 5. Finally, given
any bilinear map a: M x N — P, by (4.10) it extends to a map o : R®M*N) _, p,
and o/ carries all the elements in (8.2.1) to 0; hence, o’ factors through 8. Thus
0 is also surjective, so an isomorphism, as asserted. [l
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(8.4) (Bifunctoriality). — Let R be a ring, a: M — M’ and o/: N — N’ module
homomorphisms. Then there is a canonical commutative diagram:

’
aXa

Mx N —/—— M’ x N’

L [
Mo N 2% M @ N’
Indeed, 5’ o (a x o) is clearly bilinear; so the UMP (8.3) yields a®o’. Thus e®@ N
and M ® e are commuting linear functors — that is, linear on maps, see (8.12).

Proposition (8.5). — Let R be a ring, M and N modules.
(1) Then the switch map (m,n) — (n,m) induces an isomorphism

M®rN=NQ®grM. (Commutative Law)
(2) Then multiplication of R on M induces an isomorphism
R®r M = M. (Unitary Law)

Proof: The switch map induces an isomorphism R®M*N) _~, ROENXM) and
it preserves the elements of (8.2.1). Thus (1) holds.

Define 8: R x M — M by fB(x,m) := xm. Clearly S is bilinear. Let’s check S
has the requisite UMP. Given a bilinear map a: R x M — P, define v: M — P by
~v(m) := «(1,m). Then + is linear as « is bilinear. Also, & =3 as

a(z,m) = za(l,m) = a(l,zm) = y(zm) = v8(z,m).
Further, 7 is unique as § is surjective. Thus 8 has the UMP, so (2) holds. O

(8.6) (Bimodules). — Let R and R’ be rings. An Abelian group N is an (R, R')-
bimodule if it is both an R-module and an R’-module and if z(z'n) = z'(xn)
for all z € R, all 2/ € R’, and all n € N. At times, we think of N as a left R-
module, with multiplication zn, and as a right R’-module, with multiplication nz’.
Then the compatibility condition becomes the Associative Law: z(nz’) = (an)z’. A
(R, R')-homomorphism of bimodules is a map that is both R-linear and R’-linear.

Let M be an R-module, and let N be an (R, R’)-bimodule. Then M ®r N
is an (R, R')-bimodule with R-structure as usual and with R’-structure defined
by '(m @ n) := m® (2'n) for all 2’ € R, all m € M, and all n € N. The
latter multiplication is well defined and the two multiplications commute because
of bifunctoriality (8.4) with o := p, and o' := p,.

For instance, suppose R’ is an R-algebra. Then R’ is an (R, R')-bimodule. So
M ®pgr R’ is an R’-module. It is said to be obtained by extension of scalars.

In full generality, it is easy to check that Hompg(M, N) is an (R, R')-bimodule
under valuewise multiplication by elements of R’. Further, given an R’-module
P, it is easy to check that Hompg (N, P) is an (R, R')-bimodule under sourcewise
multiplication by elements of R.

Exercise (8.7) . — Let R be a ring, R’ an R-algebra, and M, N two R’-modules.

Show: (1) Then there is a canonical R-linear map 7: M @ g N — M ®p' N.

(2) Let K € M ®p N denote the R-submodule generated by all the differences
(z'm)@n—me (z'n) for 2’ € R and m € M and n € N. Then K = Ker(7),
and 7 is surjective.

(3) Suppose that R’ is a quotient of R. Then 7 is an isomorphism.

(4) Let {t+} be a set of algebra generators of R’ over R. Let {m,} and {n,} be
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sets of generators of M and N over R'. Regard M ®g N as an (R’ ®g R’)-
module. Let K’ denote the (R’ ®pg R')-submodule generated by all differences
(t;my,) ®n, —m, & (t;n,). Then K' = K.
Theorem (8.8). — Let R and R’ be rings, M an R-module, P an R'-module, N
an (R, R")-bimodule. Then there are two canonical (R, R')-isomorphisms:
(1) M ®r (NQg P)=(M ®rN) Qg P. (Associative Law)
(2)Homp (M ®g N, P) = Homp (M, Hompg (N, P)).(Adjoint Associativity)

Proof: Note that M ®@g (N ®r/ P) and (M ®g N) @' P are (R, R')-bimodules.
For each (R, R')-bimodule @, call a map 7: M x N x P — @ trilinear if it is
R-bilinear in M x N and R’-bilinear in N x P. Denote the set of all these 7 by
Tril g gy (M, N, P; Q). It is, clearly, an (R, R')-bimodule.

A trilinear map 7 yields an R-bilinear map M X (N ® g P) — @, whence a map
M ®g (N ®g P) = @, which is both R-linear and R'-linear, and vice versa. Thus
Tril(g,py (M, N, P; Q) = Hom(M ®r (N ®r P), Q)

Similarly, there is a canonical isomorphism of (R, R’)-bimodules

Tril(R_’R/)(M, N,P; Q) = HOI’D((M ®r N) Qr F)7 Q)

Hence each of M @ (N ®p' P) and (M ®pr N) ®p/ P is the universal target of a
trilinear map with source M x N x P. Thus they are equal, as asserted.
To establish the isomorphism of Adjoint Associativity, define a map

a: Homp (M ®p N, P) — HomR(M, Hompg/ (N, P)) by
(a(v)(m))(n) :=~(m @n).
Let’s check « is well defined. First, a(y)(m) is R'-linear, because given 2’ € R/,
Y(m & (2'n)) = y('(m @ n)) = z’y(m @ n)
since v is R'-linear. Further, a(v) is R-linear, because given x € R,
(zm)@n=m® (zn) andso (a(y)(@m))(n)= (a(y)(m))(zn).

Thus a(y) € Hompg (M, Hompg (N, P)). Clearly, o is an (R, R')-homomorphism.
To obtain an inverse to «, given n € Homp (M, Hompg/ (N, P))7 define a map
(: M x N — P by ((m,n) = (n(m))(n). Clearly, ¢ is Z-bilinear, so ¢ induces a
Z-linear map §: M ®z N — P. Given z € R, clearly (n(zm))(n) = (n(m))(zn); so
d((zm) @n) = 6(m @ (zn)). Hence, ¢ induces a Z-linear map B(n): M g N — P
owing to (8.7) with Z for R and with R for R’. Clearly, 8(n) is R’-linear as n(m)
is so. Finally, it is easy to verify that a(8(n)) = n and B(«a(y)) = v, as desired. O

Corollary (8.9). — Let R be a ring, and R’ an algebra. First, let M be an R-module,
and P an R'-module. Then there are two canonical R'-isomorphisms:

(1) (M®rR)®r P=MQ®gP. (Cancellation Law)

(2) Homp/ (M ®p R', P) = Hompg(M, P). (Left Adjoint)

Instead, let M be an R'-module, and P an R-module. Then there is a canonical
R'-isomorphism:

(3) Homp (M, P) = Homp/ (M, Hompg(R', P)). (Right Adjoint)

In other words, @ @ R’ is the left adjoint of restriction of scalars from R' to R,
and Homp (R, @) is its right adjoint.
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Proof: The Cancellation Law results from the Associative Law (8.8)(1) and
the Unitary Law (8.5)(2); the Adjoint Isomorphisms, from Adjoint Associativity
(8.8)(2), from (4.3), and from the Unitary Law (8.5)(2). O

Corollary (8.10). — Let R, R’ be rings, N a bimodule. Then the functor e @ N
preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By Adjoint Associativity (8.8)(2), the functor e ® g N is the left adjoint
of Hompg/ (N, e). Thus the assertion results from (6.9) and (6.7). O

Example (8.11). — Tensor product does not preserve kernels, nor even injections.
Indeed, consider the injection po: Z — Z. Tensor it with N := Z/(2), obtaining
po: N — N. This map is zero, but not injective as N # 0.

(8.12) (Linear Functors). — Let R be a ring, R’ an algebra, F a functor from
((R-mod)) to ((R’-mod)). Call F linear or R-linear if this map is R-linear:

Hompg(M, N) — Homp (FM, FN).

Assume so. If a map a: M — N is 0, then Fa: FM — FN is too. But M =0
if and only if 15y = 0. Further, F(15) = 1pps. Thus if M =0, then FM = 0.

Theorem (8.13) (Watts). — Let F': ((R-mod)) — ((R-mod)) be a linear functor.
Then there is a natural transformation 6(e): e QF(R) — F(e) with 6(R) =1, and
0(e) is an isomorphism if and only if F' preserves direct sums and cokernels.

Proof: As F is a linear functor, there is, by definition, a natural R-linear map
6(M): Hom(R, M) — Hom(F(R), F(M)). But Hom(R, M) = M by (4.3). Hence
Adjoint Associativity (8.8)(2) yields the desired map

6(M) € Hom (M, Hom(F(R), F(M))) = Hom(M ® F(R), F(M)).

Explicitly, 6(M)(m ® n) = F(p)(n) where p: R — M is defined by p(1) = m
Alternatively, this formula can be used to construct (M), as (m,n) — F(p)(n) is
clearly bilinear. Either way, it’s not hard to see §(M) is natural in M and 6(R) = 1
If O(e) is an isomorphism, then F' preserves direct sums and cokernels by (8.10).
To prove the converse, take a presentation R®> LNy LN VN 0; one exists
by (5.13). Set N := F(R). Applying 0, we get this commutative diagram:

R @N — R AQN - M®N — 0

lf?(R@E) lG(R@A) lf?(M) (8.13.1)

F(R®¥) — F(R®N) — F(M) — 0
By construction, §(R) = 1lx. Suppose that F' preserves direct sums. Then
O(R®A) = 1yenr and (RP¥) = 1yes by (6.15), as direct sum is a special case of

direct limit by (6.5). Suppose also that F' preserves cokernels. As e ® N does too,
the rows of (8.13.1) are exact by (5.2)(2). Thus (M) is an isomorphism. O

Exercise (8.14) . — Let F': ((R-mod)) — ((R-mod)) be a linear functor, and € the
category of finitely generated modules. Show that F always preserves finite direct
sums. Show that 8(M): M ® F(R) — F(M) is surjective if F preserves surjections
in € and M is finitely generated, and that 6(M) is an isomorphism if F' preserves
cokernels in € and M is finitely presented.
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(8.15) (Additive functors). — Let R be a ring, M a module, and form the diagram

M2 Mo M M M

where 057 1= (lM, 1]\/[) and op =1 + 1.

Let o, 8: M — N be two maps of modules. Then

GN(OéEBﬁ)(SM =a+ 03, (8.15.1)

because, for any m € M, we have

(on(a @ B)or)(m) = on(a @ B)(m,m) = on(a(m), B(m)) = a(m) + B(m).

Let F': ((R-mod)) — ((R-mod)) be a functor that preserves finite direct sums.
Then F(a @ B) = F(a) ® F(B). Also, F'(6rm) = dpury and F(on) = oru)
as F'(1y) = lpuy. Hence F(a + 8) = F(a) + F(B) by (8.15.1). Thus F is
additive, that is, Z-linear.

Conversely, every additive functor preserves finite direct sums owing to (8.14).

However, not every additive functor is R-linear. For example, take R := C.

Define F'(M) to be M, but with the scalar product of z € C and m € M to be Tm
where T is the conjugate. Define F'(«) to be a. Then F' is additive, but not linear.

Lemma (8.16) (Equational Criterion for Vanishing). — Let R be a ring, M and
N modules, and {nx}xea a set of generators of N. Then anyt € M ® N can be
written as a finite sum t =Y my @ ny with my € M. Further, t =0 if and only if
there are my € M and x), € R for o € X for some X such that

Yo TaeMe =my for all X and Y, xxony =0 for all o.

Proof: Owing to (8.2), M ® N is generated by all the m ® n with m € M and
n € N, and if n =Yz ny with ) € R, then m @ n = Y _(z m) @ ny. It follows
that ¢ can be written as a finite sum ¢t = Y my ® n) with my € M.

Assume the m, and the z),, exist. Then

DomaA®@ny =, (Zaxmma) @ny = (m(7 ®Z/\:L’)\Jn>\) =0.

Conversely, by (5.13), there is a presentation R®* By REA 2 N 0 with
a(ey) = ny for all A where {ey} is the standard basis of R®*. Then by (8.10) the
following sequence is exact:

M@ R®E 295, 0@ ROA 129 pro N 0.

Further, (1 ® «)(}_m ®ex) = 0. So the exactness implies there is an element
s € M ® R®* such that (1® £)(s) = > my ® ey. Let {e,} be the standard basis
of R®* and write s = Y. m, ® e, with m, € M. Write B(e,) = Yy Zrcex. Then
clearly 0 = af3(e,) = >, Tron, and
0= mr@ex =X, Mm@ (L) ax0er) = Xn(ma = 2, 2r0mo) @ex.

Since the ey are independent, my = > xxom,, as asserted. [l

(8.17) (Algebras). — Let R be a ring, R; and R» algebras with structure maps
c: R— Ry and 7: R — Ry. Set

R = R, ®g R».
It is an R-module. Now, define R; X Ry X Ry X Ry — R’ by (s,t,8',t') — ss' @ tt'.
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This map is clearly linear in each factor. So it induces a bilinear map
p: R xR — R with u(s®t, s @t) = (ss' @tt').

It is easy to check that R’ is a ring with g as product. In fact, R’ is an R-algebra
with structure map w given by w(r) := o(r) ® 1 = 1 ® 7(r), called the tensor
product of R; and Ry over R.

Define t1: Ry — R’ by tg, (s) := s®1. Clearly ¢ is an R-algebra homomorphism.
Define 15: Ry — R; ® Ry similarly. Given an R-algebra R”, define a map

v: Hom((p-alg))(R', R") = Hom((p-aig))(R1, R") x Hom((g_aig)) (R2, R").

by v(¢) := (i1, Pra). Conversely, given R-algebra homomorphisms 6: Ry — R”
and (: Ry — R”, define n: Ry x Ro — R” by n(s,t) := 0(s)-((t). Then n is clearly
bilinear, so it defines a linear map ¢: R’ — R”. It is easy to see that the map

(0,¢) — 1 is an inverse to . Thus ~ is bijective.
In other words, R’ := R; ®gr Rs is the coproduct R; [] Rs in ((R-alg)):

Example (8.18). — Let R be a ring, R’ an algebra, and X := {X)} a set of
variables. Let’s see that there is a canonical R’-algebra isomorphism

R ®r R[X] = R'[X].
Given an R’-algebra homomorphism R’ — R and elements x) of R”, there is
an R-algebra homomorphism R[X] — R” by (1.3). So by (8.17), there is a unique

R’-algebra homomorphism R’ ® g R[X] — R”. Thus both R’ ® R[X] — R” and
R’[X] have the same UMP. In particular, for another set of variables Y, we obtain

R[X] ®r R[Y] = RIX][Y] = R[X, Y].

However, for formal power series rings, the corresponding statements may fail.
For example, let k be a field, and X, Y variables. Then the image T of k[[X]|®k[[Y]]
in k[[X,Y]] consists of the H of the form Y. , F;G; for some n and F; € k[[X]]
and G; € k[[Y]] Say G; = Z;io ginj with Gij € k. Then F;G; = Z]Oio Flg”YJ
Say H = Z(]).;O Hij with Hj S k[[XH Then Hj = Z?:l Fzg” So all the Hj lie
in the vector subspace of k[[X]] spanned by Fy,...,F,. Now, 1, X, X2 ... lie in
no finite-dimensional subspace. Thus Y XY7 ¢ T. Thus T # k[[X,Y]].

(8.19) (Diagonal ldeal). — Let R be a ring, R’ an algebra, p: R’ ®g R’ — R’ the
multiplication map. Call Ker(r) the diagonal ideal of R’, and denote it by 0.

For example, take R’ to be the polynomial ring in a set of variables X := {X,}.
Then (8.18) yields R’ ®g R’ = R[T U U] where T := {T»} with T) := X, ® 1 and
U := {Ux} with Uy := 1® X, for all A. Plainly p(Uy —Ty) = 0. Further, (1.17)(5)
yields R[T|[U]/({Ux — Th}) = R[T]. Thus 0p = ({Ux — Th}).

More generally, let G be a set of generators of R’ as an R-algebra, and ? the ideal
of R’ g R’ generated by the elements g®1 —1® g for g € G. Then 0 = 0/ by
(8.7)(4) with M := N := R’ := R/, because R®g R = R by (8.5)(2).
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B. Exercises

Exercise (8.20) . — Let R be a ring, R’ and R algebras, M’ an R’-module and
M" an R"-module. Say {m)} generates M’ over R’ and {mj;} generates M" over
R". Show {m/\ @ m/} generates M' @ M" over R’ ®r R".

Exercise (8.21) . — Let R be a ring, R’ an R- algebra, and M an R’-module.
Set M' := R' g M. Define a: M — M’ by am := 1 ®m, and p: M’ — M by
p(x @ m) := xm. Prove M is a direct summand of M’ with a = ¢y and p = my,.

Exercise (8.22) . — Let R be a domain, a a nonzero ideal. Set K := Frac(R).
Show that a ®p K = K.

Exercise (8.23) . — In the setup of (8.9), find the unit 7y, of each adjunction.
Exercise (8.24) . — Let M and N be nonzero k-vector spaces. Prove M @ N # 0.

Exercise (8.25) . — Let R be a nonzero ring. Show:

(1) Assume there is a surjective map a: R™ — R™. Then n > m.
(2) Assume R™ ~ R™. Then n = m.

Exercise (8.26) . — Under the conditions of (5.41)(1), setK := Frac(R). Show
rank(F) = dimg (M ® K).
Exercise (8.27) . — Let R be a ring, a and b ideals, and M a module.
(1) Use (8.10) to show that (R/a) @ M = M/aM.
(2) Use (1) and (4.21) to show that (R/a) ® (M/bM) = M/(a+ b)M.
Exercise (8.28) . — Let R be a ring, B an algebra, B’ and B” algebras over B.

Regard B as an (B ®p B)-algebra via the multiplication map. Set C := B’ ®g B”.
Prove these formulas: (1) B’ @ B” = C/opC and (2) B’ ®p B” = B®pg,s C.

Exercise (8.29) . — Show Z/(m) ®z Z/(n) = 0 if m and n are relatively prime.

Exercise (8.30) . — Let R be a ring, R’ and R” algebras, ' C R’ and o’ C R”
ideals. Let b € R’ ® g R” denote the ideal generated by a’ and a”. Show that

(R'®r R")/b=(R'/a') ®r (R"/d").

Exercise (8.31) . — Let R be a ring, M a module, X a set of variables. Prove the
equation M ®@p R[X] = M[X].

Exercise (8.32) . — Generalize (4.20) to several variables Xi,..., X, via this
standard device: reduce to the case of one variable Y by taking a suitably large d
and defining ¢: R[X1,..., X,] = R[Y] by »(X;) := Y¢ and setting a := 1y ® .

Exercise (8.33) . — Let R be a ring, R, for ¢ € ¥ algebras. For each finite
subset J of X, let Ry be the tensor product of the R, for o0 € J. Prove that the
assignment J — Rj extends to a filtered direct system and that @R 7 exists and
is the coproduct [] R,-.

Exercise (8.34) . — Let X be a variable, w a complex cube root of 1, and /2 the
real cube root of 2. Set k := Q(w) and K := k[/2]. Show K = k[X]/(X? —2) and
then K @, K = K x K x K.
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9. Flatness

A module is called flat if tensor product with it is an exact functor, faithfully
flat if this functor is also faithful — that is, carries nonzero maps to nonzero maps.
First, we study exact functors, then flat and faithfully flat modules. Notably,
we prove Lazard’s Theorem, which characterizes flat modules as filtered direct
limits of free modules of finite rank. Lazard’s Theorem yields the Ideal Criterion,
which characterizes the flat modules as those whose tensor product with any finitely
generated ideal is equal to the ordinary product.

A. Text

Lemma (9.1). — Let R be a ring, a: M — N a homomorphism of modules. Then
there is a commutative diagram with two short exact sequences involving N’

0— M — M ———— N — N' — 0

N S (9.1.1)

0 — N —0
if and only if M’ = Ker(a) and N’ = Im(a) and N"” = Coker(a).

Proof: If the equations hold, then the second short sequence is exact owing to
the definitions, and the first is exact since Coim(a) = Im(«) by (4.9).

Conversely, given the commutative diagram with two short exact sequences, o’
is injective. So Ker(a) = Ker(a/). So M’ = Ker(a). So N’ = Coim(«) as o’ is
surjective. So N’ = Im(«). Hence N = Coker(«). Thus the equations hold. O

(9.2) (Exact Functors). — Let R be a ring, R’ an algebra, F' a linear functor from
((R-mod)) to ((R'-mod)). Call F faithful if the associated map

Hompg(M,N) — Hompg/(FM, FN).

is injective, or equivalently, if Fa = 0 implies a = 0.

Call F exact if it preserves exact sequences. For example, Hom(P, e) is exact if
and only if P is projective by (5.16).

Call F left exact if it preserves kernels. When F' is contravariant, call F' left
exact if it takes cokernels to kernels. For example, Hom(N, e) and Hom(e, N) are
left exact covariant and contravariant functors.

Call F right exact if it preserves cokernels. Thus M ®e is right exact by (8.10).

Proposition (9.3). — Let R be a ring, R’ an algebra, F' an R-linear functor from
((R-mod)) to ((R'-mod)). Then the following conditions are equivalent:

(1) F preserves exact sequences; that is, F' is exact.
(2) F preserves short exact sequences.

(3) F preserves kernels and surjections.

(4) F preserves cokernels and injections.

(5) F preserves kernels and images.
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Flatness (9.4) /(9.8) Text

Proof: Trivially, (1) implies (2). In view of (5.2), clearly (1) yields (3) and (4).
Assume (3). Let 0 = M’ — M — M" — 0 be a short exact sequence. Since F'

preserves kernels, 0 — FM' — FM — FM" is exact; since F preserves surjections,
FM — FM" — 0 is also exact. Thus (2) holds. Similarly, (4) implies (2).

Assume (2). Given a: M — N, form the diagram (9.1.1). Applying F to it
and using (2), we obtain a similar diagram for F'(«). Hence (9.1) yields (5).

(03

Finally, assume (5). Let M’ — M By M be exact; that is, Ker(8) = Im(a).
Now, (5) yields Ker(F(8)) = F(Ker(8)) and Im(F(«)) = F(Im(c)). Therefore,
Ker(F(8)) = Im(F(«)). Thus (1) holds. O

(9.4) (Flatness). — We say an R-module M is flat over R or is R-flat if the
functor M ®p e is exact. It is equivalent by (9.3) that M ®pg e preserve injections
since it preserves cokernels by (8.10).

We say M is faithfully flat if M ®g e is exact and faithful.
We say an R-algebra is flat or faithfully flat if it is so as an R-module.

Lemma (9.5). — A direct sum M := @ M) is flat if and only if every My is flat.
Further, M 1is faithfully flat if every My is flat and at least one is faithfully flat.

Proof: Let 5: N’ — N be an injective map. Then (6.5) and (6.15) yield

(B M) @8 =@M ®p).

But the map (M, ® ) is injective if and only if each summand M) ® 3 is injective
by (5.4). The first assertion follows.

Further, M @ N = @(M, ® N) by (8.10). Soif M ® N =0, then M, ® N =0
for all A\. If also at least one M), is faithfully flat, then N = 0, as desired. O

Proposition (9.6). — A nonzero free module is faithfully flat. Every projective
module is flat.

Proof: It’s easy to extend (8.5)(2) to maps «; that is, R® @ = a. So R is
faithfully flat over R. Thus by (9.5), a nonzero free module is faithfully flat.

Every projective module is a direct summand of a free module by (5.16), and
thus is flat again by (9.5). O

Example (9.7). — In (9.5), consider the second assertion. Its converse needn’t
hold. For example, take a product ring R := Ry X Re with R; # 0. By (9.6), R is
faithfully flat over R. But neither R; is so, as Ri ® Ry = R ®(R/R1) = R1/R? = 0.

Proposition (9.8). — Let R be a ring, 0 = M’ — M — M"” — 0 an exact sequence
of modules. Assume M" is flat.

(1) Then0 > M@ N - M ®N — M" ® N — 0 is exact for any module N.
(2) Then M is flat if and only if M' is flat.

Proof: By (5.13), there is an exact sequence 0 — K — R®* — N — 0. Tensor
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Flatness (9.9) / (9.10) Text

it with the given sequence to obtain the following commutative diagram:
0

l

MK — MK —M K —0

|

0 — M @ R® 5 Mo R®A - M @ REA

M@N 235 Mo N

0 0

Here o and 3 are injective by Definition (9.4), as M and R®* are flat by hypothesis
and by (9.6). So the rows and columns are exact, as tensor product is right exact.
Finally, the Snake Lemma, (5.10), implies ~ is injective. Thus (1) holds.

To prove (2), take an injection N — N, and form this commutative diagram:

0 - MN - MN — M'"@N — 0

0 - MN —-MN — M'@N —0

Its rows are exact by (1).
Assume M is flat. Then « is injective. Hence o’ is too. Thus M’ is flat.
Conversely, assume M’ is flat. Then o' is injective. But o’ is injective as M" is
flat. Hence « is injective by the Snake lemma. Thus M is flat. Thus (2) holds. O

Proposition (9.9). — A filtered direct limit of flat modules ligM,\ 18 flat.

Proof: Let 3: N’ — N be injective. Then M, ® 8 is injective for each A since
M, is flat. So lim(M), ® B) is injective by the exactness of filtered direct limits,
(7.9). So (h_r>n M) ® f is injective by (8.10). Thus lim M is flat. O

Proposition (9.10). — Let R and R’ be rings, M an R-module, N an (R, R')-
bimodule, and P an R'-module. Then there is a canonical R'-homomorphism

0: HOIIIR(M, N) Qpr P — HOHIR(M, N Qg P) (9.10.1)

Assume P is flat. If M is finitely generated, then 0 is injective; if M is finitely
presented, then 0 is an isomorphism.

Proof: The map 6 exists by Watts’s Theorem, (8.13), with R’ for R, applied to
Homp (M, N ®p o). Explicitly, 0(¢ @ p)(m) = p(m) @ p.

Clearly, 6 is bijective if M = R. So 6 is bijective if M = R™ for any n, as
Homp(e, Q) preserves finite direct sums for any @ by (4.13).

Assume that M is finitely generated. Then from (5.13), we obtain a presentation
R®* » R™ — M — 0, with ¥ finite if M is finitely presented. Since 6 is natural,
it yields this commutative diagram:

0 — Homg(M,N)®p P — Hompg(R",N)®p P — Hompg(R®* N)®r P

| | |

0 — Hompg(M,N ®g P) — Hompg(R",N ®g P) — Homgr(R®®, N ®@p/ P)
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Flatness (9.11) /(9.13) Text

Its rows are exact owing to the left exactness of Hom and to the flatness of P. The
right-hand vertical map is bijective if ¥ is finite. The assertions follow. O

Definition (9.11). — Let R be aring, M a module. Let Aj; be the category whose
objects are the pairs (R™, «) where a: R™ — M is a homomorphism, and whose
maps (R™,«) — (R", §) are the homomorphisms ¢: R™ — R™ with Sy = a.

Proposition (9.12). — Let R be a ring, M a module, and (R™,a) — R™ the
forgetful functor from Ay to ((R-mod)). Then M = @(Rm ) A R™

Proof: By the UMP, the a: R™ — M induce a map (: li_n}Rm — M. Let’s
show ( is bijective. First, ( is surjective, because each x € M is in the image of
(R, o) where a,(r) := ra.

For injectivity, let y € Ker(¢). By construction, @(Rm,a) R™ — h_n}Rm is surjec-
tive; see the proof of (6.7). So y is in the image of some finite sum @ pm, ,,) B™.
Set m := > m;. Then @ R™ = R™. Set a:= > «;. Then y is the image of some
y’" € R™ under the insertion ¢,,: R™ — lim R™. But y € Ker(¢). So a(y’) = 0.

Let 6,¢: R = R™ be the homomorphisms with 6(1) := 3 and ¢(1) := 0. They
yield maps in Ap;. So, by definition of direct limit, they have the same compositions
with the insertion t,,. Hence y = ¢,,(y') = 0. Thus ( is injective, so bijective. O

Theorem (9.13) (Lazard). — Let R be a ring, M a module. Then the following
conditions are equivalent:
(1) M is flat.
(2) Given a finitely presented module P, this version of (9.10.1) is surjective:
Homp(P, R) ® g M — Hompg(P, M).

(3) Given a finitely presented module P and a map B: P — M, there exists a
factorization B: P X R™ % M ;

(4) Given an a: R™ — M and a k € Ker(w), there exists a factorization
a: R™ £ R — M such that (k) = 0.

(5) Given an a: R™ — M and ku,..., k. € Ker(a) there exists a factorization
a: R™ £ R™ — M such that p(k;) =0 fori=1,...,7.

(6) Given R™ 2 R™ % M such that ap = 0, there exists a factorization
a: R™ % R™ — M such that op = 0.

(7) Ans s filtered.

(8) M is a filtered direct limit of free modules of finite rank.

Proof: Assume (1). Then (9.10) yields (2).

Assume (2), and consider (3). Then there are ~q,...,7, € Hom(P, R), and
there are x1,...,2, € M with B(p) = > 7v(p)x; by (2). Let v: P — R™ be
(V1y--+,7n), and let a: R™ — M be given by a(ry,...,r,) =Y r;xz;. Then = ar,
just as (3) requires.

Assume (3), and consider (4). Set P := R™/Rk, and let x: R™ — P denote
the quotient map. Then P is finitely presented, and there is 8: P — M such that
Bk = a. By (3), there is a factorization §: P X+ R® — M. Set ¢ := ~yr. Then
a: R™ % R" — M is a factorization, and ¢(k) = 0, just as (4) requires.

Assume (4), and consider (5). Set my := m and ag = a. Inductively, (4) yields

) i e .
i1 Rt 2 R DN for i=1,...,7
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Flatness (9.14) /(9.19) Exercises

such that ;- @1(k;) = 0. Set ¢ := ¢, -+~ p1 and n := m,.. Then (5) holds.

Assume (5), and consider (6). Let ey, ..., e, be the standard basis of R", and
set k; == p(e;). Then a(k;) = 0. So (5) yields a factorization a: R™ % R* — M
such that ¢(k;) = 0. Then pp = 0, as required by (6).

Assume (6). Given (R™,a;) and (R™2,a2) in Apf, set m := my + mgy and
« := a1 + az. Then the inclusions R™ — R™ induce maps in Ap;. Thus the first
condition of (7.1) is satisfied.

Given o, 7: (R",w) = (R™,«a) in Ay, set p := 0 — 7. Then ap = 0. So (6)
yields a factorization a: R™ £ R™ — M with pp = 0. Then ¢ is a map of Ay,
and po = 7. Hence the second condition of (7.1) is satisfied. Thus (7) holds.

If (7) holds, then (8) does too, since M = @(RM,a)eAM R™ by (9.12).

Assume (8). Say M = lim My with the My free. Each My is flat by (9.6),
and a filtered direct limit of flat modules is flat by (9.9). Thus M is flat, or (1)
holds. g

Exercise (9.14) (FEquational Criterion for Flatness) . — Show that Condition
(9.13)(4) can be reformulated as follows: Given any relation ), z;m; = 0 with
x; € R and m; € M, there are z;; € R and m;- € M such that

> Tigm; =m; for all i and 37, x5z, = 0 for all j. (9.14.1)

Lemma (9.15) (Ideal Criterion for Flatness). — A module M is flat if and only
if, given any finitely generated ideal a, the inclusion a — R induces an injection
a® M — M, or equivalently, an isomorphism a ® M —= aM.

Proof: In any case, (8.5)(2) implies R ® M — M with a ® m — am. So
the inclusion induces a map «: a @ M — M, with Im(a) = aM. Thus the two
conditions are equivalent, and they hold if M is flat, as then « is injective.

To prove the converse, let’s check (9.14). Given Y., 2;m; = 0 with z; € R and
m; € M, set a:= (x1,...,2,). f a® M = aM, then ), z; ® m; = 0; so (8.5)(1)
and the Equational Criterion for Vanishing (8.16) yield (9.14.1). O

Example (9.16). — Let R be a domain, and set K := Frac(R). Then K is flat,
but K is not projective unless R = K. Indeed, (8.22) says a ®p K = K, with
a ® x = ax, for any ideal a of R. So K is flat by (9.15).

Suppose K is projective. Then K < R for some A by (5.16). So there is a
nonzero map a: K — R. So there is an 2 € K with a(z) # 0. Set a := «a(z).
Take any nonzero b € R. Then ab - a(x/ab) = a(x) = a. Since R is a domain,
b-a(x/ab) =1. Hence b € R*. Thus R is a field. So (2.3) yields R = K.

B. Exercises

Exercise (9.17) . — Let R be aring, a an ideal. Show I'y(e) is a left exact functor.

Exercise (9.18) . — Let R be a ring, N a module, Ny and N, submodules, R’ an
algebra, F' an exact R-linear functor from ((R-mod)) to ((R'-mod)). Prove:

F(N;NNy) = F(N)NF(Ny) and  F(Ny + Ny) = F(Ny) + F(Ny).

Exercise (9.19) . — Let R be a ring, R’ an algebra, F' an R-linear functor from
((R-mod)) to ((R'-mod)). Assume F' is exact. Prove the following equivalent:
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Flatness (9.20) / (9.33) Exercises

(1) F is faithful.

(2) An R-module M vanishes if FM does.

(3) F(R/m) # 0 for every maximal ideal m of R.

(4) A sequence M’' % M By M is exact it FM' £% par 22 P s,

Exercise (9.20) . — Show that a ring of polynomials P is faithfully flat.

Exercise (9.21) . — Let R be a ring, M and N flat modules. Show that M @ N
is flat. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.22) . — Let R be a ring, M a flat module, R’ an algebra. Show that
M ®pgr R’ is flat over R’. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.23) . — Let R be a ring, R’ a flat algebra, M a flat R’-module. Show
that M is flat over R. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.24) . — Let R be aring, R’ and R” algebras, M’ a flat R’-module, and
M'" a flat R”-module. Show that M’ ®@r M" is a flat (R’ ®g R”)-module. What if
“flat” is replaced everywhere by “faithfully flat”?

Exercise (9.25) . — Let R be aring, R' an algebra, and M an R’-module. Assume
that M is flat over R and faithfully flat over R’. Show that R’ is flat over R.

Exercise (9.26) . — Let R be a ring, R’ an algebra, R” an R’-algebra, and M an
R’-module. Assume that R is flat over R’ and that M is flat over R. Show that
R" ®@gr M is flat over R. Conversely, assume that R” is faithfully flat over R’ and
that R” @ p M is flat over R. Show that M is flat over R.

Exercise (9.27) . — Let R be a ring, a an ideal. Assume R/a is flat. Show a = a2

Exercise (9.28) . — Let R be a ring, R’ a flat algebra. Prove equivalent:

(1) R’ is faithfully flat over R.

(2) For every R-module M, the map M % M ®r R by am = m® 1 is injective.
(3) Every ideal a of R is the contraction of its extension, or a = (aR’)c.

(4) Every prime p of R is the contraction of some prime q of R’, or p = q° .

(5) Every maximal ideal m of R extends to a proper ideal, or mR’ # R’.

(6) Every nonzero R-module M extends to a nonzero module, or M @ R’ # 0.

3
4
5

Exercise (9.29) . — Let R be a ring, R’ a faithfully flat algebra. Assume R’ is
local. Prove R is local too.

Exercise (9.30) . — Let R be aring, 0 — M’ = M — M" — 0 an exact sequence
with M flat. Assume N @ M’ 22% N @ M is injective for all N. Prove M" is flat.

Exercise (9.31) . — Prove that an R-algebra R’ is faithfully flat if and only if the
structure map ¢: R — R’ is injective and the quotient R’/pR is flat over R.

Exercise (9.32) . — Let R be aring, 0 — M,, — --- — M; — 0 an exact sequence
of flat modules, and N any module. Show the following sequence is exact:
0—-M, N —---—= M, N — 0. (9.32.1)

Exercise (9.33) . — Let R be a ring, R’ an algebra, M and N modules.
(1) Show that there is a canonical R’-homomorphism

o: Homr(M, N)®r R' — Hompr/ (M @ R', N ®p R').
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Flatness (9.34) /(9.35) Exercises

(2) Assume M is finitely generated and projective. Show that o is bijective.
(3) Assume R’ is flat over R. Show that if M is finitely generated, then o is
injective, and that if M is finitely presented, then o is bijective.

Exercise (9.34) . — Let R be a ring, M a module, and R’ an algebra. Prove
Anng(M)R' C Anng (M ®g R'), with equality if M is finitely generated, R’ flat.

Exercise (9.35) . — Let R be a ring, M a module. Prove (1) if M is flat, then for
x € R and m € M with xm = 0, necessarily m € Ann(z)M, and (2) the converse
holds if R is a Principal Ideal Ring (PIR); that is, every ideal a is principal.
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10. Cayley—Hamilton Theorem

The Cayley-Hamilton Theorem says that a matrix satisfies its own characteristic
polynomial. We prove it via a useful equivalent form, known as the “Determinant
Trick.” Using the Trick, we obtain various results, including the uniqueness of the
rank of a finitely generated free module. We also obtain and apply Nakayama’s
Lemma, which asserts that a finitely generated module must vanish if it is equal to
its product with any ideal lying in every maximal ideal containing its annihilator.

Then we turn to two important notions for an algebra: integral dependence,
where every element of the algebra satisfies a monic polynomial equation, and
module finiteness, where the algebra is a finitely generated module. Using the
Trick, we relate these notions to each other, and study their properties. We end
with a discussion of normal domains; they contain every element of their fraction
field satisfying a monic polynomial equation.

A. Text

(10.1) (Cayley—Hamilton Theorem). — Let R be a ring, and M := (a;;) an n X n
matrix with a;; € R. Let I, be the n x n identity matrix, and 7" a variable. The
characteristic polynomial of M is the following polynomial:

Pu(T) :=T" 4+ a;T" ' +--- + a, := det(TTL, — M).

Let a be an ideal. If a;; € a for all 7, j, then clearly a; € a” for all k.
The Cayley—Hamilton Theorem asserts that, in the ring of matrices,

Pr(M) = 0.

It is a special case of (10.2) below; indeed, take M := R", take mq,...,m, to be
the standard basis, and take ¢ to be the endomorphism defined by M.
Conversely, given the setup of (10.2), form the surjection a: R"* — M taking
the ith standard basis element e; to m;, and form the map ®: R™ — R™ associated
to the matrix M. Then pa = a®. Hence, given any polynomial F(T'), we have
F(p)a = aF (®). Hence, if F(®) = 0, then F(p) = 0 as « is surjective. Thus the
Cayley—Hamilton Theorem and the Determinant Trick (10.2) are equivalent.

Theorem (10.2) (Determinant Trick). — Let M be an R-module generated by
my,...,My, and ¢: M — M an endomorphism. Say o(m;) =: Z;L=1 ai;m; with
a;; € R, and form the matrizx M := (a;;). Then Pm(yp) =0 in End(M).

Proof: Let ;; be the Kronecker delta function, ji,,; the multiplication map. Let
A stand for the matrix (d;;¢ — ftq;;) wWith entries in the commutative subring R[]
of End(M), and X for the column vector (m;). Clearly AX = 0. Multiply on the
left by the matrix of cofactors I' of A: the (i,j)th entry of T is (—1)*/ times
the determinant of the matrix obtained by deleting the jth row and the ith column
of A. Then TAX = 0. But ’'A = det(A)I,. So det(A)m; = 0 for all j. Hence
det(A) = 0. But det(A) = Pm(p). Thus Pm(p) = 0. O

Proposition (10.3). — Let M be a finitely generated module, a an ideal. Then
M = aM if and only if there exists a € a such that (1 +a)M = 0.
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Proof: Assume M = aM. Say mq,...,m, generate M, and m; = Z?:l aijm;
with a;; € a. Set M := (a;5). Say Pm(T) = T" + a;T" ' + -+ + a,. Set
a:=ay+--+a, €a Then (14 a)M =0 by (10.2) with ¢ := 1.
Conversely, if there exists a € a such that (1 + a)M = 0, then m = —am for all
méeM. SoM CaM C M. Thus M = aM. ([l

Corollary (10.4). — Let R be a ring, M a finitely generated module, and ¢ an
endomorphism of M. If ¢ is surjective, then ¢ is an isomorphism.

Proof: Note End(M) is an R-algebra; see (4.4). Let X be a variable, and set
P := R[X]. By the UMP of P, there’s an R-algebra map p: P — End(M) with
w(X) = ¢. So M is a P-module such that F(X)M = F(p)M for any F'(X) € P
again by (4.4). Set a := (X). Since ¢ is surjective, M = aM. By (10.3), there
isa € a with (14 a)M = 0. Say a = XG(X) for some polynomial G(X). Then
1y + ©G(p) = 0. Set » = —G(p). Then pyp = 1y and Y = 1p. Thus ¢ is an

isomorphism. O
Corollary (10.5). — Let R be a nonzero ring, m and n positive integers.
(1) Then any n generators vi,...,v, of the free module R™ form a free basis.

(2) If R™ ~ R", then m = n.

Proof: Form the surjection ¢: R™ — R™ taking the ith standard basis element
to v;. Then ¢ is an isomorphism by (10.4). So the v; form a free basis by (4.10)(3).
To prove (2), say m < n. Then R™ has m generators. Add to them n—m zeros.
The result is a free basis by (1); so it can contain no zeros. Thusn —m =0. O

Lemma (10.6) (Nakayama’s). — Let R be a ring, M a module, m C rad(M) an
ideal. Assume M is finitely generated and M = mM. Then M = 0.

Proof: By (10.3), there’s a € m with (1 +a)M = 0. But m C rad(M). Thus
(4.15) implies M = 0.

Alternatively, suppose M # 0. Say mg,...,m, generate M with n minimal.
Thenn > 1and m; = aymi+- - -+a,m, with a; € m. Set M’ := M/(ag, cey )M,
and let mj € M’ be the residue of m;. Then mj # 0 as n is minimal. But
(1 —ag)m} =0 and a; € rad(M) C rad(M’), contradicting (4.15). O

Example (10.7). — Nakayama’s Lemma (10.6) may fail if the module is not
finitely generated. For example, let A be a local domain, m the maximal ideal,
and K the fraction field. Assume A is not a field, so that there’s a nonzero x € m.
Then any z € K can be written in the form z = z(z/z). Thus K = mK, but
K #0.

However, there are important cases where it does hold even if the module is not,
a priori, finitely generated. See (3.31), (20.30), and (22.69).

Proposition (10.8). — Let R be a ring, N C M modules, m C rad(M) an ideal.
(1) If M/N is finitely generated and if N + mM = M, then N = M.
(2) Assume M is finitely generated. Then my,...,m, € M generate M if and
only if their images mY,...,m} generate M’ := M /mM.

Proof: For (1), note N + mM = M if and only if m(M/N) = M/N. Also
Ann(M/N) D Ann(M); so rad(M/N) D rad(M). But rad(M) D m. Apply (10.6)
with M/N for M to conclude M/N = 0. Thus (1) holds.

For (2), let N be the submodule generated by my, ..., m,. Since M is finitely
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generated, so is M/N. Thus N = M if the m} generate M/mM by (1). The
converse is obvious. Thus (2) holds. O

Exercise (10.9) . — Let A be a local ring, m the maximal ideal, M a finitely
generated A-module, and my,...,m, € M. Set k := A/m and M’ := M/mM, and
write m/) for the image of m; in M’. Prove that m},...,m! € M’ form a basis
of the k-vector space M’ if and only if mq,...,m, form a minimal generating
set of M (that is, no proper subset generates M), and prove that every minimal
generating set of M has the same number of elements.

Exercise (10.10) . — Let A be a local ring, k its residue field, M and N finitely
generated modules. Show: (1) M = 0 if and only if M ®4 k = 0.
(2) Ms N#0if M #0and N #0.

(10.11) (Local Homomorphisms). — Let ¢: A — B be a map of local rings, m
and n their maximal ideals. Then the following three conditions are equivalent:

(1) o 'n=m; (2) 1¢mB; (3) mBCn. (10.11.1)

Indeed, if (1) holds, then mB = (p~'n)B C n; so (2) holds. If (2) holds, then mB
lies is some maximal ideal, but n is the only one; thus (3) holds. If (3) holds, then
m C ¢ 1 (mB) C ¢ 'n; whence, (1) holds as m is maximal.

If the above conditions hold, then ¢: A — B is called a local homomorphism.

Proposition (10.12). — Consider these conditions on an R-module P:

(1) P is free and of finite rank;
(2) P is projective and finitely generated;
(3) P is flat and finitely presented.
Then (1) implies (2), and (2) implies (3); all three are equivalent if R is local.

Proof: A free module is always projective by (5.15), and a projective module is
always flat by (9.6). Further, all of (1)—(3) require P to be finitely generated; so
assume it is. Thus (1) implies (2).

Let p1,...,pn € P generate, and let 0 - L — R™ — P — 0 be the short exact
sequence defined by sending the ith standard basis element to p;. Set F' := R".

Assume P is projective. Then the sequence splits by (5.16). So (5.8) yields a
surjection p: F — L. Hence L is finitely generated. Thus (2) implies (3).

Assume P is flat and R is local. Denote the residue field of R by k. Then,
by (9.8)(1), the sequence 0 - L®k - F®k - P®k — 0 is exact. Now,
Fek=(R®k)" = k™ by (8.10) and the Unitary Law (8.5)(2); so dimy F®k = n.
Finally, rechoose the p; so that n is minimal. Then dim; P ® k£ = n, because the
p; ® 1 form a basis by (10.9). Therefore, dim; L ® k =0; so L ® k = 0.

Assume P is finitely presented. Then L is finitely generated by (5.18). Hence
L =0 by (10.10)(1). So F = P. Thus (3) implies (1). d

Definition (10.13). — Let R be a ring, R’ an R-algebra. Then R’ is said to be
module finite over R if R’ is a finitely generated R-module.
An element x € R’ is said to be integral over R or integrally dependent on
R if there exist a positive integer n and elements a; € R such that
2" +ax" 4 +a, =0. (10.13.1)

Such an equation is called an equation of integral dependence of degree n.
If every x € R’ is integral over R, then R’ is said to be integral over R.
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Proposition (10.14). — Let R be a ring, R’ an R-algebra, n a positive integer, and
x € R'. Then the following conditions are equivalent:

(1) = satisfies an equation of integral dependence of degree n.

(2) R[z] is generated as an R-module by 1,x,... a1

(3) x lies in a subalgebra R" generated as an R-module by n elements.

(4) There is a faithful Rx]-module M generated over R by n elements.

Proof: Assume (1) holds. Say F(X) is a monic polynomial of degree n with
F(z) = 0. For any m, let M,, C R[z] be the R-submodule generated by 1,...,z™.
For m > n, clearly 2™ —2™ " F(z) is in M,,—1. But F(x) = 0. So also 2™ € M,,_.
So by induction, M,, = M,,_1. Hence M,,_; = R[z]. Thus (2) holds.

If (2) holds, then trivially (3) holds with R” := R[z].

If (3) holds, then (4) holds with M := R"”, as &M = 0 implies z =z -1 =0.

Assume (4) holds. In (10.2), take ¢ := u,. We obtain a monic polynomial F'
of degree n with F(x)M = 0. Since M is faithful, F(x) = 0. Thus (1) holds. O

Corollary (10.15). — Let R be a ring, P := R[X] the polynomial ring in one
variable X, and 2 C P a proper ideal. Set R' := P/, let k: P — R’ be the
canonical map, and set x := k(X). Fixn > 1. Then these conditions are equivalent:

(1) A = (F) where F is a monic polynomial of degree n.

(2) Set M := Z?:_()l RX"C P and ¢ := |M. Then @: M — R’ is bijective.

(3) 1,z,...,2" 1 form a free basis of R’ over R.

(4) R is a free R-module of rank n.

Proof: Assume (1) holds. Then F'(z) = 0 is an equation of integral dependence
of degree n. So1,...,2" ! generate R’ by (1)=(2) of (10.14). Thus ¢ is surjective.

Given G € Ker ¢, note G € 2. So G = HF for some H € P. But F' is monic of
degree n, whereas G is of degree less than n. So G = 0. Thus (2) holds.

In (2), note 1,..., X"~ ! form a free basis of M. Thus (2) implies (3).

Trivially, (3) implies (4).

Finally, assume (4) holds. Then (4)=-(1) of (10.14) yields a monic polynomial
F € A of degree n. Form the induced homomorphism v¢: P/(F) — R'. Tt is
obviously surjective. Since (1) implies (4), the quotient P/(F') is free of rank n. So
1 is an isomorphism by (10.4). Hence (F') = 2. Thus (1) holds. O

Lemma (10.16). — Let R be a ring, R’ a module-finite R-algebra, and M a finitely
generated R’ -module. Then M is a finitely generated R-module. If M is free of rank
r over R' and if R’ is free of rank v’ over R, then M 1is free of rank rr' over R.

Proof: Say elements z; generate R’ as a module over R, and m; generate M
over R'. Given m € M, say m =Y a;m; with a; € R', and say a; = ) b;;z; with
b;j € R. Then m =Y b;jz;m;. Thus the z;m; generate M over R.

If m = 0, then Zj (ZZ bijxi)mj = 0. So if also the m; are free over R’, then
> bija; = 0 for all j. If in addition the x; are free over R, then b;; = 0 for all 4, j.
Thus the z;m; are free over R. ([l

Theorem (10.17) (Tower Laws). — Let R be a ring, R’ an algebra, R" an R'-
algebra, and x € R".
(1) If x is integral over R', and R’ is integral over R, then x is integral over R.
(2) If R” is integral over R', and R’ is so over R, then R" is so over R.
(3) If R" is module finite over R', and R’ is so over R, then R" is so over R.
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Proof: For (1), say 2" +ajz" ' +---+a, =0 witha; € R'. Form=1,...,n
set Ry, := Rlay,...,a,] C R”. Then R,, is module finite over R,,_1 by (1)=(2
of (10.14). So R, is module finite over R by (10.16) and induction on m.

Moreover, x is integral over R,. So R,[z] is module finite over R,, by (1)=(2)
of (10.14). Hence R, [x] is module finite over R by (10.16). So z is integral over
R by (3)=(1) of (10.14). Thus (1) holds.

Notice (2) is an immediate consequence of (1).

Notice (3) is a special case of (10.16). O

Theorem (10.18). — Let R be a ring, and R’ an R-algebra. Then the following
conditions are equivalent:

)

(1) R’ is algebra finite and integral over R.
(2) R’ = R|x1,...,x,] with all z; integral over R.
(3) R’ is module finite over R.

Proof: Trivially, (1) implies (2).

Assume (2) holds. To prove (3), set R := R[z1] C R’. Then R” is module
finite over R by (1)=-(2) of (10.14). We may assume R’ is module finite over R
by induction on n. So (10.16) yields (3).

If (3) holds, then R’ is integral over R by (3)=-(1) of (10.14); so (1) holds. O

Definition (10.19). — Let R be a ring, R’ an algebra. The integral closure or
normalization of R in R’ is the subset R of elements that are integral over R. If
R C R and R = R, then R is said to be integrally closed in R'.

If R is a domain, then its integral closure R in its fraction field Frac(R) is called

simply its normalization, and R is said to be normal if R = R.

Theorem (10.20). — Let R be a ring, R’ an R-algebra, R the integral closure of
R in R'. Then R is an R-algebra, and is integrally closed in R'.

Proof: Take @ € R and z,y € R. Then the ring R[z,y] is integral over R by
(2)=(1) of (10.18). So ax and = + y and zy are integral over R. Thus R is an
R-algebra. Finally, R is integrally closed in R’ owing to (10.17). O

Theorem (10.21) (Gauss). — A UFD is normal.

Proof: Let R be the UFD. Given z € Frac(R), say x = r/s with r,s € R
relatively prime. Suppose z satisfies (10.13.1). Then
= —(ar" T o a,s" T s,
So any prime element dividing s also divides r. Hence s is a unit. Thus x € R. [
Example (10.22). — (1) A polynomial ring in n variables over a field is a UFD, so
normal by (10.21).
(2) The ring R := Z[v/5] is not a UFD, since
1+V5)(1—-V5)=—-4=-2.2

and 1 + \/3, and 1 — /5 and 2 are irreducible, but not associates. However, set
7 := (1 ++/5)/2, the “golden ratio.” The ring Z[r] is known to be a PID; see
[18, p.292]. Hence, Z[7] is a UFD, so normal by (10.21); hence, Z[r] contains the
normalization R of R. On the other hand, 72 — 7 — 1 = 0; hence, Z[r] C R. Thus
Z[t] = R.
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(3) Let d € Z be square-free. In the field K := Q(v/d), form R := Z + 73 where

5. JHVd)/2, ifd=1 (mod 4);
- \/&, if not.

Then R is the normalization Z of Z in K; see [3, (13.1.6) p. 384].

(4) Let k be a field, k[T the polynomial ring in one variable. Set R := k[T?, T3].
Then Frac(R) = k(T). Further, T is integral over R as T satisfies X2 — T? = (;
hence, k[T] C R. However, k[T is normal by (1); hence, k[T] D R. Thus k[T] = R.

Let k[X,Y] be the polynomial ring in two variables, and ¢: k[X,Y] — R the
k-algebra homomorphism defined by ¢(X) := T? and p(Y) := T3. Clearly ¢ is
surjective. Set p := Ker ¢. Since R is a domain, but not a field, p is prime by (2.8),
but not maximal by (2.13). Clearly p D (Y? — X3). Since Y2 — X3 is irreducible,
(2.20) implies that p = (Y? — X3). So k[X,Y]/(Y? — X3) = R, which provides
us with another description of R.

B. Exercises

Exercise (10.23) . — Let R be a ring, a an ideal. Assume a is finitely generated
and idempotent (or a = a?). Prove there is a unique idempotent e with (e) = a.

Exercise (10.24) . — Let R be a ring, a an ideal. Prove the following conditions
are equivalent:

(1) R/a is projective over R.

(2) R/a is flat over R, and a is finitely generated.

(3) a is finitely generated and idempotent.

(4) a is generated by an idempotent.

(5) a is a direct summand of R.

Exercise (10.25) . — Prove the following conditions on a ring R are equivalent:

(1) R is absolutely flat; that is, every module is flat.

(2) Every finitely generated ideal is a direct summand of R.
(3) Every finitely generated ideal is idempotent.

(4) Every principal ideal is idempotent.

Exercise (10.26) . — Let R be a ring. Prove the following statements:
(1) Assume R is Boolean. Then R is absolutely flat.
(2) Assume R is absolutely flat. Then any quotient ring R’ is absolutely flat.

(3) Assume R is absolutely flat. Then every nonunit z is a zerodivisor.
(4) Assume R is absolutely flat and local. Then R is a field.

Exercise (10.27) . — Let R be a ring, «: M — N a map of modules, m an ideal.
Assume that m C rad(V), that N is finitely generated, and that the induced map
a: M/mM — N/mN is surjective. Show that « is surjective too.

Exercise (10.28) . — Let R be a ring, m an ideal, £ a module, M, N submodules.
Assume N is finitely generated, m C rad(N), and N C M +mN. Show N C M.

Exercise (10.29) . — Let R be a ring, m an ideal, and «,8: M = N two maps
of finitely generated modules. Assume « is an isomorphism, m C rad(N), and
B(M) C mN. Set v := a+ (. Show ~ is an isomorphism.
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Exercise (10.30) . — Let A — B be a local homomorphism, M a finitely generated
B-module. Prove that M is faithfully flat over A if and only if M is flat over A
and nonzero. Conclude that, if B is flat over A, then B is faithfully flat over A.

Exercise (10.31) . — Let A — B be a flat local homomorphism, M a finitely
generated A-module. Set N := M ® B. Assume N is cyclic. Show M is cyclic too.
Conclude that an ideal a of A is principal if its extension aB is so.

Exercise (10.32) . — Let R be a ring, X a variable, R’ an algebra, n > 0. Assume
R’ is a free R-module of rank n. Set m := rad(R) and k := R/m. Given a k-
isomorphism @: k[X]/(F) - R'/mR’ with F monic, show we can lift & to an
R-isomorphism ¢: R[X]/(F) = R’ with F monic. Show F must then lift F.

Exercise (10.33) . — Let R be a ring, a an ideal, P := R[X] the polynomial ring
in one variable X, and G1,G2, H € P with G; monic of degree n. Show:
(1) Assume G; and Go are coprime. Then there are unique Hy, Ho € P with
H = H,G1 + HyG5 and deg(Hg) <n.
(2) Assume the images of G; and Gy are coprime in (R/a)[X] and a C rad(R).
Then G and G5 are coprime.

Exercise (10.34) . — Let R be a ring, a C rad(R) an ideal, P := R[X] the
polynomial ring in one variable X, and F,G,H € P. Assume that ' = GH
(mod aP), that G and H are coprime, and that G is monic, say of degree n. Show
that there are coprime polynomials G, H' € P with G’ monic of degree n, with
deg(H') < max{deg(H), deg(F) — n}, and with

G=G and H=H' (mod aP) and F=G'H (mod a’P).

Exercise (10.35) . — Let G be a finite group acting on a ring R. Show that every
r € R is integral over RY, in fact, over its subring R’ generated by the elementary
symmetric functions in the conjugates gz for g € G.

Exercise (10.36) . — Let R be aring, R’ an algebra, G a group that acts on R'/R,
and R the integral closure of R in R’. Show that G acts canonically on R/R.

Exercise (10.37) . — Let R be a normal domain, K its fraction field, L/ K a Galois
extension with group G, and R the integral closure of R in L. (B(g definition, G
is the group of automorphisms of L/K and K = L%.) Show R =

Exercise (10.38) . — Let R’/R be an extension of rings. Assume R’ — R is closed
under multiplication. Show that R is integrally closed in R'.

Exercise (10.39) . — Let R be a ring; C, R’ two R-algebras; R” an R’-algebra. If
R" is either (1) integral over R’, or (2) module finite over R’, or (3) algebra finite
over R/, show R” @ C is so over R’ ®p C.

Exercise (10.40) . — Let k be a field, P := k[X] the polynomial ring in one
variable, ' € P. Set R := k[X?] C P. Using the free basis 1, X of P over R, find
an explicit equation of integral dependence of degree 2 on R for F.

Exercise (10.41) . — Let Ry,..., R, be R-algebras, integral over R. Show that
their product [] R; is integral over R.
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Exercise (10.42) . — For 1 < i <r, let R; be a ring, R} an extension of R;, and
x; € R.. Set R:=[][ Ry, set R :=[[ R}, and set x := (z1,...,,). Prove

(1) z is integral over R if and only if z; is integral over R; for each i;

(2) R is integrally closed in R’ if and only if each R; is integrally closed in R}.

Exercise (10.43) . — Let k be a field, X and Y variables. Set
R:=k[X,Y]/(Y? - X? - X?),

and let z,y € R be the residues of X,Y. Prove that R is a domain, but not a field.
Set t := y/x € Frac(R). Prove that k[t] is the integral closure of R in Frac(R).
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11. Localization of Rings

Localization generalizes construction of the fraction field of a domain. We localize
an arbitrary ring using as denominators the elements of any given multiplicative
subset. The result is universal among algebras rendering all these elements units.
When the multiplicative subset is the complement of a prime ideal, we obtain a local
ring. We relate the ideals in the original ring to those in the localized ring. Lastly,
we localize algebras, vary the set of denominators, and discuss decomposable
rings, which are the finite products of local rings.

A. Text

(11.1) (Localization). — Let R be a ring, and S a multiplicative subset. Define a
relation on R x S by (x,s) ~ (y,t) if there is u € S such that xtu = ysu.

This relation is an equivalence relation. Indeed, it is reflexive as 1 € S and is
trivially symmetric. As to transitivity, let (y,t) ~ (z,r). Say yrv = ztv with v € S.
Then zturv = ysurv = ztvsu. Thus (x,s) ~ (z,r).

Denote by S™!R the set of equivalence classes, and by z/s the class of (z, s).

Define x/s - y/t := xy/st. This product is well defined. Indeed, say y/t = z/r.
Then there is v € S such that yrv = ztv. So zsyrv = xsztv. Thus zy/st = xz/sr.

Define x/s + y/t := (tz + sy)/(st). Then, similarly, this sum is well defined.

It is easy to check that S™'R is a ring, with 0/1 for 0 and 1/1 for 1. It is called
the ring of fractions with respect to S or the localization at S.

Let ¢5: R — S™1R be the map given by pg(z) := x/1. Then g is a ring map,
and it carries elements of S to units in ST'R as s/1-1/s = 1.

(11.2) (Total quotient rings). — Let R be a ring. The set of nonzerodivisors Sy
is a saturated multiplicative subset, as noted in (3.11). The map ¢g,: R — So_lR
is injective, because if g,z = 0, then sz = 0 for some s € S, and so x = 0. We
call SalR the total quotient ring of R, and view R as a subring.

Let S C Sy be a multiplicative subset. Clearly, R C S™'!R C So_lR.

Suppose R is a domain. Then Sy = R — {0}; so the total quotient ring is just
the fraction field Frac(R), and ¢g, is just the natural inclusion of R into Frac(R).
Further, S™'R is a domain by (2.3) as S™'R C Sy 'R = Frac(R).

Theorem (11.3) (UMP). — Let R be a ring, S a multiplicative subset. Then SR
is the R-algebra universal among algebras rendering all the s € S units. In fact,
given a ring map ¥: R — R', then ¢(S) C R™™ if and only if there exists a ring
map p: STYR — R’ with pps = 1; that is, this diagram commutes:

R—5 s7IR
>
R/
If so, p is unique, and Ker(p) = Ker(v)S™'R. Finally, R’ can be noncommutative.

Proof: First, suppose that p exists. Let s € S. Then ¥(s) = p(s/1). Hence
P(s)p(1/s) = p(s/1-1/s) = 1. Thus ¥(S) C R'*.
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Next, note that p is determined by 1 as follows:
p(x/s) = p(x/1)p(1/s) = (x)(s) "

Conversely, suppose ¥(S) C R'*. Set p(z/s) := 1(s) " 1(x). Let’s check that p
is well defined. Say x/s = y/t. Then there is u € S such that ztu = ysu. Hence

(@)Y () (u) = Py)d(s)y(w).
Since ¥ (u) is a unit, ¥ () (t) = P (y)w(s). But st = ts; so

()T (s) T = w(s) ()T
even if R’ is noncommutative. Hence 1 (z)w(s)~! = 9(y)y(t)~t. Thus p is well
defined. Plainly, p is a ring map. Plainly, ¥ = pyg.

Plainly, Ker(p) D Ker(¢)S™'R. Conversely, given z/s € Ker(p), note that
P(x)(s)~1 =0. So ¥(z) = 0. So x € Ker(zp). Thus z/s € Ker(v))S™IR, O

Corollary (11.4). — Let R be a ring, and S a multiplicative subset. Then the
canonical map pg: R — STIR is an isomorphism if and only if S consists of units.

Proof: If pg is an isomorphism, then S consists of units, because ¢g(S) does so.
Conversely, if S consists of units, then the identity map R — R has the UMP that
characterizes ¢g; whence, @g is an isomorphism. ([

Exercise (11.5) . — Let R’ and R” be rings. Consider R := R’ x R” and set
S:={(1,1), (1,0) }. Prove R’ = S~'R.

Definition (11.6). — Let R be a ring, f € R. Set Sy := {f™ | n > 0}. We call the
ring S]?lR the localization of R at f, and set Ry := S;lR and @y 1= g,

Proposition (11.7). — Let R be a ring, f € R, and X a variable. Then
Ry = R[X]/(1 - fX).

Proof: Set R’ := R[X]/(1—fX), and let ¢: R — R’ be the canonical map. Let’s
show that R’ has the UMP characterizing localization (11.3).

First, let € R’ be the residue of X. Then 1 —z¢(f) = 0. So ¢(f) is a unit. So
©(f™) is a unit for n > 0.

Second, let ¥: R — R” be a homomorphism carrying f to a unit. Define
0: R[X] — R"” by 0|R =1 and X = 9 (f)~. Then 6(1 — fX) = 0. So 6 factors
via a homomorphism p: R’ — R”, and 1) = pp. Further, p is unique, since every
element of R’ is a polynomial in = and since px = ¢(f)~! as 1 — (pz)(ppf) =0. O

Proposition (11.8). — Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then aS™'R=1{a/s € ST'R|a € a and s € S}.
(2) Then anS # 0 if and only if aS™*R = ST R if and only if(pgl(aS_lR) = R.

Proof: Let a,b € a and z/s, y/t € ST'R. Then ax/s + by/t = (axt + bys)/st;
further, azt + bys € a and st € S. So aS7'R C {a/s | a € a and s € S}. But the
opposite inclusion is trivial. Thus (1) holds.

As to (2),ifan S > s, then aS™'R 3 s/s = 1, so aS™'R = S™'R; whence,
¢5'(aST'R) = R. Finally, suppose ¢g'(aS™'R) = R. Then aS™'R > 1. So (1)
yields a € a and s € S such that a/s = 1. So there exists a t € S such that at = st.
But at € a and st € S. So anN S # (. Thus (2) holds. O
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Definition (11.9). — Let R be a ring, S a multiplicative subset, a a subset of R.
The saturation of a with respect to S is the set denoted by a® and defined by

a® := {a € R| there is s € S with as € a}.

If a = a”, then we say a is saturated.

Proposition (11.10). — Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then Ker(pg) = (0)%. (2) Thena C a®. (3) Then a® is an ideal.

Proof: Clearly, (1) holds, for a/1 = 0 if and only if there is s € S with as = 0.
Clearly, (2) holds as 1 € S. Clearly, (3) holds, for if as, bt € a, then (a + b)st € a,
and if x € R, then zas € a. O

Proposition (11.11). — Let R be a ring, S a multiplicative subset.
(1) Let b be an ideal of S*R. Then

(a) 05’0 = (¢5'0)° ad (b)) b= (¢5"0)(S'R).
(2) Let a be an ideal of R. Then

(a) aST'R=0a%S7'R and (b) p5*(aSTIR) = a”.
(3) Let p be a prime ideal of R, and assume p NS = (. Then

(a) p=p° and (b) pSTIR is prime.

Proof: To prove (1)(a), take a € R and s € S with as € ¢g'b. Then as/1 € b;
so a/1 € b because 1/s € ST'R. Hence a € pg'b. Therefore, (pg'b)% C pg'b.
The opposite inclusion holds as 1 € S. Thus (1)(a) holds.

To prove (1)(b), take a/s € b. Then a/1 € b. So a € pg'b. Hence a/1-1/s is
in (pg'b)(S™'R). Thus b C (¢g'b)(S~'R). Now, take a € ¢g'b. Then a/1 € b.
So b D (¢5'b)(STIR). Thus (1)(b) holds too.

To prove (2), take a € a®. Then thereis s € S with as € a. But a/1 = as/1-1/s.
So a/l € aS7'R. Thus aS™'R D a®S7!'R and ¢5'(aS7'R) D a”.

Conversely, trivially aS™'R C a®S~!R. Thus (2)(a) holds.

Take = € pg' (aS7'R). Then z/1 = a/s with a € a and s € S by (11.8)(1). So
there’s t € S with st = at € a. So z € a¥. So 5" (aS~*R) C a®. Thus (2) holds.

To prove (3), note p C p° as 1 € S. Conversely, if sa € p with s € S C R — p,
then a € p as p is prime. Thus (a) holds.

As for (b), first note pST'R # ST'R as o5 ' (pSTIR) = p¥ = p by (2) and (3)(a)
and as 1 ¢ p. Second, say a/s-b/t € pST'R. Then ab € pg'(pS™'R), and the
latter is equal to p® by (2), so to p by (a). Hence ab € p, so either a € p or b € p.
So either a/s € pST'R or b/t € pS~'R. Thus pS~!R is prime. Thus (3) holds. O

Corollary (11.12). — Let R be a ring, S a multiplicative subset.

(1) Then a — aS™'R is an inclusion-preserving bijection from the (set of all)
ideals a of R with a = a® to the ideals b of ST'R. The inverse is b — @glb.

(2) Then p — pS—LR is an inclusion-preserving bijection from the primes p of R
with p NS = 0 to the primes q of ST'R. The inverse is q — <p§1q.

Proof: In (1), the maps are inverses by (11.11)(1), (2); clearly, they preserve
inclusions. Further, (1) implies (2) by (11.11)(3), by (2.7), and by (11.8)(2). O
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Localization of Rings (11.13) /(11.15) Text

Definition (11.13). — Let R be a ring, p a prime. Set S, := R —p. We call the
ring SEIR the localization of R at p, and set R, := S;lR and @y 1= @g,.

Proposition (11.14). — Let R be a ring, p a prime ideal. Then R, is local with
mazimal ideal pR,,.

Proof: Let b be a proper ideal of R,. Then ¢, 'b C p owing to (11.8)(2). Hence
(11.12)(1) yields b C pR,. Thus pR, is a maximal ideal, and the only one.

Alternatively, let /s € R,. Suppose x/s is a unit. Then there is a y/t with
xy/st = 1. So there is a u ¢ p with zyu = stu. But stu ¢ p. Hence x ¢ p.

Conversely, let ¢ p. Then s/z € R,. So x/s is a unit in R, if and only if
x ¢ p, so if and only if /s ¢ pR,. Thus by (11.8)(1), the nonunits of R, form
pR,, which is an ideal. Hence (3.5) yields the assertion. O

(11.15) (Algebras). — Let R be aring, S a multiplicative subset, R’ an R-algebra.
It is easy to generalize (11.1) as follows. Define a relation on R’ xS by (x, s) ~ (y, t)
if there is u € S with xtu = ysu. It is easy to check, as in (11.1), that this relation
is an equivalence relation.

Denote by S™!R’ the set of equivalence classes, and by z/s the class of (z,s).
Clearly, ST'R’ is an S~!R-algebra with addition and multiplication given by

x/s+y/t:=(xt+ys)/(st) and z/s-y/t:=xy/st.

We call S™'R’ the localization of R’ with respect to S.

Let p's: R — ST'R’ be the map given by ¢/s(z) := z/1. Then ¢’y makes S™' R’
into an R'-algebra, so also into an R-algebra, and ¢’ is an R-algebra map.

Note that elements of S become units in S~ R’. Moreover, it is easy to check, as
in (11.3), that S~' R’ has the following UMP: @'y is an algebra map, and elements
of S become units in ST'R'; further, given an algebra map ¢: R' — R such that

elements of S become units in R", there is a unique R-algebra map p: S™'R' — R
such that pp's = ; that is, the following diagram is commutative:

’

In other words, S~'R’ is universal among R’-algebras rendering the s € S units.
Let 7: R" — R” be an R-algebra map. Then there is a commutative diagram of
R-algebra maps

T

R/ R//
@’Sl l‘PIé
S—1R/ 57tz S—1R
Further, S~'7 is an S~!R-algebra map.
Let S’ C R’ be the image of S C R. Then S’ is multiplicative. Further,
SR =S8R, (11.15.1)
even though R’ x S and R’ x S’ are rarely equal, because the two UMPs are
essentially the same; indeed, any ring map R’ — R” may be viewed as an R-

algebra map, and trivially the elements of S become units in R” if and only if the
elements of S’ do.
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Localization of Rings (11.16) / (11.23) Exercises

Proposition (11.16). — Let R be a ring, S a multiplicative subset. Let T' be a
multiplicative subset of S™'R, and set T := o5 (T"). Assume S C T. Then

(T")y"Y(S™'R)=T"'R.

Proof: Let’s check (T')"*(S!R) has the UMP characterizing T-'R. Clearly
or/ps carries T into ((T")"*(S7'R)) *_ Next, let 19: R — R’ be a map carrying T
into R’*. We must show 1 factors uniquely through (77)~1(S~1R).

First, 1 carries S into R’* since S C T. So 1 factors through a unique map
p: ST'R — R'. Now, given r € T’, write r = z/s. Then z/1 = s/1 -7 € T’ since
S CT. Sox € T. Hence p(r) = (x) - p(1/s) € (R')*. So p factors through a
unique map p": (T")"1(STLR) — R'. Hence v = p'o1/pg, and p’ is clearly unique,
as required. O

Definition (11.17). — We call a ring decomposable if it’s a finite product of local
rings.

Proposition (11.18). — Let R be a ring, {m\} its set of maximal ideals. Assume
R is decomposable; say R = H?:l R; with all R; local. Then R is semilocal with n
mazimal ideals, and after reindexing, R; = Rm, for all i.

Proof: Set e; := (6;5) € [[ R; where ;5 is the Kronecker delta. Then R; = Re;.
Let n; be the maximal ideal of R;. Set m} := n; x Hj# R;. Then m] is maximal,
and every maximal ideal of R has this form owing to (1.23). Thus R is semilocal
with n maximal ideals.

Reindex the my so that m; = mj. Set S; := {1, ¢;}. Then S;lR = R; by (11.5).
Also, the localization map ¢g, : R — R, is the projection. So <p§i1 (R;—n;) = R—m,.
S0 Rum, = (R;)w, by (11.16). But (R;)., = R; by (11.4). O

B. Exercises

Exercise (11.19) . — Let R be a ring, S a multiplicative subset. Prove S™1R =0
if and only if S contains a nilpotent element.

Exercise (11.20) . — Find all intermediate rings Z C R C Q, and describe each R
as a localization of Z. As a starter, prove Z[2/3] = S5 'Z where S3 := {3 | i > 0}.

Exercise (11.21) . — Take R and S as in (11.5). On R x S, impose this relation:
(z,s) ~ (y,t) if at=uys.
Show that it is not an equivalence relation.

Exercise (11.22) . — Let R be a ring, S a multiplicative subset, G be a group
acting on R, Assume g(S) C S for all g € G. Set S¢ := SN RY. Show:

(1) The group G acts canonically on S™1R.
(2) If G is finite, there’s a canonical isomorphism p: (S¢)"1RY =~ (S~1R)¢.

Exercise (11.23) . — Let R be a ring, S C T a multiplicative subsets, S and T
their saturations; see (3.25). Set U := (S7'R)*. Show the following:
(1) U={z/s|z€ Sandsec S} (2) ¢5'U = 5.

3) ST'R=T"'Rifandonlyif S=7. (4) § R=S"'R.
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Localization of Rings (11.24) / (11.35) Exercises

Exercise (11.24) . — Let R be aring, S C T C U and W multiplicative subsets.
(1) Show there’s a unique R-algebra map ¢5: ST'R — T R and L¢3 = ¢
(2) Given a map ¢: S!R— W~IR, show S C S C W and ¢ = <pSW.

Exercise (11.25) . — Let R = lim Ry be a filtered direct limit of rings with tran-

sition maps @ﬁ: Ry — R, and insertions ¢, : R, — R. For all A, let S\ C Ry be a
multiplicative subset. For all @f;, assume gaﬁ(SA) C Sy Set S :=JprSx. Show
lim Sy Ry = S7'R.
Exercise (11.26) . — Let R be a ring, Sy the set of nonzerodivisors. Show:
(1) Then Sy is the largest multiplicative subset S with ¢g: R — S™1R injective.

(2) Every element z/s of Sy 'R is either a zerodivisor or a unit.
(3) Suppose every element of R is either a zerodivisor or a unit. Then R = So_lR.

Exercise (11.27) . — Let R be a ring, S a multiplicative subset, a and b ideals.
Show: (1) if a C b, then a® C b%; (2) (a®)® =a°; and (3) (a®b%)% = (ab)”.
Exercise (11.28) . — Let R be a ring, S a multiplicative subset. Prove that

nil(R)(S™'R) = nil(S™'R).

Exercise (11.29) . — Let R be a ring, S a multiplicative subset, R’ an algebra.
Assume R’ is integral over R. Show S™'R’ is integral over S™'R.

Exercise (11.30) . — Let R be a domain, K its fraction field, L a finite extension
field, and R the integral closure of R in L. Show L = Frac(R). Show every element
of L can, in fact, be expressed as a fraction b/a with b € R and a € R.

Exercise (11.31) . — Let R C R’ be domains, K and L their fraction fields.
Assume that R’ is a finitely generated R-algebra, and that L is a finite dimensional
K-vector space. Find an f € R such that R} is module finite over Rjy.

Exercise (11.32) (Localization and normalization commute) . — Given a domain
R and a multiplicative subset S with 0 ¢ S. Show that the localization of the
normalization S™'R is equal to the normalization of the localization S—1R.

Exercise (11.33) . — Let k be a field, A a local k-algebra with maximal ideal
m. Assume that A is a localization of a k-algebra R and that A/m = k. Find a
maximal ideal n of R with R, = A.

Exercise (11.34) . — Let R be a ring, S a multiplicative subset, X := {X,} a set
of variables. Show (S™'R)[X] = S~ (R[X]).

Exercise (11.35) . — Let R be aring, S a multiplicative subset, X a set of variables,
p an ideal of R[X]. Set R’ := S~!R, and let ¢: R[X] — R'[X] be the canonical map.
Show p is prime and p NS = () if and only if pR'[X] is prime and p = ¢~ (pR'[X]).
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12. Localization of Modules

Formally, we localize a module just as we do a ring. The result is a module
over the localized ring, and comes equipped with a linear map from the original
module; in fact, the result is universal among modules with those two properties.
Consequently, Localization is a functor; in fact, it is the left adjoint of Restriction
of Scalars from the localized ring to the base ring. So Localization preserves direct
limits, or equivalently, direct sums and cokernels. Further, by uniqueness of left
adjoints or by Watts’s Theorem, Localization is naturally isomorphic to Tensor
Product with the localized ring. Moreover, Localization is exact; so the localized
ring is flat. We end the chapter by discussing various compatibilities and examples.

A. Text

Proposition (12.1). — Let R be a ring, S a multiplicative subset. Then a module
M has a compatible S~ R-module structure if and only if, for all s € S, the multi-
plication map ps: M — M is bijective; if so, then the S~ R-structure is unique.

Proof: Assume M has a compatible S~!R-structure, and take s € S. Then
Ms = fhs/1- SO s f1/s = fi(s/1)(1/s) = 1. Similarly, p1/s - ps = 1. So s is bijective.
Conversely, assume g, is bijective for all s € S. Then pr: R — Endz(M)
sends S into the units of Endz(M). Hence ug factors through a unique ring map
ps-1g: ST'R — Endz(M) by (11.3). Thus M has a compatible S~!R-structure
by (4.4), which is unique by (4.5). O

(12.2) (Localization of modules). — Let R be a ring, S a multiplicative subset,
M a module. Define a relation on M x S by (m,s) ~ (n,t) if there is u € S such
that utm = usn. As in (11.1), this relation is an equivalence relation.

Denote by S™1M the set of equivalence classes, and by m/s the class of (m, s).
Then S~1M is an S~!R-module with addition given by m/s+n/t := (tm+ sn)/st
and scalar multiplication by a/s - m/t := am/st similar to (11.1). We call S~tM
the localization of M at S.

For example, let a be an ideal. Then S~'a = aS™'R by (11.8)(1). Similarly,
S~t(aM) = S7taS™'M = aS~!M. Further, given an R-algebra R’, the S™!'R-
module ST!R’ constructed here underlies the S~!R-algebra S™'R’ of (11.15).

Define pg: M — S™1M by ¢g(m) := m/1. Clearly, pg is R-linear.

Note that ps: S™1M — S~1M is bijective for all s € S by (12.1).

Given f € R, we call S;lM the localization of M at f, and set My := S;lM
and ¢y := pg. Similarly, given a prime p, we call SglM the localization of M
at p, and set M, := Sp_lM and ¢, = @g.

Theorem (12.3) (UMP). — Let R be a ring, S a multiplicative subset, and M a
module. Then S™'M equipped with pg: M — S~'M is universal among S™'R-
modules equipped with an R-map from M ; that is, given an R-map ¥: M — N with
N an S~'R-module, there’s a unique S"'R-map o: S™'M — N with cpg = .
Moreover, given an R-map o': S™'M — N with ¢'p5 = 1, necessarily, o’ = o.
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Localization of Modules (12.4) / (12.10) Text

Proof: For m € M and s € S, note so’(m/s) = o'(sm/s) = o'(ps(m)) = ¥(s).
Multiply by 1/s. Thus ¢'(m/s) = 1(s)/s, and so ¢’ is determined by .

So set a(m/s) := 1¢(m)/s. Let’s check o is well defined. Say m/s = n/t with
n € M and ¢t € S. Then there’s v € S with utm = usn. So uty(m) = usip(n). So
Y(m)/s = (n)/t. Thus o is well defined. Plainly, cpg = 1.

Finally, o is plainly R-linear. Thus, by (12.4)(1) below, o is S™!R-linear. O

Exercise (12.4) . — Let R be a ring, S a multiplicative subset, and M, N modules.
Show: (1) If M, N are S~!R-modules, then Homg-1z(M, N) = Homg (M, N).
(2) M is an S~!R-module if and only if M = S~1M.

Exercise (12.5) . — Let R be a ring, S C T multiplicative subsets, M a module.
Set T" := pg(T) C S~'R. Show T-'M =T'-1(S~1M).
Exercise (12.6) . — Let R be a ring, S a multiplicative subset. Show that S

becomes a filtered category when equipped as follows: given s,t € S, set
Hom(s,t) := {x € R| xs = t}.

Given a module M, define a functor S — ((R-mod)) as follows: for s € S, set
M, := M; to each x € Hom(s, t), associate pi,: My — M;. Define 8s: My — S~ M
by Bs(m) := m/s. Show the fs induce an isomorphism thg -~y STIM.

(12.7) (Functoriality). — Let R be a ring, S a multiplicative subset, «: M — N an

R-linear map. Then pga carries M to the S~!R-module S~!N. So (12.3) yields
a unique S~!R-linear map S~!a making the following diagram commutative:

M 25 §-1M
[ e
N %3 5N
The construction in the proof of (12.3) yields
(S7ta)(m/s) = a(m)/s. (12.7.1)
Thus, canonically, we obtain the following map, and clearly, it is R-linear:
Homp(M, N) — Homg-1z(S™*M, ST'N). (12.7.2)

Any R-linear map 3: N — P yields S~!(Ba) = (S718)(S~!a) owing to uniqueness
or to (12.7.1). Thus S~1(e) is a linear functor from ((R-mod)) to ((S~!R-mod)).

Theorem (12.8). — Let R be a ring, S a multiplicative subset. Then the functor
S~1(e) is the left adjoint of the functor of restriction of scalars.

Proof: Let M be an R-module, N an S~!R-module. Then pgs: M — N induces
an isomorphism Homg 15(S~*M, N) =~ Homg(M, N) by the UMP of Localiza-
tion (12.3). It’s natural in M and N by (12.7) and the naturality of Hom. O

Corollary (12.9). — Let R be a ring, S a multiplicative subset. Then the functor
S~1(e) preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By (12.8), the functor is a left adjoint. Hence it preserves direct limits
by (6.9); equivalently, it preserves direct sums and cokernels by (6.7). |

Corollary (12.10). — Let R be a ring, S a multiplicative subset. Then the functors
S~1(e) and ST'R®p e are canonically isomorphic.
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Localization of Modules (12.11) /(12.13) Text

Proof: As S~!(e) preserves direct sums and cokernels by (12.9), the assertion
is an immediate consequence of Watts’ Theorem (8.13).

Alternatively, both functors are left adjoints of the same functor by (12.8) and
by (8.9)(2). So they are canonically isomorphic by (6.3). O

(12.11) (Saturation). — Let R be a ring, S a multiplicative subset, M a module.
Given a submodule N, its saturation N is defined by

S:={m € M | there is s € S with sm € N}.
Note N € N¥as 1€ S. If N = N¥, then we say N is saturated.

Proposition (12.12). — Let R be a ring, M a module, N and P submodules. Let
S, and T be multiplicative subsets, and K an S~'R-submodule of S~ M.

(1) Then (a) N° is a submodule of M, and (b) ST'N is a submodule of S~*M.
(2) Then (a) gale (p5'K)S and (b) K = S71(p5'K).

(3) Then (a) ¢ ( IN) = N9; so Ker(pg) = 0°. And (b) SN = S7IN¥J.
(4) Then (a) ( NHT = N5T and( ) STHSTIN) = S7IN.

(5) Assume N C P. Then (a) N° C P° and (b) SN C S7'P.

(6) Then (a) (NN P)¥ =NSNPY and (b) STH(NNP)=S"INNS~'P.

(7) Then (a) (N + P)S > N9+ P and (b) STH(N+P) =SSN+ S~'P.

(8) Assume S C T. Then NS C NT.

Proof: For (1)(a), (2), (3), argue much as for (11.10)(3) and (11.11)(1), (2).

For (1)(b), note N x S lies in M x S and has the induced equivalence relation.

For (4)(a), note n € (N¥)T if and only if there exist t € T and s € S with
s(tn) = (st)n € N, so if and only if n € N°T.

For (4)(b), take M := S™!N in (12.4)(2).

For (5)(a), given n € N, there’s s € S with sn € N. So sn € P. Thus n € P.

For (5)(b), take M := P in (1)(b).

For (6)(a), note (NN P)% ¢ N9 N PS. Conversely, given n € NN P?, there are
s,t € S with sn € N and tn € P. So stn € NN P and st € S. Thus n € (N N P)%.
Alternatively, (6)(a) follows from (6)(b) and (3).

For (6)(b), note NN P C N, P. So (1) yields ST{(NNP) c STINNS~IP.
Conversely, given n/s = p/t € STLNNS™IP, there’s u € S with utn = usp € NNP.
Thus utn/uts = usp/uts € S~1(N N P). Thus (6)(b) holds.

For (7)(a), given n € N and p € P, there are s,t € S with sn € N and
tp € P. Then st € S and st(n+ p) € N + P. Thus (7)(a) holds.

For (7)(b), note N, P C N+ P. So (1)(b) yields S"Y(N+P) D S7IN+S~1P.
But the opposite inclusion holds as (n + p)/s = n/s + p/s. Thus (7)(b) holds.

For (8), given n € N°, there’s s € S withsn € N. But s € T. Thusn € NT. O

Theorem (12.13) (Exactness of Localization). — Let R be a ring, and S a multi-
plicative subset. Then the functor S=1(e) is eract.

Proof: Note that S~1(e) preserves injections by (12.12)(1)(b) and cokernels by
(12.9). Thus it is exact by (9.3).

Alternatively, given an exact sequence M’ = M LN Y , for each s € S, take a
copy M. — My — M. Using (12.6), make S into a ﬁltered category, and make
these copies into a functor from S to the category of 3-term exact sequences; its
limit is the following sequence, which is exact by (7.9), as desired:

S Stey g1y ST g1y
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Localization of Modules (12.14) / (12.18) Text

The alternative argument can be made more direct as follows. Since fa = 0, we
have (S7!8)(S7'a) = S71(Ba) = 0. Hence Ker(S713) D Im(S~'a). Conversely,
given m/s € Ker(S713), there is t € S with ¢t3(m) = 0. So B(tm) = 0. So
exactness yields m’ € M’ with a(m’) = tm. So (S7'a)(m//ts) = m/s. Hence
Ker(S718) C Im(S~'a). Thus Ker(S~!8) = Im(S~1a), as desired. O

Corollary (12.14). — Let R be a ring, S a subset multiplicative. Then ST'R is flat
over R.

Proof: The functor S~!(e) is exact by (12.13), and is isomorphic to S"!R®@p e
by (12.10). Thus S™!R is flat.

Alternatively, using (12.6), write S™!R as a filtered direct limit of copies of R.
But R is flat by (9.6). Thus S™'R is flat by (9.9). O

Corollary (12.15). — Let R be a ring, S a multiplicative subset, a an ideal, and M
a module. Then S~*(M/aM)=S"'M /S~ (aM)=S"'M/aS™IM.

Proof: The assertion results from (12.13) and (12.2). O
Corollary (12.16). — Let R be a ring, p a prime. Then
Frac(R/p) = (R/p)p = Rp/pR,.

Proof: The assertion results from (11.15) and (12.15). O

Exercise (12.17) . — Let R be a ring, S a multiplicative subset, M a module.
Show: (1) S™'Ann(M) C Ann(S—'M), with equality if M is finitely generated;
(2) ST'M =0 if Ann(M)N S # (), and conversely if M is finitely generated.

Proposition (12.18). — Let R be a ring, M a module, S a multiplicative subset.
(1) Let my,...,m, € M. If M is finitely generated and if the m;/1 € S~™*M
generate over STR, then there’s f € S so that the m;/1 € My generate over Ry.
(2) Assume M is finitely presented and S~'M is a free S~ R-module of rank n.
Then there is h € S such that My, is a free Rp-module of rank n.

Proof: To prove (1), define a: R™ — M by a(e;) := m; with e; the ith standard
basis vector. Set C' := Coker(a). Then S™'C = Coker(S~'a) by (12.9). Assume
the m;/1 € S™1M generate over S™'R. Then S~'a is surjective by (4.10)(1) as
S7HR") = (S'R)" by (12.9). Hence S~1C = 0.

In addition, assume M is finitely generated. Then so is C. Hence, (12.17)(2)
yields f € S such that Cy = 0. Hence ay is surjective. So the m;/1 generate My
over R, again by (4.10)(1). Thus (1) holds.

For (2), let my/s1,...,m,/sy be a free basis of S™'M over ST'R. Then so is
m1/1,...,my/1 asthe 1/s; are units. Form a and C as above, and set K := Ker(«).
Then (12.13) yields S7'K = Ker(S~!a) and S7'C = Coker(S~'a). But S~la is
bijective. Hence S™'K = 0 and S~!C = 0.

Since M is finitely generated, C' is too. Hence, as above, there is f € S such
that Cy = 0. Then 0 — Ky — R} 2, M; — 0 is exact by (12.13). Take a
finite presentation R? — RY — M — 0. By (12.13), it yields a finite presentation
RY — R} — My — 0. Hence K is a finitely generated Ry-module by (5.18).

Let S; C Ry be the image of S. Then (12.5) yields S;'(K;) = S~'K. But
S~'K = 0. Hence there is g/1 € Sy such that (Kf),/1 = 0. Set h := fg. Let’s show
Kj = 0. Let € K. Then there is a such that (¢°z)/1 = 0 in Ky. Hence there
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is b such that f’¢%c = 0in K. Take ¢ > a, b. Then hz = 0. Thus K; = 0. But
C¢ = 0 implies Cj, = 0. Hence ay,: R} — Mj, is an isomorphism, as desired. (I

Proposition (12.19). — Let R be a ring, S a multiplicative subset, M and N
modules. Then there is a canonical homomorphism

o: S~ Hompg(M, N) — Homg-15(S™1M,S™IN).

Further, o is injective if M is finitely generated, and o is an isomorphism if M is
finitely presented.

Proof: The assertions result from (9.33) with R’ := S™!R, since S™'R is flat
by (12.14) and since ST'R® P = S~!'P for every R-module P by (12.10). O

Example (12.20). — Set R :=Z and M := Q/Z, and recall Sy := Z — (0). Then
M is faithful, as z € Sy implies z - (1/2z) = 1/2 # 0; thus, ur: R — Hompg(M, M)
is injective. But Sy 'R = Q. So (12.13) yields Sy * Homp (M, M) # 0. On the
other hand, Sg'M =0 as s-r/s = 0 for any /s € M. So the map o(M, M) of
(12.19) is not injective. Thus (12.19)) can fail if M is not finitely generated.

Example (12.21). — Set R := Z, recall Sy := Z — (0), and set M,, := Z/(n) for
n > 2. Then Sy 'M, = 0 for all n as nm = 0 (mod n) for all m. On the other
hand, (1,1,...)/1 is nonzero in So_l(H Mn) as the kth component of m-(1,1,...)
is nonzero in [[ M,, for k > |m| if m is nonzero. Thus So_l(H Mn) #* H(So_an).
Also S;'Z = Q. So (12.10) yields Q ® ([] M) # [1(Q ® M,), whereas (8.10)
yields Q@ (@ Mn) = B(Q® M,).
(12.22) (Nilpotents). — Let R be a ring, « € R. We say z is nilpotent on a
module M if there is n > 1 with z™m = 0 for all m € M; that is, z € \/Ann(M).
We denote the set of nilpotents on M by nil(M); that is, nil(M) := \/Ann(M).

Notice that, if M = R, then we recover the notions of nilpotent element and of
nil(R) of (3.13). Moreover, given an ideal a C R, we have nil(R/a) = v/a.

Proposition (12.23). — Let S be a multiplicatively closed subset, and Q C M
modules. Setp := nil(M/Q); assume SOp # (). Then Q° = M and S~'Q = S~ M.

Proof: Say s € SNp. Then there’s n > 0 with s"M C Q. But s™ € S. Thus
Q% = M. Now, S71Q = S7'Q° by (12.12)(3)(b). Thus S™'Q = S~' M. O

B. Exercises

Exercise (12.24) . — Let R be aring, M a module, and S, T multiplicative subsets.
Show;

(1) Set U := ST :={ste R|seSandteT}. Then U'M =TS~ M).
(2) Assume S C T. Then T-'M =TS~ M).
Exercise (12.25) . — Let R be a ring, S a multiplicative subset, M a module.
Show: (1) Let Ty be a multiplicative subset of S™'R; set T := g (T}); and assume
S CT. Then T~'M =T, *(S~*M).
(2) Let p be a prime of R; assume p NS = ; and set P := pS~'R. Then
My = (S7'M), = (S7 M)gp.
(3) Let p C q be primes of R. Set B := pR;. Then M, = (My), = (Mg)x-
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Exercise (12.26) . — Let R be a ring, S a multiplicative subset, ¢: R — R’ a map
of rings, M’ an R’-module. Set S’ := ¢(S). Show S'~1M’' = S~ M’

Exercise (12.27) . — Let R be a ring, M a finitely generated module, a an ideal.
Show: (1) Set S :=1+ a. Then that S~!'a lies in the radical of S7!R.

(2) Then (1), Nakayama’s Lemma (10.6), and (12.17)(2), yield, without the
determinant trick (10.2), this part of (10.3): if M = aM, then sM = 0 for

an s € S.
Exercise (12.28) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, N a submodule. Show (aN)¥ = (aSN9)%.
Exercise (12.29) . — Let R be a ring, S a multiplicative subset, P a projective
module. Show S~!P is a projective S~!R-module.
Exercise (12.30) . — Let R be a ring, S a multiplicative subset, M, N modules.

Show ST} (M @zr N)=S"'M@r N =S"'M®g 15 S'N=S"1M®rSIN.
Exercise (12.31) . — Let R be aring, S a multiplicative subset, X a set of variables,
and M a module. Show (S~1M)[X] = S~1(M][X]).

Exercise (12.32) . — Let R be a ring, a an ideal, S a multiplicative subset, X a set
of variables. Set R’ := R/a and P := R[X]. Let T' C P be a multiplicative subset,
and assume S C T. Show T7'P/aT~'P =T~ ((S™'R')[X]).

Exercise (12.33) . — Let R be a ring, S a multiplicative subset. For i = 1,2, let
@;: R — R; be aring map, S; C R; a multiplicative subset with ;S C S;, and M;
an R;-module. Set T := {s1 ® 53 | s; € S;} C Ry ®g Ra. Show

S7IMy ®g-15 Sy "My = ST My ®p Sy My = T (M ®@r Ma).

Exercise (12.34) . — Let R be a ring, m a maximal ideal, n > 1, and M a module.
Show M/m"M = My /m™My.
Exercise (12.35) . — Let k be a field. For i = 1,2, let R; be an algebra, and

n; C R; a maximal ideal with R;/n; = k. Let n C R; ®; Rs denote the ideal
generated by ny and na. Set A; := (R;)y, and m := n(4; ®; As). Show that both
n and m are maximal with & as residue field and that (41 @k A2)m = (R1 ®k R2)n.

Exercise (12.36) . — Let R be a ring, R’ an algebra, S a multiplicative subset, M
a finitely presented module. Show these properties of the rth Fitting ideal:
F.(M®rR')=F.(M)R and F.(S™*M)=F.(M)S™'R=S"'F.(M).
Exercise (12.37) . — Let R be a ring, S a multiplicative subset. Show:
(1) Let M; < M, be a map of modules, which restricts to a map N; — N of
submodules. Then a(N{) C N5'; that is, there is an induced map N — N3

(2) Let 0 — M, = M, LN M3 be a left exact sequence, which restricts to a left
exact sequence 0 — N7 — Ny — N3 of submodules. Then there is an induced
left exact sequence of saturations: 0 — Ny — N5 — N§.

Exercise (12.38) . — Let R be a ring, M a module, and S a multiplicative subset.
Set T9M := (0)°. We call it the S-torsion submodule of M. Show:
(1) T3(M/TSM) = 0. (2) TS M = Ker(ps).
(3) Let «: M — N be a map. Then o(T*M) C T*N.
(4) Let 0 — M’ — M — M" be exact. Thensois 0 — TSM' — TSM — TSM".
(5) Let S; C S be a multiplicative subset. Then T°(S;*M) = S; (TS M).
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Exercise (12.39) . — Set R:=Z and S := Sy := Z — (0). Set M :=€P,,5,Z/(n)
and N := M. Show that the map o of (12.19) is not injective.

Exercise (12.40) . — Let R be a ring, S a multiplicative subset, M a module.
Show that S~ nil(M) C nil(S~!M), with equality if M is finitely generated.

Exercise (12.41) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, and N a submodule. Set n := nil(M/N). Show:
(1) Then nN S # () if and only if n¥ = R.
(2) Assume nN S # (). Then S™'N = S~'M and N° = M.
(3) Then n® C nil(M/N¥), with equality if M is finitely generated.
Exercise (12.42) . — Let R be a ring, M a module, N, N’ submodules. Show:
(1) v/nil(M) = nil(M).
(2) nil(M/(N N N")) =nil(M/N) \nil(M/N").
(3) nil(M/N) = R if and only if N = M.
(4) nil(M/(N + N')) D /nil(M/N) + nil(M/N").
Find an example where equality fails in (4), yet R is a field.
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13. Support

The spectrum of a ring is the following topological space: its points are the
prime ideals, and each closed set consists of those primes containing a given ideal.
The support of a module is the following subset: its points are the primes at
which the localized module is nonzero. We relate the support to the closed set of
the annihilator. We prove that a sequence is exact if and only if it is exact after
localizing at every maximal ideal. We end this chapter by proving that the following
conditions on a module are equivalent: it is finitely generated and projective; it is
finitely presented and flat; and it is locally free of finite rank.

A. Text

(13.1) (Spectrum of a ring). — Let R be a ring. Its set of prime ideals is denoted
Spec(R), and is called the (prime) spectrum of R.

Let a be an ideal. Let V(a) denote the subset of Spec(R) consisting of those
primes that contain a. We call V(a) the variety of a.

Let b be a second ideal. Obviously, if a C b, then V(b) C V(a). Conversely, if
V(b) C V(a), then a C Vb, owing to the Scheinnullstellensatz (3.14). Therefore,
V(a) = V(b) if and only if v/a = vb. Further, (2.23) yields

V(a) UV(b) = V(anb) = V(ab).

A prime ideal p contains the ideals ay in an arbitrary collection if and only if p
contains their sum Y ay; hence,

NV(ay) =V (X an). (13.1.1)
Finally, V(R) = (), and V((0)) = Spec(R). Thus the subsets V(a) of Spec(R) are
the closed sets of a topology;it is called the Zariski topology. Moreover, a — V(a)
is a lattice-inverting bijection from the radical ideals to the closed sets.
Given an element f € R, we call the open set

D(f) := Spec(R) — V((f) (13.1.2)
a principal open set. These sets form a basis for the topology of Spec(R); indeed,

given any prime p 2 a, there is an f € a — p, and so p € D(f) C Spec(R) — V(a).
Further, f,g ¢ p if and only if fg ¢ p, for any f, g € R and prime p; in other words,

D(f) nD(g) = D(/9). (13.1.3)
A ring map ¢: R — R’ induces a set map

Spec(): Spec(R’) — Spec(R) by  Spec(p)(p’) := ¢ (p'). (13.1.4)

Notice ¢~1(p’) D a if and only if p’ D aR’; so Spec(p)~! V(a) = V(aR’) and
Spec(i2) "1 D(g) = D((9)). (13.1.5)

Hence Spec(yp) is continuous. Given another ring map ¢': R' — R”, plainly
Spec(p) Spec(¢’) = Spec(¢'p). (13.1.6)
Moreover, Spec(1r) = lgpec(r). Thus Spec(e) is a contravariant functor from

((Rings)) to the category of topological spaces and continuous maps.
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For example, owing to (1.9) and (2.7), the quotient map R — R/a induces a
topological embedding

Spec(R/a) == V(a) < Spec(R). (13.1.7)
Owing to (11.12), the localization map R — Ry induces a topological embedding
Spec(Ry) = D(f) — Spec(R). (13.1.8)

Proposition (13.2). — Let R be a ring, X := Spec(R). Then X is quasi-
compact: if X =), Ux with Uy open, then X = J;_, Uy, for some \; € A.

Proof: Say Uy = X — V(ay). As X = o, Ux, then 0 =N V(ay) = V(X ay).
So > ay lies in no prime ideal. Hence there are A1,..., A, € A and f, € ay, with
1= Zf)\l So R = Za)\i. So @ = ﬂV(a)\l) = V(Za)\l) Thus X = UUM O

Definition (13.3). — Let R be a ring, M a module. Its support is the set
Supp(M) := Suppr(M) := {p € Spec(R) | M, #0}.

Proposition (13.4). — Let R be a ring, M a module.
(1) Let 0 = L - M — N — 0 be exzact. Then Supp(L)|JSupp(N) = Supp(M).
(2) Let My be submodules with > My = M. Then |JSupp(M,) = Supp(M).
(3) Then Supp(M) C V(Ann(M)), with equality if M is finitely generated.
(4) Then rad(M) is contained in the intersection of all the mazimal ideals in
Supp(M), with equality if M is finitely generated..

Proof: Consider (1). For every prime p, the sequence 0 — L, — M, — N, — 0
is exact by (12.13). So M, # 0 if and only if L, # 0 or N, # 0. Thus (1) holds.

In (2), M\ C M. So (1) yields |J Supp(My) C Supp(M). To prove the opposite
inclusion, take p ¢ |JSupp(M)). Then (M)), = 0 for all \. By hypothesis,
the natural map @ My — M is surjective. So @(M,), — M, is surjective by
(12.9). Hence M, = 0. Alternatively, given m/s € M,, express m as a finite sum
m =Y my with my € M. For each such A, there is t, € R —p with tym, = 0.
Set t := [[tx. Then tm =0 and ¢t ¢ p. So m/s =0 in M,. Hence again, M, = 0.
Thus p ¢ Supp(M), and so (2) holds.

Consider (3). Let p be a prime. By (12.17)(2), M, = 0if Ann(M)N(R—p) # 0,
and the converse holds if M is finitely generated. But Ann(M) (R —p) # 0 if and
only if Ann(M) ¢ p. Thus (3) holds.

For (4), recall from (4.1) that rad(M) is defined as the intersection of all the
maximal ideals containing Ann(M). Thus (3) yields (4). O

(13.5) (Minimal primes of a module). — Let R be a ring, M a module, and p a
prime minimal in Supp(M). We call such a p a minimal prime of M.

Suppose M is finitely generated. Then Supp(M) = V(Ann(M)) by (13.4)(3).
Thus p is a minimal prime of M if and only if p is a minimal prime of Ann(M).
Also, (3.17) implies every prime in Supp(M) contains some minimal prime of M.

Warning: following a old custom, by the minimal primes of an ideal a, we
mean not those of a viewed as an abstract module, but rather those of R/a; however,
by the minimal primes of R, we mean those of R viewed as an abstract module;
compare (3.17).

Proposition (13.6). — Let R be a ring, M a finitely generated module. Then
nll(M) == ﬂpESupp(M) p.
95



Support (13.7) / (13.12) Text

Proof: First, nil(M) = (,5ann(an P Py the Scheinnullstellensatz (3.14). But
p D Ann(M) if and only if p € Supp(M) by (13.4)(3). O

Proposition (13.7). — Let R be a ring, M and N modules. Then
Supp(M ®@g N) C Supp(M) N Supp(N), (13.7.1)
with equality if M and N are finitely generated.

Proof: First, (M®grN), = M,®r, N, by (12.30); whence, (13.7.1) holds. The
opposite inclusion follows from (10.10)(2) if M and N are finitely generated. O

Proposition (13.8). — Let R be a ring, M a module. These conditions are equiv-
alent: (1) M = 0; (2) Supp(M) = 0; (3) My =0 for every mazimal ideal m.

Proof: Trivially, if (1) holds, then S~!M = 0 for any multiplicative subset S. In
particular, (2) holds. Trivially, (2) implies (3).

Finally, assume M # 0, and take a nonzero m € M, and set a := Ann(m). Then
1 ¢ a, so a lies in some maximal ideal m. Given f € Sy := R —m, note fm # 0.
Hence m/1 # 0 in My,. Thus (3) implies (1). O

Proposition (13.9). — A sequence of modules L % M Py N is exact if and only
if its localization Ly — My = Ny is exact at each mazimal ideal m.

Proof: If the sequence is exact, then so is its localization by (12.13).

Consider the converse. First Im(fmam) = 0. But Im(Bmam) = (Im(ﬂa))m by
(12.13) and (9.3). So Im(Sa) =0 by (13.8). So fa = 0. Thus Im(a) C Ker(5).

Set H := Ker(8)/Im(c). Then Hy = Ker(8m)/Im(aw) by (12.13) and (9.3).
So Hy, = 0 owing to the hypothesis. Hence H = 0 by (13.8), as required. O

Exercise (13.10) . — Let R be a ring, M a module, and my € M elements. Prove
the my generate M if and only if, at every maximal ideal m, the fractions m, /1
generate My, over Ry,.

Proposition (13.11). — Let A be a semilocal ring, mq, ..., m, its mazimal ideals,
M, N finitely presented modules. Assume My, >~ Nu, for each i. Then M ~ N.

Proof: For each 4, take an isomorphism ;: My, = Ny,,. Then (12.19) yields
si € A—m; and ¢;: M — N with (¢;)m, = $i%;. But ﬂj# m; ¢ m; by (2.23); so
there’s x; € ﬂj#mj with x; ¢ m;. Set v := >, zip;, soy: M — N.

For each j, set o := xjp;. Then (aj)m;: Mn, =+ Nm, as xj, s; € A*. Set
Bj =24 . Then B;(My;) C mjNw,; as x; € my for i # j. Also, v = a; + ;.
S0 Y, is an isomorphism by (10.29). Thus (13.9) gives v: M = N. O

Proposition (13.12). — Let R be a ring, M a module. Then M is flat over R if
and only if, at every maximal ideal m, the localization My, is flat over Ry,.

Proof: If M is flat over R, then M ®p Rn is flat over Ry by (9.22). But
M ®g Rnw = My, by (12.10). Thus M, is flat over Ry,.

Conversely, assume My, is flat over R, for every m. Let a: N’ — N be an
injection of R-modules. Then au, is injective by (13.9). Hence My, ®pg,, m is
injective. But that map is equal to (M ® &)y by (12.30). So (M ® «)y, is injective.
Hence M ® « is injective by (13.9). Thus M is flat over R. O
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Definition (13.13). — Let R be a ring, M a module. We say M is locally finitely
generated if each p € Spec(R) has a neighborhood on which M becomes finitely
generated; more precisely, there exists f € R —p such that My is finitely generated
over Ry. It is enough that an f exist for each maximal ideal m as every p lies in
some m by (2.21). Similarly, we define the properties locally finitely presented,
locally free of finite rank, and locally free of rank n.

Proposition (13.14). — Let R be a ring, M a module.
(1) If M s locally finitely generated, then it is finitely generated.
(2) If M s locally finitely presented, then it is finitely presented.

Proof: By (13.2), there are fi,..., f, € R with |JD(f;) = Spec(R) and finitely
many m;; € M such that, for some n;; > 0, the m;;/f;"’ generate My, over Ry,.
Plainly, for each 4, the m;;/1 also generate My, over Ry,.

Given any maximal ideal m, there is ¢ such that f; ¢ m. Let S; be the image
of Sy := R —m in Ry,. Then (12.5) yields My = S; '(My,). Hence the m;;/1
generate My, over Ry. Thus (13.10) yields (1).

Assume M is locally finitely presented. Then M is finitely generated by (1). So
there is a surjection R¥ — M. Let K be its kernel. Then K is locally finitely
generated owing to (5.18). Hence K too is finitely generated by (1). So there is a
surjection R — K. Tt yields the desired finite presentation R* — R*¥ — M — 0.
Thus (2) holds. O

Theorem (13.15). — These conditions on an R-module P are equivalent:

1) P is finitely generated and projective.

) P is finitely presented and flat.

) P is finitely presented, and Py, is free over Ry at each maximal ideal m.

) P is locally free of finite rank.

) P is finitely generated, and for each p € Spec(R), there are f and n such
that p € D(f) and Py is free of rank n over Ry at each q € D(f).

Proof: Condition (1) implies (2) by (10.12).

Let m be a maximal ideal. Then Ry, is local by (11.14). If P is finitely pre-
sented, then P, is finitely presented, because localization preserves direct sums and
cokernels by (12.9).

Assume (2). Then P, is flat by (13.12), so free by (10.12). Thus (3) holds.

Assume (3). Fix a surjective map o: M — N. Then an: My — Ny, is
surjective. So Hom(Py, am): Hom(Pn, My) — Hom(Py, Ny) is surjective by
(5.16) and (5.15). But Hom(Pp, am) = Hom(P, &)y by (12.19) as P is finitely
presented. Further, m is arbitrary. Hence Hom(P, «) is surjective by (13.9).
Therefore, P is projective by (5.16). Thus (1) holds.

Again assume (3). Given any prime p, take a maximal ideal m containing
it. By hypothesis, Py, is free; its rank is finite as P, is finitely generated. By
(12.18)(2), there is f € Sy := R — m such that Py is free of finite rank over Rj.
Thus (4) holds.

Assume (4). Then P is locally finitely presented. So P is finitely presented by
(13.14)(2). Further, given p € Spec(R), there are f € S, := R—p and n such that
Py is free of rank n over Ry. Given q € D(f), let S be the image of Sq := R—q in
Ry. Then (12.5) yields Py = S™*(Py). Hence Py is free of rank n over Ry. Thus
(5) holds. Further, (3) results from taking p := m and ¢ := m.
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Finally, assume (5), and let’s prove (4). Given p € Spec(R), let f and n be
provided by (5). Take a free basis p1/f*1,... ,p,/f*" of P, over R,. The p; define
amap a: R" — P, and ap: Ry — P, is bijective, in particular, surjective.

As P is finitely generated, (12.18)(1) provides g € S, such that a,: R} — P,
is surjective. It follows that aq: Ry — Py is surjective for every q € D(g). If also
q € D(f), then by hypothesis Py >~ Ry. So a4 is bijective by (10.4).

Set h := fg. Clearly, D(f) N D(g9) = D(h). By (13.1), D(h) = Spec(Rp).
Clearly, ag = (o) (qr,,) for all g € D(h). Hence ay,: R} — P, is bijective owing to
(13.9) with Ry, for R. Thus (4) holds. O

B. Exercises

Exercise (13.16) . — Let R be a ring, X := Spec(R), and p, g € X. Show:
(1) The closure {p} of p is equal to V(p); that is, q € {p} if and only if p C q.
(2) Then p is a closed point, that is, {p} = {p}, if and only if p is maximal.
(3) Then X is Tp; that is, if p # q but every neighborhood of p contains ¢, then
some neighborhood of q doesn’t contain p.

Exercise (13.17) . — Describe Spec(R), Spec(Z), Spec(C[X]), and Spec(R[X]).
Exercise (13.18) . — Let R be a ring, and set X := Spec(R). Let X7, X5 C X be
closed subsets. Show that the following four statements are equivalent:

(1) Then X1 |_|X2 = X, that iS, X1 UX2 = X and X1 ﬂXg = @

(2) There are complementary idempotents e, ea € R with V((¢;)) = X;.

(3) There are comaximal ideals a;, as C R with aja2 = 0 and V(a;) = X;.
(4) There are ideals a1, ay C R with a; @ ay = R and V(a;) = X;.

Finally, given any e; and a; satisfying (2) and either (3) or (4), necessarily e; € a;.

Exercise (13.19) . — Let R be a ring, a an ideal, and M a module. Show:
(1) Then I'q(M) = {m € M | Supp(Rm) C V(a) }.
(2) Then I'q(M) ={m € M | m/1=0in M, for all primes p 5 a}.
(3) Then I'q(M) = M if and only if Supp(M) C V(a).

Exercise (13.20) . — Let R be a ring, 0 — M’ % M By M" — 0 a short exact
sequence of finitely generated modules, and a a finitely generated ideal. Assume
Supp(M’) C V(a). Show that 0 — I'q(M') — T'q(M) — T'y(M") — 0 is exact.

Exercise (13.21) . — Let R be a ring, S a multiplicative subset. Show:

(1) Assume R is absolutely flat. Then S™1R is absolutely flat.
(2) Then R is absolutely flat if and only if Ry, is a field for each maximal m.

Exercise (13.22) . — Let R be a ring; set X := Spec(R). Prove that the four
following conditions are equivalent:

(1) R/nil(R) is absolutely flat.

(2) X is Hausdorff.

(3) X is T7y; that is, every point is closed.

(4) Every prime p of R is maximal.

Assume (1) holds. Prove that X is totally disconnected; namely, no two distinct
points lie in the same connected component.
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Exercise (13.23) . — Let R be a ring, and a an ideal. Assume a C nil(R). Set
X := Spec(R). Show that the following three statements are equivalent:

(1) Then R is decomposable. (2) Then R/a is decomposable.
(3) Then X = | |I", X; where X; C X is closed and has a unique closed point.

Exercise (13.24) . — Let ¢: R — R’ be a map of rings. Set ¢* := Spec(yp). Prove:
(1) Every prime of R is the contraction of a prime if and only if ¢* is surjective.
(2) If every prime of R’ is the extension of a prime, then ¢* is injective.

Is the converse of (2) true?

Exercise (13.25) . — Let R be a ring, and S a multiplicative subset of R. Set
X :=Spec(R) and Y := Spec(S™'R). Set ¢% := Spec(ps) and S71X := Im ¢ in
X. Show (1) that S~'X consists of the primes p of R with pN.S = ) and (2) that
¢% is a homeomorphism of ¥ onto S™'X.

Exercise (13.26) . — Let : R — R’ be a ring map, S C R a multiplicative subset.
Set X := Spec(R) and Y := Spec(R’) and 6* := Spec(f). Via (13.25)(2) and
(11.15), identify Spec(S™'R) and Spec(S~'R’) with their images S™!X C X and
S7Y Y. Show (1) ST'Y = 6*71(S7!X) and (2) Spec(S~'0) = 6*[S~'Y.

Exercise (13.27) . — Let §: R — R’ be a ring map, a C R an ideal. Set b := aR’.
Let 6: R/a — R'/b be the induced map. Set X := Spec(R) and Y := Spec(R’). Set
0* := Spec(f) and 6 := Spec(d). Via (13.1), identify Spec(R/a) and Spec(R’/b)
with V(a) € X and V(b) C Y. Show (1) V(b) = #*~1(V(a)) and (2) " = 0*| V(b).

Exercise (13.28) . — Let 6: R — R’ be a ring map, p C R a prime, k the residue
field of R,. Set 6* := Spec(f). Show (1) 6*~!(p) is canonically homeomorphic to
Spec(R,/pRy,) and to Spec(k @r R') and (2) p € Im 0" if and only if k ®@g R’ # 0.

Exercise (13.29) . — Let R be a ring, p a prime ideal. Show that the image of
Spec(R,) in Spec(R) is the intersection of all open neighborhoods of p in Spec(R).

Exercise (13.30) . — Let ¢: R — R’ and ¢: R — R’ be ring maps, and define
0: R— R'®r R’ by 0(x) := p(x) ® ¥(x). Show

Im Spec(6) = Im Spec(p) () Im Spec(v)).
Exercise (13.31) . — Let R be a filtered direct limit of rings R with transition
maps ozl); and insertions «. For each A, let py: R — R, be a ring map with

P = a,’)gp,\ for all af), so that ¢ := «a) ) is independent of A\. Show
Im Spec(p) = [, Im Spec(py).

Exercise (13.32) . — Let R be a ring, ¢,: R — R, for o € ¥ ring maps. Let
vs: R = [[Rs and 7x: R — [[ R, be the induced maps. Set X := Spec(R).
Show:

(1) Then Im Spec(vys) = () Im Spec(p,).

(2) Assume X is finite. Then Im Spec(wg) = |JIm Spec(¢y ).

(3) The subsets of X of the form Im Spec(p), where ¢: R — R’ is a ring map,
are the closed sets of a topology, known as the constructible topology. It
refines the Zariski topology.

(4) In the constructible topology, X is quasi-compact.

Exercise (13.33) . — Let R be a ring, X := Spec(R). Show:
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(1) Given g € R, the set D(g) is open and closed in the constructible topology.

(2) On X, any topology with all D(g) open and closed is Hausdorff and totally
disconnected.

(3) On any set, nested topologies T D § coincide if T is quasi-compact and 8 is
Hausdorff.

(4) On X, the constructible and the Zariski topologies coincide if and only if the
Zariski topology is Hausdorff, if and only if R/ nil(R) is absolutely flat.

(5) On X, the constructible topology is smallest with all D(g) open and closed.

(6) On X, the constructible open sets are the arbitrary unions U of the finite
intersections of the D(g) and the X — D(g).

Exercise (13.34) . — Let ¢: R — R’ be a ring map. Show, in the constructible
topology, Spec(y): Spec(R’) — Spec(R) is continuous and closed.

Exercise (13.35) . — Let A be a domain with just one nonzero prime p. Set
K :=Frac(A) and R := (A/p) x K. Define p: A — R by p(z) := (a/, x) with 2’ the
residue of . Set ¢* := Spec(y). Show ¢* is bijective, but not a homeomorphism.

Exercise (13.36) . — Let ¢: R — R’ be a ring map, and b an ideal of R’. Set
©* := Spec(p). Show (1) that the closure ¢*(V (b)) in Spec(R) is equal to V(p~1b)
and (2) that ¢*(Spec(R’)) is dense in Spec(R) if and only if Ker(y) C nil(R).
Exercise (13.37) . — Let ¢: R — R’ be a ring map. Consider these statements:
(1) The map ¢ has the Going-up Property: given primes ¢’ C R’ and p C R
with p D ¢~ 1(q’), there is a prime p’ C R’ with ¢~1(p’) =p and p’ D ¢'.
(2) Given a prime q’ of R, set q := ¢~ !(q’). Then Spec(R’'/q’) — Spec(R/q) is
surjective.
(3) The map Spec(yp) is closed: it maps closed sets to closed sets.

Prove that (1) and (2) are equivalent, and are implied by (3).

Exercise (13.38) . — Let ¢: R — R’ be a ring map. Consider these statements:
(1) The map ¢ has the Going-down Property: given primes ¢’ C R’ andp C R
with p C ¢~ 1(q’), there is a prime p’ C R’ with ¢~!(p’) =p and p’ C ¢'.
(2) Given a prime ¢’ of R', set q := ¢~ '(q'). Then Spec(R;,) — Spec(R,) is
surjective.
(3) The map Spec(yp) is open: it maps open sets to open sets.
Prove (1) and (2) are equivalent; using (13.31), prove they’re implied by (3).
Exercise (13.39) . — Let R be a ring; f, g € R. Prove (1)—(8) are equivalent:
(1) D) CD(f). (2) V() 2 V). () Vig) € ViP.
@5 C5 G geVl. () Je8,
(7) There is a unique R-algebra map f: S; "R — S, R.
(8) There is an R-algebra map Ry — R,.

If these conditions hold, prove the map in (8) is equal to @ch .
Exercise (13.40) . — Let R be a ring. Prove these statements:

(1) D(f) — Ry is a well-defined contravariant functor from the category of prin-
cipal open sets and inclusions to ((R-alg)).
(2) Given p € Spec(R), then ling(f)ap Ry = R,.
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Exercise (13.41) . — Let R be a ring, X := Spec(R), and U an open subset. Show
U is quasi-compact if and only if X — U = V(a) where a is finitely generated.

Exercise (13.42) . — Let R be a ring, M a module. Set X := Spec(R). Assume
X = U,ea D(f2) for some set A and some fy € R.

(1) Given m € M, assume m/1 =0 in My, for all A. Show m = 0.

(2) Given my € My, for each A, assume the images of my and m,, in My, are
equal. Show there is a unique m € M whose image in My, is my for all A.
First assume A is finite.

Exercise (13.43) . — Let B be a Boolean ring, and set X := Spec(B). Show a
subset U C X is both open and closed if and only if U = D(f) for some f € B.
Further, show X is a compact Hausdorff space. (Following Bourbaki, we shorten
“quasi-compact” to “compact” when the space is Hausdorff.)

Exercise (13.44) (Stone’s Theorem) . — Show every Boolean ring B is isomorphic
to the ring of continuous functions from a compact Hausdorff space X to Fo with
the discrete topology. Equivalently, show B is isomorphic to the ring R of open and
closed subsets of X; in fact, X := Spec(B), and B = R is given by f — D(f).

Exercise (13.45) . — Let L be a Boolean lattice. Show that L is isomorphic to
the lattice of open and closed subsets of a compact Hausdorff space.

Exercise (13.46) . — Let R be a ring, q an ideal, M a module. Show:
(1) Supp(M/qM) C Supp(M)(V(q), with equality if M is finitely generated.
(2) Assume M is finitely generated. Then

V(g -+ Ann(M)) = Supp(M/qM) = V(Ann(M/qM)).
Exercise (13.47) . — Let ¢: R — R’ be a ring map, M’ a finitely generated R'-

module. Set p* := Spec(p). Assume M’ is flat over R. Show M’ is faithfully flat
if and only if ¢* Supp(M') = Spec(R).

Exercise (13.48) . — Let ¢: R — R’ be a ring map, M’ a finitely generated R'-
module, and q € Supp(M’). Assume that M’ is flat over R. Set p := ¢ ~1(q). Show
that ¢ induces a surjection Supp(My) —» Spec(Ry).

Exercise (13.49) . — Let ¢: R — R’ be a map of rings, M an R-module. Prove

Supp(M @r R') C Spec(y) ™" (Supp(M)),
with equality if M is finitely generated.

Exercise (13.50) . — Let R be a ring, M a module, p € Supp(M). Prove
V(p) C Supp(M).

Exercise (13.51) . — Set M := Q/Z. Find Supp(M), and show it’s not Zariski
closed in Spec(Z). Is Supp(M) = V(Ann(M))? What about (13.4)(3)?

Exercise (13.52) . — Let R be a domain, M a module. Set T(M) := T (M).
Call T (M) the torsion submodule of M, and M torsionfree if T'(M) = 0.
Prove M is torsionfree if and only if My, is torsionfree for all maximal ideals m.

Exercise (13.53) . — Let R be a ring, P a module, M, N submodules. Assume
M, = Ny, for every maximal ideal m. Show M = N. First assume M C N.
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Exercise (13.54) . — Let R be a ring, M a module, and a an ideal. Suppose
My, = 0 for all maximal ideals m D a. Show that M = aM.

Exercise (13.55) . — Let R be a ring, P a module, M a submodule, and p € P an
element. Assume p/1 € My, for every maximal ideal m. Show p € M.

Exercise (13.56) . — Let R be a domain, a an ideal. Show a = (), aRyn where m
runs through the maximal ideals and the intersection takes place in Frac(R).

Exercise (13.57) . — Prove these three conditions on a ring R are equivalent:

(1) R is reduced.
(2) S7!R is reduced for all multiplicative subsets S.
(3) Ry, is reduced for all maximal ideals m.

Exercise (13.58) . — Let R be a ring, ¥ the set of minimal primes. Show:

(1) If R, is a domain for any prime p, then the p € ¥ are pairwise comaximal.
(2) R =[]/, R; where R; is a domain if and only if R, is a domain for any
prime p and ¥ is finite. If so, then R; = R/p; with {p1,...,pn} = 2.

If Ry, is a domain for all maximal ideals m, is R necessarily a domain?

Exercise (13.59) . — Let R be a ring, M a module. Assume that there are only
finitely many maximal ideals m; with My, # 0. Show that the canonical map
a: M — [[ My, is bijective if and only if (M, )m;, = 0 whenever i # j.

Exercise (13.60) . — Let R be a ring, R’ a flat algebra, p’ a prime in R/, and p its
contraction in R. Prove that R;, is a faithfully flat R,-algebra.

Exercise (13.61) . — Let R be an absolutely flat ring, p a prime. Show p is
maximal, R, is a field, and R is reduced,

Exercise (13.62) . — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and P, ~ R} holds at each maximal ideal m.

Exercise (13.63) . — Let A be a semilocal ring, P a locally free module of rank n.
Show that P is free of rank n.

Exercise (13.64) . — Let R be a ring, M a finitely presented module, n > 0. Show
that M is locally free of rank n if and only if F,,_;(M) = (0) and F,,(M) = R.
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14. Cohen—Seidenberg Theory

Cohen—Seidenberg Theory relates the prime ideals in a ring to those in an integral
extension. We prove each prime has at least one prime lying over it—that is,
contracting to it. The overprime can be taken to contain any ideal that contracts
to an ideal contained in the given prime; this stronger statement is known as the
Going-up Theorem. Further, one prime is maximal if and only if the other is, and
two overprimes cannot be nested. On the other hand, the Going-down Theorem
asserts that, given nested primes in the subring and a prime lying over the larger,
there is a subprime lying over the smaller, either if the subring is normal, the
overring is a domain, and the extension is integral, or if simply the extension is flat.

A. Text

Lemma (14.1). — Let R'/R be an integral extension of domains. Then R’ is a
field if and only if R is.

Proof: First, suppose R’ is a field. Let € R be nonzero. Then 1/x € R/, so
satisfies an equation of integral dependence:

(1/2)" +a1(1/x)" ' 4+ 4+a, =0

with n > 1 and a; € R. Multiplying the equation by z"!

, we obtain
1z =—(a1 + an o+ +a,z" ') €R.

Conversely, suppose R is a field. Let y € R’ be nonzero. Then y satisfies an
equation of integral dependence

YU ay T eyt an =0
with n > 1 and a; € R. Rewriting the equation, we obtain
y(" T+t an1) = —an.
Take n minimal. Then a,, # 0 as R’ is a domain. So dividing by —a,y, we obtain

y=(-1/a,)y" '+ - +a,1) €R. O

Definition (14.2). — Let R be a ring, R’ an R-algebra, p a prime of R, and p’ a
prime of R’. We say p’ lies over p if p’ contracts to p; that is, p’c = p.

Theorem (14.3). — Let R'/R be an integral extension of rings, p a prime of R.
Let p’ C q’ be nested primes of R', and a’ an arbitrary ideal of R’.

(1) (Maximality) Suppose p’ lies over p. Then p’ is mazimal if and only if p is.
(2) (Incomparability) Suppose both p’ and q' lie over p. Then p’ =¢’.
(3) (Lying over) Then there is a prime v’ of R’ lying over p.
(4) (Going-up) Suppose @’ N R C p. Then in (3) we can take v’ to contain a'.

Proof: Note (1) follows from (14.1) applied to the extension R/p — R'/p’,
which is integral as R — R’ is, since, if y € R’ satisfies y" +a1y™ ' +---+a, =0,
then reduction modulo p’ yields an equation of integral dependence over R/p.
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To prove (2), localize at R — p, and form this commutative diagram:
R —— R,

[

R—— R,

Here R, — Ry, is injective by (12.12)(1)(b), and it’s integral by (11.29).

Here p'R,, and q'R;, are nested primes of R, by (11.12)(2). By the same token,
both lie over pR,, because both their contractions in R, contract to p in R. Thus
we may replace R by R, and R’ by R}, and so assume R is local with p as maximal
ideal by (11.14). Then p’ is maximal by (1); whence, p’ = ¢'.

To prove (3), again we may replace R by R, and R’ by Rj: if ¢ is a prime
ideal of R}, lying over pR,,, then the contraction t’ of t” in R’ lies over p. So we may
assume R is local with p as unique maximal ideal. Now, R’ has a maximal ideal ¢/
by (2.21); further, ¢’ contracts to a maximal ideal v of R by (1). Thus t = p.

Finally, (4) follows from (3) applied to the extension R/(«’ N R) < R'/a’. O

Lemma (14.4). — Let R be ring, X a variable, and F € R[X] a monic polynomial
of degree d > 0.

(1) Then there’s an extension R"” of R with F(X) = H?ZI(X — ;) in R"[X].
Moreover, R is a free R-module of rank d!.

(2) Let R'/R be a ring extension, and assume F = GH with G, H € R'[X] and
G monic. Then H is monic, and the coefficients of G and H are integral over R.

Proof: For (1), set Ry := R[X]/(F). Let 1 be the residue of X. As F is
monic, 1, x1,..., xf71 form a free basis of Ry over R by (10.15); note R; O R.
Now, F(z1) =0; so F = (X — z1)Fy with Fy € R;[X] by (1.19); note F; is monic
and deg(F;) = d — 1. Induction on d yields an extension R” of R; free of degree
(d—1)! with Fy = H?=2(X — ;). Then R” is free over R of degree d! by (10.16).
Thus (1) holds.

In (2), since F and G are monic, so is H. Next, (1) yields an extension R” of R’
with G(X) = [[(X — ;) in R”[X]. The z; are integral over R as they are roots of
F. But the coefficients of G are polynomials in the z;; so they too are integral over
R owing to (10.20). By symmetry, the coefficients of H are integral over R. [

Proposition (14.5). — Let R be a normal domain, K := Frac(R), and L/K a
field extension. Let y € L be integral over R, and F € K[X] its monic minimal
polynomial. Then F € R[X], and so F(y) = 0 is an equation of integral dependence.

Proof: Since y is integral, there is a monic polynomial G € R[X] with G(y) = 0.
Write G = FH with H € K[X]. Then by (14.4)(2) the coefficients of F' are
integral over R, so in R since R is normal. (]

Theorem (14.6) (Going-down for integral extensions). — Let R'/R be an integral
extension of domains with R normal, p ; q nested primes of R, and q' a prime of
R’ lying over q. Then there is a prime p’ lying over p and contained in q'.

Proof: First, let’s show pRi,NR = p. Giveny € pR;, NR withy ¢ p,say y = /s
with z € pR and s € R’ — q'. Say . = Y., y;x; with y; € p and z; € R’, and set
R" := R[z1,...,2m,]. Then R” is module finite by (10.18) and zR"” C pR"”. Let
F(X)=X"+a; X" ! +...+4a, be the characteristic polynomial of j,.: R” — R".
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Then a; € p* C p by (10.1), and F(x) =0 by (10.2).

Set K := Frac(R). Say F = GH with G, H € K[X] monic. By (14.4) the
coefficients of G, H lie in R as R is normal. Further, FF = X™ (mod p). So
G = X" (mod p) and H = X™ " (mod p) for some r by unique factorization in
Frac(R/p)[X]. Hence G and H have all nonleading coefficients in p. Replace F' by
a monic factor of minimal degree. Then F' is the minimal polynomial of x over K.

Recall s = x/y. So s satisfies the equation

sS4 bs" 4+ b, =0 with b; = ai/yi c K. (14.6.1)

Conversely, any such equation yields one of the same degree for x as y € R C K.
So (14.6.1) is the minimal polynomial of s over K. So all b; are in R by (14.5).

Recall y ¢ p. Then b; € p as a; = by’ €p. Sos" € pR' CqR' Cq. Soseq, a
contradiction. Hence y € p. Thus pRg, N R C p. But the opposite inclusion holds
trivially. Thus pR;, N R = p.

Hence, there is a prime p” of Ry, with p” N R = p by (3.10)(2). Then p” lies
in ¢'R}, as it is the only maximal ideal. Set p’ := p” N R'. Then p’N R = p, and
p’ C g’ by (11.12)(2), as desired. O

Lemma (14.7). — Always, a minimal prime consists entirely of zerodivisors.

Proof: Let R be the ring, p the minimal prime. Then R, has only one prime
pR, by (11.12)(2). So by the Scheinnullstellensatz (3.14), pR, consists entirely
of nilpotents. Hence, given = € p, there is s € R — p with sz™ = 0 for some n > 1.
Take n minimal. Then sz~ ! # 0, but (sz" )z = 0. Thus 7 is a zerodivisor. [

Theorem (14.8) (Going-down for flat modules). — Let R — R’ be a map of rings,
M’ a finitely generated R'-module, p G q nested primes of R, and q' a prime
of Supp(M') lying over q. Assume M’ is flat over R. Then there is a prime
p’ € Supp(M’) lying over p and contained in q'.

Proof: By (13.48), the map Supp(M,,) — Spec(R4) is surjective. But pRg is
prime and lies over p by (11.12)(2). Thus there’s p’ € Supp(My,) lying over p.

However, Mé, =M ® Rf], by (12.10). Also Spec(Rg,) is equal to the set of
primes contained in q' by (13.25). So Supp(M,) = Supp(M’) N Spec(R;,) by
(13.49). Thus p’ € Supp(M’) and p’ C ¢', as desired.

Alternatively, M’ ®@p (R/p) is flat over R/p by (9.22). Also, (8.27)(1) yields
M' ®r (R/p) = M'/pM’'. So replacing R by R/p and M’ by M'/pM’, we may
assume R is a domain and p = (0). By (13.5), ¢’ contains a minimal prime
p’ € Supp(M') = V(Ann(M")). Tt suffices show that p’ lies over (0) in R.

Replace R’ by R’/ Ann(M’). Then p’ is a minimal prime R’. Say m},...,m),
generate M'. Define a map a: R' — M'™ by a(z') := (z'm},...,2'm},). Then « is
injective as Ann(M') = (0).

Given x € R nonzero, note i, : R — Risinjective. Since M’ is flat, p,: M’ — M’
is also injective. So p,: M'™ — M'™ is injective too. Hence pu,: R’ — R’ isinjective.
So x ¢ p’ by (14.7). Thus p’ lies over (0) in R, as desired. O

(14.9) (Arbitrary normal rings). — An arbitrary ring R is said to be normal if R,
is a normal domain for every prime p. If R is a domain, then this definition recovers
that in (10.19). Indeed, if R is normal, then R, is too for all p, as localization
commutes with normalization by (11.32). Conversely, say R’ is the normalization
of R. Then (R'/R), = 0 for all p by (12.13). So R'/R =0 by (13.8).
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B. Exercises

Exercise (14.10) . — Let R'/R be an integral extension of rings, € R. Show:
(1) if x € R, then z € R* and (2) rad(R) =rad(R') N R.

Exercise (14.11) . — Let ¢: R — R’ be a map of rings. Assume R’ is integral
over R. Show the map Spec(p): Spec(R’) — Spec(R) is closed.

Exercise (14.12) . — Let R'/R be an integral extension of rings, p: R — Q a map
to an algebraically closed field. Show p extends to a map p': R — Q. First, assume
R'/R is an algebraic extension of fields K/k, and use Zorn’s lemma on the set 8 of
all extensions A: L — Q of p where L C K is a subfield containing k.

Exercise (14.13) (E. Artin) . — Let k be a field. Show:

(1) Let X be a variable, 8 the set of all nonconstant monic F € k[X], and Xr a
variable for each F' € 8. Set P := k[{XF}] and a := ({F(Xp)}). Then 1 ¢ a.
Furthermore, k has an algebraic extension k7 in which each F' € § has a root.

(2) Let ko := k C k1 C ko C -+ be a chain obtained by applying (1) repeatedly,
so that, for all n, every nonconstant monic polynomial with coefficients in &,
has a root in k1. Set K := hgkn Then K is an algebraic closure of k.

(3) Then (14.12) implies that two algebraic closures K, Ky are k-isomorphic.

Exercise (14.14) . — Let R be a domain, R its integral closure, K := Frac(R).
Let L/K be a field extension, y € L algebraic with monic minimal polynomial
G(X) € K[X]. Show that y is integral over R if and only if G € R[X].

Exercise (14.15) . — Let R'/R be an integral extension of rings, p a prime of R.
Assume R’ has just one prime p’ over p. Show (1) that p’R), is the only maximal
ideal of R}, (2) that R}, = R}, and (3) that R}, is integral over Ry.

Exercise (14.16) . — Let R’/R be an integral extension of rings, p C R a prime,
p’, q C R’ two distinct primes lying over p. Assume R’ is a domain, or simply,
R, C R,,. Show that R, is not integral over R,. Show that, in fact, given
y € ¢ —p’, then 1/y € R, is not integral over .

Exercise (14.17) . — Let k be a field, and X an indeterminate. Set R’ := k[X],
and Y := X? and R := k[Y]. Set p := (Y —1)R and p’ := (X - )R Is R,
integral over R,? Treat the case char(k) = 2 separately. Explain.

Exercise (14.18) . — Let R be a ring, G be a finite group acting on R, and p a
prime of R®. Let P denote the set of primes 8 of R whose contraction in R is p.
Prove: (1) G acts transitively on P; and (2) P is nonempty and finite.

Exercise (14.19) . — Let R be a normal domain, K its fraction field, L/ K a finite
field extension, R the integral closure of R in L. Prove that only finitely many
primes B of R lie over a given prime p of R as follows.

First, assume L/K is separable, and use (14.18). Next, assume L/K is purely
inseparable, and show that 9 is unique; in fact, P = {z € R | 2?" € p for some n}
where p denotes the characteristic of K. Finally, do the general case.

Exercise (14.20) . — Let R be a ring. For ¢ = 1,2, let R; be an algebra, P; C R;
a subalgebra. Assume Pj, P, Ry, Ry are R-flat domains. Denote their fraction
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fields by Ly, Lo, K1, K. Form the following diagram, induced by the inclusions:
Ly ®r Lo — K; ®r Ko

| [

Pi®p Py = Ry ®r Ry

Show: (1) Then K; ® K> is flat over P; ® Ps. (2) Then 3 is injective.
(3) Let p be a minimal prime of Ry ® Ry. Then a~tp = 0 if P ® P, is a domain.

Exercise (14.21) . — Let R be a reduced ring, ¥ the set of minimal primes. Show
that z.div(R) = U,cx p and that R, = Frac(R/p) for any p € 2.

Exercise (14.22) . — Let R be a ring, ¥ the set of minimal primes, and K the
total quotient ring. Assume ¥ is finite. Show these three conditions are equivalent:
(1) R is reduced.
(2) 2.div(R) = Upex b, and Ry, = Frac(R/p) for each p € X.

(3) K/pK = Frac(R/p) for each p € ¥, and K =[], K/pK.

Exercise (14.23) . — Let A be a reduced local ring with residue field k and finite
set X of minimal primes. For each p € X, set K (p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dimg(P ®4 k) = r
and dimg ) (P ®4 K(p)) = r for each p € X.

Exercise (14.24) . — Let A be a reduced semilocal ring with a finite set of minimal
primes. Let P be a finitely generated A-module, and B an A-algebra such that
Spec(B) — Spec(A) is surjective. For each prime q C B, set L(q) := Frac(B/q).
Given r, assume dim((P ®4 B) ®p L(q)) = r whenever q is either maximal or
minimal. Show that P is a free A-module of rank r.

Exercise (14.25) . — Let R be a ring, p1,...,p, all its minimal primes, and K the
total quotient ring. Show that these three conditions are equivalent:

(1) R is normal.

(2) R is reduced and integrally closed in K.

(3) R is a finite product of normal domains R;.
Assume the conditions hold. Show the R; are equal to the R/p; in some order.

Exercise (14.26) . — Let X be a nonempty compact Hausdorff space, R the ring of
R-valued continuous functions on X, and X C Spec(R) the set of maximal ideals.
Give X the induced topology. For all z € X, set m, = {f € R| f(z) =0}. Show:

(1) Given a maximal ideal m, set V :={z € X | f(z) =0 for all f € m}. Then
V # ; otherwise, there’s a contradiction. Moreover, m = m, for any x € V.

(2) Urysohn’s Lemma [16, Thm. 3.1, p. 207] implies m, # m, if x # y..

(3) Forany f € R, set Uf = {z € X | f(z) #0} and U; = {m € X | f ¢ m}.
Then m, € X for any z € X, and = € Uy if and only if m, € U f; moreover,
the Uy and, by Urysohn’s Lemma, the Uy form bases of the topologies.

(4) Define p: X — X by ©(x) = m,. Then ¢ is a well-defined homeomorphism.
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15. Noether Normalization

The Noether Normalization Lemma describes the basic structure of a finitely
generated algebra over a field; namely, given a chain of ideals, there is a polynomial
subring over which the algebra is module finite, and the ideals contract to ideals
generated by initial segments of variables. After proving this lemma, we derive
several versions of the Nullstellensatz. The most famous is Hilbert’s; namely, the
radical of any ideal is the intersection of all the maximal ideals containing it.

Then we study the (Krull) dimension: the maximal length of any chain of primes.
We prove our algebra is catenary; that is, if two chains have the same ends and
maximal lengths, then the lengths are the same. Further, if the algebra is a domain,
then its dimension is equal to the transcendence degree of its fraction field.

In an appendix, we give a simple direct proof of the Hilbert Nullstellensatz. At
the same time, we prove it in significantly greater generality: for Jacobson rings.

A. Text

Lemma (15.1) (Noether Normalization). — Let k be a field, R := k[z1,...,2,] a
nonzero finitely generated k-algebra, a; C --- C a, nested proper ideals of R. Then
there are algebraically independent elements tq,...,t, € R with v < n such that
(1) R is module finite over P := kl[t1,...t,] and
(2) fori=1,---,r, there is an h; such that a; NP = (t1,...,tn,).

Proof: Let R’ := k[Xy,...,X,] be the polynomial ring, and ¢: R’ — R the
k-algebra map with pX; := ;. Set a, := Kerp and a} := ¢~ ta; fori =1,--- 7.
It suffices to prove the lemma for R’ and aj C --- C a): if t{ € R’ and h] work
here, then t; := <pt;+h6 and h; := h, — h{, work for R and the a;, because the t; are
algebraically independent by (1.17)(5), and clearly (1), (2), and v < n hold. Thus
we may assume the x; are algebraically independent.

The proof proceeds by induction on r, and shows v := n works now.

First, assume r = 1 and a; = #; R for some nonzero t;. Then t; ¢ k because
a; is proper. Suppose we have found to,...,%, € R so that z; is integral over
P :=k[t1,t2,...,t,] and so that P[z;] = R. Then (10.18) yields (1).

Further, by the theory of transcendence bases [15, Thm. 1.1, p.356], [6, p.562]
the elements ¢4, ...,t, are algebraically independent. Now, take z € a; N P. Then
x = ty2’ where 2’ € RN Frac(P). Also, RN Frac(P) = P, for P is normal by
(10.22) as P is a polynomial algebra. Hence a; N P = ¢, P. Thus (2) holds too.

To find ts,...,t,, we are going to choose ¢; and set t; :== z; — xf Then clearly
Plzi] = R. Now, say t1 = Y agzl" -2 with (j) := (j1,...,Jjn) and a(;) € k.
Recall ¢1 ¢ k, and note that x; satisfies this equation:

S agyad (b )R () =t
Set e(j) := j1 + laja + -+ + Lnjn. Take £ > max{j;} and ¢; := ¢*. Then the e(3)
are distinct. Let e(j’) be largest among the e(j) with a(;) # 0. Then e(j") > 0, and
the above equation may be rewritten as follows:
anay?) + Y, Loy Perf =0
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where p, € P. Thus z; is integral over P, as desired.

Second, assume 7 = 1 and a; is arbitrary. We may assume a; # 0. The proof
proceeds by induction on n. The case n = 1 follows from the first case (but is
simpler) because k[z1] is a PID. Let t; € a; be nonzero. By the first case, there
exist elements us, ..., u, such that t1,us,...u, are algebraically independent and
satisfy (1) and (2) with respect to R and t; R. By induction, there are to,...,t,
satisfying (1) and (2) with respect to k[us, ..., u,] and a3 N kfusg, ..., uy].

Set P := k[t1,...,t,]. Since R is module finite over k[t1,us,...,u,] and the
latter is so over P, the former is so over P by (10.17)(3). Thus (1) holds, and so
t1,...,t, are algebraically independent. Further, by assumption,

almk[tg,...,tn]z<t2,...,th>

for some h. But t; € a3. Soar NP D {(t1,...,tpn).

Conversely, given x € a; N P, say x = Z?:o fitt with f; € k[ta,...,t,]. Since
t1 € a1, we have fo € a1 Nk[ta,...,t,]; so fo € (t2,...,tn). Hence x € (t1,...,ts).
Thus a; NP = (t1,...,ty). Thus (2) holds for r = 1.

Finally, assume the lemma holds for » — 1. Let uq,...,u, € R be algebraically
independent elements satisfying (1) and (2) for the sequence a; C -+ C a,_1, and
set h := h,_1. By the second case, there exist elements tj41,...,, satisfying (1)
and (2) for k[upt1,...,u,] and a, N Ek[upy1, ..., uy,]. Then, for some h,,

a, N k[th+17 AN ,tn} = <th+1, ce ,thr>.

Set t; := u; for 1 < ¢ < h. Set P := k[t1,...,t,]. Then, by assumption, R is
module finite over k[uq,...,u,], and k[ug, ..., u,] is so over P; thus R is so over P
by (10.17)(3). Thus (1) holds, and ¢4, .. .,t, are algebraically independent over k.

Fix i with 1 < i <. Set m := h;. Then t1,...,t,, € a;. Given x € a; N P, say
r =3 fayty" -ty with (v) = (v, ..., ) and f) € k[tmy1,...,ta]. Then f(
lies in a; N k[tymt1, ..., tn). Let’s see the latter intersection is equal to (0). It is so
if i <r—1 because it lies in a; N k[tm41,- - ., uy], which is equal to (0). Further, if
i = r, then, by assumption, a; N k[tmt1,---,tn] = (tmets- - tm) = 0.

Thus f) = 0. Hence x € (t1,...,tp,). Thus a; VP C (t1,...,ts,). So the two
are equal. Thus (2) holds, and the proof is complete. O

Remark (15.2) (Noether Normalization over an infinite field). — In (15.1), let’s
assume k is infinite, and let’s see we can take t1,...,%, to be linear combinations
of 1,...,x, so that (1) still holds, although (2) need not.

To prove (1), induct on n. If n = 0, then (1) is trivial.

So assume n > 1. If zy,...,x, are algebraically independent over k, then (1)
holds with v := n and t; := x; for all 4.
So assume there’s a nonzero F € k[Xy,...,X,] with F(z1,...,2,) = 0. Say

F=F;+ -+ Fy where Fy # 0 and where each F; is homogeneous of degree i;
that is, F; is a linear combination of monomials of degree i. Then d > 0. But k is
infinite. So by (3.28)(1) with 8§ = k*, there are a; € k™ with Fy(a1, ag,...,a,) # 0.
Since F; is homogeneous, we may replace a; by a;/a;. Set a := Fy(1,aa,...,a,).
Set y; := x; — a;xq for 2 <4 < n, and set R’ := k[ya,...,¥yn]. Then
0=F(x1,22,...,2n) = F(x1, y2 + asx1, ..., Yn + anx1)
=axd + Ajx$ ' -+ Ay with 0#a €k and each A; € R
So x; is integral over R'. But R'[z;] = R. So R is module finite over R’ by (10.14).
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By induction, there are linear combinations ¢1,...,t, of y2,..., %, such that R’
is module finite over P := k[ty,...,t,]. So R is module finite over P by (10.17)(3).
And plainly, the t; are linear combinations of the x;. Thus (1) holds.

Here’s a simple example, due to P. Etingof, where (1) holds, but (2) doesn’t. Let
x be transcendental over k. Set a := (z2). Then any “linear combination” t of z is
of the form ¢ = ax. As (1) holds, a # 0. So t ¢ a. Thus (2) doesn’t hold.

Proposition (15.3). — Let R be a domain, R’ an algebra-finite extension. Then
there are a nonzero f € R and algebraically independent 1, ..., x, in R’ such that
} is a module-finite and integral extension of Rx1,...,xy,]y.

Proof: Set K := Frac(R). Then K = S;'R. Say R’ = R[z1,...,2m]. Then
So'R' = K[z1/1,...,2m/1]. So by (15.1) there are yi,...,y, € Sy 'R’ that
are algebraically independent over K and such that Sj 1R’ is module finite over
Klyi,...,yn)- Say y; = x;/g with 2; € R’ and g € S.

Suppose Ep apMp(x1,...,2,) =0in R with ap € R and M a monomial. Set
dp := deg M. Then Zp apg® Mp(y1,...,yn) = 0 in So_lR’. However, y1,...,Yn
are algebraically independent over K. So apg? = 0. So ap = 0. Thus z1,...,2,
are algebraically independent over R.

Each z;/1 € Sy 'R’ is integral over K[yi,...,y,] by (10.18). Say

(Zj/l)nj + Aj’l(Zj/].)nj_l + .- +Aj,nj =0 with A]’JC S K[yh. .. ,yn].

But K = SalR and y; = x;/g. So Aj = Bj/h for some Bj € R[xy,...,x,]
and h € Sy. So h(z;/1)" + (Bj1/1)(2;/1)" "1 + -+ + (Bjn, /1) =0in Sg'R'. So
there’s b’ € So with h'(hz}” + Bj 12" ™" + -+ + Bj,,) = 0in R'.

Set f:=h'h. Then Rz1,...,z,]y C R} by (12.12)(5)(b). Further, in R,

(23/1)™ + (W' Bj1/f)(2/1) " + -+ (W By, [ f) = 0.
But R’ = R[z1,...,2m], SO R} = R[z1,...,%m]f. And double inclusion shows
Rlz1,...,2mly = Rylz1/1,...,2m/1]. Thus (10.18) implies R’ is module finite
and integral over R[x1,...,Zy]f. O

Theorem (15.4) (Zariski Nullstellensatz). — Let k be a field, R an algebra-finite
extension. Assume R is a field. Then R/k is a finite algebraic extension.

Proof: By the Noether Normalization Lemma (15.1)(1), R is module finite over
a polynomial subring P := k[t1,...,t,]. Then R/P is integral by (10.18). As R is
a field, so is P by (14.1). So v =0. So P = k. Thus R/k is finite, as asserted.

Alternatively, here’s a short proof, not using (15.1). Say R = k[z1,...,2,]. Set
P :=k[z1] and K := Frac(P). Then R = K|[xa,...,2,]. By induction on n, assume
R/K is finite. Suppose z; is transcendental over k, so P is a polynomial ring.

Note R = P[zg,...,xy). Hence (11.31) yields f € P with Ry/Py module finite,
so integral by (10.18). But Ry = R. Thus Py is a field by (14.1). So f ¢ k.

Set g:=14 f. Then 1/g € Ps. So1/g=h/f" for some h € P and r > 1. Then
f7 = gh. But f and g are relatively prime, a contradiction. Thus x; is algebraic
over k. Hence P = K, and K/k is finite. But R/K is finite. Thus R/k is too. O

Corollary (15.5). — Let k be a field, R := k[x1,...,x,] an algebra-finite extension,
and m a mazimal ideal of R. Assume k is algebraically closed. Then there are
a1,...,an € k such that m = (1 —ay1,..., Ty, — an).
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Proof: Set K := R/m. Then K is a finite extension field of k by the Zariski
Nullstellensatz (15.4). But k is algebraically closed. Hence k = K. Let a; € k be
the residue of z;, and set n:= (1 — a1,..., 2, — ap). Then n C m.

Let R’ := k[Xy,...,X,] be the polynomial ring, and ¢: R’ — R the k-algebra
map with pX; := z;. Set 0’ := (X7 —ay,...,X, — an). Then p(n’) =n. But n’ is
maximal by (2.14). So n is maximal. Hence n = m, as desired. O

Corollary (15.6). — Let k be any field, P := k[X1,...,X,] the polynomial ring,
and m a mazimal ideal of P. Then m is generated by n elements.

Proof: Set K := P/m. Then K is a field. So K/k is finite by (15.4).

Induct on n. If n = 0, then m = 0. Assume n > 1. Set R := k[X;] and
p:=mNR. Then p = (Fy) for some F; € R as R is a PID. Set k1 := R/p. Then
k1 is isomorphic to the image of R in K. But K is a finite-dimensional k-vector
space. So kp is too. So k1/k is an integral extension by (10.18). Since k is a field,
so is k1 by (14.1).

Note P/pP = ki[Xs,...,X,] by (1.16). But m/p is a maximal ideal. So by
induction m/p is generated by n — 1 elements, say the residues of Fs,..., F,, € m.
Then m = (F},..., F,), as desired. |

Theorem (15.7) (Hilbert Nullstellensatz). — Let k be a field, R a finitely generated
k-algebra, and a a proper ideal of R. Then

Va= nmjum

where m runs through all maximal ideals containing a.

Proof: We may assume a = 0 by replacing R by R/a. Clearly vO C (m.
Conversely, take f ¢ +/0. Then Ry # 0 by (11.19). So R; has a maximal ideal n
by (2.21). Let m be its contraction in R. Now, R is a finitely generated k-algebra
by hypothesis; hence, Ry is one too owing to (11.7). Therefore, by the Zariski
Nullstellensatz (15.4), Ry/n is a finite extension field of k.

Set K := R/m. By construction, K is a k-subalgebra of R;/n. Therefore, K is
a finite-dimensional k-vector space. So K/k is an integral extension by (10.18).
Since k is a field, so is K by (14.1). Thus m is maximal. But f/1 is a unit in Ry;

so f/1 ¢ n. Hence f ¢ m. So f ¢ (\m. Thus v/0 = (m. O

Lemma (15.8). — Let k be a field, R a finitely generated k-algebra. Assume R
is a domain. Let po G - G p, be a chain of primes. Set K := Frac(R) and
d:=tr.deg, K. Then r < d, with equality if and only if the chain is maximal.

Proof: By the Noether Normalization Lemma (15.1), R is module finite over a
polynomial subring P := k[ty,...,t,] such that p; N P = (t1,...,ts,) for suitable
hi. Set L := Frac(P). Then v = tr.deg, L. But R/P is an integral extension
by (10.18). So K/L is algebraic. Hence v = d. Now, Incomparability (14.3)(2)
yields h; < h;41 for all i. Hence r < h,.. But h, < v and v =d. Thus r <d.

If r = d, then the chain is maximal, as it was just proved that no chain can
be longer. Conversely, assume the chain is maximal. Then py = (0) since R is a
domain. So hg = 0. Further, p,. is maximal since p,. is contained in some maximal
ideal, which is prime. So p, NP is maximal by Maximality (14.3)(1). Hence h, = v.

Suppose there is an ¢ such that h; +1 < h;+1. Then

(PN P) G (tr,... th41) & (Pig1 N P).
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But P/(p;NP) is, by (1.17)(3), equal to k[tp,+1,...,t,]; the latter is a polynomial
ring, so normal by (10.22)(1). Also, the extension P/(p; N P) < R/p; is integral
as P C R is. Hence, the Going-down Theorem (14.6) yields a prime p with
pi Cp Cpiprand pNP = (ty,...,ty,41). Then p; G p G piy1, contradicting the
maximality of r. Thus h; +1 = h;y for all &. But hy = 0. Hence r = h,.. But
h, =v and v = d. Thus r = d, as desired. O

(15.9) (Krull Dimension). — Given a nonzero ring R, its (Krull) dimension
dim(R) is the supremum of the lengths r of all strictly ascending chains of primes:

dim(R) := sup{ r | there’s a chain of primes po G --- S p, in R }.

If R =0, then dim(R) := —o0.

For example, if R is a field, then dim(R) = 0; more generally, dim(R) = 0 if
and only if every minimal prime is maximal. If R is a PID, but not a field, then
dim(R) = 1, as every nonzero prime is maximal by (2.17).

Theorem (15.10). — Let k be a field, R a finitely generated k-algebra. If R is a
domain, then dim(R) = tr. deg;, (Frac(R)).

Proof: The assertion is an immediate consequence of (15.8). O

Example (15.11). — Let k be a field, P := k[X1, ..., X,], the polynomial k-algebra
in n variables. Then the transcendence degree of k(X,...,X,) over k is equal to
n. So (15.10) yields dim(P) = n.

Let P’ := k[Y3,...,Y,,] be the polynomial k-algebra in m variables. Then (8.18)
yields P ®; P = k[X1,..., X, Y1,..., Y], So dim(P ®; P') = m+n.

Theorem (15.12). — Let k be a field, R a finitely generated k-algebra, p a prime
ideal, and m a mazximal ideal. Suppose R is a domain. Then

dim(Ry) + dim(R/p) = dim(R) and dim(Rn) = dim(R).

Proof: A chain of primes po & --- S p G --- G p, in R gives rise to a pair of
chains of primes, one in R, and one in R/p,

poRy G- SpRy and 0=p/p G- Sp./p,

owing to (11.12)(2) and to (1.9) and (2.7); conversely, every such pair arises from
a unique chain in R through p. But by (15.8), every maximal chain through p is
of length dim(R). The first equation follows.

Clearly dim(R/m) = 0, and so dim(Ry) = dim(R). O

(15.13) (Catenary modules and rings). — Let R be a ring, M a module. We call
M catenary if, given any two nested primes containing Ann(M), every maximal
chain of primes between the two primes has the same finite length; here, maximal
means that the chain is not a proper subchain of a longer chain of primes between
the two given primes. We call R catenary if R is catenary as an R-module.

Note that M is catenary if and only if the ring R/ Ann(M) is catenary.

Assume M is catenary. Then so is any quotient N of M as Ann(M) C Ann(N).
Further, so is the localization S~!M for any multiplicative set S, for this reason.
As R/Ann(M) is catenary, so is ST'R/S™! Ann(M) owing to (11.12)(2). But
plainly S~! Ann(M) C Ann(S—*M). Thus S~'R/ Ann(S~'M) is catenary.

Theorem (15.14). — Ower a field, a finitely generated algebra is catenary.
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Proof: Let R be the algebra, and q C p two nested primes. Replacing R by R/q,
we may assume R is a domain. Then the proof of (15.12) shows that any maximal

chain of primes (0) G --- & p is of length dim(R) — dim(R/p). O

B. Exercises

Exercise (15.15) . — Let k := F, be the finite field with ¢ elements, and k[X, Y]
the polynomial ring. Set F := X?Y — XY? and R := k[X,Y]/(F). Let 2, y € R
be the residues of X, Y. For every a € k, show that R is not module finite over
P := kly—ax]. (Thus, in (15.1), no k-linear combination works.) First, take a = 0.

Exercise (15.16) . — Let k be a field, and X, Y, Z variables. Set
R:=k[X,Y, Z)/(X?-Y? -1, XZ - 1),

and let z, y, z € R be the residues of X, Y, Z. Fix a,b € k, and set t := x +ay+ bz
and P := k[t]. Show that = and y are integral over P for any a,b and that z is
integral over P if and only if b # 0.

Exercise (15.17) . — Let R’/R be a ring extension, X a variable, R the integral
closure of R in R'. Show R[X] is the integral closure R[X] of R[X] in R/[X].

Exercise (15.18) . — Let R be a domain, ¢: R < R’ an algebra-finite extension.
Set ¢* := Spec(p). Find a nonzero f € R such that ¢*(Spec(R’)) D D(f).

Exercise (15.19) . — Let R be a domain, R’ an algebra-finite extension. Find
a nonzero f € R such that, given an algebraically closed field 2 and a ring map
p: R — Q with ¢(f) # 0, there’s an extension of ¢ to R’.

Exercise (15.20) . — Let R be a domain, R’ an algebra-finite extension. Assume
rad(R) = (0). Prove rad(R’) = nil(R’). First do the case where R’ is a domain by
applying (15.19) with R’ := R} for any given nonzero g € R'.

Exercise (15.21) . — Let k be a field, K an algebraically closed extension field.
Let P := k[X,...,X,] be the polynomial ring, and F, Fy,...,F. € P. Assume F
vanishes at every zero in K™ of Fi,..., Fy; that is, if a := (ay,...,a,) € K™ and

Fi(a) =0,...,F.(a) = 0, then F(a) = 0 too. Prove that there are polynomials
G1,...,G, € P and an integer N such that FV = G1Fy +--- + G,.F,.

Exercise (15.22) . — (1) Find an example where (15.21) fails if K isn’t required
to be algebraically closed, say with K :=k:=R and n:=1 and r := 1.

(2) Find an example where (15.21) fails if the G; are all required to be in k, say
with K :=k:=Cand n:=1 and r := 2.

Exercise (15.23) . — Given an integral extension of rings R'/R, show

dim(R) = dim(R). (15.23.1)
Exercise (15.24) . — Let k be an algebraically closed field, P := k[X1,...,X,,] the
polynomial ring in n variables X;, and V' C k™ the common zeros of polynomials
F,. Set I(V) := {F,} and k[V] := P/I(V). Assume V # (. Show there exist

a linear subspace L C k™ and a linear map A: k™ —» L such that A(V) = L and
dim(k[V]) = dim(L).

113



Noether Normalization (15.25) / (15.33) App: Jacobson Rings

Exercise (15.25) . — Let R be a ring, a an ideal. Assume a C nil(R). Show
dim(R/a) = dim(R).

Exercise (15.26) . — Let R be a domain of (finite) dimension r, and p a nonzero
prime. Prove that dim(R/p) < r.

Exercise (15.27) . — Let R'/R be an integral extension of domains with R normal,
m a maximal ideal of R’. Show n:=mN R is maximal and dim(R},) = dim(R,).

Exercise (15.28) . — (1) Given a product of rings R := R’ x R”, show
dim(R) = max{dim(R’), dim(R") }. (15.28.1)
(2) Find a ring R with a maximal chain of primes po G --- G p,, yet 7 < dim(R).

Exercise (15.29) . — Let k be a field, R; and R algebra-finite domains, and p a
minimal prime of R; ® Ra. Use Noether Normalization and (14.20) to prove this:

dim((Ry ®k R2)/p) = dim(R;) + dim(Ry). (15.29.1)

Exercise (15.30) . — Let k be a field, R a finitely generated k-algebra, f € R
nonzero. Assume R is a domain. Prove that dim(R) = dim(Ry).

Exercise (15.31) . — Let k be a field, P := k[f] the polynomial ring in one variable
f. Set p:=(f) and R := P,. Find dim(R) and dim(Ry).

Exercise (15.32) . — Let R be a ring, R[X] the polynomial ring. Prove
1+ dim(R) < dim(R[X]) < 1 + 2dim(R).
(In particular, dim(R[X]) = oo if and only if dim(R) = o0.)

C. Appendix: Jacobson Rings

(15.33) (Jacobson Rings). — We call a ring R Jacobson if, given any ideal a, its
radical is equal to the intersection of all maximal ideals containing it; that is,

Va = Npoa M- (15.33.1)

Plainly, the nilradical of a Jacobson ring is equal to its Jacobson radical. Also,
any quotient ring of a Jacobson ring is Jacobson too. In fact, a ring is Jacobson if
and only if the the nilradical of every quotient ring is equal to its Jacobson radical.

In general, the right-hand side of (15.33.1) contains the left. So (15.33.1) holds
if and only if every f outside /a lies outside some maximal ideal m containing a.

Recall the Scheinnullstellensatz, (3.14): it says \/a = (1,5, p with p prime. Thus
R is Jacobson if and only if p = ﬂmDp m for every prime p.

For example, a field k is Jacobson; in fact, a local ring A is Jacobson if and only
if its maximal ideal is its only prime. Further, a Boolean ring B is Jacobson, as
every prime is maximal by (2.37), and so trivially p = ﬂmDp m for every prime p.

Finally, a PID R is Jacobson if and only if it has infinitely many maximal ideals;
in particular, Z and a polynomial ring in one variable over a field are Jacobson.
Indeed, R is a UFD, and by (15.9), every nonzero prime is maximal. Given a
nonzero z € R, say x = [[._, p}"; then owing to (2.25)(1), the only maximal
ideals containing x are the (p;). Thus the next lemma does the trick.
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Lemma (15.34). — Let R be a 1-dimensional domain, {my}xea its set of mazimal
ideals. Assume every nonzero element lies in only finitely many my. Then R is
Jacobson if and only if A is infinite.

Proof: If A is finite, take a nonzero ) € m, for each A, and set  := [[ 2. Then
z # 0 and z € (\my. But /(0) = (0) as R is a domain. So 1/(0) # (\my. Thus R
is not Jacobson.

If A is infinite, then (Ymy = (0) by hypothesis. But every nonzero prime is

maximal as R is 1-dimensional. Thus p = ﬂmA Sp A for every prime p. [

Proposition (15.35). — A ring R is Jacobson if and only if, for any nonmazimal
prime p and any f ¢ p, the extension pRy is not mazimal.

Proof: Assume R is Jacobson. Take a nonmaximal prime p and f ¢ p. Then
f ¢ m for some maximal ideal m containing p. So pRy is not maximal by (11.12)(2).
Conversely, let a be an ideal, f ¢ y/a. Then (R/a); # 0. So there is a maximal
ideal n in (R/a)s. Let m be its contraction in R. Then m D a and f ¢ m. Also,
(4.8.1) and (12.15) yield Ry/mRy = (R/a/m/a); = (R/a)s/n. As n is maximal,
Ry/mRy is a field. So m is maximal by hypothesis. Thus R is Jacobson. O

Lemma (15.36). — Let R'/R be an extension of domains. Assume R’ = R[z] for
some x € R’ and there is y € R’ with R, a field. Then there is = € R with R, a
field and x algebraic over R,. Further, if R is Jacobson, then R and R’ are fields.

Proof: Set Q := Frac(R). Then Q C R, so R, = R[z], C Q[z], C R;. Hence
Q[r], = R;,. So Q[z], is a field. Now, if z is transcendental over @, then Q[z] is a
polynomial ring, so Jacobson by (15.33); whence, Q[z], is not a field by (15.35),
a contradiction. Thus z is algebraic over (). Hence y is algebraic over @ too.

Let apz™ + - - -+ a, = 0 and boy™ + - - - + b, = 0 be equations of minimal degree
with a;,b; € R. Set 2z := agb,,. Then z # 0. Further,

1/y = —ao(boym71 +---+ bmfl)/z S Rz[x}
Hence R[z], C R.[z] C R). So R.[z] = R;. Therefore R.[z] is a field too. But
2" + (a1by, /2)x" "L + -+ + (anbm/2) = 0, so is an equation of integral dependence
of z on R.. So R.[z] is integral over R, (10.18) . Hence R, is a field by (14.1).
Further, if R is Jacobson, then (0) is a maximal ideal by (15.35), and so R is a

field. Hence R = R,. Thus R’ is a field by (14.1). O
Theorem (15.37) (Generalized Hilbert Nullstellensatz). — Let R be a Jacobson
ring, R’ an algebra-finite algebra, and m' a mazimal ideal of R'. Set m := m’c.

Then (1) m is mazimal, and R'/w’ is finite over R/m, and (2) R’ is Jacobson.

Proof: First, assume R’ = R[x] for some x € R’. Given a prime ¢ C R and a
y € R —q,set p:=q°and Ry := R/p and R} := R'/q. Then R; is Jacobson by
(15.33). Suppose (R}), is a field. Then by (15.36), R} /R; is a finite extension of
fields. Thus q and p are maximal. To obtain (1), simply take q := m’ and y := 1.
To obtain (2), take g nonmaximal, so R is not a field; conclude (R}), is not a field;
whence, (15.35) yields (2).

Second, assume R’ = Rx1,...,2,] with n > 2. Set R” := R[x1,...,2,_1] and
m” :=m’® C R”. Then R’ = R"[z,]. By induction on n, we may assume (1) and
(2) hold for R”/R. So the first case for R'/R" yields (2) for R’; by the same token,
m” is maximal, and R’/m’ is finite over R”/m”. Hence, m is maximal, and R"”/m”
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is finite over R/m by (1) for R”/R. Finally, (10.16) implies that R’/m’ is finite
over R/m, as desired. O

Example (15.38). — Part (1) of (15.37) may fail if R is not Jacobson, even if
R’ := R[Y] is the polynomial ring in one variable Y over R. For example, let k be
a field, and R := k[[X]] the formal power series ring. According to (3.8), the ideal
m’:= (1 — XY) is maximal, but m’® is (0), not (X).

D. Appendix: Exercises

Exercise (15.39) . — Let X be a topological space. We say a subset Y is locally
closed if Y is the intersection of an open set and a closed set; equivalently, Y is
open in its closure Y; equivalently, Y is closed in an open set containing it.

We say a subset Xy of X is very dense if X, meets every nonempty locally
closed subset Y. We say X is Jacobson if its set of closed points is very dense.

Show that the following conditions on a subset Xy of X are equivalent:

(1) Xo is very dense.

(2) Every closed set F' of X satisfies F N Xy = F.

(3) The map U — U N X, from the open sets of X to those of X is bijective.

Exercise (15.40) . — Let R be a ring, X := Spec(R), and X; the set of closed
points of X. Show that the following conditions are equivalent:

(1) R is a Jacobson ring.

(2) X is a Jacobson space.

(3) If y € X is a point such that {y} is locally closed, then y € Xj.

Exercise (15.41) . — Why is a field K finite if it’s an algebra-finite Z-algebra?

Exercise (15.42) . — Let P := Z[Xy,...,X,] be the polynomial ring. Assume
F € P vanishes at every zero in K" of Fy, ..., F,. € P for every finite field K; that
is, if (a) := (a1,...,an) € K™ and Fi(a) =0,...,F.(a) = 0 in K, then F(a) =0
too. Prove there are Gy,...,G,. € P and N > 1 with FN=G,F, +---+G,F,.

Exercise (15.43) . — Prove that a ring R is Jacobson if and only if each algebra-
finite algebra R’ that is a field is module finite over R.

Exercise (15.44) . — Prove a ring R is Jacobson if and only if each nonmaximal
prime p is the intersection of the primes that properly contain p.

Exercise (15.45) . — Let R be a Jacobson ring, p a prime, f € R — p. Prove that
p is the intersection of all the maximal ideals containing p but not f.

Exercise (15.46) . — Let R be a ring, R’ an algebra. Prove that if R’ is integral
over R and R is Jacobson, then R’ is Jacobson.

Exercise (15.47) . — Let R be a Jacobson ring, S a multiplicative subset, f € R.
True or false: prove or give a counterexample to each of the following statements.

(1
(2
(3
(4

The localized ring Ry is Jacobson.

The localized ring S™!'R is Jacobson.

The filtered direct limit HERA of Jacobson rings is Jacobson.

In a filtered direct limit of rings R), necessarily hénrad(R,\) = rad(lig R)).
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Exercise (15.48) . — Let R be a reduced Jacobson ring with a finite set ¥ of
minimal primes, and P a finitely presented module. Show that P is locally free of
rank 7 if and only if dimp/ (P/mP) = r for any maximal ideal m.

Exercise (15.49) . — Let A be a ring, m a maximal ideal. Show these equivalent:

(1) A is 0-dimensional and local;
(2) m = nil(4);
(3) m has a set of nilpotent generators.

117



16. Chain Conditions

Often in a ring, every ideal is finitely generated; if so, the ring is said to be
Noetherian. Examples include any PID and any field. We characterize Noetherian
rings as those in which every ascending chain of ideals stabilizes, or equivalently, in
which every nonempty set of ideals has a member maximal under inclusion.

We prove the Hilbert Basis Theorem: if a ring is Noetherian, then so is any
finitely generated algebra over it. We define and characterize Noetherian modules
similarly, and we prove that, over a Noetherian ring, it is equivalent for a module to
be Noetherian, to be finitely generated, or to be finitely presented. Conversely, given
a Noetherian R-module M, we prove R/ Ann(M) is a Noetherian ring, over which
M is a finitely generated module. Lastly, we study Artinian rings and modules; in
them, by definition, every descending chain of ideals or of submodules, stabilizes.

In an appendix, we discuss two types of topological spaces: irreducible and
Noetherian. By definition, in the former, any two nonempty open sets meet, and
in the latter, the open sets satisfy the acc. We prove that a Noetherian space
is the union of finitely many irreducible components, which are the maximal
irreducible subspaces. We prove that Spec(R) is Noetherian if R is, and that its
irreducible components are the V(p) with p a minimal prime.

Lastly, we prove Chevalley’s Theorem: given a map of rings, whose source is
Noetherian and whose target is algebra finite over it, the induced map on their
Spec’s preserves the constructible sets, which are the finite unions of the subsets
of the form the intersection of an open set and a closed set.

A. Text

(16.1) (Noetherian rings). — We call a ring Noetherian if every ideal is finitely
generated. For example, a Principal Ideal Ring (PIR) is, trivially, Noetherian.
Here are two standard examples of non-Noetherian rings. More are given in
(16.6), (16.57), (16.31), (16.67), (18.24), and (26.11)(2).
First, form the polynomial ring k[X7, Xo,...] in infinitely many variables. It is
non-Noetherian as (X1, Xo,...) is not finitely generated (but the ring is a UFD).
Second, in the polynomial ring k[ X, Y], form this subring R and its ideal a:

R:={F:=a+XG|ackand G €k[X,Y]} and
= (X, XY, XY? ...).

Then a is not generated by any Fi, ..., F;, € a. Indeed, let n be the highest power
of Y occurring in any F;. Then XY™™ ¢ (Fy,..., F,,). Thus R is non-Noetherian.

Exercise (16.2) . — Let M be a finitely generated module over an arbitrary ring.
Show every set that generates M contains a finite subset that generates.

Definition (16.3). — Given a ring, we say the ascending chain condition (acc)
is satisfied if every ascending chain of ideals ag C a; C --- stabilizes; that is, there
isa j > 0 such that a; = a;4; =

We say the maximal condltlon (maxc) is satisfied if every nonempty set of
ideals 8§ contains ones mazimal for inclusion, that is, properly contained in no
other in 8.
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Lemma (16.4). — In a ring, the acc is satisfied if and only if mazc is satisfied.
Proof: Let ap C a; C --- be a chain of ideals. If a; is maximal, then trivially
a; = aj41 = ---. Thus maxc implies acc.

Conversely, given a nonempty set of ideals 8 with no maximal member, there’s
ag € §; for each j > 0, there’s a;; € 8§ with a; g a;t1. So the Axiom of Dependent

Choice provides an infinite chain ag ;Cé a; g -+, Thus acc implies maxc. O
Proposition (16.5). — The following conditions on a ring are equivalent:

(1) the ring is Noetherian; (2) the acc is satisfied; (3) the maxzc is satisfied.

Proof: Assume (1) holds. Let agp C a; C --- be a chain of ideals. Set a := | a,,.
Clearly, a is an ideal. So by hypothesis, a is finitely generated, say by z1,...,x,.
For each 4, there is a j; with 2; € a;,. Set j := max{j;}. Then xz; € a; for all i. So
aCa; Cajp; C---Ca. So a; =a;4y1 =---. Thus (2) holds.

Assume (2) holds. Then (3) holds by (16.4).

Assume (3) holds. Let a be an ideal, x for A € A generators, 8 the set of ideals
generated by finitely many x,. Let b be a maximal element of §; say b is generated
by Zx,,...,2x,,. Then b C b+ (z,) for any A. So by maximality, b = b + (x).
Hence x € b. So b = a; whence, a is finitely generated. Thus (1) holds. O

Example (16.6). — In the field of rational functions k(X,Y), form this ring:
R:=k[X,Y, X)Y, X/Y? X/Y3 ...].
Then R is non-Noetherian by (16.5). Indeed, X does not factor into irreducibles:

X =(X/Y) Y and X/Y = (X/Y?)-Y and so on. Correspondingly, there is an
ascending chain of ideals that does not stabilize:

(X) G(X/Y) G (XY G-

Proposition (16.7). — Let R be a Noetherian ring, S a multiplicative subset, a an
ideal. Then R/a and S™'R are Noetherian.

Proof: If R satisfies the acc, so do R/a and S™'R by (1.9) and by (11.12)(1).
Alternatively, any ideal b/a of R/a is, clearly, generated by the images of gener-
ators of b. Similarly, any ideal b of ST!R is generated by the images of generators
of p5'b by (11.11)(1)(b). O

Proposition (16.8) (Cohen). — A ring R is Noetherian if every prime is finitely
generated.

Proof: Suppose there are non-finitely-generated ideals. Given a nonempty set
of them {ay} that is linearly ordered by inclusion, set a := (Jay. If a is finitely
generated, then all the generators lie in some a), so generate ay; so ay = a, a
contradiction. Thus a is non-finitely-generated. Hence, by Zorn’s Lemma, there is
a maximal non-finitely-generated ideal p. In particular, p # R.

Assume every prime is finitely generated. Then there are a,b € R—p with ab € p.
So p + (a) is finitely generated, say by 1 + wsa,...,x, + wya with 2; € p. Then
{z1,..., 2, a} generate p + (a).

Set b= Ann((p+ (a))/p). Then b O p+ (b) and b ¢ p. So b is finitely generated,
say by y1,...,Ym. Take z € p. Then z € p + (a), so write

Z=0a121+ -+ anTn +ya
with a;,y € R. Then ya € p. So y € b. Hence y = byyy + - + by, with b; € R.
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Thus p is generated by {x1,...,Zn,ay1,...,aym}, a contradiction. Thus there are
no non-finitely-generated ideals; in other words, R is Noetherian. ]

Lemma (16.9). — If a ring R is Noetherian, then so is the polynomial ring R[X].

Proof: By way of contradiction, assume there is an ideal a of R[X] that is not
finitely generated. Set ag := (0). For each ¢ > 1, choose inductively F; € a—a;_1 of
least degree d;. Set a; := (Fy,...,F;). Let a; be the leading coefficient of F;, and
b the ideal generated by all the a;. As R is Noetherian, b is finitely generated. So
b= (ai,...,a,) for some n by (16.2). Thus a,+1 =ria1+---+rpa, with r; € R.

By construction, d; < d;;; for all 7. Set

Fi=Fppq — (mE X0 o By X e —dn)
Then deg(F) < dpy1, so F € a,,. Therefore, F,, 11 € a,, a contradiction. O

Theorem (16.10) (Hilbert Basis). — Let R be a Noetherian ring, R’ a finitely
generated algebra. Then R’ is Noetherian.

Proof: Say x1,...,z, generate R’ over R, and let P := R[Xy,...,X,] be the
polynomial ring in r variables. Then P is Noetherian by (16.9) and induction
on 7. Assigning z; to X; defines an R-algebra map P — R’, and obviously, it is
surjective. Hence R’ is Noetherian by (16.7). O

(16.11) (Noetherian modules). — We call a module M Noetherian if every
submodule is finitely generated. In particular, a ring is Noetherian as a ring if and
only if it is Noetherian as a module, because its submodules are just the ideals.
We say the ascending chain condition (acc) is satisfied in M if every ascending
chain of submodules My C M; C --- stabilizes. We say the maximal condition
(maxc) is satisfied in M if every nonempty set of submodules contains ones maximal
under inclusion. It is simple to generalize (16.5): These conditions are equivalent:

(1) M is Noetherian; (2) acc is satisfied in M; (3) mazc is satisfied in M.

Lemma (16.12). — Let R be a ring, M a module, and N a submodule. Nested
submodules My C Ms of M are equal if both these equations hold:

MinN=MnNN and (M,+N)/N = (M,+ N)/N.

Proof: Given mgy € My, there is m1 € My with n := mo — mq € N. Then
née MyNN =M, NN. Hence my € M;. Thus M; = M. ([l

Proposition (16.13). — Let R be a ring, M a module, N a submodule.
(1) Then M is finitely generated if N and M/N are finitely generated.
(2) Then M is Noetherian if and only if N and M/N are Noetherian.

Proof: Assertion (1) is equivalent to (5.5) owing to (5.2).

To prove (2), first assume M is Noetherian. A submodule N’ of N is also a
submodule of M, so N’ is finitely generated; thus IV is Noetherian. A submodule of
M/N is finitely generated as its inverse image in M is so; thus M /N is Noetherian.

Conversely, assume N and M/N are Noetherian. Let P be a submodule of M.
Then PNN and (P+N)/N are finitely generated. But P/(PNN) = (P+N)/N
by (4.8.2). So (1) implies P is finitely generated. Thus M is Noetherian.

Here is a second proof of (2). First assume M is Noetherian. Then any ascending
chain in N is also a chain in M so it stabilizes. And any chain in M /N is the image
of a chain in M, so it too stabilizes. Thus N and M /N are Noetherian.
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Conversely, assume N and M/N are Noetherian. Given M; C My C --- C M,
both (M;NN) C (MaNN) C--- and (M1 + N)/N C (Mz+ N)/N C --- stabilize,
say M; NN = M;31 "N =--- and (M; + N)/N = (M;41 + N)/N =---. Then
M; =M1 =--- by (16.12). Thus M is Noetherian. O

Corollary (16.14). — Modules M, ..., M, are Noetherian if and only if their direct
sum Mi @ --- @ M, is Noetherian.

Proof: The sequence 0 - My - M1 ® (Mo ®--- & M,) > Mo ®---® M, =0
is exact. So the assertion results from (16.13)(2) by induction on r. O

Theorem (16.15). — Let R be a Noetherian ring, and M a module. Then the
following conditions on M are equivalent:

(1) M is Noetherian; (2) M is finitely generated; (3) M is finitely presented.

Proof: Assume (2). Then there is an exact sequence 0 - K — R™ — M — 0.
Now, R™ is Noetherian by (16.14) and by (16.11). Hence K is finitely generated,
0 (3) holds; further, (1) holds by (16.13)(2). Trivially, (1) or (3) implies (2). O

Theorem (16.16). — Let R be a ring, M a module. Set R' :== R/ Ann(M). Then
M is Noetherian if and only if R’ is Noetherian and M is finitely generated.

Proof: First, assume M is Noetherian. Say mq,...,m, generate M. Define
a: R — M®" by a(x) := (zmy,...,zm,). Plainly Ker(a) = Ann(M). Hence
« induces an injection R’ — M®". But M®" is Noetherian by (16.14). Thus
(16.13)(2) implies that R’ is Noetherian. Trivially, M is finitely generated.

Conversely, assume R’ is Noetherian and M is finitely generated. Apply (16.15)
over R'. Thus M is Noetherian. O

Lemma (16.17) (Artin-Tate [2, Thm.1]). — Let R'/R and R"/R’ be extensions
of rings. Assume that R is Noetherian, that R” /R is algebra finite, and that R" /R’
either is module finite or is integral. Then R'/R is algebra finite.

Proof: Since R”/R is algebra finite, so is R”/R’. Hence, the two conditions on
R"/R' are equivalent by (10.18).

Say x1,...,T,, generate R” as an R-algebra, and y1,...,¥, generate R’ as an
R’-module. Then there exist z;; € R" and z;j, € R’ with
T; = Zj Zz‘jyj and yiyj = Zk Zijkyk- (16.17.1)

Set R{, := R[{zij, zijx}] C R". Since R is Noetherian, so is R, by (16.10).
Any z € R” is a polynomial in the z; with coefficients in R. So (16.17.1) implies
x is a linear combination of the y; with coefficients in Rj. Thus R” /Ry, is module
finite. But R}, is a Noetherian ring. So R” is a Noetherian Rj-module by (16.15),
(2)=(1). But R’ is an R{-submodule of R”. So R’/R{, is module finite by (16.11).
So there are w1, ...,w, € R’ such that, if v € R, then z = ) apwy, with ai, € Ry).
But Ry := R[{zij;, zijx}| C R". Thus R' = R[{zj, ziji, wi}] C R”, as desired. O

Theorem (16.18) (Noether on Invariants). — Let R be a Noetherian ring, R’ an
algebra-finite extension, and G a finite group of R-automorphisms of R'. Then the
subring of invariants R'C is also algebra finite; in other words, every invariant can
be expressed as a polynomial in a certain finite number of “fundamental” invariants.

Proof: By (10.35), R’ is integral over R'®. So (16.17) yields the assertion. [J
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(16.19) (Artin—Tate proof [2, Thm.2] of the Zariski Nullstellensatz (15.4)). —
In the setup of (15.4), take a transcendence basis z1,...,z, of R/k. Then R
is integral over k(zi,...,x,) by definition [15, Thm 1.1, p.356], [6, p.562]. So
k(x1,...,z,) is algebra finite over k by (16.17), say k(x1,...,2,) = k[y1, ..., ys).

Suppose r > 1. Write y; = F;/G; with F;,G; € k[z1,...,z,]. Let H be an
irreducible factor of Gy --- G5 + 1. Plainly H t G; for all i.

Say H=! = P(yi,...,ys) where P is a polynomial. Then H~! = Q/(Gy---Gs)™
for some Q € k[x1,...,2z;] and m > 1. But H { G; for all i, a contradiction. Thus
r =0. So (10.18) implies R/k is module finite, as desired.

Example (16.20). — Set § := /=5, set R := Z[§], and set p := (2, 1 + §). Let’s
prove that p is finitely presented and that pR, is free of rank 1 over R, for every
maximal ideal q of R, but that p is not free. Thus the equivalent conditions of
(13.15) do not imply that p is free.

Since Z is Noetherian and since R is finitely generated over Z, the Hilbert Basis
Theorem (16.10) yields that R is Noetherian. So since p is generated by two
elements, (16.15) yields that p is finitely presented.

Recall from [3, (13.3.3), p. 387] that p is maximal in R, but not principal. Now,
3 ¢ p; otherwise, 1 € pas2 € p, but p # R. So (1 —9)/3 € R,. Hence (1+ )R,
contains (146)(1—0)/3, or 2. So (1+J)R, = pR,. Since R, is a domain, the map
ti4s: Ry — pRy is injective, so bijective. Thus pR, is free of rank 1.

Let q be a maximal ideal distinct from p. Then p N (R — q) # 0; so, pRq = Ry
by (11.8)(2). Thus pR, is free of rank 1.

Finally, suppose p ~ R™. Set K := Frac(R). Then K = So_lR. So So_lp ~ K",
But the inclusion p < R yields an injection So_lp — K. Also, So_lp is a nonzero
K-vector space. Hence Salp — K. Therefore, n = 1. So p ~ R. Hence p is
generated by one element, so is principal, a contradiction. Thus p is not free.

Definition (16.21). — We say a module is Artinian or the descending chain
condition (dcc) is satisfied if every descending chain of submodules stabilizes.
We say the ring itself is Artinian if it is an Artinian module.
We say the minimal condition (minc) is satisfied in a module if every nonempty
set of submodules has a minimal member.

Proposition (16.22). — Let M, ..., M,, M be modules, N a submodule of M.
(1) Then M is Artinian if and only if minc is satisfied in M.
(2) Then M is Artinian if and only if N and M/N are Artinian.
(3) Then My, ..., M, are Artinian if and only if M1 & --- @ M, is Artinian.

Proof: It is easy to adapt the proof of (16.4), the second proof of (16.13)(2),
and the proof of (16.14). O

B. Exercises

Exercise (16.23) . — Let M be a module. Assume that every nonempty set of
finitely generated submodules has a maximal element. Show M is Noetherian.

Exercise (16.24) . — Let R be a Noetherian ring, {F)}rea a set of polynomials
in variables X1,...,X,. Show there’s a finite subset Ag C A such that the set V}
of zeros in R™ of the F)\ for A € Ay is precisely that V of the F) for A € A.
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Exercise (16.25) . — Let R be a Noetherian ring, F := Y a, X" € R[[X]] a power
series in one variable. Show that F' is nilpotent if and only if each a,, is too.

Exercise (16.26) . — Let R be a ring, X a variable, R[X] the polynomial ring.
Prove this statement or find a counterexample: if R[X] is Noetherian, then so is R.

Exercise (16.27) . — Let R'/R be a ring extension with an R-linear retraction
p: R — R. If R’ is Noetherian, show R is too. What if R’ is Artinian?

Exercise (16.28) . — Let R be a ring, M a module, R’ a faithfully flat algebra. If
M ®pr R’ is Noetherian over R, show M is Noetherian over R. What if M @z R’
is Artinian over R’?

Exercise (16.29) . — Let R be a ring. Assume that, for each maximal ideal m, the
local ring Ry, is Noetherian and that each nonzero x € R lies in only finitely many
maximal ideals. Show R is Noetherian: use (13.10) to show any ideal is finitely
generated; alternatively, use (13.9) to show any ascending chain stabilizes.

Exercise (16.30) (Nagata) . — Let k be a field, P := k[X;, X5, ...] a polynomial
ring, my < mg < --- positive integers with m; 1 — m; > m; —m;_; for ¢ > 1. Set
pi = (Xmit1,---» Xmiy,) and S := P —J,~, p;. Show S is multiplicative, S™'P is
Noetherian of infinite dimension, and the S~!'p; are the maximal ideals of S~ P.

Exercise (16.31) . — Let z be a complex variable, n an integer. Determine which
of these rings R are Noetherian:

(1) the ring R of rational functions of z having no pole on the circle |z| = 1,

(2) the ring R of power series in z having a positive radius of convergence,

(3) the ring R of power series in z with an infinite radius of convergence,

(4) the ring R of polynomials in z whose first n derivatives vanish at the origin,

(5) the ring R of polynomials in two complex variables z, w all of whose partial
derivatives with respect to w vanish for z = 0.

Exercise (16.32) . — Let R be a ring, M a Noetherian module. Adapt the proof
of the Hilbert Basis Theorem (16.9) to prove M[X] is a Noetherian R[X]-module.

Exercise (16.33) . — Let R be a ring, S a multiplicative subset, M a Noetherian
module. Show that S~1M is a Noetherian S~!R-module.

Exercise (16.34) . — For i = 1, 2, let R; be a ring, M; a Noetherian R;-module.
Set R:= Ry X Ry and M := M; x M. Show that M is a Noetherian R-module.

Exercise (16.35) . — Let 0 — L = M P, N = 0 be a short exact sequence of
R-modules, and M7, My two submodules of M. Prove or give a counterexample to
this statement: if 3(M;) = B(Mz) and a1 (M;) = a~1(M,), then M; = Ms.

Exercise (16.36) . — Let R be a ring, ay,...,a, ideals such that each R/a; is a
Noetherian ring. Prove (1) that @@ R/a; is a Noetherian R-module, and (2) that,
if Na; =0, then R too is a Noetherian ring.

Exercise (16.37) . — Let R be a ring, and M and N modules. Assume that N is
Noetherian and that M is finitely generated. Show that Hom(M, N) is Noetherian.

Exercise (16.38) . — Let R be a ring, M a module. If R is Noetherian, and M
finitely generated, show S™!D(M) = D(S~'M).
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Exercise (16.39) . — Let R be a domain, R’ an algebra, and set K := Frac(R).
Assume R is Noetherian. Prove the following statements.

(1) [2, Thm. 3] Assume R’ is a field containing R. Then R'/R is algebra finite if
and only if K/R is algebra finite and R'/K is (module) finite.

(2) [2, bot. p.77] Let K’ D R be a field that embeds in R’. Assume R'/R is
algebra finite. Then K/R is algebra finite and K’'/K is finite.

Exercise (16.40) . — Let R be a domain, K := Frac(R), and « € K. Show:

(1) If x is integral over R, then there’s a nonzero d € R with dz™ € R for n > 0.
(2) If there’s a d as in (1) and if R is Noetherian, then x is integral over R.

Exercise (16.41) . — Let k be a field, V' a vector space. Show these statements
are equivalent: (1) V is finite dimensional; (2) V' is Noetherian; (3) V' is Artinian.

Exercise (16.42) . — Let k be a field, R an algebra, M an R-module. Assume M
is finite dimensional as a k-vector space. Prove M is Noetherian and Artinian.

Exercise (16.43) . — Let R be a ring, and my, ..., m, maximal ideals. Assume
my---m, =0. Set ag:= R,and for 1 <i < m,seta; :=my---m;and V; := a,_1/a;.
Using the a; and V;, show that R is Artinian if and only if R is Noetherian.

Exercise (16.44) . — Fix a prime number p. Set M,, :={q € Q/Z | p"q =0} for
n > 0. Set M :=|JM,. Find a canonical isomorphism Z/(p"™) == M,,. Given a
proper Z-submodule N of M, show N = M, for some n. Deduce M is Artinian,
but not Noetherian. Find Ann(M), and deduce Z/ Ann(M) is not Artinian.

Exercise (16.45) . — Let R be an Artinian ring. Prove that R is a field if it is a
domain. Deduce that, in general, every prime ideal p of R is maximal.

Exercise (16.46) . — Let R be a ring, M an Artinian module, a: M — M an
endomorphism. Assume « is injective. Show that « is an isomorphism.
Exercise (16.47) . — Let R be a ring; M a module; Ny, Ny submodules. If the

M/N; are Noetherian, show M /(N1 N Ng) is too. What if the M/N; are Artinian?

C. Appendix: Noetherian Spaces

Definition (16.48). — We call a topological space irreducible if it is nonempty
and if every pair of nonempty open subsets meet. A subspace is said to be an
irreducible component if it is a maximal irreducible subspace.

Proposition (16.49). — Let R be a ring. Set X := Spec(R) and n := nil(R). Then
X is irreducible if and only if n is prime.

Proof: Given g € R, take f := 0. Plainly, D(f) = 0; see (13.1). Thus, in
(13.39), the equivalence of (1) and (5) means this: D(g) = 0 if and only if g € n.

Suppose n is not prime. Then there are f, g € R with f, g ¢ n but fg € n.
The above observation yields D(f) # (0 and D(g) # 0 but D(fg) = (). Further,
D(f)NnD(g) = D(fg) by (13.1.3). Thus X is not irreducible.

Suppose X is not irreducible: say U, V are nonempty open sets with U NV = ().
By (13.1), the D(f) form a basis of the topology: fix f, g with § # D(f) C U and
f # D(g) C V. Then D(f) N D(g) = 0. But D(f) N D(g) = D(fg) by (13.1.3).
Hence, the first observation implies f, g ¢ n but fg € n. Thus n is not prime. O
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Lemma (16.50). — Let X be a topological space, Y an irreducible subspace.
(1) Assume Y =J;_, Y; with each Y; closed in' Y. Then'Y =Y; for some i.
(2) Assume Y C U?:l X, with each X; closed in X. Then'Y C X; for some i.
(3) Then the closure Y of Y is also irreducible.
(4) Then'Y lies in an irreducible component of X.
(5) Then the irreducible components of X are closed, and cover X.

Proof: For (1), induct on n. Assume Y # Y7, else (1) holds. Then n > 2. Set
U=Y—-Y,and V:=Y — U?:Q Y;. Then U and V are open in Y, but don’t meet.
Also U # 0. But Y is irreducible. So V. =0. SoY = [J;_,Y;. So by induction,
Y =Y, for some ¢ > 2. Thus (1) holds.

For (2), set Y; := Y NX;. Then each Y; is closed in Y, and Y = |J;_, ¥i. So (1)
implies Y = Y; for some 4. Thus (2) holds.

For (3), let U, V be nonempty open sets of Y. Then UNY and V NY are open
in Y, and nonempty. But Y is irreducible. So (UNY)N(VNY) #0. SoUNV # 0.
Thus (3) holds.

For (4), let 8 be the set of irreducible subspaces containing Y. Then Y € 8, and
8 is partially ordered by inclusion. Given a totally ordered subset {Y\} of 8, set
Y’ :=J, Y. Then Y’ is irreducible: given nonempty open sets U, V of Y, there is
Awith UNYy # 0 and VNYy #0; 50 (UNYy)N(VNY,) # 0D as Y, is irreducible;
so UNV # (. Thus Zorn’s Lemma yields (4).

For (5), note (3) implies the irreducible components are closed, as they’re max-
imal. And (4) implies they cover, as every point is irreducible. Thus (4) holds. O

Exercise (16.51) . — Let R be a ring. Show:
(1) Define V by a — V(a) = Spec(R/a). Then V is an inclusion-reversing
bijection from the radical ideals a of R onto the closed subspaces of Spec(R).
(2) V gives a bijection from the primes onto the irreducible closed subspaces.
(3) V gives a bijection from the minimal primes onto the irreducible components.

Definition (16.52). — A topological space is said to be Noetherian if its closed
subsets satisfy the dcc, or equivalently, if its open subsets satisfy the acc.

Lemma (16.53). — Let X be a Noetherian space. Then X is quasi-compact, and
every subspace Y is Noetherian.

Proof: Given X = |JU, with the Uy open, form the set of finite unions of the
Uy. Each such union is open, and X is Noetherian. So an adaptation of (16.4)
yields a maximal element V = J!_, Uy,. Then V UU, =V for any U,. But every
point of x lies in some Uy. Hence V = X. Thus X is quasi-compact.

Let Cyp D C7 D --- be a descending chain of closed subsets of Y. Then their

closures in X form a descending chain Co D C; D ---. It stabilizes, as X is
Noetherian. But C,, NY = C,, for all n. So Cy D C; D --- stabilizes too. Thus Y
is Noetherian. ([l

Lemma (16.54). — A nonempty Noetherian space X is the union of finitely many
irreducible closed subspaces.

Proof (Noetherian induction): Let 8 be the set of nonempty closed sub-
spaces of X that are not the union of finitely many irreducible closed subspaces.
Suppose 8 # (). Since X is Noetherian, an adaptation of (16.4) yields a minimal
element Y € 8. Then Y is nonempty and reducible. So Y = Y; UY5 with each Y;
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closed and Y; & Y. By minimality, ¥; ¢ 8. So Y is a finite union of irreducible
closed subspaces. Hence Y is too, a contradiction. Thus 8§ = (3, as desired. (I

Proposition (16.55). — Let X be a Noetherian space, X for X € A its distinct
irreducible components, p € A. Then A is finite, X = Uycp Xa, but X # Uy, X

Proof: By (16.54), X = J;_, Y; with each Y; irreducible. By (16.50)(4), each
Y; lies in an irreducible component Xy, of X. Thus X = J;"; X, = U,cp Xo-

So X, ¢ Ui, X,. But the X, are closed by (16.50)(5). Hence X,, C X, for
some 4 by (16.50)(2). But X, is maximal irreducible. So X,, = X,. Thus A has
at most n elements.

Finally, if X = U/\iﬂ X, then the above reasoning yields X, = X for A # u, a
contradiction. O

Exercise (16.56) . — Let R be a ring. Prove the following statements:
(1) Spec(R) is Noetherian if and only if the radical ideals satisfy the acc.

(2) If Spec(R) is Noetherian, then the primes satisfy the acc.
(3) If R is Noetherian, then Spec(R) is too.

Example (16.57). — In (16.56)(2), the converse is false.

For example, take R := Fy where N := {1,2,3,...}. Then R is Boolean by (1.2),
so absolutely flat by (10.26)(1). So every prime is maximal by (13.61). Thus the
primes trivially satisfy the acc.

Since R is Boolean, f™ = f for all f € R and n > 1. So every ideal is radical.
For each m € N, let a,, be the set of vectors (z1, 2,...) with z,, = 0 for n > m.
The a,, form an ascending chain of ideals, which doesn’t stabilize. Thus the radical
ideals do not satisfy the acc. Thus by (16.56)(1), Spec(R) is not Noetherian.

Example (16.58). — In (16.56)(3), the converse is false.

For example, take a field k and an infinite set X of variables. Set P := k[X] and
m:= ({X}) and R := P/m?2. Given any prime p of R containing m?, note p D m by
(2.23). But m is maximal by (2.32) with R := k and p := (0). So p = m. Thus
m/m? is the only prime of R. Thus Spec(R) has one point, so is Noetherian.

However, m/m? is not finitely generated. Thus R is not Noetherian.

Proposition (16.59). — Let ¢: R — R’ be a ring map. Assume that Spec(R') is
Noetherian. Then ¢ has the Going-up Property if and only if Spec(p) is closed.

Proof: Set ¢* := Spec(p). Recall from (13.37) that, if ¢* is closed, then ¢ has
the Going-up Property, even if Spec(R’) is not Noetherian.

Conversely, assume ¢ has the Going-up Property. Given a closed subset Y of
Spec(R’), we must show ¢*Y is closed.

Since Spec(R’) is Noetherian, Y is too by (16.53). So Y = (J;_, Y; for some
n and irreducible closed Y; by (16.54). Then ¢*Y = |, ¢*Y;. So it suffices to
show each ¢*Y; is closed. Thus we may assume Y is irreducible and closed.

Then Y = Spec(R'/q’) for some prime q’ of R’ by (16.51)(2). Set q := ¢~ 'q’.
Then ¢*Y = Spec(R/q) by (13.37)(2). Thus ¢*Y is closed by (13.1.7). O

Definition (16.60). — A subset Y of a topological space is called constructible
it Y =J,(U; N C;) for some n, open sets U;, and closed sets C;.

Exercise (16.61) . — Let X be a topological space, Y and Z constructible subsets,
¢: X' — X a continuous map, A C Z an arbitrary subset. Prove the following:
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) Open and closed sets are constructible.
) Y UZ and Y N Z are constructible.
)

Lemma (16.62). — Let X be a topological space, Y a constructible subset. Then
its complement X — Y is constructible.

Proof: Say Y = |J_,(U; N C;) with U; open and C; closed. Set V; := X — C;
and D; := X — U;. Then V; is open, D; is closed, and X — Y =('_,(V; U D;).

Induct on n. If n =0, then X —Y = X. But X is plainly constructible.

Assume n > 1. Set A := ﬂ;:ll(Vi U D;). By induction, A is constructible. Now,
V., and D,, are constructible by (16.61)(1); so V,, U D,, is too by (16.61)(2). But
X-Y=An(V,UD,). Thus (16.61)(2) implies X — Y is constructible. O

Proposition (16.63). — Let X be a topological space, F the smallest family of
subsets that contains all open sets and that is stable under finite intersection and
under complement in X. Then F consists precisely of the constructible sets.

Proof: Let ' be the family of all constructible sets. Then F’ contains all open
sets by (16.61)(1). It is stable under finite intersection by (16.61)(2) and induc-
tion. It is stable under complement in X by (16.62). Thus ¥ > F.

Conversely, given Y € ', say Y = J_,(U; N C;) with U; open and C; closed.
Set Z; :==U;NC;. Then Y = X — (X — Z;). But U; and X — C; are open, so lie
nF SoC;=X—-(X-C)eF.S0Z;€F.S0X-2Z,€¢F. SoN(X—-2)eT.
Thus Y € F. Thus ¥ c F. Thus F' = F. O

Lemma (16.64). — Let X be an irreducible topological space, Y a constructible
subset. Then'Y is dense in X if and only if Y contains a nonempty open set.

Proof: First, assume Y contains a nonempty open set U. As X is irreducible,
every nonempty open set V meets U. So V meets Y. Thus Y is dense in X.

Conversely, assume Y = X. Say Y = Ui, (U;NC;) with U; open and C; closed.
As X is irreducible, X # (). So Y # (. Discard U; if U; = (). Then U; # 0 for all 1.

Note Y C |JI, C;. Also Y = X, and X is irreducible. So X = C; for some i by
(16.50)(1). Hence Y D U; N C; = U;. Thus Y contains a nonempty open set. [

Lemma (16.65). — Let X be a Noetherian topological space. Then a subsetY is
constructible if and only if this condition holds: given a closed irreducible subset Z
of X, either Y N Z isn’t dense in Z or it contains a nonempty set that’s open in Z.

Proof: Assume Y is constructible. Given a closed irreducible subset Z of X,
note YN Z is constructible in Z by (16.61)(1), (2), (4). If YN Z is dense in Z, then
it contains a nonempty set that’s open in Z by (16.64). Thus the condition holds.

Conversely, assume the condition holds. Use Noetherian induction: form the set
8 of closed sets C with Y N C not constructible (in X). Assume 8 # 0. As X is
Noetherian, an adaptation of (16.4) yields a minimal element Z € 8.

Note that Z # () as Y N Z is not constructible.

Suppose Z = Z1 U Z, with each Z; closed and Z; & Z. By minimality, Z; ¢ 8.
So Y N Z; is constructible. But YNZ = (Y NZ;)U(Y UZs). So (16.61)(2) implies
Y N Z is constructible, a contradiction. Thus Z is irreducible.

Assume Y N Z isn’t dense in Z, and let A be its closure. Then A G Z. So A ¢ 8.
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So Y N A is constructible. But YNZCYNACYNZ,soYNA=YNZ. Thus
Y N Z is constructible, a contradiction. Thus Y N Z is dense in Z.

So by the condition, Y N Z contains a nonempty set U that’s open in Z. So by
definition of the topology on Z, we have U = V N Z where V is open in X. But Z
is closed in X. Thus U is constructible in X.

Set B := Z — U. Then B is closed in Z, so in X. Also B ; Z. So B¢ 8. So
Y N B is constructible. But Y NZ = (Y NB)UU. So (16.61)(2) implies Y N Z is
constructible, a contradiction. Thus 8 = (). Thus Y is constructible. [

Theorem (16.66) (Chevalley’s). — Let ¢: R — R’ be a map of rings. Assume R is
Noetherian and R’ is algebra finite over R. Set X := Spec(R) and X' := Spec(R’)
and ©* := Spec(p). Let Y' C X' be constructible. Then ©*Y' C X is constructible.

Proof: Say that Y' = (J;_,(U/ N C{) where U/ is open and that C/ is closed.
Then ¢*Y' = J¢*(U/NC}). So by (16.61)(2) it suffices to show each ¢*(U/ N CY)
is constructible. So assume Y/’ = U’ N C’ with U’ open and C’ closed.

Since R is Noetherian and R’ is algebra finite, R’ is Noetherian by (16.10). Thus
(16.56)(3) implies X and X' are Noetherian.

Since X is Noetherian, let’s use (16.65) to show ¢*Y” is constructible. Given a
closed irreducible subset Z of X such that (p*Y")NZ is dense in Z, set Z' := ¢* 7.
Then (p*Y')NZ =¢*(Y'NZ"). Set D' :=C'"NZ". Then Y NZ' =U'ND". We
have to see that ¢*(U’ N D’) contains a nonempty set that’s open in Z.

Owing to (16.51)(2), (1), there’s a prime p of R and a radical ideal a’ of R’ such
that Z = V(p) and D’ = V(¢); moreover, p and a’ are uniquely determined. Since
©*(U'ND') is dense in Z, so is ¢*D’. So Z = V(¢ 'a’) owing to (13.36)(1). But
o~ 'a’ is radical. Thus ¢~ 'a’ = p.

So ¢ induces an injection t: R/p — R'/da’. Further, R/p is Noetherian by
(16.7), and plainly, R'/a’ is algebra finite over R/p. But Z = Spec(R/p) and
D’ = Spec(R'/da’) by (13.1.7). Replace ¢ and Y’ by ¢ and U’ N D’. Then ¥ is
injective, R is a domain, and Y’ is an open set of X’ such that ©*Y” is dense in X.
We have to see that ¢*Y” contains a nonempty set that’s open in X.

By (13.1), the principal open sets D(f’) with f' € R’ form a basis for the
topology of X’. Since X’ is Noetherian, Y’ is too by (16.53); so Y’ is quasi-
compact again by (16.53). Thus Y’ = (J;_, D(f}) for some m and f; € R'. So
Y = U;nzl ©*D(f;). But ¢*Y" is dense in X. Thus U;n:1 e*D(f}) = X.

However, X is irreducible. So ¢*D(f}) = X for some j by (16.50)(1). But
D(f}) = Spec( ’f7,) by (13.1.8). So the composition R — R’ — R’f; is injective
by (13.36)(2). Plainly, R}; is algebra finite over R. Hence go*D(f]’:) contains a

nonempty set V that’s open in X by (15.18). Then V C ¢*Y”, as desired. O

D. Appendix: Exercises

Exercise (16.67) . — Find a non-Noetherian ring R with R, Noetherian for every
prime p.

Exercise (16.68) . — Describe Spec(Z[X]).
Exercise (16.69) . — What are the irreducible components of a Hausdorff space?
Exercise (16.70) . — Are these conditions on a topological space X equivalent?

128



Chain Conditions (16.71) / (16.79) App: Exercises

(1) X is Noetherian.
(2) Every subspace Y is quasi-compact.
(3) Every open subspace V' is quasi-compact.

Exercise (16.71) . — Let ¢: R — R’ a map of rings. Assume R’ is algebra finite
over R. Show that the fibers of Spec(y) are Noetherian subspaces of Spec(R').

Exercise (16.72) . — Let M be a Noetherian module over a ring R. Show that
Supp(M) is a closed Noetherian subspace of Spec(R). Conclude that M has only
finitely many minimal primes.

Exercise (16.73) . — Let X be a Noetherian topological space. Then a subset U
is open if and only if this condition holds: given a closed irreducible subset Z of X,
either U N Z is empty or it contains a nonempty subset that’s open in Z.

Exercise (16.74) . — Let ¢: R — R’ a map of rings. Assume R is Noetherian
and R’ is algebra finite over R. Set X := Spec(R), set Y := Spec(R’), and set
©* := Spec(p). Prove that ¢* is open if and only if it has the Going-down Property.

Exercise (16.75) . — Let ¢: R — R’ a map of rings, M’ a finitely generated R'-
module. Assume R is Noetherian, R’ is algebra finite, and M’ is flat over R. Show
Spec(yp) is open.

Exercise (16.76) . — In the setup of (1.29), assume R is a field k.
(1) Show the algebraic subsets of V' form the closed sets of a topology on V.
(2) Show there’s a well-defined map of sets
¢: V — X :=Spec(k[V]) given by ¢(v) :=m,.

Show ¢(V') consists of all the points m € X with Frac(k[V]/m) = k: show these m
are closed, and k[V]/m = k. Finally, show ¢ is an embedding of topological spaces.

Exercise (16.77) . — Let X be a topological space, Y a dense subset. Show that
X is irreducible if and only if Y is irreducible.

Exercise (16.78) . — In the setup of (1.29), assume R is an algebraically closed
field k. Set X := Spec(k[V]) and owing to (16.75)(2), view V as a subspace of X.
Show: (1) Then V the set of closed points of X.
(2) Then V is very dense in X; see (15.39).
(3) Then V is irreducible if and only if X is, if and only k[V] is a domain.
(4) Define the dimension of a topological space S to be the sup of the lengths
of chains of its closed irreducible subsets, and denote it by dim S. Then

dim k[V] = dim X = dim V.

Exercise (16.79) . — In the setup of (1.30), let ¢: V' — W be a polynomial map
of algebraic sets. Assume R is an algebraically closed field k, and ¢*: k[W] — Ek[V]
makes k[V] a module-finite extension of k[W]. Show ¢ is surjective.
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17. Associated Primes

Given a module, a prime is associated to it if the prime is equal to the annihilator
of an element. Given a subset of the set of all associated primes, we prove there
is a submodule whose own associated primes constitute that subset. If the ring
is Noetherian, then the set of annihilators of elements has maximal members; we
prove the latter are prime, so associated. Assume just the module is Noetherian.
Then the union of all the associated primes is the set of zerodivisors on the module,
and the intersection is the set of nilpotents. Furthermore, there is then a finite
chain of submodules whose successive quotients are cyclic with prime annihilators;
these primes include all associated primes, which are, therefore, finite in number.

A. Text

Definition (17.1). — Let R be a ring, M a module. A prime ideal p is said to be
associated to M, or simply a prime of M, if there is a (nonzero) m € M with
p = Ann(m). The set of associated primes is denoted by Ass(M) or Assp(M).

A p € Ass(M) is said to be embedded if it properly contains a q € Ass(M).

Warning: following an old custom, by the associated primes of a proper ideal
a, we mean not those of a viewed as an abstract module, but rather those of R/a;
however, by the associated primes of R, we do mean those of R viewed as an
abstract module.

Example (17.2). — Here’s an example of a local ring R whose maximal ideal m
is an embedded (associated) prime. Let k be a field, and X, Y variables. Set
P:=K[X,Y]] and n:= (X,Y). By (3.7), P is a local ring with maximal ideal n.

Set a := (XY, Y?). Set R:= P/a and m := n/a. Then R is local with maximal
ideal m. Let z,y € R be the residues of X,Y. Then z,y € Ann(y) C m = (z,y).
So m = Ann(y). Thus m € Ass(R).

Note y € Ann(z). Given > ;. a;;x'y? € Ann(z), note >, ajoz'™t = 0. Hence
> ainX T €a. So Y2 aip Xt = 0. So 3,5 aijaty’ € (y). Thus (y) = Ann(z).

Plainly, Y € P is a prime element; so (Y) C P is a prime ideal by (2.5); so
(y) C R is a prime ideal by (2.7). Thus (y) € Ass(x). Thus m is embedded.

Proposition (17.3). — Let R be a ring, M a module, and p a prime ideal. Then
p € Ass(M) if and only if there is an R-injection R/p — M.

Proof: Assume p = Ann(m) with m € M. Define a map R — M by z — zm.
This map induces an R-injection R/p < M.

Conversely, suppose there is an R-injection R/p — M, and let m € M be the
image of 1. Then p = Ann(m), so p € Ass(M). O

Exercise (17.4) . — Let R be a ring, M a module, a C Ann(M) an ideal. Set
R := R/a. Let k: R — R’ be the quotient map. Show that p — p/a is a bijection
from Assp(M) to Assr (M) with inverse p’ — k= 1(p’).

Lemma (17.5). — Let R be a ring, p a prime ideal, m € R/p a nonzero element.
Then (1) Ann(m) =p and (2) Ass(R/p) = {p}.
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Proof: To prove (1), say m is the residue of y € R. Let © € R. Then xm = 0 if
and only if zy € p, so if and only if « € p, as p is prime and m # 0. Thus (1) holds.
Trivially, (1) implies (2). O

Proposition (17.6). — Let M be a module, N a submodule. Then
Ass(N) C Ass(M) C Ass(N) U Ass(M/N).

Proof: Take m € N. Then the annihilator of m is the same whether m is
regarded as an element of N or of M. So Ass(N) C Ass(M).

Let p € Ass(M). Then (17.3) yields an R-injection R/p — M. Denote its image
by E. If ENN = 0, then the composition R/p — M — M/N is injective; hence,
p € Ass(M/N) by (17.3). Else, take a nonzero m € EN N. Then Ann(m) = p by
(17.5)(1). Thus p € Ass(N). O

Proposition (17.7). — Let M be a module, and ¥ a subset of Ass(M). Then there
is a submodule N of M with Ass(M/N) =¥ and Ass(N) = Ass(M) — V.

Proof: Given submodules N, of M totally ordered by inclusion, set N :=J Ny.
Given p € Ass(N), say p = Ann(m). Then m € N, for some \; so p € Ass(Ny).
Conversely, Ass(Ny) C Ass(N) for all A by (17.6). Thus Ass(N) = |J Ass(Ny).

So we may apply Zorn’s Lemma to obtain a submodule N of M that is maximal
with Ass(N) C Ass(M) — . By (17.6), it suffices to show that Ass(M/N) C .

Take p € Ass(M/N). Then M/N has a submodule N'/N isomorphic to R/p by
(17.3). So Ass(N') C Ass(N) U {p} by (17.6) and (17.5)(2). Now, N’ 2 N and
N is maximal with Ass(N) C Ass(M) — ¥. Hence p € Ass(N') C Ass(M), but
p & Ass(M) — U. Thus p € 0. O

Proposition (17.8). — Let R be a ring, S a multiplicative subset, M a module,
and p a prime ideal. If pN S =0 and p € Ass(M), then S~'p € Ass(S™TM); the
converse holds if p is finitely generated modulo Ann(M).

Proof: Assume p € Ass(M). Then (17.3) yields an injection R/p — M. It
induces an injection S~1(R/p) < S™1M by (12.13). But S~}(R/p) = S~IR/S™1p
by (12.15). Assume p NS = () also. Then pS~!R is prime by (11.11)(3)(b). But
pSTtR = S~1p by (12.2). Thus S~!p € Ass(S™1M).

Conversely, assume S™1'p € Ass(S~'M). Then there are m € M and t € S with
S~lp = Ann(m/t). Set a := Ann(M). Assume there are x1,...,2,, € p whose
residues generate (a + p)/a. Fix ¢. Then x;m/t = 0. So there is s; € S with
sizzm = 0. Set s := [[s; and b := Ann(sm). Then z; € b. Given x € p, say
x=a+) a;z; with a € a and a; € R. Then a, ¢; € b. So x € b. Thus p C b.

Take b € b. Then bsm/st = 0. So b/1 € S~'p. So b € p by (11.11)(2)(b) and
(11.11)(3)(a). Thus p D b. So p = b := Ann(sm). Thus p € Ass(M).

Finally, pN S = 0 by (11.12)(2), as S™'p is prime. O

Lemma (17.9). — Let R be a ring, M a module, and p an ideal. Suppose p is
mazimal in the set of annihilators of nonzero elements m of M. Then p € Ass(M).

Proof: Say p := Ann(m) with m # 0. Then 1 ¢ p as m # 0. Now, take b,c € R
with bc € p, but ¢ ¢ p. Then bemn = 0, but ¢m # 0. Plainly, p C Ann(em). So
p = Ann(cm) by maximality. But b € Ann(em), so b € p. Thus p is prime. O

131



Associated Primes (17.10) / (17.14) Text

(17.10) (Zerodivisors). — Let R be a ring, M a module, z € R. We say z is a
zerodivisor on M if there is a nonzero m € M with xm = 0; otherwise, we say x
is a nonzerodivisor. We denote the set of zerodivisors by z.div(M) or z.divr(M).
Plainly the set of nonzerodivisors on M is a saturated multiplicative subset of R.
Assume M # 0. Given z € nil(M), take n > 1 minimal with 2" € Ann(M).
Then there’s m € M with 2" 'm # 0. But (2" 'm) = 0. Thus

nil(M) C z.div(M). (17.10.1)

Proposition (17.11). — Let R be a ring, M a module. Assume R is Noetherian,
or assume M is Noetherian. Then z.div(M) = U,cassar) P-

Proof: Given z € z.div(M), there exists a nonzero m € M with xm = 0. Then
x € Ann(m). Assume R is Noetherian. Then Ann(m) lies in an ideal p maximal
among annihilators of nonzero elements because of (16.5); hence, p € Ass(M) by
(17.9). Thus z.div(M) C |Jp. The opposite inclusion results from the definitions.

Assume instead M is Noetherian. By (16.16), R’ := R/ Ann(M) is Noetherian.
So by the above, z.divg (M) = Up,eASS(M) p’. Let k: R — R’ be the quotient map.
Given z € R and m € M, note xm = k(x)m; so £~ (z.divg (M)) = zdivg(M).
But k *Up' = Jr~tp’. Thus (17.4) yields z.divg(M) = Upeass(ar) b- O

Corollary (17.12). — Let R be a ring, M a module. Assume R is Noetherian, or
assume M is Noetherian. Then M = 0 if and only if Ass(M) = 0.

Proof: By (17.11), plainly 0 ¢ z.div(M) if and only if 0 ¢ UpeAss(M)' That is,
M =0 if and only if Ass(M) # 0.

Alternatively, if M = 0, then Ass(M) = (). Conversely, assume M = 0.

First, assume R is Noetherian. Let S be the set of annihilators of nonzero elements
of M. Then 8 has a maximal element p by (16.5). By (17.9), p € Ass(M).

Second, assume M is Noetherian. Set R’ := R/ Ann(M). Then R’ is Noetherian
by (16.16). By the above, Assp (M) # 0. So (17.4) yields Assp(M) # 0. O

Lemma (17.13). — Let R be a ring, M be a module. Then
Ass(M) C Ugeass(ary V(@) C Supp(M) C V(Ann(M)).

Proof: First, Ass(M) C Ugeass(ary V(a) as g € V(q).

Next, fix q € Ass(M) and p € V(q). Say q = Ann(m). Then m/1 # 0 in M,;
else, there’s x € R — p with xm = 0, and so € Ann(m) = q C p, a contradiction.
Thus p € Supp(M). Thus Uyeassary V(@) € Supp(M).

Finally, (13.4)(3) asserts Supp(M) C V(Ann(M)). O

Theorem (17.14). — Let R be a ring, M a module, p € Supp(M). Assume R is
Noetherian, or assume M is Noetherian. Then p contains some q € Ass(M); if p
is minimal in Supp(M), then p € Ass(M).

Proof: Assume R is Noetherian. Then R, is too by (16.7). But M, # 0. So
there’s Q € Assg, (M,) by (17.12). Set q := gogplﬂ. Then qR, = Q by (11.12)(2).
As R is Noetherian, q is finitely generated. So q € Ass(M) by(17.8). But qN.S, =0
and Sy := R—p . Thus q C p, as desired.

Next, assume M is Noetherian. Then M is finitely generated. So (13.4)(3) gives
Suppr(M) = V(Anng(M)). So p D Anng(M). Set R’ := R/ Anngr(M), and set
p’ :=p/Anng(M). Then p’ D Anng/ (M) = 0. So (13.4)(3) gives p’ € Suppp, (M).
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Moreover, R’ is Noetherian by (16.16). So by the first paragraph, p’ contains
some q' € Assgp/(M). Let k: R — R’ be the quotient map. Set q := k~'q’. Thus
p D q, and (17.4) yields q € Ass(M), as desired.

Finally, g € Supp(M) by (17.13). Thus p = q € Ass(M) if p is minimal. O

Theorem (17.15). — Let M be a Noetherian module. Then
nll(M) = mpEAss(M) p.

Proof: Since M is finitely generated, nil(M) = (\,cgupp(ar) P by (13.6). Since
M is Noetherian, given p € Supp(M), there is q € Ass(M) with g C p by (17.14).
The assertion follows. O

Lemma (17.16). — Let R be a ring, M a nonzero Noetherian module. Then there
exists a finite chain of submodules

O=MyCcMyC---CM, CM, =M
with M;/M;_1 ~ R/p; for some prime p; for i =1,...,n. For any such chain,
Ass(M) C {p1,...,pn} C Supp(M). (17.16.1)

Proof: There are submodules IV of M having such a chain, as 0 does. So there’s a
maximal such N by (16.11). Suppose N # M. Then Ass(M/N) # 0 by (17.12).
So there’s a submodule N’ 2 N with N'/N —=% R/p for some p, contradicting
maximality. Thus N = M.

The first inclusion of (17.16.1) follows by induction from (17.6) and (17.5)(2).
Now, p; € Supp(R/p;) by (13.4)(3) with M := R/p;. Thus (13.4)(1) yields
(17.16.1). 0

Theorem (17.17). — Let M be a Noetherian module. Then Ass(M) is finite.
Proof: The assertion follows directly from (17.16). O

Proposition (17.18). — Let R be a ring, M and N modules. Assume that M is
Noetherian. Then Ass(Hom(M, N)) = Supp(M)[) Ass(N).

Proof: Set a := Aun(M) and N’ := {n € N | an = 0}. Then Hom(M, N’') lies
in Hom(M, N). Conversely, given o: M — N and m € M, plainly a(a(m)) = 0; so
a(M) C N'. Thus Hom(M, N) = Hom(M, N').

Let’s see that Supp(M)() Ass(N) = Ass(N’) by double inclusion. First, given
p € Supp(M)(Ass(N), say p = Ann(n) for n € N. But Supp(M) C V(a) by
(13.4)(3); so p D a. Hence an = 0. Son € N'. Thus p € Ass(N').

Conversely, given p € Ass(N’), say p = Ann(n) for n € N’. Then an = 0. So
p D a. But Supp(M) = V(a) by (13.4)(3) as M is Noetherian. So p € Supp(M).
But n € N’ C N. Thus p € Ass(N). Thus Supp(M) () Ass(N) = Ass(N').

Thus we have to prove

Ass(Hom(M, N')) = Ass(N'). (17.18.1)

Set R’ := R/a. Plainly Hompg/ (M, N’) = Hompr(M, N'). Let k: R — R’ be
the quotient map. Owing to (17.4), p’ — k= 1(p’) sets up two bijections: one
from Assg/(Homp (M, N")) to Assgp(Hompg (M, N')), and one from Assgr/(N’) to
Assg(N'). Thus we may replace R by R’. Then by (16.16), R is Noetherian.

Given p € Ass(Hom(M, N')), there’s an R-injection R/p < Hom(M, N’) by
(17.3). Set k(p) := Frac(R/p). Then k(p) = (R/p)y by (12.16). But, R is
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Noetherian, so M is finitely presented by (16.15); so by (12.19),
Homp(M, N'), = Hompg, (M,, Ny). (17.18.2)

Hence, by exactness, localizing yields an injection ¢: k(p) — Hompg, (My, Ny).

For any m € M, with ¢(1)(m) # 0, the map k(p) — N, given by x — ¢(z)(m)
is nonzero, so an injection. But k(p) = R,/pR, by (12.16). Hence by (17.3), we
have pRy, € Ass(NNy). Thus by (17.8) also p € Ass(N’).

Conversely, given p € Ass(N'), recall from the third paragraph that p € Supp(M).
So M, # 0. So by Nakayama’s Lemma, M,/pM, is a nonzero vector space over
k(p). Take any nonzero R-map M,/pM, — k(p), precede it by the quotient map
My — M, /pMy, and follow it by an R-injection k(p) — Ny; the latter exists by
(17.8) and (17.8) since p € Ass(N').

We obtain a nonzero element of Homg, (My, Ny), annihilated by pR,. But pR,
is maximal; so the annihilator is too. So pR, € Ass(Hompg, (M,, N;)) by (17.9).
So p € Ass(Hom(M, N')) by (17.18.2) and (17.8). Thus (17.18.1) holds. O

Proposition (17.19). — Let R be a ring, M a Noetherian module, p a prime,
x,y €p—zdiv(M). Assume p € Ass(M/xM). Then p € Ass(M/yM).

Proof: Form the sequence 0 — K — M/aM 2% M/axM with K := Ker(u,).
Apply the functor Hom(R/p, e) to that sequence, and get the following one:

0 — Hom(R/p, K) — Hom(R/p, M/xM) % Hom(R/p, M/xzM).
It is exact by (5.11)(2). But y € p; so the right-hand map vanishes. Thus
Hom(R/p, K) = Hom(R/p, M/xM).
Form the following commutative diagram with exact rows:
0— M2 M — M/zM — 0
-
0— M £ M — M/zM — 0

The Snake Lemma (5.10) yields an exact sequence 0 — K — M/yM 22 M/yM as
Ker(uy|M) = 0. Hence, similarly, Hom(R/p, K) = Hom(R/p, M/yM). Hence,

Hom(R/p, M/yM) = Hom(R/p, M/xM). (17.19.1)
Assume for a moment that R is Noetherian. Then (17.18) yields
Ass(Hom(R/p, M/xM)) = Supp(R/p) mAss(M/xM). (17.19.2)

But p € Supp(R/p) by (13.4)(3) with M := R/p. Also p € Ass(M/xM) by
hypothesis. So p lies in the left side of (17.19.2). So p € Ass(Hom(R/p, M/yM))
by (17.19.1). But (17.19.2) holds with y in place of x. Thus p € Ass(M/yM) as
desired.

In general, set a := Anng(M) and R’ := R/a. Then R’ is Noetherian by
(16.16). But p € Assp(M/xM). So (17.13) yields p D Anng(M/xM). But
Ammp(M/xM) D a. Set p’ := p/a. Then p’ € Assp/(M/xzM) by (17.4). Let
a', y" € p’ be the residues of z, y. Then M/2'M = M/xM and M/y'M = M /yM.
But R’ is Noetherian. Hence the above argument yields p’ € Assg/ (M /yM). But
Anng(M/yM) D a. Thus (17.4) yields p € Ass(M/yM) as desired. O
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Proposition (17.20). — Let R be a ring, q an ideal, and M a Noetherian module.
Then the following conditions are equivalent:
(1) V(q) N Ass(M) = 0. (2) qZ p for any p € Ass(M).
(3) q ¢ zdiv(M); that is, there is a nonzerodivisor x on M in q.
(4) Hom(N, M) =0 for all finitely generated modules N with Supp(N) C V(q).
(5) Hom(N, M) = 0 for some finitely generated module N with Supp(N) =

Proof: Plainly (1) and (2) are equivalent.

Next, z.div(M) = Upeass(ary P by (17.11). So (3) implies (2). But Ass(M) is
finite by (17.17); so (3.12) and (2) yield (3). Thus (2) and (3) are equivalent.

Note that (4) implies (5) with NV := R/q as Supp(N) = V(q) by (13.4)(3).

Thus it remains to prove that (1) implies (4) and that (5) implies (1).

Assume (1) and R is Noetherian. Given any module N with Supp(N) C V(q),
then Supp(N) N Ass(M) = 0. Hence if N is finitely generated too, then (17.18)
yields Ass(Hom (N, M)) = @, and so Hom(N, M) = 0 by (17.12). Thus (4) holds.

Assume (5) and R is Noetherian. Plainly Ass(Hom(N,M)) = (. So (17.18)
yields V(q) N Ass(M) = 0. Thus (1) holds.

Set a := Ann(M) and R’ := R/a. Let k: R — R’ be the quotient map, and set
q :=x(q). Let (1), (4'), and (5) stand for (1), (4), and (5) over R’. By (16.16),
R’ is Noetherian; so by the above, (1’) implies (4’), and (5’) implies (1).

Let’s see that (1) and (1) are equivalent. Since Ass(M) C V(a) by (17.13),
any p € V(q) N Ass(M) contains q + a. So x(p) € V(q'). But k carries Assg(M)
bijectively onto Assg/ (M) by (17.4). Also, given p’ € V(q'), plainly x~1p’ € V(q).
Thus & induces a bijection from V(q) N Assg(M) onto V(q') N Assg/(M). Thus
V(q) NAssg(M) = 0 if and only if V(q") N Assp/ (M) = 0, as desired.

Let’s derive (4) from (4'), and (5') from (5). Given a finitely generated
R-module N, set N’ := N/aN. Then N' = N ®g R’ by (8.27)(1). So (8.9)(2)
yields

Hompg(N, M) = Homp/ (N', M). (17.20.1)
Also, Supp g/ (N') = Spec(k)~! Suppg(N) by (13.49). Hence, given p’ € Spec(R'),
p’ € Suppg (N') if and only if p:=k"'p’ € Suppy(N).
Plainly p’ € V(q’) if and only if p € V(q). Thus if Suppr(N) C V(q), then
Suppgr (N') € V(¢'), since if p’ € Suppg (N'), then p € Suppr(N), so p € V(q),
so p’ € V(q'). Similarly, if Supp(N) D V(q), then Suppg (N’) D V(q).

Assume (4'), and let’s prove (4). Given a finitely generated R-module N with
Suppp(N) C V(q), set N’ := N/aN. By the above, Suppy (N') C V(q'). So
Homp/ (N', M) =0 by (4"). So Homp(N, M) = 0 by (17.20.1). Thus (4) holds.

Assume (5); it provides an N. Let’s prove (5') with N’ := N/aN. Since
Suppr(N) = V(q), the above yields Supp g/ (N') = V(q’). Since Homg(N’, M) = 0,
also Homp (N’, M) = 0 by (17.20.1). Thus (5') holds.

Summarizing, we’ve proved the following two chains of implications:

=1)=4)=04) and (B)= ()= (1)= (D).
Thus (1) implies (4), and (5) implies (1), as desired. O
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B. Exercises

Exercise (17.21) . — Given modules My, ..., M,, set M := M; @& ---@ M,. Prove:
Ass(M) = Ass(My) U---U Ass(M,).

Exercise (17.22) . — Let R be a ring, M a module, M) for A € A submodules.

Assume M = |J M,. Show Ass(M) = |J Ass(M,).

Exercise (17.23) . — Take R :=Z and M := Z/(2) ® Z. Find Ass(M) and find
two submodules L, N C M with L + N = M but Ass(L) U Ass(N) & Ass(M).

Exercise (17.24) . — If a prime p is sandwiched between two primes in Ass(M),
is p necessarily in Ass(M) too?
Exercise (17.25) . — Let R be a ring, S a multiplicative subset, M a module, N

a submodule. Prove Ass(M/N®) D {p € Ass(M/N) | pn S = 0}, with equality if
either R is Noetherian or M/N is Noetherian.

Exercise (17.26) . — Let R be a ring, and suppose R, is a domain for every prime
p. Prove every associated prime of R is minimal.
Exercise (17.27) . — Let R be a ring, M a module, N a submodule, z € R.

Assume that R is Noetherian or M/N is and that « ¢ p for all p € Ass(M/N).
Show M NN = xN.

Exercise (17.28) . — Let R be a ring, M a module, p a prime. Show (1)—(3) are
equivalent if R is Noetherian, and (1)—(4) are equivalent if M is Noetherian:

(1) p is a minimal prime of M. (2) p is minimal in Supp(M).

(3) p is minimal in Ass(M). (4) p is a minimal prime of Ann(M).

Exercise (17.29) . — Let R be a ring, a an ideal. Assume R/a is Noetherian.
Show the minimal primes of a are associated to a, and they are finite in number.

Exercise (17.30) . — Let M a Noetherian module. Show that Supp(M) has only
finitely many irreducible components Y.

Exercise (17.31) . — Take R := Z and M := Z in (17.16). Determine when
a chain 0 C M; & M is acceptable —that is, it’s like the chain in (17.16) —
and show that then py ¢ Ass(M).

Exercise (17.32) . — Take R := Z and M := Z/(12) in (17.16). Find all three
acceptable chains, and show that, in each case, {p;} = Ass(M).

Exercise (17.33) . — Let R be a ring, M a nonzero Noetherian module, z,y € R
and a € rad(M). Assume a” +x € z.div(M) for all » > 1. Show a+zy € z.div(M).

Exercise (17.34) (Grothendieck Group Ky(R)) . — Let R be a ring, € a subcat-
egory of ((R-mod)) such that the isomorphism classes of its objects form a set A.
Let C be the free Abelian group Z®*. Given M in €, let (M) € A be its class. To
each short exact sequence 0 — M; — Ms — M3 — 0 in G, associate the element
(My) — (My) — (M3) of C. Let D C C be the subgroup generated by all these
elements. Set K(C) := C/D, and let v¢: C' — K(C) be the quotient map.

In particular, let N be the subcategory of all Noetherian modules and all linear
maps between them; set Ko(R) := K(N) and g := vn. Show:
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(1) Then K(€) has this UMP: for each Abelian group G and function A\: A - G
with A(Msz) = A(M7) + M(M3) for all exact sequences as above, there’s an
induced Z-map Ag: K(C) — G with A(M) = Ao(ye(M)) for all M € C.

) Then Ky(R) is generated by the various elements v (R/p) with p prime.

) Assume R is a Noetherian domain. Find a surjective Z-map « : Ko(R) — Z.

) Assume R is a field or a PID. Then Ky(R) = Z.

) Assume R is Noetherian. Let ¢: R — R’ and ¢: R’ — R"” be module-
finite maps of rings. Then (a) restriction of scalars gives rise to a Z-map
o1 Ko(R') = Ko(R), and (b) we have (¢p)1 = p1ifr.

Exercise (17.35) (Grothendieck Group K(R)) . — Keep the setup of (17.34).
Assume R is Noetherian. Let F be the subcategory of ((R-mod)) of all finitely
generated flat R-modules M and all linear maps between them; set K°(R) := K (5)
and 7° := 5. Let ¢o: R — R’ and ¢: R’ — R" be maps of Noetherian rings. Show:
(1) Setting v°(M)y°(N) := v°(M®N) makes K°(R) a Z-algebra with v'(R) = 1.
(2) Setting v°(M)7o(L) := 70(M ® L) makes Ko(R) a K°(R)-module.
(3) Assume R is local. Then K°(R) = Z.
(4) Setting ¢'7°(M) := +*(M ®pr R') defines a ring map ¢': K°(R) — K°(R').
!

Moreover, () = @'
(5) If ¢: R — R’ is module finite, then ¢1: Ko(R') — Ko(R) is linear over K°(R).

(2
(3
(4
(5
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18. Primary Decomposition

Primary decomposition of a submodule generalizes factorization of an integer into
powers of primes. A proper submodule is called primary if the quotient module
has only one associated prime. There’s an older notion, which we call old-primary;
it requires that, given an element of the ring and one of the module whose product
lies in the submodule, but whose second element doesn’t, then some power of the
first annihilates the quotient of the module by the submodule.

The two notions coincide when the quotient is Noetherian. In this case, we
characterize primary submodules in various ways, and we study primary decompo-
sitions, representations of an arbitrary submodule as a finite intersection of primary
submodules. A decomposition is called irredundant, or minimal, if it cannot be
shortened. We consider several illustrative examples in a polynomial ring over a
field. Then we prove the celebrated Lasker—Noether Theorem: every proper sub-
module with Noetherian quotient has an irredundant primary decomposition.

We prove two uniqueness theorems. The first asserts the uniqueness of the primes
that arise; they are just the associated primes of the quotient. The second asserts
the uniqueness of those primary components whose primes are minimal among these
associated primes; the other primary components may vary. To prove it, we study
the behavior of primary decomposition under localization. Lastly, we derive the
important Krull Intersection Theorem: given an ideal a and a Noetherian module
M, the infinite intersection (1),,~,a"M is annihilated by some y with y — 1 € a.
Another and more common proof is considered in Exercise (20.22).

In an appendix, we study old-primary submodules further. In the Noetherian
case, we thus obtain alternative proofs of some of the earlier results; also we obtain
some new results about primary submodules.

A. Text

Definition (18.1). — Let R be a ring, @ & M modules. If Ass(M/Q) consists of a
single prime p, we say @) is primary or p-primary in M. We say @ is old-primary
if given x € R and m € M with am € Q, either m € Q or z € nil(M/Q).

Example (18.2). — A prime p is p-primary, as Ass(R/p) = {p} by (17.5)(2).
Plainly, p is old-primary too.

Theorem (18.3). — Let R be a ring, Q S M modules. Set p := nil(M/Q).
(1) Then Q is old-primary if and only if z.div(M/Q) = p.
(2) If Q is old-primary, then p is the smallest prime containing Ann(M/Q).
(3) If Q is old-primary and Ass(M/Q) # 0, then Q is p-primary.
(4) If Q is old-primary, and if M/Q is Noetherian or R is, then Q is p-primary,
(5) If Q is q-primary and M/Q is Noetherian, then q = p and Q is old-primary.

Proof: For (1), first assume @ is old-primary. Given z € z.div(M/Q), there’s
m e M —Q with zm € Q. So z € p. Thus z.div(M/Q) C p. But z.div(M/Q) D p
by (17.10.1). Thus z.div(M/Q) = p.

Conversely, assume z.div(M/Q) = p. Given z € R and m € M with zm € Q,
but m ¢ Q, note = € z.div(M/Q). So xz € p. So @ is old-primary. Thus (1) holds.
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Primary Decomposition (18.4) / (18.9) Text

For (2), let z,y € R with xzy € p, but y ¢ p. As xy € p, there’s n > 1 with
(xy)"M C Q. As y ¢ p, there’s m € M with y"m ¢ Q. But Q is old-primary. So
2™ € p. So z € p. Thus p is prime.

Given a prime q D Ann(M/Q) and z € p, there’s n > 1 with 2™ € Ann(M/Q),
so 2™ € q. So z € q. Thus q D p. Thus (2) holds.

For (3), assume Q is old-primary, and say q € Ass(M/Q). Say ¢ = Ann(m) with
m € M/Q nonzero. Then Ann(M/Q) C q C z.div(M/Q). But z.div(M/Q) = p by
(1). Hence (2) gives q = p. Thus (3) holds.

For (4), note M/Q # 0. So if M/Q is Noetherian or R is, then Ass(M/Q) # 0
by (17.12). Thus (3) yields (4).

For (5), note p = q owing to (17.15), and z.div(M/Q) = q owing to (17.11).
So z.div(M/Q) = p. Thus (1) yields (5). O

Lemma (18.4). — Let R be a ring, N a Noetherian module. Setn :=nil(N). Then
NN =0 for some n > 1.

Proof: Set a := Ann(N) and R’ := R/a. Then n:= \/a, and R’ is Noetherian by
(16.16). Set n’ := n/a. Then n’ is finitely generated. So n’" = 0 for some n > 1
by (3.38). So n™ C a. Thus n”N = 0. O

Proposition (18.5). — Let M be a module, Q a submodule. If Q is p-primary and
M/Q is Noetherian, then p = nil(M/Q) and p"(M/Q) = 0 for some n > 1.

Proof: The assertion follows immediately from (17.15) and (18.4). O

Exercise (18.6) . — Let ¢: R — R’ be a surjective ring map, M an R-module,
Q' G M’ two R'-modules, a: M —» M’ a surjective R-map, p’ a prime of R'. Set
p:=¢ 1p') and Q := a~1Q’. Show Q is p-primary if and only if Q' is p’-primary.

Exercise (18.7) . — Let R be a ring, and p = (p) a principal prime generated by
a nonzerodivisor p. Show every positive power p” is old-primary and p-primary.
Show conversely, an ideal q is equal to some p™ if either (1) q is old-primary and
V4 =p or (2) R is Noetherian and q is p-primary.

Proposition (18.8). — Let R be a ring, m a mazimal ideal, Q S M modules.
(1) Assume nil(M/Q) =m. Then Q is old-primary.
(2) Assume m™(M/Q) =0 withn > 1. Then nil(M/Q) = m and Q is m-primary.

Proof: Set a:= Ann(M/Q). Then /a =: nil(M/Q).

For (1), fix x € R and m € M with zm € @, but z ¢ m. As m is maximal, x is a
unit mod a by (3.37)(3)=(2); so there’s y € R with 1 —zy € a. But a(M/Q) = 0.
Som —axym € aM C Q. But am € Q; so zym € Q. Thus m € Q. Thus (1) holds.

For (2), note m" C a. So m C v/a. But Q # M, so v/a # R. But m is maximal.
Thus m = y/a =: nil(M/Q). Thus (1) implies @ is old-primary.

Take n > 1 minimal with m"(M/Q) = 0. Then there’s m € m"~}(M/Q) with
m # 0 but mm = 0. Som C Ann(m) G R. But m is maximal. So m = Ann(m).
Thus m € Ass(M/Q). Thus @ is m-primary by (18.3)(3). Thus (2) holds. O

Corollary (18.9). — Let R be a ring, m and q ideals. Assume m is mazimal, q
is proper, and m"™ C q for some n > 1. Then m = ,/q, and q is old-primary and
m-primary.

Proof: In (18.8), just take M := R and @ :=q. O
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Proposition (18.10). — Let R be a ring, m a mazimal ideal, M a module, Q a
proper submodule. Assume M/Q is Noetherian. Then (1)—(3) are equivalent:

(1) @ is m-primary; (2) m=nil(M/Q); (3) m"(M/Q) =0 for some n > 1.

Proof: First, (1) implies (2) and (3) by (18.5). Second, (2) implies (3) by (18.4).
Third, (3) implies (1) and (2) by (18.8)(2). O

Corollary (18.11). — Let R be a ring, m and q an ideals. Assume m is maximal,
q is proper, and R/q is Noetherian. Then (1)—(3) are equivalent:

(1) q is m-primary; (2) m=./q; (3) m"™ C q for some n > 1.
Proof: In (18.10), just take M := R and Q :=q. O

Lemma (18.12). — Let R be a ring, Q1, Q2 & M modules. Set Q3 := Q1N Q.
(1) Set p; :==nil(M/Q;). If Q1, Q2 are old-primary, and if p1 = pa, then p3 = pa
and Q3 1is old-primary.
(2) If M/Q3 is Noetherian or R is, and if Q1, Q2 are p-primary, then so is Qs.

Proof: For (1), note p3 = p1 NP2 by (12.42)(2) Thus if p1 = po, then p3 = po.

Given € R and m € M with xm € Q3 but m ¢ Qs3, say m ¢ Q1. Then = € p;
if @ is old-primary. But if p; = pa, then ps = po. Thus (1) holds.

For (2), form the canonical map M — M/Q1 & M/Qs. Its kernel is Q3. So it
induces an injection M/Qs5 — M/Q1 & M/Q2. Assume M/Q3 is Noetherian or R
is. Then (17.12) and (17.6) and (17.21) yield

0 # Ass(M/Q3) C Ass(M/Q1 & M/Q2) C Ass(M/Q1) U Ass(M/Q3).
If the latter two sets are each equal to {p}, then so is Ass(M/Q3), as desired. O

(18.13) (Primary decomposition). — Let R be a ring, M a module, and N a

submodule. A primary decomposition of N in M is a decomposition
N=Q@1N---NQ, with the Q; primary.

We call the decomposition irredundant or minimal if these two conditions hold:

(1) N #(;z; @i, or equivalently, (), ,; Q; ¢ Q; for j=1,....r.

(2) Set p; := Ann(M/Q;) for i =1,...,r. Then py,...,p, are distinct.

If so, then we call @; the p;-primary component of the decomposition.

Assume M /N is Noetherian or R is. If M/N is Noetherian, so is M/Q for any
N C @ C M by (16.13)(2). Hence, any primary decomposition of N can be made
irredundant owing to (18.12): simply intersect all the primary submodules with
the same prime, and then repeatedly discard the first unnecessary component.

Finally, say N = Q1 N ---NQ,. Assume M/N is Noetherian; so the N/Q; are
too. Then by (18.3)(4)—(5), the Q; are old-primary if and only if they’re primary.

Example (18.14). — Let k be a field, R := k[X,Y] the polynomial ring. Set
a:= (X2, XY). Below, it is proved that, for any n > 1,
a=(X)N (X% XY, Y™ = (X)N(X?Y). (18.14.1)
Here (X2, XY, Y™) and (X2, Y) contain (X, Y)"; so they are (X, Y)-primary by
(18.9). Thus (18.14.1) gives infinitely many primary decompositions of a. They
are clearly irredundant. Note: the (X, Y)-primary component is not unique!
Plainly, a C (X) and a C(X?2, XY, Y") C (X?,Y). Tosee a D (X) N (X2 Y),
take FF € (X) N (X2, Y). Then F = GX = AX? + BY where A, B,G € R. Then
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X(G—AX)=BY. So X | B. Say B=B'X. Then F = AX?>+ B'XY € a.

Example (18.15). — Let & be a field, R := k[X,Y] the polynomial ring, a € k.
Set a := (X2, XY). Define an automorphism o of Rby X + X and Y — aX +Y.
Then « preserves a and (X), and carries (X2, Y) onto (X2, aX +Y). So (18.14)
implies that a = (X) N (X2, aX +Y) is an irredundant primary decomposition.
Moreover, if a # b, then (X?, aX+Y, bX+Y) = (X, Y). Thus two (X, Y)-primary
components are not always contained in a third, although their intersection is one
by (18.12).

Example (18.16). — Let & be a field, P := k[X,Y, Z] the polynomial ring. Set
R := P/(XZ —Y?). Let x,y,2 be the residues of X,Y,Z in R. Set p := (z,y).
Clearly p? = (22, 2y,y?) = x(x,y,z). Let’s show that p? = (z) N (x2,y,2) is an
irredundant primary decomposition.
First note the inclusions z(z,y,2) C (z) N {(z,y, 2)* C (z) N (2%, y, 2).
Conversely, given f € (z) N (2%, y, 2, represent f by GX with G € P. Then

GX =AX?*+BY +CZ+D(XZ-Y? with A,B,C,DecP.

So (G — AX)X = B'Y + C'Z with B,C' € P. Say G — AX = A" + B'Y + C"Z
with A” € k[X] and B”,C" € P. Then

A"X =-B"XY -C"XZ+BY +C'Z= (B -B"X)Y +(C' - C"X)Z,

whence, A” = 0. Therefore, GX € X(X,Y,Z). Thus p? =(x) N (22, y, 2).

Let’s show that (x) is (z,y)-primary in R. Note that the preimage in P of (x)
is (X, Y?) and of (z,y) is (X, Y). Also, form the k[Y,Z]-map ¢: P —» k[Y, Z]
with ¢(X) = 0; plainly, (X, Y?) = ¢ 1(Y?) and (X,Y) = ¢~ XY). But (Y?)
is (Y)-primary by (18.7). So (X, Y?) is (X, Y)-primary by (18.6). But R is a
quotient of P. Thus by (18.6) again, () is (z,y)-primary.

Finally (z,y,2)? C (22,y,2) C (z,y,2) and (z,y, z) is maximal. So (22, y, z) is
(x,y, z)-primary by (18.9).

Thus p? = (z) N (2%, y, 2) is a primary decomposition. It is irredundant since
(x,y) # (2,9, 2). Moreover, () is the p-primary component of p2.

Lemma (18.17). — Let R be a ring, N = Q1 N---NQ, a primary decomposition
in a module M. Say Q; is p;-primary for all i. Then

Ass(M/N) C {p1,....pr}. (18.17.1)

If equality holds and if p1,...,p, are distinct, then the decomposition is irredundant;
the converse holds if R is Noetherian or if M/N is Noetherian.

Proof: Since N = (1 Q;, the canonical map is injective: M/N — @ M/Q;. So
(17.6) and (17.21) yield Ass(M/N) € |JAss(M/Q;). Thus (18.17.1) holds.

IEN=QaN---NQ,, then Ass(M/N) € {pa,...,p,} too. Thus if equality holds
in (18.17.1) and if py,...,p, are distinct, then N = Q1 N--- N Q, is irredundant.

Conversely, assume N = Q1N --NQ, is irredundant. Given i, set P; := ﬂj# Q.
Then P,NQ; = N and P;/N # 0. Consider these two canonical injections:

Assume R is Noetherian or M /N is Noetherian. If M/N is Noetherian, so is P;/N
by (16.13)(2). So in both cases Ass(P;/N) # 0 by (17.12). So the first injection
yields Ass(P;/N) = {p;} by (17.6); then the second yields p; € Ass(M/N). Thus
Ass(M/N) 2 {p1,...,p,}, and (18.17.1) yields equality, as desired. O
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Theorem (18.18) (First Uniqueness). — Let R be a ring, N = Q1 N---NQ, an
irredundant primary decomposition in a module M. Say Q; is p;-primary for all
i. Assume R is Noetherian or M/N is Noetherian. Then p1,...,p, are uniquely
determined; in fact, they are just the distinct associated primes of M/N.

Proof: The assertion is just part of (18.17). O

Theorem (18.19) (Lasker-Noether). — A proper submodule N of a module M has
an irredundant primary decomposition if M/N is Noetherian.

Proof: First, M /N has finitely many distinct associated primes, say p1,..., P,
by (17.17). But by (17.7), for each i, there is a p,;-primary submodule @; of M
with Ass(Q;/N) = Ass(M/N) — {p;}. Set P :=(Q;. Fix i. Then P/N C Q;/N.
So Ass(P/N) C Ass(Q;/N) by (17.6). But i is arbitrary. So Ass(P/N) = (. But
P/N is Noetherian as M/N is. So P/N = 0 by (17.12). Finally, the decomposition
N = Q; is irredundant by (18.17). O

Lemma (18.20). — Let R be a ring, S a multiplicative subset, p a prime ideal, M
a module, Q a submodule. Assume M/Q is Noetherian and S Np = 0. Then Q is
p-primary if and only if ST1Q is S~ 'p-primary. Moreover, if so, then Q% = Q.
Finally, if M is Noetherian, then Q — S™1Q is a bijection from the p-primary
submodules of M with SN p = () onto the S~ p-primary submodules of S~ M.

Proof: Note q — S~ !q is a bijection from the primes q of R with SNq =0
onto the primes of S™'R by (11.12)(2) and (12.2). But M/Q is Noetherian, so
R/ Ann(M/Q) is too by (16.16). So q — S~!q restricts to a bijection from the
subset of Ass(M/Q) of q with SN g = 0 onto Ass(S~1(M/Q)) by (17.8). But
SH(M/Q) = S7M/S71Q by (12.13). And SNp = (). Thus Q is p-primary if
and only if S71Q is S~!p-primary.

Moreover, assume @ is p-primary. Now, Q% = ¢3'(S71Q) by (12.12)(3)(a). So,
given m € Q9, there’s s € S with sm € Q. But s ¢ p. Also, Q is old-primary, and
p = nil(M/Q) by (18.3)(5). Som € Q. Thus Q¥ C Q. But Q° D Q as 1€ S.
Thus Q° = Q.

Finally, assume M is Noetherian. Then the map Q — S~'Q maps p-primary
submodules with p NS = @ to S~'p-primary submodules K by the first paragraph
above. It is injective because ¢35 'S™1Q = Q° by (12.12)(3)(a) and Q¥ = @Q by the
second paragraph above. It is surjective because S~lpg' K = K by (12.12)(2)(b)
and gpglK is p-primary by the first paragraph above. ([l

Proposition (18.21). — Let R be a ring, S a multiplicative subset, M a module,
N=0Q:1N---NQ, C M an irredundant primary decomposition. Assume M/N is
Noetherian. Say Q; is p;-primary for all i, and S Np; = O just for i < h. Then

STIN=S5"1Q:n---NS71Q,Cc S 'M and N°=Q:iN---NQp,C M
are irredundant primary decompositions.

Proof: Note S™'N = S~!Q,n---NS71Q, by (12.12)(6)(b). But S~1Q; is
S~1p;-primary for i < h by (18.20), and S71Q; = S™'M for i > h by (12.23).
Therefore, SN = S7'Q, N---N S~1Qy, is a primary decomposition.

It is irredundant by (18.17). Indeed, Ass(S™*M/S™IN) = {S~1py,..., S tps}
by an argument like that in the first part of (18.20). Further, S~1py,..., S tpy
are distinct by (11.12)(2) as the p; are distinct.
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Apply 5! to STIN = S71Qi N N S71Qp. We get N¥ =Q7 n---NQ7 by
(12.12)(3)(a). Each M/Q; is Noetherian as it is a quotient of M/N. So QF = Qi
by (18.20). So N° = Q; N---NQy, is a primary decomposition. It is irredundant
as, clearly, (18.13)(1), (2) hold for it, as they do for N=Q1N---NQ,. O

Theorem (18.22) (Second Uniqueness). — Let R be a ring, M a module, N a
submodule. Assume M/N is Noetherian. Let p be minimal in Ass(M/N). Recall
that Sp := R—y. Then, in any irredundant primary decomposition of N in M, the
p-primary component Q is uniquely determined; in fact, Q = N5v.

Proof: In (18.21), take S :=S,. Then h =1 as p is minimal in Ass(M/N). O

Theorem (18.23) (Krull Intersection). — Let a be an ideal, and M a Noetherian
module. Set N :=(),5qa"M. Then there is x € a such that (1 +z)N = 0.

Proof: Since N is finitely generated, the desired € a exists by (10.3) provided
N = aN. Clearly N D aN. To prove N C alN, note that, as M is Noetherian,
M/aN is too by (16.13)(2). So (18.19) gives a decomposition aN = [ Q; where
Q; is p;-primary, so old-primary by (18.3)(5). Fix i. So, if there’s a € a — p;, then
aN C Q;, and so N C Q;. If a C p;, then there’s n; with a™ M C @Q; by (18.5),
and so again N C @;. Thus N C ((Q; = aN, as desired. O

Example (18.24) (Another non-Noetherian ring). — Let A be the local ring of
germs of C*°-functions F'(z) at + = 0 on R, and m the ideal of F' € A with F'(0) = 0.
Note that m is maximal, as F' +— F(0) defines an isomorphism A/m == R.

Given F' € A and n > 1, apply Taylor’s Formula to f(t) := F(«t) from t = 0 to
t =1 (see [14, Theorem 3.1, p. 109]); as f™)(t) = 2" F™) (xt), we get

F(z) = F(0) + F'(0)z +--- + w =1y anF, (2)
(18.24.1)

where  F,( fo tnt);)‘ F™) () dt.

Note F, is C*°: just differentiate under the integral sign (by [14, Thm. 7.1, p. 276]).
If F*)(0) = 0 for k < n, then (18.24.1) yields F € (z"). Conversely, assume
F(z) = 2"G(x) for some G € A. By Leibniz’s Product Rule,

F®(@) = Y, (5) e G0 (@),

So F®(0) =0ifk <n. So (") ={F € A| F®(0)=0for k<n}. Som= (z).
Thus (z") =m". Set n:=(),5om". Thusn={F € 4| F®)(0) =0 for all k}.

Taylor’s Formula defines a map 7: A — R[[z]] by 7(F) := >.,°, F(:;,(O) z".

Plainly 7 is R-linear and, by Leibniz’s Product Rule, 7 is a ring map. Moreover,
by the previous paragraph, Ker(7) = n.
Cauchy’s Function is a well-known nonzero C'*°-function H € n; namely,

e~1/” ifx#0,
H(z):= {0

if x =0;
see [14, Ex. 7, p.82]. Thus n # 0.

Given G € m, let’s show (1 + G)H # 0. Since G(0) = 0 and G is continuous,
there is 6 > 0 such that |G(x)| < 1/2 if |x| < 6. Hence 1 4+ G(z) > 1/2 if |z| < 0.
Hence (1+ G(z))H(x) > (1/2)h(z) > 0if 0 < |z| < §. Thus (1+ G)n # 0. Thus
the Krull Intersection Theorem (18.23) fails for A, and so A is non-Noetherian.
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Primary Decomposition (18.25) /(18.35) Exercises
B. Exercises

Exercise (18.25) . — Fix a prime p € Z. Set M := @, ,Z/(p") and Q := 0 in
M. Show @ is (p)-primary, but not old-primary (even though Z is Noetherian).

Exercise (18.26) . — Let k be a field, and k[X, Y] the polynomial ring. Let a be
the ideal (X2, XY). Show a is not primary, but /a is prime. Show a satisfies this
condition: FG € a implies F? € a or G% € a.

Exercise (18.27) . — Let R be PIR; q a primary ideal; p, t prime ideals. Show:
(1) Assume g Cp and v G p. Thent Cq. (2) Assume v = ,/q S p. Then v = q.
(3) Assume t ; p. Then ¢ is the intersection of all primary ideals contained in p.
(4) Assume p and v are not comaximal. Then one contains the other.

Exercise (18.28) . — Let Z[X] be the polynomial ring, and set m := (2, X) and
q:= (4, X). Show m is maximal, q is m-primary, and q is not a power of m.

Exercise (18.29) . — Let & be a field, R := Ek[X,Y, Z] the polynomial ring in
three variables. Set p; := (X,Y), set py := (X, Z), set m := (X,Y,Z), and set
a := p1ps. Show that a = p; N ps Nm? is an irredundant primary decomposition.
Which associated primes are minimal, and which are embedded?

Exercise (18.30) . — Let k be a field, R := k[X,Y, Z] be the polynomial ring.
Set a:= (XY, X —YZ), set q; := (X, Z) and set gz := (Y2, X — Y Z). Show that
a = g1 Mgz holds and that this expression is an irredundant primary decomposition.

Exercise (18.31) . — For i = 1, 2, let R; be a ring, M; a R;-module with 0 C M;
primary. Find an irredundant primary decomposition for 0 C M7 x M5 over Ry X Rs.

Exercise (18.32) . — Let R be aring, a an ideal. Assume a = y/a. Prove (1) every
prime p associated to a is minimal over a and (2) if R is Noetherian, then the
converse holds, and v/a = (), x4 (r/a) P 15 an irredundant primary decomposition.
Find a simple example showing (1) doesn’t generalize to modules.

Exercise (18.33) . — Let R be a ring, M a module. We call a proper submodule @
irreducible if ) = N1 N Ny implies @ = N7 or Q = Na. Prove: (1) an irreducible
submodule @ is primary if M/Q is Noetherian; and (2) a proper submodule N is
the intersection of finitely many irreducible submodules if M /N is Noetherian.

Exercise (18.34) . — Let R be a ring, M a module, N a submodule. Consider:

(1) The submodule N is old-primary.
(2) Given any multiplicative subset S, there is s € S with N¥ = (N : (s)).
(3) Given any z € R, the sequence (N : (z)) C (N : (z?)) C --- stabilizes.

Prove (1) implies (2), and (2) implies (3). Prove (3) implies (1) if N is irreducible.

Exercise (18.35) . — Let R be a ring, M a Noetherian module, N a submodule,
m C rad(M) an ideal. Show N = (1, 5,(m"M + N).
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C. Appendix: Old-primary Submodules

Lemma (18.36). — Let R be a ring, and Q G P C M modules. Assume Q is
old-primary in M. Then nil(M/Q) = nil(P/Q) and Q is old-primary in P.

Proof: First, nil(M/Q) C nil(P/Q) since Ann(M/Q) C Ann(P/Q) because
P/Q C M/Q. Second, nil(P/Q) C zdiv(P/Q) by (17.10.1). Third, again as
P/Q ¢ M/Q, so zdiv(P/Q) C zdiv(M/Q). Fourth, @ is old-primary in M; so
z.div(M/Q) = nil(M/Q) by (18.3)(1). Thus nil(M/Q) = nil(P/Q) = z.div(P/Q).
Finally, by (18.3)(1) again, @ is old-primary in P. O

Proposition (18.37). — Let R be a ring, and L, N, Q1,...,Q, C M modules with

(1) Then /(N : L) = Ni_; /(Q; : L). (2) Then nil(M/N) = (i, p;.

(3) Assume N S (N}, Qi. Givenm € (-, Qi) — N, let m € M/N denote its
residue. Then p; C y/Ann(m) C z.div(M/N). Further, if Q1 is old-primary
too, then Ann(m) is old-primary and py = \/Ann(m).

(4) Letm € M/N be any nonzero element, and p any minimal prime of Ann(mm).
Assume Q1,...,Qy are old-primary. Then p = p; for some 1.

(5) Assume Q1,...,Qy are old-primary. Then z.div(M/N) C U5, pi.

(6) Assume N G ﬂi# Q; for all 7, and Q1,...,Q, are old-primary. Then
z.div(M/N) =", pi.

Proof: For (1), recall (4.17)(5) asserts (N : L) = (), (Q; : L). And (3.32)(1)
asserts vVanb = /an+/b for any ideals a, b. Thus (1) holds.

For (2), note (N : M) = Ann(M/N) and (Q; : M) = Ann(Q;/N) owing to
(4.17)(2). Thus (1) with L := M yields (2).

For (3), given z € py, say 2" € Ann(M/Q,) with o > 1. Then z"m C Q; for all
i. So zhm € N. Thus p; C \/Ann(m).

Next, given y € \/Ann(m), take k > 0 minimal with y*m = 0. But m ¢ N. So
k> 1. Set m' := y*'m. Then m’ ¢ N, but ym’ € N. Thus y € z.div(M/N).
Thus /Ann(m) C z.div(M/N).

Further, assume ) is old-primary too. Given z,y € R with zy € Ann(m) but
y ¢ Ann(m), then zym € Q1 but ym ¢ Q. Hence x € p; as Q1 is old-primary.
Thus Ann(77) is old-primary.

Finally, given z € y/Ann(m), there’s [ > 1 with z'm € N. So z!m € Q;. But
m ¢ Qi, and Q; is old-primary. So z! € p;. But p; is prime by (18.3)(2). So
z € py. Thus p; O /Ann(m). Thus (3) holds.

For (4), take an m € M — N that represents ™. Reorder the @Q; so that m ¢ Q;
if and only if ¢ < h. Apply (1) with L := Rm, and let’s identify the terms. First,
(N:L)=Anmn((N+L)/N)and (Q; : L) = Ann((Q;+ L)/Q;) for all i by (4.17)(2).

Note Ann((N +L)/N) = Ann(m). So /(N : L) C p. Moreover, Q; & Q; + L for
1 < h, and Q; is old-primary; so nil((Q; +L)/Q;) = p; by (18.36). But Q;+L = Q;
for i > h; so nil((Q; + L)/Q;) = R. So (1) yields p O (), pi- Thus, as p is prime,
(2.25)(1) yields p D p; for some j < h. -

Given x € Ann(7), note km € N C Q;. But m ¢ Q; as j < h. So z € p; as Q;
is old-primary. Thus p; D Ann(77). But p is a minimal prime of Ann(7). Thus
p =p;. Thus (4) holds.

In (5), given z € z.div(M/N), take m € M — N with zm € N. Then m ¢ Q;
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for some i. But 2m € Q;, and Q; is old-primary. So = € p;. Thus (5) holds.
Finally, (6) follows immediately from (3) and (5). O

Lemma (18.38). — Let R be a ring, M a module, Q an old-primary submodule
m € M, and T its residue in M/Q. Setp :=nil(M/Q). Then

(1) If m ¢ Q, then Ann(m) is old-primary and p = /Ann(m).
(2) Given x € R—p, then (Q : () = Q.

Proof: Note (1) is just (18.37)(3) with N = @y and n =1 as ﬂgﬂ Q; = R by
convention.

For (2), suppose m € (@ : {(x)). Then am € Q. But x ¢ p. Som € Q as Q is
old-primary. Thus (@ : (z)) C Q. Conversely, (Q : (z)) D @ by (4.16)(2). Thus
(2) holds. O

Theorem (18.39). — Let R be a ring, M a module. Let D(M) or Dr(M) denote
the set of primes p each minimal over some Ann(m) for m € M.
(1) Then z.div(M) = Upen(ar) b- (2) Set N := Npen(an 05. Then N = 0.
(3) Let S C R be a multiplicatively closed subset. Then

Dg1r(S™IM)={S'p|p e Dr(M) andpnS=0}.

(4) Assume 0 = i, Q; with the Q; old-primary. For all j, assume Niyz; Qi # 0.
Set p; :=nil(M/Q;). Then D(M) = {p;}1,.
(5) Then Ass(M) C D(M), with equality if R or M is Noetherian.

Proof: In (1), given = € z.div(M), there’s m € M nonzero with x € Ann(m).
As Ann(m) is proper, there’s a prime p minimal over it owing to (2.21), (2.15),
and (3.16). Thus x € p € D(M). Thus z.div(M) C Upen(ar) p--

Conversely, given p € D(M) and = € p, say p is minimal over Ann(m). Then p
consists of zerodivisors modulo Ann(m) by (14.7). So there s y € R — Ann(m)
with zym = 0. But ym # 0. Thus z € z.div(M). Thus z.div(M) > U,en(ar) b-
Thus (1) holds.

In (2), given m € M nonzero, again as Ann(m) is proper, there’s a prime p
minimal over it owing to (2.21), (2.15), and (3.16). So there’s no s € S, with
sm=0. Som ¢ 0. Thus m ¢ N. Thus (2) holds.

In (3), given any m € M with Anng(m) NS = () and any s € S, it’s easy to
show:

AnnR(m)S = Anng(m/1) = Anng(m/s) D Anng(m). (18.39.1)

Next, given p € Dr(M) with p NS = (), say p is minimal over Anng(m). Set
P := S7p. Then P O S~ Anng(m); also P is prime by (11.12)(2). Given a
prime 9 of ST'R with P D Q O S~! Anng(m), set q := ¢g'Q. Then q is prime,
and "B D q D pg' St Anng(m). So p O q D Anng(m)® by (12.12)(3)(a) and
(11.11)(3)(a). But p is minimal over Anng(m)° owing to (18.39.1). So p = q.
So P = Q by (11.12)(2). Thus ‘B is minimal over S~! Anng(m). But (12.17)(1)
with M := Rm yields S~ Anng(m) = Anng-15(m/1). Thus B € Dg-1z(S™IM).

Here p — ‘B is injective by (11.12)(2). So we have left to show it’s surjective.

Given P € Dg-1x(S7IM), set p := gogl‘,B. Then p is prime, p NS = (§, and
P =S 1p by (11.12)(2). Thus we have left to show p € Dg(M).

Say P is minimal over Anng-1z(m/s). But Anng-15(m/s) = Anng-15(m/1) as
1/s is a unit. Moreover, again Anng-15(m/1) = S~! Anng(m) by (12.17)(1) with
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M := Rm. Thus B is minimal over S~! Anng(m).

So p D g ' S7' Anng(m). So (12.12)(3)(a) yields p O Anng(m). Now, given
a prime q of R with p D q D Anng(m), note f O S~1q O S~! Anng(m). But ‘B
is minimal over S~! Anng(m). So P = S~1q. So p = q by (11.12)(2). Thus p is
minimal over Anng(m). Thus p € Dr(M), as desired. Thus (3) holds.

For (4), given p € D(M), say p is minimal over Ann(m). Thus by (18.37)(4),
p = p, for some ¢. Thus D(M) C {p;}1~;.

Conversely, each p; is of the form /Ann(m) for some m # 0 by (18.37)(3).
Then p; is minimal over Ann(m); indeed, given a prime q¢ O Ann(M/Q;) and
x € p;, there’s n > 1 with 2™ € Ann(M/Q;), so ™ € q, so z € q, and thus q D p;.
Thus D(M) D {p;}. Thus (4) holds.

In (5), given p := Ann(m) € Ass(M), note p € D(M). Thus Ass(M) C Dr(M).

If M is Noetherian, so is R/ Ann(M) by (16.16). Fix p € D(M). Then, under
either Noetherian hypothesis, p is finitely generated modulo Ann(M). Therefore,
p € Ass(M) if S, 'p € Ass(S, ' M) by (17.8). But S, 'p € Dsp_lR(S,;lM) by (3).
Thus we may localize at p and so assume R is local and p is its maximal ideal.

Say p is minimal over Ann(m). Then m # 0. Also if M is Noetherian, so is Rm.
So under either Noetherian hypothesis, (17.12) gives a q € Ass(Rm) C Ass(M).
Then g = Ann(m’) with m’ € Rm; so ¢ O Ann(m). As p is maximal, p D q. But p
is minimal over Ann(m). So p = q. Thus Ass(M) D Dr(M). Thus (5) holds. O
Lemma (18.40). — Let R be a ring, N g M modules, p be a minimal prime
of Aun(M/N). Assume M/N is finitely generated. Recall Sy := R —p, and set
Q := N°¢. Then p = nil(M/Q) and Q is old-primary.

Proof: Set a := Ann(M/N). Then p is a minimal prime of a. So pR,, is the only
prime of R, containing aR, by (11.12)(2). Thus (3.14) yields pR, = /aR,.

Set n := nil(M/Q) and b := Ann(M/Q). Given x € n, there’s n > 1 with
2™ € b. So z™/1 € b,. But b, C Ann(M,/Q,) by (12.17)(1). Now, Q, = N, by
(12.12)(3)(b). Also M, /N, = (M/N), by (12.13). But M /N is finitely generated.
So Ann(M/N), = a, again by (12.17)(1). Thus 2™/1 € a,. So there’s s € S, with
sx™ € a. But a C p, and p is prime. Hence € p. Thus n C p.

Conversely, let € p. Then /1 € pR,. Recall pR, = \/aR,. So there’s n > 1
with 2" /1 € aR,. So there’s s € S, with s2™ € a. So sa”M C N. Hence 2" M C Q.
So z™ € b. So x € n. Thus p C n. Thus p =n.

As M/N is finitely generated, V(a) = Supp(M/N) by (13.4)(3). But p € V(a).
So p € Supp(M/N). So (M/N), # 0. So N, # M, by (12.13). Thus N°» # M.

Let x € R and m € M with zm € @, but m ¢ Q. Recall Q, = N,. Hence
zm/1 € Ny, but m/1 ¢ N,. So 2/1 ¢ Ry. Thus € p. But p = n. Thus Q is
old-primary, as desired. O

Proposition (18.41). — Let R be a ring, and M a module with this property:
(L1) Given any submodule N and prime p, there’s x € S, with tN®» C N.

Assume M finitely generated. Let N g M be a submodule.

(1) Given a minimal prime p of Ann(M/N) and x as in (L1), set Q := N and
P:=N+aM. Then Q is old-primary, p = nil(M/Q), and P 2 N = QN P.
(2) Then N is an intersection of old-primary submodules.
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Proof: In (1), note that N C @ N P. Conversely, given m € @ N P, say that
m=mn+axm’ withn € Nand m' € M. Butm € Q and N C Q. So zm’ € Q.
But @ is old-primary and p = nil(M/Q) by (18.40). Also = ¢ p. So m’ € Q. But
2Q CN. Soaxm’ € N. Som € N. Thus ND>DQNP. Thus N=QnP.

Finally, z ¢ p and p D Ann(M/N). So M ¢ N. Thus P 2 N. Thus (1) holds.

For (2), let 8 be the set of pairs (Q, P) where Q is a set of old-primary submodules
@ and where P is a submodule with N = (¢ @)NP. Order 8 by coordinatewise
inclusion. Note 8 is nonempty as (), N) € 8. Every linearly ordered subset (Qy, Py)
has an upper bound, namely (Q, P) with Q := [JQ,, where this union takes place
in the set of subsets of M, and with P :=|J Px. Thus Zorn’s Lemma implies § has
a maximal element (Q, P).

Suppose P # M. Then (1) yields P = @ N P; where @ is old-primary and
Py is a submodule with Py 2 P. Set Q; := QU {Q1}. Then (Q;,P1) > (Q,P), a
contradiction. Thus P = M and N = (5cq @, as required. Thus (2) holds. O

Proposition (18.42). — Let R be a ring, M a Noetherian module.

(1) Then the condition (L1) of (18.41) holds.
(2) Then each proper submodule N is a finite intersection of old-primary sub-
modules.

Proof: In (1), given any submodule N and prime p, as M is Noetherian, there
are my,...,m, € N° that generate N . For each i, there’s z; € Sy with z;m; €
N. Set  := [[x;. Then NS C N. Thus (1) holds.

For (2), form the set 8 of all submodules P of M for which there are finitely
many old-primary submodules @; with N = (((Q;) N P. As M is Noetherian,
there’s a maximal P. If P # M, then (18.41)(1) provides a submodule P" 2 P
and an old-primary submodule Q with P=QNP’. So N = ((NQ:)NQ) NP, in
contradiction to the maximality of P. Thus P = M. Thus (2) holds. O

Proposition (18.43). — Let R be a ring, S a multiplicatively closed subset, and
Q S M modules. Set p := nil(M/Q). Assume Q is old-primary and S Np = §.
Then Q° = Q and S™'Q is old-primary in S~*M over ST'R.

Proof: Given s € S and m € M with sm € @, note m € @, as s ¢ p and @ is
old-primary. Thus Q° C Q. But Q° D Q always. Thus Q° = Q.

Note S71Q G S™'M as ¢35 S71Q = Q% by (12.12)(3)(a), but Q¥ =Q & M.

Given x € R, m € M and s,t € S with zm/st € S71Q, but m/t ¢ S~1Q, there’s
u € S with uzm € Q, but um ¢ Q. So z € p as Q is old-primary. So x/s € S™1p.
But S~'p C nil(S~1M/S71Q) by (12.40). Thus S~1Q is old-primary. O

Proposition (18.44). — Let R be a ring, M a finitely generated module. Along
with (L1) of (18.41), consider this property of M :

(L2) Given any submodule N G M and given any descending chain Sy D Sy D - -+
of multiplicatively closed subsets, the chain NSt D N2 > ... stabilizes.

If every submodule N g M is a finite intersection of old-primary submodules, then
(L1) and (L2) hold. Conversely, assume N isn’t such an intersection and (L1)
holds. Then there are submodules Q1,...,Qm and Ng, N1, ..., N, such that:

(1) Each Q; is old-primary. Also Ny := N, and Ny,_1 ; N, g M ifm>1.

(2) If m > 1, then N, is mazimal among the P such that N = (-, Q; N P.
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(3) For i < m, set p; := Ann(M/Q;). If m > 1, then Ann(M/N,,) ¢ p; for
i <m.

(4) If m > 1, set Sp, := R — U;<,, Pi- Then N =", Q.

(5) If m > 1, then Sy—1 D Sy, but NSm—1 2 N5m

Proof: First, say N = (., Q; with old-primary Q;. Set p; := nil(M/Q;).

Given a multiplicatively closed subset S, note N¥ = ", Q¥ by (12.12)(6)(a).
Say SNyp; = () if and only if i < n. Then Q¥ = Q; for i < n by (18.43). But
Q7 = M for i > n by (12.41)(2). Thus N¥ =, Q; and N = NN, Q:.

To check (L1), let p be a prime, and take S := S,. Then p; C p if and only if
i < n. For each ¢ > n, take z; € p; —p. Say n, > 0 with =" € Ann(M/Q;). Set
x:=][x}";s0x=1if n =m. Then € Ann(M/Q;) for each i > n, and = ¢ p.
So *M C @i, and = € S,. Hence N C N9 N Nisn @i = N. Thus (L1) holds.

As to (L2), for each 4, say S; Np,; = 0 if and only if j <n;. But S1 DS D ---.
So ny < ng < --- < m. So the n; stabilize. But N5 = ﬂ;“zl Q;. Thus (L2) holds.

Conversely, assume N isn’t a finite intersection of old-primary submodules, and
(L1) holds. Set Ny := N, and given n > 0, say Q1,...,Q, and Ng,Ny,..., N,
satisfy (1)—(5) for m = n. Let’s find suitable Q,11 and Nyp41.

Note N,, & M by (1). So Ann(M/N,,) # R. So there’s a minimal prime p,
of Ann(M/N,,), and so an = as in (L1). Set Qny1 := N*nt1 and P := N,, + M.
Then Q1 is old-primary, p,1 = nil(M/Qny1), and P 2 N = Quq1 NP by
(18.41)(1).

Form the set 8 of submodules U of M with U D P and N = ﬂ;jll Q;NU. Then
Pe8as N=[,QiNN, by (2). Given a linearly ordered subset { Py} of 8, set
U:==UP\ Ifue ﬂ?jll Q;NU, then u € ﬂzrll Q; N Py, for some \; so U € 8. So
U is an upper bound. So Zorn’s Lemma yields a maximal element in 8, say N, 41.

Note Ny G Nyt1 as Ny G P C Nyyr. And Nogy G M; otherwise, N = (77 Q;
but N isn’t a finite intersection of old-primary submodules. Thus Q1,...,Qn+1
and No, N1, ..., N1 satisfy (1)—(2) for m =n+ 1.

As to (3) for m = n + 1, note Ann(M/N,) C Ann(M/Np41) as N, C Npja.
So Aun(M/Np41) € p; for i < n by (3) for m = n. But € Ann(M/N,,41) as
Npt1 D P. But o ¢ ppy1. So Ann(M/Npt1) € pry1. Thus (3) holds for m = n+1.

As to (4) for m = n + 1, note Ann(M/Ny,11) ¢ UM pi by (3) for m = n + 1
and by Prime Avoidance (3.12). Hence there’s y € Ann(M/N, 1) — U?:ll ;.
Then yM C N,yy. Hence M = NS7'. Now, N = ()7} Qi N N,41 by (2) for
m=n+1. So NS = ("1 Q7 N N7t by (12.12)(6)(a). And Q" = Q,
by (18.43)(1). Thus (4) holds for m =n + 1.

As to (5) for m = n + 1, plainly S, D S,11. Now, N,y G Npyy by (1) for
m =mn+1. So (2) for m =n gives N G (., QiN Ny 41. But N = ﬂzrll QiNNpi1
by (2) for m = n + 1. Hence (\_; Q; 2 M=} Qi- So (4) for m = n,n + 1 implies
NS» 2 NS+ Thus (5) holds for m =n + 1.

Finally, (5) for all m implies that the S,, form a descending chain S; D Sg D - - -,
but that the chain N5t 5 N2 5 ... doesn’t stabilize, as desired. ([l

Exercise (18.45) . — Let ¢: R — R’ be a ring map, M an R-module, Q' & M’
R’-modules, oc: M — M’ an R-map. Set Q := o~ 'Q’, and assume Q S M. Set
p:=nil(M/Q) and p’ := nil(M'/Q"). If Q' is old-primary, show @ is and p~1p’ = p.
Conversely, when ¢ and « are surjective, show @Q’ is old-primary if @ is.
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Proposition (18.46). — Let R be a ring, S a multiplicative subset, and M a module.
Then the map Q — S~™'Q is an inclusion-preserving bijection from the old-primary
submodules of M with nil(M/Q) NS = () onto the old-primary S~ R-submodules
K of ST'M. The inverse is K goglK,

Proof: The map in question is well defined by (18.43). It is injective because
cpgls’lQ = Q% by (12.12)(3)(a) and Q = Q° by (18.43). Finally, it’s surjective
with inverse K ~ ¢g'K as pg'K is old-primary by (18.45) and S~lpg'K = K
for any submodule K of S7'R by (12.12)(2)(b). O

Proposition (18.47). — Let R be a ring, S a multiplicative subset, and M a module.
Let N, Q1,...,Qn be submodules with N = (', Q; and the Q; old-primary. Set
p; = nil(M/Q;), and assume S Np; =0 just for i <t. Then

(1) Then ST'N =i, S7'Q; € S™'M and N® =(,_, Q; C M.

(2) Then the S~1Q; are old primary just for i < t.

(3) Set P, :=nil(S™*M/S™1Q;). Fori#j and j <t, if p; # p;, then P; # Bj.
(4) For j <t, if Qj ) nigt, Iy Q;, then S_le ) ﬂigt, ij S_lQi.

Proof: In (1), note S7'N = (_, S7'Q; and N = N,_, QF by (12.12)(6).
But S7'Q; = S™'M and Q7 = M for i >t by (12.23). Thus (1) holds.

Note (2) results immediately from (18.43) and (12.23).

Note (3) holds as p; = g 'P; for j <t by (18.45).

Note (4) holds as Q; = Qf = ¢5'S71Q; by (18.43) and (12.12)(3)(a). O

Theorem (18.48). — Let N, Q1,...,Q, & M be modules, 8 some set of minimal
primes of Ann(M/N). Set p; := nil(M/Q;) and S :=(,cg Sp. Assume p; € S just
fori <t, the Q; are old-primary, and N = (\,_; Q;. Then NS = ﬂ:zl Q;.

Proof: Fix 1 <i < r. First, assume ¢ < ¢t. Then p; € 8. Thus S Np; = 0.

Next, assume ¢ < i and SN p; = 0. Then p; C [J,cgp. So (3.12) provides
p € 8§ with p; C p. But N C Q;; hence, Ann(M/N) C Ann(M/Q;) C p;. But p is
minimal over Ann(M/N). Hence p; = p € 8, contradicting ¢ < i. Thus S Np; # 0.

Finally, (18.47)(1) yields N° = N}_, Q.. 0

Proposition (18.49). — Let N,Q1,...,Qn & M be modules with N = (\_; Q.
Assume the Q; are old-primary. Set p; := nil(M/Q;) and X := Supp(M/N). Then
(1) Set a:= Ann(M/N). Then every minimal prime p of a is one of the p;.
(2) If M/N is finitely generated, then X has at most n irreducible components.

Proof: In (1), p D nil(M/N). So (18.37)(2) gives p D p; for some i. Note
p; D a. Also p; is prime by (18.3)(2). So p = p; as p is minimal. Thus (1) holds.

For (2), assume M/N is finitely generated. So Supp(M/N) = V(a) by (13.4)(3).
But a has at most n minimal primes by (1). Thus (16.51)(3) yields (2). O
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D. Appendix: Exercises

Exercise (18.50) . — Let q C p be primes, M a module, and @ an old-primary
submodule with nil(M/Q) = q. Show 0% C Q.

Exercise (18.51) . — Let R be an absolutely flat ring, q an old-primary ideal.
Show that q is maximal.

Exercise (18.52) . — Let X be an infinite compact Hausdorff space, R the ring of
continuous R-valued functions on X. Using (14.26), show that (0) is not a finite
intersection of old-primary ideals.

Exercise (18.53) . — Let R be a ring, X a variable, N, Q C M modules, and
N = ﬂ;zl Q; a decomposition. Assume @ is old-primary. Assume N = ﬂ:zl Q; is
irredundant; that is, (18.13)(1)—(2) hold. Show:

(1) Assume M is finitely generated. Let p be a minimal prime of M. Then p[X]

is a minimal prime of M[X].

(2) Then nil(M[X]/N[X]) = nil(M/N)[X].

(3) Then Q[X] is old-primary in M[X].

(4) Then N[X] =(,_, Q:[X] is irredundant in M[X].

Exercise (18.54) . — Let k be a field, P := k[X1,...,X,] the polynomial ring.
Given i, set p; := (X1, ..., X;). Show p; is prime, and all its powers are p; -primary.

Exercise (18.55) . — Let R be a ring, p a prime, M a finitely generated module.
Set Q := 0> C M. Show (1) and (2) below are equivalent, and imply (3):

(1) nil(M/Q)=p. (2) pis minimal over Ann(M). (3) Q is old-primary.
Also, if M/Q is Noetherian, show (1) and (2) above and (3') below are equivalent:
(3') Q is p-primary.

Exercise (18.56) . — Let R be a ring, M a module, ¥ the set of minimal primes
of Ann(M). Assume M is finitely generated. Set N := (1,5, 05». Show:

(1) Given p € ¥, the saturation 0°» is the smallest old-primary submodule Q
with nil(M/Q) = p.

(2) Say 0 = (), Q; with the @; old-primary. For all j, assume Q; 2 Nivzy Qi-
Set p,; :=nil(M/Q;). Then N = 0 if and only if {p1,...,p.} = 2.

(3) If M = R, then N C nil(R).

Exercise (18.57) . — Let R be a ring, N & M modules. Assume there exists a
decomposition N = (_; Q; with the @; old-primary. Show that there are at most
finitely many submodules of M of the form N° where S is a multiplicative subset.

Exercise (18.58) . — Let R be a ring, M a module, p € Supp(M). Fix m, n > 1.
Set (pM)™ = (pnM)% and p™ := (p)(™. (We call p(» the nth symbolic
power of p.) Assume M is finitely generated. Set N := p(™) (pM)(™). Show:

(1) Then p is the smallest prime containing Ann(M /p™M).

(2) Then (pM)™ is old-primary, and nil(M /(pM)™) = p.

(3) Say p"M = (;_, Q; with Q; old-primary. Set p; := nil(M/Q;). Assume

p; = p if and only if i <t. Then (pM)™) = ﬂ:zl Q;.
(4) Then (pM)™ = p™ M if and only if p™M is old-primary.
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(5) Let @ be an old-primary submodule with nil(M/Q) = p. Assume p is finitely
generated modulo Ann(M/Q). Then Q > (pM)™ if n > 0.

(6) Then NS = (pM)(™+") and p is the smallest prime containing Ann(M/N).

(7) Say N = (\;_; Q; with all Q; old-primary. Set p; := nil(M/Q;). Assume
p; = p if and only if i < t. Then Q; = (pM)™*™) for some i.

Exercise (18.59) . — Let R be a ring, f € R, and N,Q1,...,Q, & M modules
with N = (N, Q; and the Q; old-primary. Set p; := nil(M/Q;) for all i. Assume
f € pi just for i > h. Show ﬂ?lei = N9 = (N : (f)) for n>> 0.

Exercise (18.60) . — Let R be a ring, p a prime ideal, M a Noetherian module.
Denote the intersection of all p-primary submodules by N. Show N = 0.

Exercise (18.61) . — Let R be a ring, M a module, and p1,...,p, € Supp(M)
distinct primes, none minimal in Supp(M). Assume M is finitely generated, and
(*) below holds (it does, by (18.60) and (18.3)(4)—(5), if M is Noetherian):
(*) For every prime p, the saturation 0% is equal to the intersection of all the
old-primary submodules @ with nil(M/Q) = p.
Show: (1) For 1 < i < n, assume p; 2 p,, and let @; be an old-primary submodule
with nil(M/Q;) = p; and (), ,; Q; € Qi Set P:=(),_,, Q;. Then P ¢ 05n.
(2) In the setup of (1), Then there is an old-primary submodule @,, such that
nil(M/Qn) = pn and P ¢ Q. Moreover, (;,; Q; ¢ Q; for all i.
(3) Owing to (2) and induction on n, there are old-primary submodules Q; for
t=1,...,n with nil(M/Q;) = p; and ﬂ#i Q; ¢ Q; for all 4.

Exercise (18.62) . — Let R be a ring, M a module, ) an old-primary submodule.
Set q := Ann(M/Q). Show that q is old-primary.
Exercise (18.63) . — Let v: R — R’ be a ring map, and M an R-module. Set
M :=M®gr R and a := 1y ® ¢. Let N’ = (\,_,; Q; be a decomposition in M’
with each @’ old-primary. Set N := o !N’ and Q; := o~ 1Q.. Set p; := nil(M/Q;)
and p; :=nil(M'/Q}). Show:

(1) Then N =(;_, Q; with Q; old-primary, and p; = ¢~ 'p for all i.

(2) Assume R’ is flat and N = R'a(N). Assume N’ # [, ; @; for all j, but

N = ﬂle Q; with t <r. Fix t <i <r. Then p; C p; for some j <.

Exercise (18.64) . — Let R be a ring, a an ideal, M a module, 0 = () Q; a finite
decomposition with @; old-primary. Set p; = nil(M/Q;). Show I'y (M) = mugZp,, Q;.
(If a C p; for all ¢, then (,,,. Q; = M by convention.)
Exercise (18.65) . — Let N, @Q; C M be R-modules with @; old-primary. Show:

(1) Assume N = (_, Q;. Set p; = nil(M/Q;). Then N = _, ¢p." (Np,)-

(2) Assume M/N is Noetherian. Then [, ¢ asar/n) oy '(Np) = N.
Exercise (18.66) . — Let ¢: R — R’ be a ring map, M’ an R’-module, M C M’

an R-submodule, and p € Dr(M). Assume 0 = (),_; Q} with the @} old-primary
R’-submodules. Show there’s p’ € Dr/(M’) with o~ 1p’ = p.

Exercise (18.67) . — Let R be a ring, M a module, 0 = ()/_, Q; an old-primary
decomposition in M. Set p; := nil(M/Q;). Assume (;; @; # 0 for all 4, the p; are
distinct, M is finitely generated, and p; is finitely generated mod Ann(M). Show:
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(1) Suppose that p; is minimal over Ann(M). Then Q; = (py M) for r > 0.

(2) Suppose that p; is not minimal over Ann(M). Then replacing Q1 by (p; M)
for r > 0 gives infinitely many distinct old-primary decompositions of 0, still
with (;, @; # 0 for all 7 and the p; distinct. (Thus, when R is Noetherian,
then 0 has infinitely many irredundant primary decompositions, which differ
only in the first component.)

Exercise (18.68) . — Let R be a ring, M a Noetherian module, 0 = (;_, Q; an
irredundant primary decomposition. Say Q1,...,Qy are embedded; Qp11,...,Qx
are minimal. Say @); is p;-primary for each 4, and set S := R — U;:hH p;. Show

the map ¢g: M — S~ M induces an injection 1 M/ ﬂ?zl Qi — S™'M.
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19. Length

The length of a module is a generalization of the dimension of a vector space.
The length is the number of links in a composition series, which is a finite chain
of submodules whose successive quotients are simple —that is, their only proper
submodules are zero. Our main result is the Jordan-Holder Theorem: any two
composition series do have the same length and even the same successive quotients;
further, their annihilators are just the primes in the support of the module, and
the module is equal to the product of its localizations at these primes. Hence, the
length is finite if and only if the module is both Artinian and Noetherian.

We also prove the Akizuki-Hopkins Theorem: a ring is Artinian if and only if it
is Noetherian and every prime is maximal. Consequently, a ring is Artinian if and
only if its length is finite; if so, then it is the product of Artinian local rings.

Lastly, we study parameter ideals q of a module M; by definition, M/qM is of
finite length, and q lies in the radical rad(M), which is the intersection of all the
maximal ideals containing the annihilator Ann(M). So if M is the ring R itself,
then R/q is a product of Artinian local rings; moreover, we prove that then R/q has
at least as many idempotents as R, with equality if and only if R is decomposable.

A. Text

(19.1) (Length). — Let R be a ring, and M a module. We call M simple if it is
nonzero and its only proper submodule is 0. We call a chain of submodules,

M=My>M;D---DM,,=0 (1911)

a composition series of length m if each successive quotient M;_; /M, is simple.
We define the length ¢(M) or £r(M) to be the infimum of all those lengths:

(M) :=inf{m | M has a composition series of length m }. (19.1.2)

By convention, if M has no composition series, then ¢(M) := oco. Further, (M) =0
if and only if M = 0.

For example, if R is a field, then M is a vector space and ¢(M) = dimp(M).

Also, the chains in (17.32) are composition series, but those in (17.31) are not.
Given a submodule N C M, we call £(M/N) the colength of N.

Exercise (19.2) . — Let R be a ring, M a module. Prove these statements:

(1) If M is simple, then any nonzero element m € M generates M.

(2) M is simple if and only if M ~ R/m for some maximal ideal m, and if so,
then m = Ann(M).

(3) If M has finite length, then M is finitely generated.

Theorem (19.3) (Jordan-Holder). — Let R be a ring, and M a module with a
composition series (19.1.1). Then any chain of submodules can be refined to a
composition series, and every composition series is of length £(M). Also,

Supp(M) = {m € Spec(R) | m = Ann(M;_,/M;) for some i };
the m € Supp(M) are mazimal; given i, there is an m; € Supp(M) such that
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M;_1/M; ~ R/m;; there is a canonical isomorphism
M - T esupp(ar) Mo (19.3.1)
and €(My,) is equal to the number of i with m = Ann(M,;_1/M;).

Proof: First, let M’ be a proper submodule of M. Let’s show that
(M) < 6(M). (19.3.2)
To do so, set M/ := M; " M'. Then M/_, N M; = M]. So
/M = (M]_y + M;)/M; C M;_1/M;.
Since M;_1/M; is simple, either M/ _,/M! =0, or M/_,/M! = M;_1/M,; and so
M| |+ M; = M;_;. (19.3.3)

If (19.3.3) holds and if M; C M’, then M;_; C M’. Hence, if (19.3.3) holds for
all 4, then M C M’, a contradiction. Therefore, there is an ¢ with M/_,/M/ = 0.
Now, M' = M{ D> --- D M), =0. Omit M/ whenever M/_,/M! = 0. Thus M’ has
a composition series of length strictly less than m. Therefore, ¢(M') < m for any
choice of (19.1.1). Thus (19.3.2) holds.

Next, given a chain Ny 2 --- 2 N,, = 0, let’s prove n < £(M) by induction on
LM). If (M) = 0, then M = 0; so also n = 0. Assume (M) > 1. If n = 0,
then we're done. If n > 1, then £(Ny) < £(M) by (19.3.2); son — 1 < ¢(Ny) by
induction. Thus n < ¢(M).

If N;_1/Nj is not simple, then there is N with N;_; 2 N’ 2 N;. The new chain
can have length at most £(M) by the previous paragraph. Repeating, we can refine
the given chain into a composition series in at most (M) — n steps.

Suppose the given chain is a composition series. Then ¢(M) < n by (19.1.2).
But we proved n < ¢(M) above. Thus n = ¢(M), and the first assertion is proved.

To proceed, fix a prime p. Exactness of Localization, (12.13), yields this chain:

M, = (My)p, D (Mi)p D -+ D (M), =0. (19.3.4)
Now, consider a maximal ideal m. If p = m, then (R/m), ~ R/m by (12.4)(2) and
(12.1). If p # m, then there is s € m — p; so (R/m), = 0.
Set m; := Ann(M;_1/M;). So M;_1/M; ~ R/m; and m; is maximal by (19.2)(2).
Then Exactness of Localization yields (M;—_1/M;), = (M;—-1),/(M;),. Hence

(Mi—1)p/(M;)p = {M,_I/M» ~ R/m;, ifp=m,.

Thus Supp(M) = {my,...,my}.
If we omit the duplicates from the chain (19.3.4), then we get a composition
series from the (M;), with M,_1/M; ~ R/p. Thus the number of such ¢ is ¢(M,,).
Finally, (M, )m; = 0 if i # j by the above. So (13.59) yields (19.3.1). O

Exercise (19.4) . — Let R be a ring, M a Noetherian module. Show that the
following three conditions are equivalent:

(1) M has finite length;

(2) Supp(M) consists entirely of maximal ideals;

(3) Ass(M) consists entirely of maximal ideals.

Show that, if the conditions hold, then Ass(M) and Supp(M) are equal and finite.
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Corollary (19.5). — A module M is both Artinian and Noetherian if and only if
M is of finite length.

Proof: Any chain M D Ny 2 --- 2 N,, = 0 has n < {(M) by the Jordan-Hélder
Theorem, (19.3). So if ¢{(M) < oo, then M satisfies both the dcc and the acc.

Conversely, assume M is both Artinian and Noetherian. Form a chain as follows.
Set My := M. For i > 1, if M;  # 0, take a maximal M; & M; 1 by the maxc.
By the dcc, this recursion terminates. Then the chain is a composition series. [

Example (19.6). — Any simple Z-module is finite owing to (19.2)(2). Hence, a
Z-module is of finite length if and only if it is finite. In particular, ¢(Z) = co.

Of course, Z is Noetherian, but not Artinian.

Let p € Z be a prime, and set M := Z[l/p]/Z. Then M is an Artinian Z-module,
but not Noetherian by (16.44). Also, as M is infinite, /(M) = cc.

Theorem (19.7) (Additivity of Length). — Let M be a module, and M’ a submod-
ule. Then (M) =4(M') + £(M/M').

Proof: If M has a composition series, then the Jordan—-Ho6lder Theorem yields
another one of the foom M = My > --- D M’ > --- D M,, = 0. The latter
yields a pair of composition series: M/M’' = My/M’' > --- D M'/M’ = 0 and
M'> -+ D> M,, = 0. Conversely, every such pair arises from a unique composition
series in M through M’. Therefore, /(M) < oo if and only if /(M/M’') < oo and
(M) < oo; furthermore, if so, then ¢(M) = ¢(M') + ¢(M/M’), as desired. O

Theorem (19.8) (Akizuki-Hopkins). — A ring R is Artinian if and only if R is
Noetherian and dim(R) = 0. If so, then R has only finitely many primes.

Proof: Assume dim(R) = 0. Then, by definition, every prime is both maximal
and minimal. Assume also R is Noetherian. Then R has finite length by (19.4).
Thus R is Artinian by (19.5).

Alternatively, recall that any minimal prime is associated by (17.14), and that
Ass(R) is finite by (17.17). Thus R has only finitely many primes, all maximal.

Set n := nil(R). It is the intersection of all the primes by (3.14), so of finitely
many maximal ideals. So n is their product by (1.21)(4)(b). But n is finitely
generated, as R is Noetherian. So n* = 0 for k > 0 by (3.38). Thus some (finite)
product of maximal ideals is 0. Thus (16.43) implies that R is Artinian.

Conversely, assume R is Artinian. Let t be a minimal (finite) product of maximal
ideals of R. For any maximal ideal m, by minimality, mt = t. So t C m. Hence
v C rad(R).

By minimality, t> = t. Let 8 be the set of ideals a contained in t such that
at £ 0. If § # 0, take a € § minimal. Then ar? = at # 0; hence, at = a by
minimality of a. Given x € a with zt # 0, note a = (z) by minimality of a. So a
is finitely generated. So Nakayama’s Lemma (10.6) yields a = 0, a contradiction.
Thus 8 = 0. Sot? =0. But t> =t. So t = 0. Thus some product of maximal ideals
is equal to 0. Thus (16.43) implies that R is Noetherian, and (2.24) implies that
R has only finitely many primes, all maximal; in particular, dim(R) = 0. U

Corollary (19.9). — Let R be an Artinian ring, and M a finitely generated module.
Then M has finite length, and Ass(M) and Supp(M) are equal and finite.
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Proof: By (19.8) every prime is maximal, so Supp(M) consists of maximal
ideals. Also R is Noetherian by (19.8). So M is Noetherian by (16.15). Hence

(19.4) yields the assertions. O
Corollary (19.10). — A ring R is Artinian if and only if ¢(R) < oco.
Proof: Simply take M := R in (19.9) and (19.5). O

Corollary (19.11). — A ring R is Artinian if and only if R is a finite product of
Artinian local rings; if so, then that product expansion is R = HmeSpec(R) Ry.

Proof: A finite product of rings is Artinian if and only if each factor is Artinian
by (16.22)(3). If R is Artinian, then ¢(R) < oo by (19.10); whence, R = [[ Rm
by the Jordan-Holder Theorem, (19.3.1). Thus the assertion holds. O

Definition (19.12). — Let R be a ring, q an ideal, and M a nonzero module. If
q C rad(M) and £(M/qM) < oo, call q a parameter ideal of M.

Lemma (19.13). — Let R be a ring, q an ideal, M a nonzero module. Assume that
M is Noetherian or just that M is finitely generated and M/qM is Noetherian. Set
m:=rad(M) and q' := Ann(M/qM). Then these conditions are equivalent:

1) q is a parameter ideal of M.

2) q C m, and Supp(M/qM) consists of finitely many mazimal ideals.
3) q C m, and V(q') consists of finitely many mazimal ideals.

4) M is semilocal, and V(q') = V(m).

5) M is semilocal, and /q' = m.

(6) M is semilocal, and m™ C q' C m for somen > 1.

(
(
(
(
(

Proof: First, (1) and (2) are equivalent by (19.4), as M/qM is Noetherian.

Next, (2) and (3) are equivalent, as V(q') = Supp(M/qM) by (13.4)(3).

Assume (3). As M is finitely generated, V(q') = V(q+Ann(M)) by (13.46)(2).
But q, Ann(M) C m. So V(g + Ann(M)) D V(m). Thus V(q') D V(m).

Conversely, given n € V(q'), note n O g’ D Ann(M). But n is maximal by (3).
Son D m. Thus V(q') C V(m). Thus V(q') = V(m). So V(m) consists of finitely
many maximal ideals by (3). Thus M is semilocal. Thus (4) holds.

To see that (4) and (5) are equivalent, note that V(q') = V(m) if and only if
V4" = /m by (13.1). But plainly /m = m. Thus (4) and (5) are equivalent.

Let’s see that (4) and (5) together imply (3). First, v/¢' = m by (5). But
plainly g C ¢’ C v/¢q’. Thus q C m.

By (4) or (5), M is semilocal; say the maximal ideals containing Ann(M) are
my,...,my. Som:=[|m;. Givenp € V(m), notep D m D [[m;. But p is prime. So
p D my, for some ig. But m;, is maximal. So p = m;,. Thus V(m) = {mq,...,m,.}.
But V(q') = V(m) by (4). Thus (3) holds.

Assume (5). Then ¢’ C /g’ = m. Further, as M/qM is Noetherian, so is R/q’
by (16.16). So m/q’ is finitely generated. But m/q" = v/0. So (m/q’)" = 0 for
some n > 1 by (3.38). So m™ C q’. Thus (6) holds.

Finally, assume (6). Then v/q’ = y/m. But /m = m. Thus (5) holds. O

Proposition (19.14). — Let R be a ring, and M a nonzero Noetherian module. Set
m:=rad(M). If M has a parameter ideal, then M is semilocal; conversely, if M
is semilocal, then m™ is a parameter ideal for any n > 1.

Moreover, if R has a parameter ideal q, then q is a parameter ideal of M too.
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Proof: The first assertion results immediately from (1)< (6) of (19.13).

Assume R has a parameter ideal q. Then ¢(R/q) < co. So R/q is Noetherian
by (19.5). Apply (1)=-(3) of (19.13) with M := R. Thus q C rad(R), and V(q)
consists of finitely many maximal ideals (as ¢’ = q in (19.13)).

Note rad(R) C rad(M). So q C rad(M). Set q' := Ann(M/qM). Then q' D g, so
V(q') € V(q). Apply (3)=(1) of (19.13). Thus q is a parameter ideal of M. O

Theorem (19.15). — Let R be a ring, q a parameter ideal. Let k: R — R/q be the
quotient map, {m;} the set of mazimal ideals, §;; the Kronecker delta function.
(1) Then R is semilocal, and the m; are precisely the primes containing q.
(2) Then R/q is decomposable; in fact, R/q = [[(R/q)m,-
(3) Then Idem(k) is injective.
(4) Given (2), set & = (0;5) € R/q; assume €; lifts to an idempotent e; € R.
Then Idem(k) is bijective, Re; = R, and R is decomposable; in fact, R =[] Re;.
(5) Then Idem(k) is bijective if and only if R is decomposable.

Proof: For (1), note g = Ann(R/q) by (4.7). And R/q is Noetherian by (19.5)
as ¢(R/q) is finite. Thus (19.13)(1)=-(3), (4) gives (1).

For (2), note R/q is Artinian by (19.10). Thus (1) and (19.11) give (2).

For (3), note q C rad(R). Thus (3.3) gives (3).

In (4), given an idempotent € € R/q, note that, for all 4, its projection in (R/q)m,
is either 1 or 0 by (3.22). So € is a sum of certain of the €;. Form the corresponding
sum of the e; in R. Its residue is €. Thus Idem(k) is surjective, so by (3), bijective.

Note that > e; and ejey, for all j, k are idempotents. But > €; = 1, and €;e, = 0
for j # k. Also, Idem(k) is injective. So > e; =1, and e;jep = 0 for j # k. Thus
by induction, (1.12) yields R = [] Re;.

Given any maximal ideal ny C Rey, set n:=ny x [[,_, Re;. Then n is maximal;
see (2.29). Son D ¢. Sony D ge;. So ny/ge; is a maximal ideal of (R/q)e;. But
plainly (R/q)e1 = (R/q)m,- So (R/q)e; is local. Thus Re; is local. Similarly, all
the Re; are local. Thus R is decomposable.

Hence Re; = Ry, for some j by (11.18). So Rei/qe; = Ru,/qRn,. However,
Rei/qer = Rey and Ry, /qRm; = (R/q)m, = Rej;; hence, j = 1. Thus Re; = Ry, .
Similarly, Re; = Ry, for all ¢. Thus (4) holds.

For (5), first assume R is decomposable. So R = [[ Rm, by (11.18). In R, set
e; := (0i;). Then e; reduces to € in (4). Thus (4) implies Idem(x) is bijective.

Conversely, assume Idem (k) is bijective. Then each €; in (4) lifts to an idempotent
in R. Thus (4) implies R is decomposable. Thus (5) holds. O

B. Exercises

Exercise (19.16) . — Let R be a ring, M a module, Q a p-primary submodule, and
Q12 - 2 Qn = Q a chain of p-primary submodules. Set M’ := M/Q. Assume
that M’ is Noetherian. Show that m < ¢(M;) < oo, and that m = £(M,) if and
only if m is maximal.

Exercise (19.17) . — Let k be a field, R an algebra-finite extension. Prove that R
is Artinian if and only if R is a finite-dimensional k-vector space.

Exercise (19.18) . — Given a prime p € Z, find all four different Artinian rings R
with p? elements. Which R are IF-algebras?
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Exercise (19.19) . — Let k be a field, A a local k-algebra. Assume the map from
k to the residue field is bijective. Given an A-module M, prove ¢(M) = dimy(M).

Exercise (19.20) . — Prove these conditions on a Noetherian ring R equivalent:
(1) R is Artinian. (2) Spec(R) is discrete and finite. (3) Spec(R) is discrete.
Exercise (19.21) . — Let ¢: R — R’ be a map of rings. Assume R’ is algebra

finite over R. Given p € Spec(R), set k := Frac(R/p). Consider these statements:
(1) The fibers of Spec(p) are finite.
(2) The fibers of Spec(p) are discrete.
(3) All R’ ®p k are finite-dimensional k-vector spaces.
(4) R’ is module finite over R.
Show (1), (2), and (3) are equivalent and follow from (4). Show (4) holds if R’ is
integral over R. If R’ is integral, but not algebra finite, and if (1) holds, does (4)?

Exercise (19.22) . — Let A be a local ring, m its maximal ideal, B a module-finite
algebra, and {n;} its set of maximal ideals. Show the n; are precisely the primes
lying over m, and mB is a parameter ideal of B; conclude B is semilocal.

Exercise (19.23) . — Let R be an Artinian ring. Show that rad(R) is nilpotent.

Exercise (19.24) . — Find another solution to (18.67)(1). Begin by setting p := p;
and A := (R/Ann(M)), and showing A is Artinian.

Exercise (19.25) . — Let R be a ring, p a prime ideal, and R’ a module-finite
R-algebra. Show that R’ has only finitely many primes p’ over p, as follows: reduce
to the case that R is a field by localizing at p and passing to the residue rings.

Exercise (19.26) . — Let R be a ring, and M a Noetherian module. Show the
following four conditions are equivalent:

(1) M has finite length;

(2) M is annihilated by some finite product of maximal ideals [ m;;

(3) every prime p containing Ann(M) is maximal;

(4) R/Ann(M) is Artinian.
Exercise (19.27) . — (1) Prove that a finite product rings R := [[/_, R; is a PIR
if and only if each R; is a PIR.

(2) Using (18.27), prove that a PIR R is uniquely a finite product of PIDs and
Artinian local PIRs.

Exercise (19.28) . — Let A — B be a local homomorphism of Artinian rings, N
an A-flat B-module, m the maximal ideal of A. Show (g(N) = £4(A) - {p(N/mN).

Exercise (19.29) . — Let R be a decomposable ring; say R := [[ R; with R; local.
For all 4, let q; C R; be a parameter ideal of R;. Set q := [[¢; C R. Show that q
is a parameter ideal of R.

Exercise (19.30) . — Let R be a ring, a C nil(R) an ideal. Set R’ := R/a. Use
(19.15)(3) to reprove (13.23)(1) < (2): R is decomposable if and only if R’ is.
Exercise (19.31) . — Let R be an Artinian ring, M a module, z1,...,z, genera-
tors. Show (M) < nl(R), with equality if and only if x1,...,x, is a free basis.
Exercise (19.32) . — Let K/k be a finite extension of fields, K’'/K an extension
containing a normal extension of K. Set s := [K : k]; and ¢ := [K : k];, the

separable and inseparable degrees. Show K ®;, K’ is a product of s copies of a local
Artinian K’-algebra of length ¢ with residue field K'.
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20. Hilbert Functions

The Hilbert Function of a graded module lists the lengths of its components.
The corresponding generating function is called the Hilbert Series. We prove the
Hilbert—Serre Theorem: under suitable hypotheses, this series is a rational function
with poles just at 0 and 1. Hence these lengths are eventually given by a polynomial,
called the Hilbert Polynomial.

Passing to an arbitrary module, we study its Hilbert—Samuel Series, the gen-
erating function of the colengths of the submodules in a filtration, which is a
descending chain of submodules F"M. We derive Samuel’s Theorem: this series
is a similar rational function under suitable hypotheses. Hence these colengths are
eventually given by a polynomial, called the Hilbert—Samuel Polynomial. In
the next chapter, we relate its degree to the dimension of M. Here we consider its
normalized leading coefficient, called the multiplicity of M.

Lastly, we relate the Hilbert polynomial of a Noetherian module M to the sum of
the polynomials of a submodule N and their quotient M /N in the case of a stable
g-filtration for an ideal q; that is, qF"M C qF"*! for all n, with equality for
n > 0. Our key is the Artin-Rees Lemma: if the F'"M form a stable g-filtration
of M, then the intersections N N F™M form a stable g-filtration of V.

In a brief appendix, we study further one notion that arose: homogeneity.

A. Text

(20.1) (Graded rings and modules). — We call a ring R graded if there are
additive subgroups R,, for n > 0 with R = @ R,, and R, R, C R,y for all m, n.

For example, a polynomial ring R with coefficient ring Ry is graded if R,, is the
Ry-submodule generated by the monomials of (total) degree n.

In general, Ry is a subring. Obviously, Ry is closed under addition and under
multiplication, but we must check 1 € Ry. Sosay 1 =Y &, with z,, € R,;,. Given
z € R, say z = Yz, with 2z, € R,. Fixn. Then z, =12, = Y z,2, with
Tmzn € Rpyn. SO Zm>0 Lo Zn = Zp — LozZn € R,. Hence x,,z, = 0 for m > 0.
But n is arbitrary. So x,,,z = 0 for m > 0. But z is arbitrary. Taking z := 1 yields
Loy = Ty - 1 =0 for m > 0. Thus 1 = zg € Ry.

We call an R-module M (compatibly) graded if there are additive subgroups M,,
for n € Z with M = @ M,, and R, M,, C M+, for all m, n. We call M,, the nth
homogeneous component; we say its elements are homogeneous. Obviously,
M,, is an Rp-module.

Given m € Z, set M(m) := @ My, 4n. Then M (m) is another graded module;
its nth homogeneous component M (m),, is M, +,. Thus M(m) is obtained from
M by shifting m places to the left.

Lemma (20.2). — Let R = @ R, be a graded ring, and M = @ M, a graded
R-module. If R is a finitely generated Ry-algebra and if M is a finitely generated
R-module, then each M, is a finitely generated Ry-module and M, =0 if n < 0.

Proof: Say R = Ry[x1,...,z,.]. If x; = Zj x;; with xz;; € R;, then replace the
x; by the nonzero x;; not in Ry. Say M is generated over R by mq,...,m, with
m; € Mj,. Then any m € M, is a sum m = ) fym; where f; € R. Say fi =>_ fi;
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with f;; € R;, and replace f; by fir, with & :=n —1{; or by 0if n < ;. Then f; is
an Rp-linear combination of monomials z{' - -z € Rj. Thus, m is an Ry-linear
combination of the products x}' - - zirm; € M, and M,, = 0 if m < min{;}. O

(20.3) (Hilbert Function). — Let R = @ R,, be a graded ring, M = P M, a
graded R-module. Assume Ry is Artinian, R is algebra finite over Ry, and M
is finitely generated over R. Then each M, is a finitely generated Rp-module by
(20.2), so is of finite length ¢(M,,) by (19.9). We call n — ¢(M,,) the Hilbert
Function of M and its generating function

H(M, t) =3, . ((M,)t"

the Hilbert Series of M. This series is a rational function by (20.5) below.
Given any k € Z, recall M (—k),, := M, _j, for all n. Hence,

H(M(—k), t) =t*H(M, t). (20.3.1)

If R = Ro[z1,...,z,] with z; € Ry, then by (20.6) below, the Hilbert Function
is, for n > 0, a polynomial h(M, n), called the Hilbert Polynomial of M.

Example (20.4). — Let R := Ry[X1,...,X,] be the polynomial ring, graded by
degree. Then R, is free over Ry on the monomials of degree n, so of rank (T:i‘")
Let My be an Rp-module. Form the set of polynomials M := My[Xy,..., X, ].
Then M is a graded R-module, with M,, the direct sum of (';i‘") copies of M.
Assume ¢(Mjy) < oo. Then (M,) = K(Mo)(ﬁi'") by Additivity of Length,
(19.7). Thus the Hilbert Function is, for n > 0, a polynomial of degree r — 1.
Formal manipulation yields ("7 ") = (=1)"(7"). Therefore, Newton’s binomial
theorem for negative exponents yields this computation for the Hilbert Series:

H(M, ) = 32,50 6Mo) (", 178" = 32,50 €(Mo) (3,)) (=)™ = £(Mo) /(1 )"

Theorem (20.5) (Hilbert—Serre). — Let R = @ R, be a graded ring, M = @ M,
a graded R-module. Assume Ry is Artinian, R = Ro[z1,...,x,] with x; € Ry, and
ki > 1. Assume M is finitely generated, My, =0 for n < ng, but M,, # 0. Then

H(M, t)= ft)t" /(1 —t")--- (1 —t")  with f(t) € Z[t] and f(0) # 0.

Proof: Assume r = 0; so R = Ry. Say mq,...,ms generate M with m; € M;,
nonzero and with I; < l;49. Then ng = [y and M,, = 0 for n > Il,. Therefore,
H(M, t) =Y, UMt Thus H(M, t) = t" f(t) with f(t) € Z[t] and f(0) # 0.

Assume r > 1. Form this exact sequence, where p,, means multiplication by z;:

0= K — M(—k) 25 M - L—o.
The grading on M induces a grading on K and on L. Also, M(—k1)n, = 0 as
k1 > 1. Thus K,, =0 for n < ng. Also, L,, = 0 for n < ng, but L,, # 0.

As Ry is Artinian, Ry is Noetherian by (19.8). So, as R is a finitely generated
Ry-algebra, R is Noetherian by (16.10). As M is a finitely generated R-module,
it’s Noetherian by (16.15). So M (—k) is too. Thus, by (16.13)(2), both K and
L are too; in particular, they're finitely generated R-modules.

Set R' := Rglza,...,x,]. Note u,, vanishes on K and on L. So they’re finitely
generated graded R’-modules. Induct on 7. Set d(t) := (1 — tk2)...(1 — tkr).
Thus H(L, t) = b(t)t™ /d(t) with b(t) € Z[t] and b(0) # 0. Also, if K # 0, then
H(K, t) = a(t)tPo /d(t) with a(t) € Z[t] and py > no; if K =0, set a(t) := 0 and
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po :=mng + 1.

ONoteOH(M, t) — H(M(—ky), t) = H(L, t) — H(K, t) by (19.7). But (20.3.1)
gives H(M (—ky), t) = t** H(M, t). Set f(t) := b(t) — a(t)tPo~"°. Then f(0) # 0;
also H(L, t) — H(K, t) = f(t)t" /d(t). Thus (1 —tF*)H (M, t) = f(t)t" /d(t). O

Corollary (20.6). — In the setup of (20.5), assume k; = 1 for alli. Then uniquely
H(M, t)=e(t)t™ /(1 —t) (20.6.1)

with e(t) € Z[t] and €(0), e(1) # 0 and r > d > 0. Also, there is a polynomial
h(M, n) € Q[n] with degree d — 1 and leading coefficient e(1) / (d — 1)! such that

(M) =h(M, n) forn>dege(t)+ no. (20.6.2)

Proof: Note that (20.5) yields H(M, t) = f(t)t" /(1 —t)" with f(0) # 0. Say
f(®) = e(®)(1 —t)® with e(1) # 0. Set d := r —s. Then d > 0; otherwise,
0=H(M, 1) > {(M,,), a contradiction. Thus (20.6.1) holds.

Suppose H(M, t) = g(t)t™ /(1 — ¢)7 with g(t) € Z[t] and g(1) # 0 and ¢ > 0.
Then e(t)(1—t)7 = g(t)(1—t)%. So e(t) = g(t) and d = q. Thus (20.6.1) is unique.

Say e(t) = Y0 eit? with ey, # 0. Now, (1—1)~% = 3 (29 (—t)" = 3 (1",
So {(M,,) = ZLO €; (d_ltl”__lno_i) for n — ng > h. But (d_;f;’_i) is a polynomial
in n of degree d — 1 and leading coefficient 1/(d — 1)!. Thus (20.6.2) holds. O

(20.7) (Filtrations). — Let R be an arbitrary ring, q an ideal, and M a module. A
(descending) filtration F'*M of M is an infinite descending chain of submodules:

e DFPM O F"TIM D -

Call it a g-filtration if qF"M C F"*'M for all n, and a stable g-filtration if
also M = F"M for n < 0 and qF"M = F"*t'M for n > 0. This condition means
that there are u and v with M = FFM and q"F*M = F"*" M for n > 0.

For example, set q* := R for n < 0 and F"M := q"M for all n. Thus we get a
stable g-filtration, called the g-adic filtration.

The g-adic filtration of R yields two canonical graded rings:

R(q) := @nzo g" and G4(R):=G(R):= R(q)/(fR(q)(l)). (20.7.1)
They’re called the extended Rees Algebra and associated graded ring of q.
Notice that G(R) = @,,5¢ Gn(R) where G,,(R) := g™ /q" 1.

Say x1,...,7, € q generate. In R(q), regard the z; as in q' and 1 € R as in q~ .
Those r+ 1 elements generate R(q) as an R-algebra. Thus if ¢ is finitely generated,
then R(q) is R-algebra finite, and G4(R) is (R/q)-algebra finite.

As each F"M is an R-module, so are the direct sums

R(F*M) = @, , F"M and  G(M) == R(F*M)/(R(F*M)(1)).  (20.7.2)
Notice that G(M) = @, ., Gn(M) where G, (M) := q"M/q" 1 M.

nezZ - n
If F*M is a g-filtration, then R(F*M) is a graded R(F*R)-module, and G(M)
is a graded G(R)-module. If F*M is the g-adic filtration, set Gq(M) := G(M).
Given m € Z, let M[m] denote M with the filtration F'* M reindexed by shifting
it m places to the left; that is, F*(M[m]) := F**™M for all n. Then

R(F*M[m]) = R(F*M)(m) and G(M[m]) = (G(M))(m).
162



Hilbert Functions (20.8) / (20.9) Text

If the quotients M/F™M have finite length, call n — ¢(M/F™M) the Hilbert—
Samuel Function, and call the generating function

P(F*M, t) := 3,50 ((M/F M)t

the Hilbert—Samuel Series. If the function n — ¢(M/F"M) is, for n > 0,
a polynomial p(F*M, n), then call it the Hilbert—Samuel Polynomial. If the
filtration is the g-adic filtration, we also denote P(F*M, t), and p(F*M, n) by
Py(M,t) and pq(M,n).

Lemma (20.8). — Let R be a ring, q an ideal, M a module, F*M a q-filtration. If
R(F*M) is finitely generated over R(q), then G(M) is finitely generated over G(R).
Moreover, if R(F*M) is finitely generated over R(q) and |JF"M = M, then F*M
is stable; the converse holds if M is Noetherian.

Proof: First, assume R(F*M) is finitely generated over R(q).

By (20.7.2), G(M) is a quotient of R(F*M). So G(M) too is finitely generated
over R(q). But G(R) is a quotient of R(q) by (20.7.1). Thus G(M) is finitely
generated over G(R), as desired.

Say mu,...,ms € R(F*M) generate over R(q). Write m; = >7_ m;; with
m;; € FIM for some uniform p < v. Given any n and any m € F™M, note
m =Y fijmi; with f;; € R,_;(q) :== q" 7. Hence, if n < y, then m € F*M, and
so F"M C FFM. Thus, if |JF"M = M too, then F*M = M. But, if n > v, then
fij €979 =q"7q"9, and so q""VF"M = F"M. Thus F*M is stable.

Conversely, assume F*M is stable: say F*M = M and q"F*M = F"*M for
n > 0. Then | F"M = M. Further, F*M, ..., F¥M generate R(F*M) over R(q).
Assume M is Noetherian too. Then F™"M C M is finitely generated over R for all
n. Thus R(F*M) is finitely generated over R(q), as desired. O

Lemma (20.9). — Let R be a ring, q an ideal, M a module with a stable q-filtration
F*M. Assume M is Noetherian, and {(M/qM) < oo. Then ((F"M/F"*1M) < oo
and ((M/F"M) < oo for every n > 0; further,

P(F*M, t)=H(G(M), t)t/(1—1t). (20.9.1)

Proof: Set a := Ann(M). Set R’ := R/aand q' := (a+q)/a. As M is Noetherian,
so is R’ by (16.16). So R'/q’ is Noetherian too. Also, M can be viewed as
a finitely generated R’-module, and F*M as a stable ¢'-filtration. So G(R’) is
generated as an R’/q’-algebra by finitely many elements of degree 1, and G(M) is a
finitely generated G(R’)-module by (20.8) applied with R’ for R. Therefore, each
F"M/F" 1M is finitely generated over R’/q’ by (20.2) or by the proof of (20.8).

However, V(a + q) = Supp(M/qM) by (13.46)(2). Hence V(a + q) consists
entirely of maximal ideals, because Supp(M/qM) does by (19.4) as £(M/qM) < oo.
Thus dim(R'/q") = 0. But R'/q’ is Noetherian. Therefore, R’/q’ is Artinian by the
Akizuki-Hopkins Theorem, (19.8).

Hence ((F"M/F"t1 M) < oo for every n by (19.9). Form the exact sequence

0— F"M/F""'M — M/F""'M — M/F"M — 0.
Then Additivity of Length, (19.7), yields
((F"M/F" M M) = 0(M/F""* M) — ¢(M/F"M). (20.9.2)
So induction on n yields £(M/F"*+1 M) < oo for every n. Further, multiplying that
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equation by t"™ and summing over n yields the desired expression in another form:
H(GM),t)= ("' —1)P(F*M, t) = P(F*M, t) (1 —t)/t. O

Theorem (20.10) (Samuel’s). — Let R be a ring, q an ideal, M a module with a

stable q-filtration F*M. Assume M is Noetherian, and F"M = M for n <, but
F'M # M. Assume q is generated by r elements, and £(M/qM) < oco. Then

P(F*M, t) = e(t)t' /(1 —t)*+! (20.10.1)

uniquely with e(t) € Z[t] and e(0), e(1) nonzero, and r > d > 0. Also, there is a

polynomial p(F* M, n) € Q[n] with degree d and leading coefficient e(1)/d! such that

LM/F"M) =p(F*M,n) forn >dege(t)+ 1. (20.10.2)

If nonzero, pg(M, n) — p(F*M, n) is a polynomial of degree at most d — 1 and
positive leading coefficient; also, d and e(1) are the same for every stable g-filtration.

Proof: The proof of (20.9) shows that G(R’) and G(M) satisfy the hypotheses
of (20.6) with ng =1 —1. So (20.6.1) and (20.9.1) yield (20.10.1). In turn,
(20.10.1) yields (20.10.2) by the argument at the end of the proof of (20.6).

Finally, as F'*M is a stable g-filtration, there is an m such that

F"M > q"M D> q"F™M = F"™"™M
for all n > 0. Forming the quotients and extracting their lengths, we get
((MJF™M) < £(M/q"M) < £(M/F"t™M).
Therefore, (20.10.2) yields
p(F*M, n) < pg(M, n) < p(F*M, n+m) forn>>0.

The two extremes are polynomials in n with the same degree d and the same leading
coefficient ¢ where ¢ := ¢(1)/d!. Dividing by n¢ and letting n — oo, we conclude
that the polynomial pq(M, n) also has degree d and leading coefficient c.

Thus the degree and leading coeflicient are the same for every stable g-filtration.
Also pq(M, n)—p(F'* M, n) has degree at most d—1 and positive leading coefficient,
owing to cancellation of the two leading terms and to the first inequality. O

(20.11) (Muiltiplicity). — Preserve the conditions of (20.10). The “normalized”
leading coefficient e(1) of the Hilbert—Samuel polynomial p(F*M,n) is called the
multiplicity of q on M and is also denoted e(q, M).

Note that e(q, M) is the same number for every stable g-filtration F*M by
(20.10). Moreover, ¢(M/q"M) > 0 for all n > 0; hence, e(q, M) is a positive
integer.

Set d := degp(F*M,n), Then (20.3) and (20.9.2) yield, for n > 0,

h(Gq(M), n) :=L(q"M/q" M)
=(e(q, M)/(d — 1)!)n*"! + lower degree terms.

Lemma (20.12) (Artin—Rees). — Let R be a ring, M a module, N a submodule, q
an ideal, F*M a stable q-filtration. Set

F'"N:=NNOF"M forn € Z.
Assume M is Noetherian. Then the F™N form a stable q-filtration F*N.
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Proof: Set a := Ann(M), set R’ := R/a, and set q’ := (q + a)/a. Then M and
N are R'-modules, and F*M is a stable q'-filtration. So we may replace R by R’
(and q by ¢'), and thus by (16.16), assume R is Noetherian.

By (20.7), the extended Rees Algebra R(q) is finitely generated over R, so Noe-
therian by the Hilbert Basis Theorem (16.10). By (20.8), the module R(F*M)
is finitely generated over R(q), so Noetherian by (16.15). Clearly, F*N is a g-
filtration; hence, R(F*N) is a submodule of R(F*M), so finitely generated. But
UF"M = M,so|JF"N = N. Thus F°*N is stable by (20.8). O

Proposition (20.13). — Let R be a ring, q an ideal, and
00— M, — My — M3z —0
an ezxact sequence of Noetherian modules. For i =1, 2, 3, set £; := £(M;/qM;) and
d; = degpq(M;,n).
(1) Then £y < oo if and only if £1 < 0o and l3 < 0.
(2) Assume Uy < co. Then the polynomial
pq(M17 n) - pq(M27 n) + Pyq (M37 n)
has degree at most dy — 1 and has positive leading coefficient; also then
d2 = max{ dl, d3 }
Proof: For (1), note (13.46)(1) and (13.4)(1) and (13.46)(1) yield
Supp(Mz/qMa) = Supp(M2) (\V(q) = (Supp(M:1) USupp(M3)) N V(q)
= (Supp(M1) N V(q)) U(Supp(Mz) N V(a))
= Supp(M1/qM1) U Supp(Ms/qMs).
Thus (19.4) yields (1).
For (2), given n € Z, set F"M; := My () q"Ms. Then the F"M; form a stable

g-filtration F'® M, by the Artin—Rees Lemma (20.12). Form the following canonical
commutative diagram:

0 — F"M; — q"Ms — q"Ms — 0
I
0 — My — My — M3 — 0
Its rows are exact. So the Nine Lemma (5.24) yields this exact sequence:
0— My/F"M; — My/q" My — Ms/q" Ms — 0.
As My /qMy < oo, Additivity of Length, (19.7), and (20.10.2) yield
p(F* My, n) — pq(Ms, n) + pq(Ms, n) = 0. (20.13.1)

Hence pq(Mi, n) —pq(Ma, n)+pq(Ms, n) is equal to pq(My, n) —p(F* My, n). But
by (20.10) again, the latter is a polynomial with degree at most d; —1 and positive
leading coefficient.

Finally, do = max{degp(F*M;i,n), ds} by (20.13.1), as the leading coeffi-
cients of p(F'*Mi,n) and py(Ms,n) are both positive, so cannot cancel. However,
deg p(F*Mi,n) = d; by (20.10). Thus (2) holds. O
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B. Exercises

Exercise (20.14) . — Let k be a field, k[X, Y] the polynomial ring. Show (X, Y?)
and (X?,Y?) have different Hilbert Series, but the same Hilbert Polynomial.

Exercise (20.15) . — Let k& be a field, P := k[X,Y, Z] the polynomial ring in three
variables, F' € P a homogeneous polynomial of degree d > 1. Set R := P/(F).
Find the coefficients of the Hilbert Polynomial hA(R, n) explicitly in terms of d.

Exercise (20.16) . — Let K be a field, Xy,..., X, variables, ki,...,k, positive
integers. Set R := K[Xy,...,X,], and define a grading on R by deg(X;) := k;. Set
q-(t) :==TI—, (1 = t*) € Z[t]. Show H(R, t) = 1/q,(t).

Exercise (20.17) . — Under the conditions of (20.6), assume there is a homoge-
neous nonzerodivisor f € R with My = 0. Prove degh(R,n) > degh(M,n); start
with the case M = R/(f*).

Exercise (20.18) . — Let R be a ring, q an ideal, and M a Noetherian module.
Assume (M /qM) < co. Set m := ,/q. Show

deg pm (M, n) = deg pg(M, n).
Exercise (20.19) . — In the setup of (20.10), prove these two formulas:
(1) e(q, M) = lim d'6(M/q"M)/n® and (2) e(q", M) = Ke(q, M).

Exercise (20.20) . — Let R be a ring, q C q’ nested ideals, and M a Noetherian
module. Assume ¢(M/qM) < oco. Prove these two statements:
(1) Then e(q’, M) < e(q, M), with equality if the q’-adic filtration is g-stable.
(2) If (M) < o0 and q C rad(M), then e(q, M) = £(M).

Exercise (20.21) . — Let R be a ring, q an ideal, and M a Noetherian module
with ¢(M/qM) < co. Set S := Supp(M) N'V(q). Set d := maxpmes dim(My,) and
A:={me S| dim(My)=d. Show

6(C[, M) = ZmeA e(qu, Mm)-

Exercise (20.22) . — Derive the Krull Intersection Theorem, (18.23), from the
Artin-Rees Lemma, (20.12).

C. Appendix: Homogeneity

(20.23) (Homogeneity). — Let R be a graded ring, and M = @ M,, a graded
module. Given m € M, write m = > m,, with m,, € M,,. Call the finitely many
nonzero m, the homogeneous components of m. Say that a component m,, is
homogeneous of degree n. If n is lowest, call m,, the initial component of m.

Call a submodule N C M homogeneous if, whenever m € N, also m,, € N, or
equivalently, N = @ (M, N N). Call an ideal homogeneous if it’s a homogeneous
submodule of R.

Consider a map a: M’ — M of graded modules with components M,, and M,,.
Call & homogeneous of degree r if a(M]) C M, , for all n. If so, then clearly
Ker(«) is a homogeneous submodule of M. Further, Coker(«) is canonically graded,
and the quotient map M — Coker(«) is homogeneous of degree 0.
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Proposition (20.24). — Let R be a graded ring, M o graded module, Q@ a proper
homogeneous submodule. Set p := nil(M/Q). Assume that Q has this property:
given any homogeneous x € R and homogeneous m € M with xm € Q but m ¢ @,
necessarily x € p. Then Q is old-primary.

Proof: Given x € R and m € M, decompose them into their homogeneous
components: x = » .. x; and m = Ej>s mj. Suppose zm € @, but m ¢ Q.
Then m; ¢ Q for some t; take ¢ minimal. Set m’ := > j<tmj. Then m’ € Q. Set
m” :=m —m/. Then xm” € Q.

Either x,,m; vanishes or it’s the initial component of zm/. But (Q is homogeneous.
So x,my € Q. But my ¢ Q. Hence x, € p by the hypothesis. Say z,,...,2, € p
with u maximal. Set 2’ := Y x;. Then 2’ € p. So 2’¥ € Ann(M/Q) for some
kE>1. Soz*m” € Q. Set 2" := x — 2’. Since xm” € Q, also z""*m' € Q.

Suppose z ¢ p. Then " # 0. And its initial component is x, with v > u. Either
a/m} vanishes or it is the initial component of xm. But @ is homogeneous. So
xymy € Q. But my ¢ Q. Hence x,, € p by the hypothesis, contradicting v > u.
Thus « € p. Thus Q is old-primary. O

Exercise (20.25) . — Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Show that v/a and Ann(M) and nil(M) are homogeneous.

Exercise (20.26) . — Let R be a graded ring, M a graded module, and @ an old-
primary submodule. Let Q* C @ be the submodule generated by the homogeneous
elements of Q). Show that Q* is old-primary.

Theorem (20.27). — Let R be a graded ring, M a graded module, and N a proper
homogeneous submodule. Assume M/N is Noetherian. Then N admits an irredun-
dant primary decomposition in which all the primary submodules are homogeneous;
moreover, the associated primes p; of M/N are homogeneous.

Proof: Let N = (| Q; be any primary decomposition; one exists by (18.19).
Also, each Q; is old-primary by (18.3)(5). Let @} C Q; be the submodule gen-
erated by the homogeneous elements of Q;. Trivially, NQ; CNQ; = N C NQ;.
Further, each @7 is plainly homogeneous, and is primary by (20.26) and (18.3)(4).
Thus N =) Q7 is a decomposition into homogeneous primary submodules. And,
owing to (18.17), it is irredundant if N = () Q; is, as both decompositions have
minimal length.

Moreover, the p; are the nil(M/QF) by (18.18). The M/Q} are graded by
(20.23). Thus by (20.25) the p; are homogeneous. O

(20.28) (Graded Domains). — Let R = @, ., R, be a graded domain, and set
K := Frac(R). We call z € K homogeneous of degree n € Z if z = z/y with
x € Ry, and y € R,,—,. Clearly, n is well defined.

Let K, be the set of all such z, plus 0. Then K,,K, C K,,+n. Clearly, the
canonical map €,,., K, — K is injective. Thus ,,-, K, is a graded subring of
K. Further, Kj is a field.

The n with K,, # 0 form a subgroup of Z. So by renumbering, we may assume
K; # 0. Fix any nonzero xz € K;. Clearly, x is transcendental over Ky. If z € K,,,
then z/z™ € Ky. Hence R C Ky[z]. So (2.3) yields K = Ko(x).

Any w € @@ K, can be written w = a/b with a,b € R and b homogeneous: say
w =Y (an/by) with a,, b, € R homogeneous; set b := [[ b, and a := > (anb/by,).
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Theorem (20.29). — Let R be a Noetherian graded domain, K := Frac(R), and R
the integral closure of R in K. Then R is a graded R-algebra.

Proof: Use the setup of (20.28). Since Ky[z] is a polynomial ring over a field,
it is normal by (10.22). Hence R C Kylx]. So every y € R can be written as
y= Z:;" i, with 7; homogeneous and nonzero. Let’s show y; € R for all i.

Since y is integral over R, the R-algebra R[y] is module finite by (10.14). So
(20.28) yields a homogeneous b € R with bR[y] C R. Hence by’ € R for all j > 0.
But R is graded. Hence byl € R. Set z := 1/b. Then yJ € Rz. Since R is
Noetherian, the R-algebra R[y,| is module finite. Hence v, € R. Then y — y, € R.
Thus y; € R for all 4 by induction on n. Thus R is graded. O

D. Appendix: Exercises

Exercise (20.30) (Nakayama’s Lemma for graded modules) . — Let R be a graded
ring, a a homogeneous ideal, M a graded module. Assume a =) a; with i > 0
and M =)

i>ig

. M, for some ng. Assume aM = M. Show M = 0.

n>n
Exercise (20.31) (Homogeneous prime avoidance) . — Let R be a graded ring,
a a homogeneous ideal, a” its subset of homogeneous elements, pi,...,p, primes.

Adapt the method of (3.12) to prove the following assertions:
(1) If a® ¢ p; for all 4, then there is x € a” such that x ¢ p; for all j.
(2) If a* € Ui, pi, then a C p; for some i.

Exercise (20.32) . — Let R = @ R,, be a graded ring, M = @ M, a graded
module, N = @ N,, a homogeneous submodule. Assume M/N is Noetherian. Set

N :={meM|R,meN foralln>>0}.

Show: (1) Then N’ is the largest homogeneous submodule of M containing N and

having, for all n > 0, its degree-n homogeneous component N, equal to N,,.

(2) Let N = (Q; be a primary decomposition. Say @; is p;-primary. Set
R+ = ®n>0 Rn Then N/ = ﬂPiZR+ Q1

Exercise (20.33) . — Under the conditions of (20.6), assume R is a domain whose
integral closure R in Frac(R) is module finite (see (24.18)). Show:
(1) There is a homogeneous f € R with Ry = Ry.

(2) The Hilbert Polynomials of R and R have the same degree and same leading
coefficient.

Exercise (20.34) . — Let R = € R, be a graded ring with Ry Artinian. Assume
R = Ry[z1,...,2,] withz; € Rg, and k; > 1. Set q(t) := [[;_,(1—t*?). Let C be the
subcategory of ((R-mod)) of all finitely generated graded R-modules M = @ M,
and all homogeneous maps of degree 0; let Gy be its subcategory of all M with
M, = 0 for all n < 0. Using the notation of (17.34), let Ag: Ko(Ro) — Z be a
Z-map. Show that assigning to each M € C the series ), Ao(70(Mp))t" gives
rise to Z-maps K (C) — (1/q(t))Z][t,1/t] and K(Cp) — (1/q(¢))Z][t].

Exercise (20.35) . — Let R be a ring, a: M — N a map of filtered modules
with filtrations F*M and F*N. Set P := Coker(a) and F"P := Im(F"N). Say
p: M/F"M — N/F™N is the map induced by « for all n. Assume F"M = M
and F"N = N for n < 0. Show:
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(1) Then M/F™"M — N/F"N — P/F™P — 0 is (right) exact for all n.
(2) Assume G(«) is injective. Then these two sequences are exact for all n:

0— M/F"M ** N/F"N — P/F"P — 0, (20.35.1)
0— F"M/F""'M — F"N/F""'N — F"P/F"*'pP — 0. (20.35.2)

Exercise (20.36) . — Let R be aring, 0 — M; — M> — M5 — 0 an exact sequence
of Noetherian modules, and q a parameter ideal of Ms. Set d; := deg(pq(M;,n))
for all i. Show:

(1) If d1 = d2 = dg, then e(q, Mg) = €(C|7 Ml) + €(C|7 Mg)

(2) Ifdi =dy > ds, then e(q,Ml) = €(C|7M2).

(3) If dy < d2 = d3, then e(q, M2) = e(q, M3).
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21. Dimension

The dimension of a module is defined as the supremum of the lengths of the chains
of primes in its support. The Dimension Theorem, which we prove, characterizes
the dimension of a nonzero Noetherian semilocal module in two ways. First, the
dimension is the degree of the Hilbert—Samuel Polynomial of the adic filtration
associated to the radical of the module. Second, the dimension is the smallest
number of elements in the radical that span a submodule of finite colength.

Next, in an arbitrary Noetherian ring, we study the height of a prime, which is
the length of the longest chain of subprimes. We bound the height by the minimal
number of generators of an ideal over which the prime is minimal. In particular,
when this number is 1, we obtain Krull’s Principal Ideal Theorem.

Given any ring R and R-module M, we define the M-quasi-regularity of a
sequence of elements z1,...,zs € R. Under appropriate hypotheses, including
s = dim(M), we prove z1,...,z, is M-quasi-regular if and only if the multiplicity
of M is equal to the length of M/{x1,...,zs)M. Finally, we study regular local
rings: they are the Noetherian local rings whose maximal ideal has the minimum
number of generators, namely, the dimension.

A. Text

(21.1) (Dimension of a module). — Let R be a ring, and M a nonzero module.
The dimension of M, denoted dim(M), is defined by this formula:

dim(M) := sup{ 7 | there’s a chain of primes po G --- S p, in Supp(M) }.

Assume M is Noetherian. Then M has finitely many minimal (associated) primes
by (17.16). They are also the minimal primes py € Supp(M) by (17.13) and
(17.14). Thus (1.9) yields

dim(M) = max{ dim(R/po) | po € Supp(M) is minimal }. (21.1.1)

(21.2) (The invariants d(M) and s(M)). — Let R be aring, M a nonzero Noether-
ian module, q a parameter ideal of M. Set m :=rad(M) and ¢’ := Ann(M/qM).
Then the Hilbert-Samuel Polynomial pq(M, n) exists by (20.10). Similarly,
pm(M, n) exists, and the two polynomials have the same degree by (20.18) since
m = /¢’ by (1)&(5) of (19.13), since v/q' = 1/q” where q” := q+Ann(M) owing to
(13.46)(2) and (13.1), and since plainly pq (M, n) = pq(M, n). Thus the degree
is the same for every parameter ideal of M. Denote this common degree by d(M).
Alternatively, d(M) can be viewed as the order of pole at 1 of the Hilbert Series
H(Gq(M), t). Indeed, that order is 1 less than the order of pole at 1 of the Hilbert—
Samuel Series Py (M, t) by (20.9). In turn, the latter order is d(M)+1 by (20.10).
Denote by s(M) the smallest s such that there are x1,...,z, € m with

UM[(x1,...,x5) M) < 0. (21.2.1)
By convention, if /(M) < oo, then s(M) = 0. If s = s(M) and (21.2.1) holds, we
say that x1,...,2s € m form a system of parameters (sop) for M. Note that a

sop generates a parameter ideal.
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Lemma (21.3). — Let R be a ring, M a nonzero Noetherian semilocal module, q
a parameter ideal of M, and x € rad(M). Set K := Ker(M X% M).
(1) Then s(M) < s(M/xzM)+ 1.
(2) Then dim(M/xM) < dim(M) — 1 if x ¢ p for any p € Supp(M) with
dim(R/p) = dim(M).
(3) Then deg(pq(K, n) — pq(M/xM, n)) < d(M) — 1.

Proof: For (1), set s := s(M/axM). There are x1, ...,z € rad(M/xM) with
OM/(x, x1,...,x5)M) < 0.

Now, Supp(M/xM) = Supp(M) N V((z)) by (13.46). But = € rad(M). Hence,
Supp(M/xM) and Supp(M) have the same maximal ideals owing to (13.4)(4).
Therefore, rad(M /xM) = rad(M). Hence s(M) < s+ 1. Thus (1) holds.

To prove (2), take a chain of primes pg G --- G p, in Supp(M/zM). Again,
Supp(M/xM) = Supp(M) N V({z)) by (13.46). So = € py € Supp(M). So, by
hypothesis, dim(R/po) < dim(M). Hence r < dim(M) — 1. Thus (2) holds.

To prove (3), note that M := Im(u,), and form these two exact sequences:

0—-K—>M-—>2a2M—0, and 0—aM — M — M/zM — 0.

Then (20.13) yields d(K) < d(M) and d(zM) < d(M). So by (20.13) again, both
pq(K, Tl) +pq(l‘M, Tl) _pq(M7 TL) and pq(va Tl) +pq(M/$M, 'fl) _pq(M7 ’I’L) are
of degree at most d(M) — 1. So their difference is too. Thus (3) holds. O

Theorem (21.4) (Dimension). — Let R be a ring, and M a nonzero Noetherian
semilocal module. Then

dim(M) =d(M) = s(M) < oo.

Proof: Let’s prove a cycle of inequalities. Set m := rad(M).

First, let’s prove dim(M) < d(M) by induction on d(M). Suppose d(M) = 0.
Then ¢(M/m"M) stabilizes. So m"M = m" ™' M for some n. But m™M is finitely
generated as M is Noetherian. Also, Ann(M) C Ann(m”™M); so m C rad(m™M).
So m™M = 0 by Nakayama’s Lemma (10.6). But £(M/m"M) < oo. So £(M) < oc.
Thus (19.4) yields dim(M) = 0.

Suppose d(M) > 1. By (21.1.1), dim(R/po) = dim(M) for some py € Supp(M).
Then pg is minimal. So py € Ass(M) by (17.14). Hence M has a submodule N
isomorphic to R/pg by (17.3). Further, (20.13)(2) yields d(N) < d(M).

Take a chain of primes po G --- & p, in Supp(N). If 7 = 0, then r < d(M).
Suppose r > 1. Then there’s an x; € p; — po. Further, since pg is not maximal, for
each maximal ideal n in Supp(M), there is an x, € n —pg. Set x := 1 [[ 4. Then
x € (prNm)—po. Then p; G --- S p, lies in Supp(N) () V((x)). But the latter is
equal to Supp(N/zN) by (13.46)(1). So r — 1 < dim(N/zN).

However, p, is injective on N as N ~ R/py and = ¢ pg. So (21.3)(3) yields
d(N/zN) < d(N) — 1. But d(N) < d(M). So dim(N/zN) < d(N/xN) by the
induction hypothesis. Therefore, r < d(M). Thus dim(M) < d(M).

Second, let’s prove d(M) < s(M). Let q be a parameter ideal of M with s(M)
generators. Then d(M) := degpq(M, n). But degpq(M,n) < s(M) owing to
(20.10). Thus d(M) < s(M).

Finally, let’s prove s(M) < dim(M). Set r := dim(M), which is finite since
r < d(M) by the first step. The proof proceeds by induction on r. If r = 0, then
M has finite length by (19.4); so by convention s(M) = 0.
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Suppose r > 1. Let py,. .., px be the primes of Supp(M) with dim(R/p;) = r. No
p; is maximal as r > 1. So m lies in no p,;. Hence, by Prime Avoidance (3.12), there
is an « € m such that « ¢ p, for all i. So (21.3)(1),(2) yield s(M) < s(M/zM)+1
and dim(M/xzM)+1 < r. By the induction hypothesis, s(M/zM) < dim(M /zM).
Hence s(M) < r, as desired. O

Corollary (21.5). — Let R be a ring, M a nonzero Noetherian semilocal module,
x € rad(M). Then dim(M/xzM) > dim(M) — 1, with equality if and only if x ¢ p
for all p € Supp(M) with dim(R/p) = dim(M); equality holds if x ¢ z.div(M).

Proof: By (21.3)(1), we have s(M/xM) > s(M) — 1. So the asserted inequality
holds by (21.4). If « ¢ p € Supp(M) when dim(R/p) = dim(M), then (21.3)(2)
yields the opposite inequality, so equality.

Conversely, assume x € p for some p € Supp(M) with dim(R/p) = dim(M).
Now, Supp(M/xM) = Supp(M )NV ({z)) by (13.46)(1). So V(p) C Supp(M/zM).
Hence dim(M/xM) > dim(R/p) = dim(M). Thus the equality in question fails.

Finally, assume z ¢ z.div(M). Then z ¢ p for any p € Ass(M) by (17.11). So
x ¢ p for any p minimal in Supp(M) by (17.14). Thus = ¢ p for any p € Supp(M)
with dim(R/p) = dim(M), and so the desired equality follows from the above. O

(21.6) (Height). — Let R be a ring, and p a prime. The height of p, denoted
ht(p), is defined by this formula:

ht(p) := sup{ r | there’s a chain of primes po G --- S p, = p }.
The bijective correspondence p — pR, of (11.12)(2) yields this formula:
ht(p) = dim(R,). (21.6.1)
If ht(p) = h, then we say that p is a height-h prime.

Corollary (21.7). — Let ¢: A — B be a local map of Noetherian local rings, m and
n their mazximal ideals. Then

dim(B) < dim(A) + dim(B/mB),

with equality if either (a) ¢ has the Going-down Property or (b) ¢ is quasi-flat, that
is, there’s a finitely generated B-module M flat over A with Supp(M) = Spec(B).

Proof: Set s := dim(A). There’s a parameter ideal q of A generated by s elements
by (21.4). Then m/q is nilpotent by (19.13)(1)=-(6). So mB/qB is nilpotent. Ap-
ply (15.25) with R := B/qB and a := mB/qB. Thus dim(B/mB) = dim(B/qB).

Say q = (x1,...,2s). Set My := B and M; := M/{xy,...,x;)M for 1 < i < s.
Then (4.21) with a := (x1,...,2;) and b := (z;41) yields M; 1 = M;/x; 1 M;.
So dim(M;4+1) > dim(M;) — 1 by (21.5). But M, = B/qB and M, := B. Hence
dim(B/qB) > dim(B) — s. Thus the inequality holds.

For the equality, note that Case (b) is a special case of Case (a) owing to (14.8).
So assume Case (a) obtains; that is, ¢ has the Going-down Property.

Given any prime p of B, note that dim(B) > ht(p)+dim(B/p), as concatenating a
maximal chain of primes contained in p with a maximal chain of primes containing
p yields a chain of primes of length ht(p) + dim(B/p). Fix p D mB such that
dim(B/p) = dim(B/mB). Thus it suffices to show that ht(p) > dim(A).

As pislocal, p"ln=m. Butn D p DO mB,so o nDelp Dy mB>Om
Thus ¢ 'p = m. But ¢ has the Going-down Property. So induction yields a
chain of primes of B descending from p and lying over any given chain in A. Thus
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ht(p) > dim(A), as desired. O

Corollary (21.8). — Let R be a Noetherian ring, p a prime. Then ht(p) < r if and
only if p is a minimal prime of some ideal generated by r elements.

Proof: Assume p is minimal over an ideal a generated by r elements. Now, any
prime of R, over aR, is of the form qR, where q is a prime of R with a C q C p
by (11.12). So q = p. So pR, = /aR, by the Scheinnullstellensatz (3.14). So
aR, is a parameter ideal by (19.13)(5)=(1). Hence r > s(R,) by (21.2). But
s(Rp) = dim(R,) by (21.4), and dim(R,) = ht(p) by (21.6.1). Thus ht(p) < r.

Conversely, assume ht(p) < r. Then R, has a parameter ideal b generated by r
elements, say yi,...,y, by (21.6.1) and (21.4). Say y; = x;/s; with s; ¢ p. Set
a:=(z1,...,2,). Then aR, = b.

Suppose there is a prime q with a C ¢ C p. Then b = aR, C qR, C pR,, and
qR, is prime by (11.12)(2). But vb = pR,. So qR, = pR,. Hence q = p by
(11.12)(2). Thus p is minimal containing a, which is generated by r elements. [

Theorem (21.9) (Krull Principal Ideal). — Let R be a Noetherian ring, * € R,
and p a minimal prime of (x). If x ¢ z.div(R), then ht(p) = 1.

Proof: By (21.8), ht(p) < 1. But by (14.7), = € z.div(R) if ht(p) = 0. O

Exercise (21.10) . — (1) Let A be a Noetherian local ring with a principal prime
p of height at least 1. Prove A is a domain by showing any prime q S p is (0).

(2) Let k be a field, P := k[[X]] the formal power series ring in one variable.
Set R := P x P. Prove that R is Noetherian and semilocal, and that R contains a
principal prime p of height 1, but that R is not a domain.

(21.11) (Quasi-regularity). — Let R be a ring, z1,...,z elements, Xi,..., X
variables, and M a module. Set q := (x1,...,2s), and define a map of R-modules

b1 P — Gq(M) with P = (M/qM)[X1, ..., X,] (21.11.1)

by sending a homogeneous polynomial F(Xy,..., X;) of degree r with coefficients
in M to the residue of F(x1,...,2s) in q"M/q" "' M. Note that ¢ is well defined,
surjective, and homogeneous of degree 0 when P is graded by degree.

If ¢ is bijective and qM # M, then zq, ..., x4 is said to be M-quasi-regular.

Proposition (21.12). — Let R be a ring, M a Noetherian semilocal module. Let
Z1,...,%s be a sop for M, and set q := (x1,...,25). Then e(q, M) < {(M/qM),
with equality if and only if x1,...,xs is M-quasi-reqular.

Proof: For n > 0, using (21.11), define N,, by the exact sequence

0= Ny — P % qnr/qn+ M — 0. (21.12.1)
Note that £(P,) = ¢(M/qM)(*;"t™) by (20.4). Thus
0P,) = (L(M/qM) / (s — 1)1)n*~"' + lower degree terms. (21.12.2)

Also deg pq(M, n) = d(M) by (21.2), and d(M) = s(M) by (21.4), and s(M) = s
by (21.4) again; so degpq(M, n) = s. So (20.11) with d = s yields, for n > 0,

0q"M/q" T M) = (e(q, M) / (s —1)!)n*"' + lower degree terms. (21.12.3)

But (19.7) yields £(q" M /q" T M) < ¢(P,) for all n. Thus (21.12.2) and (21.12.3)
yield e(q, M) < €(M/qM).
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By (21.11), z1,...,z, is M-quasi-regular if and only if ¢ is bijective. If ¢y
is so, then ¢(P,) = £(q"M/q" Tt M) for all n by (21.12.1). Thus (21.12.2) and
(21.12.3) yield e(q, M) = £(M/qM).

Assume ¢, isn’t bijective. Then (21.12.1) yields ¢ with a nonzero G € Nj,.

Say V(q) = {my,...,mp}, and set m := m; ---my. Then m"(M/qM) = 0 for
some r by (1)=(6) of (19.13). Hence m"P = 0. So m"G = 0. Take p so
that m?G = 0, but mP~'G # 0. Then take k so that m; ---mmP~!G = 0, but
my - my_1mP1G # 0. Then there’s z € my ---my_mP~! with G # 0. Replace
G by zG. Then G # 0, but m;G = 0. Also G € N,,.

Set K := R/my and Q := K[Xq,...,X]. Grade @ by degree, and for each n > ¢,
form the R-linear map

V:Qnoq— P, by v(F):=FG.

It’s well defined as miG = 0. Let’s see that it’s injective.

Let F € QQp—q be nonzero. As in (2.4), consider the grlex leading coefficients a
of F and b of G. Then a € K*. So ab € M/qM is nonzero. Hence ab is the grlex
leading coefficient of F'G, and so F'G is nonzero. Thus v is injective.

Given F € Qn_g, lift F to F € R[X1,...,X,]. Then F(zy,...,z,) € q" %
Denote its residue in q"~9/q" 9" by f. Then ¢s(FG) = f¢s(G) = 0. Hence
v(F) € Ny. Thus v(Qn—q) C Np.

As v is injective, £(Qn—q) < {(Ny). But £(Qn—g) = (* 11779 by (20.4). Also
(°*71tr79) = ns=1/(s — 1)! + lower degree terms. Further, (21.12.1) and (19.7)
yield £(q"M/q" 1 M) = £(P,) — £(N,). So (21.12.2) yields

(g M/q" M) < ((6(M/qM) —1) / (s — 1)!)n*~! 4 lower degree terms.
Thus (21.12.3) yields e(q, M) < £(M/qM) — 1, as desired. O

Exercise (21.13) . — Let A be a Noetherian local ring of dimension r. Let m be
the maximal ideal, and k := A/m the residue class field. Prove that

r < dimy(m/m?),
with equality if and only if m is generated by r elements.

(21.14) (Regular local rings). — Let A be a Noetherian local ring of dimension r
with maximal ideal m and residue field k. We say A is regular if m is generated by
r elements. If so, then, as » = s(R) by (21.4), any such r elements form a system
of parameters; it is known as a regular system of parameters, or regular sop.

By (21.13), A is regular if and only if » = dimg(m/m?). If so, then, by (10.9),
elements of m form a regular sop if and only if their residues form a k-basis of m/m?.

For example, a field is a regular local ring of dimension 0, and conversely. An
example of a regular local ring of given dimension n is the localization Py, of a
polynomial ring P in n variables over a field at any maximal ideal m, as dim(Py) = n
by (15.11) and (15.12) and as m is generated by n elements by (15.6).

Corollary (21.15). — Let A be a Noetherian local ring of dimension r, and m its
mazimal ideal. Then A is regular if and only if its associated graded ring G(A) is
a polynomial Ting; if so, then the number of variables is r and e(m, A) = 1.

Proof: Say G(A) is a polynomial ring in s variables. Then dim(m/m?) = s. By
(20.4), deg h(G(A), n) = s—1. So s = d(A) by (20.11) and (21.2). But d(4) =r
by (21.4). Thus s = r, and by (21.14), A is regular.
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Conversely, assume A is regular. By (21.14), m is generated by r elements. which
form a system of parameters. So (21.12) yields 1 < e(m, A) < ¢(A/m) = 1. Thus
e(m, A) =1, and so by (21.12) again, the map ¢ of (21.11.1) is bijective. a

Exercise (21.16) . — Let A be a Noetherian local ring of dimension r, and let
Z1,...,25 € A with s <r. Set a:= (z1,...,2,) and B := A/a. Prove equivalent:
(1) A is regular, and there are z511,...,2, € A with 21, ..., 2, a regular sop.

(2) B is regular of dimension r — s.
Theorem (21.17). — A regular local ring A is a domain.

Proof: Use induction on r := dim A. If r = 0, then A is a field, so a domain.

Assume r > 1. Let « be a member of a regular sop. Then A/(x) is regular of
dimension r — 1 by (21.16). By induction, A/(x) is a domain. So (x) is prime.
Thus A is a domain by (21.10)(1). (Another proof is found in (22.39)(2).) O

Lemma (21.18). — Let A be a local ring, m its mazimal ideal, a a proper ideal.
Set n:=m/a and k := A/m. Then this sequence of k-vector spaces is exact:

0— (m?+a)/m? - m/m? = n/n? - 0. (21.18.1)
Proof: The assertion is very easy to check. O

Proposition (21.19). — Let A be a regular local ring of dimension r, and a an
ideal. Set B := A/a, and assume B is regular of dimension r — s. Then a is
generated by s elements, and any such s elements form part of a regular sop.

Proof: In its notation, (21.18) yields dim((m? + a)/m?) = s. Hence, any set of
generators of a includes s members of a regular sop of A. Let b be the ideal the s
generate. Then A/b is regular of dimension r — s by (21.16). By (21.17), both
A/b and B are domains of dimension r — s; whence, (15.26) implies a = b. O

B. Exercises

Exercise (21.20) . — Let R be a ring, R’ an algebra, and N a nonzero R’-module
that’s a Noetherian R-module.

(1) Prove dimg(N) = dimpg/(N).

(2) Prove each prime in Suppp,/ (V) contracts to a prime in Suppg(N). Moreover,
prove one is maximal if and only if the other is.

(3) Prove each maximal ideal in Suppr(N) is the contraction of at least one and
at most finitely many maximal ideals in Suppg/ (N).

(4) Prove radr(N)R' C radp/ (N).

(5) Prove N is semilocal over R if and only if N is semilocal over R'.

Exercise (21.21) . — Let R be a ring, M a nonzero Noetherian semilocal module, g
a parameter ideal of M, and 0 = My C M; C --- C M,, = M a chain of submodules
with M;/M;_1 ~ R/p; for some p; € Supp(M). Set d := dim(M) and set

I:={i|dim(R/p;)=d} and & :={p € Supp(M) |dim(R/p)=4d}.
Prove: (1) e(q7M) = Zie] e(q> R/pl) and (2) 6(q7M) = Zpe@ ng (Mp)e(qﬂ R/p)
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Exercise (21.22) . — Let k be a field, R a finitely generated k-algebra, and m a
maximal ideal of R. Set A := Ry, and r := dim(A). Set K := A/mA, let L be an
extension of K containing a normal extension of K/k (for example, an algebraic
closure of k), and set B := A®y L. Let n be a maximal ideal of B.

(1) Show B is semilocal, n D rad(B) D mB, and B/mB is Artinian. .

(2) Show dim(B,) = r and B,/nB, = L.

(3) Assume K = k. Show B is local, and it’s regular if and only if A is too.

(4) Assume B, is regular. Show A is regular too. (Proceed as follows: first
present A as a quotient of a localization Py of a polynomial ring P over k at a
maximal ideal 9; next, find a similar presentation of B, in terms of Q := P ®;, L;
finally, use (21.18) and (21.14).)

(5) Assume K/k is separable and A is regular. Show B, is regular too.

(6) Find an example with By regular, but K/k not separable.

Exercise (21.23) . — Let A be a Noetherian local ring, m its maximal ideal, ¢ a
parameter ideal, P := (A/q)[X1,. .., X,] a polynomial ring. Show:
(1) Set M := (m/q)[X1,...,Xs]. Then z.div(P) = M.
(2) Assume q is generated by a sop x1,...,2s. Let ¢5: P — G4(A) be the map
of (21.11.1). Then Ker(¢;) C z.div(P).

Exercise (21.24) . — Let A be a Noetherian local ring, k C A a coefficient field
(or field of representatives) — that is, £ maps isomorphically onto the residue field —
Z1,...,2s asop. Using (21.23), show the x; are algebraically independent over k.

Exercise (21.25) . — Let k be an algebraically closed field, R an algebra-finite
domain, m a maximal ideal of R. Using the dimension theory in this chapter and
(15.1)(1), but not (2), show dim(R) = dim(Ry) = tr.deg; (Frac(R)). (Compare
with (15.10) and (15.12).)

Exercise (21.26) . — Let R be a ring, N a Noetherian semilocal module, and
Y1,.-.,Yr asop for N. Set N; := N/(y1,...,y;)N. Show dim(N;) =r —i.
Exercise (21.27) . — Let R be a ring, p a prime, M a finitely generated module.
Set R':= R/ Ann M. Prove these two statements: (1) dim(M,) = dim(Ry,).

(2) If Ann(M) = (0), then dim(M,) = ht(p).
Exercise (21.28) . — Let R be a Noetherian ring, and p be a prime minimal
containing x1,...,z,. Given v’ with 1 < v’ < r, set R’ := R/{x1,...,2) and
p =p/{x1,...,x). Assume ht(p) = r. Prove ht(p’) =r — 1.
Exercise (21.29) . — Let R be a Noetherian ring, p a prime of height at least 2.
Prove that p is the union of height-1 primes, but not of finitely many.

Exercise (21.30) . — Let R be a Noetherian ring of dimension at least 1. Show
that the following conditions are equivalent:

(1) R has only finitely many primes.
(2) R has only finitely many height-1 primes.
(3) R is semilocal of exactly dimension 1.

Exercise (21.31) (Artin—Tate [2, Thm.4]) . — Let R be a Noetherian domain, and
set K := Frac(R). Prove the following statements are equivalent:

(1) (fX —1) C R[X] is a maximal ideal for some nonzero f € R.
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K = Ry for some nonzero f € R.

K is algebra finite over R.

Some nonzero f € R lies in every nonzero prime.
R has only finitely many height-1 primes.

(6) R is semilocal of dimension 1.

(2)
(3)
(4)
()

Exercise (21.32) . — Let R be a Noetherian domain, p a prime element. Show
that (p) is a height-1 prime ideal.

Exercise (21.33) . — Let R be a UFD, and p a height-1 prime ideal. Show that
p = (p) for some prime element p.

Exercise (21.34) . — Let R be a Noetherian domain such that every height-1 prime
ideal p is principal. Show that R is a UFD.

Exercise (21.35) (Gauss Lemma) . — Let R be a UFD; X a variable; F, G € R[X]
nonzero. Call F' primitive if its coefficients have no common prime divisor. Show:
(1) Then F is primitive if and only if ¢(F') lies in no height-1 prime ideal.
(2) Assume that F' and G are primitive. Then F'G is primitive.
(3) Let f, g, h be the ged’s of the coefficients of F, G, FG. Then fg = h.
(4) Assume ¢(F) = (f) with f € R. Then f is the ged of the coefficients of F'.

Exercise (21.36) . — Let R be a finitely generated algebra over a field. Assume
R is a domain of dimension r. Let z € R be neither 0 nor a unit. Set R’ := R/(x).
Prove that r» — 1 is the length of any chain of primes in R’ of maximal length.

Exercise (21.37) . — Let k be a field, P := k[X}, ..., X,;] the polynomial ring, R;
and Ry two P-algebra-finite domains, and p a minimal prime of Ry ® p Ry. Show:

(1) Set C := Ry ®j R, and let ¢ C C be the preimage of p. Then (8.28)(1)
implies that q is a minimal prime of an ideal generated by n elements.
(2) Then (15.12) and (15.29) yield this inequality:

dim(R;) + dim(Rs) < n+ dim((Ry ®p R2)/p). (21.37.1)

Exercise (21.38) . — Let k be a field, P := k[X}, ..., X,;] the polynomial ring, R’
a P-algebra-finite domain. Let p be a prime of P, and p’ a minimal prime of pR’.
Prove this inequality: ht(p’) < ht(p).

Exercise (21.39) . — Let & be a field, P := k[X1,..., X,] the polynomial ring, p;
and po primes of P, and p a minimal prime of p; + po. Prove this inequality:

ht(p) < ht(p1) + ht(p2). (21.39.1)
Exercise (21.40) . — Let k be a field, k[X,Y, Z, W] the polynomial ring. Set
g1 :=(X,Y) and ¢:=(Z, W) and q:=(X,Y, Z, W) and
R:=k[X,Y, Z, W|/(XZ-YW) and p;:=qR and p:=qR.
Show that p1, po, p are primes of heights 1,1, 3. Does (21.39.1) hold with P := R?
Exercise (21.41) . — Let R be a Noetherian ring; X, X1, ..., X, variables. Show:
dim(R[X]) =1+ dim(R) and dim(R[Xy,...,X,]) =n+ dim(R).

Exercise (21.42) (Jacobian Criterion) . — Let k be a field, P := k[X1,..., X,]
the polynomial ring, A C P an ideal, x := (21,...,2,) € k”. Set R := P/2 and
M:= (X1 —z1,...,X,, —x,). Prove the following statements:
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(1) Say 2 = (Fy,...,Fy). Assume Fj(x) = 0 for all . For all i,j, define
O0F;/0X; € P formally as in (1.18.1), and set a;; := (0F;/0X,)(x). Let r be
the rank of the m by n matrix (a;;). Set d := dim Roy. Then these conditions
are equivalent: (a) Roy is regular; (b) r =n —d; and (¢) r > n —d.

(2) Assume 2 is prime, F ¢ 2, and k is algebraically closed. Then there’s a
choice of x with F(x) # 0 and 2 C 9% and Rgy regular.

Start with the case 2 = (G). Then reduce to it by using a separating
transcendence basis for K := Frac(R) over k and a primitive element.

Exercise (21.43) . — Set p := (0). Plainly, p is the only prime with dim(R/p) =
dim(R). And q is a parameter ideal of M by (19.14). So (21.21)(2) yields

e(q, M) = e(q, R)Cr, (M,).
But lp, (M) =r as R, = K and M, = M ® R,.
Exercise (21.44) (Chevalley-Zariski) . — Let K be a field of characteristic p > 0.
Assume there is a in the algebraic closure of K with b := a? € K, and let L be a
field containing K (a). Let X, Y be variables; set P := K[X,Y] and Q := L[X,Y].
Set M:=(XP—b YYCPand N:=(X —a,Y)CQ. Set F:=Y2— XP 4 set
R:= P/PF and S := Q/QF. Show that I and M are maximal, that dim(Rgn) = 1
and dim(Sy) = 1, and that Rgy is regular, but Sy is not.
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22. Completion

Completion is used to simplify a ring and its modules beyond localization. First,
we discuss the topology of a filtration, and use Cauchy sequences to construct the
(separated) completion. Then we discuss the inverse limit, the dual notion of the
direct limit; using it, we obtain an alternate construction. We conclude that, if we
use the a-adic filtration, for any ideal a, then the functor of completion is exact on
the Noetherian modules. Moreover, if the ring is Noetherian, then the completion
of a finitely generated module is equal to its tensor product with the completion
of the ring; hence, the latter is flat. Lastly, we prove that the completion of a
Noetherian module is Noetherian over the completion of the ring.

In an appendix, we study Henselian rings, the local rings such that, given a
monic polynomial F', any factorization of F'; modulo the maximal ideal, into monic
and coprime factors, lifts to a factorization of F' itself. The completion of any local
ring is Henselian by Hensel’s Lemma, which we prove. We characterize Henselian
rings as the local rings over which any module-finite algebra is decomposable; hence,
such an algebra, if local, is Henselian too. Next, we consider an equicharacteristic
local ring: it and its residue field k£ have the same characteristic. Its completion
contains a coefficient field, one mapping isomorphically onto k, by the Cohen
Existence Theorem, which we prove using Hensel’s lemma.

Lastly, we prove the Weierstra3 Division Theorem and Preparation Theorem.
The former is a version of the Division Algorithm for formal power series in one
variable X over a ring R that is separated and complete in the a-adic topology for
some ideal a; the divisor F = f; X * must have f,, a unit in R for some n > 0 but
fi € a for ¢ < n. The Preparation Theorem asserts F' = UV uniquely, where U is
an invertible power series and V' is a monic polynomial. We adapt these theorems
to the local ring A of convergent complex power series in several variables, and
conclude that A is Henselian, regular, and a UFD.

A. Text

(22.1) (Topology and completion). — Let R be a ring, M a filtered module with
filtration F*M. Then M has a (linear) topology: the open sets are the arbitrary
unions of sets of the form m+ F™ M for various m and n. Indeed, the intersection of
two open sets is open, as the intersection of two unions is the union of the pairwise
intersections; further, if the intersection U of m+F"M and m’+ F™ M is nonempty
and if n > n’, then U = m + F"M, because, if say m” € U, then
m+F'M =m" + F"M Ccm” +F"M =m' + F" M. (22.1.1)
Let K C M be a submodule. If K D F™M for some n, then K is both open and
closed for this reason: given m € K, we have m + F"M C K; given m € M — K,

we have m + F"M C M — K. In particular, each F"M 1is both open and closed.
The addition map M x M — M, given by (m,m') — m +m/, is continuous, as

(m+F"'M)+ (m'+ F"M) C (m+m')+ F"M.

So, with m/ fixed, the translation m — m + m’ is a homeomorphism M — M.
(Similarly, inversion m — —m is a homeomorphism; so M is a topological group.)
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Given another filtration F* M such that, for any m, there’s n with F"™M D FnM ,
and for any p, there’s ¢ with FPM > F9M , both filtrations yield the same topology.

Let a be an ideal, and give R the a-adic filtration. If the filtration on M is an
a-filtration, then scalar multiplication (xz, m) — xm too is continuous, because

(x+a™)(m+ F"M) C am+ F"M.

Further, if the filtration is a-stable, then it yields the same topology as the a-adic
filtration, because for some n’ and any n,

F'M > a™M > a"F"' M = F" 0L
Thus any two stable a-filtrations give the same topology: the a-adic topology.

When a is given, it is conventional to use the a-adic filtration and a-adic topology
unless there’s explicit mention to the contrary. Moreover, if M is semilocal, then it
is conventional to take a to be rad(M) or another parameter ideal q; the topology
is the same for all q owing to (1)=-(6) of (19.13). Further, if R is semilocal, then
it is conventional to take a to be rad(R) or another parameter ideal v of R; recall
from (21.2) that v is also a parameter ideal of M.

Let K denote the closure of the submodule K C M. Then m € M — K means
there’s n with (m + F"M) N K = (, or equivalently m ¢ (K + F"M). Thus
K =(,(K + F"M). In particular, {0} is closed if and only if (\F"M = {0}.

Also, M is separated — that is, Hausdorff— if and only if {0} is closed. For, if
{0} is closed, so is each {m}. So given m’ # m, there’s n/ with m ¢ (m’ + F™ M).
Take n > n/. Then (m + F*M) N (m/ + F* M) = ) owing to (22.1.1).

Finally, M is discrete —that is, every {m} is both open and closed —if and
only if {0} is just open, if and only if F"M =0 for some n.

A sequence (my,)n>0 in M is called Cauchy if, given nyg, there’s ny with

My — My € F™M,  or simply m, —mpu41 € F™M, for all n,n’ > ny;
the two conditions are equivalent because F° M is a subgroup and
My — My = (mn - mn+1) + (mn+1 - mn+2) + o+ (mn’—l - mn/)-

Anm € M is called a limit of (m,,) if, given ng, there’s n; with m—m,, € F" M
for all n > ny. If so, we say (m,,) converge to m, and write m = limm,,.

Plainly, if (m,,) converges, then it’s Cauchy. If every Cauchy sequence converges,
then M is called complete. Plainly, the notions of Cauchy sequence and limit
depend only on the topology.

The Cauchy sequences form a module C(M) under termwise addition and scalar
multiplication. The sequences with 0 as a limit form a submodule Z(M). Set

M :=C(M)/Z(M).

Call M the (separated) completion of M; this name is justified by (22.13)(2),
(22.16)(4), and (22.54) below.

Form the R-map M — C(M) that carries m to the constant sequence (m).
Composing it with the quotient map C'(M) — M yields this canonical R-map:

ka: M — M by kym = the residue of (m). (22.1.2)

If M is discrete, then every Cauchy sequence stabilizes; hence, then ks is bijective;
moreover, M is separated and complete. For example, an Artinian ring R is discrete
as its radical is nilpotent by (19.23); so R is separated and complete.
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The submodule K C M carries an induced filtration: F"K := KNF"M. Plainly
C(K) c C(M) and Z(K) = C(K) N Z(M). Thus K ¢ M and kg = rp|K. In
particular, the FnM form a filtration of M.

Note WHIA( > K. Conversely, given m € mﬂl?, lift it to (my) in
C(M). Then my € F*M N K for k> 0. Som € FK. Thus Wﬂf( = }'{”7(;
that is, on IA( the Fn )M induce the filtration formed by the K.

Note kj, F”M D F"M as ky|F"M = Kkpnpy. Conversely7 given a constant
sequence (m) € C(F"M), note m € F*M. Thus x;, FnM = F"M.

Let a: M — N be a map of filtered modules with filtrations F*M and F°*N;
that is, a(F™"M) C F™N for all n. Plainly « is continuous, and preserves Cauchy
sequences and limits. So « induces an R-map C(M) — C(N) by (mn) — (amn)
and it carries Z(M) into Z(N). Thus o 1nduces an R-map a M — N with
akpy = kya. Plainly, (a|F”M)A. FnM — FnN is equal to & ‘ F"M, thus & is a
map of filtered modules. Moreover, M +— M s an R-linear functor.

Again, let a be an 1dea1 Under termwise multlphcatlon of Cauchy sequences, R
is a ring, kp: R — Risa ring map, and M is an R-module. Slmllarly, glven an
ideal b C R equipped w1th the a-adic topology, define the R-submodule bM ¢ M
even if the natural map b — R isn't injective. A priori, the a-adic ﬁltratlon of M
might differ from the induced filtration, which is given by F"M := an M for all n;
however, when M is Noetherian, the two coincide by (22.21).

Example (22.2). — Let R be aring, X3, ..., X, variables. Set P := R[X1,..., X, ]
and a := (X1,...,X,). Then a sequence (F,,),>o of polynomials is Cauchy in the
a-adic topology if and only if, given ng, there’s ny such that, for all n > nq, the F,
agree in degree less than ng. So (F,) determines a power series, and it is 0 if and
only if (F},) converges to 0. Thus P is just the power series ring R[[X1,..., X/

Given n > 0, note a™ consists of the polynomials with no monomial of degree
less than n. So a Cauchy sequence of polynomials in a™ converges to a power series
with no monomial of degree less than n. Hence a” = a"P. Thus P has the a-adic
topology. Note (a"P = {0}; thus P is separated. Further, a sequence (My)n>o of
power series is Cauchy if and only if, given ng, there’s n; such that, for all n > nq,
the m,, agree in degree less than ng. Thus Pis complete.

For another example, take a prime integer p, and set a := (p). Then a sequence
(n)n>0 of integers is Cauchy if and only if, given ng, there’s nq such that, for all
n,n’ > ni, the difference z,, — x,,» is a multiple of p™. The completion, denoted
Zp, is called the ring of p-adic integers, and consists of the sums Z;’io zip* with
0 < z; < p. Moreover, Zp has the p-adic topology, and is separated and complete.

Exercise (22.3) . — Let R be a ring, M a module, F*M a filtration. Prove that

Ker(rip) = | F"M. (22.3.1)

where ks is the map of (22.1.2). Conclude that these conditions are equivalent:
(1) kpp: M — M is injective; (2) ﬂF"M ={0}; (3) M is separated.

Assume M is Noetherian and F*M is the a-adic filtration for a proper ideal a
with either (a) a C rad(M) or (b) R a domain and M torsionfree. Prove M C M.
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Proposition (22.4). — Let R be a ring, and a an ideal. Then @ C rad(R).

Proof: Given a € @, represent a by (a,) € C(a). For all n, set b, := 1 —a,, and
epi=14ap+--+a? and d, := 1 — a?"; then b,c, = d,,. Note (b,) and (c,)
and (d,) are Cauchy. Also, (b,) and (d,) represent 1 —a and 1 in R. Say (c,)

~

represents c¢. Then (1 — a)c = 1. Thus (3.2) implies a C rad(R). O

(22.5) (Inverse limits). — Let R be a ring. A sequence of modules @,, and maps
aﬁ“: Qn+1 — Qn for n > 0 is called an inverse system. Its inverse limit
@Qn is the submodule of [] Q,, of all vectors (¢,,) with a?*1q, 1 = g, for all n.

Define 0: [[ Q. — [1Qn by 0(qn) := (¢ — a?"1g,11). Then
limQ, = Kerd. Set lim' Q, := Coker§. (22.5.1)

Plainly, @Qn has this UMP: given maps B,: P — Q, with a1 B,11 = Bn,
there’s a unique map B: P — lim Q,, with m,8 = B, for all n.

Further, owing to the UMP, a map of inverse systems, in the obvious sense of
the term, induces a map between their inverse limits. (The notion of inverse limit
is formally dual to that of direct limit.)

For instance, a module M with a filtration F'®*M yields the inverse system with
Qn = M/F"M and o*! the quotient maps for n > 0. Moreover, let a: M — N be
a map of filtered modules, F*N the filtration on N, and «,,: M/F*"M — N/F"N
the induced maps. The «, form a map of inverse systems, as they respect the
quotient maps. In (22.7) below, we prove M= lgl(M/F”M) and a = lim a,.

Example (22.6). — First, let R be a ring, P := R[Xy,...,X,] the polynomial
ring in r variables. Set m := (X1,..., X,.) and P, := P/m"*!. Then P, is just the
algebra of polynomials of degree at most n, and the quotient map a”*t: P, 1 — P,
is just truncation. Thus lim P, is equal to the power series ring R[[X1,..., X,

Second, take a prime integer p, and set Z,, := Z/(p"*!). Then Z,, is just the ring
of sums Y1 z;p" with 0 < z; < p, and the quotient map a2 ™': Z,, 11 — Zj, is just
truncation. Thus @Zn is just the ring of p-adic integers.

Proposition (22.7). — (1) Let M be a filtered module with filtration F*M. Then
M = lim(M/F" M), N
Moreover, the quotient maps M —» M/F™M induce kpr: M — M.

(2) Let a: M — N be a map of filtered modules with filtrations F*M and F*N,
and an: M/F"M — N/F"™N the induced maps for n > 0. Then

a= @an.

Proof: Let’s define an R-map v: C(M) — @(M/F"M) given (m,) € C(M),
let g, € M/F"M be the residue of m, for v > 0. Then g, is independent of
v, because (m,) is Cauchy. Further, g, is the residue of g1 in M/F"M; so
(gn) € lgl(M/F”M) Define y(m,) := (gy). Plainly, « is R-linear.

Above, it’s easy to see that (m,) € Z(M) if and only if g, = 0 for all n. Hence
~ factors through an injective R-map A: M — l&n(M/F”M)

Next, given (g,) € I&n(M/F"M), lift ¢, € M/F”M to some m, € M for all v.
Then m, —m, € F¥M for p > v, as q, € M/F"M maps to q, € M/F”M. Hence
(my) € C(M). Thus 7 is surjective. So A is too. Thus A is an isomorphism.

Moreover, given m € M, assume m, = m for all v. Then ¢, € M/F"M is the
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residue of m for all n. So the M — M/F"M induce kp: M — M. Thus (1) holds.
For (2),a = Hm ay,, as o, (gn) is the residue of a(m,,) in N/F"N for v > 0. O

Exercise (22.8) . — Let R be a ring, M a module, F'*M a filtration. Use (22.7)
to compute F¥M C M. Then use (22.3) to show M is separated.

Exercise (22.9) . — Let Qp D Q1 D Q2 D --- be a descending chain of modules,
a1l Q,41 = @, the inclusions. Show Q, = @Qn.

Lemma (22.10). — (1) Let (M, u"!) be an inverse system. Assume the u+!
are surjective for all n. Then ]&ni M, =0.
(2) For n >0, given commutative diagrams with exact rows

an Bn
0 — Myyy —= Nppy —= Pyyy — 0

| | |

OHMTL o Nn bn Pn‘—>0

they induce the following exact sequence:
0—>yLnMn—>yLnNn—>11£1Pn—>y£11Mn—>h£ﬂNn—>@1Pn—>o.

Proof: In (1), the un*! are surjective. So given (m,) € [[ M,, we can solve
qn — p 1 (gni1) = m,, recursively, starting with ¢o = 0, to get (¢,,) € [[ M,, with
0((¢n)) = (my,), where 0 is the map of (22.5). So 6 is surjective. Thus (1) holds.

For (2), note that the given diagrams induce the next one:

0 — [IM, L% 11~ 2% 1P — 0
o] ol el
[Tan [18n
0— [[M, — [IN, —= [[P. — 0
Its rows are exact by (5.4). So the Snake Lemma (5.10) and (22.5.1) give (2). O

Example (22.11). — Let R be a ring, M a module, F*M a filtration. For n > 0,
consider the following natural commutative diagrams with exact rows:

0— F""'M — M — M/F"™'M — 0

L]

0 — F"M — M — M/F"M — 0

with vertical maps, respectively, the inclusion, the identity, and the quotient map.
By (22.9) and (22.7), the exact sequence of inverse limits in (22.10)(2) yields

0 — lim F"M — M = M.
But ks is not always surjective; for examples, see (22.2). Thus 1&11 is not always

exact, nor is @1 always 0.

Exercise (22.12) . — Let R be aring, M a module, F'* M a filtration, and N C M
a submodule. Give N and M/N the induced filtrations: F"N := NN F*M and

F*(M/N) := F*M/F"N. Show the following: (1) N ¢ M and M/N = M/N.
(2) If N D F*M for some k, then kN is a bijection, kpr/n: M/N == M/N.
Exercise (22.13) . — Let R be a ring, M a module, F* M a filtration. Show:
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(1) The canonical map kp: M — M is surjective if and only if M is complete.
(2) Given (my) € C(M), its residue m € M is the limit of the sequence (kprmy,).

Exercise (22.14) . — Let R be a ring, M a module, and F'*M a filtration. Show
that the following statements are equivalent: (1) ks is bijective;
(2) M is separated and complete; (3) sz is an isomorphism of filtered modules.
Assume M is Noetherian and F*M is the a-adic filtration for a proper ideal a
with either (a) a C rad(M) or (b) R a domain and M torsionfree. Prove that M

is complete if and only if M = M.

Exercise (22.15) . — Let R be a ring, a: M — N a map of filtered modules,
o': M — N a continuous map such that a’ky; = kya. Show o’ = a.
Exercise (22.16) . — Let R be a ring, M a module, F*M a filtration. Show:
(1) G(kpr): G(M) — G(M) is bijective. (2) &ar: M — M is bijective.
(3) kg7 = KA (4) M is separated and complete.

Lemma (22.17). — Let R be a ring, a an ideal, M a Noetherian module, N a
submodule. Then the (a-adic) topology on M induces that on N.

Proof: Set F"N := N Na"M. The F"N form an a-stable filtration by the
Artin—Rees Lemma (20.12). Thus by (22.1), it defines the a-adic topology. O

Theorem (22.18) (Exactness of Completion). — Let R be a ring, a an ideal. Then
on the Noetherian modules M, the functor M — M is exact.

Proof: Let 0 — M’ — M — M" — 0 be an exact sequence of Noetherian
modules. Then 0 — M’ — M — M" — 0 is exact by (22.12)(1) and (22.17). O

Corollary (22.19). — Let R be a ring, a an ideal, M a finitely generated module.
Then the canonical map R® M — M is surjective; it’s bijective if R is Noetherian.

Proof: On ((R-mod)), the functor N — N preserves surjections by (22.12)(1);
on the Noetherian modules, it is exact by (22.18). But if R is Noetherian, then
every finitely generated module is Noetherian and finitely presented by (16.15).
Thus (8.14) yields both assertions. O

Corollary (22.20). — Let R be a ring, a and b ideals, M a module. Use the a-adic
topology. Assume either (a) M and bM are finitely generated and b O a, or (b) M

is Noetherian. Then 6" M = b"M = b"M =6 M for anyn > 1.
Proof: To do n = 1, form the square induced by the inclusion bM — M:
R® (bM) % Reo M

b b
oM —>— M
It’s commutative. Moreover, both 8 and ~ are surjective by (22.19) as both bM
and M are finitely generated under either (a) or (b)
Plainly Im(a) = b(R ® M). But ~ is surjective. Thus Im(ya) = bM.
At the bottom, § is injective by (22.12)(1), as the topology on M induces that
on bM for these reasons. It does if (a) holds, namely if a C b C R, as then for any
k > 0, multiplying by a* M yields a**'M C a¥bM C a¥M. And it does by (22.17)
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if (b) holds. Hence Im(éﬂ) = bM But Im(éﬂ) = Im(ya). Thus bM = bM.
Plainly bM C bM. Also, bM C bM as, glven a Cauchy sequence in b and one
in M, their product is one in bM. But 6M = bM. Thus the case n = 1 holds.
For n > 2, on any module, the a™-adic topology is the same as the a-adic. So the
case n = 1 applies with a”™ and b™ for a and b. Thus pnM ="M =06 M.
So it remains to show b"]/w\ = b "M. Induct on n. For n = 1, recall bM =b M.
Assume b" 1M =5 M Wlth n > 2. Multiplying by b gives "M =06 1b]\/].
But bM = 6 M. Thus "M = b M, as desired. 0

Corollary (22.21). — Let R be a ring, a an ideal, M a module. Assume M z's
Noetherian, or just M and aM are ﬁmtely genemted Then these filtrations ofM
coincide: the induced (for which FM = a"M) the a-adic, and the a-adic.

Proof: The assertion is an immediate consequence of (22.20) with b:=a. O

Corollary (22.22). — Let R be a Noetherian ring, a an ideal, and M a finitely
generated module. Assume M is flat. Then M is flat both over R and over R.

Proof: First, M is flat over R by (9. 22) as M =M®p R by (22 19)

Second, fix an ideal b. Note bM = bM by (22.20). And bM = R®bM by
(22.19). But M is flat; so bM = b ® M by (9.15). Thus bM = R®b® M. But
R® M = M by (22.19). Thus bM = b ® M. So M is flat over R by (9.15). O

Lemma (22.23). — Let R be a ring, a: M — N a map of filtered modules with
filtrations F*M and F*N. Say ay,: M/F"M — N/F"N is induced by o for all n.
(1) Assume F"M = M for n < 0 and G(«) is injective. Then v, is injective
for all n, and & is injective. Moreover, if (\F™M =0 too, then « is injective.
(2) Assume F"N = N for n < 0 and G(«a) is surjective. Then oy, is surjective
for all n, and & is surjective.

Proof: Given n € Z, form the following commutative diagram:
0 — F"M/F"" M — M/F""'M — M/F"M — 0

Gn(a)J/ Oén+1Jr anl

0 — F"N/F""'N — N/F""IN — N/F"N — 0
Its rows are exact. So the Snake Lemma (5.10) yields this exact sequence:

Ker G, () — Ker an+1ﬁ> Ker v, — Coker G, (o) — Coker v, 11 Iy Coker .

In (1), Ker G, (a) = 0 for all n, so S, is injective. But M/F"M = 0 for n < 0;
so Ker a;, = 0 for n < 0. So by induction, Ker «;, = 0 for all n. Thus «, is injective
for all n. Hence lim ay, is injective by (22.10)(2). Thus a is injective by (22.7).

Moreover, if () F"M = 0 too, then s is injective by (22.3). And aryr = kya.
So kya is injective. Thus « is injective. Thus (1) holds.

In (2), Coker G, (a) = 0 for all n, so 7, is injective. But N/F"N = 0 for n < 0;
so Coker o, = 0 for n <« 0. So by induction, Coker v, = 0 for all n. Thus «,, is
surjective for all n. So for all n, the following sequence is exact:

0 — Keray, = M/F"M <% N/F"N — 0
However, Coker G, (o) = 0. So S, is surjective. Hence, (22.10)(1) yields
Liill Ker a, = 0. So lim av,, is surjective by (22.10)(2). Thus (22.7) yields (2). O
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Lemma (22.24). — Let R be a ring, a an ideal, M a module, F*M an a-filtration.
Assume R is complete, M is separated, F"M = M forn < 0, and G(M) is finitely
generated over G(R). Then M is complete, and finitely generated over R.

Proof: Take finitely many generators u; of G(M), and replace them by their
homogeneous components. Set n; := deg(u;). Lift p; to m; € F™ M.

Filter R a-adically. Set E := @, R[—n;]. Filter E with F"E := @, F"(R[—n,]).
Then F"E = E for n < 0. Define a: E — M by sending 1 € R[—n;] to m; € M.
Then aF™"E C F™"M for all n. Also, G(«): G(E) — G(M) is surjective as the p;
generate. Thus & is surjective by (22.23).

Form the following canonical commutative diagram:

E "2, F

| el
M 24 M

Plainly, kg = €, Kg[—n,]- But kg is surjective by (22.13)(1), as R is complete.
Hence kg is surjective. So &okg is surjective. So ks is surjective. Thus (22.13)(1)
implies M is complete.

By hypothesis, M is separated. So kj; is injective by (22.3). Hence kjs is
bijective. So « is surjective. Thus M is finitely generated. O

Proposition (22.25). — Let R be a ring, a an ideal, and M a module. Assume R
is complete, and M separated. Assume G(M) is a Noetherian G(R)-module. Then
M is Noetherian over R, and every submodule N is complete.

Proof: Let F*M denote the a-adic filtration, and F*N the induced filtration:
F'"N := NN F"M. Then N is separated, and F"N = N for n < 0. Further,
G(N) C G(M). However, G(M) is Noetherian. So G(N) is finitely generated. Thus
N is complete and finitely generated over R by (22.24). Thus M is Noetherian. O

Theorem (22.26). — Let R be a ring, a an ideal, and M a Noetherian module.
Then M is Noetherian over R and every R-submodule is complete.

Proof: Set R’ := R/ Ann(M) and o’ := aR’. Then R’ is Noetherian by (16.16).
Also, " = a"R' and o/" M = a"M for all r > 0. So the (a-adic) topology on R’ and
on M is equal to the a’-adic topology Also, R isa quotlent of R by (22.12)(1).
Hence, the R-submodules of M are the same as the - submodules; moreover, each
one is finitely generated or complete as an R-module if and only if it’s so as an
R'-module. Thus we may replace R by R’, and thus assume R is Noetherian.

Since M is Noetherian and its a-adic filtration is (trivially) stable, G(M) is a
finitely generated G(R)-module owing to (20.8). But R is Noetherian. So a is
finitely generated. So G(R) is algebra finite over R/a by (20.7). But R/a is
Noetherian as R is. So G(R) is Noetherian by the Hilbert Basis Theorem, (16.10).
But G(R) = G(R) and G(M) = G(M) owing to (22.16)(1) and (22.17).
G(]\//.T) is a Noetherian G(]/%)—module. But R is complete and M is separated by
(22.16)(4). Thus (22.25) now yields both assertions. O

Example (22.27). — Let k be a Noetherian ring, P := k[X1,. .., X,] the polynomi-
al ring, and A := k[[X1, ..., X,]] the formal power series ring. Then A is the com-
pletion of P in the (X, ..., X,)-adic topology by (22.2). Further, P is Noetherian
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by the Hilbert Basis Theorem, (16.10). Thus A is Noetherian by (22.26).
Assume k is a domain. Then A is a domain. Indeed, A is one if r = 1, because
(amXI”+...)(anIL+...) :amanin-&-n_i_...
If r > 1, then A = k[[X1,...,X;]] [Xi41, ..., X;]]; so A is a domain by induction.
Set p; = <Xi+17 . ,XT>. Then A/pz = k[[Xl, - 7Xz]] by (37) Hence p; is
prime. So 0 =p, G --- G po is a chain of primes of length 7. Thus dim A > 7.

Assume k is a field. Then A is local with mazimal ideal (X1, ..., X,) and residue
field k by (3.7). So dim A < r by (21.13). Thus dim A = r, and so A is regular.

B. Exercises

Exercise (22.28) . — Let R be a ring, a an ideal, X a variable. Filter R[[X]] with
the ideals b,, consisting of the H =: >_ h; X* with h; € a” for all i. Show: (1) that

R[[X]] = m] and (2) that if R is separated and complete, then so is R[[X]].
Exercise (22.29) . — In Zs, evaluate the sum s :=1+2+4+8+---.

Exercise (22.30) . — Let R be a ring, a”!: Q11 — @, linear maps for n > 0.
Set a = antl...q™ | for m > n and a) = 1. Assume the Mittag-Leffler

Condition: for all n > 0, there’s m > n such that

Qn D an+1Qn+1 DD aQO = a?_‘—lQm-‘rl =

Set Py, :=,,5, @' Qm, and prove a1 p, 1 = P,. Conclude that @11 Q,n =0.
Exercise (22.31) . — Let R be a ring, and a an ideal. Set S := 1 + a and set

T:= H}}l(ﬁx). Given t € R, let t,, € R/a™ be its residue for all n. Show:
(1) Given t € R, then t € T if and only if ¢, € (R/a™)* for all n.
(2) Then T = {t €ER \ t lies in no maximal ideal containing a}.
(3) Then S C T, and R is the completion of SR and of T~!R.
(4) Assume kg: R — Ris injective. Then KS-1R ¢ and k-1 are too.
(5) Assume a is a maximal ideal m. Then R = Ru.

Exercise (22.32) . — Let R be a ring, a an ideal, M a finitely generated module.
Show R - kp (M) = M.
Exercise (22.33) . — Let R be a ring, M a module, F*M a filtration, and N a

submodule Give N the induced ﬁltratlon F*"N = N N F™*M for all n. Show:
(1) N is the closure of £/ N in M. (2) &) N is the closure of N in M.

Exercise (22.34) . — Let R be a ring, a an ideal. Show that every closed maximal
ideal m contains a.
Exercise (22.35) . — Let R be a ring, a an ideal. Show equivalent:

(1) a Crad(R). (2) Every element of 1+ a is invertible.
(3) Given any finitely generated R-module M, if M = aM, then M = 0.
(4) Every maximal ideal m is closed.

Show, moreover, that (1)—(4) hold if R is separated and complete.

Exercise (22.36) . — Let R be a Noetherian ring, a an ideal. Show equivalent:
(1) R is a Zariski ring; that is, R is Noetherian, and a C rad(R).

187



Completion (22.37) / (22.45) Exercises

) Every finitely generated module M is separated.

) Every submodule N of every finitely generated module M is closed.

) Every ideal b is closed. (5) Every maximal ideal m is closed.

6) Every faithfully flat, finitely generated module M has a faithfully R-flat M.
(7) The completion R is faithfully R-flat.

(
(
(
(

Exercise (22.37) . — Let R be a ring, a an ideal, M a Noetherian module. Prove:
(1) N0, a"M = ey Ker(M £ My,) where ¥ := {m > a | m maximal }.

(2) M =0 if and only if Supp(M) N V(a) = 0.
Exercise (22.38) . — Let R be a ring, my, ..., m,, maximal ideals, and M module.
Set m := (m;, and give M the m-adic topology. Show M = [ Mp,.
Exercise (22.39) . — Let R be a ring, a an ideal. Show:

(1) If G4(R) is a domain, then R is a domain.

(2) If Ga(R) is a domain, and (5 a" = 0, then R is a domain.

(3) There’s an alternative proof, based on (2), that a regular local ring A is a
domain.

Exercise (22.40) . — Show:

(1) Let R be a Noetherian ring, a an ideal. Assume that G4(R) is a normal
domain and that (), 5(sR + a") = sR for any s € R. Then R is a normal
domain owing to (16.40) and induction on n.

(2) Owing to (1), a regular local ring A is normal.

Exercise (22.41) . — Let R be a ring, a an ideal, M a module with ¢x(M) < co.
Show: (1) If M is simple, then M is simple if a C Ann(M), but M = 0 if not.

(2) Then ZE(M\) < lr(M), with equality if and only if a C rad(M).
Exercise (22.42) . — Let R be a ring, M a module with two filtrations F*M and
G* M. For all m, give G™M the filtration induced by F'*M, and let (G™M)¥ be its
completion; filter M by the (G™M)¥, and let (M) be the completion. Define
H*M by HPM := FPM + GPM, and let M* be the completion. Show:

(MF)¢ =lim lim M/(F"M +G™M) = M. (22.42.1)
Exercise (22.43) . — Let R be a ring, a and b ideals. Given any module M, let

M?*® be its a-adic completion. Set ¢ := a + b. Assume M is Noetherian. Show:
(1) Then (M®*)® = M. (2) Assume a D b and M® = M. Then M* =M

Exercise (22.44) . — Let R be a ring, a an ideal, X a variable, F,,, G € R[[X]] for
n > 0. In R[[X]], set b := (a, X). Show the following:

(1) Then b™ consists of all H =: Y h; X* with h; € a™~% for all i < m.

(2) Say F,, =: Y fniX". Then (F,) is Cauchy if and only if every (f,;) is.

(3) Say G =: Y. g;:X*. Then G = lim F,, if and only if g; = lim f,, ; for all i.

(4) If R is separated or complete, then so is R[[X]].

(5) The (a, X)-adic completion of R[X] is R[[X]].
Exercise (22.45) . — Let R be a ring, a an ideal, M a Noetherian module, z € R.

o~

Prove: if « ¢ z.div(M), then x ¢ z.div(M); and the converse holds if a C rad(M).
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Exercise (22.46) . — Let k be a field with char(k) # 2, and X,Y variables. Set
P :=k[X,Y] and R := P/(Y? — X? — X3). Let x,y be the residues of X,Y, and
set m := (x,y). Prove R is a domain, but its completion R with respect to m isn’t.

Exercise (22.47) . — Given modules My, M,, ..., set Py := Hﬁzl M, and let
7rll§‘H : Pyy1 — Py be the projections. Show Wm, Py = [, M,.

Exercise (22.48) . — Let p € Z be prime. For n > 0, define a Z-linear map
an: Z/{p) = Z/(p") by an(l)=p""".
Set A:= P, >, Z/(p) and B :=D,5, Z/(p"). Set a =P an;so a: A — B.

Show: (1) Then « is injective, and the p-adic completion Ais just A.
(2) In the topology on A induced by the p-adic topology on B, the completion A
is equal to [[,~, Z/(p).
(3) The natural sequence of p-adic completions

A% B2B/A)”
is not exact at B. (Thus p-adic completion is neither left nor right exact.)

Exercise (22.49) . — Preserve the setup of (22.48). Set A := o '(p*B) and
P =112, Z/(p). Show ]'&nll€>1 A = P/A, and conclude Jim is not right exact.

Exercise (22.50) . — Let R be a ring, a an ideal, and M a module. Show that
Anng(M)R C Anng(M ), with equality if R is Noetherian and if M is finitely
generated.

Exercise (22.51) . — Let R be a ring, a an ideal, M a module. Assume aM = 0.
Set b := Annp(M). Show b = AnnR(M)

Exercise (22.52) . — Let R be a ring, a an ideal, and M, N, P modules. Assume
aM C PC N C M. Prove:
(1) The (a-adic) topology on M induces that on N.
(2) Then (aM) c Pc N c M, and N/P = N/P.
(3) The map Q~ Q is a leeCthIl from the R-submodules @ with P C Q C N
to the R-submodules @’ with P C Q' C N. Its inverse is Q' — Ky (Q).

Exercise (22.53) . — Let R be a ring, a C b ideals, and M a finitely generated
module. Let ® be the set of maximal ideals m € Supp(M) with m D a. Use the
a-adic topology. Prove:

(1) Then Mis a finitely generated ﬁ—module, and bM = bM C M.

(2) The map p + p is a bijection Supp(M/bM) = Supp(]\//.f/EJT/I\). Its inverse
isp — /<;_ p It restricts to a bijection on the subsets of maximal ideals.

(3) Then Supp(M JaM ) and Supp(M ) have the same maximal ideals.

(4) Then the @ with m € ® are precisely the maximal ideals of R in Supp(]\/i ).

(5) Then rj! rad(M) = e m and rad(M) = (Npee M) -

(6) Then @ is finite if and only if M is semilocal.

(7) If M = R, then ® = {b} if and only if R is local with maximal ideal b.
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Exercise (22.54) (UMP of completion) . — Let R be a ring, M a filtered module.

Show: (1) Then kpr: M — M is the universal example of a map of filtered modules
a: M — N with N separated and complete.
(2) Assume R is filtered. Then kp: R — R is the universal example of a filtered
ring map ¢: R — R’ with R’ separated and complete.

Exercise (22.55) (UMP of formal power series) . — Let R be aring, R’ an algebra,
b an ideal of R', and 1, ...,2, € b. Let A:= R[[X1,...,X,]] be the formal power
series ring. Assume R’ is separated and complete in the b-adic topology. Show
there’s a unique map of R-algebras ¢: A — R’ with ¢(X;) = z; for all ¢, and ¢ is
surjective if the induced map R — R'/b is surjective and the z; generate b.

Exercise (22.56) . — Let R be a ring, a a finitely generated ideal, Xi,...,X,
variables. Set P := R[[X1,...,X,]]. Prove P/aP = (R/a)[[X1,...,X,]]. (But, it’s
not always true that R’ @z P = R/[[ X1, ..., X,]] for an R-algebra R’; see (8.18).)

Exercise (22.57) (Cohen Structure Theorem I) . — Let A — B be a local homo-
morphism, b C B an ideal. Assume that A = B/b and that B is separated and
complete in the b-adic topology. Prove the following statements:

(1) The hypotheses hold if B is a complete Noetherian local ring, b is its maximal
ideal, and A is a coefficient field.
(2) Then B ~ A[[X4,...,X,]]/a for some r, variables X;, and some ideal a.

Exercise (22.58) (Cohen Structure Theorem II) . — Let A — B be a flat local
homomorphism of complete Noetherian local rings, and b C B an ideal. Denote the
maximal ideal of A by m, and set B’ := B/mB. Assume that A = B/b and that
B’ is regular of dimension r. Find an A-isomorphism ¢: B = A[[X1,...,X,]] for
variables X; with ¢(b) = (X1,..., X,). In fact, if b = (x1,...,2,) for given z;, find
such a @ with ¢¥(x;) = Xj.

Exercise (22.59) . — Let k be a field, A := k[[X1, ..., X,]] the power series ring
in variables X; with n > 1, and F' € A nonzero. Find an algebra automorphism ¢

of A such that ¢(F) contains the monomial X for some s > 0; do so as follows.
First, find suitable m; > 1 and use (22.55) to define ¢ by

o(X;) =X, + XM for 1 <i<n-—1and p(X,) := X,. (22.59.1)
Second, if k is infinite, find suitable a; € k* and use (22.55) to define ¢ by

(X)) =X;+a; X, for 1 <i<n-—1and p(X,) := X,. (22.59.2)
Exercise (22.60) . — Let A be a complete Noetherian local ring, k a coefficient

field, x1,...,25 a sop, Xi,..., X, variables. Set B := k[[X1,...,X;]]. Find an
injective map ¢: B — A such that ¢(X;) = x; and A is B-module finite.

Exercise (22.61) . — Let R be a ring, M a nonzero Noetherian module, and q a
parameter ideal of M. Show: (1) M is a nonzero Noetherian R-module, and q is a
parameter ideal of M; and (2) e(q, M) = e(q, M) and dim(M) = dim(M ).

Exercise (22.62) . — Let A be a Noetherian local ring, m the maximal ideal, k the
residue field. Show: (1) A is a Noetherian local ring with m as maximal ideal and
k as residue field; and (2) A is regular of dimension r if and only if A is so.
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Exercise (22.63) . — Let A be a Noetherian local ring, k¥ C A a coefficient field.
Show A is regular if and only if, given any surjective k-map of finite-dimensional
local k-algebras B — C', every local k-map A — C' lifts to a local k-map A — B.

Exercise (22.64) . — Let k be a field, ¢: B — A a local homomorphism of Noe-
therian local k-algebras, and n, m the maximal ideals. Assume k = A/m = B/n,
the induced map ¢’: n/n? — m/m? is injective, and A is regular. Show B is regular.

Exercise (22.65) . — Let R be a Noetherian ring, and X3, ..., X,, variables. Show
that R[[X1,...,X,]] is faithfully flat.

Exercise (22.66) (Gabber—-Ramero [9, Lem. 7.1.6]) . — Let R be a ring, a an ideal,
N a module. Assume N is flat. Prove the following:

o~

(1) The functor M — (M ® N) is exact on the Noetherian modules M.
(2) Assume R is Noetherian. Then for all finitely generated modules M, there’s
a canonical isomorphism M @ N = (M ® N) , and N is flat over R.

Exercise (22.67) . — Let P be the polynomial ring over C in variables Xy, ..., X,
and A its localization at (X1, ..., X,). Let C be the ring of all formal power series in
X1,...,X,, and B its subring of series converging about the origin in C™. Assume
basic Complex Analysis (see [8, pp. 105-9]). Show B is local, and its maximal ideal
is generated by Xy,...,X,,. Show PC AC B C C, and P=A=DB=C. Show C
is faithfully flat over both A and B, and B is faithfully flat over A.

Exercise (22.68) . — Let R be a Noetherian ring, and a and b ideals. Assume
a C rad(R), and use the a-adic topology. Prove b is principal if bR is.

Exercise (22.69) (Nakayama’s Lemma for adically complete rings) . — Let R be a
ring, a an ideal, and M a module. Assume R is complete, and M separated. Show

mi,...,my € M generate assuming their images m/,...,m}, in M/aM generate.

Exercise (22.70) . — Let A — B be a local homomorphism of Noetherian local
rings, m the maximal ideal of A. Assume B is quasi-finite over A; that is, B/mB
is a finite-dimensional A/m-vector space. Show that B is module finite over A.

Exercise (22.71) . — Let A be the non-Noetherian local ring of (18.24). Using
E. Borel’s theorem that every formal power series in z is the Taylor expansion of
some C°°-function (see [14, Ex. 5, p. 244]), show A = R[[z]], and A is Noetherian;
moreover, show A is a quotient of A (so module finite).

Exercise (22.72) . — Let R be a ring, q an ideal, M a module. Prove that, if M is
free, then M/qM is free over R/q and multiplication of G4(R) on Gq(M) induces
an isomorphism oar: Gq(R) ®p/q M/qM —= G4(M). Prove the converse holds if
either (a) q is nilpotent, or (b) M is Noetherian, and q C rad(M).
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C. Appendix: Henselian Rings

(22.73) (Henselian pairs and Rings). — Let R be a ring, a an ideal. We call the
pair (R, a) Henselian if a C rad(R) and if, given any variable X and any monic
polynomial F' € R[X] whose residue F' € (R/a)[X] factors as F = GH with G and
H monic and coprime, then F' itself factors as F' = GH where G and H are monic
with residues G, H € (R/a)[X].

Note that G and H too are coprime by (10.33)(2).

The factorization F' = GH is unique: given F' = G'H’' where G’ and H' are
monic with residues G and H, then G = G’ and H = H'. Indeed, G and H' are
coprime by (10.33)(2). So there are A, B € R[X]| with AG+ BH' = 1. Then

G' = AGG' + BH'G' = AGG' + BGH = (AG’' + BH)G.

But G and G’ are monic of degree deg(G). Thus G = G'. So GH = GH'. So
G(H — H') =0. As G is monic, H = H'.

For future application, note that, even if we don’t require F' and H to be monic,
the preceding argument establishes the uniqueness of the factorization F' = GH.

If (R, a) is Henselian, then so is (R/b,a/b) for any ideal b C a.

We call a local ring A with maximal ideal m Henselian if (A, m) is Henselian.
Example (22.74) (Some Henselian Rings). — (1) Any field is Henselian.

(2) Any separated and complete local ring is Henselian by (22.75) just below.

(3) Let A be the localization of Z at (p). Set F:= X(X —1) 4+ p € A[X]. Then
F=X(X-1)in (A/(p)A)[X] with X and X — 1 coprime and monic. But plainly
F does not factor in A[X]. Thus A is not Henselian.

Theorem (22.75) (Hensel’s Lemma). — Let R be a ring, a an ideal. Assume R is
separated and complete (in the a-adic topology). Then (R,a) is Henselian.

In fact, given any variable X and any F' € R[X] whose image F € (R/a)[X]
factors as F = GH where G is monic and G and H are coprime, then ' = GH
uniquely where G is monic and G and H are coprime with residues G and H.

Proof: As R is separated and complete, (22.35) yields a C rad(R).

Set P := R[X]. Lift G, H to some Go, Hy € P with Gy monic. By (10.33)(2),
Go and Hj are relatively prime. Set n := deg G and m := max{deg Hy, deg F'—n}.

Starting with Gg, Hy, by induction let’s find Gy, Hi, € P for k > 1 with Gy
monic of degree n, with deg(H}) < m, and with

Gr1 =Gy and Hy_y = H, (moda® 'P) and F=GyH, (moda? P).

Plainly, applying (10.34) to Gi—1, Hx—1, and a2’ yields suitable Gy and Hy.

Set p := max{deg(Hy), deg(F)} and M := Y RX’ As R is separated and
complete, plainly so is M. But the Gy and Hj form Cauchy sequences in M. So
they have limits, say G and H; in fact, the coefficients of G and H are the limits
of the coefficients of the G, and Hy. B

As the G, are monic of degree n, so is G. As all G and Hy have residues G and
I;T, so do G and H. Now, F is the limit of Gy Hy; so F = GH; this factorization is
unique by (22.73). As G and H are coprime, so are G and H by (10.33)(2). O

Exercise (22.76) . — Let R be aring, a an ideal, X a variable, I' € R[X]. Assume
its residue F' € (R/a)[X] has a supersimple root @ € R/a, and R is separated and
complete. Show F' has a unique supersimple root a € R with residue a.
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Proposition (22.77). — Let A be a local domain, R an overdomain. Assume A is
Henselian, and R is integral over A. Then R is local.

Proof: Let m be the maximal ideal of A, and m’, m” maximal ideals of R. The
latter lie over m by (14.3)(1). By way of contradiction, assume there’s © € m’ —m”.
As R/A is integral, z satisfies a monic polynomial of minimal degree, say

FX)=X"4+c X" - +¢, € Alz].

Then F is irreducible; for if F' = GH, then G(x)H (z) =0, but R is a domain.

Note z € m’. So ¢, = —z(a" '+ - +¢,_1)) € ANm' =m. Now, ¢; ¢ m for
some i; else, " = —(c12" 1 + - +¢,) € m”, but x ¢ m”. Let j be maximal such
that ¢; ¢ m. Then 1 <j < n.

Set k := A/m. Let ¢; € k be the residue of ¢;. Set G = X7 JrElXj*l L]
and H := X"~7. Then the residue F € k[X] factors as F = GH. But ¢; #0. So G
and H are coprime by (2.33) or (2.18). But A is Henselian. Thus F is reducible,
a contradiction. So m’ C m”. But m’ is maximal. So m’ = m”. Thus R is local. O

Theorem (22.78). — Let A be a local ring, and X a variable. Then the following
four conditions are equivalent: (1) A is Henselian.

(2) For any nonconstant monic polynomial F € A[X], the algebra A[X]/(F) is
decomposable.

(3) Any module-finite A-algebra B is decomposable.

(4) Any module-finite A-algebra B that is free is decomposable.

Proof: Let m be the maximal ideal of A, and set k := A/m.

Assume (1). To prove (2), set B := A[X]/(F). Let F € k[X] be the image
of F. Note A[X]/mA[X]| = k[X] by (1.16). So Noether’s Isomorphism, (4.8.1),
yields A[X]/(m, F) = B/mB and A[X]/(m, F) = k[X]/(F); so B/mB = k[X]/(F).
If F is a power of an irreducible polynomlal, then k[X]/(F) is local, and so B is
local.

Otherwise, ' = GH with G, H monic and coprime of positive degrees. So (1)
yields F = GH with G, H monic and coprime with residues G and H. Hence

B = (A[X]/(G)) x (A[X]/(H))

by (1.21)(1)(b). So B is decomposable by recursion. Thus (2) hold

Assume (2). To prove (3), set B := B/mB. By (19.15)(2), B = Hﬁni where
the n; are the maximal ideals of B. Correspondingly, set €; := (d;;) € B with dij
the Kronecker delta function.

Fix i. Let b € B lift &; € B. Set B’ := A[b]. As B is a module-finite A-algebra,
B is a module-finite B’-algebra. For all j, set n; :=n; N B’. By (14.3)(1), the n
are maximal (but not necessarily distinct). Now, €; ¢ n;B, but &; € n; B for j # i.
So b ¢ n;, but b € n; for j # 4. Thus n); # n} for j # .

By (10.14)(3)=(1), F(b) = 0 for a monic F € A[X]. Set B" := A[X]/(F). Let
x € B” be the residue of X. Define ¢: B” — B’ by ¢(z) := b. For all j, set
n = cp_ln;. Then as ¢ is surjective, the n/ are maximal, and n/ # n} for j # i.

By (10.15)(1)=(3), B” is a module-finite A-algebra. So B” is decomposable by
(2). For all j, set B} := B”,, Then B” =[] B} by (11.18).

Set e = (d;5) € B” Let e” be the rebldue of ¢(e/) in B. Then €/ projects to 1
in By, and to 0 in By, for j # i. Hence €/ =&;. So ¢(e}) € B is idempotent, and
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lifts €;. So B is decomposable by (19.15)(4). Thus (3) holds.

Trivially, (3) implies (4). And (4) implies (2) by (10.15).

Assume (2) again. To prove (1), let F' be a monic polynomial whose residue
F € k[X] factors as F' = G1Go with the G; monic and coprime. Set B := A[X]/(F).
Then (1.21)(1)(b) yields B/mB = (k[X]/(G1)) x (k[X]/(G2)).

By (2), B is decomposable. So idempotents of B/mB lift to idempotents of B

By (10.15)(1)=(4), B is free over A. So each B; is projective by (5.16)(3)=-(1).
But A is local, and B; is module-finite. Thus (10.12)(2)=-(1) implies B; is free.

By (10.32), each B, = A[X]/(G;) where G; is monic and lifts G;. Plainly,
deg(G;) = deg(G;). By (10.33)(2), the G; are coprime. So By x By = A[X]/(G1G2)
by (1.21)(1)(b). So A[X]/(F) = A[X]/(G1G3). So (F) = (G1G5). But F and
G1G4 are monic of the same degree. Hence F' = G1G5. Thus (1) holds. O

Corollary (22.79). — Let A be a Henselian local ring, B be a module-finite local
A-algebra. Then B is Henselian.

Proof: Apply (22.78)(3)=-(1): a module-finite B-algebra C is a module-finite
A-algebra by (10.16); thus, (22.78)(1)=-(3) implies C is decomposable. O

(22.80) (Equicharacteristic). — A local ring A is said to be equicharacteristic
if it has the same characteristic as its residue field.

Assume A is equicharacteristic. Let m be its maximal ideal, p its characteristic,
and Ap the image of the canonical map ¢: Z — A. If p > 0, then Ker(p) = (p), and
so F, = Ay. Suppose p =0. Then ¢: Z = Aj. But A/m too has characteristic
0. Hence AgNm = (0). So Ag—0 C A*. Hence A contains Q = Frac(Ap). In sum,
A contains a field isomorphic to the prime field, either F, or Q.

Conversely, if a local ring contains a field, then that field is isomorphic to a
subfield of the residue field, and so the local ring is equicharacteristic.

Any quotient of A is, plainly, equicharacteristic too. Moreover, given any local
subring B of A with BN m as maximal ideal, plainly B has the same characteristic
as A, and its residue field is a subfield of that of A; so B is equicharacteristic too.

Theorem (22.81) (Cohen Existence). — A separated and complete equicharacter-
istic local ring contains a coefficient field.

Proof: Let A be the local ring, m its maximal ideal, K its residue field, and
k: A — K the quotient map. Let p be the characteristic of A and K.

First, assume p = 0. Then Q C A by (22.80). Apply Zorn’s Lemma to the
subfields of A ordered by inclusion; it yields a maximal subfield E. Set L = k(E).
Suppose there’s an x € A with x(x) transcendental over L. Then E[z]Nm = 0. So
Elz] —0C A*. So E(z) C A, contradicting maximality. Thus K/L is algebraic.

Suppose there’s y € K — L. Let F(X) € L[X] be its monic minimal polynomial.
Set F/(X) = OF(X)/0X; see (1.18.1). Then F/(X) #0asp=0. So F/(y) #0
as deg(?l) < deg(F). Thus (1.19) implies y is a supersimple root of F.

Note k|E is injective. Let F' € E[X] be the (only) lift of F. Then by (22.76),
there’s a root x € A of F lifting y. But F is irreducible, as F is. So E[X]/(F) is
a field by (2.17). So the canonical surjection E[X]/(F) — E[z] is bijective. Thus
Elz] is a field. But z ¢ F as y ¢ L. Thus E[z] 2 F, contradicting maximality.
Thus K = L, as desired.
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So assume p > 0 instead. For all n > 1, set A, := A/m™. Then A; = K. Set
Ky := Ay. For n > 2 let’s find a field K,, C A,, that’s carried isomorphically onto
K,,_1 by the canonical surjection v,,: A, —» A,_1. Suppose we have K,,_1.

Set B := 1, 1(K,_1) and n := Ker(¢),). Then n C B as 0 € K,,_;. Let’s show
B is local with n as maximal ideal. Given x € B — n, set y := ¢,,(x). Then y # 0
in K,_1. So there’s z € K,,_; with y2 = 1. Soy ¢ m/m"~ 1. So z ¢ m/m". So
there’s u € A, with zu = 1. So y¢,(u) = 1. So ¥, (u) = z. So u € B. Thus by
(3.5), B is local with n as maximal ideal.

Note n := Ker(¢,) = m"~!/m". So n? = 0. Set B? = {2P | z € B}. Then BP? is
aring. Given y € B? —0, say y = 2P. Then = ¢ n as n? = 0. So there’s z € B with
xz =1. Then yzP = 1. Thus B? is a field.

Zorn’s Lemma yields a maximal subfield K, of B containing BP. Suppose there’s
x € B with ¢, (z) ¢ ¥,(K,). Then 2P € B? C K,,. So ¢, (z)P € ¥, (K,). So its
monic minimal polynomial is XP —1),, (z)P. So XP —zP is irreducible in B[X], as any
nontrivial monic factor would reduce to one of X? — 4, (z)?P. So K,[X]/(XP — zP)
is a field by (22.76). Hence, as above, it is isomorphic to K, [z], and K,[z] is a
field, contradicting maximality. So 9, (K,) D K,_1. But K,, C B := ¢, }(K,_1);
s0 Y (K,) C Kp—1. Thus ¢, (K,) = K,_1, as desired.

Finally, given x; € K, define x,, € K,, inductively by z,, := (¥,|K,) " (2r_1).
Then (z,) € @An C [T An as ¥n(x,) = xp—1 for all n. But @An — A by
(22.7), and A = A by (22.14)(2)=(1) as A is separated and complete. Define
P: K1 — A by ¢(z1) := (x,). Then (K1) C A is a field, and sip(K;) = K. Thus
(K1) is a coefficient field of A. O

Theorem (22.82) (Hensel’s Lemma, ver.2). — Let R be a ring, a an ideal, x € R.
Let X be a variable, F € R[X] a polynomial. Set F'(X) := 0F(X)/0X as in
(1.18.1), and set e := F'(x). Assume that R is separated and complete and that
F(z) = 0 (mod e%*a). Then there’s a root y € R of F with y = z (mod ea).
Moreover, if e is a nonzerodivisor, then y is unique.

Proof: By hypothesis, F(z) = e%a for some a € a. So by (1.18), there’s some
H(X) € R[X] with F(X) =e*a+e(X —z) + (X —2)?H(X). Thus

Flz+eX)=e*(a+ X+ X?H(z + eX)). (22.82.1)

Set H1(X) := H(z+eX) and b := (X). Then R[[X]] is b-adically separated and
complete by (22.2). So (22.55) yields an R-algebra map ¢: R[[X]] — R[[X]] with
©(X) = X + X2H1(X). But Gp(yp) is, plainly, the identity of R[X]. So ¢ is an
automorphism by (22.23). Thus we may apply ¢! to (22.82.1), and obtain

F(x +ep H(X)) = e*(a+ X). (22.82.2)

By hypothesis, R is a-adically separated and complete. So (22.55) yields an
R-algebra map ¢: R[[X]] — R with ¢)(X) = —a. Applying ¢ to (22.82.2) yields
F(z+epp (X)) =0. Soset y := z+epp 1 (X). Then F(y) =0. But o~ (X) € b
and ¥(b) C a. So y =z (mod ea). Thus y exists.

Moreover, assume e is a nonzerodivisor. Given two roots yp, yo of F' such that
yi = =+ ea; with a; € a, note 0 = F(y;) = €?(a + a; + a?Hi(a;)) by (22.82.1). So
a1+aiHq(a1) = az+a3Hq(a2). But, (22.55) gives R-algebra maps 6;: R[[X]] — R
with 6;(X) = a;. So 019(X) = O20(X). So 01 = 2 by uniqueness in (22.55).
But ¢ is an isomorphism. So 61 = 6;. Thus y; = ya, as desired. [l
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Example (22.83). — Let’s determine the nonzero squares z in the p-adic numbers
Zp, introduced in (22.2). Say z = Y oo zp' with 0 < z; < p and z, # 0. Set

Y= e, Zitnp'. Then z = p"y and y isn’t divisible by p.

Suppose z = z2. Say x = p™w with w € Zp not divisible by p. Then z = p?™w?.
If n > 2m, then p"~?™y = w?; so n = 2m as w? isn’t divisible by p. Similarly, if
n < 2m, then n = 2m. Thus n is even, and y is a square. Conversely, if n is even,
and y is a square, then z is a square. Thus it remains to see when y is a square.

If y is a square, then so is its residue y € F, = zp/<p>. Conversely, suppose
y = w? for some w € Fp. Form F(X):=X?—y¢€ 2P[X]. Then w is a root of the
residue F/(X). Set F/(X) = 0F(X)/0X as in (1.18.1). Then f/(X) =2X.

First, assume p > 2. Then F/(w) =2w # 0 as w # 0. So w is a supersimple root
of F by (1.19). So (22.76) yields a root w of F in A. So y = w? Thus y is a
square if and only if 7 is a square.

For instance, 2 is a square in Zy as 32 =2 (mod 7).

Lastly, assume p = 2. Then 2X = 0 (mod 2). So the above reasoning fails.
But suppose y = 1 (mod 8). Then (9F(X)/0X)(1) =2 and F(1) =1—-y =0
(mod 22 - 2). So (22.82) yields a root w of F. Thus y is a square in Zs.

Conversely, suppose y = w? for some w € 22. Recall y isn’t divisible by 2.
Soy =1¢€Fy = 22/<2> Sow = 1. Sow = 1+ 2v for some v € Zy. So
y=(1+2v)2=1+4v(1 +v). But v(1 +v) =0 (mod 2). Hence y = 1 (mod 8).
Thus y is a square if and only if y =1 (mod 8).

Theorem (22.84) (Weierstrafl Division). — Let R be a ring, a an ideal. Assume
R is separated and complete (in the a-adic topology). Fiz F =5 ;X" € R[[X]].
Assume there’s n > 0 with f, € R* but f; € a for i <n. Then given G € R[[X]],
there are unique Q € R[[X]] and P € R[X] with either P =0 or deg(P) < n such
that G = QF + P. Moreover, if F,G € R[X]| and deg(F) = n, then Q € R[X] with
either @ = 0 or deg(Q) = deg(G) — n.

Proof: Given H = Y h;X* € R[[X]], set a(H) := hg + -+ + hyp,_1 X" ! and
T(H) :== hyp + hpp1 X +---. As f, € R, then 7(F) € R[[X]]* by (3.7). Set
M = —a(F)r(F)~! and pu(H) := 7(MH). Then a, T, € Endg(R[[X]]).

Assume F, G € R[X] and deg(F') = n. Then the usual Division Algorithm (DA)
yields @, P. Let’s review it, then modify it so that it yields @, P for any F, G.

The DA is this: set @ :=0 and P := G; while P =: 7" | pi X" with p,,, # 0 and
m > n, replace Q by Q + pp f,; 1 X™™ ™ and replace P by P — p,, f, 1 X" "F.

Note G = QF + P holds initially. and is preserved on each iteration of the loop:

G=QF +P=(Q+pnfy' X" ")F+ (P —pnf, ' X" "F).

Moreover, when the DA terminates, P = 0 or deg(P) < n. So if @ # 0, then
deg(G) = deg(Q) +n as G = QF + P and f,, € R*. Thus @, P work.

The algorithm does, in fact, terminate. Indeed, replacing P by P—p, f;, 1 X™ " F
eliminates p,, and modifies the p; for i < m, but adds no new p; X for i > m. Thus
on each iteration of the loop, either P becomes 0 or its degree drops.

The Modified Division Algorithm (MDA) is similar, with F, G still polynomials,
but it de-emphasizes m. Also, n can be made implicit as f,, = 7(F). The MDA is
this: set Q := 0 and P := G; while 7(P) # 0, replace Q by Q +7(P)7(F)~! and P
by P — 7(P)r(F)~'F.
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Initially, G = QF + P. And G = QF + P remains true when we replace Q, P as
G=QF +P=(Q+71(P)r(F)")F+ (P —71(P)T(F)"'F).

When the MDA terminates, 7(P) = 0, and so P =0 or deg(P) < n.

At any stage, P = 7(P)X"™ 4+ «(P). Moreover, F' = 7(F)X" + «(F), and
M := —7(F) " 'a(F). Thus P — 7(P)7(F)"'F = M7(P) + o(P).

Note M =0 or deg(M) < n. So M7(P) =0 or deg(M7(P)) < deg(P). Further,
if 7(P) # 0 and a(P) # 0, then deg(a(P)) < deg(P). So when we replace P, either
P becomes 0 or deg(P) drops. Thus the MDA does terminate.

Note 7(M7(P) + a(P)) = 7(M7(P)) + 7(a(P)) = p(7(P)); that is, when we
replace P, the new value of 7(P) is equal to the old value of u(7(P)). Initially,
P :=G. So for r > 1, after r iterations, 7(P) = u"(7(G)). Initially, @ := 0. Thus
after r interactions, @ = Z:;Ol pH(7(Q))7T(F)~! where p° := 1 in Endg(R[[X])]).

As before, if @ # 0, then deg(G) = deg(Q) + n as G = QF + P and f,, € R*
and either P = 0 or deg(P) < n. Thus the MDA too yields @, P that work. The
uniqueness statement, proved at the very end, implies that these @}, P coincide
with those given by the DA.

For the general case, filter R[[X]] with the ideals b, of all H =: > h; X" with
h; € a™ for all i. Correspondingly, R[[X]] is separated and complete by (22.28)(2).
Let’s prove that the sum .., pu*(7(G))7(F)~* converges to a @ that works.

Note a(F') € by. So M € b1. So for any ¢ > 1 and H € b;_1, we have w(H) € b;.
So by induction, for any i > 0 and H € R[[X]], we have u*(H) € b;. Thus for any
H, H, € R[[X]], the sum )., u'(H)H; converges uniquely.

Set @ == ,5o ' (7(G))7T(F)~!. Let’s find 7(QF). Note F = 7(F)X" + a(F).
Also 7(X"H) = H for any H € R[[X]]. Hence 7(QF) = Q7(F) + 7(Qa(F)).
But Q7(F) = Y, 4 (7(G)). Furthermore, Qa(F) = — 3 ,o, pu'(7(G))M, and
(P (r(G))M) = it (7(G)). But 7(bs) C by for all s; so 7 is continuous. Hence
7(Qa(F)) = Syoy 4 (1(G)). Thus 7(QF) = 7(G).

Set P:= G — QF. Then 7(P) = 7(G) — 7(QF) = 0. So P € R[X] with either
P =0 or deg(P) < n. Thus @, P work.

It remains to show @, P are unique. Suppose G = Q1 F + P, with P, € R[X]
and either P, = 0 or deg(P1) < n. Then 7(G) = 7(Q1F) + 7(P;) = 7(Q1F). But
F=71(F)X"+a(F). Sot(Q1F) = Qi7(F)+1(Qra(F)). Set H := Q17(F). Then
Qira(F)=—-HM. Thus 7(G) = H —7(HM) = H — u(H).

So i (7(Q)) = p'(H) — p*t1(H) for all i. So Zf;g pi(1(@)) = H — p*(H) for
all s. But p*(H) € bs. So > ;501 (7(G)) = H. So Q7(F) = H := Q17(F). Thus
Q=Q,. Bt P=G—-QF and P, =G — Q. F. Thus P = P, as desired. O

Theorem (22.85) (Weierstral Preparation). — In (22.84), further F = UV where
UeR[X])* and V = X" 4+ v,_1 X" '+ -+ vg; both U and V are unique, and
all v; € a. And if F € R[X], then U € R[X] and deg(U) = deg(F) —n.

Proof: Say (22.84) yields X" = QF + P where Q = > ¢; X" € R[[X]] and
P € R[X] with P = 0 or deg(P) < n. But F = f; X" with f; € a for i < n.
Hence qofn, =1+ a with a € a. But R is separated and complete. So 1+ a € R*
by (22.35). Hence go € R*. Thus (3.7) yields Q € R[[X]]*.

Set U:=Q 'and V := X" — P. Then F = UV, as desired.

Say P=:p, 1 X" +---+pg. Then V= X"~ (p,_ 1 X" 1 +...gb+po). But
P=X"—-QF and f; € a for i < n. Thus all p; € a, as desired.
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Suppose F' = U;V; too, with U; € R[[X]]* and V4 € R[[X]] monic of degree n.
Set Q1 := Ul_1 and P, := X" — Vi. Then X™ = Q1 F + Py, and either P, = 0 or
deg(P;) < n. So Q1 = @ and P, = P by the uniqueness of () and P, which is part
of (22.84). Thus U; = U and V; =V, as desired.

Finally, suppose F' € R[X]. Apply (22.84) with F :=V and G := F. Thus, by
uniqueness, U € R[X] and deg(U) = deg(F') — n, as desired. O

Exercise (22.86) . — Show that (22.75) is a formal consequence of (22.85) when
R is a local ring with maximal ideal a such that k := A/a is algebraically closed.

Exercise (22.87) . — Let k be a field, By, := k[[X}, ..., X,,]] the local ring of power
series in n variables X;. Use (22.59) and (22.84) to recover, by induction, the
conclusion of (22.27), that B,, is Noetherian.

Exercise (22.88) . — Let k be a field, B, = k[[X1,...,X,]] the local ring of
power series in n variables X;. Use (22.27) and (22.59) and (22.85) to show, by
induction, that B,, is a UFD.

(22.89) (Analysis). — Let’s adapt the Weierstra$ Division Theorem (22.84) and
its consequences (22.85)—(22.88) to convergent complex power series. Specifically,
let A be the ring of complex power series in variables X7, ..., X, converging about
the origin in C". Then A is local with maximal ideal m := (X7,..., X)) by (22.67).
Let’s now see A is Henselian, Noetherian, regular of dimension r, and a UFD.

Consider the Weierstraf§ Division Theorem (22.84). First, suppose F, G € R[X]
with deg(F) = n and f,, € R*. Then for any R whatsoever, the DA and the MDA
work as before to provide P, @ € R[X] with either P = 0 or deg(P) < n and with
either @ = 0 or deg(Q) = deg(G) — n such that G = QF + P. Moreover, P and Q
are unique. Indeed, suppose P;, Q1 € R[X] with either P; = 0 or deg(P;) < n such
that G = Q1 F+P;. Then (Q—Q1)F = PL—P. If Q # @1, then deg(Q—Q1)F > n,
but deg(P; — P) < n, a contradiction. Thus @ = Q; and so P = P;.

Next, take R to be A and a to be m. Let B be the ring of complex power
series in X1, ..., X,, X converging about the origin 0 := (0,...,0,0) in C"*1. Then
B c A[[X]]. Suppose F, G € B. Distilling and adapting the discussion in [8,
pp. 105-115]), let’s see that the sum Y, p*(7(G))7(F) ™!, defined in the proof of
(22.84), converges, complex analytically, to a Q € B that works.

Fix a vector t := (¢1,...,t,,t) of positive real numbers. Given a complex power
series H = > a; X! where i := (i1,...,4,,1) is a vector of nonegative integers and
X=X Xir XY set |H| := 3 |as|t! and C == {H | |H|| < 00}. Then C C B.

Note ||[H|| = 0 if and only if H = 0. Moreover, ||aH|| = |a|||H]| for any a € C
as aH = Y aa;X! and |aa;| = |a||a;|. Furthermore, given H' = Y a/X!, note
|HH'|| < || H|||H'|| as HH' =" ;X! where b; := > jk=i 3y and where by the
triangle inequality |bs| < >751 ) lajl|ay|. Similarly, |H + H'|| < [[H| + [[H'||.

Let’s see C is complete in this norm. Let (E,) be Cauchy. Say E,, = > b, ;X"
Given ¢ > 0, there’s n. with > |b,; — by i|t! < € for all n,n’ > n.. But t! # 0 for
all i. So |bni — by 5| < &/tl. Thus (b,;) is Cauchy in C, so has a limit b;. Given
any set I of m vectors i for any m, there’s n’ > n. with |b, ; — bi| < g/t'm for
allie I. So Zie[ ‘bn’,i — bi|ti < . But bn,i — b = bn,i - bn’,i + bn/,i — b;. Thus
>ier b — bilt! < 2 for all n > n.. Set E := Y ;X' Then ||E, — E| < 2
for all n > n.. Hence E,, — E € C. But E=(E—E,)+ E,. Thus E € C, and
lim F,, = E. Thus C' is complete. In sum, C is a complex Banach algebra.
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Replacing the ¢; and ¢ by smaller values just decreases ||H|| and so enlarges C'.
In particular, given any E € B, replace the ¢; and ¢ by smaller values so that t lies
in the open polydisk of convergence of F; then F € C.

Next, given F € C with E(0) = 0 and given € > 0, let’s see we can replace the t;
and t by smaller values so that ||E|| < e. Note E = X E1 + -+ X, E,. + XFE, 4
for some formal power series ;. But, as shown in the solution to (22.67), the E;
can be altered so that they have distinct monomials. Then

VBl = Gl Brll + -+ + o | Bl + ] B

So all E; € C. Thus replacing the ¢; and ¢ by small enough values gives ||E|| < e.

Given H € B with a := H(0) # 0, let’s see why H € B*. First replace the t;
and t by smaller values so that H € C. Set E :=1— H/a. Then E(0) = 0. So, as
just observed, we can replace the ¢; and t by even smaller values so that ||E|| < 1.
Then )., E* converges, say to E' € C. Then (1—E)E’ = 1. Thus H-(E'/a) = 1.

Returning to Y, 1 (7(G))7(F) ™1, let’s see it converges. Replace the ¢; and ¢
by smaller values so that F, G € C. Note F' = Y_ i X® with f; € 4; also, f,(0) # 0,
but f;0) =0 for i < n. Recall a(F) := Z?;Ol fiXPand 7(F) =35, f;X"™. So
7(F)(0) # 0. Replace the t; and ¢ by even smaller values so that 7(F)~! € C. Set
c:=|7(F)7!]. Fix 0 < e < 1. Replace the t;, but not ¢, by yet smaller values so
that || f;|| < ¢"~'e/cn for i < n. Then ||a(F)|| < t"¢/c. Recall M := —a(F)7(F)~L.
Hence ||[M| < ||a(F)||||7(F)7!|| < t"e. For all H € C, note t"||7(H)| < ||H|.
Recall u(H) i= T(MH). So |u(H)| < | M|I|H] < e[ Hl. So | ()] < &'|[H]
for i > 0. But C is complete. Thus Y-, ' (7(G))7(F)~* converges.

Note 7(H) is continuous in H, as ||7(H)|| <t~ ™| H||. So the rest of the existence
proof in (22.84) carries over here without change. Uniqueness here is a special case
of uniqueness in (22.84). Thus the Weierstra§ Division Theorem can be adapted.

To adapt the Weierstrafl Preparation Theorem (22.85), note that the Division
Theorem above yields X™ = FQ+ P where @Q € B and P € A[X] with deg(P) < n.
The proof of (22.85) shows Q(0) # 0. So @ € B*. Set U := Q! and set
V:=X"—P. Then F=UV where U € B* and V = X" + v, 1 X" 14+ ... 4 v
with v; € A. By (22.85), U and V are unique; also, if F' € R[X], then U € R[X]
and deg(U) = deg(F)—n. Thus we can adapt the Weierstra§ Preparation Theorem.

To prove A is Henselian, adapt the solution to (22.86) by replacing (22.85)
with its counterpart above.

Consider the automorphism ¢ of C[[X7y,...,X,, X]] in (22.59.2) for use in the
next three assertions. Let H € B. If H converges at (z1,...,Z,,x), then ¢(H)
converges at (1, ..., 2}, ) where } := x; —a;x, and so p(H) € B. Thus ¢ induces
an automorphism of B.

To prove B is Noetherian, adapt the solution to (22.87) by replacing (22.84)
with its analytic counterpart. Thus, as r is arbitrary, A is Noetherian too.

To prove A is regular of dimension r, recall from (22.67) that A is local with
completion C[[X71,...,X,]]. By (22.27), the latter ring is regular of dimension r.
Thus, by (22.62)(2), A too is regular of dimension r.

Finally, to prove A is a UFD, adapt the solution to (22.88) by replacing (22.27)
and (22.59) and (22.85) by their analytic counterparts.
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D. Appendix: Exercises

Exercise (22.90) . — (Implicit Function Theorem) Let R be a ring, T1,...,T,, X
variables. Given a polynomial F' € R[T},...,T,, X] such that F(0,...,0,X) has a
supersimple root ay € R. Show there’s a unique power series a € R[[T1,...,T]]
with a(0,...,0) = ag and F(T1,...,Ty,a) =0.

Exercise (22.91) . — Let A be the filtered direct limit of Henselian local rings Ay
with local transition maps. Show that A is a Henselian local ring.

Exercise (22.92) . — Let A be a local Henselian ring, m its maximal ideal, B an
integral A-algebra, and n a maximal ideal of B. Set B = B/mB. Show:

(1) Idem(B) — Idem(B) is bijective. (2) By is integral over A, and Henselian.

Exercise (22.93) . — Let A be local ring. Show that A is Henselian if and only if,
given any module-finite algebra B and any maximal ideal n of B, the localization
B, is integral over A.

Exercise (22.94) . — Let A be a local ring, and a an ideal. Assume a C nil(A).
Set A’ := A/a. Show that A is Henselian if and only if A’ is so.

Exercise (22.95) . — Let A be a local ring. Assume A is separated and complete.
Use (22.78)(4)=>(1) to give a second proof (compare (22.75)) that A is Henselian.

Exercise (22.96) . — Let R be a ring, a an ideal, v € R*, and n > 2. Assume R
is separated and complete, and u = 1 (mod n%a). Find an nth root of u.

Exercise (22.97) . — Let p, aq, ..., as, k be integers, and X7, ..., X, variables. Set
F:=a XF+---+asXF. Assume p prime, each a; and k prime to p, and s > k > 0.
Using (2.46), show F' has a nontrivial zero in Z.

Exercise (22.98) . — Find a cube root of 2 in Zs.

Exercise (22.99) . — Find a cube root of 10 in Zs.

Exercise (22.100) . — In the setup of (22.84), if n > 1, find an alternative proof
for the existence of @ and P as follows: take a variable Y; view R[[X]] as an R[[Y]]-
algebra via the map ¢ with ¢(Y) := F: and show 1, X,..., X"~ ! generate R[[X]]
as a module by using Nakayama’s Lemma for adically complete rings (22.69).

Exercise (22.101) . — Let R be a ring, M a Noetherian module, q a parameter
ideal of M, and x € ™. Set M’ := M/xM and d := dim(M). For n > m, form
M/q" ™M 25 M/q"M — M’ /q" M’ — 0. (22.101.1)

Show: (1) Then (22.101.1) is (right) exact.
(2) Then £(M'/q" M) > €(M/q"M) — (M /q"~™ M),
(3) Then pg(M',n) > pq(M,n) — pq(M,n —m) for n>> 0.
(4) If © ¢ p for all p € Supp(M) with dim(R/p) = d, then e(q, M') > me(q, M).
(5) If the residue T € q™/q™ "' of x is Gq(M)-regular, then i, in (22.101.1) is
injective, z is M-regular, and equality holds in (2)—(4).

Exercise (22.102) . — Let R be a ring, N a Noetherian module, M a submodule,
q a parameter ideal of M. Give N the g-adic filtration and M a g-filtration F'*M
with FOM = M and F*"M C q"N for all n. Assume q = a + b where a and b are
ideals with bIN C F'M. Show:
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(1) Then q"N C F"M + a™N for all n > 0.
(2) Then M Ng"N C F"M + M Nna™N for all n > 0.
(3) Then there’s ¢ such that setting M’ := M Na°N yields, for all n > ¢,

MnNg"NC F"M +a" M.

(4) Take c and M’ asin (3). Say a is generated by a elements and M’ is generated
by C elements. Set R’ := R/ Ann(M). Then, for all n > 0,

)K(R'/qCR’).
(5) Under the conditions of (4), assume F*M is stable. Then

pq(N7n) _p(F.Man) _pq(N/Mvn)

is a polynomial in n of degree at most a — 1.

(M Nq°N)/F*M) < C<n_f:61l_ !

Exercise (22.103) . — Let R be a ring, M a Noetherian module, z1,...,z4 a sop
of M. Set q:=(x1,...,24) and P := M/x1 M. Assume z; is M-regular. Show

e(q, M) = e(q, P).
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23. Discrete Valuation Rings

A discrete valuation is a homomorphism from the multiplicative group of a
field to the additive group of integers such that the value of a sum is at least the
minimum value of the summands. The corresponding discrete valuation ring
consists of the elements whose values are nonnegative, plus 0. We characterize
these rings in various ways; notably, we prove they are the normal Noetherian local
domains of dimension 1. Then we prove that any normal Noetherian domain is the
intersection of all the discrete valuation rings obtained by localizing at its height-1
primes. Finally, we prove Serre’s Criterion for normality of a Noetherian domain.

Along the way, we consider two important notions for a module M over any
ring R. We say z1,...,x, is an M-sequence or is M-regular if z;;; € Ris a
nonzerodivisor on M; := M/{(xy,...,x;)M for 0 < i < n and if M,, #0. If R is
local, we call the supremum of the lengths n of the M-sequences, the depth of M.

In an appendix, we study those two notions and one more: we call M Cohen—
Macaulay if M is nonzero Noetherian and if, for all maximal ideals m € Supp(M),
the depth of M, equals its dimension. We prove the Unmixedness Theorem: if
there are only finitely many m and the dimensions are equal, then every associated
prime of M is minimal, and all maximal chains of primes in Supp(M) have the
same length. We end by proving, under appropriate hypotheses, the equivalence
of the following conditions where n := dim(M): (1) the multiplicity of M is equal
to the length of M,,; (2) x1,...,x, is M-quasi-regular; (3) z1,...,z, is M-regular;
(4) M is Cohen-Macaulay.

A. Text

(23.1) (Discrete Valuations). — Let K be a field. We define a discrete valuation
of K to be a surjective function v: K* — 7Z such that, for every x,y € K*,

(1) v(z-y) =v(@) +o(y), (2) v(z+y)>minfo(z), v(y)}if 2 # —y. (23.1.1)
Condition (1) just means v is a group homomorphism. Hence, for any = € K*|
(1) v(1) =0 and (2) v(z™!) = —v(2). (23.1.2)
As a convention, we define v(0) := oco. Consider the sets
A={zeK|v(x) >0} and m:={ze K |v(z)>0}.

Clearly, A is a subring, so a domain, and m is an ideal. Further, m is nonzero as v
is surjective. We call A the discrete valuation ring (DVR) of v.

Notice that, if z € K, but ¢ A, then 2=! € m; indeed, v(z) < 0, and so
v(z~1) = —v(x) > 0. Hence, Frac(A) = K. Further,

A*={zxeK|v(r)=0} =A—m.

Indeed, if z € A%, then v(z) > 0 and —v(z) = v(z~!) > 0; so v(z) = 0. Conversely,
if v(x) = 0, then v(z71) = —v(z) = 0; so z7! € A, and so x € A*. Therefore, by
the nonunit criterion, A is a local domain, not a field, and m is its maximal ideal.

An element ¢t € m with v(t) = 1 is called a (local) uniformizing parameter.
Such a t is irreducible, as ¢ = ab with v(a) > 0 and v(b) > 0 implies v(a) = 0
or v(b) = 0 since 1 = v(a) + v(b). Further, given x € K*, set n := v(z) and
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w := at™". Then v(u) = 0. Thus z = ut” and v € A*. In particular, ¢; is
uniformizing parameter if and only if £; = ut with u € A*.
Moreover, A is a PID, so a UFD; in fact, any nonzero ideal a of A has the form

a=(t") where m:=min{v(z)|z€a}. (23.1.3)

Indeed, given a nonzero x € a, say x = ut"™ where u € A*. Then t" € a. Son > m.
Set y := ut™ ™. Then y € A and = = yt™, as desired.
In particular, m = (¢) and dim(A) = 1. Thus A is regular local of dimension 1.

Example (23.2). — The prototype of a DVR is the following example. Let k be
a field, and K := k((t)) the field of formal Laurent series z := ), a;t' with
n € 7Zand a; € k. If a, # 0, set v(x) := n, the “order of vanishing” of z. Plainly, v
is a discrete valuation, the formal power series ring k[[t]] is its DVR, and m := (t)
is its maximal ideal.

The preceding example can be extended to cover any DVR A that contains a field
k with k = A/tA where t is a uniformizing power. Indeed, A is a subring of its
completion A by (22.3), and k = /Al/(tA)A by (22.12). But A is separated and
complete in the topology of the filtration with F" A := (t" A) . And that topology is
just the (tA) -adic by (22.21). Hence A = k[[t]] by the Cohen Structure Theorem
IT, (22.58). Further, plainly, the valuation on A restricts to that on A.

A second old example is this. Let p € Z be prime. Given x € Q, write x = ap™ /b
with a,b € Z relatively prime and prime to p. Set v(z) := n. Clearly, v is a discrete
valuation, the localization Z,y is its DVR, and pZ, is its maximal ideal. We call
v the p-adic valuation of Q.

Lemma (23.3). — Let A be a local domain, m its mazimal ideal. Assume that m
is nonzero and principal and that ngO m"” =0. Then A is a DVR.

Proof: Given a nonzero x € A, there is an n > 0 such that 2 € m"® — m"*!. Say

m = (t). Then x = ut™, and u ¢ m, so u € A*. Set K := Frac(A4). Given z € K*,
write © = y/z where y = bt™ and z = ct* with b,c € A*. Then x = ut™ with
u:=b/c € AX and n:=m —k € Z. Define v: KX — Z by v(z) := n. If ut" = wt"
with n > h, then (u/w)t"~" =1, and so n = h. Thus v is well defined.

Since v(t) = 1, clearly v is surjective. To verify (23.1.1), take z = ut™ and
y = wt" with u,w € AX. Then zy = (vw)t"*". Thus (1) holds. To verify (2), we
may assume n > h. Then z + y = t"(ut"~" + w). Hence

v(z +y) > h = min{n, h} = min{v(x), v(y)}.
Thus (2) holds. So v: K* — Z is a valuation. Clearly, A is the DVR of v. O
(23.4) (Depth). — Let R be aring, M a nonzero module, and 1, ...,z, € R. Set
M; == M/{x1,...,2;)M. We say the sequence z1,...,z, is M-regular, or is an
M-sequence, and we call n its length if M,, # 0 and z; ¢ z.div(M;_1) for all i.
For reference, note that (4.21) with a := (z1,...,2;) and b := (z;41) yields

If M is finitely generated, (13.46)(1) with a := (z1,...,2;) and (13.4)(4) yield
rad(M;) =rad(M) if and only if z1,...,2z; € rad(M). (23.4.2)

Call the supremum of the lengths n of the M-sequences found in an ideal a, the
depth of a on M, and denote it by depth(a, M). By convention, depth(a, M) =0
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means a contains no nonzerodivisor on M.

Call the depth of rad(M) on M just the depth of M, and denote it by depth(M)
or depthp(M). Notice that, in this case, if M is finitely generated, then M,, # 0
automatically owing to Nakayama’s Lemma (10.6).

Lemma (23.5). — Let R be a ring, M a nonzero Noetherian semilocal module.
(1) Then depth(M) = 0 if and only if there’s a maximal ideal m € Ass(M).
(2) Then depth(M) =1 if and only if there’s an x € rad(M) with x ¢ z.div(M)
and there’s a mazimal ideal m € Ass(M/xM).
(3) Then depth(M) < dim(M).

Proof: Consider (1). First, if there’s a maximal ideal m € Ass(M), then the
definitions readily yield rad(M) C m C z.div(M), and so depth(M) = 0.
Conversely, assume that depth(M) = 0. Then rad(M) C z.div(M). Since M is
Noetherian, z.div(M) = U,cass(ary P by (17.11). Since M is nonzero and finitely
generated, Ass(M) is nonempty and finite by (17.12) and (17.17). Sorad(M) C p
for some p € Ass(M) by Prime Avoidance, (3.12). But M is semilocal; so owing to
its definition, rad(M) is the intersection finitely many maximal ideals m. So (2.23)
yields an m C p. But m is maximal. So m = p. Thus m € Ass(M). Thus (1) holds.
Consider (2). Assume depth(M) = 1. Then there is an M-sequence of length
1 in rad(M), but none longer; that is, there’s an x € rad(M) with = ¢ z.div(M)
and depth(M/xM) = 0. Then (1) yields a maximal ideal m € Ass(M/xzM).
Conversely, assume there’s € Ass(M) with ¢ ¢ z.div(M). Then by definition,
depth(M) > 1. Assume also there’s a maximal ideal m € Ass(M/xM). Then
given any y € rad(M) with y ¢ z.div(M), also m € Ass(M/yM) by (17.19).
So depth(M/yM) = 0 by (1). So there is no z € rad(M) such that y, z is an
M-sequence. Thus depth(M) < 1. Thus depth(M) = 1. Thus (2) holds.
Consider (3). Given any M-sequence 1, ..., %, set M; := M/{x1,...,z;)M.
Then M;y; = M;/x;+1M; by (23.4.1). Assume z; € rad(M) for all i. Then
dim(M;4+1) = dim(M;) — 1 by (21.5). Hence dim(M) — n = dim(M,,) > 0. But
depth(M) := sup{n}. Thus (3) holds. O

Theorem (23.6) (Characterization of DVRs). — Let A be a local ring, m its maz-
imal ideal. Assume A is Noetherian. Then these five conditions are equivalent:

(1) A is a DVR.
(2) A is a normal domain of dimension 1.
(3) A is a normal domain of depth 1.

(4) A is a regular local ring of dimension 1.

(5) m is principal and of height at least 1.

Proof: Assume (1). Then A is UFD by (23.1); so A is normal by (10.21). Fur-
ther, A has just two primes, (0) and m; so dim(A) = 1. Thus (2) holds. Further,
(4) holds by (23.1). Clearly, (4) implies (5).

Assume (2). As dim(A) = 1, there’s z € m nonzero; z ¢ z.div(A4) as A is a
domain. So 1 < depth(A). But depth(A) < dim(A) by (23.5)(3). Thus (3) holds.

Assume (3). By (23.5)(2), there are x,y € m such that x is nonzero and y has
residue § € A/(x) with m = Ann(gy). So ym C (z). Set z := y/x € Frac(A). Then
zm = (ym)/z C A. Suppose zm C m. Then z is integral over A by (10.14)(4)=(1).
But A is normal, so z € A. So y = zx € (x), a contradiction. Hence, 1 € zm; so
there is ¢ € m with 2t = 1. Given w € m, therefore w = (wz)t with wz € A. Thus
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m is principal. Finally, ht(m) > 1 because € m and z # 0. Thus (5) holds.
Assume (5). Set N := ((m”. The Krull Intersection Theorem (18.23) yields

an z € m with (1+2)N =0. Then 1 +2 € A*. So N = 0. Further, A is a domain

by (21.10)(1). Thus (1) holds by (23.3). O

Exercise (23.7) . — Let R be a normal Noetherian domain, * € R a nonzero
nonunit, a an ideal. Show that every p € Ass(R/(z)) has height 1. Conversely, if
R is a UFD and if every p € Ass(R/a) has height 1, show that a is principal.

Theorem (23.8) (Nagata). — Let A C B be a faithfully flat extension of Noetherian
local domains. Assume B is a UFD. Then so is A.

Proof: By (21.34), it suffices to show every height-1 prime p of A is principal.

Let k and ¢ be the residue fields of A and B. Owing to (10.8)(2), p is principal
if and only if p ® 4 k ~ k; similarly, pB is principal if and only if (pB) ®p ¢ ~ £.
But B is flat; so pB=p®4 B by (9.15). But ps BRpl=pRQaL=pR@4 kL
by (8.9)(1). Hence p is principal if and only if pB is. But B is a UFD. Thus by
(23.7), it suffices to show every P € Ass(B/pB) has height 1.

As B is faithfully flat, pBNA = p by (9.28)(3). SoPNA C p owing to (18.63)(2)
and (18.17). Hence p =P N A. Set S:= A —p. Then S™IP € Ass(S~}(B/pB))
by (17.8). But S~ (B/pB) = S™'B/pS~!'B by (12.15). Thus it suffices to show
every Q € Ass(S™1B/pS~!B) has height 1.

Next, let’s show S™!A is normal. Set K := Frac(A) and L := Frac(B). Then
K CcLas AC B. Given z/y € KN B with 2,y € A, note x € yBN A. But
yBNA = yA by (9.28)(3). Thus K N B = A. But B is a UFD, so normal by
(10.21). Hence A too is normal. Thus by (11.32) also S~ A is normal.

Recall p has height 1. So S~'A has dimension 1. So pS—!'A is principal by
(23.6)(2)=(5). But (pS7*A)S™IB = pS~'B. So pS~!B is principal. But B is
normal, so S™1 B is too by (11.32). Thus by (23.7), Q has height 1, as desired. [

Exercise (23.9) . — Let A be a DVR with fraction field K, and f € A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) # dim(Ay).

(23.10) (Serre’s Conditions). — We say a ring R satisfies Serre’s Condition
(Ry) if, for any prime p with height m with m < n, the localization R, is regular
of dimension m.

For example, (Rog) holds if and only if R,, is a field for any minimal prime p. Also,
(R1) holds if and only if (Ro) does and R, is a DVR for any p with height 1.

We say Serre’s Condition (S,,) holds for a nonzero semilocal R-module M if

depth(M,) > min{dim(M,), n} for any p € Supp(M),

where M, is regarded as an R,-module.

Assume M is Noetherian. Then depth(M,) < dim(M,) by (23.5)(3). Thus (S,)
holds if and only if depth(M,) = dim(M,) when depth(M,) < n.

In particular, (S1) holds if and only if p is minimal whenever depth(M,) = 0.
But depth(M,) = 0 and only if pR, € Ass(M,) by (23.5)(1); so if and only if
p € Ass(M) by (17.8). Thus (S1) holds if and only if M has no embedded primes.

Exercise (23.11) . — Let R be a domain, M a Noetherian module. Show that M
is torsionfree if and only if it satisfies (Sy).

Exercise (23.12) . — Let R be a Noetherian ring. Show that R is reduced if and
only if (Rg) and (S;) hold.
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Lemma (23.13). — Let R be a domain, M a nonzero torsionfree Noetherian mod-
ule. Set @ := {p prime | ht(p) = 1} and 3 := {p prime | depth(M,) = 1}. Then
& C X, and ® =X if and only if M satisfies (Sz). Further, M = ﬂpex M, C M.

Proof: By hypothesis, M is torsionfree. So given s € R and m € M, if s # 0 but
sm = 0, then m = 0. Thus, by construction, M C M, C My, for all primes p.

So Supp(M) = Spec(R) as M # 0. Thus dim(M,) = ht(p) for any p € Spec(R).

So given p € @, we have dim(M,) = 1. So depth(M,) < 1 by (23.5)(3). But
if depth(M,) = 0, then pR, € Ass(M,) by (23.5)(1). So p = Ann(m) for some
nonzero m € M by (17.8). But M is torsionfree. So p = (0), a contradiction.
Thus depth(M,) = 1. Thus ® C X.

If M satisfies (Sz), then dim(M,) =1 for any p € X, so p € ®; thus then & = X.

Conversely, assume ® = ¥. Then given any prime p with dim(M,) > 2, also
depth(M,) > 2. But M satisfies (S1) by (23.11). Thus M satisfies (S2).

We noted that M C M, for all primes p. Thus M C (o5 M.

Conversely, given m € (,c5 My, say m = m//s with m’ € M and s € R — (0).
Then m' € sM, for all p € X.

Given p € Ass(M/sM), note pRy, € Ass((M/sM),) by (17.8). But by (12.15),
(M/sM), = M,/sM,. Also, s € p and s ¢ z.div(M,). Thus (23.5)(2) gives p € X.

Note sM = (\,cass(nr/sar) SMp by (18.65)(2) applied with N = sM. Hence

sM = m sM, D ﬂsMp:)sM.
pEAss(M/sM) peEX

Thus sM = (\,c5 sMp. Hence m’ € sM. So m’ = sm” for some m” € M. So
m=m" € M. Thus M D (\,cs My, as desired. O

Theorem (23.14). — Let R be a normal Noetherian domain. Then
R=,cep Ry where ®:={p prime|ht(p)=1}.

Proof: As R is normal, so is R, for any prime p by (11.32). So depth(R,) =1
if and only if dim(R,) = 1 by (23.6). Thus (23.13) yields the assertion. O

Theorem (23.15) (Serre’s Criterion). — Let R be a Noetherian domain. Then R
is normal if and only if (R1) and (S2) hold.

Proof: As R is a domain, (Rg) and (S;) hold by (23.12). If R is normal, then
so is Ry, for any prime p by (11.32); whence, (R1) and (S2) hold by (23.6).

Conversely, assume R satisfies (Ry) and (S2). Let x be integral over R. Then
x is integral over R, for any prime p. Now, R, is a DVR for all p of height 1 as
R satisfies (Ry). Hence, € R, for all p of height 1, so for all p of depth 1 as R
satisfies (S3). So z € R owing to (23.13). Thus R is normal. O
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B. Exercises

Exercise (23.16) . — Show an equicharacteristic regular local ring A is a UFD.
Exercise (23.17) . — Let R be aring, 0 - N - M — L — 0 a short exact
sequence, and z1,...,z, € R. Set a; : (x1,...,x;) for 0 <i < n. Prove:

(1) Assume z1,...,2, is L-regular. Then a;,M N Na; N for 0 < i < n.
(2) Then zq,...,x, is both N-regular and L-regular if and only if x1,...,z, is
M-regular, a; M NN = a;N for 0 <i <n, and N/a,N # 0 and L/a, L # 0.

Exercise (23.18) . — Let R be a ring, M a module, F': ((R-mod)) — ((R-mod))
a left-exact functor. Assume F'(M) is nonzero and finitely generated. Show that,
for d = 1,2, if M has depth at least d, then so does F(M).

Exercise (23.19) . — Let k be a field, A a ring intermediate between the polynomial
ring and the formal power series ring in one variable: k[X] C A C k[[X]]. Suppose
that A is local with maximal ideal (X). Prove that A is a DVR. (Such local rings
arise as rings of power series with curious convergence conditions.)

Exercise (23.20) . — Let L/K be an algebraic extension of fields; Xi,...,X,
variables; P and @ the polynomial rings over K and L in Xi,...,X,,. Show:

(1) Let q be a prime of @, and p its contraction in P. Then ht(p) = ht(q).
(2) Let F, G € P be two polynomials with no common prime factor in P. Then
F and G have no common prime factor H € Q.

Exercise (23.21) . — Prove that a Noetherian domain R is normal if and only if,
given any prime p associated to a principal ideal, pRR, is principal.

Exercise (23.22) . — Let R be a ring, M a nonzero Noetherian module. Set
® := {p prime | dim(M,) =1} and 3 := {p prime | depth(M,) =1}.
Assume M satisfies (S1). Show ® C X, with equality if and only if M satisfies (S2).
Set S := R — z.div(M). Without assuming (S;), show this sequence is exact:
M = ST'M = [],ex S™ My /M, (23.22.1)
Exercise (23.23) (Serre’s Criterion) . — Let R be a Noetherian ring, and K its
total quotient ring. Set ® := {p prime | ht(p) = 1}. Prove equivalent:

(1) R is normal.
(2) (Ry) and (S3) hold.
(3) (R1) and (S1) hold, and R — K — [],cq Kp/Ry is exact.

C. Appendix: M-sequences

Exercise (23.24) . — Let R be a ring; M a module; z, y an M-sequence. Show:
(1) Given m,n € M with xm = yn, there’s p € M with m = yp and n = zp.
(2) Assume y ¢ z.div(M). Then y, x is an M-sequence too.

Proposition (23.25). — Let R be a ring, M a nonzero Noetherian module, and
x,y € rad(M). Assume that, given any m, n € M with xm = yn, there exists
p € M withm =yp and n = xp. Then x, y is an M -sequence.
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Proof: First, as noted in (23.4), automatically M/{(z,y)M # 0.

Next, we have to prove x ¢ z.div(M). Given m € M with xm = 0, set n := 0.
Then xm = yn; so there exists p € M with m = yp and n = xp. Repeat with p
in place of m, obtaining p; € M such that p = yp; and 0 = xp;. Induction yields
p; € M for i > 2 such that p;_; = yp; and 0 = xp;. Note m = p'Tlp; for all i.

Then Rp; C Rps C --- is an ascending chain. It stabilizes as M is Noetherian.
Say Rp, = Rpnt+1. SO pny1 = zp, for some z € R. Then p, = yppy1 = y2zpn. SO
(1 —yz)p, =0. Set R' := R/ Aun(M), and let ¢/, 2/ € R’ be the residues of y, z

But y € rad(M). Also rad(M)/ Ann(M) = rad(R’) by (4.1.1). Hence 1 — ¢z’ is
a unit by (3.2). But (1-y'z")p, = (1—yz)p,, = 0. Hence p,, = 0. But m = y"*1p,
Thus m = 0, as desired. Thus z ¢ z.div(M).

Finally, set My := M/xM. We must prove y ¢ z.div(M;). Given n; € M; with
yni = 0, lift ny ton € M. Then yn = xm for some m € M. So there’s p € M with
n = xp. Thus n; = 0, as desired. Thus z,y is an M-sequence, as desired. O

Exercise (23.26) . — Let R be a ring, a C R an ideal, M a module, z1,...,z,
an M-sequence in a, and R’ an algebra. Set M’ := M ®r R’. Assume R’ flat and
M'/aM’ # 0. Prove z1,...,x, is an M'-sequence in aR’.

Exercise (23.27) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM #0. Let x1,...,x, be an M-sequence in a, and p € Supp(M/aM). Prove:
(1) z1/1,...,2,/1 is an My-sequence in a,, and (2) depth(a, M) < depth(a,, M,).

(23.28) (Maximal sequences). — Let R be aring, a an ideal, M a nonzero module.
We say an M-sequence in a is maximal in a, if it can not be lengthened in a.

In particular, the sequence of length 0 (the empty sequence) is maximal in a if
and only if there are no nonzerodivisors on M in a, that is, a C z.div(M).

Theorem (23.29). — Let R be a ring, a an ideal, and M a Noetherian module.
Then there exists a finite mazimal M -sequence in a if and only if M/aM # 0. If
so, then any finite M -sequence in a can be lengthened until mazximal in a, and every
mazimal M-sequence in a is of the same length, namely, depth(a, M).

Proof: First, assume M/aM # 0. Then there’s p € Supp(M/aM) by (13.8).
Hence successively (23.27)(2) and (23.5)(3) and (21.4) yield

depth(a, M) < depth(M,) < dim(M,) < oo.

However, every M-sequence in a is of length at most depth(a, M) by (23.4). Hence
the M-sequences in a are of bounded length. Thus in finitely many steps, any one
can be lengthened until maximal in a. In particular, the empty sequence can be so
lengthened. Thus there exists a finite maximal M-sequence in a.

Instead, assume there exists a finite maximal M-sequence x1,...,Z,, in a. Set
M, .= M/{z1,...,2;)M for all i. Suppose M,, = aM,,. Then there’s a € a with
(I1+a)M =0 by (10 3). But a C z.div(M,,) by maximality. So au = 0 for some
nonzero p € My,. So p+ap =0. So p =0, a contradiction. Hence M,,/aM,, # 0.
But M,,/aM,, is a quotient of M/aM. Thus M/aM # 0.

Given any other maximal M-sequence y1,...,Yy, in a, it now suffices to prove
m = n. Indeed, then m = depth(a, M) by (23.4), completing the proof.

To prove m = n, induct on m. If m =0, then a C z.div(M), and so n = 0 too.

Assume m > 1. Set N; := M/(y1,...,y;)M for all j, and set

U:=U, ! 2.div(M, ) Ul Ozd1v Nj).
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Then U is equal to the union of all associated primes of M; for ¢ < m and of N;

for j < n by (17.11). And these primes are finite in number by (17.17).
Suppose a C U. Then a lies in one of the primes, say p € Ass(M;), by (3.12).

But z;y1 € a —z.div(M;) and a C p C z.div(DM;), a contradiction. Thus a ¢ U.
Take z € a — U. Then z ¢ z.div(M;) for i < m and z ¢ z.div(N;) for j < n. In

particular, z1,...,Zm-1,2 and y1,...,Yn—1, 2 are M-regular.
By maximality, a C z.div(M,,). So a C q for some q € Ass(M,,) by (17.11) and
(3.12). But M,, = Mp—1/xmMpm—_1 by (23.4.1). Also, zp,, z ¢ z.div(Mp,—1).

Further, @,,, 2 € a C q. So q € Ass(M,,,_1/2zM,—1) by (17.19). Hence
a CzdiviM/{z1,...,Tm-1,2)M).

Thus z1,...,%m_1, 2z is maximal in a. Similarly, y1,...,Yn—1, 2 is maximal in a.
Note My,—1 = Mp—2/%m—1Mpy—o by (23.4.1). Hence z,,_1, z is M,,_o-regular.
However, z ¢ z.div(M,—2). S0 2, Zm—1 i8 My, _o-regular by (23.24)(2). Therefore,

L1,y Tm—2,2,Tm—1 1S a maximal M-regular sequence in a. Continuing shows
that z,21,...,Z;,m—1 is one too. Similarly, z,41,...,Yn—1 is another one.
Thus we may assume x1 = y;. Then My = N;. Further, x2,..., 2, and yo, ..., yn

are maximal M;-sequences in a. So by induction, m—1=n—1. Thus m=n. O

Example (23.30). — For any n > 0, here’s an example of a Noetherian local ring
R, of depth n that does not satisfy (S1), so not (S,,). Let R := k[[X,Y]]/(XY, Y?)
be the local ring of (17.2). Take additional variables Z1,...,Z,. Set Ry := R and
R, := R[[Z1,...,Z,]] if n > 1. By (22.27), R, is a Noetherian local ring.

If n > 1, then Z, is a nonzerodivisor on R,,. But R, = R,_1[[Z,]]. So (3.7)
yields R, /{Z,) = Ryn—1. Thus Z1,...,Z, is an R,-sequence by induction on n.

Set m := (x,y, 721, ,Zn) C Ry, where x, y are the residues of X, Y. Then
m C zdivg, (Rp). So Z1,...,Z, is a maximal R,-sequence in m. Thus (23.29)
yields depth(R,,) = n.

Set P :=k[[X,Y,Z1,...,Z,]], Then P is a power series ring in n + 2 variables.
The ideals (Y) and (X,Y) are prime by (22.27). Set a := (XY, Y?). Then
P/aP = R, by (22.56). Thus (y) and (z,y) are prime ideals of R,,.

Plainly (z,y) C Ann(y). Given F € R, say F = > a;jz'y’ F;; with a;; € k
and Fyj € k[[Z1,...,2,]]. Assume F € Ann(y). Then Y a;;z'y’ T F;; = 0. So
Zainin+1Fij € a. Hence CL()()YFOO € a. So apoFoo = 0. So F € <SC,y> Thus
(z,y) = Ann(y). But (x,y) is prime. Thus (z,y) € Ass(R,).

Plainly (y) C Ann(z). Assume F € Ann(z). Then Y a;;z"T'y/F;; = 0. So
Y ai ;] XTYIF;; € a. So a;nX'Fy € a for all i as a is homogeneous. So a0z’ Fjo
is 0. So F € (y). Thus (y) = Ann(z). But (y) is prime. Thus (y) € Ass(R,). So
(x,y) is an embedded prime of R,,. Thus (23.10) implies R,, doesn’t satisfy (S1).

Exercise (23.31) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM # 0, and x € a — z.div(M). Show depth(a, M/xM) = depth(a, M) — 1.

Exercise (23.32) . — Let R be a ring, M a nonzero Noetherian semilocal mod-
ule, and = € rad(M) — z.div(M). Show that depth(M) = dim(M) if and only if
depth(M/aM) = dim(M/xM).

Exercise (23.33) . — Let R be aring, R’ an algebra, and N a nonzero R'-module
that’s a Noetherian R-module. Assume N is semilocal over R (or equivalently by
(21.20)(5), semilocal over R'). Show depthp(N) = depthp, (N).
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Proposition (23.34). — Let R — R’ be a map of rings, a C R an ideal, and M an
R-module with M/aM # 0. Set M’ := M ®r R'. Assume R’ is faithfully flat over
R, and M and M’ are Noetherian. Then depth(aR’, M') = depth(a, M).

Proof: By (23.29), there is a maximal M-sequence 1, ..., , in a. For all 7, set
M; = M/{xy,...,x;)M and M| := M'/{z1,...,2;)M’. By (8.10), we have

M’/aM’ = M/CIM QR R and Ml/ =M, ®RR/.

So M’ /aM’ # 0 by faithful flatness. Hence 21, ..., z, is an M’-sequence by (23.26).

Since z1, ..., 2, is maximal, a C z.div(M,). Therefore, Homg(R/a, M,) # 0 by
(17.20)(3)«(5). So Hompg(R/a, M,) ®r R’ # 0 by faithful flatness. But (9.10)
and (8.9)(2) yield

Hompg(R/a, M,) ®r R’ < Hompg(R/a, M) = Homp/ (R'/aR', M]).

So Homp/ (R'/aR',M]) # 0. So aR' C z.div(M]) by (17.20). So z1,...,z, is a
maximal M’-sequence in aR’. Thus (23.29) yields the assertion. O

Lemma (23.35). — Let R be a ring, a an ideal, M a nonzero Noetherian module,
z € rad(M) — zdiv(M). Assume a C z.div(M). Set M’ := M/xM. Then there is
p € Ass(M') with p D a.

Proof: Set a’ := Ann(M) and q := a+ o'. Given any a € a, there’s a nonzero
m € M with am = 0. So given any a’ € o, also (a+a’)m = 0. Thus q C z.div(M).

Set R’ := R/a’. Then R’ is Noetherian by (16.16). Set N := R/q. Then N is a
quotient of R’. Thus N is Noetherian.

Set H := Hom(N, M). Then H is Noetherian by (16.37). Also Supp(N) = V(q)
by (13.4)(3). But q C z.div(M). So H # 0 by (17.20). Further, a’ C Ann(H); so
rad(M) C rad(H). So Nakayama’s Lemma (10.6) yields H/zH # 0.

As O — M 2% M — M' — 0 is exact, so is 0 - HXH — Hom(N, M') by
(5.11)(2). Hence, H/xH C Hom(N, M') . So Hom(N, M') # 0. Thus (17.20)
yields p € Ass(M') withp D gD a. O

Lemma (23.36). — Let R be a ring, M # 0 a Noetherian module, po € Ass(M),
po G -+ G pr a mazimal chain of primes. Then depth(p,, M) < depth(M, ) <r.

Proof: If r = 0, then py C z.div(M). So depth(pg, M) = 0, as desired. Induct
on r. Assume r > 1. As pg € Ass(M), we have p, € Supp(M) by (17.13);
so M,, # 0. So Nakayama’s Lemma (10.6) yields M, /p,M,, # 0. Further,
depth(p,, M) < depth(M,,) by (23.27)(2). So localizing at p,, we may assume R
is local, p, is the maximal ideal, and M = M, . Then depth(p,, M) = depth(M).

As p._1 C p,, clearly M/p,._1M # 0. So (23.29), yields a maximal M-sequence
Z1,...,&s in pr—q1 where s = depth(p,_1,M). So by induction s < r — 1. Set
Mg = M/{x1,...,z5)M. Then p,_1 C z.div(M;) by maximality.

Suppose p, C z.div(Ms). Then z1,...,zs is maximal in p,. So s = depth(M) by
(23.29), as desired.

Suppose instead p, ¢ z.div(Ms). Then there’s x € p,—z.div(My). Sox1,..., x5,
is an M-sequence in p,. By (23.35), there is p € Ass(My/xM;) with p D p,_1.
But p = Ann(m) for some m € My/xMj, so x € p. Hence p,—1 G p C p,. Hence,
by hypothesis, p = p,. Hence z1,...,2,, x is maximal in p, as p, = Ann(m). So
(23.29) yields s + 1 = depth(M). Thus depth(M) < r, as desired. O
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Theorem (23.37) (Unmixedness). — Let R be a ring, M a nonzero Noetherian
semilocal module. Assume depth(M) = dim(M). Then M has no embedded primes,
and all mazimal chains of primes in Supp(M) are of length dim(M).

Proof: Given py € Ass(M), take any maximal chain of primes po G --- S p,.
Then p, is a maximal ideal in Supp(M). So p, D rad(M) by (13.4)(4). So
(23.29) yields depth(M) < depth(p,, M). But (23.36) yields depth(p,, M) < r.
Also depth(M) = dim(M). Moreover, r < dim(M) by definition (21.1). So
r = dim(M). Hence pg is minimal. Thus M has no embedded primes.

Given any maximal chain of primes po G --- S p, in Supp(M), necessarily po is
minimal. So pg € Ass(M) by (17.14). Thus, as above, r = dim(M), as desired. O

Proposition (23.38). — Let R be a ring, M a nonzero Noetherian semilocal mod-
ule, and x1,...,z, € rad(M). Set M; := M/{x1,...,z;)M for all i. Assume
depth(M) = dim(M). Then x1,...,xy, is M-regular if and only if it is part of a
sop; if so, then depth(M;) = dim(M;) for all i.

Proof: Assume z1,...,x, is M-regular. Then depth(M;) = dim(M;) for all ¢ by
(23.32) and (23.4.1) applied inductively. Moreover, z1,...,x, can be extended
to a maximal M-sequence by (23.29); so assume it is already maximal. Then
depth(M,,) = 0. Hence dim(M,,) = 0. Thus x1,...,x, is a sop.

Conversely, assume z1,...,x, is part of a sop x1,...,xs. Induct on n. If n is
0, there is nothing to prove. Assume n > 1. By induction x1,...,2,_1 is M-
regular. So as above, depth(M,,_1) = dim(M,,_;). Thus, by (23.37), M, _; has no
embedded primes, and dim(R/p) = dim(M,,_1) for all minimal primes p of M,,_;.

However, dim(M,,) = dim(M,,—1) — 1 by (21.26). Also M,, = M,,_1/x, M1
by (23.4.1). Hence x,, lies in no minimal prime of M,,_; by (21.5). But M,
has no embedded primes. So z,, ¢ p for all p € Ass(M,,—1). So z,, ¢ z.div(M,_1)
by (17.11). Thus 1, ...,x, is M-regular. a

Proposition (23.39). — Let R be a ring, M a Noetherian semilocal module, p in
Supp(M). If depth(M) = dim(M), then depth(p, M) = depth(M,) = dim(M,).

Proof: Set s := depth(p, M). Induct on s. Assume s = 0. Then p C z.div(M).
So p lies in some q € Ass(M) by (17.20). But q is minimal in Supp(M) by (23.37).
So q = p. Hence dim(M,) = 0. Thus (23.5)(3) yields depth(M,) = dim(M,) = 0.

Assume s > 1. Then there is x € p — z.div(M). Set M’ := M/xM, and
set s’ := depth(p, M'). As M, # 0, also M,/pM, # 0 owing to (10.6). But
M, /pM, = (M/pM), by (12.15). So M/pM # 0. Thus s’ = s — 1 by (23.31),
and depth(M') = dim(M’) by (23.32).

Further, My = M,/xM, by (12.15). But z € p. So M, # 0 by Nakayama’s
Lemma (10.6). Thus p € Supp(M’). So by induction, depth(M;) = dim(My) = s'.

As z ¢ z.div(M), also z/1 ¢ z.div(M,) by (23.27)(1). But z/1 € pR, and
pR, = rad(M,). Hence depth(M,) = dim(M,) by (23.32). Finally, dim(M,) = s
by (21.5). O

Exercise (23.40) . — Let R be a ring, a an ideal, and M a Noetherian module
with M/aM # 0. Find a maximal ideal m € Supp(M/aM) with

depth(a, M) = depth(am, Mu).
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Definition (23.41). — Let R be a ring. A nonzero Noetherian module M is called

Cohen—Macaulay if depth(M,,) = dim(M,,) for all maximal ideals m € Supp(M).
It’s equivalent that depth(m, M) = dim(M,,) for all m by (23.40) with a := m.
It’s equivalent that M, be a Cohen-Macaulay R,-module for all p € Supp(M),

since if p lies in the maximal ideal m, then M, is the localization of M, at the prime

ideal pRy by (12.25)(3), and hence M, is Cohen-Macaulay if M, is by (23.39).
The ring R is called Cohen—Macaulay if R is so as an R-module.

Exercise (23.42) . — Let R be a ring, and M a nonzero Noetherian semilocal
module. Set d := dim(M). Show depth(M) = d if and only if M is Cohen—
Macaulay and dim(My,) = d for all maximal m € Supp(M).

Proposition (23.43). — Let R be a ring, and M o module. Then M is Cohen—
Macaulay if and only if the polynomial module M[X] is so over R[X].

Proof: First, assume M[X] is Cohen—-Macaulay. Given m € Supp(M) maximal,
set M := mR[X] + (X). Then M is maximal in R[X] and M N R = m by (2.32).
So M € Supp(M[X]) by (13.49) and (8.31). Thus M[X]ox is Cohen—Macaulay.

Form the ring map ¢: R[X] — R with ¢(X) = 0, and view M as an R[X]-module
via . Then (M) = m. So Moy = My, by (12.26).

There is a unique R[X]-map §: M[X] — M with S|M = 1, by (4.18)(1).
Plainly Ker(8) = XM[X], and 3 is surjective. So M[X]/XM|[X] = M. Hence
M[X]on/XM[X]on = Mox. But X ¢ z.div(M[X]o). So Msy is Cohen-Macaulay
over R[X]on by (23.32). But Moy = My. So My, is Cohen—-Macaulay over Ry
owing to (23.33) and (21.20)(1) with R := R[X]op and R’ := Ry. Thus M is
Cohen-Macaulay over R.

Conversely, assume M is Cohen—Macaulay over R. Given a maximal ideal 97 in
Supp(M[X]), set m := M N R. Then M[X]|om = (M[X]m)om by (12.25)(2). Also
M[X]m = Mu[X] by (12.31). So m € Supp(M). So My, is Cohen-Macaulay over
Ry Thus, to show M[X]on is Cohen-Macaulay over R[X]on, replace R by Ry and
M by My, so that R is local with maximal ideal m.

Set k := R/m. Note R[X]/mR[X] = k[X] by (1.16). Also, 9/mR[X] is maximal
in k[X], so contains a nonzero polynomial F. As k is a field, we may take F monic.
Lift F' to a monic polynomial F' € 9. Set B := R[X]/(F) and n := deg F. Then
B is a free R-module of rank n by (10.15).

Set N := M[X]/(F)M[X]. Then N = B ®@p[x) M[X] by (8.27)(1). But (8.31)
yields M[X] = R[X]®r M. So N = B®g M by (8.9)(1). Thus N = M®".

Plainly Supp(N) = Supp(M). Hence dim(N) = dim(M). Now, given a sequence
Z1,...,T, € m, plainly it’s an N-sequence if and only if it’s an M-sequence. Hence
depth(N) = depth(M). Thus N is Cohen-Macaulay over R, as M is.

Note dimg(N) = dimp(N) by (21.20)(1), and B is semilocal by (21.20)(5).
Note depthr(N) = depthg(N) by (23.33). But N is Cohen-Macaulay over R.
Hence depthp(N) = dimp(N). Thus by (23.42), N is Cohen-Macaulay over B.

Set n := IMB. Then N, is Cohen-Macaulay over B, as N is Cohen-Macaulay
over B. But N, = Noy by (12.26). So Nyy is Cohen-Macaulay over R[X]on by
(23.33) and (21.20)(1) with R := R[X]om and R’ := Ry. But Noy is equal to
M[Xon /{F)M|[X]on by (12.15). And F is monic, so a nonzerodivisor. So M [X]om
is Cohen—Macaulay over R[X|om by (23.32). Thus M[X] is so over R[X]. O

Definition (23.44). — Let R be a ring, M a module. We call M universally
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catenary if, for every finite set of variables Xi,...,X,, every quotient of the
R[Xy,...,X,]-module M[Xy,...,X,] is catenary.
We call R universally catenary if R is so as an R-module.

Theorem (23.45). — A Cohen—Macaulay module M is universally catenary.

Proof: Any quotient of a catenary module is catenary by (15.13). So it suffices
to prove that N := M[Xy,...,X,] is catenary over P := R[Xy,...,X,] for every
set of variables X;,..., X,,.

Given nested primes q¢ C p in P containing Ann(N), the chains of primes from
q to p correspond bijectively to the chain from qP, to pP, containing Ann(N,) by
(12.17)(1). But N is Cohen-Macaulay over P by (23.43) and induction on n.
Thus N, is Cohen-Macaulay over P, by (23.41).

Given any two maximal chains of primes from qF, to pF,, extend them by ad-
joining to each the same maximal chain downward from qF,; we get two maximal
chains in N,. These two have the same length by (23.37). Hence the two given
chains have the same length. Thus M is universally catenary. O

Example (23.46). — Trivially, a field is Cohen—-Macaulay. Plainly, a domain of
dimension 1 is Cohen—-Macaulay. By (23.15), a normal domain of dimension 2
is Cohen—Macaulay. Thus these rings are all universally catenary by (23.45). In
particular, we recover (15.14).

Proposition (23.47). — Let A be a regular local ring of dimension n, and M a
finitely generated module. Assume M is Cohen—Macaulay of dimension n. Then
M is free.

Proof: Induct on n. If n =0, then A is a field by (21.14), and so M is free.

Assume n > 1. Let ¢ € A be an element of a regular system of parameters.
Then A/(t) is regular of dimension n — 1 by (21.16). As M is Cohen-Macaulay of
dimension n, any associated prime g is minimal in A by (23.37); so q = (0) as A is
a domain by (21.17). Hence ¢ is a nonzerodivisor on M by (17.11). So M/tM is
Cohen—Macaulay of dimension n — 1 by (23.32) and (21.5). Hence by induction,
M/tM is free, say of rank r.

Let k be the residue field of A. Then M ®4 k = (M/tM) @4, k by (8.27)(1).
So r =rank(M ®4 k).

Set p := (t). Then A, is a DVR by (23.6). Moreover, M, is Cohen-Macaulay
of dimension 1 by (23.39) as depth((t), M) = 1. So M, is torsionfree by (23.11).
Therefore M, is flat by (9.35), so free by (10.12). Set s := rank(1},).

Let k(p) be the residue field of A,. Then M, ®4, k(p) = M, /tM, by (8.27)(1).
Moreover, M, /tM, = (M/tM), by (12.15). So r = s.

Set K := Frac(A). Then A —p C K*;s0o K = K, by (11.4). So (12.30) yields
K®M=K®a, My. So M ®4 K has rank r. Thus M is free by (14.23). O

Proposition (23.48). — Let R be a ring, M a module, and x1,...,2, € R an
M -sequence. Then x1,...,zs is M-quasi-reqular.

Proof: Form the surjection ¢,: (M/qM)[X1,...,Xs] = Gq(M) of (21.11.1),
where q := (x1,...,25) and the X; are variables. We have to prove that ¢ is
bijective. So given a homogeneous polynomial F' € M[X7, ..., X;] of degree r with
F(x1,...,75) € q"T*M, we have to show that the coefficients of F lie in qM.

As F(z1,...,75) € "1 M, there are homogeneous F; € M[X1,..., X ] of degree
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rwith F(x,...,2s) = Y, 2 Fy(x1,...,xs). Set F' =% x;Fy(Xy,...,X,). Then
F’ has coefficients in gM. Set F” := F — F'. If F" has coefficients in qM, so does
F. Also F"(x1,...,25) = 0. So replace F' by F".

Induct on s. For s =1, say F' =mX]. Then 2fm = 0. But x; is M-regular. So
x’l'_lm = 0. Thus, by recursion, m = 0.

Assume s > 1. Set v:= (21,...,25_1). By induction, x1,...,25_1 is M-quasi-
regular; that is, ¢s_1: (M/tM)[X1,..., Xs—1] = Go(M) is bijective. So Gy (M)
is a direct sum of copies of M/tM for all k. But x5 is M/tM-regular. So xg is
Gr k(M)-regular. Consider the exact sequence

0= Gep(M) — M/tFM — M/c"M — 0.

Induct on k and apply (23.17) to conclude that x4 is M /t* M-regular for all k.
To see that the coefficients of I lie in qM, induct on r. The case r = 0 is trivial.
So assume r > 0. Say

F(X1,...,Xs)=G(X1, ..., Xe_1) + X H(X1,..., X,),

where G is homogeneous of degree r and H is homogeneous of degree r — 1. Recall
F(x1,...,25) = 0. Hence zsH(x1,...,z5) € t"M. But x4 is M/t"M-regular.
Hence H(z1,...,x5) € "M C q"M. So by induction on r, the coefficients of H lie
in M. Thus it suffices to see that the coefficients of G lie in qM.

Since H (z1,...,2s) € t" M, there is a homogeneous polynomial H'(X1,..., Xs_1)
of degree r with H'(xq,...,25-1) = H(z1,...,xs). Set

G/(Xl, ce ,Xsfl) = G(Xh N ,X371> + LL'SH/(Xh .. .,XS,]_).

Then G’ has degree r, and G'(x1,...,2x5—1) = 0. So the coefficients of G’ lie in tM
by induction on s. So the coefficients of G lie in qM. So the coefficients of F' lie in
qM. Thus zq,...,zs is M-quasi-regular. (I

Proposition (23.49). — Let R be a ring, M a module, and x1,...,2; € R. Set
M; := M/{x1,...,2;)M, and set q := (x1,...,2xs). Assume that x1,...,xs is M-
quasi-reqular and that M; is separated for the q-adic topology for 0 < i < s — 1.
Then x1,...,xs is M-reqular.

Proof: First, let’s see that x; is M-regular. Given m € M with x1m = 0, we
have to show m = 0. But (,~,q"M = 0 as M is separated. So we have to show
m € q"M for all » > 0. Induct on r. Note m € M = q°M. So assume m € q"M.
We have to show m € q" 1 M.

As m € q"M, there’s a homogeneous polynomial F € M[Xy,..., X] of degree
r with F(z1,...,25) = m. Consider the map ¢,: (M/qM)[X1,..., X] = Gq(M)
of (21.11.1), where the X; are variables. As z1,...,zs is M-quasi-regular, ¢ is
bijective. But xym = 0. Hence X3 F' has coefficients in qM. But X1 F and F have
the same coefficients. Thus m € q"*1M. Thus x; is M-regular.

Suppose s > 2. Induct on s. Set q; := (z3,...,zs). Then (4.21) yields
My /g1 My, = M/qM. Thus My /q1 My # 0. Next, form this commutative diagram:

(M/aM)[X1, ..., Xs] —2 Go(M)

,,T Tw

bs—
(Ml/qlMl)[X27 s 7Xs] — GCI1(M1)
where ¢ is the inclusion and 1 is induced by the inclusions q] C q" for » > 0. As ¢
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and ¢y are injective, so is ¢s_1. Thus zo, ..., x4 is Mi-quasi-regular.

Set My ; :== My /(xa,...,x;)M;y for 1 <i <s. Then My, = M; by (4.21) again.
Also q;1 M, ; = qM;. So M, ; is separated for the q;-adic topology for 1 <7 < s—1.
Hence zo, ..., x5 is Mj-regular by induction on s. Thus z4,...,xs is M-regular. [

Theorem (23.50). — Let R be a ring, M a Noetherian semilocal module, and
X1,...,2Ts a sop for M. Set q:= (x1,...,x5). Then these conditions are equivalent:
(1) e(q,M) =e(M/qM) . (2) x1,...,zs 18 M-quasi-regular.

(3) x1,...,xzs is M-regular. (4) M is Cohen—Macaulay.

Proof: First, (1) and (2) are equivalent by (21.12).

Second, (3) implies (2) by (23.48). Conversely, fix i. Set N := (zq,...,2;)M.
Set M’ := M/N and R’ := R/ Ann(M’). Then rad(R’) = rad(M’)/ Ann(M’) by
(4.1.1). But Ann(M’) D Ann(M); so rad(M’) D rad(M). But rad(M) D q. Hence
qR’ C rad(R’). Hence M’ is separated for the g-adic topology by (18.35). Thus
owing to (23.49), (2) implies (3). Thus (2) and (3) are equivalent.

Third, (4) implies (3) by (23.38). Conversely, assume (3). Then s < depth(M).
But depth(M) < dim(M) by (23.5)(3). Also, as x1,...,zs is a sop, dim(M) = s
by (21.4). Thus (4) holds. Thus (3) and (4) are equivalent. O

D. Appendix: Exercises

Exercise (23.51) . — Let R be a ring, M a module, and z1,...,z, € R. Set
a:= (x1,...,2,) and assume M/aM # 0. For all p € Supp(M)(\V(a), assume
x1/1,...,2,/1 is My-regular. Prove x,...,x, is M-regular.

Exercise (23.52) . — Let R be a ring, M a Noetherian module, z1,...,z, an
M-sequence in rad(M), and o a permutation of 1,...,n. Prove that z,1,...,Zon
is an M-sequence too; first, say o just transposes 7 and ¢ + 1.

Exercise (23.53) . — Let R be a ring, a an ideal, and M a Noetherian module.
Let z1,...,x, be an M-sequence, and nq,...,n, > 1. Prove these two assertions:
(1) z7,..., 2" is an M-sequence. (2) depth(a, M) = depth(y/a, M).

Exercise (23.54) . — Let R be aring, a an ideal, M a nonzero Noetherian module,
x € R. Assume a C z.div(M) and a+ (z) C rad(M). Show depth(a+ (z), M) < 1.

Exercise (23.55) . — Let R be a ring, a an ideal, M a nonzero Noetherian module,
x € R. Set b := a+(z). Assume b C rad(M). Show depth(b, M) < depth(a, M)+1.

Exercise (23.56) . — Let R be a ring, M a nonzero Noetherian module. Given
any proper ideal a, set c(a, M) := min{dim M, | p € Supp(M/aM)}. Prove M is
Cohen—Macaulay if and only if depth(a, M) = c(a, M) for all proper ideals a.

Exercise (23.57) . — Prove that a Noetherian local ring A of dimension r > 1 is
regular if and only if its maximal ideal m is generated by an A-sequence. Prove
that, if A is regular, then A is Cohen—Macaulay and universally catenary.

Exercise (23.58) . — Let R be a ring, and M a nonzero Noetherian semilocal
module. Set m := rad(M). Prove: (1) M is a nonzero Noetherian semilocal R-

— —~ —~

module, and m = rad(M); and (2) depthp(M) = depthy (M) = depthz(M).
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Exercise (23.59) . — Let A be a DVR, t a uniformizing parameter, X a variable.
Set P := A[X]. Set my := (1 —tX) and my := (t, X). Prove P is Cohen-Macaulay,
and each m; is maximal with ht(m;) = i.

Set S; ;=P —m; and T := S, N S,. Set B:=T"!'P and n; := m; B. Prove B is
semilocal and Cohen—Macaulay, n; is maximal, and dim(By,) = .

Exercise (23.60) . — Let R be a ring, M a nonzero Noetherian semilocal module,
and x1,...,T, € rad(M). For all 4, set M; := M/(zx1,...,z;)M. Assume that
depth(M) = dim(M) and dim(M,,,) = dim(M) —m. For all ¢, show z1,...,z; form
an M-sequence, and depth(M;) = dim(M;) = dim(M) — .

Exercise (23.61) . — Let k be an algebraically closed field, P := k[X7,...,X,] a
polynomial ring, and Fy,...,F,, € P. Set 2 := (Fy,...,F,,). For all i,j, define
O0F;/0X; € P formally as in (1.18.1). Let 2’ be the ideal generated by 2 and
all the maximal minors of the m by n matrix (0F;/0X;). Set R := P/2 and
R := P/2'. Assume dim R = n — m. Show that R is Cohen—Macaulay, and that
R is normal if and only if either " =0 or dim R’ <n —m — 2.

Exercise (23.62) . — Let & be a field, P := k[[X, Y]] the formal power series ring.
Set M := (X,Y) and C :=Y? — X3, Given a € k, set L :=Y —aX. Show:
(1) Set R := P/{C). Then R is Cohen—Macaulay, dim(R) = 1, and e(9, R) = 2.
(2) Set R := P/(C,L). Then R’ is Cohen-Macaulay and dim(R’) = 0. Also,
e, R)=2ifa#0,and e, R)=3ifa=0.

Exercise (23.63) . — In the setup of (21.44), assume p > 2, and show that
S = R®g L, that both R and S are domains, and that R is normal, but S isn’t.
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24. Dedekind Domains

Dedekind domains are defined as the 1-dimensional normal Noetherian do-
mains. We prove they are the Noetherian domains whose localizations at nonzero
primes are discrete valuation rings. Next we prove the Main Theorem of Classi-
cal Ideal Theory: in a Dedekind domain, every nonzero ideal factors uniquely into
primes. Then we prove that a normal domain has a module-finite integral closure
in any finite separable extension of its fraction field by means of the trace pairing
of the extension; in Chapter 26, we do without separability by means of the Krull-
Akizuki Theorem. We conclude that a ring of algebraic integers is a Dedekind
domain and that, if a domain is algebra finite over a field of characteristic 0, then
in the fraction field or in any algebraic extension of it, the integral closure is module
finite over the domain and is algebra finite over the field.

A. Text

Definition (24.1). — A domain R is said to be Dedekind if it is Noetherian,
normal, and of dimension 1.

Example (24.2). — Examples of Dedekind domains include the integers Z, the

Gaussian integers Z[\/jl }, the polynomial ring k[X] in one variable over a field,

and any DVR. Indeed, those rings are PIDs, and every PID R is a Dedekind domain:

namely, R is of dimension 1 as every nonzero prime is maximal by (2.17); and R

is a UFD, so normal by Gauss’s Theorem, (10.21); and R is plainly Noetherian.
On the other hand, any local Dedekind domain is a DVR by (23.6).

Example (24.3). — Let d € Z be a square-free integer. Set R := Z + Zn where

(1++Vd)/2 ifd=1 (mod 4);
Vid if not.

Then R is the integral closure of Z in Q(v/d) by [3, (13.1.6), p. 384]; so R is normal
by (10.20). Also, dim(R) = dim(Z) by (15.23); so dim(R) = 1. Finally, R is
Noetherian by (16.10) as Z is so and as R := Z + Zn. Thus R is Dedekind.

Exercise (24.4) . — Let R be a domain, S a multiplicative subset.

(1) Assume dim(R) = 1. Prove dim(S~!R) = 1 if and only if there is a nonzero
prime p of R with pN .S = 0.

(2) Assume dim(R) > 1. Prove dim(R) = 1 if and only if dim(R,) = 1 for every
nonzero prime p of R.

Exercise (24.5) . — Let R be a Dedekind domain, and S a multiplicative subset.
Assume 0 ¢ S. Show that S~'R is Dedekind if there’s a nonzero prime p with
pNS =0, and that S~!R = Frac(R) if not.

Proposition (24.6). — Let R be a Noetherian domain, not a field. Then R is a
Dedekind domain if and only if Ry, is a DVR for every nonzero prime p.

Proof: If R is Dedekind, then R, is too by (24.5); so R, is a DVR by (23.6).
Conversely, suppose R, is a DVR for every nonzero prime p. Then, trivially, R
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satisfies (R1) and (S3); so R is normal by Serre’s Criterion (23.15). As R is not a
field, dim(R) > 1; hence, dim(R) = 1 by (24.4)(2). Thus R is Dedekind. O

Proposition (24.7). — In a Noetherian domain R of dimension 1, every ideal
a # 0 has a unique factorization a = qy - - - q, with the q; primary and their primes

p; distinct; further, {p1,...,p,} = Ass(R/a) and q; = aR,, N R for each i.

Proof: The Lasker—Noether Theorem, (18.19), yields an irredundant primary
decomposition a = [ q;. Say q; is p;-primary. Then by (18.17) the p; are distinct
and {p1,...,p} = Ass(R/a).

The g; are pairwise comaximal for the following reason. Suppose q; + q; lies in a
maximal ideal m. Now, p; := /q; by (18.3)(5); so p;"* C ¢, for some n; by (3.38).
Hence p;* C m. So p; C m by (2.25)(1).

But 0 # a C p;; hence, p; is maximal since dim(R) = 1. Therefore, p; = m.
Similarly, p; = m. Hence ¢ = j. Thus the g; are pairwise comaximal. So the
Chinese Remainder Theorem, (1.21)(4)(b), yields a = [[, g;.

As to uniqueness, let a = [] q; be any factorization with the q; primary and their
primes p; distinct. The p; are minimal containing a as dim(R) = 1; so the p; lie in
Ass(R/a) by (17.14). Conversely, given p € Ass(A/a), note p D a. So p D p; for
some i again by (3.38) and (2.25)(1). So p = p;. Thus Ass(4/a) = {p1,...,p}.

By the above reasoning, the ¢; are pairwise comaximal; so [[q; = ()q;. Hence
a = ()g; is an irredundant primary decomposition by (18.17). Thus the Second
Uniqueness Theorem, (18.22), plus (12.12)(3) give q, = aR,, N R. O

Theorem (24.8) (Main Theorem of Classical Ideal Theory). — Let R be a domain.
Assume R is Dedekind. Then every nonzero ideal a has a unique factorization into
primes . In fact, if v, denotes the valuation of Ry, then

a= Hpvp(“) where  vp(a) :=min{vy(a) |a €a}.

Proof: Using (24.7), write a = [] q; with the g; primary, their primes p; distinct
and unique, and q; = aR,, N R. Then R, is a DVR by (24.6). So (23.1.3) yields
aRyp, = p;"" Ry, with m; := min{ v, (a/s) | a € a and s € R—p; }. But v,,(1/s) = 0.
So vy, (a/s) = vy, (a). Hence m; := vy, (a). Now, p;** is primary by (18.11) as p; is

maximal; so p;"* Ry, N R = p;** by (18.20). Thus q; = p;"". O

Corollary (24.9). — A Noetherian domain R of dimension 1 is Dedekind if and
only if every primary ideal is a power of its radical.

Proof: If R is Dedekind, every primary ideal is a power of its radical by (24.8).

Conversely, given a nonzero prime p, set m := pR,. Then m # 0. So m # m? by
Nakayama’s Lemma (10.6). Take ¢ € m—m?2. Then m is the only prime containing
t, as dim(R,) = 1 by (24.4)(2). So m = /tR, by the Scheinnullstellensatz (3.14).
Thus (18.11) implies tR,, is m-primary.

Set q := tR, N R. Then q is p-primary by (18.20). So q = p™ for some n by
hypothesis. But qR, = tR, by (11.11)(1)(b). So tR, = m". But ¢ ¢ m?. So
n=1. So R, is a DVR by (23.6). Thus (24.6) implies R is Dedekind . O

Lemma (24.10) (Artin Character). — Let L be a field, G a group, o;: G — L*
distinct homomorphisms. Then the o; are linearly independent over L in the vector
space of set maps o: G — L under valuewise addition and scalar multiplication.
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Proof: Suppose there’s an equation .~ a;0; = 0 with nonzero a; € L. Take
m > 1 minimal. Now, o; # 0 as g;: = G — L*; so m > 2. Since o1 # 09, there’s
an x € G with o1(z) # o2(z). Then Y.", a;oi(x)oi(y) = Y iv, a;os(zy) = 0 for
every y € G since o; is a homomorphism.

Set b; 1= ai(l — O‘i(l‘)/dl(a?)). Then

it bioi =370 aioi — %(x) >ty aioi(z)o; = 0.
But b; = 0 and by # 0, contradicting the minimality of m. O
(24.11) (Trace). — Let L/K be a finite Galois field extension. Its trace is this:

tr: L — K by t1(2) =X cqa(r/x) o(@)
Indeed, tr(z) € K as 7(tr(z)) = tr(z) for all 7 € Gal(L/K).
Plainly, tr is K-linear. It is nonzero by (24.10) applied with G := L*.
Consider the symmetric K-bilinear Trace Pairing:
LxL—K by (z,y)— tr(zy). (24.11.1)

It is nondegenerate for this reason. As tr is nonzero, there is z € L with tr(z) # 0.
Now, given z € L™, set y := z/x. Then tr(zy) # 0, as desired.

Lemma (24.12). — Let R be a normal domain, K its fraction field, L/K a finite
Galois field extension, and x € L integral over R. Then tr(z) € R.

Proof: Let 2" +a;2" ' +---+a, = 0 be an equation of integral dependence for
x over R. Let 0 € Gal(L/K). Then

(ox)" 4+ ai(ox)" ' + -+ a, = 0;

so oz is integral over R. Hence tr(x) is integral over R, and lies in K. Thus
tr(z) € R since R is normal. O

Theorem (24.13) (Finiteness of integral closure). — Let R be a normal Noetherian
domain, K its fraction field, L/K a finite separable field extension, and R’ the
integral closure of R in L. Then R’ is module finite over R, and is Noetherian.

Proof: Let L; be the Galois closure of L/K, and R} the integral closure of R
in L. Let z1,...,2, € Ly form a K-basis. Using (11.30), write z; = y;/a; with
y; € R} and a; € R. Clearly, y1,...,y, form a basis of L;/K contained in R].

Let z1,...,x, form the dual basis with respect to the Trace Pairing, (24.11.1),
so that tr(z;y,) = 6;;. Given b € R, write b =) ¢;z; with ¢; € K. Fix j. Then

tr(by;) = tr(zi cixiyj) =), citr(zy;) =¢; for each j.

But by; € R}. Soc; € R by (24.12). Thus R’ C ) Rx;. Since R is Noetherian, R’
is module finite over R by definition, and so is Noetherian owing to (16.15). O

Corollary (24.14). — Let R be a Dedekind domain, K its fraction field, L/K a
finite separable field extension. Then the integral closure R’ of R in L is Dedekind.

Proof: First, R’ is module finite over R by (24.13); so R’ is Noetherian by
(16.15). Second, R’ is normal by (10.20). Finally, dim(R’) = dim(R) by (15.23),
and dim(R) = 1 as R is Dedekind. Thus R’ is Dedekind. O

Theorem (24.15). — The ring of all algebraic integers in any finite field extension
of Q is a Dedekind domain.
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Proof: By (24.2), Z is a Dedekind domain; whence, so is its integral closure in
any field that is a finite extension of Q by (24.14). O

Example (24.16). — The ring R of all algebraic integers in C is non-Noetherian,
as the ascending chain (v2) S (V2) G (V2) S --- doesn’t stabilize. So R isn’t
Dedekind, although R is normal, and dim(R) =1 by (15.23) as R/Z is integral.

Theorem (24.17) (Noether’s Finiteness of Integral Closure). — Let k be a field of
characteristic 0, and R an algebra-finite domain over k. Set K := Frac(R). Let
L/K be a finite field extension (possibly L = K ), and R’ the integral closure of R

i L. Then R’ is module finite over R and is algebra finite over k.

Proof: By the Noether Normalization Lemma, (15.1), R is module finite over
a polynomial subring P. Then P is normal by Gauss’s Theorem, (10.21), and
Noetherian by the Hilbert Basis Theorem, (16.10); also, L/ Frac(P) is a finite field
extension, which is separable as k is of characteristic 0. Thus R’ is module finite
over P by (24.13), and so R’ is plainly algebra finite over k. O

(24.18) (Other cases). — In (24.14), even if L/K is inseparable, the integral
closure R’ of R in L is still Dedekind; see (26.14).

However, Akizuki constructed an example of a DVR R and a finite inseparable
extension L/Frac(R) such that the integral closure of R is a DVR, but is not
module finite over R. The construction is nicely explained in [17, Secs.9.4(1) and
9.5]. Thus separability is a necessary hypothesis in (24.13).

Noether’s Theorem, (24.17), remains valid in positive characteristic, but the
proof is more involved. See [6, (13.13), p.297].

B. Exercises
Exercise (24.19) . — Let R be a Dedekind domain, and a, b, ¢ ideals. By first
reducing to the case that R is local, prove that

an(b+c¢)=(anb)+ (anc),

at+(bNc)=(a+b)N(a+c).
Exercise (24.20) . — Let R be a Dedekind domain; z1,...,2, € R; and ai,...,a,
ideals. Prove that the system of congruences x = x; mod a; for all ¢ has a solution
z € R if and only if z; = z; mod (a; + a;) for ¢ # j. In other words, prove the
exactness (in the middle) of the sequence of R-modules

n P
R % @D R/ai — D, R/(ai +a5)

where ¢(y) is the vector of residues of y in the R/a; and where ¢ (y1,...,yn) is the
vector of residues of the y; — y; in R/(a; + a;).

Exercise (24.21) . — Prove that a semilocal Dedekind domain A is a PID. Begin
by proving that each maximal ideal is principal.

Exercise (24.22) . — Let R be a Dedekind domain, and a a nonzero ideal. Prove
(1) R/a is a PIR, and (2) a is generated by two elements.
Exercise (24.23) . — Let R be a Dedekind domain, and M a finitely generated

module. Assume M is torsion; that is, T(M) = M. Show M ~ Zin/pzw for
unique nonzero primes p; and unique n;; > 0.
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Exercise (24.24) . — Let R be a Dedekind domain; X a variable; F, G € R[X].
Show ¢(FG) = ¢(F)c(G).

Exercise (24.25) . — Let k be an algebraically closed field, P := k[X1,...,X,] a
polynomial ring, and Fy,...,F,, € P. Set B := (F1,..., Fy,). For all i,j, define
O0F;/0X; € P formally as in (1.18.1). Let 2 be the ideal generated by 3 and all
the n —1 by n—1 minors of the m by n matrix (0F;/0X;). Set R := P/9. Assume
R is a domain of dimension 1. Show R is Dedekind if and only if 1 € 2(.
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25. Fractional Ideals

A fractional ideal is defined to be a submodule of the fraction field of a domain.
A fractional ideal is called invertible if its product with another fractional ideal is
equal to the given domain. We characterize the invertible fractional ideals as those
that are nonzero, finitely generated, and principal locally at every maximal ideal.
We prove that, in a Dedekind domain, any two nonzero ordinary ideals have an
invertible fractional ideal as their quotient.

We characterize Dedekind domains as the domains whose ordinary ideals are,
equivalently, all invertible, all projective, or all flat of finite rank. Further, we
prove a Noetherian domain is Dedekind if and only if every torsionfree module is
flat. Finally, we prove the ideal class group is equal to the Picard group; the
former is the group of invertible fractional ideals modulo those that are principal,
and the latter is the group, under tensor product, of isomorphism classes of modules
local free of rank 1.

A. Text

Definition (25.1). — Let R be a domain, and set K := Frac(R). We call an R-
submodule M of K a fractional ideal. We call M principal if there is an z € K
with M = Rzx.

Given another fractional ideal IV, form these two new fractional ideals:

MN:={Yzy |zicMandy; e N} and (M:N):={z€K|zNCM}.
We call them the product of M and N and the quotient of M by N.

Exercise (25.2) . — Let R be a domain, M and N nonzero fractional ideals. Prove
that M is principal if and only if there exists some isomorphism M ~ R. Construct
the following canonical surjection and canonical isomorphism:

T M®N —» MN and a: (M:N)—=5 Hom(N,M).

Proposition (25.3). — Let R be a domain, and K := Frac(R). Consider these
finiteness conditions on a fractional ideal M :

(1) There exist ordinary ideals a and b with b # 0 and (a:b) = M.
(2) There exists an x € K* with tM C R.

(3) There exists a nonzero x € R with xM C R.

(4) M is finitely generated.

Then (1), (2), and (3) are equivalent, and they are implied by (4). Further, all four
conditions are equivalent for every M if and only if R is Noetherian.

Proof: Assume (1) holds. Take any nonzero x € b. Given m € M, clearly
xm € a C R; so M C R. Thus (2) holds.

Assume (2) holds. Write = a/b with a,b € R and a,b # 0. Then aM C bR C
R. Thus (3) holds.

If (3) holds, then zM and xR are ordinary, and M = (zM : xR); thus (1) holds.

Assume (4) holds. Say y1/x1,...,yn/xn € K™ generate M with x;,y; € R. Set
@ :=[];. Then x # 0 and M C R. Thus (3) holds.
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Assume (3) holds and R is Noetherian. Then M C R. So zM is finitely
generated, say by y1,...,yn. Then y1/x,...,y,/x generate M. Thus (4) holds.

Finally, assume all four conditions are equivalent for every M. If M is ordinary,
then (3) holds with = := 1, and so (4) holds. Thus R is Noetherian. O

Lemma (25.4). — Let R be a domain, M and N fractional ideals. Let S be a
multiplicative subset. Then

STHMN) = (ST'M)(S™IN) and S'(M:N)c (S™*M:S'N),
with equality if N is finitely generated.

Proof: Given z € S™Y(MN), write z = (3. m;n;)/s with m; € M, with n; € N,
and with s € S. Then z = Y_(m;/s)(n;/1), and so z € (S™*M)(S~'N). Thus
STHMN) c (SIM)(S7IN).

Conversely, given x € (ST!M)(S7IN), say x = > (m;/s;)(n;/t;) with m; € M
and n; € N and s;,t; € S. Set s:=]]s; and ¢ := []¢;. Then

x =Y (myn;/sit;) =Y min! /st € STYMN)
with m}; € M and n, € N. Thus S~ (MN) D (S™1M)(S71N), so equality holds.

Given z € S7Y(M : N), write 2 = x/s with z € (M : N) and s € S. Given
y € STIN, write y = n/t withn € N andt € S. Then z-n/t = xn/st and zn € M
and st € S. So z € (S™'M : S7IN). Thus S™'(M : N) C (S~'M : S~IN).

Conversely, say N is generated by ny,...,n,. Given z € (S™'M : STIN), write
zn;/1 = m;/s; with m; € M and s; € S. Set s := [[s;. Then sz-n; € M. So
sz € (M : N). Hence z € S™!(M : N), as desired. O

Definition (25.5). — Let R be a domain. We call a fractional ideal M locally
principal if, for every maximal ideal m, the localization M, is principal over Ry,.

Exercise (25.6) . — Let R be a domain, M and N fractional ideals. Prove that
the map m: M @ N — MN of (25.2) is an isomorphism if M is locally principal.

(25.7) (Invertible fractional ideals). — Let R be a domain. A fractional ideal M
is said to be invertible if there is some fractional ideal M ~! with MM~ = R.
For example, a nonzero principal ideal Rx is invertible, as (Rz)(R-1/x) = R.

Proposition (25.8). — Let R be a domain, M an invertible fractional ideal. Then
M~ is unique; in fact, M~ = (R: M).

Proof: Clearly M~! C (R: M) as MM~ = R. But, if z € (R : M), then
r-1€e(R: M)MM~tC M~ sox € M. Thus (R: M) C M~ as desired. O
Exercise (25.9) . — Let R be a domain, M and N fractional ideals. Show:

(1) Assume N is invertible. Then (M : N) = M - N~ 1.

(2) Both M and N are invertible if and only if their product M N is. If so, then

(MN)~' = N-1M1.
Lemma (25.10). — An invertible ideal is finitely generated and nonzero.
Proof: Let R be the domain, M the ideal. Say 1 = > m;n; with m; € M and

n; € M~ Let m € M. Then m = > mymn;. But mn; € R as m € M and
n; € M~1. So the m; generate M. Trivially, M # 0. |

Lemma (25.11). — Let A be a local domain, M a fractional ideal. Then M is
invertible if and only if M is principal and nonzero.
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Proof: Assume M is invertible. Say 1 = Y m;n; with m; € M and n, € M~
As Ais local, A — A* is an ideal. So there’s a j with m;n; € A*. Let m € M.
Then mn; € A. Set a := (mn;)(m;n;)~' € A. Then m = am;. Thus M = Am;.

Conversely, if M is principal and nonzero, then it’s invertible by (25.7). 0

Exercise (25.12) . — Let R be a UFD. Show that a fractional ideal M is invertible
if and only if M is principal and nonzero.

Theorem (25.13). — Let R be a domain, M a fractional ideal. Then M is invert-
ible if and only if M is finitely generated, nonzero, and locally principal.

Proof: Say MN = R. Then M is finitely generated and nonzero by (25.10).
Let S be a multiplicative subset. Then (S71M)(S7!N) = S~1R by (25.4). Let m
be a maximal ideal. Then, therefore, My, is an invertible fractional ideal over Ry,.
Thus My, is principal by (25.11), as desired.

Conversely, set a := M(R : M) C R. Assume M is finitely generated. Then
(25.4) yields ay, = Mu(Rm @ My). In addition, assume M, is principal and
nonzero. Then (25.7) implies My, is invertible. Hence (25.8) yields aym = Ry.
Thus (13.53) yields a = R, as desired. O

Theorem (25.14). — Let R be a Dedekind domain, a, b nonzero ordinary ideals,
M := (a:b). Then M is invertible, and has a unique factorization into powers of
primes p: if v, denotes the valuation of Ry, and if p* := (p~1)™" when v < 0, then
M= Hp”"(M) where vy (M) := min{ v, (z) |z € M }.

Further, vy(M) = min{vy(z;)} if the x; generate M.

Proof: First, R is Noetherian. So (25.3)(1)=(4) yields that M is finitely gen-
erated and that there is a nonzero x € R with xM C R. Also, each R, is a DVR
by (24.6). So xM,, is principal by (23.1.3). Thus M is invertible by (25.13).

The Main Theorem of Classical Ideal Theory, (24.8), yields 2 M = [ pv»@M)
and 2R = [[p*» ). But vy(zM) = vy (x) + vy(M). Thus (25.9) yields

M = (zM : zR) = Hp”v(l)‘*‘vw(M) i Hp—%(l) - Hpvp(M).
Further, given z € M, say x = .- ; a;x; with a; € R. Then (23.1.1) yields
vp(x) > min{vy (a;z;)} > minfuy (2;)}
by induction on n. Thus v, (M) = min{v,(x;)}. O
Exercise (25.15) . — Show that it is equivalent for a ring R to be either a PID, a
1-dimensional UFD, or a Dedekind domain and a UFD.

(25.16) (Invertible modules). — Let R be an arbitrary ring. We call a module M
invertible if there is another module N with M ® N ~ R.

Up to (noncanonical) isomorphism, N is unique if it exists: if N'® M ~ R, then
N=R@N~(NaoM)@N=N@(MxN)~N @R=N"
Exercise (25.17) . — Let R be a ring, M an invertible module. Prove that M is

finitely generated, and that, if R is local, then M is free of rank 1.
Exercise (25.18) . — Show these conditions on an R-module M are equivalent:

(1) M is invertible.
(2) M is finitely generated, and My, ~ Ry, at each maximal ideal m.
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(3) M is locally free of rank 1.
Assuming these conditions hold, show that M ® Hom(M, R) = R.

Proposition (25.19). — Let R be a domain, M a fractional ideal. Then the fol-
lowing conditions are equivalent:

(1) M is an invertible fractional ideal.
(2) M is an invertible abstract module.
(3) M is a nonzero projective abstract module.

Proof: Assume (1). Then there’s N with M N = R. But M is locally principal
by (25.13). So (25.6) yields M ® N = MN. So M ® N = R. Thus (2) holds.

If (2) holds, then M is locally free of rank 1 by (25.18); so (13.15) yields (3).

Finally, assume (3). By (5.16), there’s an M’ with M @& M’ ~ R®A. Let
p: R® — M be the projection, and set x) := p(ey) where {ey} en is the standard
basis. Define ay: M — R®A — R to be the composition of the injection with the
projection « on the Ath factor. Then given x € M, we have a)(z) = 0 for almost
all X and @ = ), ax(w)y.

Fix a nonzero y € M. For A € A, set ¢y := %a)\(y) € Frac(R). Set N :=>_ Rqy.
Given any nonzero x € M, say x = a/b and y = ¢/d with a,b,c,d € R. Then
a,c € M; so aday(y) = ax(ac) = beay(z). So xgn = ax(z) € R. Thus M - N C R.
But y =Y ax(y)yr; so 1 => yagr. Thus M - N = R. Thus (1) holds. O

Theorem (25.20). — Let R be a domain. Then the following are equivalent:

(1) R is a Dedekind domain or a field.

(2) Every nonzero ordinary ideal a is invertible.

(3) Every nonzero ordinary ideal a is projective.

(4) Every nonzero ordinary ideal a is finitely generated and flat.

Proof: Assume R is not a field; otherwise, (1)—(4) hold trivially.

If R is Dedekind, then (25.14) yields (2) since a = (a : R).

Assume (2). Then a is finitely generated by (25.10). Thus R is Noetherian. Let
p be any nonzero prime of R. Then by hypothesis, p is invertible. So by (25.13),
p is locally principal. So Ry is a DVR by (23.6). Hence R is Dedekind by (24.6).
Thus (1) holds. Thus (1) and (2) are equivalent.

By (25.19), (2) and (3) are equivalent. But (2) implies that R is Noetherian by
(25.10). Thus (3) and (4) are equivalent by (16.15) and (13.15). O

Theorem (25.21). — Let R be a Noetherian domain, but not a field. Then R is
Dedekind if and only if every torsionfree module is flat.

Proof: (Of course, as R is a domain, every flat module is torsionfree by (9.35).)

Assume R is Dedekind. Let M be a torsionfree module, m a maximal ideal.
Let’s see that My, is torsionfree over Ry,. Let z € Ry be nonzero, and say z = /s
with 2,5 € R and s ¢ m. Then pu,: M — M is injective as M is torsionfree. So
po: My — My is injective by the Exactness of Localization. But pu,,s = piapi1ys
and fi1 /5 is invertible. So p,/, is injective. Thus My, is torsionfree.

Since R is Dedekind, Ry is a DVR by (24.6), so a PID by (24.1). Hence My,
is flat over Ry, by (9.35). But m is arbitrary. Thus by (13.12), M is flat over R.

Conversely, assume every torsionfree module is flat. In particular, every nonzero
ordinary ideal is flat. But R is Noetherian. Thus R is Dedekind by (25.20). O
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(25.22) (The Picard Group). — Let R be a ring. We denote the collection of
isomorphism classes of invertible modules by Pic(R). By (25.17), every invertible
module is finitely generated, so isomorphic to a quotient of R™ for some integer n.
Hence, Pic(R) is a set. Further, Pic(R) is, clearly, a group under tensor product
with the class of R as identity. We call Pic(R) the Picard Group of R.

Assume R is a domain, not a field. Set K := Frac(R). Given an invertible
abstract module M, we can embed M into K as follows. Recall Sy := R — 0.
Form the canonical map M — Sy ' M. Tt is injective owing to (12.12)(3)(a) if the
multiplication map p,: M — M is injective for all x € Sy. Let’s prove it is.

Given a maximal ideal m, note My, ~ Ry, by (25.18)(1)=(2). So pg: My — My
is injective. Therefore, p,: M — M is injective by (13.9). Thus M embeds
canonically into S M. Now, Sy LM is a localization of My, so is a 1-dimensional
K-vector space, again as My ~ Ry,. Choose an isomorphism S, "M ~ K. Tt yields
the desired embedding of M into K.

Hence, (25.19) implies M is also invertible as a fractional ideal.

The invertible fractional ideals N, clearly, form a group F(R). Sending an N
to its isomorphism class yields a map k: F(R) — Pic(R) by (25.19)(1)=(2). By
the above, k is surjective. The invertible fractional ideals N, clearly, form a group
F(R). Sending an N to its isomorphism class yields a map x: F(R) — Pic(R) by
(25.19)(1)=(2). By the above, & is surjective.

Further, & is a group homomorphism by (25.6). Its kernel is the group P(R)
of principal (fractional) ideals by (25.2) and, plainly, P(R) = K*/R*. We call
F(R)/P(R) the Ideal Class Group of R. Thus F(R)/P(R) = Pic(R); in other
words, the Ideal Class Group is canonically isomorphic to the Picard Group.

Every invertible fractional ideal is, by (25.13), finitely generated and nonzero, so
of the form (a : b) where a and b are nonzero ordinary ideals by (25.3). Conversely,
by (25.14) and (25.20), every fractional ideal of this form is invertible if and only
if R is Dedekind. In fact, then F(R) is the free Abelian group on the prime ideals.
Further, then Pic(R) = 0 if and only if R is UFD by (21.33) and (21.34), or
equivalently by (25.15), a PID. See [3, Ch. 13, pp. 383-408] for a discussion of the
case in which R is a ring of quadratic integers, including many examples where
Pic(R) # 0.

B. Exercises

Exercise (25.23) . — Let R be a Dedekind domain, S a multiplicative subset.
Prove M +— S™1M induces a surjective group map Pic(R) —» Pic(S!R).
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26. Arbitrary Valuation Rings

A valuation ring is a subring of a field such that the reciprocal of any element
outside the subring lies in it. We prove valuation rings are normal local domains.
They are maximal under domination of local rings; that is, one contains the
other, and the inclusion map is a local homomorphism. Given any domain, its
normalization is equal to the intersection of all the valuation rings containing it.
Given a 1-dimensional Noetherian domain and a finite extension of its fraction field
with a proper subring containing the domain, that subring too is 1-dimensional and
Noetherian; this is the Krull-Akizuki Theorem. So normalizing a Dedekind domain
in any finite extension of its fraction field yields another Dedekind domain.

A. Text

Definition (26.1). — A proper subring V of a field K is said to be a valuation
ring of K if, whenever z € K —V then 1/2 € V.

Proposition (26.2). — Let V be a valuation ring of a field K, and set
m:={1/z]|z€ K-V}U{0}.
Then V' is local, m is its maximal ideal, and K is its fraction field.

Proof: Plainly m = V —V*. Let’s show m is an ideal. Take a nonzero a € V' and
nonzero z,y € m. Suppose ax ¢ m. Then ax € V*. So a(l/ax) € V. So 1/z € V.
So x € V>, a contradiction. Thus ax € m. Now, by hypothesis, either x/y € V or
y/r € V. Say y/x € V. Then 1 + (y/z) € V. Sox +y = (1 + (y/z))x € m. Thus
m is an ideal. Hence V is local and m is its maximal ideal by (3.5). Finally, K is
its fraction field, because whenever z € K — V, then 1/z € V. O

Exercise (26.3) . — Prove that a valuation ring V' is normal.

Lemma (26.4). — Let R be a domain, a an ideal, K := Frac(R), and x € K*.
Then either 1 ¢ aR[z] or 1 ¢ aR[1/x].

Proof: Assume 1 € aR[z] and 1 € aR[1/z]. Then there are equations
l=ay+---+apz" and 1=byg+---+b,/2™ withall a;b;€a.
Assume n, m minimal and m < n. Multiply through by 1 — by and a,x™, getting
1—bg=(1—-bo)ag+ -+ (1 —by)az™ and

(1 —=bg)apz™ = anbr1z™ Vot anby, ™™,
Combine the latter equations, getting
1—bp=(1—bp)ag+---+ (1 — bo)an,lzzc"_1 +anbiz" N+ anbp ™.

Simplify, getting an equation of the form 1 = ¢+ - - +c¢,_12" ! with ¢; € a, which
contradicts the minimality of n. (I

(26.5) (Domination). — Let A, B be local rings, and m, n their maximal ideals.
We say B dominates A if B D A and nN A = m; in other words, the inclusion
map ¢: A — B is a local homomorphism.
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Proposition (26.6). — Let K be a field, A a local subring. Then A is dominated
by a valuation ring V' of K with algebraic residue field extension.

Proof: Let m be the maximal ideal of A. There is an algebraic closure 2 of A/m
by (14.13). Form the set 8 of pairs (R, o) with A C R C K and 0: R — Q an
extension of the quotient map A — A/m. Order 8 as follows: (R, o) < (R, o') if
R C R and ¢/|R = 0. Given a totally ordered subset {(Rx, oa)}, set B := J Ry
and define 7: B — Q by 7(x) := ox(z) if z € Ry. Plainly 7 is well defined, and
(B, 7) € 8. Thus by Zorn’s Lemma, 8 has a maximal element, say (V, p).

Set M := Ker(p). Let’s see that V is local with 9t as maximal ideal. Indeed,
V C Vi and p extends to Vi as p(V —91) C Q@*. Thus maximality yields V' = Viy.

Let’s see that V is a valuation ring of K. Given z € K, set V' := V[xz]. First,
suppose 1 ¢ MV, Let’s see x € V. Indeed, MV lies in a maximal ideal M’ of V.
So M NV DM, but 1 ¢ M. SoM NV =M. Set k:=V/M and k' := V'/I.
Then k' = k[a'] where 2’ is the residue of z. But k' is a field, not a polynomial
ring. So 2’ is algebraic over k. Thus (10.18)(2)=-(1) yields k’/k is algebraic.

Let p: k — Q be the embedding induced by p. Then p extends to an embedding
Pk — Q by (14.12). Composing with the quotient map V' — k' yields a
map p': V! — Q that extends p. Thus (V', p) € §, and (V', p') > (V, p). By
maximality, V =V’. Thus z € V.

Similarly, set V" := V[1/x]. Then 1 ¢ IMV” implies 1/z € V. But by (26.4),
either 1 ¢ MV’ or 1 ¢ MV, Thus either x € V or 1/x € V. Thus V is a valuation
ring of K. But (V, p) € 8. Thus V dominates A.

Finally, kK — Q. But Q is an algebraic closure of A/m, so algebraic over A/m.
Hence k is algebraic over A/m too. Thus V is as desired. g

Theorem (26.7). — Let R be any subring of a field K. Then the integral closure R
of R in K is the intersection of all valuation rings V of K containing R. Further,
if R is local, then the V' dominating R with algebraic residue field extension suffice.

Proof: Every valuation ring V is normal by (26.3). So if V O R, then V D R.
Thus (Ny5zV) 2 R.

To prove the opposite inclusion, take any € K — R. To find a valuation ring V'
with V D Rand « ¢ V, set y := 1/z. If 1/y € R]y], then for some n,

1y =apy™ +ay" ' +---+a, with ay€R.

Multiplying by 2" yields 2"*! — a,2™ —--- —ag = 0. So = € R, a contradiction.
Thus 1 ¢ yR[y]. So there is a maximal ideal m of R[y] containing y. Then
the composition R — R[y] — R[y]/m is surjective as y € m. Its kernel is m N R,
so m N R is a maximal ideal of R. By (26.6), there is a valuation ring V that
dominates R[y], with algebraic residue field extension; whence, if R is local, then
V also dominates R, and the residue field of R[y]y is equal to that of R. But y € m;
sox=1/y ¢V, as desired. O

(26.8) (Valuations). — We call an additive Abelian group I' totally ordered if
I has a subset I'y that is closed under addition and satisfies 'y U {0} LU —-I'y =T.
Given x,y € T', write x > y if x — y € I';.. Note that either x > y or x = y or
y > x. Note that, if £ > y, then x + z > y + z for any z € I.
Let V be a domain, and set K := Frac(V) and I := K*/V*. Write the group T
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additively, and let v: K* — T be the quotient map. It is a homomorphism:
v(zy) = v(z) + v(y). (26.8.1)

Set I'y := U(V — O) —0. Then I' is closed under addition. Plainly, V is a valuation
ring if and only if —I'y U {0} UT; =T, so if and only if " is totally ordered.

As a convention, set v(0) := co. Note that (26.8.1) remains valid.

Assume V is a valuation ring. Let’s prove that, for all z,y € K,

v(z +y) > min{v(z), v(y)}. (26.8.2)

Indeed, say v(xz) > v(y) and y # 0. Then z := 2/y € V. Soz+1 € V. So
v(z+1) > 0. But £ +y = (2 + 1)y. Thus

v(r+y) =v(z+1)+v(y) > v(y) = min{v(z),v(y)}.

Note that (26.8.1) and (26.8.2) are the same as (1) and (2) of (23.1).
Conversely, start with a field K, with a totally ordered additive Abelian group
I, and with a surjective homomorphism v: K* — T satisfying (26.8.2). Set

Vi={z e K* |v(z) >0} U{0}.

Then V is a valuation ring, and I' = K* /V*. We call such a v a valuation of K,
and I' the value group of v or of V.

For example, a DVR V of K is just a valuation ring with value group Z, since
any x € K* has the form x = ut™ with v € V*, with ¢ a uniformizing parameter,
and with n € Z.

Example (26.9). — Fix a totally ordered additive Abelian group I', and a field
k. Form the k-vector space R on the symbols X¢ for a € T as basis. Define
XXt := Xt and extend this product to R by linearity. Then R is a k-algebra
with X? = 1. We call R the group algebra of I.

Given z =Y 1, X% € (R —0), set

v(z) :=minfa |r, #0} €T and IT(z):= rv(x)X”(‘r) € (R—-0).

Given y € (R — 0), note that IT(z)IT(y) # 0 since R is a domain. Therefore,
IT(zy) = IT(2)IT(y). Thus R is a domain, and v(zy) = v(z) + v(y). Further, if
v(x + y) = a, then either v(z) < a or v(y) < a. Thus v(z + y) > min{v(z), v(y)}.

Set K := Frac(R). Extend v to v: K* — I by v(z/y) := v(z) — v(y). Plainly
v is well defined, surjective, and a group homomorphism. Further, for z,y € K*,
plainly v(x 4+ y) > min{v(z), v(y)}. Thus v is a valuation with group T

Set v(0) := o0 and R’ := {z € R | v(z) > 0} and p := {z € R | v(xz) > 0}.
Plainly, R’ is a ring, and p is a prime of R’. Further, Rj, is the valuation ring of v.

There are many choices for I' other than Z. Examples include the additive ratio-
nals, the additive reals, its subgroup generated by two incommensurate reals, and
the lexicographically ordered product of any two totally ordered Abelian groups.

Proposition (26.10). — Let v be a valuation of a field K, and 1, ..., x, € K with
n > 2. Set v(0) := oo and m := min{v(z;)}.

(1) If n =2 and if v(x1) # v(xa), then v(z1 + x2) = m.

(2) If x1+ -+ 2, =0, then m = v(z;) = v(x;) for some i #j.
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Proof: For (1), say v(z1) > v(z2); so v(zz) = m. Set z := z1/x3. Then
v(z) > 0. Also v(z + 1) > min{v(z), v(1)} > 0 and v(—z) = v(z) + v(-1) > 0.
Now,
0=v(l)=v(z4+1-2) >min{v(z+1), v(—2)} > 0.

Hence v(z + 1) = 0. But 21 + 22 = (2 + 1)xa. Thus v(z + 22) = v(z) = m.

For (2), suppose m = v(x1) but v(z;) > m for i > 2. Set x ;== x9+ -+ x,. By
induction, (26.8.2) yields v(z) > min;>o{v(z;)} > m. So v(z1 + ) = m by (1).
So v(0) = m < oo, a contradiction. Thus (2) holds. O

Exercise (26.11) . — Let V be a valuation ring. Prove these statements:
(1) Every finitely generated ideal a is principal.
(2) V is Noetherian if and only if V' is a DVR.

Lemma (26.12). — Let R be a 1-dimensional Noetherian domain, K its fraction
field, M a torsionfree module, and © € R nonzero. Then {(R/xR) < co. Further,
O M/xzM) < dimg (M ®g K)¢(R/xR), (26.12.1)

with equality if M is finitely generated.

Proof: Set r := dimg (M ®g K). If r = oo, then (26.12.1) is trivial; so we may
assume 7 < 00.

Given any module N, set Nk := So_lN with Sp := R—0. Recall Ny = N®r K.

First, assume M is finitely generated. Choose any K-basis mi/si,...,m;./s,
of Mg with m; € M and s; € Sp. Then my/1,...,m,/1 is also a basis. Define
an R-map a: R™ — M by sending the standard basis elements to the m;. Then
its localization ak is an K-isomorphism. But Ker(a) is a submodule of R", so
torsionfree. And Sy ' Ker(a) = Ker(ax) = 0. So Ker(a) = 0. Thus « is injective.

Set N := Coker(a). Then Ng =0, and N is finitely generated. Hence, Supp(N)
is a proper closed subset of Spec(R) by (13.4)(3). But dim(R) = 1 by hypothesis.
Hence, Supp(N) consists entirely of maximal ideals. So ¢(N) < oo by (19.4).

Similarly, Supp(R/zR) is closed and proper in Spec(R). So {(R/zR) < co.

Consider the standard exact sequence:

0N - N2y N N/aN -0 where N :=Ker(u,).

Apply Additivity of Length, (19.7); it yields ¢(N’) = ¢(N/zN).
Since M is torsionfree, u,: M — M is injective. Consider this commutative
diagram with exact rows:

0 =R %M —=N—=0
u{ uzl uzl
0 =R %M —N—=0
Apply the Snake Lemma (5.10). It yields this exact sequence:
0— N — (R/zR)" — M/xM — N/zN — 0.

Hence ((M/xM) = (((R/zR)") by additivity. But ¢((R/zR)") = r{(R/zR) also
by additivity. Thus equality holds in (26.12.1) when M is finitely generated.

Second, assume M is arbitrary, but (26.12.1) fails. Then M possesses a finitely
generated submodule M’ whose image H in M/xM satisfies ¢(H) > r{(R/zR).
Now, Mg D Mp; so r > dimg (M};). Therefore,

oM feM') > ((H) > r {(R/xR) > dimg (Mj) £(R/xR).
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However, together these inequalities contradict the first case with M’ for M. O

Theorem (26.13) (Krull-Akizuki). — Let R be a 1-dimensional Noetherian do-
main, K its fraction field, K' a finite extension field, and R' a proper subring of
K’ containing R. Then R’ is, like R, a 1-dimensional Noetherian domain.

Proof: Given a nonzero ideal a’ of R’, take any nonzero = € a’. Since K'/K is
finite, there is an equation a,z™ 4+ -+ 4+ a9 = 0 with a; € R and ag # 0. Then
ag € o’ N R. Further, (26.12) yields ¢(R/agR) < 0.

Plainly, R’ is a domain, so a torsionfree R-module. Also R’ ®r K = Sy 'R’ C K;
hence, dimg (R’ ® g K) < oco. Therefore, (26.12) yields £r(R’'/agR') < oo.

But a’/agR’ C R'/aoR’. So Lr(a’/agR’) < oo. So a'/agR’ is finitely generated
over R by (19.2)(3). Hence o' is finitely generated over R’. Thus R’ is Noetherian.

Set R” := R'/agR'. Plainly, £gsR" < {gR". So {rsR’" < oo. So, in R”, every
prime is maximal by (19.4). So if o’ is prime, then a’/agR’ is maximal, whence a’
maximal. So in R, every nonzero prime is maximal. Thus R’ is 1-dimensional. [

Corollary (26.14). — Let R be a 1-dimensional Noetherian domain, such as a
Dedekind domain. Let K be its fraction field, K' a finite extension field, and R’
the normalization of R in K'. Then R’ is Dedekind.

Proof: Since R is 1-dimensional, it’s not a field. But R’ is the normalization of
R. So R’ is not a field by (14.1). Hence, R’ is Noetherian and 1-dimensional by
(26.13). Thus R’ is Dedekind by (24.1). O

Corollary (26.15). — Let K'/K be a field extension, V' a valuation ring of K' not
containing K. Set V :=V'NK. ThenV is a DVR if V' is, and the converse holds
if K'/K is finite.

Proof: It follows easily from (26.1) that V is a valuation ring, and from (26.8)
that its value group is a subgroup of that of V’. Now, a nonzero subgroup of Z is
a copy of Z. Thus V is a DVR if V' is.

Conversely, assume V is a DVR, so Noetherian and 1-dimensional. Now, V' 2 K,
so V! C K'. Hence, V' is Noetherian by (26.13), so a DVR by (26.11)(2). O

B. Exercises

Exercise (26.16) . — Let V' be a domain. Show that V' is a valuation ring if and
only if, given any two ideals a and b, either a lies in b or b lies in a.

Exercise (26.17) . — Let V be a valuation ring of K, and V . C W C K a subring.
Prove that W is also a valuation ring of K, that its maximal ideal p lies in V', that
V/p is a valuation ring of the field W/p, and that W = Vj,.

Exercise (26.18) . — Let K be a field, 8 the set of local subrings ordered by
domination. Show that the valuation rings of K are the maximal elements of S.

Exercise (26.19) . — Let V be a valuation ring of a field K. Let ¢: V — R
and ¥: R — K be ring maps. Assume Spec(yp) is closed and ¢: V — K is the
inclusion. Set W :=¢(R). Show W =V.
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Exercise (26.20) . — Let ¢: R — R’ be a map of rings. Prove that, if R’ is
integral over R, then for any R-algebra C, the map Spec(¢®g C) is closed; further,
the converse holds if also R’ has only finitely many minimal primes. To prove
the converse, start with the case where R’ is a domain, take C to be an arbitrary
valuation ring of Frac(R’) containing ¢(R), and apply (26.19).

Exercise (26.21) . — Let V' be a valuation ring with valuation v: K* — I', and p
a prime of V. Set A := v(V;*). Prove the following statements:
(1) A and I'/A are the valuation groups of the valuation rings V/p and V.
(2) v(V —p) is the set of nonegative elements Asqg of A, and p =V — v~ 1As,.
(3) A is isolated in T'; that is, given « € A and 0 < 8 < a, also 3 € A.

Exercise (26.22) . — Let V be a valuation ring with valuation v: K* — I'. Prove
that p — v(V) is a bijection ~ from the primes p of V onto the isolated subgroups
A of I' and that its inverse is A — V — vt As.

Exercise (26.23) . — Let V be a valuation ring, such as a DVR, whose value group
I' is Archimedean; that is, given any nonzero «, 3 € I', there’s n € Z such that
na > . Show that V is a maximal proper subring of its fraction field K.

Exercise (26.24) . — Let R be a Noetherian domain, K := Frac(R), and L a finite
extension field (possibly L = K). Prove the integral closure R of R in L is the
intersection of all DVRs V of L containing R by modifying the proof of (26.7):
show y is contained in a height-1 prime p of R[y| and apply (26.14) to R[y],.
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Solutions (1.13) /(1.15) Rings and Ideals

1. Rings and ldeals

Exercise (1.13) . — Let ¢: R — R’ be a map of rings, «, a;, as ideals of R, and
b, by, by ideals of R’. Prove the following statements:
(1a) (a1 +ag)® =a$ +a5. (1b) (by + b2)° D b + bs.
(2a) (a1 Nag)® Ca®Na§.  (2b) (by Nby)® = b NBbS.
(3a) (ajaz)® = afas. (3b) (b1bg)c D bSbS.
(4a) (aq:02)¢ C (af:a§). (4b) (b :by)® C (b5 : bS).
)

Solution: For (1a), note a$ C (a1 + a2)®. So a§ + a5 C (a3 + az)¢. Conversely,
given z € (a; + az)°, there are a;; € a;, and y; € R’ with z =) (a1, + a2;j)y;. Then
z= a1;y; +y_ azy;. So z € af+a5. Thus (a; +az)® C af +a$. Thus (1a) holds.

For (1b), given b; € b¢ for ¢ = 1,2, note p(b;) € b;. But ¢(by + b2) = p(b1) +
©(b2). Hence ¢(by + ba) € by + ba. So by + by € (by + b2)¢. Thus (1b) holds.

For (2a), note a; Nag C a;. So (a3 Nag)® C af, Thus (2a) holds.

For (2b), note similarly (b1 Nby)¢ C b NbS. Conversely, given b € b§ N b, note
o(b) € by N by. Thus b € (b N b2)¢. Thus (2b) holds.

For (3a), note both (ajas)¢ and afa$ are generated by the products ajas with
a; € a;. Thus (3a) holds.

For (3b), given b; € b5 for i = 1,2, note p(b1b2) = ¢(b1)p(b2) € b1by. Hence
bi1by € (blbg)c. Thus (3b) holds.

For (4a), given x € (a; : as) and ay € as, note zas € a;. So p(zaz) € af.
But p(za2) = p(z)p(az). So p(x)p(az) € af. But the p(az) generate a§. So
w(x)ag C a$. So p(x) € (af : a§). But the p(z) generate (ay : az)®. So (4a) holds.

For (4b), given x € (by : b2)° and by € b§, note p(xb2) = @(x)p(bs) € by. So

aby € b§. Thus (4b) holds. O
Exercise (1.14) . — Let ¢: R — R’ be a map of rings, a an ideal of R, and b an
ideal of R’. Prove the following statements:

(1) Then a® S a and b C b.  (2) Then a®® = a® and b°° = b°.

(3) If b is an extension, then b¢ is the largest ideal of R with extension b.
(4) If two extensions have the same contraction, then they are equal.

Solution: For (1), given = € a, note ¢(z) = -1 € aR. So x € ¢ }(aR'),
or z € a®“. Thus a C a®. Next, p(p~'b) C b. But b is an ideal of R’. So
0(¢~t0)R' C b, or b°® C b. Thus (1) holds.

For (2), note a*® C a® by (1) applied with b := a¢. But a C a*® by (1); so
a¢ C a®®®. Thus a® = a®°. Similarly, b°¢ D b¢ by (1) applied with a := b¢. But
b C b by (1); so b°® C b°. Thus b°° = b°. Thus (2) holds.

For (3), say b = a®. Then b = a°*. But a°*® = a°® by (2). Hence b° has
extension b. Further, it’s the largest such ideal, as a®® D a by (1). Thus (3) holds.

For (4), say b = b5 for extensions b;. Then b¢ = b; by (3). Thus (4) holds. O
Exercise (1.15) . — Let R be a ring, a an ideal, X a set of variables. Prove:

(1) The extension a(R[X]) is the set a[X] of polynomials with coefficients in a.

(2) a(RX))NR=a.

Solution: For (1), use double inclusion. Given F € a(R[X]), say F =", a;F;
where a; € a and where F; =}, a;;M; with a;; € R and with M; a monomial in
the variables. Then I =3".(3", a;a;;)M; € a[X].

Conversely, given F' € a[X], say F' = ) a;M; with a; € a and M; a monomial
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in the variables. Then a;M; € a(R[X]). Thus F € a(R[X]). Thus (1) holds.
For (2), note that plainly a[X] N R = a. Thus (1) implies (2). O

Exercise (1.16) . — Let R be a ring, a an ideal, and X a set of variables. Set
P := R[X]. Prove P/aP = (R/a)[X].

Solution: Say X =: {X,}. Let x: R — R/a be the quotient map. By (1.3),
there is a unique ring map ¢: P — (R/a)[X] with ¢|R = x and ¢(X,) = X for
all A. As & is surjective, so is ¢. But Ker(p) consists of the polynomials whose
coefficients map to 0 under &, that is, lie in a. Hence Ker(yp) = aP by (1.15). Thus
¢ induces an isomorphism P/aP - (R/a)[X] by (1.5.1), as desired.

Alternatively, the two R-algebras are equal, as they have the same UMP: each is
universal among R-algebras R’ with distinguished elements z, and with aR’ = 0.
Namely, the structure map ¢: R — R’ factors through a unique map w: P — R’
such that 7(X,) = z, for all A by (1.3); then 7 factors through a unique map
P/aP — R’ as aR’ = 0 by (1.5). On the other hand, ¢ factors through a unique
map ¥: R/a — R’ as aR’ = 0 by (1.5); then ¢ factors through a unique map
(R/a)[X] — R’ such that 7(X) = x, for all A by (1.3). O

Exercise (1.17) . — Let R be aring, P := R[{X)}] the polynomial ring in variables
X, for A € A, and (z)) € R* a vector. Let T(zy): P — R denote the R-algebra
map defined by 7(,,)X, 1=z, for all p € A. Show:

(1) Any F € P has the form F =Y ag;,,. ;) (Xx, —xa,)" -+ (X, —x,)" for

unique a, .. ;) € R.

(2) Then Ker(m(,,)) = {F € P | F((z\)) 7O}f<{X>\—z,\}>.

(3) Then (s, ) mduces an isomorphism P/{({X) — zx}) => R.

(4) Given F € P, its residue in P/({X) — z5}) is equal to F((z.)).

(5) Let Y be a second set of variables. Then P[Y]/({Xy — xx}) =+ R[Y].

Solution: For (1), as in (1.8), let ¢(,,) be the R-automorphism of P defined
by Py Xy = Xy +xy, for all p € A, Say o) F =2 ag,,. i) X3, Xf\r; Note
the a(;, .. i) € R are unique. Also go(;lk)go(m)F = F'. Recall w@i) = ¢(—z,)- Thus
(1.3.1) with 7 := ", yields (1).

For (2), given F € P, note 7(,,)F = F((z)) by (1.3.1). Thus F € Ker(m(,,))
if and only if F((zx)) = 0. Now, if F = Y (X\ — z))F\ with F\ € P, then
F((zx)) =Y 0-Fx((zx)) = 0. Conversely, if F((zx)) =0, then a¢__ o) =0 in (1),
and so F' € ({Xx — x,}) by (1) again. Thus (2) holds.

For (3), note m(,,) is surjective as it’s an R-map. Thus (2) and (1.5.1) yield
(3).

For (4), again note m(,,)F = F((x)) by (1.3.1). Thus (3) yields (4).

For (5), set R’ := R[Y]. So P[Y] = R'[{X»}]. So (3) with R’ for R yields (4). O

Exercise (1.18) . — Let R be a ring, P := R[Xy, ..., X,] the polynomial ring in
variables X;. Given F =Y a, . ;)X{' --- Xi» € P, formally set

OF/0X; = ijau,. i X1 Xir/X; €P forj=1,...,n. (1.18.1)

Given (z1,...,2,) € R", set x 1= (21,...,%y), set a; := (0F/0X;)(x), and set
M= (X1 —21,...,Xp —xp). Show F = F(x)+ > a;(X; xj)+Gw1thG€9ﬁ2
First show that, if FF = (X; —x1)" -+ (X,, — x,,)", then 8F/8X =i F/(X;—x;).
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Solution: For any 4, note (X; — z;)" = E;:o (;)X;’x;ﬁ_” and

i -1 i i —1 i . i

Y (IpX P = 30 () XY ey = (X =)

Thus, if F = (X1 —z1)" -+ (X,, — z,)"™, then OF/0X,; = i;F/(X; — x;).
In general, by (1.17)(1), there are (unique) b, . ;) € R such that

F =3 bay i (X1 = 1) - (X = 20)"
Plainly, b,....0) = F(x). Moreover, by linearity, the first case yields

OF/0X; = ijbu, in)(X1 —20) -+ (X — )™ (X — ).
Thus (0F/0X;)(x) = b, ,....5,;) Where d;; is the Kronecker delta, as desired. [

Exercise (1.19) . — Let R be a ring, X a variable, F € P := R[X], and a € R.
Set F' := OF/0X; see (1.18.1). We call a a root of F if F'(a) = 0, a simple root
if also F'(a) # 0, and a supersimple root if also F’(a) is a unit.

Show that a is a root of F' if and only if F' = (X — a)G for some G € P, and if
so, then G is unique: that a is a simple root if and only if also G(a) # 0; and that
a is a supersimple root if and only if also G(a) is a unit.

Solution: By (1.17)(1), there are a; € R such that F = Y7 ja;(X — a)’. Set
G(X):=Y",a;(X —a)!. Then F(a) = ag. So a is a root if and only if ay = 0;
thus (if and) only if F' = (X — a)G(X).

Suppose F = (X —a)H. Then F(a) =0, or a is a root. So (X —a)(G—H) =0.
But X — a is monic. So G — H = 0. Thus G is unique.

Assume a is a root. Then F = F'(a)(X — a) + H with H € (X —a)? by (1.18).
But F = a1(X—a)+(X—a)? Y ,a;(X—a)2 So (F'(a)—a1)(X —a) € (X —a)?.
But F'(a) — a; € R. So F'(a) —a; = 0. But also G(a) = ay. Thus a is simple if
and only if G(a) # 0, and a is supersimple if and only if G(a) is a unit. O

Exercise (1.20) . — Let R be a ring, P := R[Xy,...,X,] the polynomial ring,
F € P of degree d, and F; := Xidi + alXidﬁ1 + --- a monic polynomial in X;
alone for all i. Find G, G; € P such that F = EZL:l F;G; + G where G; = 0 or
deg(G;) < d — d; and where the highest power of X; in G is less than d;.

Solution: By linearity, we may assume F' := X{"* --- X" If m; < d; for all 4, set
G; :=0and G := F, and we’re done. Else, fix ¢ with m; > d;, and set G; := F/Xg'i
and G := (—aledi*l —--+)G;. Plainly, F = F;G;+G and deg(G;)d—d;. Replace F
by G, and repeat from the top. The algorithm terminates because on each iteration,
deg(G) < deg(F). O

Exercise (1.21) (Chinese Remainder Theorem) . — Let R be a ring. Show:
(1) Let a and b be comaximal ideals; that is, a + b = R. Then
(a) ab=anb and (b) R/ab=(R/a) x (R/b).
(2) Let a be comaximal to both b and b’. Then a is also comaximal to bb’.

(3) Given m,n > 1, then a and b are comaximal if and only if a™ and b™ are.
(4) Let aq,...,a, be pairwise comaximal. Then:

(a) a; and ay---a, are comaximal;
(b) ey N---Na, =ag---ap;
(c) R/(ar---an) == [[(R/a;).
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(5) Find an example where a and b satisfy (1)(a), but aren’t comaximal.

Solution: For (1)(a), note that always ab £ anb. Conversely, a+b = R implies
r+y=1withz €aand y €b. Sogiven z € anb, we have z = xz + yz € ab.

For (1)(b), form the map R — R/a x R/b that carries an element to its pair of
residues. The kernel is a N b, which is ab by (1)(a). So we have an injection

¢: R/ab— R/a x R/b.

To show that ¢ is surjective, take any element (Z,7) in R/a x R/b. Say T and
are the residues of x and y. Since a+ b = R, we can find a € a and b € b such that
a+b=y—2x. Then p(x+a) = (Z,7), as desired. Thus ¢ is surjective, so bijective.

For (2), note R = (a +b)(a+b') = (a® + ba+ab’) +bb’ S a+bb' C R.

For (3), first assume a and b are comaximal. Then (2) implies a and b" are
comaximal by induction on n. Thus b™ and a™ are comaximal.

Alternatively, there are x € a and y € b with 1 = z + y. Thus the binomial
theorem yields 1 = (z +y)™™ ! = 2’ + 4/ with 2/ € a™ and 3’ € b", as desired.

Conversely, if a™ and b" are comaximal, then a and b are, as a” C a and b™ C b.

For (4)(a), assume a; and ag---a,_1 are comaximal by induction on n. By
hypothesis, a; and a,, are comaximal. Thus (2) yields (a).

For (4)(b) and (4)(c), again proceed by induction on n. Thus (1) yields

alﬂ(a2ﬂ~~ﬂan) :alﬂ(ag-'-an) = 0102 - 0p;
R/(a;---a,) = R/ay x R/(ag---a,) == H(R/ai). O

For (5), let k be a field, and X, Y variables. Take R := k[X,Y] and a := (X)
and b := (Y). Given f € (X) N (Y), note that every monomial of f contains
both X and Y, and so f € (X)(Y). Thus (1)(a) holds. But (X) and (Y") are not
comaximal, as both are contained in (X, Y).

Exercise (1.22) . — First, given a prime number p and a k > 1, find the idempo-
tents in Z/(p*). Second, find the idempotents in Z/(12). Third, find the number

of idempotents in Z/(n) where n = Hivzl p;* with p; distinct prime numbers.

Solution: First, let m € Z be idempotent modulo p*. Then m(m — 1) is divisible
by pF. So either m or m — 1 is divisible by p*, as m and m — 1 have no common
prime divisor. Hence 0 and 1 are the only idempotents in Z/(p*).

Second, since —3 + 4 = 1, the Chinese Remainder Theorem (1.21)(1)(b) yields

Z)(12y = Z/(3) x Z/{4).
Hence m is idempotent modulo 12 if and only if m is idempotent modulo 3 and
modulo 4. By the previous case, we have the following possibilities:

m=0 (mod3) and m=0 (mod 4);
m=1 (mod3) and m=1 (mod4);
m=1 (mod3) and m=0 (mod4);
m=0 (mod3) and m=1 (mod4)

Therefore, m =0, 1, 4, 9 (mod 12).

Third, for each i, the two numbers pj* ---p;“7' and p}* have no common prime
divisor. Hence some linear combination is equal to 1 by the Euclidean Algorithm.
So the principal ideals they generate are comaximal. Hence by induction on N, the
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Chinese Remainder Theorem yields

N
z/(m) =[] 2/ ).

So m is idempotent modulo n if and only if m is idempotent modulo p™ for all i;
hence, if and only if m is 0 or 1 modulo p™¢ for all ¢ by the first case. Thus there
are 2V idempotents in Z/(n). O

Exercise (1.23) . — Let R := R’ x R” be a product of rings, a C R an ideal. Show
a=a xa’ with o’ C R and o’ C R” ideals. Show R/a = (R'/d’) x (R"/a").

Solution: Set o’ := {2’ | (¢/,0) € a} and a” := {2” | (0,2”) € a}. Clearly,
o/ C R and a” C R” are ideals. Clearly,

ada x0+0xa’"=a xa".
The opposite inclusion holds, because if a > (z/,2"), then
a>s(2,2")-(1,0) = (2',0) and a> (2',2")-(0,1) = (0,2").

Finally, the equation R/a = (R/a’) x (R/a") is now clear from the construction of
the residue class ring. O

Exercise (1.24) . — Let R be a ring; e, e’ idempotents (see (10.23) also). Show:

(1) Set a:= (e). Then a is idempotent; that is, a® = a.

(2) Let a be a principal idempotent ideal. Then a = (f) with f idempotent.
(3) Set ¢” :=e+¢' —ee'. Then (e, ') = ("), and €” is idempotent.

(4) Let eq,...,e, be idempotents. Then (eq,...,e,) = (f) with f idempotent.
()

5) Assume R is Boolean. Then every finitely generated ideal is principal.

Solution: For (1), note a? = (e2) since a = (e). But e = e. Thus (1) holds.

For (2), say a = (g). Then a? = (¢2). But a> = a. So g = xg? for some x. Set
f = zg. Then f = x(xg?) = f?. Thus f is idempotent. Furthermore, f € a; so
(f)y Ca. And g = fg. Soa C (f). So a= (f). Thus (2) holds.

For (3), note (e”) C (e, €’). Conversely, ee” = €2 +ee’ —e?e’ = e+ee’ —ee’ = e.
By symmetry, e¢’e” = ¢€’. So (e, €’} C (") and €"? = ee” + e'e” —ec’e” = €. So
(e, €) = (") and €” is idempotent, as desired. Thus (3) holds.

For (4), if r = 2, appeal to (3). If r > 3, induct on r. Thus (4) holds.

For (5), recall that every element of R is idempotent. Thus (4) implies (5). O

Exercise (1.25) . — Let L be a lattice, that is, a partially ordered set in which
every pair x, y € L has a sup zVy and an inf £ Ay. Assume L is Boolean; that is:

(1) L has a least element 0 and a greatest element 1.
(2) The operations A and V distribute over each other; that is,

zA(yVz)=(xAy)V(@eAz) and zV(yAz)=(zVy A(zVz2).

(3) Each x € L has a unique complement 2’; that is, z Az’ =0 and zVa' = 1.

238



Solutions (1.26) / (1.26) Rings and Ideals

Show that the following six laws are obeyed:

rAz=z and zVz=uzx. (idempotent)

ztAN0=0, zAl=2 and zVvVl=1, 2v0==z. (unitary)
zAy=yAx and zVy=yVz. (commutative)
eA(yNz)=(xAy)Az and zV(yVz)=(xVy) V= (associative)
=z and 0 =1, 1'=0. (involutory)

(zAy) =2'Vy and (zVy) =2 Ay (De Morgan’s)

Moreover, show that x <y if and only if z =z A y.

Solution: By definition, z Ay is the greatest element smaller than both x and y,
and x V y is the least element larger than both z and y. It follows easily that the
first four laws are obeyed and that <y if and only if x = x A y.

For the involutory law, note by commutativity 2’ Ax = 0 and 2’ V z = 1; thus
by uniqueness x/ = x. Moreover, by the unitary law, 0A1 =0 and 0V 1 = 1; thus
by uniqueness 0’ = 1. Thus 1’ = 0" = 0.

For De Morgan’s laws, note (x Ay) A (' V') = (. Ay) Az')V ((z Ay) Ay') by
distributivity. Now, (zx Ay) Az’ = (yAx) Az’ =yA(zAx') =y A0 =0 by the
commutative, associative, complementary, and unitary laws. Similarly, (x Ay) Ay’ is
0. But 0V0 =0. Thus (zAy)A (2’ Vy') = 0. Similarly, (xAy)V (' Vy') = 1. Thus,
by uniqueness, De Morgan’s first law holds. The second can be proved similarly;
alternatively, it follows directly and formally from the first by symmetry. (]

Exercise (1.26) . — Let L be a Boolean lattice; see (1.25). For all =,y € L, set
r+y:=(@@AyY)V (' Ay) and zy:=zAY.

Show: (1) 2 4+y = (zVy)(z' Vy) and (2) (z+y) = (2'y) V (zy). Furthermore,
show L is a Boolean ring.

Solution: For (1), note z +y = ((z Ay’ ) V') A((x Ay') Vy) by distributivity.
Now, (z Ay )V = (zVa')A(y Va') by distributivity. But z V2’ = 1 and
1INy Va') =y va'. Similarly, (x Ay')Vy = 2 Vy. Thus commutativity gives (1).

For (2), note (z-+y)' = (zV)(&'Vy/)) by (1). So (z+5)' = (V) V (' V')
by De Morgan’s first law. So (z +y)" = (2'y’) V (2”y”) by De Morgan’s second law
applied twice. Thus the involutory law yields (2).

Furthermore, x(yz) = (zy)z and -1 = z and 22 = 2 and 2y = yr and xVy = yVz
by (1.25). And so z +y := (zy) V (2'y) = (Y'2) V (y2') = (y2') vV (y'z) =1 y + .

Let’s check + is associative. Set w := x +y. Then w + z := (wz') V (w'z).
But wz’ = ((zy')2") V ((2'y)z") by distributivity. Now, (zy’)z" and (2'y)z’ may be
written as zy'z’ and z'yz’ by associativity. Thus wz’ = (xy'2") V (2'y2’).

Similarly, w'z = (2'y’'2) V (xyz) by (2), distributivity, and associativity. Thus
(x+y)+z=(xy2') Vv (2'y2")V (2'y'2) V (zyz) by associativity of V. But the right-
hand side is invariant under permutation of z,y, z by commutativity of - and V. So,
(x+y)+2z = (y+2) + 2. Thus commutativity of + yields (x +y)+ 2z =z + (y + 2).

Finally, let’s check distributivity of - over +. Recall y+ z := (yz’) V (v'2). Hence,
distributivity of - over V yields z(y + z) = (z(yz")) V (z(y'2)).

However, zy + zz := ((xy)(zz)") V ((zy)' (zz)). Now, (zy)(zz) = (xy)z’ V (zy)z’
by De Morgan’s first law and distributivity of - over V. And (xy)z’ = (z2')y by
associativity and commutativity But 22’ = 0 and 0-y = 0 and 0V u = u for any w.
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Thus (zy)(xzz) = (xy)z’. Similarly, (zy)’(zz) = y'(xz). Thus, by associativity and
commutativity, (y + z) = xy + xz, as desired. In sum, L is a Boolean ring. O

Exercise (1.27) . — Given a Boolean ring R, order R by = < y if x = zy. Show
R is thus a Boolean lattice. Viewing this construction as a map p from the set of
Boolean-ring structures on the set R to the set of Boolean-lattice structures on R,
show p is bijective with inverse the map A associated to the construction in (1.26).

Solution: Let’s check R is partially ordered. First, x < x as x = z? since R

is Boolean. Second, if + < y and y < z, then x = zy and ¥y = yz, and so
x=uzy=2x(yz) = (xy)z = xz; thus, x < z. Third, if x <y and y < z, then z = xy
and y = yx; however, xy = yx, and thus = y. Thus R is partially ordered.

Given z,y € R, set e Vy =z +y+ay and v Ay := zy. Then x <z Vy as
r(x+y+ay) = 2?2 +ay+ 2%y = 2+ 2vy = 2 since 22 = 2 and 22y = 0. By
symmetry, y < x Vy. Also, if z < x and z < y, then z = zx and z = zy, and
soz(zVy) =zx+zy+zey=z2z+z2+2=zas 2z =0; thus z < zVy. Thus
x Vy = sup{x,y}. Similarly, Ay = inf{z,y}. Moreover, 0 < x and x < 1 as
0=0-z and x = x - 1. Thus R is a lattice with a least element and a greatest.

Let’s check the distributive laws. First, (z +y + zy)z = 2z + yz + (22)(yz) as
z = 2% thus, (zVy)Az = (zA2)V(yAz). Second, (z+z+22)(y+2+yz) = ry+2+ayz
as z = 22 and 2w = 0 for all w; thus, (zV 2) A (yV 2) = (x Ay)V z, as desired.

Finally, given = € R, if there’s y € R with x Ay = 0 and =z Vy = 1, then
l=z+y+a2y=x+y, and so y = 1 — x; thus, y is unique if it exists. Now, set
2/ :=1—x. Thenz A2’ =02’ =2 —22=0and 2 V2’ ;=2 +2’ +z2’ = 1. Thus
7' is a complement of x. In sum, R is a Boolean lattice.

To show Ap = 1, given x,y € R, let x +1 y and x -1 y be the sum and product
in the ring structure on R constructed in (1.26) with the above lattice as L. Then
xy:=xzAy. But x Ay:=zy. Thusz-;y==xy. Now, 2zy =0and z(1 —z) =0
imply z(1—9)+ (1 —2)y+x(1—y)(l—2)y=2+y. Sox+y= (xAy)V (' Ay).
But z+1y:=(xAy)V (2’ Ay). Thusz +;y =a +y. Thus \p=1.

To show pA = 1, assume the ring structure on R is constructed as in (1.26) from
a given Boolean lattice structure on R, whose order and inf are denoted by < and
No. Given x,y € R, we just have to show that x < y if and only if z <g y.

By definition, x < y if and only if x = zy. But zy := 2 Ag y. Also, z = x A\g y if
and only if z <¢ y by (1.25). Thus = < y if and only if <y y. Thus pA = 1. In
sum, p is bijective with inverse . ]

Exercise (1.28) . — Let X be a set, and L the set of all subsets of X, partially
ordered by inclusion. Show that L is a Boolean lattice and that the ring structure
on L constructed in (1.2) coincides with that constructed in (1.26).

Assume X is a topological space, and let M be the set of all its open and closed
subsets. Show that M is a sublattice of L, and that the subring structure on M of
(1.2) coincides with the ring structure of (1.26) with M for L.

Solution: Given S, T € L, plainly S NT is the largest set contained in both S
and T, and S UT is the smallest set containing both S and T'. Also, every subset
of X contains @, and is contained in X. And, given U € L, the distributive laws

SN(TUU)=(SNT)U(SNU), and SU(TNU)=(SUT)N(SUD)

are easy to check by double inclusion.
Finally, (X — S) is a complement of S, as (X —S)NS =0 and (X —S)US = X.
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Moreover, X — S is the only complement, because, if SNT = (), then T C (X — 5),
and if TUS = X, then T D (X — 5). Thus L is a Boolean lattice.

The product of S and T is equal to SN T in both (1.2) and (1.26). Their sum
is equal to (S—T)U(T'—S) in (1.2) and to (SN(X —T))U((X = S5)NT) in
(1.26). But S—T = SN (X —T). So the two sums are also the same. Thus the
two ring structures on L coincide.

Assume S, T € M. Then also SNT, SUT, 0, X € M. It follows that M is a
Boolean sublattice of L. Lastly, the construction in (1.26) plainly turns a Boolean
sublattice into a subring. But we just showed that, the two ring structures on L
coincide. Thus the two induced ring structures on M also coincide, O

Exercise (1.29) . — Let R be a nonzero ring, P := R[X1, ..., X,,] the polynomial
ring, V' C R™ the common zeros of polynomials F) € P. Call such a V an
algebraic set. Denote by I(V) the ideal of all F' € P vanishing on V, and by R[V]
the R-algebra of all functions v: V' — R given by evaluating some G € P. Call I(V)
the ideal of V, and R[V] its coordinate ring. For all i, set & := X;|V € R[V];
5o &(u) = u; where u := (uq,...,uy) € V. Finally, given v := (v1,...,0y,) € V,
set my := (& —v1,...,&m — vm) C R[V].

(1) Show R™ and {) are algebraic sets.
(2) Show I(V) is the largest set I C P with V as zero set.
(3) Show P/I(V) = R[V].
(4) Show m, consists of the f € R[V] with f(v) =
(5) Given u:= (u1,...,Uy) € V with my, =my, showu=v.

Solution: For (1), notice R™ is the zero set of 0 € P, and () is that of 1 € P.

For (2), let V' be the zero set of I(V). Let’s see V/ = V. Indeed, V' C V as
F\ € I(V) for all A\. Conversely, V' D V as every F € I(V) vanishes on V. Thus
V' = V. But, by definition of I(V), it contains every I C P with V as zero set.
Thus (2) is done.

For (3), form the evaluation map evy from P to the R-algebra RV of all V' — R.
Note R[V] := Im(evy) and I(V) := Ker(evy). Thus (1.5.1) gives P/I(V) = R[V].

For (4), note (1.17)(2) yields a surjection my: P — R given by my(F) := F(v)
with Kermy = (X1 —v1,..., X — Um). But F(v) =01if F € I(V). So 7 induces
a surjection 7, : R[V] — R by (1) and (1.5.1). Moreover, Ker 7/, = my by (1.9).
Thus my consists of the f € R[V] with f(v) = 0, as desired.

For (5), continuing the proof of (5), notice nj;, = w,. But 7, (&) = u; and
(&) = v; for all . Thus u = v, as desired. O

Exercise (1.30) . — In the setting of (1.29), let @ := R[Y1,...,Y,] be a second
polynomial ring, and W C R™ a second algebraic set. Call a set map p: V — W
polynomial, or regular, if p(v) = (G1(v),...,G,(v)) for some G, € P and
all v. € V. If so, define p*: R[W] — R[V] by p*(g) := g o p. For each i, set
¢i :=Y;|V € R[V]. Given an algebra map ¢: R[W] — R[V], define p*: V. — W by
©*(v) := (w1, ..., w,) with w; := (¢¢;)(v). Show:
(1) Let p: V. — W be a polynomial map. Then p* is a well-defined algebra map.
(2) Let ¢: R[W] — R[V] be an algebra map. Then ¢* is well-defined polynomial.
(3) Then p — p* and ¢ — ¢* define inverse bijective correspondences between
the polynomial maps p: V' — W and the algebra maps ¢: R[W] — R[V].
(4) Let p: V. — W be a polynomial map, and v € V. Then (p*)"'my = m, ().
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Solution: For (1), define R — RV by « ~ 7 o p; plainly, it’s an algebra map.
Say p(v) := (G1(v),...,Gn(v)) with G; € P, and y(w) = G(w) with G € @, Then
g(p(v)) = (G(G1(v)),...,G(Gn(v))). Thus p*g € R[V], as desired.

For (2), note, plainly, an algebra map always carries a polynomial combination
of elements to the same combination of their images. So given H € @,

PH (G0 Gn)) = HpCrs e 9Gn)- (1.30.1)
Let v € V. Evaluation at v gives an algebra map R[V] — R. Hence
(H(C1s -+, 960)) (V) = H(9C1(V), - -, 96a(v)) =t H(9" (V) (1.30.2)
Together, (1.30.1) and (1.30.2) yield
((H(Crs -, Gu))) (v) = H (9" (v))- (1.30.3)

Given w € W, evaluation at w gives an algebra map R[W] — R. So (1.30.1)
yields

(H(Cry o, G0) (W) = H(G(W), ..., Gu(w)) = H(w). (1.30.4)

Suppose H € I(W); so H(w) = 0 for all w € W. Hence H((1,...,{,) = 0 in
R[W] by (1.30.4). But ¢©(0) = 0. So ¢(H(¢1,...,¢n)) = 01in R[V]. So (1.30.3)
implies H(p*(v)) =0 for all v € V. But H € I(W) is arbitrary. Hence (1) implies
p*(v) € W for all v e V. Thus ¢*(V) C W. Thus ¢* is well defined.

For all i, since ¢(; € R[V], there’s G; € P with (¢(;)(v) = G;(v) for all v e V.
Thus ¢* is polynomial, as desired.

For (3), first, given an algebra map ¢: R[W] — R[V], let’s check ¢** = ¢.

Given g € R[W], we must check ¢**(g) = ¢(g). Say ¢ is given by evaluating
D € Q; so g(w) = D(w) for all w € W. Hence g = D((1,...,¢(,) in R[W] by
(1.30.4). Therefore, (1.30.3) implies (¢(g))(v) = g(¢*(v)) for all v € V.

On the other hand, ¢**(g) := go ¢*. So (¢**(g9))(v) = g(¢*(v)) for all v € V.
Hence (p**(9))(v) = (¢(g))(v) for all v € V. Thus ¢**(g) = ¢(g), as desired.

Lastly, given a polynomial map p: V' — W, let’s check p** = p. Let v € V. Then
P (v) == ((p*¢)(v),...,(p*¢a)(v)). However, p*¢;i(v) := (i(p(v)). Therefore,
p**(v) = p(v). But v € V is arbitrary. Thus p** = p, as desired.

For (4), given g € k[W], note p*g(v) = 0 if and only if p*g € m,,, and g(p(v)) =0
if and only if g € m,y) by (1.29)(4). But p*g(v) = g(p(v)). So p*g € m, if and
only if g € m,(y). But p*g € my if and only if g € (p*)"'my. Thus (4) is done. [

2. Prime ldeals

Exercise (2.9) . — Let R be a ring, P := R[X,Y] the polynomial ring in two sets
of variables X and Y. Set p := (X). Show p is prime if and only if R is a domain.

Solution: Note that p is prime if and only if P/p is a domain by (2.8). But
P/p = R[Y] by (1.17)(5). Finally, R[Y] is a domain if R is by (2.4), and the
converse is trivial, as desired. (I

Exercise (2.18) . — Show that, in a PID, nonzero elements = and y are relatively
prime (share no prime factor) if and only if they’re coprime.

Solution: Say (x) + (y) = (d). Then d = ged(z, y), as is easy to check. The
assertion is now obvious. (]
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Exercise (2.23) . — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a Cpor b C p; and (2) anb C p; and (3) ab C p.

Solution: Trivially, (1) implies (2). If (2) holds, then (3) follows as ab C anb.
Finally, assume a ¢ p and b ¢ p. Then there are z € a and y € b with z, y ¢ p.
Hence, since p is prime, zy ¢ p. However, xy € ab. Thus (3) implies (1). O

Exercise (2.24) . — Let R be a ring, p a prime ideal, and my,..., m, maximal
ideals. Assume my ---m, = 0. Show p = m; for some i.

Solution: Note p D0 =my---m,. Sop Dmy or p D my---m, by (2.23). So
p D my; for some i by induction on n. But m; is maximal. Thus p = m,. (I

Exercise (2.25) . — Let R be a ring, and p, ay,...,a, ideals with p prime. Show:
(1) Assume p D (), a;. Then p D a; for some j,
(2) Assume p = (:_, a;. Then p = a; for some j,

Solution: For (1), note p D ay or p D (i, a; by (2.23). So p D a; for some j
by induction on n. Thus (1) holds.
For (2), note p D a; for some j by (1). But p C a; now. Thus (2) holds. O

Exercise (2.26) . — Let R be a ring, 8 the set of all ideals that consist entirely of
zerodivisors. Show that 8§ has maximal elements and they’re prime. Conclude that
z.div(R) is a union of primes.

Solution: Given a totally ordered subset {ay} of S, set a := [Jay. Plainly a is
an upper bound of {ay} in 8. Thus by Zorn’s Lemma, 8 has maximal elements p.

Given z,2’ € R with xz’ € p, but 2,2’ ¢ p, note (z)+p, (z’)+p ¢ 8. So there are
a,a’ € Rand p,p’ € p such that y := ax+p and y' := a’z’ + p’ are nonzerodivisors.
Then yy’ € p. So yy' € z.div(R), a contradiction. Thus p is prime.

Finally, given z € z.div(R), note (z) € 8. So (z) lies in a maximal element p of 8.
Thus « € p and p is prime, as desired. (For an alternative proof, see (3.24).) O

Exercise (2.27) . — Given a prime number p and an integer n > 2, prove that the
residue ring Z/(p™) does not contain a domain as a subring.

Solution: Any subring of Z/(p™) must contain 1, and 1 generates Z/(p™) as an
Abelian group. So Z/(p™) contains no proper subrings. However, Z/(p") is not a
domain, because in it, p - p"~! = 0 but neither p nor p»~! is 0. O

Exercise (2.28) . — Let R := R’ x R” be a product of two rings. Show that R is
a domain if and only if either R’ or R” is a domain and the other is 0.

Solution: Assume R is a domain. As (1,0) - (0,1) = (0,0), either (1,0) = (0,0)
or (0,1) = (0,0). Correspondingly, either R’ = 0 and R = R”, or R” = 0 and
R = R". The assertion is now obvious. O

Exercise (2.29) . — Let R := R’ x R” be a product of rings, p C R an ideal. Prove
p is prime if and only if either p = p’ x R” with p’ C R’ prime or p = R’ x p” with
p” C R” prime. What if prime is replaced by mazimal?
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Solution: Note p = p’ x p” and R/p = R'/p’ x R"/p"” by (1.23). And R/p is
a domain if and only if either R'/p’ or R”/p” is a domain and the other is 0 by
(2.28). Thus (2.8) yields the original statement.

Replace prime by mazimal. Note every maximal ideal is prime by (2.15). So
the preceding paragraph yields p = p’ x p” and either R/p = R'/p’ and p”’ = R” or
R/p = R"/p” and p’ = R'. Thus (2.13) yields the new statement. O

Exercise (2.30) . — Let R be a domain, and z,y € R. Assume (z) = (y). Show
x = uy for some unit w.

Solution: By hypothesis, * = uy and y = vz for some u,v € R. So x = 0 if and
only if y = 0; if so, take u := 1. Assume z # 0. Now, & = uwvz, or (1 —uv) = 0.
But R is a domain. So 1 —uv = 0. Thus w is a unit. O

Exercise (2.31) . — Let k be a field, R a nonzero ring, ¢: k — R a ring map.
Prove ¢ is injective.

Solution: By (1.1), 1 # 0in R. So Ker(p) # k. So Ker(p) = 0 by (2.12). Thus
 is injective. ]

Exercise (2.32) . — Let R be a ring, p a prime, X a set of variables. Let p[X]
denote the set of polynomials with coefficients in p. Prove these statements:
(1) pR[X] and p[X] and pR[X] + (X) are primes of R[X], which contract to p.
(2) Assume p is maximal. Then pR[X] + (X) is maximal.

Solution: For (1), note that R[X]/pR[X] = (R/p)[X] by (1.16). But R/p is a
domain by (2.8). So R[X]/pR[X] is a domain by (2.4). Thus, by (2.8) again,
pR[X] is prime.

Moreover, pR[X] = p[X] by (1.15) (1). Thus p[X] is prime. Plainly, p[X] contracts
to p; so pR[X] does too.

Note (pR[X]+ (X)) /pR[X] is equal to (X) C (R/p)[X]. But (R/p)[X]/(X) is equal
to R/p by (1.17)(3). So R[X]/(pR[X] + (X)) is equal to R/p by (1.9). But as
noted above, R/p is a domain by (2.8). Thus pR[X] + (X) is prime again by (2.8).

Since the canonical map R/p — R[X]/(pR[X] + (X)) is bijective, it’s injective.
Thus pR[X] + (X) contracts to p. Thus (1) holds.

In (2), R/p is a field by (2.13). But, as just noted, R/p = R[X]/(pR[X]+(X)).
Thus pR[X] + (X) is maximal again by (2.13). O

Exercise (2.33) . — Let R be a ring, X a variable, H € P := R[X], and a € R.
Given n > 1, show (X —a)™ and H are coprime if and only if H(a) is a unit.

Solution: By (2.16), (X — a)™ and H are coprime if and only if X —a and H
are, if and only if, modulo X — a, the residue of H is a unit. But by (1.17)(4),
that residue is equal to H(a). Thus the desired equivalence holds, O

Exercise (2.34) . — Let R be a ring, X a variable, F € P := R[X], and a € R.
Set F' := OF/0X; see (1.18.1). Show the following statements are equivalent:

(1) a is a supersimple root of F.

(2) ais aroot of F, and X —a and F’ are coprime.

(3) F = (X —a)@ for some G in P coprime to X — a.
Show that, if (3) holds, then G is unique.
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Solution: Owing to (2.33) with n = 1, the definition and the assertion in (1.19)
yield (1)<(2) and (1)«<(3) and the uniqueness of G. O

Exercise (2.35) . — Let R be a ring, X a variable, F(X) a polynomial of degree
d. Show: (1) Assume R is a domain. Then F has at most d (distinct) zeros in R.
(2) Take R :=Z/{6) and F := X? + X. Then F has more than d zeros in R.

Solution: In (1), if d = 0, then F' # 0 and F' € R, and so F' has no zeros in
R. Assume d > 1. Given (distinct) roots a, b € R of F, note F = (X — a)G, by
(1.19), and deg(G) = d — 1 by (2.4.1). Moreover, F(b) = (b — a)G(b). As R is
a domain, G(b) = 0. But, G has at most d — 1 roots by induction on d. Thus (1)
holds.

To show (2), note 0, 2, 3, 5 are (all the) zeros of F in R. O

Exercise (2.36) . — Let R be a ring, p a prime; X a set of variables; F, G € R[X].
Let ¢(F), ¢(G), c(FG) be the ideals of R generated by the coefficients of F, G, FG.
Show: (1) Assume p 2 ¢(F) and p 2 ¢(G). Then p 2 ¢(FG).

(2) Then ¢(F) = R and ¢(G) = R if and only if ¢(FG) = R.

Solution: For (1), denote the residues of F, G, FG in (R/p)[X] by F, G, FG.
Now, p 2 c¢(F); so F' # 0. Similarly, G # 0. But R/p is a domain by (2.8). So
(R/p)[X] is too by (2.4). So FG # 0. But FG = FG. Thus p 2 ¢(FG), as desired.

For (2), first assume ¢(F) = R and ¢(G) = R. Then p 2 ¢(F) and p 2 ¢(G). So
p 5 ¢(FG) by (1). But p is arbitrary. Thus (2.21) and (2.15) imply ¢(FG) = R.

Conversely, assume ¢(F'G) = R. Plainly, in general, ¢(FG) C ¢(F). So ¢(F) = R.
Similarly, ¢(G) = R. Thus (2) holds. O

Exercise (2.37) . — Let B be a Boolean ring. Show that every prime p is maximal,
and that B/p = Fs.

Solution: Given z € B/p, plainly z(z — 1) = 0. But B/p is a domain by (2.8).
So x = 0,1. Thus B/p = F,. Plainly, Fy is a field. So p is maximal by (2.13). O

Exercise (2.38) . — Let R be a ring. Assume that, given any « € R, there is an
n > 2 with 2" = z. Show that every prime p is maximal.

Solution: Given y € R/p, say y(y" ! —1) = 0 with n > 2. By (2.8), R/p is a
domain. Soy =0 or yy" 2 = 1. So R/p is a field. So by (2.13), p is maximal. O

Exercise (2.39) . — Prove the following statements, or give a counterexample.

(1) The complement of a multiplicative subset is a prime ideal.

(2) Given two prime ideals, their intersection is prime.

(3) Given two prime ideals, their sum is prime.

(4) Given a ring map ¢: R — R', the operation ¢~
to maximal ideals of R.

(5) In (1.9), an ideal n’ C R/a is maximal if and only if x~'n’ C R is maximal.

1 carries maximal ideals of R’

Solution: (1) False. In the ring Z, consider the set S of powers of 2. The
complement T of S contains 3 and 5, but not 8; so T is not an ideal.

(2) False. In the ring Z, consider the prime ideals (2) and (3); their intersection
(2) N (3) is equal to (6), which is not prime.

(3) False. Since 2-3 —5 =1, we have (3) + (5) = Z.

(4) False. Let ¢: Z — Q be the inclusion map. Then ¢~(0) = (0).
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(5) True. By (1.9), the operation b’ — x~1b’ sets up an inclusion-preserving
bijective correspondence between the ideals b’ D n’ and the ideals b D x~!n/. O

Exercise (2.40) . — Preserve the setup of (2.20). Let F := ag X" + -+ a, be a
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p{ag. Show that (F') is not maximal.

Solution: Set a := (p, F'). Then a 2 (F), because p is not a multiple of F. Set
k:= R/{p). Since p is irreducible, k is a domain by (2.5) and (2.7). Let F’ € k[X]
denote the image of F. By hypothesis, deg(F’) = n > 1. Hence F” is not a unit by
(2.4.1) since k is a domain. Therefore, (F’) is proper. But P/a = k[X]/(F’) by
(1.16) and (1.9). So a is proper. Thus (F) is not maximal. O

Exercise (2.41) . — Preserve the setup of (2.20). Let (0) & p1 & -+ G pn be
a chain of primes in P. Show n < 2, with equality if the chain is maximal —
or, not a proper subchain of a longer chain—and if R has infinitely many primes.

Solution: Recall that R is a UFD, and so P is one too, and that, in any UFD, an
element is irreducible if and only if it generates a prime ideal; see (2.17) and(2.5).
Now, in any domain, consider nested principal ideals (p1) C (p2) with p; and p
irreducible. Then p; = xps for some z. So z is a unit. Thus (p;) = (p2).

Suppose n > 2. Then pq,...,p,—1 aren’t maximal. So they’re all principal by
(2.20)(1). They’re nonzero, so equal by the above. So 1 =n — 1. Thus n < 2.

Assume the chain is maximal. Then p,, is maximal. Indeed, p,, lies in a maximal
ideal m by (2.21), and m is prime by (2.15). So adjoining m results in a longer
chain unless p,, = m.

Assume R has infinitely many primes. Then p,, isn’t principal by (2.40). So
pn = (p, G) with p € R prime and G € P prime by (2.20). So (0) & (p) S pn
and (0) G (G) S pn are both longer chains than (0) S p,. But the given chain is

=z
maximal. Son # 1. Thus n = 2. O

Exercise (2.42) (Schwartz—Zippel Theorem with multiplicities) . — Let R be a
domain, T' C R a subset of ¢ elements, P := R[X1,..., X,] the polynomial ring in
n variables, and F' € P a nonzero polynomial of degree d. Show:

(1) Induction on n yields Y7, cpord(g,,. .. o) F < dg" ™"

(2) Then at most dg"~! points (x1,...,2,) € T" satisfy F(z1,...,7,) = 0.

(3) Assume d < g. Then F(z1,...,x,) # 0 for some z; € T;.

Solution: In (1), if F(z, X3,...,X,) =0 for some z € T, then F' = (X; — 2)G
for some G € P by (1.6)(1) with R[Xo,---,X,] for R. Repeating, we obtain

F =G]],er(X1 — )" for some G € P with G(z, X3,---,X,,) # 0 for all z € T,
and for some r, > 0. Then (2.4.1) yields

deg(G) =d— > s (2.42.1)
€T

Given z1,...,x, € T, set H := H;cE(T—acl)(Xl —x)™. Then H(x1,...,2,) # 0.

So ord (s, ... z,)H = 0 by (1.8). Also ordy, ... 4\ (X1 — )™ = r, by (1.8). Hence
(2.4.2) yields

Ord(xl,.,,,wn)F =Ty + Ord(ajly_”,mn)G. (2.42.2)

Assume n = 1. Then G(z) # 0 for all z € T. So ord(,)G = 0 by (1.8). So

(2.42.2) yields ord(,) F' = r,. Thus (2.42.1) yields } _pord ) F' < d, as desired.
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Assume n > 1. Summing (2.42.2) over all z1,...,xz, € T yields
ST otdiy, ey F=a" Y e+ Y ordgy, )G (2.42.3)

all z; €T z1€T all z; €T
Note ord(y, . . )G < ordg,, . 2.)G1z, Wwith Gig = G(x1,X2,...,X,) by
(1.8.1). But G1,4, € R[Xq,...,X,]; so by induction on n and (2.42.1),

> ordiay,. oGl < (df > rzl)q”*? (2.42.4)
all z; €T 1 €T
But ord(y,,.. 2,)G12, = ord(g,, . 2, G1., by (1.8.2). Hence, summing (2.42.4)
over z1 € T yields

Y ord,,. oGS Y ordg,,. )G < (d— 3 rm)q”*l. (2.42.5)
all z; €T all ;€T 1 €T
Finally, (2.42.3) and (2.42.5) yield the desired bound. Thus (1) holds.
For (2), note ordy, ... . F > 0 with equality (if and) only if F(z1,...,2,) # 0
by (1.8). Thus (1) yields the desired bound. Thus (2) holds.
In (3), note dg"~! < ¢™. Thus (2) yields the desired z;. Thus (3) holds. O

Exercise (2.43) . — Let R be a domain, P := R[X,...,X,] the polynomial ring,
F € P nonzero, and T; C R subsets with ¢; elements for ¢ = 1,...,n. For all 1,
assume that the highest power of X; in F' is at most ¢; — 1. Show by induction on
n that F(z1,...,xz,) # 0 for some z; € T;.

Solution: Say F' = "' F;XJ with F; € R[X1,..., X,_1]. As F # 0, there’s
j with F; # 0. For all ¢, the largest exponent of X; in Fj is at most ¢; — 1. If
n = 1, then F; € R; else, by induction, Fj(z1,...,2,—1) # 0 for some z; € T;. So
F(z1,...,2p—1,X,) # 0. So (2.42)(3) yields z, € T}, with F(xy1,...,2z,) #0. O

Exercise (2.44) (Alon’s Combinatorial Nullstellensatz [1]) . — Let R be a domain,
P := R[X1,...,X,] the polynomial ring, F' € P nonzero of degree d, and T; C R a
subset with ¢; elements for i = 1,...,n. Let M := [[}_, X/ be a monomial with
m,; < t; for all . Assume F vanishes on T x - - - X Tp,. Set F;(X;) := HweTi (X;—x).

(1) Find G; € P with deg(G;) < d —t; such that F = )" | F;G;.

(2) Assume M appears in F'. Show deg(M) < d.

(3) Assume R is a field K. Set a := (F,...,F,) and t := [["_, ¢;. Define the
evaluation map ev: P — K' by ev(G) := (G(z1,...,2,)) where (z1,...,z,) runs
over Ty X --- x T,. Show that ev induces a K-algebra isomorphism ¢: P/a == K*.

Solution: By (1.20), there are G, G; € P such that F =" | F;G,; + G where
G; =0 or deg(G;) < d — t; and where the highest power of X; in G is less than ¢;.

For (1), note that F' and all F; vanish on T} x --- x T},, so G does too. Hence
(2.43) implies G = 0, as desired.

For (2), note (1) implies M appears in some F;G;. But deg(G;) < d —t;; so X}
divides every monomial in F;G; of degree d. Thus deg(M) < d, as desired.

For (3), note ev is a K-algebra map; also, ev(F;) = 0 for all . So ev induces a
K-algebra map ¢: P/a — K*®. Further, (1) implies Ker(y) = 0, so ¢ is injective.

Finally, (1.20) implies that P/a is generated by the residues a* ---ak» of the
monomials Xfl ~~Xf,j'" with 0 < k; < t;. If some linear combination H of those
monomials has residue 0, then ev(H) = 0, and so H = 0 by (2.43). Hence the

a® ...akn are linearly independent. Thus dimg(P/a) = t. But K is a field, ¢ is
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injective, and dimg (K*) = t. Thus ¢ is bijective, as desired. O

Exercise (2.45) (Cauchy—Davenport Theorem) . — Let A, B C F, be nonempty
subsets. Set C:={a+b|a€ Aandbe B}. Say A, B, C have «, 3, vy elements.
Show: (1) Assume C'G F,,. Set F(X,Y) :=]].cc(X +Y —¢) and M := X" Y™
where my := a—1 and mg :=y—a+1. Then (2.44)(2) yields v > a+ 4 —1.
(2) Then v > min{a + 5 — 1, p}.

Solution (Alon [1, Thm. 3.2]): For (1), note that F' vanishes on A x B and has
degree . Also, M has degree 7, and appears in F' with coefficient (nzl), which
is nonzero as v < p. So mg < S would contradict (2.44)(2). Thus mq > S, as
desired. Thus (1) holds.

For (2), notice that if C' =T, then v = p (and conversely), and that if C' C F,,

then v > a+ 8 — 1 by (1). Thus (2) holds. O

Exercise (2.46) (Chevalley-Warning Theorem) . — Let P := F,[X1,...,X,] be
the polynomial ring, Fi,...,F,, € P, and (c1,...,¢,) € [y a common zero of the
F;. Assume n > > deg(F;). Set

Go=[Ja-F, Gy=0]] JI (X;-0¢), and F:=Gi-Gy,

i=1 J=1 c€Fgy, c#c;
and choose § so that F(cy,...,c,) = 0. Show:

(1) Then X¢~"... X4~ has coefficient —4 in F, and § # 0.
(2) Then owing to (1) and (2.44)(2), the F; have another common zero.

Solution (Alon [1, Thm. 3.2]): For (1), note deg(G1) = (¢ — 1) > deg(F;). So
deg(G1) < (g—1)n. So X4 '... X9=1 doesn’t appear in Gy, but does in —Gy, with
coefficient —d, as desired. But Gy(cy,...,¢,) = 1. Thus 6 # 0. Thus (1) holds.

For (2), note deg(F) = (¢ — )n. So (1) and (2.44)(2) yield z; € F, with
F(xy,...,2,) # 0. But Go(z1,...,2,) = 0. So Gi(x1,...,2,) # 0. Given ¢, then
Fi(x1,...,2,)77 1 # 1. But F7 has order ¢ — 1. Thus Fi(z1,...,2,) =0. O

3. Radicals

Exercise (3.10) . — Let ¢: R — R’ be a map of rings, p an ideal of R. Show:

(1) there is an ideal q of R’ with ¢~1(q) = p if and only if ¢~} (pR’) = p.
(2) if p is prime with ¢ =!(pR’) = p, then there’s a prime q of R’ with »=1(q) = p.

Solution: In (1), given q, note p(p) C q, as always p(p~1(q)) C g. So pR’ C g.
Hence ¢ Y(pR') C ¢~ 1(q) = p. But, always p C ¢ '(pR’). Thus ¢ 1 (pR') = p.
The converse is trivial: take q :=pR’.

In (2), set S := p(R—p). Then SNpR' =0, as p(x) € pR’ implies z € o~ (pR’)
and ¢~ (pR’) = p. So there’s a prime q of R’ containing pR’ and disjoint from S by
(3.9). S0 5~1(q) D @~ (pR') = p and ¢~ (a) " (R—p) = 0. Thus g~4(q) = p. O

Exercise (3.16) . — Use Zorn’s lemma to prove that any prime ideal p contains a
prime ideal q that is minimal containing any given subset s C p.
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Solution: Let 8 be the set of all prime ideals q such that s C ¢ C p. Then p € 8,
so 8 # (. Order 8 by reverse inclusion. To apply Zorn’s Lemma, we must show
that, for any decreasing chain {qx} of prime ideals, the intersection q := [ q, is a
prime ideal. Plainly q is always an ideal. So take z,y ¢ q. Then there exists A such
that z,y ¢ qx. Since gy is prime, zy ¢ qx. So 2y ¢ q. Thus ¢ is prime. |

Exercise (3.19) . — Let R be a ring, a an ideal, X a variable, R[[X]] the formal
power series ring, M C R[[X]] an ideal, F := Y a, X" € R[[X]]. Set m :=9MN R
and 2 1= { > by X" | by, € a}. Prove the following statements:
(1) If F is nilpotent, then a,, is nilpotent for all n. The converse is false.
(2) Then F € rad(R[[X]]) if and only if ag € rad(R).
(3) Assume X € M. Then X and m generate M.
(4) Assume 97 is maximal. Then X € 9t and m is maximal.
(5) If a is finitely generated, then aR[[X]] = 2. However, there’s an example of
an R with a prime ideal a such that aR[[X]] # 2L

Solution: For (1), assume F and a; for i < n nilpotent. Set G := > .. a;,X".
Then G = F — >, a;X". So G is nilpotent by (3.15); say G™ = 0 with m > 1.
Then a] = 0. Thus a,, is nilpotent, and by induction on n, all a,, are too.

For a counterexample to the converse, set P := Z[Xs, X3, ...] for variables X,,.
Set R:= P/(X3,X3,...). Let a, be the residue of X,,. Then a” =0, but > a, X"
is not nilpotent. Thus (1) holds.

For (2), given G = Y b, X™ € rad(R[[X]]), note that 1 + FG is a unit if and
only if 1+ apbg is a unit by (8.7). Thus (3.2) yields (2).

For (3), note M contains X and m, so the ideal they generate. But F' = ag+XG
for some G € R[[X]]. Soif F € M, then ap € MN R =m. Thus (3) holds.

For (4), note that X € rad(R[[X]]) by (2). But 9 is maximal. So X € 9. So
X and m generate 9t by (3). So R[X]/9 = R/m by (3.7). Thus (2.13) yields (4).

In (5), plainly aR[[X]] C 2. Now, assume F := > a, X" € 2, so all a,, € a. Say

bi,...,by € a generate. Then a,, = Z;’;l cnib; for some c¢,; € R. Thus, as desired,
n>0 Ni=1 i=1 n>0
For the desired example, take ai,as,... to be variables. Take R := Z[a1, az, .. .]

and a := (a1, ag,...). Then R/a =7 by (1.17)(3). Thus (2.8) implies a is prime.

Given G € aR[[X]], say G = Y.I" b;G; with b; € a and G; = >, o, bin X"
Choose p greater than the maximum = such that a, occurs in any b;. Then
ZZ’;I bibin, € (a1,...,ap—1), but a, ¢ (a1,...,ap—1). Set F := > a,X". Then
F # G for any G € aR[[X]]. Thus F' ¢ aR[[X]], but F € . O

Exercise (3.21) . — Let R be a ring, a C rad(R) an ideal, w € R, and v’ € R/a
its residue. Prove that w € R* if and only if w’ € (R/a)*. What if a ¢ rad(R)?

Solution: Plainly, w € R* implies w’ € (R/a)*, whether a C rad(R) or not.

Assume a C rad(R). As every maximal ideal of R contains rad(R), the operation
m — m/a establishes a bijective correspondence between the maximal ideals of R
and those of R/a owing to (1.9). So w belongs to a maximal ideal of R if and only
if w’ belongs to one of R/a. Thus w € R* if and only if w’ € (R/a)* by (2.22).

Assume a ¢ rad(R). Then there is a maximal ideal m C R with a ¢ m. So
a+m = R. So there are a € a and v € m with ¢ + v = w. Then v ¢ R*, but the
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residue of v is w’, even if w’ € (R/a)*. For example, take R := Z and a := (2) and
w:= 3. Then w ¢ R*, but the residue of wis 1 € (R/a)*. O

Exercise (3.22) . — Let A be a local ring, e an idempotent. Show e =1 or e = 0.

Solution: Let m be the maximal ideal. Then 1 ¢ m, so eithere ¢ mor 1 —e ¢ m.
Say e ¢ m. Then e is a unit by (3.5). But e(1 — e) = 0. Thus e = 1. Similarly, if
1—e¢m, then e =0.

Alternatively, (3.6) implies that A is not the product of two nonzero rings. So
(1.12) implies that either e =0 or e = 1. O

Exercise (3.23) . — Let A be a ring, m a maximal ideal such that 1 4+ m is a unit
for every m € m. Prove A is local. Is this assertion still true if m is not maximal?

Solution: Take y € A —m. Since m is maximal, (y) + m = A. Hence there exist
x € R and m € m such that zy +m = 1, or in other words, zy =1 —m. So zy is a
unit by hypothesis; whence, y is a unit. Thus A is local by (3.5).

No, the assertion is not true if m is not maximal. Indeed, take any ring that is
not local, for example Z, and take m := (0). O

Exercise (3.24) . — Let R be a ring, S a subset. Show that S is saturated multi-
plicative if and only if R — S is a union of primes.

Solution: First, assume S is saturated multiplicative. Take x € R — S. Then
xy ¢ S for all y € R; in other words, (z) NS = (. Then (3.9) gives a prime p D (z)
with pN S =0. Thus R — S is a union of primes.

Conversely, assume R — S is a union of primes p. Then 1 € S as 1 lies in no p.
Take z,y € R. Then x,y € S if and only if x, y lie in no p; if and only if xy lies in no
p, as every p is prime; if and only if zy € S. Thus S is saturated multiplicative. [

Exercise (3.25) . — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset

S:={z € R|thereisy € R with zy € S }.

Show: (1) (a) that S D S, and (b) that S is saturated multiplicative, and (c) that
any saturated multiplicative subset T" containing S also contains S.
(2) Set U := Uprg—pp- Then R— S =U.
(3) Let a be an ideal; assume S =1+ a; set W :={J,5,p. Then R—5=W.
(4) Let f,g € R. Then S; C S, if and only if \/(f) D v/{9).

Solution: Consider (1). Trivially, if z € S, then z -1 € S. Thus (a) holds.

Hence 1 € S as 1 € S. Now, take z,2’ € S. Then there are y,y’ € R with
xy, 2y’ € S. But S is multiplicative. So (zz”)(yy’) € S. Hence za’ € S. Thus S
is multiplicative. Further, take z,2’ € R with xz’ € S. Then there is y € R with
zx'y € S. So z,2’ € S. Thus S is saturated. Thus (b) holds

Finally, consider (c). Given z € S, there is y € R with zy € S. So 2y € T. But
T is saturated multiplicative. So x € T. Thus T' D S. Thus (c) holds.

In (2), plainly, R—U D S. Further, R—U is saturated multiplicative by (3.24).
So R—U D S by (1)(c). Thus U C R—S. Conversely, R— S is a union of primes p
by (3.24). Plainly, pnS =0 for all p. SoU D R—S. Thus R— S = U, as desired.

For (3), first take a prime p with pN.S = 0. Then 1 ¢ p+a; else, 1 = p+a with
pepandaca,andsol —p=ae€pnNS. Sop+ alies in a maximal ideal m by
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(2.21). Then a C m; so m C W. But also p C m. Thus U C W.

Conversely, take p D a. Then 1+p D 14+a=S5. But pn(1+p) =0. SopnS = 0.
Thus U D W. Thus U = W. Thus (2) yields (3).

Consider (4). By (1)(a), S; C S, if and only if f € S,. By definition of
saturation, f € 579 if and only if hf = g™ for some h and n. By definition of radical,
hf = g™ for some h and n if and only if g € \/m Plainly, g € m if and only if
V{g) € /{f). Thus Sy Sy if and only if \/(f) D \/{g); that is, (4) holds. O

Exercise (3.26) . — Let R be a nonzero ring, S a subset. Show S is maximal in
the set & of multiplicative subsets T' of R with 0 ¢ T if and only if R — S is a
minimal prime of R .

Solution: First, assume S is maximal in &. Then S is equal to its saturation S,
as S C S and S is multiplicative by (3.25) (1) (a), (b) and as 0 € S would imply
0=0-y € S for some y. So R— S is a union of primes p by (3.24). Fix a p. Then
(3.16) yields in p a minimal prime q. Then S C R —q. But R —q € & by (2.2).
As S is maximal, S= R —q, or R — S =q. Thus R — S is a minimal prime.

Conversely, assume R — S is a minimal prime q. Then S € & by (2.2). Given
T € & with S C T, note R —T = |Jp with p prime by (3.24). Fix a p. Now,
ScTcT. Soq D p. Butqisminimal. So q = p. But p is arbitrary, and
Up=R-T. Hence q= R—T. So S =T. Hence S = T. Thus S is maximal. [0

Exercise (3.27) . — Let k be a field, X for A € A variables, and A, for 7 € II
disjoint subsets of A. Set P := k[{Xx}aea] and pr := ({Xx}ren,) for all 7 € IL
Let F, G € P be nonzero, and a C P a nonzero ideal. Set U := J < b=. Show:

(1) Assume F € p, for some 7 € II, Then every monomial of F is in p,.

(2) Assume there are 7, p € IT such that F + G € p, and G € p, but p, contains
no monomial of F. Then p, contains every monomial of F' and of G.

(3) Assume a C U. Then a C p, for some 7 € II.

Solution: In (1), F = Z)\eAﬂ F)\ X, for some F\ € P. So every monomial of F’
is a multiple of X for some A € A,. Thus (1) holds.

In (2), every monomial of G is in p, by (1). So F and G have distinct monomials.
So there’s no cancellation in F' + G. But F + G € p,. Thus (1) implies (2).

For (3), fix a nonzero F' € a. Then for any G € a, also F+ G € a. But a C U.
So there are 7, p € II such that '+ G € p, and G € p,. So (2) implies that either
pr or p, contains G and some monomial of F. So a lies in the union of all p, that
contain some monomial of F'. But the A, are disjoint. So this union is finite. Thus
Prime Avoidance (3.12) yields (3). O

Exercise (3.28) . — Let k be a field, 8 C k a subset of cardinality d at least 2.
Show: (1) Let P := k[X1,...,X,] be the polynomial ring, F' € P nonzero. Assume
the highest power of any X; in F' is less than d. Then owing to induction on
n, there are ay,...,a, € 8§ with F(ay,...,a,) # 0.
(2) Let V be a k-vector space, and Wq, ..., W, proper subspaces. Assume r < d.
Then Uz Wz' 7é V.
(3) In (2), let W C |J; W; be a subspace. Then W C W; for some 1.
(4) Let R be a k-algebra, and a,ay,...,a, ideals with a C |J_, a;. Then a C a;
for some 1.
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Solution: For (1), first assume n = 1. Then F has degree at most d — 1, so at
most d — 1 zeros by (2.35)(1) or by (2.42)(2). So there’s a1 € 8§ with F(a;) # 0.

Assume n > 1. Say F' =}, G, X] with G € k[Xa,...,X,]. But F # 0. So
G; # 0 for some i. By induction, there are as,...,a, € 8 with G;(as,...,a,) # 0.
So there’s a; € 8 with F(ay,...,an) = 3_; Gj(az, ..., an)a] # 0. Thus (1) holds.

For (2), for all i, take v; € V — W,. Form their span V/ C V. Set n := dim V’
and W/ := W; N'V’. Then n < oo, and it suffices to show (J, W # V".

Identify V’ with k™. Form the polynomial ring P := k[X7,..., X,]. For each 1,
take a linear form L; € P that vanishes on W/. Set F' := Ly ---L,. Then r is the
highest power of any variable in F. But r < d. So (1) yields aq,...,a, € 8§ with
F(ai,...,a,) # 0. Then (ai,...,a,) € V' —J, W/, as desired. Thus (2) holds.

For (3), for all 4, set U; :== W NW,. Then |J,U; = W. So (2) implies U; = W
for some i. Thus W C W; as desired. Thus (3) holds.

Finally, (4) is a special case of (3), as every ideal is a k-vector space. Thus (4)
holds. O

Exercise (3.29) . — Let k be a field, R := k[X,Y] the polynomial ring in two
variables, m := (X,Y’). Show m is a union of strictly smaller primes.

Solution: Since R is a UFD, and m is maximal, so prime, any nonzero F' € m has
a prime factor P € m. Thus m = |J,(P), but m # (P) as m is not principal. O

Exercise (3.30) . — Find the nilpotents in Z/(n). In particular, take n = 12.

Solution: An integer m is nilpotent modulo n if and only if some power mF¥ is

divisible by n. The latter holds if and only if every prime factor of n occurs in m.
In particular, in Z/(12), the nilpotents are 0 and 6. O

Exercise (3.31) (Nakayama’s Lemma for a nilpotent ideal) . — Let R be a ring, a
an ideal, M a module. Assume aM = M and a is nilpotent. Show M = 0.

Solution: Since M = aM, also a®" 'M = a”M for alln > 1. So M = a™M for
all n > 1. But a”™ = (0) for some n > 1 by hypothesis. Thus M = 0. O

Exercise (3.32) . — Let R be a ring; a, b ideals; p a prime. Show:
(1) Vab =+vanb=+yanvb. (2) va=Rifand only if a = R.
(3) Va+b=1/va+b. (4) /p" =p for all n > 0.

Solution: For (1), note ab € anNb C a, b. So vab Cc vanb c v/a, Vb by
(3.13). But, given = € y/aNn /b, note " € a and ™ € b for some n, m. So
2"t € ab. Thus (1) holds.

For (2), note 1 € /a if and only if 1 € a, as 1" = 1 for all n. So (1.4) yields
(2)-

For (3), note a C vaand b € vb. So a+b C /a+ vb. So (3.13) yields
Va+b c y/va+ vb. Conversely, say =" € v/a++vb with n > 0. Then 2" = a+b
with a? € a and b9 € b with p, ¢ > 0. Hence 2"(P+9=1) € q + b; see (3.15.1) and
the two lines after it. So z € v/a+ b. Thus (3) holds.

For (4), note p” C p. So /p"™ C /p. But p is prime; so /p C p. Conversely,
given x € p, note 2™ € p”. So x € /p”. Thus (4) holds. O
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Exercise (3.33) . — Let R be a ring. Prove these statements: (1) Assume every
ideal not contained in nil(R) contains a nonzero idempotent. Then nil(R) = rad(R).
(2) Assume R is Boolean. Then nil(R) = rad(R) = (0).

Solution: For (1), recall (3.13.1), that nil(R) C rad(R). To prove the opposite
inclusion, set R’ := R/nil(R). Assume rad(R’) # (0). Then there is a nonzero
idempotent e € rad(R’). Then e(1 —e) = 0. But 1 — e is a unit by (3.2). So e =0,
a contradiction. Hence rad(R’) = (0). Thus (1.9) yields (1).

For (2), recall from (1.2) that every element of R is idempotent. So nil(R) = (0),
and every nonzero ideal contains a nonzero idempotent. Thus (1) yields (2). O

Exercise (3.34) . — Let e,¢’ € Idem(R). Assume +/{e) = /(e’). Show e = ¢'.

Solution: By hypothesis, e® € (¢’) for some n > 1. But e? = ¢, so " = e. So
e = xe’ for some z. So e = ze’? = ee’. By symmetry, ¢/ = ¢’e. Thus e = ¢’. O

Exercise (3.35) . — Let R be a ring, a1, az comaximal ideals with ajas C nil(R).
Show there are complementary idempotents e; and ey with e; € a;.

Solution: Since a; and as are comaximal, there are x; € a; with 21 + zo = 1.
Given n > 1, expanding (z1 + 22)?" ! and collecting terms yields a; 27 + agzh = 1
for suitable a; € R. Now, zix2 € nil(R); take n > 1 so that (z122)™ = 0. Set
e; = a;x} € a;. Then e;+ez =1 and ejea = 0. Thus e; and ey are complementary
idempotents by (1.10). O

Exercise (3.36) . — Let R be a ring, a an ideal, kK: R — R/a the quotient map.
Assume a C nil(R). Prove that Idem(k) is bijective.

Solution: Note that Idem(x) is injective by (3.13.1) and (3.3).

As to surjectivity, given ¢’ € Idem(R/a), take z € R with residue ¢’. Then (z)
and (1 — z) are trivially comaximal. And (2)(1 — 2) C a C nil(R) as x(z — 2%) = 0.
So (3.35) yields complementary idempotents e; € (z) and ey € (1 — z).

Say e; = xz with z € R. Then k(e1) = z¢’. So k(e1) = xe’? = k(eq)e’. Similarly,
k(e2) = k(e2)(1 —€’). So k(ez)e’ = 0. But k(e2) =1 — k(e1). So (1 — k(ey))e’ =0,
ore = r(er)e’. But k(e;) = k(er)e’. So k(er) = €. Thus Idem(k) is surjective. O

Exercise (3.37) . — Let R be a ring. Prove the following statements equivalent:

(1) R has exactly one prime p;
(2) every element of R is either nilpotent or a unit;
(3) R/nil(R) is a field.

Solution: Assume (1). Let « € R be a nonunit. Then x € p. So z is nilpotent
by the Scheinnullstellensatz (3.14). Thus (2) holds.

Assume (2). Then every z ¢ nil(R) has an inverse. Thus (3) holds.

Assume (3). Then nil(R) is maximal by (2.12). But any prime of R contains
nil(R) by (3.14). Thus (1) holds. O

Exercise (3.38) . — Let R be a ring, a and b ideals. Assume that b is finitely
generated modulo a and that b C v/a. Show there’s n > 1 with b” C a.
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Solution: Say x1,...,x,, generate b modulo a. For each ¢, there’s n; > 1 with
z €a. Set n:=) (n; —1). Given z € b, say x = >\, y;x; + a with y; € R and
a € a. Then z" is, modulo a, a linear combination of terms of the form z7* - - - zjm
with Zyilji = n. But j; > n; for some i, because if j; < n; — 1 for all 4, then
ZJ’L §Z(nz—1) Thus z" € a. O
Exercise (3.39) . — Let ¢: R — R’ be a ring map, a C R and b C R’ subsets.
Prove these two relations: (1) (pyv/a)R' C /(wa)R’ and (2) ¢~ 'Vb = /o~ 1b.

Solution: For (1), given y € (pv/a)R', say y = > .._, (px;)y; with z; € \/a and
y; € R'. Then z"" € a for some n; > 0. Hence y" € (¢a)R’ for any n > 3 (n; — 1),

see the solution of (3.38). So y € \/(¢a)R’. Thus (1) holds.
For (2), note that below, (a) is plainly equivalent to (b); and (b), to (¢); etc.:

(a) = € p~1Vb; (b) wx € Vb;

(¢) (px)™ € b for some n; (d) ¢(a™) € b for some n;

(e) 2™ € ¢~ 1b for some n; (f) z € \/p~1b. 0
Exercise (3.40) . — Let R be a ring, q an ideal, p a prime. Assume p is finitely

generated modulo q. Show p = ,/q if and only if there’s n > 1 with p D q D p".

Solution: If p = /g, then p D q D p™ by (3.38). Conversely, if ¢ D p”, then
clearly \/q D p . Further, since p is prime, if p D q, then p D /q. O

Exercise (3.41) . — Let R be a ring. Assume R is reduced and has finitely many
minimal prime ideals py,...,p,. Prove that ¢: R — [[(R/p;) is injective, and for
each 4, there is some (z1,...,2,) € Im(p) with z; # 0 but ; = 0 for j # i.

Solution: Clearly Ker(y) = (p;. Now, R is reduced and the p; are its minimal
primes; hence, (3.14) and (3.16) yield

(0) = V(0) = ﬂpi-

Thus Ker(p) = (0), and so ¢ is injective.
Finally, fix 4. Since p; is minimal, p; 2 p; for j # 4; say a; € p; — p;. Set
a:=]];4a;. Then a € p; —p; for all j # i. So take (z1,...,z,) := p(a). O

Exercise (3.42) . — Let R be a ring, X a variable, F':=>_""  a,X". Show:
(1) Then F is nilpotent if and only if ag, ..., a, are nilpotent.
(2) Then F is a unit if and only if ag is a unit and ay, ..., a, are nilpotent.

Solution: In (1), if ag,...,a, are nilpotent, so is F' owing to (3.15).
Conversely, say a; ¢ nil(R). Then (3.14) yields a prime p C R with a; ¢ p. So
F ¢ pR[X]. But pR[X] is prime by (2.32). Thus plainly F ¢ nil(R[X]).
Alternatively, say F* = 0. Then (a,X")¥ = 0. So F — a,, X™ is nilpotent owing
to (3.15). So ag,...,a,—1 are nilpotent by induction on n. Thus (1) holds.
For (2), suppose ag is a unit and ay, ..., a, are nilpotent. Then a; X +---+a, X"
is nilpotent by (1), so belongs to rad(R) by (3.13.1). Thus F is a unit by (3.2).
Conversely, say FG =1 and G =bg+ -+ b, X™. So agbg = 1. Thus ag € R*.
Further, given a prime p C R, let x: R[X] — (R/p)[X] be the canonical map.
Then k(F)k(G) = 1. But R/p is a domain by (2.8). So degx(F) = 0 owing to
(2.4.1). So ay,...,a, € p. But p is arbitrary. Thus a4, ..., a, € nil(R) by (3.14).
Alternatively, let’s prove a;"’lbm,r = 0 by induction on r. Set ¢; := Zj+k:i a;by.
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Then Y ¢; X' = FG. But FG = 1. So ¢; = 0 for i > 0. Taking i := m + n yields
anbm = 0. But ¢ppan—r = 0. So anbpy—r + an_lbm_(r_l) + .- = 0. Multiply by a;
then a”*1b,, , = 0 by induction. So a™*'by = 0. But by is a unit. So a™*! = 0.
So a, X™ € rad(R[X]) by (3.13.1). But F is a unit. So F —a, X" is too by (3.21).

So aq,...,a,—1 are nilpotent by induction on n. Thus (2) holds. O
Exercise (3.43) . — Generalize (3.42) to the polynomial ring P := R[X},..., X,].

Solution: Let F € P. Say F = Y a;X® where (i) == (i1,...,i,) and where
X® .= Xit... X Set (0) := (0,...,0). Then (1) and (2) generalize as follows:

(1) Then F is nilpotent if and only if a(;) is nilpotent for all (7).

(2') Then F'is a unit if and only if a(g) is a unit and a ;) is nilpotent for (i) # (0).

To prove them, set R’ := R[X,,...,X,], and say F = > F; X} with F; € R'.

In (1), if F is nilpotent, so are all F; by (3.42)(1); hence by induction on r, so
are all a(;y. Conversely, if all a(; are nilpotent, so is F* by (3.15). Thus (1) holds.

In (2'), if a(g) is a unit and a;) is nilpotent for (i) # (0), then 3 ap X
is nilpotent by (1’), so belongs to rad(R) by (3.13.1). Then F is a unit by (3.2).

Conversely, suppose F' is a unit. Then Fjy is a unit, and F; is nilpotent for ¢ > 0
by (3.42)(2). So a(g is a unit, and a(;) is nilpotent if iy = 0 and (i) # (0), by
induction on 7. Also, a(;) is nilpotent if i; > 0 by (1’). Thus (2’) holds. O

Exercise (3.44) . — Let R be a ring, R’ an algebra, X a variable. Show:
(1) nil(R)R' C nil(R') and (2) rad(R[X]) = nil(R[X]) = nil(R)R[X].

Solution: For (1), given any y € nil(R)R’, say y = >_ x;y; with x; € nil(R) and
y; € R'. Then z;y; € nil(R’). So (3.15) yields y € nil(R’). Thus (1) holds.

For (2), note rad(R[X]) D nil(R[X]) by (3.13.1). And nil(R[X]) D nil(R)R[X]
by (1) or by (3.42)(1). Now, given F := ag + --- + a, X" in rad(R[X]), note
that 1 + X F' is a unit by (3.2). So ao,...,a, are nilpotent by (3.42)(2). So
F e nil(R)R[X]. Thus nil(R)R[X] D rad(R[X]). Thus (2) holds. O

4. Modules

Exercise (4.3) . — Let R be a ring, M a module. Consider the set map
p: Hom(R, M) — M defined by p(0) := 6(1).
Show that p is an isomorphism, and describe its inverse.
Solution: First off, p is R-linear, because
p(20 4+ 2'0) = (20 + 2'0")(1) = 20(1) + 20" (1) = zp(0) + 2" p(0').

Set H := Hom(R, M). Define a: M — H by a(m)(z) := am. It is easy to check
that ap = 1y and pa = 1ps. Thus p and « are inverse isomorphisms by (4.2). O

Exercise (4.14) . — Let R be a ring, a and b ideals, M and N modules. Set

Fa(M)::{meM‘aC\/xm(m)}.

Show: (1) Assume a D b. Then I';(M) C T'y(M).
(2) Assume M C N. Then I'y(M) =T«(N) N M.
(3) Then I'q(Ts(M)) =Ty (M) =To(M) NTp(M).
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(4) Then T'y(M) =T z(M).
(5) Assume a is finitely generated. Then I'o(M) =, >, {m € M [a"m =0}.

Solution: For (1), given m € I'y(M), note b C a C \/Ann(m). So m € T'y(M).
Thus (1) holds.

For (2), given m € I'y (M), note \/Ann(m) is the same ideal whether m is viewed
in M or in N. Thus (2) holds.

For (3), given m € M, note a C y/Ann(m) and b C /Ann(m) if and only if
a+b C y/Ann(m). Thus (3) holds.

For (4), given m € M, note a C \/Ann(m) if and only if \/a C \/Ann(m). Thus
(4) holds.

For (5), given m € M and n > 1 with a”m = 0, note a C /Ann(m). Conversely,
given m € I'q(M), note a C y/Ann(m). But a is finitely generated. So (3.38) gives
n > 1 with a™ C Ann(m). So a”m = 0. Thus (5) holds. O

Exercise (4.15) . — Let R be a ring, M a module, z € rad(M), and m € M.
Assume (1 4+ 2)m = 0. Show m = 0.

Solution: Set a := Ann(M) and R’ := R/a. Then rad(R') = rad(M)/a by
(4.1.1). Let 2’ be the residue of z. Then z’ € rad(R’). So 1+ 2’ is a unit in R’ by
(3.2). But 2’m = xm. Thus m = (1 +2/)~}(1 + 2')m = 0. O

Exercise (4.16) . — Let R be a ring, M a module, N and N, submodules for
A €A, and a, ay, b ideals for A € A. Set (N :a):={m € M | am C N}. Show:

(1) (N :a)is a submodule. (2) N C (N :a).

(3) (N:a)aC N. (4) (N:a):b)=(N:ab)=((N:0):a).

(B5) (NNr:a) =NNVa:a). (6) (N:Xan) =N(N:ay).

Solution: For (1), given m, n € (N : a) and € R, a € a, note am, zan € N.
So a(m+zn) € N. So m+zn € (N : a). Thus (1) holds.

For (2), given n € N, note an C N. Son € (N : a). Thus (2) holds.

For (3), given m € (N : a) and a € a, note am € N. Thus (3) holds.

For (4), fix m € M. Given b € b, note bm € (N : a) if and only if a(bm) € N for
all @ € a. Also, m € (N : ab) if and only if (ab)m € N for all a € a and b € b. But
a(bm) = (ab)m. Thus ((N : a) : b) = (N : ab). Similarly, (N : ab) = ((N : b) : a).
Thus (4) holds.

For (5), given m € M, note am C ()N, if and only if am C Ny for all A. Thus
(5) holds.

For (6), given m € M, note (Y ax)m C N if and only if axm C N for all \.
Thus (6) holds. O

Exercise (4.17) . — Let R be a ring, M a module, N, Ny, L, L, submodules for

A€A Set (N:L):={x€ R|azL C N}. Show:
(1) (N : L) is an ideal. (2) (N:L)=Ann((L+ N)/N).
(3) (0:L)=Ann(L). (4) (N:L)y=RifLCN
(5) (NNx:L)=N(Nx:L). (6) (N:XLx)=(N:Ly).

Solution: Assertions (1), (5), (6) can be proved like (4.16)(1), (5), (6).
For (2), given z € R, note L C N if and only if (L+ N) C N. Thus (2) holds.
As to (3), it’s the special case of (2) where N = 0. Finally, (4) is trivial. O
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Exercise (4.18) . — Let R be a ring, X := {X)} a set of variables, M a module,
N a submodule. Set P := R[X]. Prove these statements:

(1) M[X] is universal among P-modules @) with a given R-map a: M — Q;
namely, there’s a unique P-map §: M[X] — Q with §|M = a.

(2) M[X] has this UMP: given a P-module @ and R-maps a: M — @ and
Xx: Q@ — @Q for all A\, there’s a unique R-map S: M[X] — Q with 8|M = « and
Bux, = xapB for all A.

(3) M[X]/N[X] = (M/N)[X].

Solution: For (1), given a P-map 8: M[X] — @, note 8(>_m;M,) is equal to
> B(m;)M; with m; € M and M; a monomial. So § is unique if S|M = a, as
then 8(>_m;M;) = > a(m;)M;. But the latter equation serves to define a map
B: M[X] — @ with 8|M = «. Plainly § is an P-map. Thus (1) holds.

For (2), recall that to give the x is the same as to give a P-module structure
on ) compatible with the R-module structure on @; see (4.5). Furthermore, given
an R-map f: M[X] — Q, the condition Sux, = x»8 for all A just means that 3 is
an R[X]-map. Thus (2) is equivalent to (1).

For (3), let kpr: M — M/N be the quotient map. Define A: M[X] — (M/N)[X]
by AX° m;M;) := > kar(m;)M;. Plainly A is a P-map, and N[X] C Ker A. Also
A is surjective as kjps is. Suppose that A(>_m;M;) = 0. Then kps(m;) = 0. So
m; € N. So Y m;M; € N[X]. Thus Ker A C N[X]. So A induces an isomorphism
MI[X]/N[X] = (M/N)[X] by (4.6.1). Thus (3) holds.

Alternatively, in (3) the two P-modules are equal, as each is universal among
P-modules @ with a given R-map «: M — @ vanishing on N. Indeed, first, each
is, plainly, a P-module with a canonical R-map from M vanishing on N.

Next, (1) yields a unique P-map : M[X] — @ with 8|M = a. But «a vanishes
on N. Hence /3 vanishes on N[X]. Thus 3 induces a P-map M[X]/N[X] — Q whose
composition with the canonical map M — M[X]/N[X] is c.

Lastly, o factors via M/N. So (1) yields a unique P-map (M/N)[X] — @ whose
composition with the map M — (M/N)[X] is @. Thus (3) holds. O

Exercise (4.19) . — Let R be a ring, X a set of variables, M a module, and
Ny, ..., N, submodules. Set N =[] N;. Prove the following equalities:

(1) Ann(M[X]) = Ann(M)[X]. (2) N[X] = () Ni[X].

Solution: For (1), use double inclusion. Given f € R[X], say f = > a;M;
for monomials M;. First, assume f € Ann(M[X]). Given m € M, note that
0= fm=> a;mM,;. Soa;m =0 for all i. Thus f € Ann(M)[X].

Conversely, assume f € Ann(M)[X]. Then a; € Ann(M) for all i. Given
g € M[X], say that g = > m;M} for m; € M and monomials M}. Then
fg=7>2 ;aim;M;M} = 0. Thus f € Ann(M[X]). Thus (1) holds.

For (2), use double inclusion. Given m € M[X], say m =Y m;M; for m; € M
and monomials M;. First, assume m € N[X]. Then for all j, note m; € N, so
m; € N; for all i. So m € N;[X] for all i. Thus m € [ N;[X].

Conversely, assume m € (| N;[X]. Then, for all i, as m € N;[X], each m; € N;.
So each m; € N. Thus m € N[X]. Thus (2) holds. O

Exercise (4.20) . — Let R be aring, M a module, X a variable, F € R[X]. Assume
there’s a nonzero G € M[X] with FG = 0. Show there’s a nonzero m € M with
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Fm = 0. Proceed as follows. Say G = mg + m1 X + --- + msX*® with mg # 0.
Assume s is minimal among all possible G. Show Fm, =0 (so s = 0).

Solution: Suppose Fmgs # 0. Say F = ag+a1 X +---+a,.X". Then there’st > 0
with ayms # 0, but a1 ;ms = 0 for ¢ > 0. Fix ¢ > 0, and set H := a;4;G. Then
FH = 0. But H = a;yymo + -+ + arpims_1 X°" 1. As s is minimal, H = 0. So

agrims—; = 0. But ¢ > 0is arbitrary. Also F'G = 0 yields aymgs+a;1ms_1+--- = 0.
So a;mg = 0, a contradiction. Thus Fmg = 0. O
Exercise (4.21) . — Let R be a ring, a and b ideals, and M a module. Set

N := M/aM. Show that M/(a+ b)M — N/bN.
Solution: Note bN = (a+ b)M/aM. Thus (4.8.1) yields the isomorphism. [
Exercise (4.22) . — Show that a finitely generated free module has finite rank.

Solution: Say ey for A € A form a free basis, and my,..., m, generate. Then
m; = Z:cijeAj for some x;;. Consider the ey, that occur. Plainly, they are finite
in number, and generate. So they form a finite free basis, as desired. O

Exercise (4.23) . — Let R be a domain, and x € R nonzero. Let M be the

submodule of Frac(R) generated by 1, z=%, #72,.... Suppose that M is finitely

generated. Prove that 27! € R, and conclude that M = R.

Solution: Suppose M is generated by my,...,my. Say m; = >0, aiz~J for
some n; and a;; € R. Set n := max{n;}. Then 1, ™!,...,2~" generate M. So

e — g T T Fa

for some a; € R. Thus

rl=a,+ - 4+az" !t +apz” € R.
Finally, as 7! € R and R is a ring, also 1, 27!, 27 2,... € R; so M C R.
Conversely, M D Ras 1€ M. Thus M = R. O
Exercise (4.24) . — Let A be an infinite set, Ry a nonzero ring for A € A. Endow

[1Rx and @ R, with componentwise addition and multiplication. Show that [ Rx
has a multiplicative identity (so is a ring), but that €@ R does not (so is not a ring).

Solution: Consider the vector (1) whose every component is 1. Obviously, (1) is
a multiplicative identity of [] Rx. On the other hand, no restricted vector (z)) can
be a multiplicative identity in € Ry; indeed, because A is infinite, z, must be zero

for some p. So (zx) - (ya) # (yr) if y, # 0. O

Exercise (4.25) . — Let R be aring, M a module, and M’, M" submodules. Show
that M = M’ @ M" if and only if M = M’ + M" and M’ N M" = 0.

Solution: Assume M = M’ @& M"”. Then M is the set of pairs (m/,m”) with
m’ € M and m” € M" by (4.13); further, M’ is the set of (m’/,0), and M" is that
of (0,m"). So plainly M = M’ + M" and M'nM" = 0.

Conversely, consider the map M'@® M"” — M given by (m',m”) — m’+m”. Tt is
surjective if M = M’ + M". Tt is injective if M’ N M" = 0; indeed, if m’ +m” =0,
then m’ = —m/ € M' N M" =0, and so (m’,m") = 0 as desired. O
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Exercise (4.26) . — Let L, M, and N be modules. Consider a diagram
a B
L= Mz N
p o
where «, (3, p, and o are homomorphisms. Prove that
M=L®&N and a=.i.p, B=7N, O =1tN, p=TL
if and only if the following relations hold:
Ba=0, fo=1, pc =0, pal, and ap+ o8 =1.

Solution: If M =L ® N and a = 11, 8 = 7N, oLn, p = 7, then the definitions
immediately yield ap+ o8 =1 and fa =0, fo =1, poc =0, pa = 1.

Conversely, assume ap+ o8 =1 and fa =0, o =1, poc =0, pa = 1. Consider
the maps ¢: M — L@® N and 0: L & N — M given by om := (pm, fm) and
6(l,n) := al 4+ on. They are inverse isomorphisms, because

©0(l,n) = (pad + pon, Bal+ Bon) = (I,n) and Opm = apm + ocfm = m.
Lastly, 8 = my¢ and p = wp@ by definition of ¢, and o = 6t and o = Oy by
definition of 6. O

Exercise (4.27) . — Let L be a module, A a nonempty set, My a module for A € A.
Prove that the injections ¢, : M,, — @ M) induce an injection

@ HOHI(L, M,\) — I{OHI(L7 @ ZW)\)7
and that it is an isomorphism if L is finitely generated.

Solution: For A € A, let a): L — M) be maps, almost all 0. Then

(Z L)\Oé)\)(l) = (Oz)\(l)) S @M,\
So if Y tyay =0, then ay = 0 for all A. Thus the ¢, induce an injection.

Assume L is finitely generated, say by ly,...,l;. Let a: L — @ M, be a map.
Then each «(l;) lies in a finite direct subsum of € M. So «(L) lies in one too. Set
oy, = mga for all kK € A. Then almost all «,; vanish. So () lies in @ Hom(L, M),
and Y 1,0, = a. Thus the ¢, induce a surjection, so an isomorphism. O

Exercise (4.28) . — Let a be an ideal, A a nonempty set, M) a module for A € A.
Prove a(@@ My) = @ aM,. Prove a([] M) = []aM, if a is finitely generated.

Solution: First, a(@ M,) C @ aM, because a - (my) = (amy). Conversely,
a(@ MA) D P aM), because (axmy) =Y aytamy since the sum is finite.

Second, a(ITM») C [TaMy as a(my) = (amy). Conversely, say a is generated
by fi,..., fn. Then a(I]Mx) D [TaM,. Indeed, take (m}) € [JaM,. Then for
each ), there is ny such that m} = Z;ﬁl ax;jmy; with ay; € a and my; € M,.
Write ay; = Z?:l xxjifi with the x;; scalars. Then

(m&) = (ZZfixAjimAj> = qu <Z l‘,\jim)\j> € CL(H M)\). O
j=11:=1 =1 =1

Exercise (4.29) . — Let R be aring, A a set, M) a module for A € A, and Ny C M)
a submodule. Set M := @ M, and N := @ N, and Q := @ M,/N,. Show
M/N = Q.
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Solution: For each A, let kx: My —» M),/Ny be the quotient map. Define
ki M — Q by k((my)) = (ka(my)).

Given (g)) € @, say g\ = kx(my). Then n((m,\)) = (gr). Thus & is surjective.

Given (my) € M, note £((my)) = 0 if and only if £ (my) = 0 for all A, so if and
only if my € Ny for all A. Thus Ker(x) = N. Thus (4.6) yields Q = M/N. O

5. Exact Sequences

Exercise (5.5) . — Let 0 = M’ — M — M" — 0 be a short exact sequence. Prove
that, if M’ and M" are finitely generated, then so is M.

Solution: Let mY,...,m!! € M map to elements generating M". Let m € M,
and write its image in M" as a linear combination of the images of the m/. Let
m’ € M be the same combination of the m/. Set m’ := m —m/”. Then m’ maps
to 0 in M"; so m’ is the image of an element of M’.

Let mj,...,m; € M be the images of elements generating M’. Then m' is a
linear combination of the m’. So m is a linear combination of the m} and m/.
Thus the m] and m] together generate M. O
Exercise (5.15) . — Show that a free module R®" is projective.

Solution: Given 3: M — N and a: R®A — N, use the UMP of (4.10) to define
v: R®A — M by sending the standard basis vector ey to any lift of a(ey), that is,
any my € M with 8(my) = a(ey). (The Axiom of Choice permits a simultaneous
choice of all my if A is infinite.) Clearly o = 3. Thus R®? is projective. O

Exercise (5.18) . — Let R be a ring, and 0 - L — R™ — M — 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

Solution: Assume M is finitely presented; say R! — R™ — M — 0 is a finite
presentation. Let L’ be the image of R'. Then L' ® R™ ~ L & R™ by Schanuel’s
Lemma (5.17). Hence L is a quotient of R' @ R™. Thus L is finitely generated.

Conversely, assume L is generated by ¢ elements. They yield a surjection R* — L
by (4.10)(1). It yields a sequence R* — R™ — M — 0. The latter is, plainly, exact.
Thus M is finitely presented. d

Exercise (5.21) . — Let M’ and M"” be modules, N C M’ a submodule. Set
M = M'® M". Using (5.2)(1) and (5.3) and (5.4), prove M/N = M'/N & M".

Solution: By (5.2)(1) and (5.3), the two sequences 0 — M” — M" — 0 and
0—-N— M — M'/N — 0 are exact. So by (5.4), the sequence

0-N-—->MaoeM' — (M/N)yeM'—0
is exact. Thus (5.3) yields the assertion. O

Exercise (5.22) . — Let M’, M" be modules, and set M := M’ @ M". Let N be
a submodule of M containing M’, and set N := NN M". Prove N = M' @& N".

Solution: Form the sequence 0 — M’ — N — mp»N — 0. It splits by (5.8)
as (mp|N) o tprr = 1pp. Finally, if (m/, m”) € N, then (0, m"”) € N as M’ C N,
hence, mpn N = N”. O
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Exercise (5.23) (Five Lemma) . — Consider this commutative diagram:

My 25 My 2 My 22 M, 25 M,

’Y4l ’Y3l ’Yzl ’Yll ’Yol
Ny 25 Ny 2B N, Ny S N

Assume it has exact rows. Via a chase, prove these two statements:

(1) If 43 and 7, are surjective and if 7 is injective, then s is surjective.
(2) If 5 and ~; are injective and if 74 is surjective, then s is injective.

Solution: Let’s prove (1). Take ny € Ny. Since 7 is surjective, there is
mq € M1 such that 71(m1) = 52(77,2). Then ’}/0051(72’11) = ﬁlm(ml) = ﬂlﬂg(ng) =0
by commutativity and exactness. Since vy is injective, ag (m) = 0. Hence exactness
yields mo € M2 with O[Q(mz) =msj. So ﬁg(’}’z(mz) - 77,2) = 71@2(m2) - ﬂg(ﬂz) =0.

Hence exactness yields ng € N3 with 83(ns) = v2(ma) —na. Since 7 is surjective,
there is ms € M3 with y3(ms) = n3. Then yaas(ms) = PBsys(ms) = y2(ma) — na.
Hence y2(ma — az(ms)) = ng. Thus 72 is surjective.

The proof of (2) is similar. O

Exercise (5.24) (Nine Lemma) . — Consider this commutative diagram:
0 0 0

|l

0 —L —L—L"—0

Lol

00— M — M —- M —0

L]

0 —- N — N —=N'"—=0

|1

0 0 0

Assume all the columns are exact and the middle row is exact. Applying the Snake
Lemma (5.10), show that the first row is exact if and only if the third is.

Solution: The first row is exact if the third is owing to the Snake Lemma (5.10)

applied to the bottom two rows. The converse is proved similarly. O
Exercise (5.25) . — Referring to (4.8), give an alternative proof that § is an
isomorphism by applying the Snake Lemma (5.10) to the diagram

0— M N N/M —— 0

[ 2
0 — M/L — N/L 2 (N/L)/(M/L) — 0

Solution: The Snake Lemma yields an exact sequence,

L5 L Ker(8) > 0;
hence, Ker(8) = 0. Moreover, § is surjective because « and \ are. [l
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Exercise (5.26) . — Consider this commutative diagram with exact rows:

VI Y Ny Vi

all QJV alll
N P N 2 N
Assume o/ and «y are surjective. Given n € N and m” € M" with o”(m") = +/(n),
show that there is m € M such that a(m) =n and y(m) = m”.

Solution: Since v is surjective, there is my € M with v(m;) = m”. Then

7' (n—a(my)) =0 as o’ (m”) = 4/(n) and as the right-hand square is commutative.
So by exactness of the bottom row, there is n’ € N’ with 8'(n') = n—a(my). Since
o’ is surjective, there is m’ € M’ with o/(m’) = n’. Set m := my + B(m/). Then
v(m) =m” as v = 0. Further, a(m) = a(m1)+ ' (n’) = n as the left-hand square
is commutative. Thus m works. g

Exercise (5.27) . — Let R be a ring. Show that a module P is finitely generated
and projective if and only if it’s a direct summand of a free module of finite rank.

Solution: Assume P is generated by n elements. Then (5.13) yields an exact
sequence 0 - K — R™ — P — 0. Assume P is projective too, Then this sequence
splits by (5.16), as desired.

Conversely, assume P & K ~ R" for some K and n. Then P is projective by
(5.16). Also, the projection R™ — P is surjective; so P is finitely generated. [

Exercise (5.28) . — Let R be a ring, P and N finitely generated modules with P
projective. Prove Hom (P, N) is finitely generated, and is finitely presented if N is.

Solution: Say P is generated by n elements. Then (5.13) yields an exact se-
quence 0 - K — R™ — P — 0. It splits by (5.16). So (4.13.2) yields
Hom(P, N) & Hom(K, N) = Hom(R®™, N).
But Hom(R®", N) = Hom(R, N)®" = N®" by (4.13.2) and (4.3). Also N is
finitely generated. Hence Hom(R®™, N) is too. But Hom(P, N) and Hom(K, N)
are quotients of Hom(R®™, N) by (5.8). Thus they’re finitely generated too.

Suppose now there is a finite presentation Fy — F; — N — 0. Then (5.15) and
(5.16) yield the exact sequence

Hom(R®", Fy) — Hom(R®", F}) — Hom(R®", N) — 0.

But the Hom(R®", F;) are free of finite rank by (4.13.1) and (4.13.2). Thus
Hom(R®", N) is finitely presented.
As in (5.2), form the (split) exact sequence

0 — Hom(K, N) — Hom(R®", N) — Hom(P, N) — 0.
Apply (5.19). Thus Hom(P, N) is finitely presented. |

Exercise (5.29) . — Let R be a ring, X;, X»,... infinitely many variables. Set
P:=R[X1,X2,...] and M := P/(X1,X5,...). Is M finitely presented? Explain.

Solution: No, otherwise by (5.18), the ideal (X, Xa,...) would be generated
by some fi,..., fn € P, so also by Xi,..., X,, for some m, but plainly it isn’t. [
Exercise (5.30) . — Let 0 - L & M P, N = 0 be a short exact sequence with
M finitely generated and N finitely presented. Prove L is finitely generated.
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Solution: Let R be the ground ring. Say M is generated by m elements. They
yield a surjection p: R™ — M by (4.10)(1). Asin (5.19), p induces the following
commutative diagram, with A surjective:

0 —>K —R"— N —0

)\l Ml 1Nl
0—L-SME N0

By (5.18), K is finitely generated. Thus L is too, as ) is surjective. O

5. Appendix: Fitting ldeals

Exercise (5.36) . — Let R be a ring, and a1,...,a, € R with (a1) D -+ D {am).
Set M := R/{a1) ®---® R/(an). Show that F.(M) = (a1 - am—y).

Solution: Form the presentation R™ = R™ — M — 0 where o has matrix
a1 0
A =
0 Am,

Set s :=m —r. Now, a; € {(a;—1) for all i > 1. Hence a;, ---a;, € {(ay---as) for all

s

1<d <+ <ig <m. Thus I;(A) = {ay - - - as), as desired. ]

Exercise (5.37) . — In the setup of (5.36), assume a; is a nonunit. Show:

(1) Then m is the smallest integer such that F,, (M) = R.

(2) Let n be the largest integer with F,, (M) = (0); set k := m —n. Assume R
is a domain. Then (a) a; # 0 for i < k and a; = 0 for ¢ > k, and (b) each a; is
unique up to unit multiple.

Solution: For (1), note there’s a presentation R™ — R™ — M — 0; see the
solution to (5.36). So F,,,(M) = R by (5.35). On the other hand, F,,,_1(M) = (a1)
by (5.36). So Fi,,—1(M) # R as a; is a nonunit. Thus (1) holds.

For (2)(a), note F,,41(M) # (0) and F,,(M) = (0). Hence a1 ---ap—1 # 0 and
ay---ar = 0 by (5.36). But R is a domain. Hence ay,...,a; # 0 for i < k and
ar = 0. But (ar) D -+ D (am). Hence a; =0 for ¢ > k. Thus (2)(a) holds.

For (2)(b), given b1,...,b, € R with b1 a nonunit, with (b1) D --- D (b,) and
M= (R/(bi)) @ - & (R/(bp)), note that (1) yields p = m and that (2)(a) yields
b; #0 for i < k and b; = 0 for i > k.

Given i, (5.36) yields (a1 ---a;) = (b1---b;). But R is a domain. So (2.30)
yields a unit u; such that ay---a; = u;by -+ b;. So

Ui—1b1 - - bi_1a; = upby -+ - by
If : < k, then by ---b;—1 # 0; whence, u;—1a; = u;b;. Thus (2)(b) holds. O

Exercise (5.41) (Structure Theorem) . — Let R be a PID, M a finitely generated
module. Set T':= {m € M | zm = 0 for some nonzero x € R}. Show:

(1) Then M has a free submodule F' of finite rank with M =T @ F.

(2) Then T ~ @?:1 R/(d;) with the d; nonzero nonunits in R, unique up to unit
multiple, and d; | dj41 for 1 < j < n.

(3) Then T ~ @, M(p;) with M(p;) :== @_, R/(p;""), the p; primes in R,
unique up to unit multiple, and the e;; unique with 0 < e;; < €;;41 and 1 < ;5.
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(4) If M isn’t finitely generated, there may be no free F with M =T & F.

Solution: Note (4.10)(1) yields a free module E of finite rank and a surjection
E — M. Let N be the kernel. Then N is free of finite rank by (4.12). So (5.38)
yields a decomposition £ = E' @ F, a basis ey, ..., e, of E’, and essentially unique
dy,...,d, € Rwith N = Rdye1®---®Rdne, and (d1) D --- D (d,,) # 0. Moreover,
E'={m € M | axm € N for some nonzero € R};so E'/N =T C M.

Note (1) holds as M =T @ F by (5.21), and F is free of finite rank by (4.12).

Note (2) holds as E'/N = R/{d1) & --- & R/(d,) by (4.29).

For (3), recall R is a UFD; see (2.17). Say d,, = p{'" - - - p&» with the p; primes
in R, unique up to unit multiple, and the e;, unique with 1 < e;,. Now, d; | djt1
for 1 < j < n; so dJ = pi I ppd for unique e;; and 0 < e;; < e;j11. Finally,
R/{(d;) = R/{(p{’) @+ & R/{pm") by (1.21)(4)(c). Thus (3) holds.

For (4), take R:=7 and M := Q. Then T = 0, but Q isn’t free by (4.11). O

Exercise (5.42) . — Cr1t1c1ze the following misstatement of (5.8): given a 3-term
exact sequence M' = M LNV , there is an isomorphism M ~ M’ & M" if and
only if there is a section o: M” —> M of 5 and « is injective.

Moreover, show that this construction (due to B. Noohi) yields a counterexample:
For each integer n > 2, let M,, be the direct sum of countably many copies of
Z/{n). Set M := @ M,,. Then let p be a prime number, and take M’ to be a cyclic
subgroup of order p of one of the components of M isomorphic to Z/(p?).

Solution: We have a: M’ — M, and tp: M/ — M’ @& M"”, but (5.8) requires
that they be compatible with the isomorphism M ~ M’ @ M", and similarly for
B: M — M" and warn: M ® M" — M".

Moreover, for the counterexample, let’s first check these two statements:

(1) For any finite Abelian group G, we have G® M ~ M.

(2) For any finite subgroup G C M, we have M /G ~ M.

Statement (1) holds since G is isomorphic to a direct sum of copies of Z/(n) for
various n by the structure theorem for finite Abelian groups (5.41).

To prove (2), write M = B@ M’, where B contains G and involves only finitely
many components of M. Then M’ ~ M. Therefore, (5.22) and (1) yield

M/G ~ (B/G) & M' ~ M.

Finally, there’s no retraction Z/(p?) — M’; so there is no retraction M — M’
either, since the latter would induce the former. Finally, take M" := M /M’. Then
(1) and (2) yield M ~ M' & M". O

6. Direct Limits

Exercise (6.13) . — (1) Show that the condition (6.2)(1) is equivalent to the
commutativity of the corresponding diagram:

Home(B,C) — Home (F(B), F(C))

l l (6.13.1)
Home(A,C) — Home (F(A), F(C))
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(2) Given v: C — D, show (6.2)(1) yields the commutativity of this diagram:
Home(B,C) — Home: (F(B),F(C))

| |

Home(A, D) — Home (F(A), F(D))

Solution: In (6.13.1), the left-hand vertical map is given by composition with
a, and the right-hand vertical map is given by composition with F(a). So the
composition of the top map and the right-hand map sends S to F(8)F(«), whereas
the composition of the left-hand map with the bottom map sends 8 to F'(8«). These
two images are always equal if and only if (6.13.1) commutes. Thus (6.2)(1) is
equivalent to the commutativity of (6.13.1).

As to (2), the argument is similar. O

Exercise (6.14) . — Let € and €’ be categories, F: € — € and F': ¢’ — C an
adjoint pair. Let ¢4 4: Home/(FA, A’) = Home (A, F'A’) denote the natural
bijection, and set 74 := w4 ra(lra). Do the following:

(1) Prove n4 is natural in A; that is, given g: A — B, the induced square
A F'FA

gl lF’Fg
B % F'FB
is commutative. We call the natural transformation A — 74 the unit of (F, F").

(2) Given f': FA — A, prove 4 a/(f') =F'f ona.

(3) Prove the canonical map n4: A — F'F A is universal from A to F’; that is,
given f: A — F’'A’, there is a unique map f': FA — A’ with F'f' ons = f.

(4) Conversely, instead of assuming (F, F') is an adjoint pair, assume given a
natural transformation n: 1l — F'F satisfying (1) and (3). Prove the equation in
(2) defines a natural bijection making (F, F’) an adjoint pair, whose unit is 7.

(5) Identify the units in the two examples in (6.3): the “free module” functor
and the “polynomial ring” functor.

(Dually, we can define a counit ¢: FF' — le/, and prove similar statements.)

Solution: For (1), form this canonical diagram, with horizontal induced maps:

Home (FA, FA) —52" Home (FA, FB) <% Home (FB, FB)

@A,FAl @A,FBJ LPB,FBJ

Home(A, F'FA) 79 Home(A, F'FB) < Home(B, F'FB)
It commutes since ¢ is natural. Follow 1p4 out of the upper left corner to find
F'Fgona = pa rp(Fg) in Home(A, F'FB). Follow 1pp out of the upper right
corner to find 4, pp(Fg) = npog in Home(A, F'FB). Thus (F'Fg)ona =ngog.
For (2), form this canonical commutative diagram:

Home: (FA, FA) —— Home: (FA, A')

tPA,FAl SDA,A’l

Home(A, F'FA) 7% Home(A, F'AY)
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Follow 1p4 out of the upper left-hand corner to find @4 4/ (f") = F'f ona.

For (3), given an f, note that (2) yields pa 4/ (f’) = f; whence, ' = @Z}A/(f).
Thus f’ is unique. Further, an f’ exists: just set f’ := @Z}A,(f).

For (4), set v a/(f") := F'f ona. As na is universal, given f: A — F'A’,
there is a unique f': FA — A’ with F'f" ong = f. Thus ¢4, 4/ is a bijection:

¢A,A' : Homer (FA, A/) — I‘IOID@(A7 F/A/).

Also, ¥4, 4/ is natural in A, as n4 is natural in A and F’ is a functor. And, 14 as
is natural in A’, as F’ is a functor. Clearly, 14 pa(1pa) = na. Thus (4) is done.
For (5), use the notation of (6.3). Clearly, if F' is the “free module” functor,
then na: A — RO carries an element of A to the corresponding standard basis
vector. Further, if F' is the “polynomial ring” functor and if A is the set of variables
{Xx}ren, then (X)) is just X viewed in R[A]. O

Exercise (6.15) . — Show that the canonical map ¢p: lim /(M) — F(h_> M)

of (6.4.1) is compatible with any natural transformation 6: F — G.

Solution: Form this diagram, whose left horizontal maps are the insertions:
F(M,) — lim F(My) =5 F(lim M)

O(M,;)l hge(Mnl 9(@%%
G(M,) — limG(My) =% G(lim M)

By the construction of ¢z and pg in (6.4), the horizontal compositions are equal
to the images under F' and G of the insertions M,, — @MA. But 6 is a natural
transformation. So the outer rectangle is commutative. So the left square remains
commutative when lim 6(M,) is replaced by wE;lH(@ My)pr. Hence, those two
maps are equal by uniqueness. Thus the right square is commutative, as desired. [

Exercise (6.16) . — Let a: L — M and 8: L — N be two maps in a category C.
Their pushout is defined as the object of € universal among objects P equipped
with a pair of maps v: M — P and 6: N — P such that va = §38. Express the
pushout as a direct limit. Show that, in ((Sets)), the pushout is the disjoint union
M U N modulo the smallest equivalence relation ~ with m ~ n if there is £ € L
with a(¢) = m and B(¢) = n. Show that, in ((R-mod)), the pushout is equal to the
direct sum M @ N modulo the image of L under the map (o, —f).

Solution: Let A be the category with three objects A, p, and v and two noniden-
tity maps A — p and A — v. Define a functor A — My by My := L, M, := M,
M, =N, aﬁ = a, and a) := f. Set Q := h_n>lM)\. Then writing

N L L2 M
YIVJ, N J/ um l as BJ/ um l
Q- Q- Q N = Q

we see that () is equal to the pushout of o and 3; here v =7, and d = 7,.

In ((Sets)), take v and 0 to be the inclusions followed by the quotient map.
Clearly ya = §8. Further, given P and maps v': M — P and §': N — P, they
define a unique map M U N — P, and it factors through the quotient if and only
if Yoo =46'8. Thus (M U N)/ ~ is the pushout.
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In ((R-mod)), take v and ¢ to be the inclusions followed by the quotient map.
Then for all £ € L, clearly tpra(f) —enB(€) = (a(€), —B(¢)). Hence tara(€) —inB(€)
is in Im(L). Hence, tpra(f) and ¢y B(¢) have the same image in the quotient. Thus
vya = 08. Giveny': M — P and §': N — P, they define a unique map M &N — P,
and it factors through the quotient if and only if v'a = ¢’5. Thus (M ® N)/Im(L)
is the pushout. O

Exercise (6.17) . — Let R be a ring, M a module, N a submodule, X a set of
variables. Prove M — M[X] is the left adjoint of the restriction of scalars from
R[X] to R. As a consequence, reprove the equation (M/N)[X] = M[X]/N[X].

Solution: First, (4.18)(1) yields, for any R[X]-module P, a bijection
PYM,P: HomR[x](M[.')C], P) - HomR(M, P) with @M,P(B) = /B|M
Plainly, ¢as,p is natural in M and P. Thus the first assertion holds.

Next, recall a quotient is a direct limit; see (6.6). But every left adjoint preserves
direct limits by (6.9). Thus the first assertion yields the desired equation. O

Exercise (6.18) . — Let € be a category, ¥ and A small categories. Prove:

(1) Then €A = (€M) with (0, \) = M, corresponding to o ~— (A~ M,).

(2) Assume € has direct limits indexed by ¥ and by A. Then C has direct limits
indexed by ¥ x A, and hﬂAeA hﬂaez = hﬂ(a,,\)ezx/\'

Solution: Consider (1). In ¥ x A, a map (o, \) — (7, ) factors in two ways:

(@A) = (1, A) = (mp) and (0,A) = (o, 1) = (7, 1)

So, given a functor (o, \) — M, , there is a commutative diagram like (6.10.1).
It shows that the map ¢ — 7 in ¥ induces a natural transformation from A — M
to A+ M, . Thus the rule o — (A — M,)) is a functor from ¥ to er,

A map from (0,\) — M, » to a second functor (o, A) — N, is a collection of
maps 6, »: My x — N, such that, for every map (o, \) — (7, i), the square

MU/\ — Mru

eo,xl j/er,u

NU,\ — NTH

is commutative. Factoring (o,\) — (7, 1) in two ways as above, we get a commu-
tative cube. It shows that the 6, ) define a map in (€*)*.

This passage from C¥*4 to (€*)* is reversible. Thus (1) holds.

As to (2), assume € has direct limits indexed by ¥ and A. Then €* has
direct limits indexed by ¥ by (6.10). So the functors lim €A — € and
l.ﬂaezz (GM* — @A exist, and they are the left adjoints of the diagonal func-

tors € — CA and €* — (€M)* by (6.4). Hence the composition lim, _ lim o is
the left adjoint of the composition of the two diagonal functors. But the latter is
just the diagonal € — C¥*A owing to (1). So this diagonal has a left adjoint, which

is necessarily @(J,A)GEXA by the uniqueness of adjoints. Thus (2) holds. O

Exercise (6.19) . — Let A — M, and A — N, be two functors from a small
category A to ((R-mod)), and {0x: M) — Ny} a natural transformation. Show
h_n}COker(O)\) = Coker(ligMA — ligN,\).
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Show that the analogous statement for kernels can be false by constructing a
counterexample using the following commutative diagram with exact rows:

727 —-7/2 —0

ICE

727 -57/2 —0

Solution: By (6.6), the cokernel is a direct limit, and by (6.11), direct limits
commute; thus, the asserted equation holds.

To construct the desired counterexample using the given diagram, view its rows
as expressing the cokernel Z/(2) as a direct limit over the category A of (6.6). View
the left two columns as expressing a natural transformation {6}, and view the third
column as expressing the induced map between the two limits. The latter map is
0; so its kernel is Z/(2). However, Ker(6,) =0 for A € A; so @Ker(ﬁ)\) =0. 0O

Exercise (6.20) . — Let R be a ring, M a module. Define the map
D(M): M — Hom(Hom(M, R), R) by (D(M)(m))(c) :=a(m).
If D(M) is an isomorphism, call M reflexive. Show:
(1) D : 1((R-moq)) — Hom(Hom(e, R), R) is a natural transformation.
(2) Let M; for 1 < i < n be modules. Then D(]"_, M;) = @, D(M;).
(3) Assume M is finitely generated and projective. Then M is reflexive.
Solution: For (1), given an R-map §: M — N, note that the induced diagram

M 22, Hom(Hom(M, R), R)

| Js

b, Hom(Hom(N, R), R)

commutes, as (D(N)B(m))(v) = v(B(m)) = (B.(D(M)(m)))(v) where m € M
and v € Hom(N, R). Thus (1) holds.
For (2), form the following diagram:

@7:1 Mi @:;1 Mi
| @ ) | @ )
@, Hom(Hom(}M;, R), R) — Hom(Hom(p!", M;, R), R)

The bottom map is an isomorphism by (4.13.2) applied twice. Thus (1) and
(6.15), applied with 6 := D and hgﬂ =@, yield (2).

For (3), note D(R) is an isomorphism owing to (4.3). But plainly, a direct sum
of isomorphisms is an isomorphism (and conversely). Thus (2) implies that D(F)
is an isomorphism for any free module F' of finite rank.

By (4.10), there is a surjection p: F — M where F is free of finite rank. Set
K :=Ker(p). Then F = K@ M by (5.16)(1)=-(2). Since D(F) is an isomorphism,
D(M) is an isomorphism, again owing to (2). Thus (3) holds. O
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7. Filtered direct limits

Exercise (7.2) . — Let R be a ring, M a module, A a set, M) a submodule for
each A € A. Assume [J M) = M. Assume, given A, u € A, there is v € A such that
My, M,, C M,. Order A by inclusion: A < p if My C M,,. Prove M = h_n}lMA.

Solution: Let us prove that M has the UMP characterizing hﬂM . Given ho-
momorphisms 8y: My — P with gy = 8,|My when A < v, define 5: M — P
by B(m) := Bx(m) if m € My. Such a X exists as [JMy = M. If also m € M,
and My, M, C M,, then fx(m) = B,(m) = B,(m); so B is well defined. Clearly,
B: M — P is the unique set map such that 8|M, = Sx. Further, given m,n € M
and z € R, there is v such that m,n € M,. So B(m+n) = B,(m+n) = B(m)+5(n)
and B(xm) = B, (xm) = xB(m). Thus S is R-linear. Thus M = lim M. O

Exercise (7.11) . — Show that every module M is the filtered direct limit of its
finitely generated submodules.

Solution: Every element m € M belongs to the submodule generated by m;
hence, M is the union of all its finitely generated submodules. Any two finitely
generated submodules are contained in a third, for example, their sum. So the
assertion results from (7.2) with A the set of all finite subsets of M. O

Exercise (7.12) . — Show that every direct sum of modules is the filtered direct
limit of its finite direct subsums.

Solution: Consider an element of the direct sum. It has only finitely many
nonzero components. So it lies in the corresponding finite direct subsum. Thus
the union of the subsums is the whole direct sum. Now, given any two finite direct
subsums, their sum is a third. Thus the finite subsets of indices form a directed
partially ordered set A. So the assertion results from (7.2). g

Exercise (7.13) . — Keep the setup of (7.3). For each n € A, set N,, := Z/(n); if
n = ms, define a': N,,, = N, by o (z) := xs (mod n). Show lim N, = Q/Z.

Solution: For each n € A, set Q, := M,/Z C Q/Z. If n = ms, then clearly
Diagram (7.3.1) induces this one:

ot
N,, — N,

TYm l ~ Tn l ~
Ny

Qm — Qn

where )" is the inclusion. Now, |J @, = Q/Z and Q,,, Qn' C Qnns- So (7.2) yields
Q/Zzliﬂ@n. Thus lim Ny, =Q/Z. O

Exercise (7.14) . — Let M := lim M be a filtered direct limit of modules, with
transition maps a;\L: My — M,, and insertions ay: My — M.

(1) Prove that all ay are injective if and only if all aﬁ are. What if hﬂMA isn’t
filtered?
(2) Assume that all «a are injective. Prove M = |JaxM).
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A

= ay. So if ay Is injective, then so is oy,

Solution: For (1), recall that o),
whether h_n)lM » is filtered, or not.

Conversely, suppose all a;} are injective. Given my € M, with aymy = 0, there’s
a;, with ajymy = 0 by (7.5)(3). So my = 0. Thus a, is injective.

However, if M := lim M) isn’t filtered, then all a) aren’t necessarily injective.
For example, take any module M; with 2M; # 0, and set My := My & M;. Define
a, o My = My by a(m) := (m,m) and o/(m) := (m,—m). Then « and o are
injective. But M = Coker(a—a’), and ay: My — M is the quotient map by (6.6).
Also, Im(ax — &) = 0@ 2M; # 0. Thus ay isn’t injective.

For (2), note each af;: My — M, corresponds to an inclusion ayxMy — o, M,,.
So M = ligoz,\M,\. Moreover, given A, p, there’s v with ayMy, o, M, C a,M,
owing to (7.1)(1). Thus (7.2) yields M = [JaxM. O

Exercise (7.15) . — Let R be a ring, a a finitely generated ideal, M a module.
Show I'q(M) = lim Hom(R/a", M).

Solution: Define a map Hom(R/a™, M) — {m € M | a™m = 0} by sending «
to a(1). Plainly it’s a (canonical) isomorphism. Thus (7.2) and (4.14)(5) yield

lingom(R/a"7 M)=U,s1{meM|a"m=0}=Tu(M). O

Exercise (7.16) . — Let R := lim Ry be a filtered direct limit of rings. Show:

(1) Then R = 0 if and only if Ry = 0 for some .

(2) Assume each R) is a domain. Then R is a domain.

(3) Assume each R, is a field. Then each insertion «y: Ry — R is injective,
R = a)Ry, and R is a field.

Solution: For (1), first assume R = 0. Fix any k. Then 1 € R, maps to 0 € R.
So (7.5)(3) with Z for R yields some transition map af: R, — Ry with a§1 = 0.
But §1 =1. Thus 1 =0 in Ry. Thus Ry =0 by (1.1).

Conversely, assume Ry = 0. Then 1 =0 in Ry. So 1 =0 in R, as the transition
map ay: Ry — R carries 1 to 1 and 0 to 0. Thus R =0 by (1.1). Thus (1) holds.

In (2), given z, y € R with zy = 0, we can lift z, y back to some zy, yx € Ry for
some A by (7.5)(1) and (7.1)(1). Then x,y, maps to 0 € R. So (7.5)(3) yields a
transition map a;, with aj)(zayx) = 0 in Ry,. But a)(zayx) = o (xx)ap(ya), and
R, is a domain. So either af‘t(xA) =0or aﬁ(y)\) = 0. Hence, either x =0 or y = 0.
Thus R is a domain. Thus (2) holds.

In (3), each ay: Ry — R is injective as each Ry is a field. So R = [JaxRy by
(7.14). Finally, given 2 € R—0, say « € ayRy. As Ry is a field, there’s y € a) Ry
with zy = 1. So R is a field. Thus (3) holds. O

Exercise (7.17) . — Let M := lim My be a filtered direct limit of modules, with
transition maps al’): My — M, and insertions ay: My — M. For each A, let

Ny C My be asubmodule, and let N C M be a submodule. Prove that N = a;lN
for all A if and only if (a) Ny = (afl)_lNu for all ozfl and (b) JaxNy = N.

Solution: First, assume N, = a;lN for all A\. Recall ay = a#af; for all af;. So
a;lN(aﬁ)_laglN. Thus (a) holds.

Further, N, = a;lN implies axNy C N. So JaaN, C N. Finally, for any
m € M, there is A and my € M) with m = aymy by (7.5)(1). But Ny := o&lN;
hence, if m € N, then my € Ny, so m € ayNy. Thus (b) holds too.
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Conversely, assume (b). Then ayNy C N, or Ny C a;lN, for all \.

Assume (a) too. Given A and my € o, ' N, note aymy € N = Ja,N,,. So there
is g and n, € N, with a,n, = aymy. So (7.5)(2) yields v and o and «; with
atn, = ajmy. But a!N, C N, and (o)) 'N, = N, by (a). Hence my € Ny.

Thus Ny D a;lN. Thus N,\ozglN, as desired. ([l

Exercise (7.18) . — Let R := ligRA be a filtered direct limit of rings, ay C Ry an
ideal for each A\. Assume a;)cu C a, for each transition map afl. Set a := lima,.
If each ay is prime, show a is prime. If each ay is maximal, show a is maximal.
Solution: The functor A — ay) induces functors A — a, and A\ — (RA/aA).
So (7.4) implies that a := limay and lig(R,\/aA) exist, and (7.9) implies that
liﬂ(RA/a)\) = R/a. Thus (7.16) yields the assertions. O

Exercise (7.19) . — Let M := lim My be a filtered direct limit of modules, with
transition maps af;: My — M, and insertions ax: My — M. Let Ny C M), be a
be a submodule for all A. Assume ozﬁN,\ C N, for all af). Prove ligNk = JaaNax.

Solution: The functor A — M, induces a functor A — N,. So liﬂN,\ exists by
(7.4). Also, by (7.9), the inclusions Ny — M) induce an injection lim Ny — M
such that the insertions ay: My — M restrict to the insertions Ny — lim N).
Hence lim N (JaaNy. Finally, let n € lim Ny. Then (7.5)(1) yields a A and a
my € Ny with n = aymy € ayN). Thus lignN,\:Uoz,\NA. |

Exercise (7.20) . — Let R := lim Ry be a filtered direct limit of rings. Prove that
ling il (R,) = nil(R).

Solution: Set ny := nil(Ry) and n := nil(R). As usual, denote the transition
maps by a,’): Ry — R, and the insertions by ay: Ry — R. Then aﬁnA Cny, for all
. So (7.19) yields limn = Uaany. Now, ayny Cn for all A\. So [Jaxny Cn.

Conversely, given x € n, say 2™ = 0. Then (7.5)(1) yields A and z) € R, with

axzy = z. So axx} = 0. So (7.5)(3) yields ozf; with af)xﬁf =0. Set x, = af)x,\.

Then z, =0. So x,, € ny,. Thus z € ayn,. Thus [Jaxny = n, as desired. O
Exercise (7.21) . — Let R := lim Ry be a filtered direct limit of rings. Assume

each ring R is local, say with maximal ideal my, and assume each transition map
af;: Ry — R, is local. Set m := limm,. Prove that R is local with maximal ideal
m and that each insertion a: Ry — R is local.

Solution: As each a;, is local, (aj,)'my = m,. So ajmy C my,. So (7.19) yields
m = [Jaxmy. Now, given € R — m, there is A and z) € Ry with ayz), = x by
(7.5)(1). Then =) ¢ my as ¢ ¢ m = [Jaymy. So z) is invertible as Ry is local
with maximal ideal m,. Hence z is invertible. Thus R is local with maximal ideal
m by (3.4). Finally, (7.17) yields a 'm = m,; that is, a, is local. O

Exercise (7.22) . — Let A and A’ be small categories, C: A’ — A a functor.
Assume A’ is filtered. Assume C is cofinal; that is,

(1) given A € A, there is a map A — CX for some X € A’, and
(2) given 9, ¢: A = CN, there is x: X — M| with (Cx)v = (Cx)e.
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Let A — M), be a functor from A to € whose direct limit exists. Show that

lim,, o Mox =lim, | My;
more precisely, show that the right side has the UMP characterizing the left.

Solution: Let P be an object of €. For N € A’, take maps vy : Mgy — P
compatible with the transition maps Mcy — Mc,s. Given A € A, choose a map
A — CX, and define 8y: M, — P to be the composition

ﬁ)\: M)\ —>MC>\’ l}P

Let’s check that 3, is independent of the choice of A — C'X'.

Given a second choice A — C\”| there are maps \ — u’ and M — u for some
' € A’ since A’ is filtered. So there is a map ' — p) such that the compositions
A= CN = Cp — Cujy and A = CN' — Cp/ — Cpfj are equal since C' is cofinal.
Therefore, A — C)\” gives rise to the same 3, as desired.

Clearly, the ) are compatible with the transition maps M, — M,. So the ()
induce a map 3: hﬂMA — P with Say = () for every insertion ) : M) — @MA.
In particular, this equation holds when A = C)\ for any M € A’, as required. [

Exercise (7.23) . — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.

Solution: By (5.13), there is a presentation R®®1 % R®®2 — M — 0. For
i = 1,2, let A; be the set of finite subsets ¥; of ®;, and order A; by inclusion.
Clearly, an inclusion ¥; < ®; yields an injection R®Y: < R®®: which is given by
extending vectors by 0. Hence (7.2) yields lim R®Y: = R®®:,

Let A C Ay x Ay be the set of pairs A := (¥y, ¥s) such that a induces a map
ay: R®Y1 — R®Y2 Order A by componentwise inclusion. Clearly, A is directed.
For A € A, set M) := Coker(ay). Then M) is finitely presented.

For ¢ = 1,2, the projection C;: A — A; is surjective, so cofinal. Hence, (7.22)
yields lim, ROCA = lim, R®Y:. Thus (6.19) yields lim My = M. O

8. Tensor Products

Exercise (8.7) . — Let R be a ring, R’ an R-algebra, and M, N two R’-modules.

Show: (1) Then there is a canonical R-linear map 7: M @ g N - M Qg N.

(2) Let K C M ®r N denote the R-submodule generated by all the differences
(z'm)@n—me (z'n) for ' € R and m € M and n € N. Then K = Ker(7),
and 7 is surjective.

(3) Suppose that R’ is a quotient of R. Then 7 is an isomorphism.

(4) Let {t.} be a set of algebra generators of R’ over R. Let {m,} and {n,} be
sets of generators of M and N over R'. Regard M ®g N as an (R’ ®g R’)-
module. Let K’ denote the (R’ ® g R')-submodule generated by all differences
(t;my) ®n, —m, & (t;n,). Then K' = K.

Solution: For (1), form the canonical map 8': M x N - M ®Qr N. It is R'-
bilinear, so R-bilinear. Hence, (8.3) yields 8’ = 78 where 8: M x N - M ®Qr N
is the canonical map and 7 is the desired map. Thus (1) holds.

For (2), note that each generator (z'm)®@n—m®(xz'n) of K maps to 0in MQ@p N.
Set @ := (M ®r N)/K. Then 7 factors through a map 7/: Q@ - M ®pr' N.
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By (8.6), there is an R’-structure on M ® g N with ¢/(m ®n) =m ® (y'n), and
so by (8.5)(1), another one with y'(m®n) = (y'm) @n. Clearly, K is a submodule
for each structure, so @ is too. But on ) the two structures coincide. Further,
the canonical map M x N — @Q is R'-bilinear. Hence the latter factors through
M ®pg N, furnishing an inverse to 7/. So 7/: Q@ = M ®p' N. Hence Ker(7) is
equal to K, and 7 is surjective, as desired. Thus (2) holds.

In (3), each 2’ € R’ is the residue of some © € R. So each (z'm)®@n—m® (z'n)
is0in M ®g N, as 'm = xm and 2'n = zn. Thus Ker(r) = 0, so (2) yields (3).

In (4), trivially K’ C K. Given any t., t; and m,, n,, note that

(trtimy) @ ny —my, @ (trtin,) = (t @ 1) ((timy) @ ny, —my, ® (tin,))
+ (1@ ty)((trmy) @ ny —my, @ (trny)) € K.

Hence given any monomial M, in the ¢, it follows via induction on deg(M,,) that
Momy,) @ n, —m, @ (Mqn,) € K'.
Given any =’ =Y z,M, € R’ with z, € R and M, a monomial in the ¢, note

(z'my) @ny, —my, ® (z'ny,) = Zwa((MamH) ®ny —my & (Many)) cK'.
Finally, given any m = ) y,m, and n = > z,n, with y,, z, € R’, note that
@m)@n—mo @) =3 (4 & V(1 @ 2)(&'m,) ©n, —m, @ (2',)) € K,
as desired. Thus (4) holds. O

Exercise (8.14) . — Let F': ((R-mod)) — ((R-mod)) be a linear functor, and € the
category of finitely generated modules. Show that F' always preserves finite direct
sums. Show that 8(M): M ® F(R) — F(M) is surjective if F' preserves surjections
in € and M is finitely generated, and that 6(M) is an isomorphism if F' preserves
cokernels in € and M is finitely presented.

Solution: The first assertion follows from the characterization of the direct sum
of two modules in terms of maps (4.26), since F' preserves the relations there.

The second assertion follows from the first via the second part of the proof of
Watt’s Theorem (8.13), but with A, then ¥ and A finite. O

Exercise (8.20) . — Let R be a ring, R’ and R” algebras, M’ an R’-module and
M" an R"-module. Say {m/)} generates M’ over R’ and {m]} generates M" over
R". Show {m/\ @ m};} generates M’ @ M" over R’ ®r R".

Solution: Owing to (8.2), M'®@M" is generated by all the m’®@m” with m’ € M’
and m"” € M". But m' = Y3 z\m) and m” = 3 apm) with 2} € R’ and
z, € R". Thus m’ @ m" =37, (2 ® z};)(m) @ my), as desired. O

Exercise (8.21) . — Let R be a ring, R’ an R- algebra, and M an R’-module.

Set M' := R’ ®g M. Define a: M — M’ by am := 1 ®m. Prove M is a direct
summand of M’ with @ = ¢, and find the retraction (projection) mpr: M’ — M.

Solution: As the canonical map R’ x M — M’ is bilinear, « is linear. Define
w: M x R — M by p(x,m) := xm. Plainly p is R-bilinear. So u induces an
R-linear map p : M’ — M, given by p(x ® m) = xm. Then p is a retraction of «, as
pla(m)) =1-m. Let 8: M’ — Coker(a) be the quotient map. Then (5.8) implies
that M is a direct summand of M’ with o = tpy and p = wpy. [l

273



Solutions (8.22) / (8.27) Tensor Products

Exercise (8.22) . — Let R be a domain, a a nonzero ideal. Set K := Frac(R).
Show that a ®p K = K.

Solution: Define a map 8: a x K — K by (z,y) := zy. It is clearly R-bilinear.
Given any R-bilinear map «: ax K — P, fix a nonzero z € a, and define an R-linear
map v: K — P by v(y) := a(z,y/z). Then a =~ as

a(z,y) = a(rz,y/2) = a(z,zy/z) = v(zy) = 7B(z,y).
Clearly, B is surjective. So « is unique with this property. Thus the UMP implies
that K = a®p K. (Also, as « is unique, v is independent of the choice of z.)
Alternatively, form the linear map ¢: a® K — K induced by the bilinear map £.
Since f is surjective, so is ¢. Now, given any w € a® K, say w = Y a; @ x;/x with
all z; and  in R. Set a := ) a;x; € a. Then w = a ® (1/x). Hence, if p(w) =0,
then a/x = 0; so a = 0 and so w = 0. Thus ¢ is injective, so bijective. O

Exercise (8.23) . — In the setup of (8.9), find the unit 7y, of each adjunction.

Solution: Consider the left adjoint FM := M ®g R’ of restriction of scalars. A
map 0: FM — P corresponds to the map M — P carrying m to §(m ® 1g/). Take
P:=FM and 0 :=1pp;. Thus ny: M — FM is given by nyym =m ® 1g.

Consider the right adjoint F'P := Hompg(R', P) of restriction of scalars. A map
i: M — P corresponds to the map M — F'P carrying m to the map v : R — P
defined by vx := z(um). Take P := M and p := 1p;. Thus np: M — F'M is
given by (nym)(z) = xm. O

Exercise (8.24) . — Let M and N be nonzero k-vector spaces. Prove M @ N # 0.

Solution: Vector spaces are free modules; say M = k%® and N = k®¥. Then
(8.10) yields M ® N = k®(®*Y) as k@ k = k by (8.5)(2). Thus M @ N #0. O

Exercise (8.25) . — Let R be a nonzero ring. Show:

(1) Assume there is a surjective map a: R™ — R™. Then n > m.
(2) Assume R™ ~ R™. Then n = m.

Solution: For (1), let m be a maximal ideal. Set k& := R/m. Then k is a field.
Now, a® 1: R" ® k — R™ ® k is surjective by (8.10). But (8.10) and (8.5)(2)
yield R"® k = (R® k)" = k" for any » > 0. Thus a ® 1; is a surjective map of
vector spaces. So n > m. Thus (1) holds.

Note (2) holds as (1) implies both n > m and m > n. O

Exercise (8.26) . — Under the conditions of (5.41)(1), setK := Frac(R). Show
rank(F) = dimg (M ® K).

Solution: Recal M =T @& F. So M @ K = (T ® K) ® (F ® K) by (8.10).

Given m € T, say xm = 0 with x € R nonzero. Given y € K, note that
my=zm® (y/x)=0. ThusT@K =0. Tus M@ K =F® K.

Set r = rank(F'); so F'~ R". Then FF® K ~ K" again by (8.10) as R K = K
by (8.5)(1)—(2). But dimg (K") =r. Thus dimg (F ® K) = r, as desired. O

Exercise (8.27) . — Let R be a ring, a and b ideals, and M a module.
(1) Use (8.10) to show that (R/a) @ M = M/aM.
(2) Use (1) and (4.21) to show that (R/a) ® (M/b6M) = M/(a+ b)M.
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Solution: For (1), view R/a as the cokernel of the inclusion a — R. Then (8.10)
implies that (R/a) ® M is the cokernel of a®@ M — R® M. Now, R®@ M = M
and x ® m = xm by (8.5)(2). Correspondingly, a ® M — M has aM as image.
The assertion follows. (Caution: a ® M — M needn’t be injective; if it’s not, then
a® M # aM. For example, take R := Z, take a := (2), and take M := Z/(2); then
a® M — M is just multiplication by 2 on Z/(2), and so aM = 0.)

For (2), set N := M/bM. Then (1) yields (R/a) ® N = N/aN. But (4.21)
yields N/aN = M/(a + b)M, as desired. O

Exercise (8.28) . — Let R be a ring, B an algebra, B’ and B” algebras over B.
Regard B as an (B ®p B)-algebra via the multiplication map. Set C := B’ ®g B”.
Prove these formulas: (1) B’ ®p B” = C/opC and (2) B’ ®p B” = B®pgye C.

Solution: Consider the natural map C — B’ ®p B”. It’s surjective, and its
kernel is generated by all differences z2' ® 2" — 2’ ® 2" for z € B and 2’ € B’ and
2" € B” by (8.7)(2). But z2’ @ 2" — a2’ @ z2” = (2’ @ 2”)(x ®1 —1® ). Thus the
kernel is equal to 95C. So (1.5.1) yields (1).

Finally, C/05C = ((B®rB)/0p) ®pg,sC by (8.27)(1). But (BorB)/op = B
by (1.5.1). Thus (1) yields (2). O

Exercise (8.29) . — Show Z/(m) ®z Z/(n) = 0 if m and n are relatively prime.
Solution: Note (m) + (n) = Z by (2.18). Thus (8.27)(2) yields
Z/(m) ®z L/{n) = Z/{{m) + (n)) = 0. O
Exercise (8.30) . — Let R be a ring, R’ and R” algebras, ' C R’ and o” C R”
ideals. Let b C R’ @ R” denote the ideal generated by a’ and a”. Show that
(RI ®R R//)/b _ (R//a/) ®R (R///Cl”).

Solution: Set C := R’ ®@r R”. Then C/d’C = (R'/d’) @ C by (8.27)(1). But
(R'/a")®p C = (R'/d')®r R"” by (8.9)(1) and (8.5)(2). Similar reasoning yields
((R//a/) ®R R/I)/((R//a/) ®R R//)a// — (R//al) ®R (R///aﬂ).

But plainly the canonical map C — (R'/a’) ® g R” takes b onto ((R'/a’)®r R")a”.
So (1.9) yields the desired result. O
Exercise (8.31) . — Let R be a ring, M a module, X a set of variables. Prove the
equation M ®@p R[X] = M[X].

Solution: Both sides are “the” left adjoint of the Restriction of Scalars from P
to R owing to (8.9)(2) and (6.17). Thus by (6.3), they are equal.

Alternatively, define b: M x R[X] — M[X] by b(m, }_ a;M;) := > a;mM,; for
monomials M;. Then b is bilinear, so induces a linear map §: M ®p R[X] — M[X].

Note f is surjective: given u := > m;M; in M[X], set t := > m; ® M;; then
ft = w. Finally, 8 is injective: by (8.16), any ¢ € M ®pr R[X] is of the form
t=> m; ®M;, so St => m;M;; if ft =0, then m; = 0 for all ¢, so t = 0. |

Exercise (8.32) . — Generalize (4.20) to several variables X7,..., X, via this
standard device: reduce to the case of one variable Y by taking a suitably large d
and defining ¢: R[X1,...,X,] = R[Y] by o(X;) := Y¥ and setting o := 15y ® o.
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Solution: Let F' € R[X;,...]. Assume there’s a nonzero G € M[Xy,...]| with
FG = 0. Let’s show there’s a nonzero m € M with Frm = 0.
Recall M[Xy,...] = M ®g R[X1,...] by (8.31), so a: M[Xy,...] = M[Y].

Moreover, (F)a(G) = a(FG) Thus ¢(F)a(G) = 0.

Take d larger than any exponent in F or G. Note (X! ... Xir) = Y2 %4 So
¢ carries distinct monomials of F' to distinct monomials of ¢(F'), and « carries
distinct monomials of G to distinct monomials of a(G). So ¢(F) has the same
coefficients as F', and a(G) has the same coefficients as G. Thus «(G) # 0.

So (4.20) yields a nonzero m € M with ¢(F)m = 0. Thus Fm = 0. O

Exercise (8.33) . — Let R be a ring, R, for 0 € X algebras. For each finite
subset J of X, let R; be the tensor product of the R, for o0 € J. Prove that the
assignment J — R; extends to a filtered direct system and that li%mRJ exists and
is the coproduct [] R,

Solution: Let A be the set of subsets of ¥, partially ordered by inclusion. Then
A is a filtered small category by (7.1). Further, the assignment J — R; extends
to a functor from A to ((R-alg)) as follows: by induction, (8.17) implies that R
is the coproduct of the family (Ry)scs, so that, first, for each o € J, there is a
canonical algebra map t,: R, — Ry, and second, given J C K, the ¢, for 0 € K
induce an algebra map aj: Ry — Rg. So lim R exists in ((R-alg)) by (7.4).

Given a family of algebra maps ¢, : R, — R/, for each .J, there is a compatible
map ¢;: Ry — R/, since R is the coproduct of the R,. Further, the various ¢
are compatible, so they induce a compatible map ¢: ligR 7 — R’. Thus liglR 7 is
the coproduct of the R,. O

Exercise (8.34) . — Let X be a variable, w a complex cube root of 1, and V/2 the
real cube root of 2. Set k := Q(w) and K := k[v/2]. Show K = k[X]/(X? —2) and
then K @, K = K x K x K.

Solution: Note w is a root of X2 + X + 1, which is irreducible over Q; hence,
[k : Q] = 2. But the three roots of X3 — 2 are ¥/2 and w+/2 and w?+/2. Therefore,
X3—2 has no root in k. So X?—2 is irreducible over k. Thus k[X]/(X3-2) =~ K.

Note K[X] = K ®, k[X] as k-algebras by (8.18). So (8.5)(2) and (8.9)(1) and
(8.27)(1) yield

RIX]/(XP — 2) @4 K = K[X]/(X® — 2) @upx) (K[X] 0 K)
= k[X]/(X? - 2) @y K[X] = K[X]/(X? - 2).
However, X3 — 2 factors in K as follows:
X% —2= (X - V2)(X —wV2) (X - w?V2).
So the Chinese Remainder Theorem, (1.21), yields
K[X]/(X?-2)=K x K x K,
because K[X]/(X —w'V/2) == K for any i by (1.6)(2). O
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9. Flatness

Exercise (9.14) (FEquational Criterion for Flatness) . — Show that Condition
(9.13)(4) can be reformulated as follows: Given any relation ), z;m; = 0 with
x; € R and m; € M, there are z;; € R and m;- € M such that

> Tigm; = m; for all i and 37, x5z, = 0 for all j. (9.14.1)

Solution: Assume (9.13)(4) holds. Let ey, ..., ey be the standard basis of R™.
Given a relation Y |" z;m; = 0, define a: R™ — M by «a(e;) := m; for each i. Set
k:=x;e;. Then a(k) = 0. So (9.13)(4) yields a factorization a: R™%> R™ LN,
with ¢(k) = 0. Let e},..., e}, be the standard basis of R", and set m} := j(e})
for each j. Let (zi;) be the n x m matrix of p; that is, ¢(e;) = > xjiej. Then
m; = Y x;mj. Now, p(k) = 0; hence, }°, ; xjiv;e; = 0. Thus (9.14.1) holds.

Conversely, given a: R™ — M and k € Ker(a), say k = > x;e;. Assume
(9.14.1). Define ¢: R™ — R™ via the matrix (z;); that is, p(e;) = > xj:€}. Then
¢(k) = Y xizje; = 0. Define B: R — M by p(€}) := m/. Then Bp(e;) = my;
hence, S = a. Thus (9.13)(4) holds. O

Exercise (9.17) . — Let R be aring, a an ideal. Show I';(e) is a left exact functor.

Solution: Given an R-map a: M — N, note that Ann(m) C Ann(a(m)) for
all m € M. Assume that m € T'q(M); that is, a C y/Ann(m). It follows that
a(m) € I'q(N). Thus I'q(e) is a functor.

Given an exact sequence of R-modules 0 — M % N Py P. form the sequence

[e3%

0 = Ta(M) % To(N) 2 To(P). Trivially, it is exact at T'q(M). Owing to
(4.14)(2), it is exact at I'q(N). Thus I'y(e) is left exact. O

Exercise (9.18) . — Let R be a ring, N a module, N; and N, submodules, R’ an
algebra, F an exact R-linear functor from ((R-mod)) to ((R'-mod)). Prove:

F(Nl ﬁNg) = F(Nl) N F(NQ) and F(Nl + NQ) = F(Nl) +F(N2)

Solution: Define on: N1 @ No — N by on(ni,n2) := n1 + ng. Identifying its
kernel and image yields the following exact sequence, where a(n) := (n, —n):

0= N NNy % Ny @ Ny — Ny + Ny — 0.
As F is exact, applying F' yields the following exact sequence:
0 — F(NyNNy) — F(Ny @ No) — F(Ny + Na) — 0.
But F(on) = op(n) owing to (8.15). So the above sequence is equal to this one
0 — F(N1)NF(N2) = F(N1) ® F(Ny) = F(Ny) + F(N2) — 0,

which identifies the kernel and image of o (n), as desired. (Il

Exercise (9.19) . — Let R be a ring, R’ an algebra, F' an R-linear functor from
((R-mod)) to ((R’-mod)). Assume F is exact. Prove the following equivalent:

(1) F is faithful.

(2) An R-module M vanishes if FM does.

(3) F(R/m) # 0 for every maximal ideal m of R.

(4) A sequence M’' % M By M is exact it FM' 2% par 22 P s,
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Solution: To prove (1) implies (2), suppose FM = 0. Then 1gy; = 0. But
always 1pp = F(1p). Hence (1) yields 137 = 0. So M = 0. Thus (2) holds.

Conversely, assume (2). Given a: M — N with Fa =0, set I := Im(«). As
F is exact, (9.3) yields FT = Im(Fa). Hence FI = 0. So (2) yields I = 0. Thus
a = 0. Thus (1) holds. Thus (1) and (2) are equivalent.

To prove (2) implies (3), take M := R/m.

Conversely, assume (3). Given 0 # m € M, form a: R — M by o(z) := zm.
Set a := Ker(a). Let m D a be a maximal ideal. We get a surjection R/a — R/m
and an injection R/a < M. They induce a surjection F(R/a) —» F(R/m) and an
injection F(R/a) — FM as F is exact. But F(R/m) # 0 by (3). So F(R/a) # 0.
So FM # 0. Thus (2) holds. Thus (1) and (2) and (3) are equivalent.

To prove (1) implies (4), set I :=Im(a) and K := Ker(8). Now, F(Sa) = 0.
So (1) yields S = 0. Hence I C K. But F is exact; so F(K/I) = FK/FI, and
(9.3) yields FI = Im(Fa) and FK = Ker(Ff3). Hence F(K/I) = 0. But (1)
implies (2). So K/I = 0. Thus (4) holds.

Conversely, assume (4). Given a: M — N with Fa = 0, set K := Ker(a).
As F is exact, (9.3) yields FK = Ker(Fa). Hence FK — FM — 0 is exact. So
(4) implies K — M — 0 is exact. So @ = 0. Thus (1) holds, as desired. O

Exercise (9.20) . — Show that a ring of polynomials P is faithfully flat.
Solution: The monomials form a free basis, so P is faithfully flat by (9.6). O

Exercise (9.21) . — Let R be a ring, M and N flat modules. Show that M @ N
is flat. What if “flat” is replaced everywhere by “faithfully flat”?

Solution: Associativity (8.8)(1) yields (M ® N) ® e = M ® (N ® e); in other
words, (M @ N)®@ e = (M ®e)o (N ®e). So (M ® N)® e is the composition of
two exact functors. Hence it is exact. Thus M ® N is flat.

Similarly if M and N are faithfully flat, then M @ N ® e is faithful and exact.
So M ® N is faithfully flat. |

Exercise (9.22) . — Let R be a ring, M a flat module, R’ an algebra. Show that
M ®pg R’ is flat over R’. What if “flat” is replaced everywhere by “faithfully flat”?

Solution: Cancellation (8.9)(1) yields (M g R') ®@p ¢ = M Qre. But M Qg o
is exact, as M is flat over R. Thus M ®r R’ is flat over R’.

Similarly, if M is faithfully flat over R, then M Qg e is faithful too. Thus M ®@g R’
is faithfully flat over R’. O

Exercise (9.23) . — Let R be a ring, R’ a flat algebra, M a flat R’-module. Show
that M is flat over R. What if “flat” is replaced everywhere by “faithfully flat”?

Solution: Cancellation (8.9)(1) yields M @ p e = M ®p' (R’ ®p o). But R’ Qg e
and M ®p/ e are exact; so their composition M ®g e is too. Thus M is flat over R.
Similarly, as the composition of two faithful functors is, plainly, faithful, the
assertion remains true if “flat” is replaced everywhere by “faithfully flat.” O

Exercise (9.24) . — Let R be aring, R’ and R” algebras, M’ a flat R’-module, and
M" a flat R”-module. Show that M’ @ g M" is a flat (R’ ® g R”)-module. What if
“flat” is replaced everywhere by “faithfully flat”?
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Solution: Given an (R’ ®g R”)-module N, apply Associativity (8.8)(1) liberally,
apply Cancellation (8.9)(1) twice, and apply Commutativity (8.5)(1) once to get

N®pr M" = Npgur (R @r R") @p M" = N @pg,r (R @r M")
== (R/ ®R M//) ®R/®RR// N.

Hence (8.9)(1) yields M’ ®p: (N @pr M") = (M' ®r M") ®p'gr7 N. Therefore,
(M'®r M') ®p'g,r ® s equal to the composition of two exact functors, M’ Qp e
and e Qg M. Thus M’ @ p M" is flat.

Similarly, as the composition of two faithful functors is, plainly, faithful, the
assertion remains true if “flat” is replaced everywhere by “faithfully flat.” |

Exercise (9.25) . — Let R be aring, R’ an algebra, and M an R’-module. Assume
that M is flat over R and faithfully flat over R’. Show that R’ is flat over R.

Solution: Cancellation (8.9)(1) yields e®@r M = (e g R') ®r M. But e Qg M
is exact, and e @ M is faithful. Thus, by (9.19), e @z R’ is exact, as desired. O

Exercise (9.26) . — Let R be a ring, R’ an algebra, R” an R’-algebra, and M an
R/-module. Assume that R” is flat over R’ and that M is flat over R. Show that
R’ @ M is flat over R. Conversely, assume that R” Qg e is faithful and that
R" ®p M is flat over R. Show that M is flat over R.

Solution: Associativity (8.8)(1) yields (R” ®r' M) ®poR" @ (M ®p o). Thus
(R" ®p: M) ®p o is exact if R’ Qp @ and M ®pr e are. Conversely, by (9.19),
M ®p e is exact if R Qg o is faithful and (R” ® g M) ®p e is exact. O

Exercise (9.27) . — Let R be a ring, a an ideal. Assume R/a is flat. Show a = a?.

Solution: Since R/a is flat, tensoring it with the inclusion a < R yields an
injection a ®g (R/a) — R ®pr (R/a). But the image vanishes: a @ r =1 ® ar = 0.
Further, a ®g (R/a) = a/a? by (8.27)(1). Hence a/a? = 0. Thus a = a. O

Exercise (9.28) . — Let R be a ring, R’ a flat algebra. Prove equivalent:
(1) R’ is faithfully flat over R.
(2) For every R-module M, the map M = M ®r R’ by am = m® 1 is injective.
(3) Every ideal a of R is the contraction of its extension, or a = (aR’)c.
(4) Every prime p of R is the contraction of some prime q of R’, or p = q° .
(5) Every maximal ideal m of R extends to a proper ideal, or mR’' # R'.
(6) Every nonzero R-module M extends to a nonzero module, or M @g R’ # 0.

Solution: Assume (1). In (2), set K := Kera. Then the canonical sequence

0—K®R —-MoR 5 MoR @R

is exact. But a ® 1 has a retraction, namely m@z @y — m @ zy. So a® 1 is
injective. Hence K ®p R’ = 0. So (1) implies K = 0 by (9.19). Thus (2) holds.

Assume (2). Then R/a — (R/a) ® R’ is injective. But (R/a) ® R’ = R'/aR’
by (8.27)(1). Thus (3) holds.

Assume (3). Then (3.10)(2) yields (4).

Assume (4). Then every maximal ideal m of R is the contraction of some prime
qof R'. So mR' C q. Thus (5) holds.

Assume (5). Consider (6). Take a nonzero m € M, and set M’ := Rm. As R’
is flat, the inclusion M’ < M yields an injection M' @ R’ — M ® R'.
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Note M’ = R/a for some a by (4.7). So M’ ®g R’ = R’'/aR’ by (8.27)(1).
Take a maximal ideal m O a. Then aR’ C mR’. But mR' & R’ by (5). Hence
R'/aR' #0. So M' @ R’ # 0. Hence M ® R’ # 0. Thus (6) holds.

Finally, (6) and (1) are equivalent by (9.19). O

Exercise (9.29) . — Let R be a ring, R’ a faithfully flat algebra. Assume R’ is
local. Prove R is local too.

Solution: Let m’ be the maximal ideal of R’. Given a proper ideal a of R, note
that a = (aR')¢ by (9.28)(3) as R’ is faithfully flat. So 1 ¢ aR’. Hence aR’ C m'.
So a € m'c. Thus m’® is the only maximal ideal of R. O

Exercise (9.30) . — Let R be aring, 0 — M’ % M — M" — 0 an exact sequence
with M flat. Assume N ® M’ Y2% N M is injective for all N. Prove M" is flat.

Solution: Let : N — P be an injection. It yields the following commutative
diagram with exact rows by hypothesis and by (8.10):
0 —NQM — NOM - NoM" — 0
ﬁ®M’l ﬁ®Ml lﬁ@M”
0 —PM —— POM — P@M" — 0
0—-P/NoM — PIN®M

Since M is flat, Ker(8 ® M) = 0. So the Snake Lemma (5.10) applied to the top
two rows yields Ker(8 ® M”) = 0. Thus M" is flat. O

Exercise (9.31) . — Prove that an R-algebra R’ is faithfully flat if and only if the
structure map ¢: R — R’ is injective and the quotient R'/pR is flat over R.

Solution: Assume R’ is faithfully flat. Then for every R-module M, the map
M % M ®pr R’ is injective by (9.28). Taking M := R shows ¢ is injective. And,
since R’ is flat, R'/p(R) is flat by (9.30).

Conversely, assume ¢ is injective and R'/¢(R) is flat. Then M — M ®p R’ is
injective for every module M by (9.8)(1), and R’ is flat by (9.8)(2). Thus R’ is
faithfully flat by (9.28). O

Exercise (9.32) . — Let R be aring, 0 — M,, — --- — M7 — 0 an exact sequence
of flat modules, and N any module. Show the following sequence is exact:

0—>M, N —---—> M QN —0. (9.32.1)

Solution: Set K := Ker(M; — Mj). Then the following sequences are exact:

0O—->M,—--—>M3—>K—>0 and 0— K — My — M; — 0.

Since M; is flat, the sequence
0 >KON—->My@N - M ®@N —0
is exact by (9.8)(1). Since M; and M, are flat, K is flat by (9.8)(2). So
0->M, N —---—>M3N —->K®N —0
is exact by induction on n. Thus (9.32.1) is exact. O
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Exercise (9.33) . — Let R be a ring, R’ an algebra, M and N modules.
(1) Show that there is a canonical R’-homomorphism

OM: I{OIIIR(]\f7 N) KSR R — HOHlR/(M SR R/, N ®gr R/)

(2) Assume M is finitely generated and projective. Show that o is bijective.
(3) Assume R’ is flat over R. Show that if M is finitely generated, then o is
injective, and that if M is finitely presented, then o, is bijective.

Solution: For (1) and (3), set R’ := Rand P := R’ in (9.10), set P := NQgrR'
in (8.9)(2), and combine the two results.
For (2), note that (5.27) yields K, n and M & K = R"™. Form the functors
F(e) := Homp(e,N) ®g R and F’(e) := Homp/ (e ®g R',N @ R').

Plainly, F' and F” are linear. So they preserve finite direct sums by (8.14). Plainly,
0e: F — F’ is a natural transformation. Also, @ @ R’ preserves direct sums by
(8.10). Putting it all together yields this diagram, with horizontal isomorphisms:

(FIM)®rR')® (F(M')®r R') ——— F(R™) @g R’

UA{G}O']W/J( O-RHJ(

F'(M) & F'(M") ~ F'(R™)

Direct sum is a special case of direct limit by (6.5). So the above diagram is

commutative by (6.15). By (5.4), therefore, ops is an isomorphism if ogn is.

Similarly, o g is an isomorphism if o is. Thus we must show o is an isomorphism.
It is not hard to check that the following diagram is commutative:

~

Hompg(R, N) ®g R ———— N®rR

aRl 1N®RR/l

HomR/(R QR R/, N ®r R/) — N ®pr R

where the horizontal maps are the isomorphisms arising from (4.3) and (8.5)(2).
Thus o is an isomorphism, as required. O

Exercise (9.34) . — Let R be a ring, M a module, and R’ an algebra. Prove
Anmn(M)R' € Aun(M ®g R'), with equality if M is finitely generated, R’ flat.

Solution: By construction, every element of M ® R’ is a sum of elements of the
form m ® r with m € M and r € R’. But given € Ann(M) and s € R', note
zs(m®@r) =m@asr =xm@ sr =0 by (8.6). Thus Ann(M)R' C Ann(M ®gr R').

Assume M is finitely generated, say by mq,...,m,. Set a := Ann(M). Form

0—a— R M with B(x) := (zmyq,...,zm,). Plainly, it is exact. Assume R’ is

flat. Then 0 —» a® R’ — R' 225 M7 ® R’ is exact. And a® R’ = aR' by (9.15).

Given y € Ann(M ®g R'), note (m; @ 1)y =0 for alli. Bt M"®@ R’ = (M ®R')"
by (8.10); hence (8 ® 1)y = ((m1 ® 1)y, ..., (m, ® 1)y). So (8 ® 1)y = 0. Hence
y € aR’ by the above. Thus Ann(M ®r R') C aR’, and so equality holds. O

Exercise (9.35) . — Let R be a ring, M a module. Prove (1) if M is flat, then for
x € R and m € M with xm = 0, necessarily m € Ann(z)M, and (2) the converse
holds if R is a Principal Ideal Ring (PIR); that is, every ideal a is principal.
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Solution: For (1), assume M is flat and xm = 0. Then (9.14) yields z; € R
and m; € M with Y x;m; =m and z;z = 0 for all j. Thus m € Ann(z)M.

Alternatively, 0 — Ann(z) — R £2, R is always exact. Tensoring with M gives
0 — Ann(z) ® M — M 22 M, which is exact as M is flat. So Im(Ann(z) ® M) is
Ker(u,). But always Im(Ann(z) ® M) is Ann(x)M. Thus (1) holds.

For (2), it suffices, by (9.15), to show a: a ® M — alM is injective. Since R is
a PIR, a = (x) for some = € R. So, given z € a® M, there are y; € R and m; € M
such that z = >, y;& ® m;. Set m := ), y;m;. Then

Z:Zix®yimi:l’®ziyimi=x®m.

Suppose z € Ker(a). Then zm = 0. Hence m € Ann(x)M by hypothesis. So
m =}, zn; for some z; € Ann(x) and n; € M. Hence

z=x @) zmi =) zr®n; =0.
Thus « is injective. Thus (2) holds. d

10. Cayley—Hamilton Theorem

Exercise (10.9) . — Let A be a local ring, m the maximal ideal, M a finitely
generated A-module, and my,...,m, € M. Set k := A/m and M’ := M/mM, and
write m/ for the image of m; in M’. Prove that mj,...,m), € M’ form a basis
of the k-vector space M’ if and only if mq,...,m, form a minimal generating
set of M (that is, no proper subset generates M), and prove that every minimal
generating set of M has the same number of elements.

Solution: By (10.8), reduction mod m gives a bijective correspondence between
generating sets of M as an A-module, and generating sets of M’ as an A-module, or
equivalently by (4.5), as an k-vector space. This correspondence preserves inclu-
sion. Hence, a minimal generating set of M corresponds to a minimal generating set
of M’, that is, to a basis. But any two bases have the same number of elements. [

Exercise (10.10) . — Let A be a local ring, k its residue field, M and N finitely
generated modules. Show: (1) M = 0 if and only if M ®4 k = 0.
(2) M®@4 N #£0if M #0and N # 0.

Solution: For (1), let m be the maximal ideal. Then M ® k = M/mM by
(8.27)(1). Thus (1) is nothing but a form of Nakayama’s Lemma (10.6).

In (2), M@k #0and N®k #0 by (1). So (M ®k)® (N ®k) # 0 by (8.24)
and (8.7)(3). But (M ®k)® (N®k)=(M®N)® (k®k) by the Associative and
Commutative Laws, (8.8)(1) and (8.5)(1). Finally, k® k = k by (8.27)(1). O

Exercise (10.23) . — Let R be a ring, a an ideal. Assume a is finitely generated
and idempotent (or a = a?). Prove there is a unique idempotent e with (e) = a.
Solution: By (10.3) with a for M, there is e € a such that (1 — e)a = 0. So for
all z € a, we have (1 —e)z =0, or = ex. Thus a = (e) and e = €.
Finally, e is unique by (3.34). O

Exercise (10.24) . — Let R be a ring, a an ideal. Prove the following conditions
are equivalent:

(1) R/a is projective over R.
282



Solutions (10.25) /(10.27) Cayley—Hamilton Theorem

(2) R/ais flat over R, and a is finitely generated.
(3) a is finitely generated and idempotent.
(4) a is generated by an idempotent.

(5) a is a direct summand of R.

Solution: Suppose (1) holds. Then R/a is flat by (9.6). Further, the sequence
0 —a— R— R/a— 0 splits by (5.16). So (5.8) yields a surjection p: R — a.
Hence a is principal. Thus (2) holds.

If (2) holds, then (3) holds by (9.27). If (3) holds, then (4) holds by (10.23).
If (4) holds, then (5) holds by (1.12). If (5) holds, then R ~ a @ R/a, and so (1)
holds by (5.16). O

Exercise (10.25) . — Prove the following conditions on a ring R are equivalent:
(1) R is absolutely flat; that is, every module is flat.
(2) Every finitely generated ideal is a direct summand of R.
(3) Every finitely generated ideal is idempotent.
(4) Every principal ideal is idempotent.

Solution: Assume (1). Let a be a finitely generated ideal. Then R/a is flat by
hypotheses. So a is a direct summand of R by (10.24). Thus (2) holds.

Conditions (2) and (3) are equivalent by (10.24).

Trivially, if (3) holds, then (4) does. Conversely, assume (4). Given a finitely
generated ideal a, say a = (21, ...,x,). Then each (x;) is idempotent by hypothesis.
So (x;) = (f;) for some idempotent f; by (1.24)(2). Then a = (f1,..., f,). Hence
a is idempotent by (1.24)(4), (1). Thus (3) holds.

Assume (2). Let M be a module, and a a finitely generated ideal. Then a is a
direct summand of R by hypothesis. So R/a is flat by (9.5). Hence a®@ M —== alM
by (9.8)(1); cf. the proof of (8.27)(1). So M is flat by (9.15). Thus (1) holds. O

Exercise (10.26) . — Let R be a ring. Prove the following statements:

(1) Assume R is Boolean. Then R is absolutely flat.

(2) Assume R is absolutely flat. Then any quotient ring R’ is absolutely flat.
(3) Assume R is absolutely flat. Then every nonunit z is a zerodivisor.

(4) Assume R is absolutely flat and local. Then R is a field.

Solution: In (1), as R is Boolean, every element is idempotent. Hence every
principal ideal is idempotent by (1.24)(1). Thus (10.25) yields (1).

For (2), let b C R’ be principal, say b = (). Let « € R lift T. Then (z) is
idempotent by (10.25). Hence b is also idempotent. Thus (10.25) yields (2).

For (3) and (4), take a nonunit z. Then (z) is idempotent by (10.25). So
x = ax? for some a. Then z(az — 1) = 0. But 2 is a nonunit. So az — 1 # 0. Thus
(3) holds.

Suppose R is local, say with maximal ideal m. Since x is a nonunit, z € m. So
ar €m. Soaxr —1 ¢ m. So ar —1is a unit. But x(az —1) =0. So x = 0. Thus 0
is the only nonunit. Thus (4) holds. O

Exercise (10.27) . — Let R be a ring, a: M — N a map of modules, m an ideal.
Assume that m C rad(V), that N is finitely generated, and that the induced map
a: M/mM — N/mN is surjective. Show that « is surjective too.

Solution: As @ is surjective, a(M) +mN = N. As N is finitely generated, so is
N/a(M). But m C rad(N). So a(M) = N by (10.8)(1). Thus « is surjective. O
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Exercise (10.28) . — Let R be a ring, m an ideal, E' a module, M, N submodules.
Assume N is finitely generated, m C rad(N), and N C M + mN. Show N C M.

Solution: Set L := M + N. Then M + mN D L as N C mN + M. Hence
M+mN=L. So M+mL=L. So M =L by (10.8)(1). Thus N C M. O

Exercise (10.29) . — Let R be a ring, m an ideal, and «,5: M = N two maps
of finitely generated modules. Assume « is an isomorphism, m C rad(N), and
B(M) C mN. Set v:= a+ . Show ~ is an isomorphism.

Solution: As « is surjective, given n € N, there is m € M with a(m) =n. So
n = a(m) + B(m) — B(m) € (M) +mN,

But N/v(M) is finitely generated as N is. Hence v(M) = N by (10.8)(1). So a~ 1y
is surjective, and therefore an isomorphism by (10.4). Thus « is an isomorphism.
t

Exercise (10.30) . — Let A — B be a local homomorphism, M a finitely generated
B-module. Prove that M is faithfully flat over A if and only if M is flat over A
and nonzero. Conclude that, if B is flat over A, then B is faithfully flat over A.

Solution: Plainly, to prove the first assertion, it suffices to show that M ® 4 e is
faithful if and only if M # 0. Now, if M ® 4 e is faithful, then M ® N # 0 whenever
N #0 by (9.19). But M @ A= M by (8.5)(2), and A # 0. Thus M # 0.

Conversely, suppose M # 0. Denote the maximal ideals of A and B by m and n.
Then nM # M by Nakayama’s Lemma (10.6). But mB C nas A — B is a local
homomorphism. So M/mM # 0. But M/mM = M ® (A/m) by (8.27)(1). Thus
(9.19) implies M ® 4 o is faithful.

Finally, the second assertion is the special case with M := B. O

Exercise (10.31) . — Let A — B be a flat local homomorphism, M a finitely
generated A-module. Set N := M ® B. Assume N is cyclic. Show M is cyclic too.
Conclude that an ideal a of A is principal if its extension aB is so.

Solution: Let n be the maximal ideal of B. Set V := N/uN. Suppose V = 0.
Then N = 0 by Nakayama’s Lemma (10.6). But B is faithfully flat over A by
(10.30). So M =0 by (9.28)(6). In particular, M is cyclic.

Suppose V' # 0. Then, as the m ® 1 for m € M generate N over B, there’s an m
such that m ® 1 has nonzero image v € V. But N is cyclic. So V is 1-dimensional.
So v generates V. So m ® 1 generates N by (10.8)(2). Set M’ := mA.

Form the standard short exact sequence 0 — M’ % M — M/M’ — 0 where ¢ is
the inclusion. As B is flat, tensoring with B yields the following exact sequence:

0 M ®B 25 N (M/M')® B — 0.

But ¢ ® B is surjective, as N is generated by m ® 1. Hence (M/M') ® B = 0. But
B is faithfully flat. So M/M’' =0 by (9.28)(6). Thus M is cyclic.
The second assertion follows from the first, as a ® B = aB by (9.15). O

Exercise (10.32) . — Let R be a ring, X a variable, R’ an algebra, n > 0. Assume
R’ is a free R-module of rank n. Set m := rad(R) and k := R/m. Given a k-

isomorphism @: k[X]/(F) = R'/mR’ with F monic, show we can lift & to an
R-isomorphism ¢: R[X]|/(F) = R’ with F monic. Show F' must then lift F.
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Solution: As R’ is free of rank n over R, so is R'/mR’ over k. Let T € R'/mR’
be the image of X, and x € R alift of . Then 1,Z,...,2" ! generate R'/mR’ over
k by (10.15)(1)=(4). So 1,z,...,2""! generate R’ over R by (10.8)(2). Thus
(10.5) implies 1,x,...,2" ! form a free basis of R’ over R.

Form the R-algebra map x: R[X] — R’ with x(X) = z. As the 2’ generate,
k is surjective. So Ker(k) is generated by a monic polynomial F' of degree n by
(10.15)(4)=(1). Thus & induces an R-isomorphism ¢: R[X]/(F) = R’ lifting &.

Finally, let F' € k[X] be the residue of F. Then F is monic of degree n. Also,
k[X]/(F) = k[X]/(F). So (F) = (F). So F = F. Thus F lifts F. 0

Exercise (10.33) . — Let R be a ring, a an ideal, P := R[X] the polynomial ring
in one variable X, and G1,G2, H € P with G; monic of degree n. Show:

(1) Assume G7 and Go are coprime. Then there are unique H;, Ho € P with
H = H,Gy + HyG5 and deg(Hs) < n.

(2) Assume the images of G; and G5 are coprime in (R/a)[X] and a C rad(R).
Then G and G5 are coprime.

Solution: Set M := Z?;OI RX®C P and R' := P/(G1). Let k: P — R’ be the
canonical map. By (1)=(2) of (10.15), x induces an R-linear bijection M — R'.

In (1), k(G2) € R’ by (2.16). Hence x(H) = x(Hz)x(G2) for aunique Hy € M.
Hence there’s Hy € P with H = H\G1 + HyGs. If H = H{G; + HyGs too, then
0= (H; — H{)G;. But Gy is monic. So H; — H{ = 0. Thus (1) holds.

In (2), the residue of G2 is a unit in R’'/aR’ by (2.16). Hence GoR' +aR' = R'.
But R’ is R-module finite as M == R'. Alsoa C rad(R) C radr(R’). So GoR' = R’
by (10.8)(1). So k(G2) € R’*. Thus (2.16) yields (2). O

Exercise (10.34) . — Let R be a ring, a C rad(R) an ideal, P := R[X] the
polynomial ring in one variable X, and F,G,H € P. Assume that FF = GH
(mod aP), that G and H are coprime, and that G is monic, say of degree n. Show
that there are coprime polynomials G, H' € P with G’ monic of degree n, with
deg(H') < max{deg(H), deg(F) — n}, and with

G=G and H=H' (modaP) and F=G'H (mod a®P).

Solution: Note (10.33)(1) yields (unique) A, B € P with F — GH = AG + BH
and deg(B) < n. Then AG + BH =0 (mod aP). But the residues of G and H in
P/aP are coprime; see (2.16). Also, the residue of G is monic of degree n. Thus
the uniqueness statement in (10.33)(1) yields A, B =0 (mod aP).

Set G' :=G+ B and H := H+ A. Then F — G'H' = —AB. Thus F = G'H’
(mod a?P). Also, G’ is monic of degree n, as G is so and deg(B) < n.

The residues of G’ and H' in P/aP are the same as those of G and H. But G and
H are coprime, and a C rad(R). Thus (10.33)(2) implies G’ and H’ are coprime.

Finally, assume deg(H’) > deg(H). Then deg(H') = deg(A) as H' := H + A.
But F — G'H' = —AB. Also deg(AB) < deg(A) + deg(B) < deg(H'’) + n, and
deg(G'H') = n + deg(H') as G’ is monic of degree n. Hence deg(F) = deg(G'H").
Thus deg(H') < max{deg(H), deg(F) — n}. O

Exercise (10.35) . — Let G be a finite group acting on a ring R. Show that every
x € R is integral over R®, in fact, over its subring R’ generated by the elementary
symmetric functions in the conjugates gz for g € G.

285



Solutions (10.36) / (10.40) Cayley—Hamilton Theorem

Solution: Given an z € R, form F(X) := [[,co(X — gz). The coefficients of
F(X) are the elementary symmetric functions in the conjugates gz for g € G. Thus
F(z) = 0 is an equation of integral dependence for = over R', so also over R¢. [

Exercise (10.36) . — Let R be aring, R’ an algebra, G a group that acts on R'/R,
and R the integral closure of R in R’. Show that G acts canonically on R/R.

Solution: Given z € R, say 2" 4+ a12" ' +--- + a, = 0 with a; € R. Given
g € G, then ga; = a;. So gz" —I—E;Lgx"_i—&— ~-+ay, =0. So gr € R. Thus gR C R.
Similarly, g7'R C R. So R C gR. So gR = R. Thus G acts on R/R. O

Exercise (10.37) . — Let R be a normal domain, K its fraction field, L/ K a Galois
extension with group G, and R the integral closure of R in L. (]jg definition, G
is the group of automorphisms of L/K and K = L%.) Show R =R .

Solution: As G is the group of automorphisms of L/K, it acts on L/R. So G

acts canonically on R/R by 510.36). So B is an R-algebra. Thus R C RrC.
Conversely, given € R, also © € K, as K = L% by definition of Galois

extension with group % But z is in R; so z is integral over R. But R is normal.
Sox € R. Thus RO R . Thus R = R'®. O

Exercise (10.38) . — Let R'/R be an extension of rings. Assume R’ — R is closed
under multiplication. Show that R is integrally closed in R'.

Solution: By way of contradiction, suppose there’s x € R’ — R integral over R.
Say z™ + a1z ' 4+ .- 4+ a, = 0 with a; € R and n minimal. Then n > 1 as
r¢ R Sety:=a""'+.--4+a, 1. Theny ¢ R;else, 2" '+ -+ + (a,_1 —y) =0,
contradicting minimality. But 2y = —a, € R. Thus R’ — R is not closed under
multiplication, a contradiction. (I

Exercise (10.39) . — Let R be aring; C, R’ two R-algebras; R” an R’-algebra. If
R” is either (1) integral over R’, or (2) module finite over R’, or (3) algebra finite
over R/, show R” @ C is so over R’ ®p C.

Solution: For (1), given z € R”, say 2" + aj2" ' + -+ + a,, = 0 with a; € R'.

Further, given ¢ € C, note z ® c is integral over R’ ® C, because
(z@c)"+ (a1 @c)(z@c)" -+ (a, @)
=(@"+a" '+ ta,) @ =0.

But every element of R” ® C'is a sum of elements of the form = ® ¢. Thus (10.20)
implies that R” ® C' is integral over R’ @ C.

For (2), say x1,...,%, generate R” as an R’-module. Given x € R”, write
x =Y a;x; with a; € R'. Then t ® ¢ = Y (a; ® ¢)(x; ® 1). But every element of
R’ @ C is a sum of elements of the form x ® ¢. Thus the z; ® 1 generate R’ @ C

as an R’ @ C-module.
For (3), argue as for (2), but use algebra generators and polynomials in them. [

Exercise (10.40) . — Let k be a field, P := k[X] the polynomial ring in one
variable, ' € P. Set R := k[X?] C P. Using the free basis 1, X of P over R, find
an explicit equation of integral dependence of degree 2 on R for F'.
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Solutions (10.41) /(10.43) Cayley—Hamilton Theorem

Solution: Write F' = F, + F,, where F, and F, are the polynomials formed
by the terms of F' of even and odd degrees. Say F, = Gx. Then the matrix of
W is (}g GFiQ ) Its characteristic polynomial is T? — 2F,T + F2 — F2. So the
Cayley—Hamilton Theorem (10.1) yields F? — 2F,F + F? — F2 = 0. O

Exercise (10.41) . — Let Ry, ..., R, be R-algebras that are integral over R. Show
that their product [] R; is integral over R.

Solution: Let y = (y1,...,yn) € [, Ri. Since R;/R is integral, each y; € R;
satisfies an equation of integral dependence on R. Plainly, the image of y; in
[T, R; satisfies the same equation. Hence []"_, R[y;] is module-finite by (10.14).
Now, y € [Ti—, Rly;]. Therefore, y is integral over R by (10.18). Thus []_, R; is
integral over R. O

Exercise (10.42) . — For 1 < i < r, let R; be a ring, R} an extension of R;, and
x; € R.. Set R:=][[ Ry, set R :=[][ R}, and set x := (z1,...,2,). Prove

(1) « is integral over R if and only if x; is integral over R; for each i;

(2) R is integrally closed in R’ if and only if each R; is integrally closed in Rj.

Solution: Assume z is integral over R. Say " + ajz" ' + --- + a, = 0 with
a; € R. Say a; =: (a1j,...,ar,;). Fix i. Then z + a1+ 4+ a;; =0. So a;
is integral over R;.

Conversely, assume each z; is integral over R;. Say =} +a; .1‘;“71 +- - Fain, =0.

Set n := maxn,, set a;; := 0 for j > n;, and set a; := (a1,...,ar;) € R for each j.
Then 2" + ayjz" ' + -+ + a, = 0. Thus z is integral over R. Thus (1) holds.
Assertion (2) is an immediate consequence of (1). O

Exercise (10.43) . — Let k be a field, X and Y variables. Set
R:=k[X,Y]/(Y? - X? - X3),

and let z,y € R be the residues of X,Y. Prove that R is a domain, but not a field.
Set t := y/x € Frac(R). Prove that k[t] is the integral closure of R in Frac(R).

Solution: As k[X,Y]is a UFD and Y2 — X2 — X3 is irreducible, (Y? — X2 — X3)
is prime by (2.5); however, it is not maximal by (2.40). Hence R is a domain
by (2.8), but not a field by (2.13).

Note y? — 22 — 2% = 0. Hence x = t?> — 1 and y = t3 — t. So k[t] D k[z,y] = R.
Further, ¢ is integral over R; so k[t] is integral over R by (2)=(1) of (10.18).

Finally, k[t] has Frac(R) as fraction field. Further, Frac(R) # R, so x and y
cannot be algebraic over k; hence, ¢ must be transcendental. So k[t] is normal by
(10.22)(1). Thus k[¢] is the integral closure of R in Frac(R). O
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Solutions (11.5) / (11.22) Localization of Rings
11. Localization of Rings

Exercise (11.5) . — Let R’ and R” be rings. Consider R := R’ x R” and set
S:={(1,1), (1,0) }. Prove R = S7'R.

Solution: Let’s show that the projection map 7: R’ x R — R’ has the UMP of
(11.3). First, note that 7.5 = {1} C R"*. Let ¢: R’ x R” — B be a ring map such
that (1,0) € B*. Then in B,

¥(1,0) - 1(0,2) = ¥((1,0) - (0,2)) = ¥(0,0) =0 in B.
Hence ¢(0,z) = 0 for all z € R”. So v factors uniquely through 7 by (1.5). O

Exercise (11.19) . — Let R be a ring, S a multiplicative subset. Prove S™1R =0
if and only if S contains a nilpotent element.

Solution: By (1.1), S™'R = 0 if and only if 1/1 = 0/1. But by construction,
1/1=0/1if and only if 0 € S. Finally, since S is multiplicative, 0 € S if and only
if S contains a nilpotent element. (I

Exercise (11.20) . — Find all intermediate rings Z C R C Q, and describe each R
as a localization of Z. As a starter, prove Z[2/3] = S3'Z where S5 := {3 | i > 0}.

Solution: Clearly Z[2/3] C Z[1/3] as 2/3 = 2-(1/3). But the opposite inclusion
holds as 1/3 = 1 — (2/3). Clearly S;'Z = Z[1/3].

Let P C 7Z be the set of all prime numbers that appear as factors of the denomi-
nators of elements of R in lowest terms; recall that x = r/s € Q is in lowest terms
if » and s have no common prime divisor. Let S denote the multiplicative subset
generated by P, that is, the smallest multiplicative subset containing P. Clearly,
S is equal to the set of all products of elements of P.

First note that, if p € P, then 1/p € R. Indeed, take an element z = r/ps € R in
lowest terms. Then sz = r/p € R. Also the Euclidean algorithm yields m, n € Z
such that mp +nr = 1. Then 1/p = m + nsx € R, as desired. Hence S™'Z C R.
But the opposite inclusion holds because, by the very definition of S, every element
of R is of the form r/s for some s € S. Thus S™'Z = R. O

Exercise (11.21) . — Take R and S as in (11.5). On R x S, impose this relation:
(z,8) ~ (y,t) if axt=ys.
Prove that it is not an equivalence relation.

Solution: Observe that, for any z € R”, we have
((1,2), (1,1)) ~ ((1,0), (1,0)).
However, if z # 0, then
((1,2), (1,1)) % ((1,0), (1,1)).

Thus although ~ is reflexive and symmetric, it is not transitive if R” # 0. O

Exercise (11.22) . — Let R be a ring, S a multiplicative subset, G be a group
acting on R, Assume g(S) C S for all g € G. Set S¢ := SN RY. Show:

(1) The group G acts canonically on S™1R.

(2) If G is finite, there’s a canonical isomorphism p: (S€)"'RY =~ (ST1R)%.
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Solutions (11.23) /(11.24) Localization of Rings

Solution: For (1), given g € G, note pgsg(S) C (ST'R)* as g(S) C S. So g
induces a map S~!(g): ST'R — S7!R by (11.3). By naturality, S~!(g7!) is an
inverse. Thus (1) holds.

For (2), note pg(SY%) C (ST1R)* as S¢ C S. So (ps|RY): RY — S™1R induces
amap p: (S9)"IRY — STIR by (11.3). Assume G is finite. Let’s show p works.

First, given x € RY and s € S, suppose p(x/s) = 0. Then there’s t € S with
tr =0in R. Set t' :=[] c59(t). Then 'z = 0. And ¢’ € R sot' € S¢. So
x/s=01in (S¢)"'RY. Thus p is injective.

Second, given 2 € RY and s € S¢ and g € G, note gp(z/s) = p(g(x)/g(s)). But
g(z) =z and g(s) = s. So gp(z/s) = p(x/s). Thus Im(p) C (STR)C.

Conversely, given y/t € (ST'R)%, set ¢’ := [],,, g(t). Then tt' € S and
y/t = yt'/tt’. Fix g € G. Then g(y/t) = g(yt')/g(tt’). But g(tt") = t¢'. Also
g(y/t) =y/t. So g(yt')/tt" = yt'/tt’. So there is u, € S with u,(g(yt’) —yt') = 0.

Set w =[] cqug- Then u(g(yt') —yt') = 0 for all g. Set v’ := [] 5 g(u). Then
u' € S¢ and u'(g(yt') — yt') = 0 for all g. So w'yt' € R® and p(u'yt' /u'tt') = y/t.

Thus Im(p) D (S~1R)“. Thus Im(p) = (S~1R)“. Thus (2) holds. O
Exercise (11.23) . — Let R be a ring, S C T a multiplicative subsets, S and T
their saturations; see (3.25). Set U := (S~!R)*. Show the following:

(1) U={z/s|z e Sand se S} (2) 5'U = 5.

3) S'R=T"'Rifandonlyif S=7. (4) S 'R=S"'R.

Solution: In (1), given x € S and s € S, take y € R such that zy € S. Then
x/s-sy/ry = 1in ST'R. Thus x/s € U. Conversely, say x/s-y/t = 1in STIR
with z,y € R and s,t € S. Then there’s u € § with xyu = stu in R. But stu € S.
Thus € S. Thus (1) holds.

For (2), set V := p5'U. Then V is saturated multiplicative by (3.11). Further,
V O S by (11.1). Thus (1)(c) of (3.25) yields V O S. Conversely, take z € V.
Then x/1 € U. So (1) yields z/1 = y/s with y € S and s € S. So there’s t € S
with st = yt in R. But S O S by (1)(a) of (3.25), and S is multiplicative by
(1)(b) of (3.25); so yt € S. But S is saturated again by (1)(b). Thus z € S. Thus
V==

In (3),if ST'R = TR, then (2) implies S = T. Conversely, if S = T, then (4)
implies ST'R =T"'R.

As to (4), note that, in any ring, a product is a unit if and only if each factor
is. So a ring map ¢: R — R’ carries S into R’™ if and only if ¢ carries S into R'*.

Thus S~ 'R and S~!R are characterized by equivalent UMPs. Thus (4) holds. O

Exercise (11.24) . — Let R be aring, S C T C U and W multiplicative subsets.
(1) Show there’s a unique R-algebra map ¢%: ST'R — T~ R and oL o5 = o7
(2) Given a map ¢: S~!R— W™IR, show S C S C W and ¢ = @SW.

Solution: For (1), note prS C orT C (T7'R)*. So (11.3) yields a unique
R-algebra map ¢3.: ST'R — T~!R. By uniqueness, p 5 = 7, as desired.

For (2), note p(S7'R)* C (W™IR)*. So ¢g'(STIR)* C ¢p (WIR)*.
But ¢5'(STIR)* = S and ¢} (W™IR)* = W by (11.23)(2). Also S C S by
(3.25)(1)(a), as desired. O
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Solutions (11.25) /(11.27) Localization of Rings

Exercise (11.25) . — Let R = lim Ry be a filtered direct limit of rings with tran-
sition maps <pf;: Ry — R, and insertions ¢, : R, — R. For all A, let Sy C Ry be a
multiplicative subset. For all <pf;, assume @ﬁ(S,\) C S, Set S :=JpaSx. Show
lim Sy 'Ry = S™'R.
Solution: Owing to the UMP of localization (11.3), the maps ), and ¢,, induce

unique maps LZJ;) and 1, such that the following two squares are commutative:

by
Pu

Ry R, — % R

o | | s
A

ST Ry ~5 SR, 5% STIR

Owing to uniqueness, ¥,¢, = ¥ as ©u@p = @x. Similarly, 1l = ;) for all .

Let’s show that S~'R has the UMP characterizing hgl S/\_lRA. Fix a ring R’ and
ring maps 6,,: S;lRH — R’ with Gﬂwﬁ =6, for all wﬁ. Set p, 1= 0,05, for all p.

The p,: R, — R’ induce a unique ring map p: R — R’ with pp, = p,. Now,
given s € S, say s = ¢, (s,) with s, € S,. Then pg, (s,) is a unit. So 0,03, (s,) is
a unit. But p, := 0,05, and p,(s,) = p(s). Thus the UMP of localization (11.3)
yields a unique map 0: ST'!R — R’ with fpg = p.

So Opsp, = pu. But psp, = w#g&su. So Gw#cpgu = p,. But 9#905}‘ =: p, and
pu factors uniquely via pg,. Thus 6, = 6, as desired. O

Exercise (11.26) . — Let R be a ring, Sp the set of nonzerodivisors. Show:
(1) Then Sy is the largest multiplicative subset S with ¢g: R — S™!R injective.
(2) Every element z/s of Sy 'R is either a zerodivisor or a unit.
(3) Suppose every element of R is either a zerodivisor or a unit. Then R = S(le.

Solution: For (1), recall ¢g, is injective by (11.2). Conversely, let s € S and
x € R with sz = 0. Then pg(sz) =0. So ps(s)ps(x) = 0. But pg(s) is a unit. So
vs(x) = 0. But pg is injective. So & = 0. Thus S C Sp. Thus (1) holds.

For (2), take x/s € Sy ' R, and suppose it is a nonzerodivisor. Then z/1 is also a
nonzerodivisor. Hence x € Sy, for if xy = 0, then 2:/1-y/1 = 0, so ¢s,(y) = y/1 = 0,
so y =0 as pg, is injective. Hence z/s is a unit, as desired. Thus (2) holds.

In (3), by hypothesis, Sy € R*. So R == Sy 'R by (11.4). Thus (3) holds. O

Exercise (11.27) . — Let R be a ring, S a multiplicative subset, a and b ideals.
Show: (1) if @ C b, then a® C b%; (2) (a®) =a% and (3) (a°6°)° = (ab).

Solution: For (1), take x € a®. Then there is s € S with sz € a. If a C b, then
sr € b, and so = € b°. Thus (1) holds.

To show (2), proceed by double inclusion. First, note a® O a by (11.10)(2).
So (a%)% O a¥ again by (11.10)(2). Conversely, given = € (a®)?, there is s € S
with sz € a®. So there is t € S with tsz € a. But ts € S. So x € a®. Thus (2)
holds.

To show (3), proceed by double inclusion. First, note a C a® and b C b by
(11.10)(2). So ab C a®b°. Thus (1) yields (ab)® C (a”6%)7.

Conversely, given z € a®b”, say = := Y v,z with y; € a® and z; € b. Then
there are s;,t; € S such that s;y; € a and t;2; € b. Set u := [[s;t;. Then u € §
and uz € ab. So x € (ab)®. Thus a®b° C (ab)®. So (a®6)° C ((ab)¥)* by (1).
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Solutions (11.28) /(11.32) Localization of Rings

But ((ab)®)® = (ab)® by (2). Thus (3) holds. O
Exercise (11.28) . — Let R be a ring, S a multiplicative subset. Prove that
nil(R)(S™'R) = nil(S™'R).

Solution: Proceed by double inclusion. Given an element of nil(R)(S™1R), put
it in the form z/s with z € nil(R) and s € S using (11.8)(1). Then z™ = 0 for
some n > 1. So (x/s)" = 0. So x/s € nil(S~'R). Thus nil(R)(S™*R) C nil(S7'R).

Conversely, take x/s € nil(S™'R). Then (x/s)™ = 0 with m > 1. So there’st € S
with tz™ = 0 by (11.10)(1). Then (tx)™ = 0. So tz € nil(R). But tx/ts = z/s.
So z/s € nil(R)(S™'R) by (11.8)(1). Thus nil(R)(S™'R) D nil(S~!R). O
Exercise (11.29) . — Let R be a ring, S a multiplicative subset, R’ an algebra.

Assume R’ is integral over R. Show SR’ is integral over S™!R.

Solution: Given x/s € ST'R', let 2™ + a,,_12" ! + -+ + ag = 0 be an equation
of integral dependence of z on R. Then

(@/8)" + (an—1/1)(1/s)(x/$)" "' + - +ao(1/s)" = 0
is an equation of integral dependence of /s on S~ R, as required. O

Exercise (11.30) . — Let R be a domain, K its fraction field, L a finite extension
field, and R the integral closure of R in L. Show that L is the fraction field of R.
Show that, in fact, every element of L can be expressed as a fraction b/a where b
isin R and a is in R.
Solution: Let 2 € L. Then « is algebraic (integral) over K, say
"y 4y =0
with y; € K. Write y; = a;/a with a1,...,a,,a € R. Then
(ax)™ +ai(az)" P+ -+ a" tag = 0.
Set b := ax. Then b € R and = = b/a. O

Exercise (11.31) . — Let R C R’ be domains, K and L their fraction fields.
Assume that R’ is a finitely generated R-algebra, and that L is a finite dimensional
K-vector space. Find an f € R such that R} is module finite over Ry.

Solution: Let z1,...,x, generate R’ over R. Using (11.30), write z; = b;/a;
with b; integral over R and a; in R. Set f := [[a;. The x; generate R} as an
Ry-algebra; so the b; do too. Thus R} is module finite over Ry by (10.18). O

Exercise (11.32) (Localization and normalization commute) . — Given a domain
R and a multiplicative subset S with 0 ¢ S. Show that the localization of the
normalization S~'R is equal to the normalization of the localization S—1R.

Solution: Since 0 ¢ S, clearly Frac(S™!'R) = Frac(R) owing to (11.2). Now,
S~IR is integral over S™!R by (11.29). Thus S™'R C S—!R.
Conversely, given x € S—1R, consider an equation of integral dependence:

" +ax" '+ +a, =0.
Say a; = b;/s; with b; € R and s; € S; set s := [[s;. Multiplying by s" yields
(s2)" + say(sz)" ' 4+ s"a, = 0.
Hence sz € R. So z € S™'R. Thus S~'R O S—IR, as desired. [l
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Solutions (11.33) /(12.5) Localization of Modules

Exercise (11.33) . — Let k be a field, A a local k-algebra with maximal ideal
m. Assume that A is a localization of a k-algebra R and that A/m = k. Find a
maximal ideal n of R with R, = A.

Solution: By hypothesis, A = T~ 'R for some multiplicative subset T of R. Take
n:= gy 'm. Then k < R/n < A/m = k. Hence R/n = A/m. So n is maximal.
But, given any ¢t € T, note pp(t) € A* by (11.1). So ¢r(t) ¢ m by (3.5). Hence
T C R —n. Thus (11.16) yields R, = A, as desired. O

Exercise (11.34) . — Let R be a ring, S a multiplicative subset, X := {X,} a set
of variables. Show (S™'R)[X] = S~*(R[X]).

Solution: In spirit, the proof is like that of (1.16): the two rings are equal, as
each is universal among R-algebras with distinguished elements x) and in which
all s € S become units. |

Exercise (11.35) . — Let R be aring, S a multiplicative subset, X a set of variables,
p an ideal of R[X]. Set R’ := S™1R, and let ¢: R[X] — R'[X] be the canonical map.
Show p is prime and pN S = () if and only if pR'[X] is prime and p = ¢~ (pR'[X]).

Solution: The assertion results directly from (11.34) and (11.12)(2). O

12. Localization of Modules

Exercise (12.4) . — Let R be a ring, S a multiplicative subset, and M, N modules.
Show: (1) If M, N are S—!R-modules, then Homg-1z(M, N) = Homg (M, N).
(2) M is an S~!R-module if and only if M = S~1M.

Solution: In (1), note Homg-1z(M, N) C Homg(M, N). Let ¢ € Homg(M, N),
s €S,a € R, me M. Then sp((a/s)m) = p(s(a/s)m) = plam) = ap(m).
Multiply by 1/s; so ¢((a/s)m) = (a/s)p(m). So ¢ is an S~!R-map. So (1) holds.

For (2), first suppose M is an S~!R-module. Every R-map ¢: M — N is an
S~1R-map by (1). So M, equipped with 17, has the UMP that characterizes
S=IM; see (12.3). Thus M = S~1M.

Conversely, if M = S™'M, then M is an S~'R-module as S™'M is by (12.2).
Thus (2) holds. O

Exercise (12.5) . — Let R be a ring, S C T multiplicative subsets, M a module.
Set T' := ¢s(T) € S*R. Show T-'M = T'~1(S~1M).

Solution: Set ¢ := pr@g; 50 o: M — T'"1(S7IM). Let’s check T"~1(S~1 M),
equipped with ¢, has the UMP characterizing T~'M; see (12.3).

Let P be an S~!R-module. Given t € T, set t' := @g(t). Then p; = uy on
P. So (12.1) implies P is a T~! R-module if and only if P is a 7'~! R-module. In
particular, 7'~*(S~*M) is a T~ R-module.

Let N be a T~!R-module, v»: M — N an R-map. Then u, is bijective on N for
all s € S C T by (12.1). So N is an S~!R-module by (12.1) again. So by (12.3),
there’s 0: ST'M — N with opg = 1, and o is unique among R-maps. Similarly,
there’s 7: T'~1(S~'M) — N with 797 = o, and 7 is unique among R-maps. Then
(12.4)(1) implies 7 is a T~! R-map. Moreover, T¢ = 9.

Given an R-map 7/: T'""1(S7M) — N with 7/¢ = v, it remains to show 7/ = 7.
Set ¢’ := 7'¢o7. Then o’'¢ps = 1. So the above uniqueness of o gives ¢/ = 0. So
o = 7'pr. So the above uniqueness of T gives 7/ = 7, as desired. O
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Exercise (12.6) . — Let R be a ring, S a multiplicative subset. Show that S
becomes a filtered category when equipped as follows: given s,t € S, set

Hom(s,t) := {x € R| xs = t}.

Given a module M, define a functor S — ((R-mod)) as follows: for s € S, set
M, := M; to each x € Hom(s, t), associate j,: My — M;. Define 3,: My — S™'M
by Bs(m) :=m/s. Show the 5 induce an isomorphism lim M, - S=IM.

Solution: Clearly, S is a category. Now, given s,t € S, set u := st. Then u € S,
also t € Hom(s,u) and s € Hom(¢,u). Given x,y € Hom(s,t), we have xs =t and
ys =t. So s € Hom(t,u) and zs = ys in Hom(s,u). Thus S is filtered.

Further, given = € Hom(s,t), we have By, = fs since m/s = xm/t as xs = t.
So the s induce a homomorphism f: li_n>1Ms — S~'M. Now, every element of
S=1M is of the form m/s, and m/s =: B5(m); hence, 3 is surjective.

Each m € lim M, lifts to an m’ € M, for some s € S by (7.5)(1). Assume
Bm = 0. Then Bsm’ = 0 as the §; induce 8. But Ssm’ = m'/s. So there ist € S
with tm’ = 0. So uym’ =0 in My, and puym’ — m. So m = 0. Thus f§ is injective,
so an isomorphism. ([

Exercise (12.17) . — Let R be a ring, S a multiplicative subset, M a module.
Show: (1) S™! Ann(M) C Ann(S—tM), with equality if M is finitely generated;
(2) S7'M =0 if Ann(M)N S # (), and conversely if M is finitely generated.

Solution: First off, (1) results from (9.34) owing to (12.10) and (12.13).

Alternatively, here’s a direct proof of (1). Given z € Ann(M) and m € M and
s,t € S, note x/s-m/tis 0. Thus S~ Ann(M) C Ann(S—1M).

Conversely, say my,...m, generate M. Given ¢ € R and s € S such that
x/s € Ann(S~1M), note x/s-m;/1 = 0 for all i. So there’s t; € S with t;zm; = 0.
Set t = [[t;. Then tzM = 0. So tzx € Ann(M). But tx/ts = x/s. Thus
z/s € S71 Ann(M). Thus Ann(S~1M) C S~ Ann(M). Thus (1) holds.

For (2), note Ann(M)NS # 0 if and only if S~! Ann(M) = S7'R by (11.8)(2).
But Ann(S7tM) = S7!R if and only if S™'M = 0. Thus (1) yields (2). O

Exercise (12.24) . — Let R be aring, M a module, and S, T multiplicative subsets.
Show;
(1) Set U := ST :={stc R|se€ SandteT}. Then U"'M =T~1(S~1M).
(2) Assume S C T. Then T-*M = T-}(S~1M).

Solution: Do (1) much like (12.5). Set ¢ := orps; so ¢: M — T-1(S™1M).
Let’s check T71(S™1M), with ¢, has the UMP characterizing U~'M; see (12.3).

Given s € S and t € T, note g = pspuy on T-1(STLM). Hence ug; is bijective.
Thus (12.1) implies 771 (S7*M) is a U~!R-module. Trivially, ¢ is an R-map.

Let N be a U~'R-module, and ¢p: M — N an R-map. Now, 1 € T and 1 € S; so
s,t € U. So us and p; are both bijective on N by (12.1). Thus by (12.1) again,
N is both an S~!R-module and a T~ R-module.

Hence by (12.3), there’s 0: S~™'M — N with opg = %, and o is unique among
R-maps. Similarly, there’s 7: T-1(S7'M) — N with 7or = o, and 7 is unique
among R-maps. Then 7 is a U~!R-map by (12.4)(1). Moreover, 7o = 1.

Given an R-map 7": T~Y(S71M) — N with 7/¢ = 1), it remains to show 7/ = 7.
Set ¢’ := 7'pr:. Then o’'ps = 1. So the above uniqueness of o gives ¢/ = 0. So
o = 7' So the above uniqueness of 7 gives 7" = 7, as desired. Thus (1) holds.
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Note (2) is a special case of (1), because T = ST as 1 € S. Thus (2) holds. O

Exercise (12.25) . — Let R be a ring, S a multiplicative subset, M a module.

Show: (1) Let Ty be a multiplicative subset of ST!R; set T := ¢g'(T1); and assume
S cCT. Then T-'M =T, ' (S~ M).
(2) Let p be a prime of R; assume p NS = 0; and set P := pS~*R. Then

My = (S71M), = (ST M)y
(3) Let p C q be primes of R. Set B := pR,. Then M, = (My), = (My)x-

Solution: Do (1) much like (12.5). Set ¢ := @1/pg; so p: M — T'1(S™1M).
Let’s check T"71(S™1M), with ¢, has the UMP characterizing T~!M; see (12.3).

Given t € T, set t' := pg(t) C T'. Then pu; = py on T'"Y(STIM). So p; is
bijective by (12.1). Thus by (12.1) again, T7'"1(S~1M) is a T~! R-module.

Let N be a T~!R-module, ¥»: M — N an R-map. Then p, is bijective on N for
all s € S C T by (12.1). So N is an S~!R-module by (12.1) again. So by (12.3),
there’s 0: S™'M — N with cpg = v, and o is unique among R-maps.

Given t' € T', say t' = t/s with t € Rand s € S C T. Then s/1 € T'. So
t/1=(s/I)t' €T’. Sot € T. So p; and ps are both bijective on N by (12.1). But
ptr = eft1/s- SO g is bijective too. So N is an T'~'R-module by (12.1) again.
So by (12.3), there’s 7: T'"1(S~'M) — N with 7¢7 = o, and 7 is unique among
R-maps. Then (12.4)(1) implies 7 is a T~! R-map. Moreover, 7¢ = ).

Given an R-map 7': T""1(S~1M) — N with 7/ = ), it remains to show 7/ = 7.
Set ¢’ := 7. Then o’pgs = 1. So the above uniqueness of o gives ¢/ = . So
o = 7'pr. So the above uniqueness of 7 gives 7/ = 7, as desired. Thus (1) holds.

For (2), note B is prime by (11.12)(2); so (S™'M)q makes sense. Next, take
T':= S~ 'R — P in (1). Then p = p5"P by (11.12)(2) again. So T = R — p. But
pNS=10. SoSCT. Thus (12.24)(2) and (1) imply (2).

To get (3) from (2), take S := R—q, and note S™'M = Mg and SNp =0. O

Exercise (12.26) . — Let R be a ring, S a multiplicative subset, ¢: R — R’ a map
of rings, M’ an R’-module. Set S’ := ((S). Show $""*M’' = S~ M’ as R’-modules.

Solution: Recall that ¢ induces an R’-algebra isomorphism S™!R’ -~ S'~1R/;
see (11.15.1). So S~'M’ and S’~' M’ have the same UMP, established in (12.3):
both are universal among the modules over these two algebras equipped with an
R-map from M. Thus S'~'M’ = S~ M’ as R'-modules. O

Exercise (12.27) . — Let R be a ring, M a finitely generated module, a an ideal.
Show: (1) Set S := 1+ a. Then that S~'a lies in the radical of S~ R.
(2) Then (1), Nakayama’s Lemma (10.6), and (12.17)(2), yield, without the
determinant trick (10.2), this part of (10.3): if M = aM, then sM = 0 for
anseSs.

Solution: For (1), use (3.2) as follows. Take a/(1 +b) € S~'a with a,b € a.
Then for x € R and ¢ € a, we have

1+ (a/(1+b)(z/(14¢) =1+ (b+c+bc+az))/(1+b)(1+c).

The latter is a unit in S™'R, as b+ ¢+ bc+ azx € a. So a/(1 +b) € rad(S™'R) by
(3.2), as desired. Thus (1) holds.

For (2), assume M = aM. Then S™'M = S~1aS~1M by (12.2). So S™'M =0
by (1) and (10.6). So (12.17)(2) yields an s € S with sM = 0. Thus (2) holds. O
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Exercise (12.28) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, N a submodule. Show (aN)¥ = (a¥N9)%.

Solution: Use double inclusion. First, trivially, a C a® and N ¢ N°. Hence,
aN C a¥N¥. Thus (12.12)(5)(a) yields (aN) C (a¥N)5.

Conversely, given m € a’N*¥, say m := > xym; with a; € a® and m; € N°. Say
sixz; € a and t;m; € N for s;, t; € S. Set u := [[s;t;. Then u € S and um € aN.
So m € (aN)S. Thus a® N C (aN)®. So (a¥N%)® c ((aN)®)® by (12.12)(5)(a).
But ((aN)%)% = (aN)® by (12.12)(4)(a) as SS = S. Thus (aN)® D (a*N%). O

Exercise (12.29) . — Let R be a ring, S a multiplicative subset, P a projective
module. Show S~!P is a projective S~' R-module.

Solution: By (5.16), there is a module K such that F':= K@®P is free. So (12.9)
yields that S™1F = S™1P @ S~'K and that S~!F is free over S~'R. Thus S—'P
is a projective S~!R-module again by (5.16). a

Exercise (12.30) . — Let R be a ring, S a multiplicative subset, M, N modules.
Show S} (M @r N)=S"'M@r N=S"'M®¢ 15 S!N=S"1M®r S IN.

Solution: By (12.10), S~} (M ®r N) = ST'R®r (M ®g N). The latter is equal
to (ST'R®r M) @z N by Associativity (8.8)(1). Again by (12.10), the latter is
equal to ST!M ®g N. Thus the first equality holds.

By Cancellation (8.9)(1), S™'M @z N = S7'M ®5-15 (ST'R®g N), and the
latter is equal to S™'M ®g-15 ST'N by (12.10). Thus the second equality holds.

Lastly by (8.7)(2), map S™!M ®p S™IN — S7'M ®g-15 STIN is surjective,
and its kernel is generated by the elements p := (zm/s) ® (n/1) — (m/1) ® (xn/s)
withm € M, ne€ N, x € R, and s € S. But p =0, because sp = 0, and u; is an
isomorphism on the R-module S™'M ®z S~'N. Thus the third equality holds. [

Exercise (12.31) . — Let R be aring, S a multiplicative subset, X a set of variables,
and M a module. Show (S~1M)[X] = S~ (M[X]).

Solution: In spirit, the proof is like that of (11.34): the left side is a module
over (ST'R)[X], and the right side, over S7'(R[X]), but the two rings are equal by
(11.34); the two sides are equal, as each is universal among (S~!R)[X]-modules Q
with a given R-map M — @, owing to (12.3) and (4.18)(1). O

Exercise (12.32) . — Let R be a ring, a an ideal, S a multiplicative subset, X a set
of variables. Set R’ := R/a and P := R[X]. Let T' C P be a multiplicative subset,
and assume S C T. Show T-'P/aT~'P =T~ ((S™'R)[X]).

Solution: Note 7-'P/aT~'P = T~'(P/aP) by (12.15). But P/aP = P’ with
P’ := R'[X] by (1.16). Now, T='P’ = T=1(S71P’) by (12.24)(2). Furthermore,
STIP' = (ST'R)[X] by (12.31). Thus T~'P/aT~'P =T~ ((S7'R')[X]). O

Exercise (12.33) . — Let R be a ring, S a multiplicative subset. For i = 1,2, let
w;: R — R; be a ring map, S; C R; a multiplicative subset with ;S C 5;, and M;
an R;-module. Set T := {s1 ® 53 | s; € S;} C Ry ®r Ra. Show

S;IMy ®g-15 Sy "My = ST My ®p Sy My = T~ H (M, @r Ms).
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Solution: Note that S~'S; ' M’ = S; "M’ by (12.4)(2) since ;S C S;. Thus
(12.30) yields the first equality.

In Ry ®g Ry, form T7 :={s1 ®1 | s1 € S1} and T := {1 ® s3 | s2 € S2}. Then
(12.26)(2) and (12.10) and (8.8)(1) and again (12.10) yield

Tfl(M1 ®r M) = Sfl(M1 ®pr Ms) = (Sf1R1) ®pr, (M1 ®r Ms)
= (S;T'Ry ®, My) ®g Mo = (S7'My) ®p Mo.
Similarly, Ty ' ((S; ' My) ®p My) = S; My @r S5 ' My. Those two results yield
STIMy ®@p Syt My = Ty NI H(My @R Ma)). (12.33.1)

Apply (12.26)(1),(2) to (12.33.1) to get the second desired equation:

ST'My @p Sy My = (ToTh) ™ (My @ M) = T~ (M ®p Mo). U
Exercise (12.34) . — Let R be a ring, m a maximal ideal, n > 1, and M a module.
Show M/m"M = My, /m™M,,.

Solution: Note that R/m” is a local ring with maximal ideal m/m™. So the
elements of R — m become units in R/m™. But M/m"M is an R/m™-module. So
any s € R—m induces a bijection s on M/m"™ M. Hence M /m™M has a compatible
Ruy-structure by (12.1). So M/m"M = (M/m"M)y, by (12.4)(2). Moreover,
(12.15) yields (M/m™ M)y = My /0" M. Thus M/m™M = My /m" M. O
Exercise (12.35) . — Let k be a field. For i = 1,2, let R; be an algebra, and
n; C R; a maximal ideal with R;/n; = k. Let n C Ry ®; Ro denote the ideal
generated by ny and na. Set A; := (R;)n, and m := n(4; ® As). Show that both
n and m are maximal with & as residue field and that (4; @k A2)m = (R1 ®k R2)a.

Solution: First off, note that (8.30), the hypotheses, and (8.5)(2) yield
(R1 Rk RQ)/H = (Rl/nl) Rk (Rg/ng) =k Ok k=k.

But £ is a field. Thus n is maximal, as desired.

Second, set m; := n;A;. Plainly, the m; generate m. Also, 4;,/m; = R;/n; by
(12.16). So as above, m is maximal, and A; ® As/m = k, as desired.

Third, set S; := Sy, := R; —n;. Then A; := S;'R;. So (12.33) yields

AL @ Ay = (81 ® S2) (R @k Ra). (12.35.1)

Set ¢ 1= pg,@s, and T" := (A1 ® A2) —mand T := (Ry ® R2) —n. Then (11.16)
yields (A1 ®k A2)m = (R1 ®k Ra2)n provided (a) T'= ¢~ 'T" and (b) ¢(S1®S2) C T".

To check (a), note n C ¢~ 'm. But n is maximal. So n = ¢~!'m. Thus (a) holds.

To check (b), note that ¢(S; ® Sa) consists of units by (11.1). But m is a proper
ideal. Thus (12.35.1) yields (b), as desired. O

Exercise (12.36) . — Let R be a ring, R’ an algebra, S a multiplicative subset, M
a finitely presented module. Show these properties of the rth Fitting ideal:

F.(M ®r R')=F,(M)R' and F.(S™'M)=F.(M)S™'R=S"'F.(M).
Solution: Let R" % R™ — M — 0 be a presentation. Then, by (8.10),
(R 224 (Y™ 5> M@ R — 0
is a presentation. Further, the matrix A of « induces the matrix of a ® 1. Thus
F,(M®rR)=1I,_(A)R =F.(M)R'.
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For the last equalities, take R’ := S™'R. Then F,.(S™'M) = F.(M)S™'R by
(12.10). Finally, F,.(M)S™'R = S7'F.(M) by (12.2). O

Exercise (12.37) . — Let R be a ring, S a multiplicative subset. Show:

(1) Let M; 2 M, be a map of modules, which restricts to a map N; — N of
submodules. Then a(N{) C N5'; that is, there is an induced map N — N3

(2) Let 0 — M, 2 M, g M3 be a left exact sequence, which restricts to a left
exact sequence 0 — Ny — Ny — N3 of submodules. Then there is an induced
left exact sequence of saturations: 0 — Ny — N5 — N§.

Solution: For (1), take m € Ny. Then there is s € S with sm € N;. So
a(sm) € Na. But a(sm) = sa(m). Thus (1) holds.

In (2), a(Ny) € N5 and B(Ny) C N§ by (1). Trivially, o|N? is injective, and
BalNyY = 0. Finally, given my € Ker(B|N5'), there is s € S with smg € Ny, and
exactness yields m; € M; with a(my) = mg. Then S(sms2) = sB(mz2) = 0. So
exactness yields ny € Ny with a(ng) = smg. Also a(smy) = sa(m) = sms. But «
is injective. Hence sm; = ny. So my € Ni, and a(m;) = mg. Thus (2) holds. O

Exercise (12.38) . — Let R be a ring, M a module, and S a multiplicative subset.
Set T° M := (0)°. We call it the S-torsion submodule of M. Show:
(1) TS(M/TSM) = 0. (2) TSM = Ker(gs).
(3) Let a: M — N be a map. Then o(T°M) C T*N.
(4) Let 0 — M’ — M — M" be exact. Thensois 0 — TSM' — TSM — TS M".
(5) Let S; C S be a multiplicative subset. Then T (S M) = S;HTM).

Solution: For (1), given an element of T°(M/T%(M)), let m € M represent
it. Then there is s € S with sm € T¥(M). So there is t € S with tsm = 0. So
m € TS(M). Thus (1) holds. Assertion (2) holds by (12.12)(3)(a).

Assertions (3) and (4) follow from (12.37)(1) and (2).

For (5), given m/s; € S;'T5(M) with s; € S; and m € T¥(M), take s € S with
sm = 0. Then sm/s; = 0. Som/s; € T3(S;*M). Thus S; 75 (M) c TS (S;*M).

For the opposite inclusion, given m/s; € T%(S;*M) with m € M and s; € S,
take t/t; with ¢t € S and ¢; € S1 and ¢/t; - m/s; = 0. Then tm/1 = 0. So there’s
s € Sy with s'tm = 0 by (12.12)(3)(a). But s't € S as S; C S. Som € T%(M)
Thus m/s; € S;'T5(M). Thus (5) holds. O

Exercise (12.39) . — Set R:=Z and S := Sy := Z — (0). Set M :=€P,,-,Z/(n)
and N := M. Show that the map o of (12.19) is not injective.

Solution: Given m > 0, set e, := (J;n), and fix e, for some n > m. Then
m - e, # 0. Hence ur: R — Hompg(M, M) is injective. But S™'M = 0, as any
x € M has only finitely many nonzero components; so kx = 0 for some nonzero
integer k. So Hom(S—!'M, S™'M) = 0. Thus o is not injective. O

Exercise (12.40) . — Let R be a ring, S a multiplicative subset, M a module.
Show that S~ nil(M) C nil(S~1M), with equality if M is finitely generated.

Solution: Given an element z/s of S~ nil(M) with z € nil(M) and s € S,
there’s n > 1 with 2" € Ann(M). So 2"M = 0. So (z/s)"S™'M = 0. So
x/s € nil(STLM). Thus S~ nil(M) C nil(S~1M).

Assume M is finitely generated, say by my,...,m,. Given x/s € nil(S~'M),
there’s n > 1 with (z/s)™ € Ann(S™1M). So (z"m;)/s = 0 for all i. So there’s
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t; € S with t;2"m; = 0. Set t := [[ ;. Then (tz)™m; = 0. So tz € nil(M). Hence
z/s € S~ nil(M). Thus S™!nil(M) D nil(S~*M), as desired. O

Exercise (12.41) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, and N a submodule. Set n := nil(M/N). Show:

(1) Then nN S # () if and only if n¥ = R.

(2) Assume nN S # (). Then S™IN = S~'M and N° = M.

(3) Then n® C nil(M/N?®), with equality if M is finitely generated.

Solution: In (1), there’s s € nN S if and only if there are s € S and n > 1 with
s"M C N, so if and only if 1 € n¥. Thus (1) holds.

In (2), given s € SN, there’s n > 1 with s"M C N. So S™'M C S™!N. Thus
S=IM = S7IN. So N¥ = M by (12.12)(2)(a). Thus (2) holds.

In (3), given x € n°, there is s € S such that sz € n. So there is n > 1 such
that (sz)"M C N. So z"M C N°. Hence z € nil(M/N¥). Thus n® C nil(M/N¥).

Assume my,...,m, € M generate. Given z € nil(M/N®), there is n > 1 such
that 2" M C N%. So there are s; € S with s;z"m; € N. Set s := [Is:- Then
(sz)"M C N. So sx € n. So x € n®. Thus n® D nil(M/N®). Thus (3) holds. O

Exercise (12.42) . — Let R be a ring, M a module, N, N’ submodules. Show:
(1) y/nil(M) = nil(M).

(2) nil(M /(N NN’)) = nil(M/N) N\nil(M/N").

(3) nil(M/N) = R if and only if N = M.

(4) nil(M /(N + N’)) D y/nil(M/N) + nil(M/N").

Find an example where equality fails in (4), yet R is a field k.

Solution: For (1), recall nil(M) = \/Ann(M). Thus (3.13) yields (1).

For (2), given z € nil(M /(N N N")), say 2"M C NNN’. So "M C N and
"M C N'. Thus z € nil(M/N) \nil(M/N").

Conversely, given = € nil(M/N)nil(M/N’), say 2" M C N and ™M C N'.
Then z"*™M C NN N’. Thus z € nil(M /(N N N’)). Thus (2) holds.

For (3), note nil(M/N) = R if and only if 1 € Ann(M/N), so if and only if
N = M. Thus (3) holds.

For (4), given z € \/nil(M/N) + nil(M/N’), say ™ = y + z where y"M C N
and zPM C N'. Then z™(" P~V C N + N’; see (3.15.1) and the two lines after
it. So x € nil(M/(N + N')). Thus (4) holds.

For an example, take N := N’ :=k and M := N®N'. Then M/(N+N') =0,
sonil(M/(N+N'")) =k. But M/N =k, so nil(M/N) = 0. Similarly, nil(M/N’) =
0. Thus equality fails in (4). O

13. Support

Exercise (13.10) . — Let R be a ring, M a module, and my € M elements. Prove
the m, generate M if and only if, at every maximal ideal m, the fractions my/1
generate M, over R,.

Solution: The my define a map a: R®M — M. By (13.9), it is surjective if
and only if am: (RGB{A})m — My, is surjective for all m. But (R@{)‘})m = REW
by (12.9). Hence (4.10)(1) yields the assertion. O
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Exercise (13.16) . — Let R be a ring, X := Spec(R), and p, g € X. Show:
(1) The closure {p} of p is equal to V(p); that is, q € {p} if and only if p C g.
(2) Then p is a closed point, that is, {p} = {p}, if and only if p is maximal.
(3) Then X is Tp; that is, if p # q but every neighborhood of q contains p, then
some neighborhood of p doesn’t contain q.

Solution: For (1) first assume q € {p}. Given f € R — p, note q € D(f). But
D(f) is open. Sop € D(f). So f ¢ p. Thus p C g.

Conversely, assume p C q. Given f € R with q € D(f), note f ¢ q. So f ¢ p. So
p € D(f). Thus q € {p}. Thus (1) holds.

For (2), note {p} = {p} means, owing to (1), that if p C q, then p = q; that is,
p is maximal. Thus (2) holds.

For (3), assume every neighborhood of ¢ contains p. Then q € m So p C q by
(1). If also p # g, then p € X — V(q). But q ¢ X — V(q). Thus (3) holds. O

Exercise (13.17) . — Describe Spec(R), Spec(Z), Spec(C[X]), and Spec(R[X]).

Solution: First, R is a field, so has only one prime, (0). Thus Spec(R) is the
unique topological space with only one point.

The rings Z, C[X], and R[X] are PIDs. For any PID R, the points z,, of Spec(R)
represent the ideals (p) with p a prime or 0. By (13.1), the closed sets are the
V({(a)) with a € R; moreover, V((a)) = 0 if a is a unit, V((0)) = Spec(R), and
V((a)) =xp, U--- Uy, if a =p}* - pl with p; a prime and n; > 1. O
Exercise (13.18) . — Let R be a ring, and set X := Spec(R). Let X7, X2 C X be
closed subsets. Show that the following four statements are equivalent:

(1) Then X1 |_|X2 = )(7 that iS, X1 UX2 = X and X1 OXQ = @

(2) There are complementary idempotents ey, ea € R with V({e;)) = X;.

(3) There are comaximal ideals a1, az C R with a;ay =0 and V(a;) = X;.

(4) There are ideals aj, as C R with a1 @ ay = R and V(a;) = X;.

Finally, given any e; and a; satisfying (2) and either (3) or (4), necessarily e; € a;.

Solution: Assume (1). Take ideals a;, a2 with V(a;) = X;. Then (13.1) yields

V(Cllﬂg) = V(Cll) @] V(Clg) =X= V(O) and
V(Cll + Clz) = V(al) n V(CLQ) =0= V(R)
So /araz = 1/(0) and \/a; + az = /R again by (13.1). Hence (3.35) yields (2).

Assume (2). Set a; := {(e;). As e; + ez =1 and ejes = 0, plainly (3) holds.

Assume (3). The a; are comaximal, so (1.21)(1) yields a; Nas = ajaz. But

ajaz = 0. So a; @ az = R by (4.25). Thus (4) holds.
Assume (4). Then (13.1) yields (1) as follows:

X1UXy = V(Cll) U V(ag) = V(alag) = V(O) =X and

XiNXs = V(al) N V(ClQ) = V(a1 + CLQ) = V(R) = 0.
Finally, say e; and a; satisfy (2) and either (3) or (4). Then \/(e;) = \/a; by
(13.1). So e? € a; for some n > 1. But e? = ¢;, so e = e;. Thus ¢; € a;. O

Exercise (13.19) . — Let R be a ring, a an ideal, and M a module. Show:
(1) Then I'qy(M) = {m € M | Supp(Rm) C V(a) }.
(2) Then I'y(M) ={m e M | m/1=01in M, for all primes p % a}.
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(3) Then I'y(M) = M if and only if Supp(M) C V(a).

Solution: For (1), note that Supp(Rm) = V(Ann(m)) by (13.4)(3). However,
V(Ann(m)) C V(a) if and only if a C y/Ann(m) by (13.1). Thus (1) holds.
For (2), note (Rm), = Ry(m/1). So p ¢ Supp(Rm) if and only if m/1 =0 in
M,. Thus (2) holds.
For (3), note Supp(M) = (U, Supp(R2m) by (13.4)(2). Thus (1) gives (3).
]

(03

Exercise (13.20) . — Let R be aring, 0 - M’ — M By M 5 0 a short exact
sequence of finitely generated modules, and a a finitely generated ideal. Assume

Supp(M') € V(a). Show 0 — I'q(M") Tale), To(M) ALIGIN Ta(M") = 0 is exact.

Solution: Recall T'q(M) = @Hom(R/a”, M) for all modules M by (7.15). But
0 — Hom(R/a™, M’) — Hom(R/a™, M) — Hom(R/a™, M") is exact for each n
by (5.11)(2). Thus by (7.9) the desired exactness holds at T'y(M') and T'(M).

It remains to show exactness at T'q(M"”). Given m” € ['y(M") and z € a, say
2"m” = 0. As B is surjective, there’s m € M with 8(m) = m”. Then B(z"m) = 0.
So by exactness, there’s m’ € M’ with a(m’) = z™m. But M’ = I'y(M’) by
(13.19)(3). So there’s r with "m’ = 0. So z"*"m = 0. But a is finitely generated.
So there’s s with a®m = 0. Som € T'y(M). Thus I'y(f5) is surjective, as desired. [

Exercise (13.21) . — Let R be a ring, S a multiplicative subset. Show:

(1) Assume R is absolutely flat. Then S™!R is absolutely flat.
(2) Then R is absolutely flat if and only if Ry, is a field for each maximal m.

Solution: In (1), given = € R, note that (z) is idempotent by (10.25). Hence
(r) = ()? = (x?). So there is y € R with z = 2%y.

Given a/s € ST!R, there are, therefore, b,t € R with a = a?b and s = s?t. So
s(st —1) =0. So (st —1)/1-s/1 =0. But s/1 is a unit. Hence s/1-¢/1 —1=0.
So a/s = (a/s)? - b/t. So a/s € {a/s)?. Thus (a/s) is idempotent. Hence S™1R is
absolutely flat by (10.25). Thus (1) holds.

Alternatively, given an S~ R-module M, note M is also an R-module, so R-flat.
Hence M @ S7'R is S~'R-flat by (9.22). But M ® S™*R = S~'M by (12.10),
and S™'M = M by (12.4)(2). Thus M is S~!R-flat. Thus again (1) holds.

For (2), first assume R is absolutely flat. By (1), each Ry, is absolutely flat. So
by (10.26)(4), each Ry, is a field.

Conversely, assume each Ry, is a field. Then, given an R-module M, each M, is
Ry-flat. So M is R-flat by (13.12). Thus (2) holds. O

Exercise (13.22) . — Let R be a ring; set X := Spec(R). Prove that the four
following conditions are equivalent:

(1) R/nil(R) is absolutely flat.

(2) X is Hausdorff.

(3) X is Ty; that is, every point is closed.

(4) Every prime p of R is maximal.

Assume (1) holds. Prove that X is totally disconnected; namely, no two distinct
points lie in the same connected component.
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Solution: Note X = Spec(R/nil(R)) as X = V(0) = V(v/0) = Spec(R/+/0) by
(13.1). Hence we may replace R by R/nil(R), and thus assume nil(R) = 0.

Assume (1). Given distinct primes p, q € X, take € p — q. Then z € (z2?)
by (10.25)(4). So there is y € R with z = 2%y. Set a; := (z) and ay := (1 — zy).
Set X; := V(a;). Then p € X; as € p. Further, q € X5 as 1 — zy € g since
z(1—zy)=0€q, but x ¢ q.

The a; are comaximal as zy + (1 — zy) = 1. Further ajas =0 as (1 — zy) = 0.
So X1 UXs =X and X; N X, =0 by (13.18). Hence the X; are disjoint open and
closed sets. Thus (2) holds, and X is totally disconnected.

In general, a Hausdorff space is T7. Thus (2) implies (3).

Conditions (3) and (4) are equivalent by (13.16)(2).

Assume (4). Then every prime m is both maximal and minimal. So Ry, is a
local ring with mR,, as its only prime by (11.12)(2). Hence mR,,, = nil(Ry,) by the
Scheinnullstellensatz (3.14). But nil(Ry) = nil(R)m by (11.28). And nil(R) = 0.
Thus Rym/mRym = Rm. So Ry, is a field. Hence R is absolutely flat by (13.21)(2).
Thus (1) holds. O

Exercise (13.23) . — Let R be a ring, and a an ideal. Assume a C nil(R). Set
X := Spec(R). Show that the following three statements are equivalent:

(1) Then R is decomposable. (2) Then R/a is decomposable.
(3) Then X = | |, X; where X; C X is closed and has a unique closed point.

Solution: Assume (1), say R = [[]_, R; with R; local. Set X, := Spec(R;).
Then the projection R — R; induces the inclusion X; — X as a closed subset
by (13.1.7). Moreover, X; has a unique closed point by (13.16)(2). Let’s show
X =[], X;; so (3) holds. If n = 1, then trivially X = X;. So suppose n > 2.

Set R' :=[];_, R;. Then R = Ry x R'. Set e; := (1,0) and €’ := (0,1). Then
R/(e1) = R’ and R/(e') = R;. So V({e1)) = Spec(R') and V({¢'})) = X; by
(13.1.7). So X = X | |Spec(R') by (13.18)(2)=-(1). But Spec(R’) = | |\, X; by
induction. Thus (3) holds.

Assume (3). Let’s prove (1) by induction on n. Suppose n = 1. Then X has
a unique closed point. So R is local by (13.16)(2). Thus (1) holds. So assume
n>2.

Set X’ =[], X;. Then X = X;UX'. So (13.18)(1)=(2) yields complementary
idempotents ey, ¢ € R with V({e1)) = X’ and V({¢/)) = X1. Set Ry := R/(¢/)
and R’ := R/{e1). Then (13.1.7) yields X’ = Spec(R’) and X; = Spec(Ry).

By induction, R’ is decomposable. But R = R; x R’ by (1.12). Thus (1) holds.

Note Spec(R/a) = V(a) = V(0) = X by (13.1). So (1)<(3) gives (2)<(3). O

Exercise (13.24) . — Let ¢: R — R’ be a map of rings. Set ¢* := Spec(y). Prove:

(1) Every prime of R is the contraction of a prime if and only if ¢* is surjective.
(2) If every prime of R’ is the extension of a prime, then ¢* is injective.

Is the converse of (2) true?

Solution: Note ¢*(q) := ¢ *(q) by (13.1.4). Hence (1) holds.

Given two primes q; and ¢ that are extensions, if qf = q§, then q; = g2 by
(1.14)(3). Thus (2) holds.

The converse of (2) is false. Take R to be a domain. Set R’ := R[X]/(X?). Then
R'/(X) = R by (1.9) and (1.6)(2). So (X) is prime by (2.8). But (X) is not an
extension, as X ¢ aR’ for any proper ideal a of R. Finally, every prime q of R’
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contains the residue x of X, as 2 = 0. Hence q is generated by q N R and z. But
qN R = ¢*(q). Thus ¢* is injective. O

Exercise (13.25) . — Let R be a ring, and S a multiplicative subset of R. Set
X := Spec(R) and Y := Spec(S™'R). Set ¢% := Spec(ps) and ST1X :=Im p} in
X. Show (1) that S~1X consists of the primes p of R with pN.S =) and (2) that
¢% is a homeomorphism of ¥ onto S™1X.

Solution: Note ¢%(q) := ¢5'(q) by (13.1.4). So (11.12)(2) gives (1) and the
bijectivity of p%. But ¢ is continuous by (13.1). So we must show ¢%: Y — S1X
is closed. Given an ideal b € ST'R, set a := ¢g'(b). We must show

¢5(V(b)) =S X M V(a). (13.25.1)

Given p € p5(V(b)), say p = ¢%(q) and q € V(b). Then p = 5 '(q) and g D b by
(13.1). So p = 5 (q) D ¢5'(b) =:a. Sop € V(a). But p € p5(V(b)) C STLX.
Thus ¢%5(V(b)) C STIX N V(a).

Conversely, given p € S™'X (' V(a), say that p = ¢%(q). Then p = p5'(q) and
pOa:= g5 (b). Sops'(q) D ws (b). Sops'(q ) O ¢g5'(b)R. Soq D b by
(11.11)(1)(b). So g € V(b). So p = ¢5(q) € ¢5(V(b)). Thus (13.25.1) holds, as
desired. Thus (2) holds. O

Exercise (13.26) . — Let : R — R’ be a ring map, S C R a multiplicative subset.
Set X := Spec(R) and Y := Spec(R’) and 6* := Spec(f). Via (13.25)(2) and
(11.15), identify Spec(S™'R) and Spec(S~'R’) with their images S™'X C X and
S7Y Y. Show (1) S7'Y = 6*~(S7'X) and (2) Spec(S~'0) = 6*[S7'Y.

Solution: Given g € Y, elementary set-theory shows that q N 6(S) = 0 if and
only if 71(q) NS = 0. So q € S7Y if and only if 71(q) € S~1X by (13.25)(1)
and (11.15). But 5'(q) =: ¢5(q) by (13.1.4). Thus (1) holds.

Finally, (S~'0)ps = @s6 by (12.7). So ¢5'(S7'0)"(a) = (S7'0) "5 (a).
Thus (13.1.4) yields (2). O

Exercise (13.27) . — Let 0: R — R’ be a ring map, a C R an ideal. Set b := aR’.
Let 0: R/a — R’/b be the induced map. Set X := Spec(R) and Y := Spec(R’). Set
0* := Spec(0) and 0" := Spec(0). Via (13.1), identify Spec(R/a) and Spec(R’/b)
with V(a) € X and V(b) C Y. Show (1) V(b) = 6*~1(V(a)) and (2) 8 = 6*| V(b).

Solution: Given q € Y, observe that q D b if and only if #71(q) D a, as follows.
By (1.14)(1) in its notation, g D b := a® yields q° D a®® D a, and q° D a yields
q D q° D a®. Thus (1) holds.

Plainly, 6(q/b) = (§~1q)/a. Thus (13.1.4) yields (2). O

Exercise (13.28) . — Let 6: R — R’ be a ring map, p C R a prime, k the residue
field of Ry. Set 6* := Spec(). Show (1) 6*~1(p) is canonically homeomorphic to
Spec(R,,/pRy,) and to Spec(k @g R') and (2) p € Im 0" if and only if k ®g R’ # 0.

Solution: First, take S := S, := R — p and apply (13.26) to obtain
Spec(R;) = 60"~ "(Spec(R,)) and  Spec(f,) = 6*| Spec(Ry,).
Next, take a := pR, and apply (13.27) to 0,: R, — R), to obtain
Spec(Ry pRy) = Spec(8y) ! VI(pRy).
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But ¢, ' (pRy) = p by (11.12)(2); so V(pR,) = p. Thus,

. -1 o
Spec(Ry, /pRy) = (%[ Spec(Ry)) ~ (p) = 0" (p).

It remains to see R}, /pR), = k®@r R'. Note k := R, /pRy. So R, /pR, = k®r, R,
by (8.27) with a := pR, and M := R}, as pR), = (pRy)Ry,. But k®g, R, = k@p R’
by (12.30) as k = ky by (12.4)(2). Thus Ry, /pRj, =k ®r R'. Thus (1) holds.

Finally, (1) implies p € Im #* if and only if Spec(R'®gk) # 0. Thus (2) holds. O

Exercise (13.29) . — Let R be a ring, p a prime ideal. Show that the image of
Spec(R,) in Spec(R) is the intersection of all open neighborhoods of p in Spec(R).

Solution: By (13.25), the image X, consists of the primes contained in p. Given
f € R—p, note that D(f) contains every prime contained in p, or X, C D(f). But
the principal open sets form a basis of the topology of X by (13.1). Hence X, is
contained in the intersection, Z say, of all open neighborhoods of p. Conversely,
given a prime q ¢ p, there is g € g —p. So D(g) is an open neighborhood of p, and
q ¢ D(g). Thus X, = Z, as desired. |

Exercise (13.30) . — Let ¢: R — R’ and ¢: R — R’ be ring maps, and define
0: R— R ®g R" by 0(x) := p(z) ® ¢¥(z). Show

Im Spec(6) = Im Spec(y) () Im Spec(v)).
Solution: Given p € X, set k := R, /pR,. Then (8.8)(1) and (8.9)(1) yield
(R or R'")®pk=R ®r(R'"®rk)=(R @rk) @ (R’ ®gk).

So (R ®gr R")®grk # 0 if and only if R' ®r k # 0 and R” ®gr k # 0 by (8.24).
Hence (13.28)(2) implies that p € Im Spec(f) if and only if p € Im Spec(p) and
p € Im Spec(v)), as desired. a

Exercise (13.31) . — Let R be a filtered direct limit of rings R with transition
maps ozl); and insertions «. For each A, let py: R — R, be a ring map with

Py = a;}gpk for all af), so that ¢ := a) ) is independent of A\. Show
Im Spec(p) = (1, Im Spec(py).
Solution: Given q € Spec(R’), set k := R;/qR;. Then (8.10) yields
R®pr k= @(R,\ Qpr k).

So R®p k # 0 if and only if Ry ®p/ k # 0 for some A by (7.16)(1). So (13.28)(2)
implies q € Im Spec(y) if and only if g € Im Spec(py) for some A, as desired. O

Exercise (13.32) . — Let R be a ring, ¢,: R — R, for ¢ € ¥ ring maps. Let
vs: R = [[R, and 7x: R — [[ R, be the induced maps. Set X := Spec(R).
Show:

(1) Then Im Spec(vys) = () Im Spec(p,).

(2) Assume X is finite. Then Im Spec(my) = |JIm Spec(yp, ).

(3) The subsets of X of the form Im Spec(p), where ¢: R — R’ is a ring map,
are the closed sets of a topology, known as the constructible topology. It
contains the Zariski topology.

(4) In the constructible topology, X is quasi-compact.
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Solution: For (1), recall from (8.33) that [[R, = ligj((@(fej R,) where J
runs over the finite subsets of . Then Im Spec(ys) = (1], Im Spec(~.s) by (13.31).
But Im Spec(ys) = (), ¢, ImSpec(¢,) by (13.30). Thus (1) holds.

For (2), given 7 € ¥, set e, := (dpr) € [[ Ro. As X is finite, the primes of [[ R,
are the ideals of the form p,e, for some o, where p, C R, is prime, by (2.29).
But 75" (pses) = @5 'Po- Thus (2) holds.

For (3), note that, by (1) and (2), finite intersections and arbitrary unions of
closed sets are closed. Moreover, Im Spec(lr) = Spec(R) and Im Spec(0g) = 0
where Og: R — 0 is the zero map. Thus the closed sets form a topology.

Given an ideal a, let ¢: R — R/a be the quotient map. Then V(a) = Im Spec(y)
by (13.1.7). Thus every set closed in the Zariski topology is also closed in the
constructible topology. Thus (3) holds.

For (4), set F, := Im Spec(p,) for 0 € . Assume () F, = (. Then (1) implies
ImSpec([[R,) = 0. So [[R, = 0. Since [[R, = ligJ Ry where J runs over
the finite subsets of ¥, there’s a J with Ry = 0 by (7.1) and (7.16). Hence
N,y Fo =0 by (13.30). Thus (4) holds. O

Exercise (13.33) . — Let R be a ring, X := Spec(R). Show:

(1) Given g € R, the set D(g) is open and closed in the constructible topology.

(2) On X, any topology with all D(g) open and closed is Hausdorff and totally
disconnected.

(3) On any set, nested topologies T D § coincide if T is quasi-compact and 8 is
Hausdorff.

(4) On X, the constructible and the Zariski topologies coincide if and only if the
Zariski topology is Hausdorff, if and only if R/ nil(R) is absolutely flat.

(5) On X, the constructible topology is smallest with all D(g) open and closed.

(6) On X, the constructible open sets are the arbitrary unions U of the finite
intersections of the D(g) and the X — D(g).

Solution: For (1), note D(g) is open in the Zariski topology by (13.1.2), so
open in the constructible topology by (13.32)(3). But D(g) = Im Spec(p,), where
@g: R — Ry is the localization map, owing to (13.1.8); so D(g) is closed in the
constructible topology by definition. Thus (1) holds.

In (2), given distinct primes p,q of R, either p ¢ q or q ¢ p; say p ¢ q. Then
there’s g € p—q. So q € D(g) and p € X — D(g). The sets D(g) and X — D(g)
are disjoint. Both are open and closed by hypothesis. Thus (2) holds.

For (3), we must show any set U open in 7 is also open in 8. As 8 is Hausdorff,
given z in U and y in its complement C, there are disjoint open sets Uy, V,, in 8
with x € U, and y € V,. But T D 8. So U, and V,, are are also open in 7.

Note Uyec Vy O C. But C is closed in T, and T is quasi-compact. So there’s a
finite subset F' of C with UyeF Vy, D C. Then myEF Uy is open in §, lies in U, and
contains x. But € U is arbitrary. Thus U is open in 8. Thus (3) holds.

For (4), note by (13.1) the D(g) form a basis of the Zariski topology. So it lies in
the constructible topology by (1). But the latter is quasi-compact by (13.31)(4).
So by (3) the two topologies coincide if the Zariski topology is Hausdorff. The
converse holds by (1) and (2). Finally, the Zariski topology is Hausdorff if and only
if R/ nil(R) is absolutely flat by (13.22). Thus (4) holds.

For (5), note that the constructible topology contains the smallest topology
8 with all D(g) open and closed by (1). Moreover, the constructible topology is
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quasi-compact by (13.31)(4), and 8 is Hausdorff by (2). Thus (3) implies (5).

In (6), every such U is a constructible open set owing to (1). Conversely, the
family F of all U trivially contains X and () and is stable under arbitrary union.
Moreover, J is stable under finite intersection since (JYx)N (U Z,) = U, , YANZ,
for any families {Y)} and {Z,} of subsets of X. Hence, these U are the open
sets of a topology, in which all D(g) are open and closed. Hence F contains the
constructible open sets owing to (5). Thus (6) holds. O

Exercise (13.34) . — Let ¢: R — R’ be a ring map. Show, in the constructible
topology, Spec(y): Spec(R’) — Spec(R) is continuous and closed.

Solution: By (13.33)(6), the constructible open sets of Spec(R) are the arbi-
trary unions of finite intersections of all D(g) and all X — D(g). But Spec(p)~*
preserves arbitrary unions, arbitrary intersections, and complements. Moreover,
Spec(p) ' D(g) = D(¢(g)) by (13.1.5). Thus Spec(y) is continuous.

Given another ring map ¢’: R’ — R”, recall Spec(p) Spec(¢’) = Spec(¢’¢) from
(13.1.6). So Spec(y)(Im Spec(¢’)) = Im Spec(¢’v). Thus Spec(yp) is closed. O

Exercise (13.35) . — Let A be a domain with just one nonzero prime p. Set
K :=Frac(A) and R := (A/p) x K. Define p: A — R by p(z) := (a’, x) with 2’ the
residue of . Set ¢* := Spec(y). Show ¢* is bijective, but not a homeomorphism.

Solution: Note p is maximal; so A/p is a field. The primes of R are (0, K)
and (A/p, 0) by (2.29). Plainly, ¢=1(0, K) = p and ¢~(A4/p, 0) = 0. So ¢* is
bijective. Finally, Spec(R) is discrete, but Spec(A) has p € V(0); so ¢* is not a
homeomorphism. ([

Exercise (13.36) . — Let ¢: R — R’ be a ring map, and b an ideal of R’. Set
¢* := Spec(p). Show (1) that the closure ¢*(V (b)) in Spec(R) is equal to V(p~1b)
and (2) that ¢*(Spec(R’)) is dense in Spec(R) if and only if Ker(yp) C nil(R).

Solution: For (1), given p € ¢*(V(b)), say p = ¢ () where B is a prime
of R with B D b. Then o "B D ¢ 'b. Sop D o~ b, or p € V(p~tb). Thus
©*(V(b)) C V(p~tb). But V(¢ 1b) is closed. So ¢*(V(b) C V(¢ 1b).

Conversely, given p € V(¢ 1b), note p D \/p~1b. Take a neighborhood D(f) of
p; then f ¢ p. Hence f ¢ /¢ —1b. But \/o~1b = ¢~ 1(v/b) by (3.39)(2). Hence
©(f) ¢ Vb. So there’s a prime P O b with ¢(f) ¢ B by the Scheinnullstellensatz
(3.14). So =B € p*(V(b)). Further, f ¢ o B, or 1B € D(f). Therefore,
f’lzﬁ € ¢*(V(b)) N D(f). So ¢*(V(b)) ND(f) # 0. So p € ¢*(V(b)). Thus (1)

olds.

For (2), take b := (0). Then (1) yields ¢*(V (b)) = V(Ker(¢)). But by (13.1),
V(b) = Spec(R’) and Spec(R) = V({0)). So ¢*(Spec(R’)) = Spec(R) if and only if
V({(0)) = V(Ker(¢)). The latter holds if and only if nil(R) = \/Ker(p) by (13.1),
so plainly if and only if nil(R) D Ker(y). Thus (2) holds. O

Exercise (13.37) . — Let ¢: R — R’ be a ring map. Consider these statements:
(1) The map ¢ has the Going-up Property: given primes ¢’ C R’ and p C R
with p D ¢~1(q’), there is a prime p’ C R’ with ¢~1(p’) =p and p’ D ¢'.
(2) Given a prime q’ of R, set q := ¢~1(q’). Then Spec(R’'/q’) — Spec(R/q) is
surjective.
(3) The map Spec(yp) is closed: it maps closed sets to closed sets.
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Prove that (1) and (2) are equivalent, and are implied by (3).
Solution: Plainly (1) holds if and only if the following equality does:

Spec(0)(V(a) = V(e~' (1)) (13.37.1)

But (13.37.1) holds if and only if (2) does owing to (13.1.7). Thus (1) and (2)
are equivalent.

Finally, Spec(¢)(V(q’)) = V(¢~1(q)) by (13.36)(1). So (13.37.1) holds if (3)

does. Thus (1) and (2) are implied by (3). O

Exercise (13.38) . — Let ¢: R — R’ be a ring map. Consider these statements:
(1) The map ¢ has the Going-down Property: given primes ¢’ C R andp C R
with p C ¢ 1(q’), there is a prime p’ C R’ with ¢ ~1(p’) =p and p’ C ¢'.
(2) Given a prime ¢’ of R/, set q := ¢~ '(q'). Then Spec(R;,) — Spec(R,) is
surjective.
(3) The map Spec(yp) is open: it maps open sets to open sets.

Prove (1) and (2) are equivalent; using (13.31), prove they’re implied by (3).

Solution: Set ¢* := Spec(p). Identify Spec(R,) with the subspace of Spec(R)
of p C q by (13.25) with S := Sy; similarly, identify Spec(R;,) in Spec(R'). Then
(13.1.4) implies the following statement:

¢* Spec(Ry/) C Spec(Ry), with equality if and only if (1) holds. ~ (13.38.1)

Those identifications are made via Spec(¢y ) and Spec(gogp,). So ¢* induces
Spec(p) where p: Rq — Ry is the map induced by ¢. So ¢* Spec(Ry,) = Spec(RRq)
if and only if (2) holds. Thus (1) and (2) are equivalent by (13.38.1).

Lastly, Ry, = li_r>ntesq, R, by (12.6). Hence ¢* Spec(Ry,) = [ ¢* Spec(R;) by
(13.31). Assume (3). Then ¢* Spec(R}) is open, as Spec(Rj) is by (13.1). But
q" € Spec(Ry), so q € ¢* Spec(R;). So Spec(Rq) C ¢* Spec(R;) by (13.29). Thus
Spec(Rq) C ¢* Spec(R;,). Thus (13.38.1) yields equality here, and with it (1). [

Exercise (13.39) . — Let R be a ring; f, g € R. Prove (1)—(8) are equivalent:
(1) D(g) € D(f). (2) V({g) D V) (3) V{9 € V()
) S;cS,. () gD, (6) f €5y,
(7) There is a unique R-algebra map gogz E; R — gg_ R.
(8) There is an R-algebra map Ry — R,.
If these conditions hold, prove the map in (8) is equal to cpg; .

Solution: First, (1) and (2) are equivalent by (13.1), and (2) and (3) are too.
Plainly, (3) and (5) are equivalent. Further, (3) and (4) are equivalent by (3.25)(4).
Always f € Sy; so (4) implies (6). Conversely, (6) implies Sy C Sg; whence,
(3.25)(1)(c) yields (4). Finally, (8) implies (4) by (11.24)(2). And (4) implies (7)
by (11.24)(1). But gglR = 57'R and ?;1]% = S, 'R by (11.23); whence, (7)
implies both (8) and the last statement. O

Exercise (13.40) . — Let R be a ring. Prove these statements:

(1) D(f) — Ry is a well-defined contravariant functor from the category of prin-
cipal open sets and inclusions to ((R-alg)).
(2) Given p € Spec(R), then ling(f)ap Ry = R,.
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Solution: Consider (1). By (13.39), if D(g) C D(f), then there is a unique
R-algebra map gogz ?;15’, — E;IR. By uniqueness, if D(h) C D(g) C D(f), then
A gp{;; also 90;: = 1. Further, if D(g) = D(f), then S; C S, and S, C Sy, so
Sy=2S5, and ¢, = 1. Finally, Ry = gglR by (11.23)(4). Thus (1) holds.

For (2), notice (13.39) yields an inclusion-reversing bijective correspondence
between the principal open sets D(f) and the saturated multiplicative subsets S'¢.
Further, D(f) > p if and only if f ¢ p by (13.1).

Recall S, := R —p. By (3.24), S, is saturated. So S, D Sy if and only if f ¢ p
by (3.25)(1)(c). Moreover, Sy = ¢, Sy

——1 . . <1
Note S; R = Ry by (11.23)(4). Thus h—I)nD(f)Bp Ry = h—H>l§chp Sy R.

By the definition of saturation in (3.25), Sy, 3 f, g. By (3.25)(1)(b), Sy, is
saturated multiplicative. So S, D Sy, S, by (3.25)(1)(c). Hence, (11.25) with

Ry := R implies lim 5, 'R = S;'R. But S; 'R =: R, Thus (2) holds. 0

Exercise (13.41) . — Let R be a ring, X := Spec(R), and U an open subset. Show
U is quasi-compact if and only if X — U = V(a) where a is finitely generated.

Solution: Assume U is quasi-compact. By (13.1), U = |J, D(f\) for some fy.
SoU = U:jl:l D(f)\l) for some f)\i' Thus X —U = mv(fkl) = V(<f)\17 e '7f)\n>)'

Conversely, assume X — U = V({fi,...,fs)). Then U = {J;_, D(f;). But
D(f;) = Spec(Ry,) by (13.1.8). So by (13.2) with Ry, for R, each D(f;) is quasi-
compact. Thus U is quasi-compact. g

Exercise (13.42) . — Let R be a ring, M a module. Set X := Spec(R). Assume
X = U, ea D(f2) for some set A and some f\ € R. Show:
(1) Given m € M, assume m/1 =0 in My, for all \. Then m = 0.
(2) Given my € My, for each A, assume the images of my and m,, in My, , are
equal. Then there is a unique m € M whose image in My, is my for all A.
First assume A is finite.

Solution: In (1), as m/1 = 0 in Mjy,, there’s ny > 0 with f{"*m = 0. But
X = UD(fx). Hence each prime excludes an fy, so fy'* too. So there are A\1,..., A,
and z1,...,z, with 1 = inf;l;'i. Som = Zz,;f;i“m = 0. Thus (1) holds.

For (2), first assume A is finite. Given A\ € A, there are [y € M and ny > 0 with
my/1=10/f1*. Set n:=max{ny} and ky := f'""*Ix. Thus my/1 = ky/f}.

Given p € A, by hypothesis f'kx/(fafu)" = fiiku/(fafu)™ in My, s,. So there’s
o u > 0 with (f/\fu)nk'”( ;:Lk/\ - f;}ku) = 0. So (f)\f;t)pfﬁkz\ = (f)xfu)pf)yfku for
p:=max{n,,}. Set hy := fikx. Thus f{Ph, = fi+Phy.

By hypothesis, X = [JD(fx). So, as in the solution to (1), there are z) € R
with 1 = Efo;fﬂ’. Set m :=>_ wxhy. Then as f;ﬂ’hu = fitPhy,

fatrm =305 firtPaaha = 3o\ S wahy = hy = K.
Thus the image of m in My, is k,/f;} = my,, as desired.
If m" € M also has image my in My, for all A, then (m —m')/1 =0 in Mjy, for
all A. Som —m/ =0 by (1). Thus m is unique.
In general, there’s a finite subset A’ of A with X = (J,c, D(fx) by (13.2).
Apply the first case to A’ to obtain m € M with image my in My, for all A € A’
Let’s see m works. Given p € A, apply the first case to A’U{u} to obtain m’ € M
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with image my, in My, forall A € A" and image m,, in My, . By uniqueness m’ = m.
So m has image m,, in My, . Thus (2) holds. O

Exercise (13.43) . — Let B be a Boolean ring, and set X := Spec(B). Show a
subset U C X is both open and closed if and only if U = D(f) for some f € B.
Further, show X is a compact Hausdorff space. (Following Bourbaki, we shorten
“quasi-compact” to “compact” when the space is Hausdorff.)

Solution: Let f € B. Then D(f)|JD(1 — f) = X whether B is Boolean or not;
indeed, if p € X — D(f), then f € p,so1—f ¢ p, sop € D(1 - f). However,
D(f)ND(1 — f) = 0; indeed, if p € D(f), then f ¢ p, but f(1 — f) =0 as B is
Boolean, so 1 — f € p,sop ¢ D(1— f). Thus X —D(f) = D(1 — f). Thus D(f) is
closed as well as open.

Conversely, let U C X be open and closed. Then U is quasi-compact, as U is
closed and X is quasi-compact by (13.2). So X — U = V(a) where a is finitely
generated by (13.41). Since B is Boolean, a = (f) for some f € B by (1.24)(5).
Thus U = D(f).

Finally, let p, q be prime ideals with p # q. Then there is f € p—q. So p ¢ D(f),
but q € D(f). By the above, D(f) is both open and closed. Thus X is Hausdorff.
By (13.2), X is quasi-compact, so compact as it is Hausdorff. [

Exercise (13.44) (Stone’s Theorem) . — Show every Boolean ring B is isomorphic
to the ring of continuous functions from a compact Hausdorff space X to Fo with
the discrete topology. Equivalently, show B is isomorphic to the ring R of open and
closed subsets of X; in fact, X := Spec(B), and B = R is given by f — D(f).

Solution: The two statements are equivalent by (1.2). Further, X := Spec(B)
is compact Hausdorff, and its open and closed subsets are precisely the D(f) by
(13.43). Thus f — D(f) is a well defined function, and is surjective.

This function preserves multiplication owing to (13.1.3). To show it preserves
addition, we must show that, for any f,g € B,

D(f +g) = (D(f) — D(9)) UD(g) — D(f)). (13.44.1)

Fix a prime p. There are four cases. First, if f ¢ p and g € p, then f + g ¢ p.
Second, if g ¢ p but f € p, then again f + g ¢ p. In both cases, p lies in the (open)
sets on both sides of (13.44.1).

Third, if f € p and g € p, then f+ g € p. The first three cases do not use
the hypothesis that B is Boolean. The fourth does. Suppose f ¢ p and g ¢ p.
Now, B/p = F by (2.37). So the residues of f and g are both equal to 1. But
14+1=0¢€Fs. Soagain f+ g € p. Thus in both the third and fourth cases, p lies
in neither side of (13.44.1). Thus (13.44.1) holds.

Finally, to show that f +— D(f) is injective, suppose that D(f) is empty. Then
f € nil(B). But nil(B) = (0) by (3.33). Thus f = O

Alternatively, if D(f) = D(g), then V({f)) = ), so \/{f V{9 by
(13.1). But f,g € Idem(B) as B is Boolean. Thus f = g by (3. 34)
Exercise (13.45) . — Let L be a Boolean lattice. Show that L is isomorphic to

the lattice of open and closed subsets of a compact Hausdorff space.

Solution: By (1.26), L carries a canonical structure of Boolean ring. Set X :=
Spec(L). By (13.43), X is a compact Hausdorff space, and by (13.44), its ring
M of open and closed subsets is isomorphic to L. By (1.28), M is a Boolean
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lattice, and its ring structure is produced by the construction of (1.26). So the
ring structure on L is produced by this construction both from its given lattice
structure and that induced by M. Thus by (1.27) these two lattice structures
coincide. (]

Exercise (13.46) . — Let R be a ring, q an ideal, M a module. Show:
(1) Supp(M/qM) C Supp(M)(V(q), with equality if M is finitely generated.
(2) Assume M is finitely generated. Then

V(q+ Ann(M)) = Supp(M/qM) = V(Ann(M/qM)).

Solution: For (1), note M/qM = M ® R/q by (8.27)(1). But Ann(R/q) = q;
hence, (13.4)(3) yields Supp(R/a) = V(q). Thus (13.7) yields (1).

For (2), set a := Ann(M) and ¢’ := Ann(M/qM). As M is finitely generated,
(13.1) and (13.4)(3) and (1) and again (13.4)(3) yield, respectively,

V(a+4q)=V(a)1V(a) = Supp(M) (1 V(a) = Supp(M/qM) = V(q').
Thus (2) holds. O

Exercise (13.47) . — Let ¢: R — R’ be a ring map, M’ a finitely generated R’-
module. Set ¢* := Spec(p). Assume M’ is flat over R. Show M’ is faithfully flat
if and only if ¢* Supp(M’) = Spec(R).

Solution: Assume M’ is faithfully flat over R. Given p € Spec(R), note that
M' ®@r R, is faithfully flat over R, by (9.22). So replace R by R, and M’ by
M’ ® Ry. Then R is local with maximal ideal p.

So M'®gr (R/p) # 0 by (9.19). But M’ ®g (R/p) = M'/pM' by (8.27)(1). So
there’s q € Supp(M’/pM’) by (13.8). But Supp(M’'/pM') = Supp(M') NV (pR')
by (13.46). So q € Supp(M’) and q D pR’. So ¢ 1q D ¢ 'pR’ D p. But p is
maximal. So p~1q = p. Thus ¢* Supp(M’) = Spec(R).

For the converse, reverse the above argument. Assume ¢* Supp(M’) = Spec(R).
Then given any maximal ideal m of R, there is m’ € Supp(M’) with ¢~'m’ = m.
Som’ € Supp(M') N V(mR') = Supp(M’' ®r (R/m)). So M’ ®p (R/m) # 0. Thus
(9.19) implies M’ is faithfully flat. O

Exercise (13.48) . — Let ¢: R — R’ be a ring map, M’ a finitely generated R'-
module, and q € Supp(M’). Assume that M’ is flat over R. Set p := p~!(q). Show
that ¢ induces a surjection Supp(My) —» Spec(Ry).

Solution: Recall Sy := R —p. So R}, = R, by (11.15.1). But p = ¢~ '(q), so
©Sp C Sq. So Ry and M are localizations of R, and M, by (12.25)(2). Further,
owing to (11.12)(2), the composition R, 2% R, — Ry is a local ring map.

Moreover, My, = R, ®g M’ by (12.10), and R, ®g M’ is flat over R, by (9.22);
so M, is flat over Ry. Also, My = R; ®p; M, by (12.10), and R is flat over R,
by (12.14); so My is flat over Ry by (9.26). So My is faithfully flat over R, by
(10.30) as q € Supp(M’). Thus (13.47) yields the desired surjectivity. O

Exercise (13.49) . — Let ¢: R — R’ be a map of rings, M an R-module. Prove
Supp(M ®r R') C Spec(p) ™ (Supp(M)), (13.49.1)
with equality if M is finitely generated.
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Solution: Fix a prime q C R’. Set p := ¢ g, so Spec(p)(p) = q. Apply, in

order, (12.10), twice Cancellation (8.9)(1), and again (12.10) to obtain
(M®rR)q=(M®rR)®r Ry =M &g R,
= (M ®g Ry) ®g, Ry = M, ®r, Ry.

First, assume q € Supp(M ®r R'); that is, (M ®r R')q # 0. Then (13.49.2)
implies M, # 0; that is, p € Supp(M). Thus (13.49.1) holds.

Conversely, assume q € Spec(¢)~!(Supp(M)). Then p € Supp(M), or M, # 0.
Set k := Ry /pRy. Then M, /pM, = M,@p, k and R}, /pR, = R,k by (8.27)(1).
Hence Cancellation (8.9)(1), the Associative Law (8.8)(1), and (13.49.2) yield

(My/pM,) @y, (RQ/PR;) = (M, ®r, k) @y (RQ ®R, k)
= M, ®g, (R:J R, k) = (M, ®R, R:]) ®r, k (13.49.3)
= (M ®g R/)q AR, k.

Assume M is finitely generated. Then M,/pM, # 0 by Nakayama’s Lemma
(10.6) over Ry. And R;/pR; # 0 by Nakayama’s Lemma (10.6) over 2y, because
pR' C q. So (My/pM,) ®k (Ry/pR;) # 0 by (8.24). So (13.49.3) implies that
(M ®gr R')q #0, or q € Supp(M ®pr R’). Thus equality holds in (13.49.1). O

(13.49.2)

Exercise (13.50) . — Let R be a ring, M a module, p € Supp(M). Prove
V(p) C Supp(M).

Solution: Let q € V(p). Then q D p. So M, = (M), by (12.25)(3). Now,
p € Supp(M). So M, # 0. Hence My # 0. Thus q € Supp(M). O

Exercise (13.51) . — Set M := Q/Z. Find Supp(M), and show it’s not Zariski
closed in Spec(Z). Is Supp(M) = V(Ann(M))? What about (13.4)(3)?

Solution: Let p € Spec(Z). Then M, = Q,/Z, since localization is exact by
(12.13). Now, Q, = Q by (12.4)(2) and (12.1) since Q is a field. If p # (0),
then Z, # Q, since pZ,(\Z = p by (11.12)(2). If p = (0), then Z, = Q,. Thus
Supp(M) consists of all the nonzero primes of Z.

Finally, suppose Supp(M) = V(a). Then a lies in every nonzero prime; so
a = (0). But (0) is prime. Hence (0) € V(a) = Supp(M), contradicting the above.
Thus Supp(M) is not closed. In particular, Supp(M) # V(Ann(M). However, M
is not finitely generated; so (13.4)(3) doesn’t apply. O

Exercise (13.52) . — Let R be a domain, M a module. Set T'(M) := T"°(M).
Call T(M) the torsion submodule of M, and M torsionfree if T'(M) = 0.
Prove M is torsionfree if and only if M, is torsionfree for all maximal ideals m.

Solution: Given an m, note R —m C R — (0), or S, C Sp. So (12.38)(5) yields
T(My) =T(M)p. (13.52.1)

Assume M is torsionfree. Then My, is torsionfree for all m by (13.52.1). Con-
versely, if My, is torsionfree for all m, then T'(M), = 0 for all m by (13.52.1).
Hence T(M) = 0 by (13.8). Thus M is torsionfree. O

Exercise (13.53) . — Let R be a ring, P a module, M, N submodules. Assume
M, = Ny, for every maximal ideal m. Show M = N. First assume M C N.
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Solution: If M C N, then (12.13) yields (N/M)m = Nu/Myu = 0 for each m;
so N/M =0 by (13.8). The general case follows by replacing N by M + N owing
to (12.12)(7)(b). O

Exercise (13.54) . — Let R be a ring, M a module, and a an ideal. Suppose
M, = 0 for all maximal ideals m containing a. Show that M = aM.

Solution: Given any maximal ideal m, note that (aM)n = anMy by (12.2).
But My =0 if m D a by hypothesis. And an = Ry if m 4 a by (11.8)(2). Hence
My = (aM)y, in any case. Thus (13.53) yields M = aM.

Alternatively, form the ring R/a and its module M /aM. Given any maximal ideal
m’ of R/a, say m’ = m/a. By hypothesis, My, = 0. But My, /(aM)m = (M/aM )y
by (12.15). Thus (M/aM)w =0. So M/aM =0 by (13.8). Thus M =aM. O

Exercise (13.55) . — Let R be a ring, P a module, M a submodule, and p € P an
element. Assume p/1 € M, for every maximal ideal m. Show p € M.

Solution: Set N := M + Rp. Then Ny = My + Ry - p/1 for every m. But
p/1 € My,. Hence Ny = My,. So N = M by (13.53). Thus p € M. O

Exercise (13.56) . — Let R be a domain, a an ideal. Show a = (), aRy where m
runs through the maximal ideals and the intersection takes place in Frac(R).

Solution: Plainly, a C () aRy. Conversely, take x € (|aRy. Then x € aR,, for
every m. But aRy, = an by (12.2). So (13.55) yields z € a as desired. O

Exercise (13.57) . — Prove these three conditions on a ring R are equivalent:

(1) R is reduced.
(2) S7'R is reduced for all multiplicative subsets S.
(3) Ry is reduced for all maximal ideals m.

Solution: Assume (1) holds. Then nil(R) = 0. But nil(R)(S7'R) = nil(S7!R)
by (11.28). Thus (2) holds. Trivially (2) implies (3).

Assume (3) holds. Then nil(R,) = 0. Hence nil(R)y, = 0 by (11.28) and
(12.2). So nil(R) = 0 by (13.8). Thus (1) holds. Thus (1)—(3) are equivalent. [

Exercise (13.58) . — Let R be a ring, ¥ the set of minimal primes. Show:

(1) If R, is a domain for any prime p, then the p € ¥ are pairwise comaximal.
(2) Ry is a domain for any prime p and ¥ is finite if and only if R = [, R;
where R; is a domain. If so, then R; = R/p; with {p1,...,pn} =X.
If Ry, is a domain for all maximal ideals m, is R necessarily a domain?

Solution: Consider (1). Suppose p, q € ¥ are not comaximal. Then p+q lies in
some maximal ideal m. Hence R, contains two minimal primes, pR,, and qRy, by
(11.12)(2). However, Ry, is a domain by hypothesis, and so (0) is its only minimal
prime. Hence pRy = qRm. So p = q. Thus (1) holds.

Consider (2). Assume R, is a domain for any p. Then R is reduced by (13.57).
Assume, also, ¥ is finite. Form the canonical map ¢: R — [, s R/p; it is injective
by (3.41), and surjective by (1) and the Chinese Remainder Theorem (1.21)(4)(c).
Thus R is a finite product of domains.

Conversely, assume R = [['_; R; where R; is a domain. Let p be a prime of
R. Then R, = [[(R:), by (12.9). Each (R;), is a domain by (11.2). But R, is
local. So R, = (R;), for some i by (3.6). Thus R, is a domain. Further, owing to

311



Solutions (13.59) / (13.63) Support

(2.29), each p; € X has the form p; = [] a; where, after renumbering, a; = (0) and
a; = R; for j # i. Thus the ith projection gives R/p; = R;. Thus (2) holds.

Finally, the answer is no. For example, take R := ki X ko with k; := Z/(2).
The primes of R are p := ((1,0)) and q := ((0,1)) by (2.29). Further, Rq = k1 by
(11.5), as R —q = {(1,1), (1,0)}. Similarly R, = k. But R is not a domain, as
(1,0) - (0,1) = (0,0), although Ry, is a domain for all maximal ideals m.

In fact, take R := R; X Ry for any domains R;. Then again R is not a domain,
but R, is a domain for all primes p by (2). O

Exercise (13.59) . — Let R be a ring, M a module. Assume that there are only
finitely many maximal ideals m; with My, # 0. Show that the canonical map
a: M — [[ My, is bijective if and only if (My, )m; = 0 whenever i # j.

Solution: By (13.9), the map « is bijective if and only if each localization
am;: My, — (] M, )m, is bijective. As the product is finite, it commutes with
localization by (12.9). But (M, )m, = Mw, by (12.4)(2). Thus am, is bijective
if and only if (M, )m; = 0 whenever i # j. d

i

Exercise (13.60) . — Let R be a ring, R a flat algebra, p’ a prime in R’, and p its
contraction in R. Prove that R;J, is a faithfully flat R,-algebra.

Solution: Note R| is flat over R, by (13.12). And R, = (R))y by (12.25)(2)
as R—p C R’ —p’; so Ry, is flat over R, by (12.14). Hence Ry, is flat over R, by
(9.23). But a flat local map is faithfully flat by (10.30), as desired. O

Exercise (13.61) . — Let R be an absolutely flat ring, p a prime. Show p is
maximal, R, is a field, and R is reduced,

Solution: Note R/nil(R) is absolutely flat by (10.26)(2). Thus p is maximal
by (13.22). Thus R, is a field by (13.21)(2). So R, is reduced. Thus (13.57)
implies R is reduced. O

Exercise (13.62) . — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and P, ~ R}, holds at each maximal ideal m.

Solution: If P is locally free of rank n, then P is finitely generated by (13.15).
But, given p € Spec(R), there’s f € R—p with Py ~ R}; so P, ~ Ry by (12.25)(2).

As to the converse, given any prime p, take a maximal ideal m containing it.
Assume Py, ~ R}:. Take a free basis p1/$1,...,Pn/Sn of Py over Ry with p; € P
and s; € R —m for all . The p; define a map a: R® — P, and ay: R}, — Py is
bijective, so surjective.

Assume P is finitely generated. Then (12.18)(1) provides f € R —m such that
ay: R} — Py is surjective. Hence aq: Ry — Py Is surjective for every q € D(f) by
(12.13) as (af)q = aq owing to (12.25)(2).

In addition, assume Py ~ Ry if q is maximal. Then ayq is bijective by (10.4). But
aq = (af)qr,) owing to (12.25)(2). Hence ay: R} — Py is bijective by (13.9)
with Ry for R. But p € D(f). Thus P is locally free of rank n. d

Exercise (13.63) . — Let A be a semilocal ring, P a locally free module of rank n.
Show that P is free of rank n.

Solution: As P is locally free, P is finitely presented by (13.15), and Py, ~ A%
at each maximal m by (13.62). But A is semilocal. So P ~ A™ by (13.11). O
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Exercise (13.64) . — Let R be a ring, M a finitely presented module, n > 0. Show
that M is locally free of rank n if and only if F,,_; (M) = (0) and F,,(M) = R.

Solution: Assume M is locally free of rank n. Then My, ~ R} for any maximal
ideal m by (13.62). So F,_1(My)(0) and F,(My) = R by (5.39)(2). But
F.(My) = F.(M)y, for all » by (12.36). So F,,_1(My) = (0) and F,,(My) = R
by (13.53). The converse follows via reversing the above steps. g

14. Cohen—Seidenberg Theory

Exercise (14.10) . — Let R’/R be an integral extension of rings, + € R. Show
(1) if x € R’ then z € R* and (2) rad(R) =rad(R') N R.

Solution: For (1), say zy = 1 with y € R". Say y" + an_19" '+ +ap =0
with a; € R. Then y = —a,_1 — ap_22 — -+ — apx™ " *. So y € R. Thus (1) holds.
For (2), use double inclusion. Given a maximal ideal m’ C R/, note m’ N R is
maximal by (14.3)(1). So if « € rad(R), then x € m’. Thus rad(R) C rad(R’') N R.
Conversely, given a maximal ideal m C R, there is a maximal ideal m’ C R’
with m’ N R = m by (14.3)(1),(3). So given y € rad(R’) N R, then y € m. Hence
rad(R) D rad(R’) N R. Thus (2) holds. O

Exercise (14.11) . — Let ¢: R — R’ be a map of rings. Assume R’ is integral
over R. Show the map Spec(y): Spec(R’) — Spec(R) is closed.

Solution: Given a closed set V(b) C Spec(R’), set a := »~1(b). Plainly, R'/b is
an integral extension of R/a. So every prime of R/a is the contraction of a prime
of R'/b by (14.3)(3). So Spec(R'/b) maps onto Spec(R/a) by (13.24)(1). Hence
(13.1.7) yields Spec(¢)(V (b)) = V(a). Thus Spec(yp) is closed. O

Exercise (14.12) . — Let R’'/R be an integral extension of rings, p: R — 2 a map
to an algebraically closed field. Show p extends to a map p’: R' — Q. First, assume
R’/R is an algebraic extension of fields K /k, and use Zorn’s lemma on the set § of
all extensions A: L — Q of p where L C K is a subfield containing k.

Solution: First, given a totally ordered set of extensions A;: L; — § in §, set
L:=JL;, and for x € L, set A(x) := \;(z) if © € L;. Then X is an upper bound.
So Zorn’s Lemma yields a maximal extension \: L — (.

Given z € K, take a variable X, and define ¢: L[X] — L[z] by ¢(X) := z. Then
¢ is surjective. But L is a field. So Ker(¢) = (F) for some F € L[X]. As z is
algebraic, F' # 0. As Q is algebraically closed, A\(F') € Q[X] has a root y € Q.

Define w: L[X] — Q by w(X) := y. Then w(F) = 0. So w factors through a
map L[X]/(F) — Q extending A. But L[X]/(F) = L[z], and X is maximal. Hence
x € L. Thus L = K, and A is the desired extension of p.

For the general case, set p := Ker(p). Then p is prime. Further, given s € R — p,
note p(s) is nonzero, so invertible as ( is a field. Hence p factors through a map
m: R, = Q by (11.3). But p(p) =0, so m(pR,) = 0. Set k := R, /pR,. Then k is
a field, and 7 factors through a map x: k — Q.

Moreover, R) is integral over R, by (11.29). Also, R, — R, is injective by
(12.13). So there’s a maximal ideal M of R} lying over pR,, by (14.3)(1), (3). Set
K = R; /9. Then K is a field, and an algebraic extension of k. Hence x extends
toamap x': K — Q by the first case. Plainly, the composition R’ — Rj, — K — Q
is the desired map p'. O
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Exercise (14.13) (E. Artin) . — Let k be a field. Show:

(1) Let X be a variable, 8 the set of all nonconstant monic F € k[X], and Xr a
variable for each F' € 8. Set P := k[{Xp}] and a := ({F(Xp)}). Then 1 ¢ a.
Furthermore, k has an algebraic extension k; in which each F' € § has a root.

(2) Let kg := k C k1 C ko C -+ be a chain obtained by applying (1) repeatedly,
so that, for all n, every nonconstant monic polynomial with coefficients in &,
has a root in k,41. Set K :=limk,,. Then K is an algebraic closure of k.

(3) Then (14.12) implies that two algebraic closures K;, Ky are k-isomorphic.

Solution: For (1), suppose 1 € a. Say 1 = > G, F;(XF,) with G, € P and
F; € 8. By (14.4)(1), there’s an extension R D k with x; € R such that F;(x;) = 0.
Define ¢: P — R by ¢(Xp,) = z; and ¢(Xp) := 0 for F' # F; for all i. Then
1=¢(XGiFi(XF,)) =X ¢(G;)F;(x;) = 0, a contradiction. Thus 1 ¢ a.

So a lies in a maximal ideal m of P. Set ky := P/m; let zr be the residue of Xp.
Then k; is an extension field of k. In ki, every F' € 8 has a root, as F(zp) = 0.
But F' is monic; so zp is integral over k. Also, the xr generate ki by construction.
So k; is the integral closure of k in &y by (10.20). Thus (1) holds.

For (2), note (7.16)(3) implies that K is a field, that each insertion k, — K
is injective, and that K = |Jk,, after k, is identified with its image. Hence every
monic polynomial with coefficients in K has all its coeficients in some k,,, so it has
a root in kp41 C K. So K is algebraically closed. Thus (2) holds.

For (3), use (14.12) to extend 1j: k — k to a ring map A: Ky — K3. Then A
is injective as K is a field. But K5 is algebraic over k. So each x € K5 is a root of
a monic polynomial F' € k[X]. But AK; is algebraically closed. So AK; contains
a root y of F. Then F = (X — y)G by (1.19). So if x # y, then G(z) = 0 and
x € MK by induction on deg(G). Thus A is surjective. Thus (3) holds. O

Exercise (14.14) . — Let R be a domain, R its integral closure, K := Frac(R).
Let L/K be a field extension, y € L algebraic with monic minimal polynomial
G(X) € K[X]. Show that y is integral over R if and only if G € R[X].

Solution: If G € R[X], then y is integral over R, so over R by (10.17)(1).

Conversely, assume y is integral over R. Then there is a monic polynomial
F € R[X] with F(y) = 0. Say F = GH with H € K[X]. Then by (14.4)(2), the
coefficients of G are integral over R, so in R, as desired. g

Exercise (14.15) . — Let R’/R be an integral extension of rings, and p a prime of
R. Assume R’ has just one prime p’ over p. Show (1) that p’ Ry, is the only maximal
ideal of Ry, (2) that R}, = R}, and (3) that R}, is integral over Ry.

Solution: Note Ry, is integral over Ry, by (11.29), as R’ is integral over R.

For (1), recall R, is a local ring with unique maximal ideal pR, by (11.14).
Hence, every maximal ideal of Rj, lies over pRy, by (14.3)(1). But every maximal
ideal of Ry, is the extension of some prime q" C R’ by (11.12)(2), and therefore g’
lies over p in R. So, by hypothesis, ¢’ = p’. Thus (1) holds.

For (2), let’s check Ry, has the UMP of R|,. Set S:= R’ —p'. First, R, —p'R;,
consists of units by (1); so ¢,S does too. Second, R —p C S; so any ring map
Y: R — R” with ¢S C (R")* factors uniquely through Rj,. Thus (2) holds.

Finally, (3) follows from (2), since, as noted above, Ry, is integral over R,. [
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Exercise (14.16) . — Let R’/R be an integral extension of rings, p C R a prime,
p’, ' C R’ two distinct primes lying over p. Assume R’ is a domain, or simply,
R, C R,,. Show that R, is not integral over R,. Show that, in fact, given
y € q' —p’, then 1/y € R, is not integral over R,,.

Solution: Some y € q’ — p’ exists; else, ¢’ C p’, so (14.3)(2) implies ¢’ = p’.
By way of contradiction, suppose 1/y is integral over R,. Say that, in R;,,

/)" +ar(1/y)" 4 +ap =0

with n > 1 and a; € Rp. Set y/ := —a; — - —a,y" ' € Ry,. Then yy' — 1 € Ry,
maps to 0 in Ry,. But R, C R),. Soyy' =1in R,. Buty € ¢’;s0 1 € ¢'R},. So
qgN(R—p)#0by (11.11)(3)(b). But ¢’ N R = p, a contradiction, as desired. O

Exercise (14.17) . — Let k be a field, and X an indeterminate. Set R’ := k[X],
and Y := X? and R := k[Y]. Set p := (Y —1)R and p’ := (X - 1)R". Ts R,
integral over R,7 Treat the case char(k) = 2 separately. Explain.

Solution: Note that R’ is a domain, and that the extension R'/R is integral by
(10.18) as R’ is generated by 1 and X as an R-module.

Suppose the characteristic is not 2. Set q’ := (X 4+ 1)R’. Then both p’ and ¢’
contain Y — 1, so lie over the maximal ideal p of R. Further X + 1 lies in ¢, but
not in p’. Thus Ry, is not integral over R, by (14.16).

Suppose the characteristic is 2. Then (X —1)2 =Y — 1. Let ¢ C R’ be a prime
over p. Then (X —1)?2 € ¢’. So p’ C q’. But p’ is maximal. So q’ = p’. Thus R’
has just one prime p’ over p. Thus R;, is integral over R, by (14.15)(3). O

Exercise (14.18) . — Let R be a ring, G be a finite group acting on R, and p a
prime of R®. Let P denote the set of primes 8 of R whose contraction in RS is p.
Prove: (1) G acts transitively on P; and (2) P is nonempty and finite.

Solution: For (1), given P € P, and g € G, note that g(3) is prime as g is an
automorphism. Moreover, g(B) N RE = PN RS as g leaves R fixed. So g(B) € P.
Thus G acts on P.

Given P and P’ in P, let’s find g € G with g(B) = P’. Given z € P, set
Yy = nggg(az). Then y € R NP’. Hence y € p C P. So there is g € G with
g(x) €. Sox € g~ (). Thus ¥ € Uy e 9(F).

So P’ C g(*B) for some g € G by (3.12). But R is integral over R“ by (10.35).
Hence (14.3)(2) yields P’ = ¢g(). Thus (1) holds.

For (2), note R is integral over RY by (10.35). Thus P is nonempty by
(14.3)(3). Finally, G acts transitively on P by (1). But G is finite. Thus (2)
holds. ]

Exercise (14.19) . — Let R be a normal domain, K its fraction field, L/K a finite
field extension, R the integral closure of R in L. Prove that only finitely many
primes B of R lie over a given prime p of R as follows.

First, assume L/K is separable, and use (14.18). Next, assume L/K is purely
inseparable, and show that 9 is unique; in fact, P = {z € R | 2?" € p for some n}
where p denotes the characteristic of K. Finally, do the general case.
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Solution: First, assume L/K is separable. Then there exists a finite Galois
extension L'/K, say with group G, such that L C L’ by [15, p.242]. Form the
integral closure R’ of R in L'. Then R'® = R by (10.37). So only finitely many
primes P’ of R’ lie over p by (14.18)(2). But R’ is integral over R. So some such
P’ lies over each P by (14.3)(3). Thus there are only finitely many .

Next, assume L/K is purely inseparable. Given any x € 3, note ¢ € K where
q := p" for some n > 0, as L/K is purely inseparable. But 2¢ € R as f C R. So
x? is integral over R. But R is normal. So 29 € R. Thus 29 € PN R = p.

Conversely, given x € R with z" € p for any r > 0, then 2" € 3. But B is prime.
Soz € P. Thus P = {x € R | 2P" € p for some n}, as desired.

Finally, in the general case, there’s an intermediate field K’ with K'/K separable
and L/K' purely inseparable by [15, Prp. 6.6, p. 250]. Form the integral closure R’
of R in K’. By the first case, only finitely many primes B’ of R’ lie over p.

Moreover, R’ is normal by (10.20). Let’s see R is its integral closure in L. First,
R is integral over R, so over R'. Second, given x € L integral over R’, it is also
integral over R by (10.17)(1); so € R, as desired. So by the second case, only
one prime P of R lies over each ’. Thus only finitely many B of R lie over p. [

Exercise (14.20) . — Let R be a ring. For i = 1,2, let R; be an algebra, P; C R;
a subalgebra. Assume Pj, P>, Ry, Ry are R-flat domains. Denote their fraction
fields by L1, Lo, K1, Ko. Form the following diagram, induced by the inclusions:

Ly ®r Ly — K; ®r Ko

| [

Pi®p P, =5 R1 ®r Ry

Show: (1) Then K; ® K> is flat over P; ® Ps. (2) Then S is injective.
(3) Let p be a minimal prime of Ry ® Ry. Then a~tp = 0 if P, ® P is a domain.

Solution: For (1), note that L; is a localization of P;, so P-flat by (12.14).
Further, L; is a field, so K; is L;-flat. Hence K; is P;-flat by (9.23). Thus K; ® Ko
is (P; ® Py)-flat by (9.24), as desired. Thus (1) holds.

For (2), note K; is a localization of R;, so R;-flat by (12.14). But R; is R-flat.
Hence K; is R-flat by (9.23). But g factors: 8: Ry ® Ry — R ®@ Ky — K7 ® Ko.
The factors are injective as Ry and K5 are R-flat. Thus (8 is injective, as desired.

For (3), given z € a~!p, note (14.7) yields a nonzero y € R; ® Ry with
a(z)y = 0. Set v := Ba. Then v(x)B(y) = 0. But B(y) # 0 by (2). So py(s) is
not injective. So p, isn’t either by (1). But P; ® P is a domain. Thus z = 0, as
desired. d

Exercise (14.21) . — Let R be a reduced ring, ¥ the set of minimal primes. Show
that z.div(R) = U,cx b and that R, = Frac(R/p) for any p € ¥.

Solution: If p € X, then p C z.div(R) by (14.7). Thus z.div(R) D Upex b-

Conversely, say xy = 0. If « ¢ p for some p € ¥, then y € p. Soif = ¢ UpeE p,
theny € (,cxp- But ,cx p = (0) by the Scheinnullstellensatz (3.14) and (3.16).
Soy = 0. Thus, if z ¢ U,y b, then z ¢ z.div(R). Thus z.div(R) C Upexp. Thus
2.div(R) = U,ex b, as desired.

Fix p € 3. Then R, is reduced by (13.57). Further, R, has only one prime,
namely pR,, by (11.12)(2). Hence R, is a field, and pR, = (0). But by (12.16),
R, /pR, = Frac(R/p). Thus R, = Frac(R/p), as desired. O
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Exercise (14.22) . — Let R be a ring, ¥ the set of minimal primes, and K the
total quotient ring. Assume ¥ is finite. Show these three conditions are equivalent:

(1) R is reduced.
(2) z.div(R) = Upexn b, and Ry, = Frac(R/p) for each p € X.

(3) K/pK = Frac(R/p) for each p € ¥, and K =[], K/pK.

Solution: Assume (1) holds. Then (14.21) yields (2).

Assume (2) holds. Set S := R—z.div(R). Let q be a prime of R with qN.S = 0.
Then q C z.div(R). So (2) yields g C [,y p. But X is finite. So q C p for some
p € ¥ by Prime Avoidance (3.12). Hence q = p since p is minimal. But K = S~'R.
Therefore, by (11.12)(2), for p € X, the extensions pK are the only primes of K,
and they all are both maximal and minimal.

Fix p € ¥. Then K/pK = S™1(R/p) by (12.15). So S~}(R/p) is a field. But
clearly S™'(R/p) C Frac(R/p). Therefore, K/pK = Frac(R/p) by (2.3). Further,
S C R—p. Hence (11.12)(2) yields p = g (pK). Therefore, o' (K —pK) = R—p.
So Kpx = Rp by (11.16). But R, = Frac(R/p) by hypothesis. Thus K has only
finitely many primes, the pK; each pK is minimal, and each K,k is a domain.
Therefore, (13.58)(2) yields K = [],cx K/pK. Thus (3) holds.

Assume (3) holds. Then K is a finite product of fields, and fields are reduced.
But clearly, a product of reduced ring is reduced. Further, R C K, and trivially, a
subring of a reduced ring is reduced. Thus (1) holds. (]

Exercise (14.23) . — Let A be a reduced local ring with residue field k£ and a finite
set ¥ of minimal primes. For each p € ¥, set K (p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dimy(P ®4 k) =7
and dimg ) (P ®a K(p)) = r for each p € X.

Solution: If P is free of rank r, then dim(P ® k) = r and dim(P ® K(p)) = r
owing to (8.10).
Conversely, suppose dim(P ® k) = r. As P is finitely generated, (10.9) implies
P is generated by r elements. So (5.13) yields an exact sequence
0—-M3Z A" - P —0.

Momentarily, fix a p € £. Since A is reduced, K(p) = A, by (14.21). So K(p)
is flat by (12.14). So the induced sequence is exact:

0->MeK(({p) - K@p)" —-PeK(p)—=0.
Suppose dim(P @ K(p)) = r too. It then follows that M ®4 K (p) = 0.

Let K be the total quotient ring of A, and form this commutative square:
M 2 AT

ltpM J,SOAT

MoK — K"

Here « is injective. And @ - is injective as p4: A — K is. Hence, @,/ is injective.

By hypothesis, A is reduced and ¥ is finite; so K = HpEZ K(p) by (14.22). So
MK =][(M®K(p)). But M ®4 K(p) =0 for each p € 3. So M ® K = 0. But
opm: M — M ® K is injective. So M = 0. Thus A™ = P, as desired. (]
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Exercise (14.24) . — Let A be a reduced semilocal ring with a finite set of minimal
primes. Let P be a finitely generated A-module, and B an A-algebra such that
Spec(B) — Spec(A) is surjective. For each prime q C B, set L(q) := Frac(B/q).
Given r, assume dim((P ®4 B) ® g L(q)) = r whenever q is either maximal or
minimal. Show that P is a free A-module of rank r.

Solution: Let p C A be a prime; set K := Frac(A/p). As Spec(B) — Spec(A) is
surjective, there’s a prime q C B whose contraction is p. Then (8.9)(1) yields

(P®a K)®K L(q) = (P®a B) ®p L(q). (14.24.1)

If p is minimal, take a minimal prime q’ C . Then the contraction of ¢’ is
contained in p, so equal to p. Replace q by q’. If p is maximal, take a maximal ideal
q" D q. Then the contraction of q’ contains p, so is equal to p. Again, replace q
by q’. Either way, dim((P ® 4 B) ® g L(q)) = r by hypothesis. So (14.24.1) yields
dim((P ®4 K) ®x L(q))) = r. Hence dim(P ®4 K) = 7.

If A islocal, then P is free of rank r by (14.23). In general, by (13.63) it suffices
to show that Py, is a free Ap,-module of rank r for every maximal ideal m of A. So
by the preceding case, it suffices to show that Spec(By) — Spec(Am) is surjective.

For reference, form the following commutative diagram:

B —— Bn

[

A—— An

Given a prime 9 C Ay, let p be its contraction. Since Spec(B) — Spec(A) is
surjective, there’s a prime q C B that contracts to p. Set Q := qBy. Then Q
contracts to q by (11.12)(2). So Q contracts to p. But B does too. So Q contracts
to P by (11.12)(2). Thus Spec(By,) — Spec(Ay) is surjective, as desired. O

Exercise (14.25) . — Let R be a ring, p1,...,p, all its minimal primes, and K the
total quotient ring. Show that these three conditions are equivalent:

(1) R is normal.
(2) R is reduced and integrally closed in K.
(3) R is a finite product of normal domains R;.

Assume the conditions hold. Show the R; are equal to the R/p; in some order.

Solution: Assume (1). Let m any maximal ideal. Then Ry, is a normal domain.
So R is reduced by (13.57).

Recall Sy is the set of nonzerodivisors of R, so K := S’JIR. Recall Sy, := R —m,
S0 R := Sp'R. But S Sy 'R = S5 S 'R by (12.26)(1). So Sp'K = Sy ' Rn.

Let t € Sp. Then t/1 # 0 in Ry,; else, there’s s € Sy, with st = 0, a contradiction
as s #0 and t € Sp. Thus (11.15) and (11.2) yield Sy 'Ry C Frac(Rpy).

Let z € K be integral over R. Then z/1 € S 'K is integral over S 'R by
(11.29). But S;'R = Ry, and Ry, is a normal domain. So z/1 € Ry. Hence
x € R by (13.55). Thus (2) holds.

Assume (2). Set R; := R/p; and K; := Frac(R;). Then K = [[ K; by (14.22).
Let R} be the normalization of R;. Then R < [[R; — ][ R}. Further, the first
extension is integral by (10.41), and the second, by (10.42); whence, R — [[ R}
is integral by the tower property (10.17). However, R is integrally closed in K by
hypothesis. Hence R = [[ R; = [[ R;. Thus (3) holds.
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Assume (3). Let p be any prime of R. Then R, = [[(R;), by (12.9), and each
(R;)p is normal by (11.32). But R, is local. So R, = (R;), for some ¢ by (3.6).
Hence R, is a normal domain. Thus (1) holds.

Finally, the last assertion results from (13.58)(2). O

Exercise (14.26) . — Let X be a nonempty compact Hausdorff space, R the ring of
R-valued continuous functions on X, and X C Spec(R) the set of maximal ideals.
Give X the induced topology. For all € X, set m, := {f € R | f(z) = 0}. Show:

(1) Given a maximal ideal m, set V := {z € X | f(x) =0 for all f € m}. Then
V # ; otherwise, there’s a contradiction. Moreover, m = m, for any = € V.

(2) Urysohn’s Lemma [16, Thm. 3.1, p. 207] implies m, # m,, if  # y.

(3) Forany f € R, set Uy = {z € X | f(z) #0} and Uy = {m e X | f ¢ m}.
Then m, € X for any r € X, and z € Uy if and only if m, € Uy; moreover,
the Uy and, by Urysohn’s Lemma, the Uy form bases of the topologies.

(4) Define ¢: X — X by ¢(x) := m,. Then ¢ is a well-defined homeomorphism.

Solution: For (1), suppose V = (). Then for each z € X, there’s f, € m with
fz(x) # 0. As f, is continuous, there’s a neighborhood U, of x on which f, has
no zero. By compactness, finitely many U, cover X, say U,, for 1 < i < n. Set
f=23f2. Then f(y) #0for all y € X. So f € R*. But f € m, a contradiction.

Moreover, given € V, note m C m,. But m is maximal, and 1 ¢ m,. Thus
m = m,. Thus (1) holds.

For (2), note {z} and {y} are closed as X is Hausdorff. As X is compact too, it’s
normal by[16, Thm. 2.4, p.198]. So Urysohn’s Lemma gives f € R with f(z) =0
and f(y) =1. So f € my —m,. Thus (2) holds.

For (3), note m, = Ker(f,) where 6,: R — R by 0,(f) := f(z). Thus m, € X.

Note z € Uy if and only if f(z) # 0, if and only if f ¢ m,, if and only if x € Uy.

Moreover, the D(f) form a basis of the topology of Spec(R) by (13.1). But
U;=D(f)N X. Thus the Uy form a basis of the topology of X.

Given x € W C X with W open, Urysohn’s Lemma provides f € R with f(z) =1
and f(X —W)=0. Sox € U CW. Thus the Uy form a basis. Thus (3) holds.

For (4), note ¢ is a well defined as m, € X for any 2 € X by (3). Moreover,
¢ is injective by (2), and surjective by (1). Finally, ¢ is a homeomorphism as it
preserves bases of the topologies by (3). Thus (4) holds. O

15. Noether Normalization

Exercise (15.15) . — Let k := F, be the finite field with ¢ elements, and k[X, Y]
the polynomial ring. Set F := X7 — XY? and R := k[X,Y]/(F). Let z, y € R
be the residues of X, Y. For every a € k, show that R is not module finite over
P := kly—axz]. (Thus, in (15.1), no k-linear combination works.) First, take a = 0.

Solution: Take a = 0. Then P = k[y]. Any algebraic relation over P satisfied
by z is given by a polynomial in k[X,Y], which is a multiple of F. However, no
multiple of F' is monic in X. So x is not integral over P. By (10.14), R is not
module finite over P.

Consider an arbitrary a. Since a? = a, after the change of variable Y := Y —aX,
our F' still has the same form. Thus, we have reduced to the previous case. (]
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Exercise (15.16) . — Let k be a field, and X, Y, Z variables. Set
R:=k[X,Y, Z)/(X?-Y? -1, XZ - 1),

and let z, y, z € R be the residues of X, Y, Z. Fix a,b € k, and set ¢t := x+ay + bz
and P := k[t]. Show that = and y are integral over P for any a,b and that z is
integral over P if and only if b # 0.

Solution: To see z is integral, notice xz = 1, so 22 —tx+b = —axy. Raising both
sides of the latter equation to the third power, and using the equation y® = 22 — 1,
we obtain an equation of integral dependence of degree 6 for x over P. So P[z] is
integral over k by (10.18). Now, y> — 2%+ 1 = 0; so y is integral over P[z]. Hence,
the Tower Property, (10.17)(1), implies that y too is integral over P.

If b # 0, then 2 = b=1(t — x — ay) € Plz,y|, and so z is integral over P by
(10.18).

Assume b = 0 and z is integral over P. Now, P C k[z, y]. So z is integral over
K[z, y] as well. But y3 — 22+ 1 = 0. So y is integral over k[z]. Hence z is too.
However, k[z] is a polynomial ring, so integrally closed in its fraction field k(x) by
(10.22)(1). Moreover, z = 1/x € k(z). Hence, 1/ € k[x], which is absurd. Thus
z is not integral over P if b = 0. O

Exercise (15.17) . — Let R'/R be an extension of rings, R the integral closure of
R, and X a variable. Prove R[X] is the integral closure of R[X] in R'[X].

Solution: Note R[X] = R®pr R[X] by (8.18). So R[X] is integral over R[X] by
(10.39). So let’s show R[X] contains every f € R'[X] that’s integral over R[X].

Say f* 4+ gif" '+ -+ g, = 0 with g; € R[X]. Set f1 := f — X" with » > 0.
Then (fi + X")" +---+g, =0. So f +hy f]" '+ -+ h, =0 with h; € R[X].

Then h,, = (X")" 4+ (X")" " Lg1 + -+ + gn. So hy, is monic as ri > deg(g;) for all
i. Set fy := f{“1 + hlflnf2 +---+hy,_1. Then h,, = —f1fo. But f; is monic as
r > deg(f). Hence the coefficients of f; are integral over R by (14.4)(2). But the
coefficients of f; include those of f. Thus f € R[X], as desired. O

Exercise (15.18) . — Let R be a domain, ¢: R < R’ an algebra-finite extension.
Set ¢* := Spec(y). Find a nonzero f € R such that ¢* Spec(R') D D(f).

Solution: By (15.3), there are a nonzero f € R and algebraically independent
T1,...,T, € R’ such that R} is an integral extension of R[z1,...,z,]r. Given
p € D(f), its extension pR[z1,...,2,] is a prime lying over p by (2.32). So
pR[z1,..., 2] is a prime lying over pR[z1,...,z,) by (11.12)(2). So there’s a
prime P’ of R} lying over pR[z1,..., 2] by (14.3)(3). Note that P’ lies over p.
Let 8 be the contraction of P in R’. Then P lies over p. Thus p € ¢* Spec(R’). O

Exercise (15.19) . — Let R be a domain, R’ an algebra-finite extension. Find
a nonzero f € R such that, given an algebraically closed field Q2 and a ring map
©: R — Q with ¢(f) # 0, there’s an extension of ¢ to R'.

Solution: By (15.3), there are a nonzero f € R and algebraically independent
r1,..., 7, in R such that R} is integral over R[zy,...,x,];. Givenamap ¢: R —
with Q algebraically closed and o(f) # 0, we can extend ¢ to R[z1, ..., x,] by (1.3).
Then we can extend ¢ further to R[z1,...,x,]s by (11.3). Finally, we can extend
¢ to 't Ry — Q by (14.12). Thus ¢'|R’ is the desired extension of ¢ to R’. [
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Exercise (15.20) . — Let R be a domain, R’ an algebra-finite extension. Assume
rad(R) = (0). Prove rad(R’) = nil(R’). First do the case where R’ is a domain by
applying (15.19) with R’ := R}, for any given nonzero g € R'.

Solution: First assume R’ is a domain. Then nil(R’) = (0). So we have to prove
rad(R’) = (0). So given a nonzero g € R’, we must find a maximal ideal m’ of R’
with g ¢ m’. Note that, as R'/R is algebra finite, so is R} /R.

Applying (15.19) with R’ := R} yields an f € R. As rad(R) = (0), there’s a
maximal ideal m of R with f ¢ m. Set k := R/m. Let ¢: R — k be the quotient
map. Then (f) # 0.

There is an algebraic closure 2 of k by (14.13). So (15.19) yields an extension
¢’ Ry — Q of p. Let m’ be the contraction of Ker(¢') to R’. Note that g is a unit
in R}; so ¢'(g) #0. Thus g ¢ m'.

Say R’ = R[y1,...,yn]- The ¢'(y;) are algebraic over k as Q/k is algebraic. But k
is a field. So the ¢'(y;) are integral over k. So ¢’(R’) is integral over k by (10.18).
So ¢'(R') is a field by (14.1). But R'/m’ = ¢/(R’). So R'/m’ is a field. So m’ is
maximal. But g ¢ m’, as desired. Thus we’ve done the case where R is a domain.

For the general case, note nil(R') = (| p’, where p’ runs over the minimal primes
of R, by (3.14) and (3.16). So it suffices to prove that each p’ is the intersection,
ay,, say, of the maximal ideals of R’ containing p’.

Fix p’. Set R} := R'/p’. Let Ry be the image in R} of R. Then ay, /p’ = rad(R}).
So it remains to show rad(R}) = (0).

Note R} is a domain; so Ry is too. Plainly, R} is an algebra-finite extension of
R;. So rad(R}) = (0) by the preceding case. Thus the general case holds. O

Exercise (15.21) . — Let k be a field, K an algebraically closed extension field.
Let P := k[Xy,...,X,] be the polynomial ring, and F, Fy,..., F. € P. Assume F
vanishes at every zero in K™ of Fy,..., F,; that is, if a := (a1,...,a,) € K™ and
Fi(a) =0,...,F.(a) = 0, then F(a) = 0 too. Prove that there are polynomials
G1,...,G, € P and an integer N such that F¥ = G1Fy, +--- + G,.F,.

Solution: Set a := (F},..., F,). We have to show F' € y/a. But, by the Hilbert
Nullstellensatz (15.7), v/a is equal to the intersection of all the maximal ideals m
containing a. So given an m, we have to show that F' € m.

Set L := P/m. By the Zariski Nullstellensatz (15.4), L is a finite extension
field of k. So we may embed L/k as a subextension of K/k. Let a; € K be the
image of the variable X; € P, and set (a) := (a1,...,a,) € K™ Then plainly
Fi(a) =0,...,F.(a) =0. So F(a) = 0 by hypothesis. Thus F' € m, as desired.

Exercise (15.22) . — (1) Find an example where (15.21) fails if K isn’t required
to be algebraically closed, say with K :=k:=R and n:=1 and r :=1.

(2) Find an example where (15.21) fails if the G; are all required to be in k, say
with K :=k:=Cand n:=1and r:=2.

Solution: For (1), take F := 1 and F; := X7 + 1. Then F has no zero, and Fy
has no zero, but no power of F' is equal to any multiple of F}.

For (2), take F :=1 and F} := X; and Fy := X? + 1. Then F has no zero, and
Fi and F5 have no common zero, but no power of F' is equal to G1F} + GoFy for
any G; € k. O
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Exercise (15.23) . — Given an integral extension of rings R'/R, show
dim(R) = dim(R’).

Solution: Let pg & --- S p, be a chain of primes of R. Set p’; := 0. Given
pi_, for 0 < i <r, Going-up, (14.3)(4), yields a prime p; of R’ with p}_, C p} and
p;NR=p;. Thenpi G- - Cplaspo S - S ppr. Thus dim(R) < dim(R).

Conversely, let p’y G --- S p’,. be a chain of primes of R'. Set p; := p’; N R. Then
po G --- S pr by Incomparability, (14.3)(2). Thus dim(R) > dim(R’). O

Exercise (15.24) . — Let k be an algebraically closed field, P := k[ X1, ..., X,] the
polynomial ring in n variables X;, and V' C k™ the common zeros of polynomials
F,. Set I(V) := {F,} and k[V] := P/I(V). Assume V # (). Show there exist
a linear subspace L C k™ and a linear map A: k™ — L such that A(V) = L and
dim(k[V]) = dim(L).

Solution: Since k[V] is a quotient of P, it is generated by the residues &; of the
X;. Note k[V] # 0 as V # (. Note k is infinite. So (15.2) yields algebraically
independent k-linear combinations p; := Z?zl ai;& for 1 < j < m where m < n
such that k[V] is module finite over R := k[p1,...,pm]|. Note dim(R) = m by
(15.11), and so dim(k[V]) = m by (15.23).

Let L be the subspace of (vq,...,v,) € k™ with v; = 0 for ¢ > m. Define
A k™ — L by AMui,...,v,) = (w1,...,w,) where w; := Z?zl a;;jv; for j <m and
w; = 0 for j > m. Thus m = dim(L). So dim(L) = dim(k[V]). It remains to show
AV)=L.

Given (w1,...,w,) € L, define an algebra map ¢: R — k by ¢(p;) = w;.
But k is algebraically closed. So ¢ extends to an algebra map 7: k[V] — k by
(14.12). Then ¢(p;) = 7(p;), and 7 (p;) = > j ai;7w(&). Set v; := 7(&;). Then
wj =Y i a;;v; for j <m. Thus A(vy,...,v,) = (w1, ..., wy).

Finally, let’s adapt the reasoning used to prove (1.29)(3). First, for each p, we
get F,(&1,...,&,) = 0 in k[V]. So m(Fu(&,...,&)) = 0 in k. Second, we get
T(Fu(&,..., &) = Eu(m(&),...,m(&)). But v; := n(&). So F(vi,...,v,) = 0.
Thus (vy,...,v,) € V. Thus A(V) = L. O

Exercise (15.25) . — Let R be a ring, a an ideal. Assume a C nil(R). Show
dim(R/a) = dim(R).
Solution: Plainly, every prime p of R contains a. So p — p/a sets up a bijection
from the chains of primes of R onto those of R/a. Thus dim(R/a) = dim(R). O

Exercise (15.26) . — Let R be a domain of (finite) dimension r, and p a nonzero
prime. Show dim(R/p) < 7.

Solution: Every chain of primes of R/p is of the form po/p G --- G p,/p where
05 po G -+ S ps is a chain of primes of R. So s < r. Thus dim(R/p) < 7. O

Exercise (15.27) . — Let R’/ R be an integral extension of domains with R normal,
m a maximal ideal of R’. Show n:=mnN R is maximal and dim(R},) = dim(R,,).

Solution: First, n is maximal by (14.3)(1).

Next, let po & --- G p, be a chain of primes of R with p, = n. Set p;. := m,
and proceed by descending induction. Given p} with p; N R = p; where 1 <i <r,
there’s a prime p;_; of R’ with p;_; N R = p;_1 by (14.6) as R is normal. Then
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po G -+ G ;. is a chain of primes of R’ with p), = m. Thus dim(R,) < dim(Ry,).
Lastly, let pj G --- G p;. be a chain of primes of R with p]. C m. Set p; := p; N R.
Then po G --- & p, by (14.3)(2), and p, C n. Thus dim(R,) > dim(R},). O

Exercise (15.28) . — (1) Given a product of rings R := R’ x R, show
dim(R) = max{ dim(R’), dim(R") }. (15.28.1)
(2) Find a ring R with a maximal chain of primes po G --- G p,, yet r < dim(R).

Solution: For (1), by (2.29), recall that a prime in R either has the form p’ x R”
where p’ is a prime of R or R’ x p” where p” is a prime of R”. So any chain of
primes of R arises from either a chain of primes of R’ or a chain of primes of R”.
Thus (15.28.1) holds.

For (2), let k be a field and set R := k[X] x k. Then dim(R) = 1 by (1). Set
po := k[X]x (0). Then py forms a maximal chain by the proof of (1), as desired. O

Exercise (15.29) . — Let k be a field, R; and Ry algebra-finite domains, and p a
minimal prime of R; ® Ry. Use Noether Normalization and (14.20) to prove this:

dim((Ry @k R2)/p) = dim(Ry) + dim(Ry). (15.29.1)

Solution: Noether Normalization (15.1) yields a polynomial subalgebra P; of R;
such that R; is module finite over P;. Then P; and R; are domains, and they are
k-flat as k is a field. Moreover, P; ® P, is a domain by (8.18) and (2.4).

Say {x;} and {y;} are sets of module generators of Ry over P; and of Ry over Ps.
Then, plainly, the z; ® y; € R ® Ry form a set of module generators over Py ® P;
so their residues in (R; ® Rz)/p form one too. Thus (10.18) implies (R; ® Ra)/p
is integral over P; ® Ps.

Further, Py ® P, — (R ® Ry)/p is injective by (14.20)(3). So (15.23) yields

dim((R; ® Ry)/p) = dim(P; @ P»).

Similarly, dim(R;) = dim(P;) and dim(Ry) = dim(Pz). Finally, (15.11) yields
dim(P; ® Py) = dim(Py) + dim(Ps).

Thus (15.29.1) holds, as desired. O

Exercise (15.30) . — Let k be a field, R a finitely generated k-algebra, f € R
nonzero. Assume R is a domain. Prove that dim(R) = dim(Ry).

Solution: Note that Ry is a finitely generated R-algebra as Ry is, by (11.7),
obtained by adjoining 1/f. So since R is a finitely generated k-algebra, Ry is one
too. Moreover, R and Ry have the same fraction field K. Hence both dim(R) and
dim(Ry) are equal to tr.deg, (K) by (15.10). O

Exercise (15.31) . — Let k be a field, P := k[f] the polynomial ring in one variable
f. Set p:= (f) and R := P,. Find dim(R) and dim(Ry).

Solution: In P, the chain of primes 0 G p is maximal by (2.17). So (0) and pR
are the only primes in R by (11.12)(2). Thus dim(R) = 1.

Set K := Frac(P). Then Ry = K since, if a/(bf") € K with a, b€ P and f {b,
then a/b € R and so (a/b)/f™ € Ry. Thus dim(Ry) = 0. O
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Exercise (15.32) . — Let R be a ring, R[X] the polynomial ring. Prove
1+ dim(R) < dim(R[X]) < 1+ 2dim(R).
(In particular, dim(R[X]) = oo if and only if dim(R) = c0.)
Solution: Let pg ;Cé e g P, be a chain of primes in R. Then
PoR[X] G -+ & pnRIX] & pnR[X] + (X)
is a chain of primes in R[X] by (2.32). Thus 1 + dim(R) < dim(R[X]).
Let p be a prime of R, and qo & --- S ¢, be a chain of primes of R[X] with
q; N R = p for each 7. Then (1.9) and (2.7) yield a chain of primes of length r in
R[X]/pR[X]. Further, as q; "R = p for each 7, the latter chain gives rise to a chain

of primes of length r in k(p)[X] where k(p) = (R/p), by (1.16) and (11.34) and
(11.12)(2). But dim(k(p)[X]) =1 by (15.9) as k(p)[X] is a PID. Thus r < 1.

Take any chain Py G --- & Py, of primes in R[X]. It contracts to a chain
Po g e ; pn in R. At most two *B; contract to a given p; by the above discussion.
Som+1<2(n+1),orm<2n+1. Thus dim(R[X]) <1+ 2dim(R). O

15. Appendix: Jacobson Rings

Exercise (15.39) . — Let X be a topological space. We say a subset Y is locally
closed if Y is the intersection of an open set and a closed set; equivalently, Y is
open in its closure Y equivalently, Y is closed in an open set containing it.

We say a subset Xy of X is very dense if X, meets every nonempty locally
closed subset Y. We say X is Jacobson if its set of closed points is very dense.

Show that the following conditions on a subset Xy of X are equivalent:

(1) Xo is very dense.

(2) Every closed set F' of X satisfies F N Xy = F.

(3) The map U — U N Xy from the open sets of X to those of X is bijective.

Solution: Assume (1). Given a closed set F, take any x € F, and let U be an
open neighborhood of x in X. Then F N U is locally closed, so meets Xy. Hence
x € FNXy. Thus F C F N Xy. The opposite inclusion is trivial. Thus (2) holds.

Assume (2). In (3), the map is trivially surjective. To check it’s injective,
suppose UNXp = VN Xp. Then (X —U)N Xy = (X — V)N Xp. So (2) yields
X—-U=X-V.8SoU=YV. Thus (3) holds.

Assume (3). Then the map F' — F'N X, of closed sets is bijective too; whence,
so is the map Y — Y N X of locally closed sets. In particular, if a locally closed
set Y is nonempty, then so is ¥ N Xy. Thus (1) holds. O

Exercise (15.40) . — Let R be a ring, X := Spec(R), and Xj the set of closed
points of X. Show that the following conditions are equivalent:

(1) R is a Jacobson ring.
(2) X is a Jacobson space.
(3) If y € X is a point such that {y} is locally closed, then y € Xj.

Solution: Assume (1). Let F C X be closed. Trivially, F > F'N Xy. To prove
F C FnXyp,say FF'=V(a)and FFN X, = V(b). Then FNXj is the set of maximal
ideals m containing a by (13.16)(2), and every such m contains b. So (1) implies
b C va. But V(y/a) = F. Thus F C F'N X,. Thus (15.39) yields (2).

Assume (2). Let y € X be a point such that {y} is locally closed. Then
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{y} N Xo is nonempty by (2). So ({y} N Xo) 3 y. Thus (3) holds.

Assume (3). Let p be a prime ideal of R such that pRy is maximal for some
f ¢ p. Then {p} is closed in D(f) by (13.1.8). So {p} is locally closed in X.
Hence {p} is closed in X by (3). Thus p is maximal. Thus (15.35) yields (1). O

Exercise (15.41) . — Why is a field K finite if it’s an algebra-finite Z-algebra?

Solution: First off, Z is Jacobson by (15.33). So (15.37)(1) applies with Z for
R, with K for R’, and with (0) for m’. Thus (0)¢ = (p) for some prime p € Z, and
K is finite over Z/(p). Thus K is finite. O

Exercise (15.42) . — Let P := Z[X3,...,X,] be the polynomial ring. Assume
F € P vanishes at every zero in K" of Fy,..., F,. € P for every finite field K; that
is, if (a) := (a1,...,an) € K™ and Fi(a) =0,...,F.(a) = 0 in K, then F(a) =0
too. Prove there are Gy,...,G, € Pand N > 1 with FN =G, F, +--- + G, F,.

Solution: Set a := (Fy,..., F,.). Suppose F ¢ \/a. Then F lies outside some
maximal ideal m containing a by (15.37)(2) and (15.33). Set K := P/m. Then
K is a finite extension of F,, for some prime p by (15.37)(1). So K is finite. Let a;
be the residue of X, set (a) := (a1,...,a,) € K™. Then Fi(a) =0,...,F.(a) =0.
So F(a) = 0 by hypothesis. Thus F' € m, a contradiction. Thus F € /a. O

Exercise (15.43) . — Prove that a ring R is Jacobson if and only if each algebra-
finite algebra R’ that is a field is module finite over it.

Solution: Assume that R is Jacobson. Given an algebra-finite algebra R’ set
m’ :=(0) C R and m := m’®. Assume R’ is a field. Then m’ is maximal. So m is
maximal and R’ is finite over R/m by (15.37)(1). Thus R’ is module finite over R.
Conversely, assume that R is not Jacobson. Then (15.35) yields a nonmaximal
prime p of R and an f ¢ p such that pRy is maximal. Set R’ := R/p. Then R} is
algebra finite over R. But R} = Ry/pRy. So R} is a field.
Suppose R’ is module finite over R, so over . Then R is integral over R’ by

(10.18). So R’ is a field by (14.1). So p is maximal, a contradiction. O

Exercise (15.44) . — Prove a ring R is Jacobson if and only if each nonmaximal
prime p is the intersection of the primes that properly contain p.

Solution: Assume R is Jacobson. By (15.33), every prime p is the intersection
of maximal ideals. Thus if p is not maximal, then it is the intersection of the primes
that properly contain it.

Conversely, assume R is not Jacobson. By (15.33), there is a prime q that is not
the intersection of maximal ideals. If R/q has a prime p that is not maximal and
is not the intersection of primes properly containing it, then its preimage in R is
similar. Replace R by R/q. Thus we may assume R is a domain with rad(R) # (0).

Say f € rad(R) and f # 0. Then 0 ¢ S;. So (3.9) yields a prime p that is
maximal among ideals not meeting Sy. Hence any prime properly containing p also
contains f. Thus p is not the intersection of primes properly containing it. But
f erad(R) and f ¢ p. Thus p is not maximal. Thus p is as desired. O

Exercise (15.45) . — Let R be a Jacobson ring, p a prime, f € R — p. Prove that
p is the intersection of all the maximal ideals containing p but not f.
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Solution: Set a := (| m where m runs through the maximal ideals that contain p
but not f. Let’s use double inclusion to prove p = a. Plainly p C a.

For the opposite inclusion, given g € R—p, let’s prove g € R—a. If p is maximal,
then p = a, so g € R — a. Assume p is not maximal. Since R is Jacobson, pRy is
not maximal in Rfg by (15.35). So there is a maximal ideal 9t of Ry, containing
pRs,. Let m be the contraction of 9% in R. Plainly f,¢g ¢ m and m D p. But m is
maximal by (15.37)(1) applied with R’ := R;,. Thus p D a, as desired. O

Exercise (15.46) . — Let R be a ring, R’ an algebra. Prove that if R’ is integral
over R and R is Jacobson, then R’ is Jacobson.

Solution: Given an ideal o’ C R’ and an f outside v/a/, set R” := R[f]. Then
R" is Jacobson by (15.37)(2). So R” has a maximal ideal m” that avoids f and
contains ¢’ NR”. But R’ is integral over R”. So R’ contains a prime m’ that contains
o’ and that contracts to m” by Going-up (14.3)(4). Then m’ avoids f as m” does,
and m’ is maximal by Maximality, (14.3)(1). Thus R’ is Jacobson. O

Exercise (15.47) . — Let R be a Jacobson ring, S a multiplicative subset, f € R.
True or false: prove or give a counterexample to each of the following statements.

(1) The localized ring Ry is Jacobson.

(2) The localized ring S™!R is Jacobson.

(3) The filtered direct limit lim Ry of Jacobson rings is Jacobson.

(4) In a filtered direct limit of rings R}, necessarily Hi>nrad(R>\) = rad(li_n; R)).

Solution: (1) True: Ry = R[1/f] by (11.7); so Ry is Jacobson by (15.37)(2).
(2) False: by (15.34), Z is Jacobson, but Z, isn’t for any prime number p.
(3) False: Z;,) isn’t Jacobson by (15.34), but Z, = lim 7 by (12.6).

(4) False: rad(Z,)) = pZy); but rad(Z) = (0), so liﬂrad(Z) = (0). O

Exercise (15.48) . — Let R be a reduced Jacobson ring with a finite set ¥ of
minimal primes, and P a finitely presented module. Show that P is locally free of
rank 7 if and only if dimp/(P/mP) = r for any maximal ideal m.

Solution: Suppose P is locally free of rank r. Then given any maximal ideal m,
there is an f € R —m such that Py is a free Ry-module of rank = by (13.13). But
Py is a localization of Py by (12.25)(2). So Py is a free Ry-module of rank r by
(12.9). But Py /mPy = (P/mP)y by (12.15). Also Ry /mRy = R/m by (12.16).
Thus dimp/m(P/mP) = 7.

Consider the converse. Given a p € 3, set K := Frac(R/p). Then P ®p K is a
K-vector space, say of dimension n. Since R is reduced, K = R, by (14.21). But
P is finitely presented. So by (12.18)(2), there’s an h € R — p with P, free of rank
n. As R is Jacobson, there’s a maximal ideal m avoiding h, by (15.33). Hence, as
above, dimp/m (P/mP) = n. But, by hypothesis, dimp/m(P/mP) = r. Thus n = r.

Given a maximal ideal m, set A := Ry,. Then A is reduced by (13.57). Each
minimal prime of A is of the form pA where p € ¥ by (11.12)(2). Further, it’s not
hard to see, essentially as above, that P, ® Frac(A4/pA) = P ® Frac(R/p). Hence
(14.23) implies P, is a free A-module of rank r. Finally, (13.62) implies P is
locally free of rank r. ([

Exercise (15.49) . — Let A be a ring, m a maximal ideal. Show these equivalent:

(1) A is 0-dimensional and local;

326
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(2) m = nil(4);
(3) m has a set of nilpotent generators.

Solution: Assume (1). As A is 0-dimensional, every prime is maximal by
(15.9). So as A is local, m is the only prime. So m = nil(A) by (3.14). Thus (2)
holds.

Trivially, (2) implies (3), as every element of nil(A) is nilpotent.

Assume (3). Then each prime contains the given nilpotent generators, so con-
tains m. But m is maximal, so it’s the only prime. Thus (1) holds. O

16. Chain Conditions

Exercise (16.2) . — Let M be a finitely generated module over an arbitrary ring.
Show every set that generates M contains a finite subset that generates.

Solution: Say M is generated by x1,...,z, and also by the y) for A € A. Say
T; =) ; ZjYx,;- Then the yy,; generate M. O

Exercise (16.23) . — Let M be a module. Assume that every nonempty set of
finitely generated submodules has a maximal element. Show M is Noetherian.

Solution: Given a submodule N, form the set S of all its finitely generated sub-
modules. By hypothesis, 8 has a maximal element Ny. Suppose Ny # N, and take
any x € N — Ng. Then the submodule of N generated by Ny and « is finitely
generated, and it properly contains Ny, a contradiction. Thus N = Ny. So N is
finitely generated. Thus M is Noetherian. O

Exercise (16.24) . — Let R be a Noetherian ring, {F)}rca a set of polynomials
in variables X7,...,X,,. Show there’s a finite subset Ag C A such that the set Vj
of zeros in R™ of the F)\ for A € Ay is precisely that V of the F) for A € A.

Solution: Set P := R[X1,...,X,] and a := ({Fa}aea). Then P is Noetherian
by (16.10). So a is finitely generated. So by (16.2) there’s a finite subset Ag C A
such that the F) for A € Ag generate a.

Trivially, Vo D V. Conversely, V; C V because, F\ € a for each A € A, and so
there are G, € P with F) =Y G, F,. Thus V, =V. a

Exercise (16.25) . — Let R be a Noetherian ring, F':= > a,X™ € R[[X]] a power
series in one variable. Show that F' is nilpotent if and only if each a,, is too.

Solution: By (3.19)(1), if F' is nilpotent, then each a,, is too for any ring R.

Conversely, assume each a,, is nilpotent. Set 9 := nil(R). Since R is Noetherian,
N is finitely generated. So there is m > 1 with 9 = 0 by (3.38) with a := 0.
Since each a,, lies in I, each coefficient of F" lies in " for all » > 1. Thus each
coefficient of F is 0; that is, F' is nilpotent. O

Exercise (16.26) . — Let R be a ring, X a variable, R[X] the polynomial ring.
Prove this statement or find a counterexample: if R[X] is Noetherian, then so is R.

Solution: Tt’s true. Since R[X] is Noetherian, so is R[X]/(X) by (16.7). But
the latter ring is isomorphic to R by (1.6)(2); so R is Noetherian. O

Exercise (16.27) . — Let R’'/R be a ring extension with an R-linear retraction
p: R' — R. If R’ is Noetherian, show R is too. What if R’ is Artinian?

327



Solutions (16.28) / (16.29) Chain Conditions

Solution: Assume R’ is Noetherian. Let a C R be an ideal. Then aR’ is finitely
generated. But a generates aR’. So (16.2) yields ay,...,a, € a that generate aR’.
Hence, given any a € a, there are 2, € R’ such that a = a121 +- - - +al,x},. Applying
p vields a = a121 + - -+ + apx, with ; := p(x}) € R. Thus a is finitely generated.
Thus R is Noetherian.

Alternatively, let a; C as C --- be an ascending chain of ideals of R. Then
a1 R C agR’ C --- stabilizes as R’ is Noetherian. So p(a1R') C p(azR’) C ---
stabilizes too. But p(a;R’) = a;p(R’) = a;. Thus by (16.5), R is Noetherian.

Finally, if R’ is, instead, Artinian, then R is too, owing to an argument like the
alternative argument above, but applied to a descending chain. ([l

Exercise (16.28) . — Let R be a ring, M a module, R a faithfully flat algebra. If
M ®p R’ is Noetherian over R, show M is Noetherian over R. What if M @ R’
is Artinian over R'?

Solution: Assume M ® R’ is Noetherian over R’. Since R’ is flat, given a sub-
module N of M, the R’-module N ® R’ may be regarded as a submodule of M @ R'.
So N ® R’ is finitely generated. But it’s also generated over R’ by the elements
n® 1 for n € N. Hence (16.2) yields nq,...,n, € N such that the n; ® 1 gener-
ate N ® R over R’. The n; define an R-map a: R" — N. It induces an R’-map
a®R': R — N®R', which is surjective. But R’ is faithfully flat. So « is surjective
by (9.19). So N is finitely generated. Thus M is Noetherian.

Alternatively, let Ny C Ny C --- be a chain of submodules in M. Since M @ R’
is Noetherian, the induced chain Ny ® R' C No ® R’ C --- stabilizes. Since R’ is
faithfully flat, an inclusion N; < N;,1 is surjective if N; ® R’ < N;11 ® R’ is by
(9.19). Hence the original chain stabilizes. Thus M is Noetherian.

Finally, if M ® R is, instead, Artinian, then M is too, owing to an argument like
the alternative argument above, but applied to a descending chain. ([l

Exercise (16.29) . — Let R be a ring. Assume that, for each maximal ideal m, the
local ring Ry, is Noetherian and that each nonzero x € R lies in only finitely many
maximal ideals. Show R is Noetherian: use (13.10) to show any ideal is finitely
generated; alternatively, use (13.9) to show any ascending chain stabilizes.

Solution: Given a nonzero ideal a, take a nonzero = € a. Then z lies in only
finitely many maximal ideals, say my,...,m,. As each Ry, is Noetherian, aRy, is
finitely generated, say by x; ;/s;; with z; j €aand s;; € R—m; for j=1,...,n,.
Let see that together x and all the z; ; generate a.

Given a maximal ideal m, let’s see that the fractions z/1 and z; ;/1 generate
aRy. If x ¢ m, then x/1 is a unit, hence generates aRy,. If 2 € m, then m = m; for
some 4, and so the z; ;/1 generate aRpy, as desired.

Hence x and the z; ; generate a by (13.10). Thus R is Noetherian.

Alternatively, let a; C as C - - be an ascending chain of ideals of R. It is trivially
stable if a; = 0 for all <. So assume some a,,, contains a nonzero x. Then z lies in

only finitely many maximal ideals, say my, ..., m,,. Since each Ry; is Noetherian,
there’s n; such that a,, R = ap;41Rm = -+ Set n:=max{ng,...,nm}.

Let m be a maximal ideal. Suppose z ¢ m. Then z/1 € Ry is a unit. So
Aol = RBim. S0 4R = a1 Ry = -+ -. Suppose € m. Then m = m; for some

j. So again a,Rn = ap1Rm = - -
Given k > n, set Ny := ap41/a,. Then (Np)m = ag1Rm/arRm = 0. So N =0
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by (13.8). So the inclusion a; < a4 is surjective by (13.9). So a = ax,1. Thus

ap = Gp41 = ---. Thus again R is Noetherian. O
Exercise (16.30) (Nagata) . — Let k be a field, P := k[X;, X3,...] a polynomial
ring, my < mg < --- positive integers with m;11 —m; > m; —m;_1 for i > 1. Set

pi = (X415 Xy ) and S := P —J;5 pi- Show S is multiplicative, S1Pis
Noetherian of infinite dimension, and the S~!p; are the maximal ideals of S~!P.

Solution: Each P/p; is a polynomial ring over &k by (1.17)(5). So p; is prime.
So P — p, is multiplicative. But S = ("), (P —p;). Thus S is multiplicative.
Similarly, for all i > 1, all ideals are prime in the following chain:

<O> 7C¢ <X’mi+1> ; e ; <Xmi+1? s aX’mi+1> = pi-

But p; NS = 0. So by (11.12)(2), this chain induces a chain of the same length
mip1 — My in S~1P. But miy1 — m; > m; —m;—1. Thus S~LP is of infinite
dimension.

Given any prime ideal p of S™!P, let p be its contraction in P. Then pN S = ()
by (11.12)(2). But S = P —Jp;. Sop C Upi. So (3.27)(3) yields p C p; for
some 7. Thus (11.11)(1)(b) yields B € S~1p; for some i.

If B is maximal, then ¥ = S~!p;. Thus every maximal ideal of S~1P has the
form S~'p;. Conversely, given j, note S~1p; lies in some maximal ideal of S~™!P;
say it’s 3. Then p; C p by (11.12)(2). But p C p;. So i = j, and B = S~ 'p;. So
S~ 1p; is maximal. Thus the S~'p; are all the maximal ideals of S~1P.

Given i, note SN p; = 0. So P,, is the localization of S™!P at the prime S~!'p;
by (12.25)(2). Let P’ be the polynomial subring over k in the variables X, for
j <m;and j > mi;, and set T := P’ — 0 and K := Frac(P') = T~'P’. Then
(11.34) yields T7'P = K[ Xy, 41, .., Xmiyy . But TNp; = 0. Thus (12.25)(2)
yields

Ppi = K[X’mi-i'l? s ’eri+1]T’1Pi'

Note K[Xpm,+1,---,Xm,,,] is Noetherian by the Hilbert Basis Theorem (16.10).
So P,, is Noetherian by (16.7). But (S™'P)g-1,, = P,,. Thus it’s Noetherian.

Finally, for f/s € S~1P, the polynomial f involves only finitely many variables
X;. Hence f/s lies in only finitely many ideals of the form S~'p,. But these are
all the maximal ideals of S™!P. Thus S~!P is Noetherian by (16.29). O

Exercise (16.31) . — Let z be a complex variable, n an integer. Determine which
of these rings R are Noetherian:

(1) the ring R of rational functions of z having no pole on the circle |z| = 1,

(2) the ring R of power series in z having a positive radius of convergence,

(3) the ring R of power series in z with an infinite radius of convergence,

(4) the ring R of polynomials in z whose first n derivatives vanish at the origin,

(5) the ring R of polynomials in two complex variables z, w all of whose partial
derivatives with respect to w vanish for z = 0.

Solution: For (1), let S C C[z] be the subset of polynomials with no zero on
|z] = 1. Then S is a multiplicative subset. Moreover, R = S~1C[z]. But C[2] is
Noetherian by (16.9). Thus (16.7) implies R is Noetherian.

For (2), given a nonzero F € R, say F =Y a;2' with a,, # 0. Then F = 2"G
with G := Y77, aiynz'. Plainly G has the same radius of convergence as F; so
G € R. Also, G™! € R; see [13, Thm.3.3, p.65]. So an argument like that in
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(3.8) shows that every nonzero ideal has the form (z") for some n > 0. Thus R is
Noetherian (in fact, a PID).

For (3), note that a convergent power series is holomorphic inside its disc of con-
vergence; see [13, Thm. 5.1, p.72]. So a function is entire — that is, holomorphic
on all of C—if and only if it is in R; see [13, Ch.III, (S;), pp. 129, 130].

For any n > 0, there is an entire function F;,, with zeros at n,n + 1,... and
nowhere else; see [13, Thm. 2.3, p. 362]. Let a,, be the ideal of all F' € R with zeros
at n,n+1,.... Then F, € a, —a,_1. Soa; G az G ---. Thus R is not Noetherian.

For (4), note R is just the ring of polynomials of the form ¢ + 2" F where
c€ Cand F € Clz]. SoC C R C CJz]. Moreover, C|z] is generated as a module
over R by 1,z,22,...,2". So R is algebra finite over C owing to (16.17). Thus
(16.10) implies R is Noetherian.

For (5), set R’ := {c+ 2G(z,w) | ¢ € C and G € C[z,w]}, and let R” be the
ring of polynomials in z, w whose first partial derivative with respect to w vanishes
for z = 0. Let’s show R = R = R".

Plainly R' € R C R”. Conversely, given F € R, say F = Y. Fyw!, where the
F; € C[z]. By hypothesis, (0F/0w)(0,w) = 0. Hence > iF;(0)w'~! = 0. Hence
F;(0)=0foralli>1. Soz| F;. So Fe€ R. Thus R" = R= R"”. Thus R is just
the case k := C of the second example in (16.1) of a non-Noetherian ring. O

Exercise (16.32) . — Let R be a ring, M a Noetherian module. Adapt the proof
of the Hilbert Basis Theorem(16.9) to prove M[X] is a Noetherian R[X]-module.

Solution: By way of contradiction, assume there is a submodule N of M[X] that
is not finitely generated. Set Ny := 0. For ¢ > 1, choose inductively F; in N — N;_;
of least degree d;, and let N; be the submodule generated by Fi, ..., F;. Let m; be
the leading coefficient of F;, and L the submodule of M generated by all the m;.
As M is Noetherian, L is finitely generated. So there’s n > 1 such that mq,...,m,
generate L by (16.2). Thus my,1 = x1ymq + - - + z,m, with a; € R.

By construction, d; < d;4; for all 7. Set

F = Fn+1 — (xlFlerHJ—dl + . + mnFnXd7L+l_d7L).
Then deg(F') < dny1, so F' € N,,. Therefore, I, 11 € N, a contradiction. O

Exercise (16.33) . — Let R be a ring, S a multiplicative subset, M a Noetherian
module. Show that S™1M is a Noetherian S~ R-module.

Solution: Let K be a submodule of S™'M. As M is Noetherian, gaglK C M is
finitely generated. Say mg,...,my generate it. Plainly m4/1,...,my/1 generate
STl K over STIR. But STlypg'K = K by (12.12)(2)(b). Thus S™'M is a
Noetherian S~!R-module.

Alternatively, let K1 C Ko C --- be an ascending chain of S~!R-submodules of
S~!M. Then cpglKl C gpglKg C --- is an ascending chain of R-submodulles of

M. Since M is Noetherian, there is n > 1 with cpglKn = <p§1Kn+1 =.... But
Sl ' K; = K; for all i by (12.12)(2)(b). Hence K,, = K, 41 = ---. Thus S~'M
is a Noetherian S~!'R-module. ([l

Exercise (16.34) . — For i = 1, 2, let R; be a ring, M; a Noetherian R;-module.
Set R:= Ry X Ry and M := M; x M. Show that M is a Noetherian R-module.
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Solution: Any submodule N of M is of the form N = N; x Ny where N; is an
R;-submodule of M; by a simple generalization of (1.23). But M; is Noetherian;
so N; is finitely generated, say by n;1,...,n;pn,. Then plainly the (n; ;, 0) and
(0, nga,) generate N. Thus M is a Noetherian R-module.

Alternatively, let Ny C Ny C --- be an ascending chain of R-submodules of
M. Then N; = N;j; x Na; where N;; is an R;-submodule of M; by a simple
generalization of (1.23). In fact, the proof shows that, for each 4, the IV; ; form an
ascending chain. But M; is Noetherian; so this chain stabilizes. Hence the original
chain stabilizes too. Thus M is a Noetherian R-module. (]

Exercise (16.35) . — Let 0 — L = M Z, N = 0 be a short exact sequence of
R-modules, and My, M two submodules of M. Prove or give a counterexample to
this statement: if 3(M;) = B(Ms) and a1 (M;) = a~1(My), then My = My.

Solution: The statement is false: form the exact sequence

0-RESRER LR -0
with a(r) := (r,0) and B(r, s) := s, and take
My :={(t,2t) |t e R} and My:={(2t,t)]|tecR}.

(Geometrically, we can view M as the line determined by the origin and the point
(1,2), and M as the line determined by the origin and the point (2,1). Then
ﬂ(Ml) = ﬂ(MQ) = ]R, and Oéil(Ml) = Oéil(Mg) =0, but M, 7& Ms in R@R) [l

Exercise (16.36) . — Let R be a ring, ai,...,a, ideals such that each R/a; is a
Noetherian ring. Prove (1) that @ R/a; is a Noetherian R-module, and (2) that,
if (N a; =0, then R too is a Noetherian ring.

Solution: Any R-submodule of R/a; is an ideal of R/a;. As R/a; is a Noetherian
ring, such an ideal is finitely generated as an (R/a;)-module, so as an R-module as
well. Thus R/a; is a Noetherian R-module. So € R/a; is a Noetherian R-module
by (16.14). Thus (1) holds.

To prove (2), note that the kernel of the natural map R — [[ R/a; = @ R/q; is
() a;, which is 0 by hypothesis. Hence R can be identified with a submodule of the
Noetherian R-module @ R/a;. So R itself is a Noetherian R-module by (16.13)(2).
So R is a Noetherian ring by (16.11). Thus (2) holds. O

Exercise (16.37) . — Let R be a ring, and M and N modules. Assume that N is
Noetherian and that M is finitely generated. Show that Hom(M, N) is Noetherian.

Solution: Say M is generated m elements. Then (4.10)(1) yields a surjection
R®™ — M. Tt yields an inclusion Hom(M, N) < Hom(R™, N) by (5.11)(1). But
Hom(R®™, N) = Hom(R, N)®™ = N®™ by (4.13.2) and (4.3). Further, N®™ is
Noetherian by (16.14). Thus (16.13)(2) implies Hom(M, N) is Noetherian. O

Exercise (16.38) . — Let R be a ring, M a module. If R is Noetherian, and M
finitely generated, show S~1D(M) = D(S~1M).
Solution: Use the map o in (12.19) twice to form this diagram:

M DD Hom(Hom(M, R), R) —**— S~' Hom(Hom(M, R), R)

[ |-

—1 *
s7im 2E 0 Hom(Hom(S™'M, S'R), ST'R) 2> Hom(S~' Hom(M, R), S~'R)
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It commutes, as ((opusD(M))(m))(a/s) = a(m)/s = ((c*D(S™*M)pus)(m))(a/s)
where m € M and o € Hom(M, R) and s € S.

Assume R is Noetherian, and M finitely generated. Then Hom (M, R) is finitely
presented by (16.37) and (16.15). So (12.19) implies that, in the diagram, o and
o* are isomorphisms. Hence S™'D(M) = oc=1o*D(S71 M), as desired. O

Exercise (16.39) . — Let R be a domain, R’ an algebra, and set K := Frac(R).
Assume R is Noetherian. Prove the following statements.

(1) [2, Thm. 3] Assume R’ is a field containing R. Then R’/R is algebra finite if
and only if K/R is algebra finite and R'/K is (module) finite.

(2) [2, bot. p.77] Let K’ D R be a field that embeds in R’. Assume R'/R is
algebra finite. Then K/R is algebra finite and K’'/K is finite.

Solution: For (1), first assume R'/R is algebra finite. Now, R C K C R'. So
R'/K is algebra finite. Thus R'/K is (module) finite by (15.4) or (16.19), and so
K/R is algebra finite by (16.17).

Conversely, say x1,...,z,, are algebra generators for K/R, and say yi,...,Yn
are module generators for R'/K. Then clearly x1,...,Zm,y1,...,Ys are algebra
generators for R'/R. Thus (1) holds.

For (2), let m be any maximal ideal of R', and set L := R’/m. Then L is a field,
RC K CK'CL,and L/R is algebra finite. So K/R is algebra finite and L/K is
finite by (1); whence, K’/K is finite too. Thus (2) holds. O

Exercise (16.40) . — Let R be a domain, K := Frac(R), and = € K. Show:

(1) If z is integral over R, then there’s a nonzero d € R with dz™ € R for n > 0.
(2) If there’s a d as in (1) and if R is Noetherian, then x is integral over R.

Solution: Set R’ := R[z]. For (1), assume z is integral. Then (10.14) implies R’
is module finite, say generated by y; = x;/d; for i = 1,...,m with z;, d; € R — (0).
Set d :=[]*, d;. Then dy; € R for all i, so dR' C R. Thus dz™ € R for all n > 0.
For (2), assume R is Noetherian. Given d € R as in (1), note dR' C R; so
R’ C (1/d)R. But (1/d)R is a finitely generated module, so Noetherian by (16.11).
Hence R’ is module finite. Thus z is integral by (10.14). Thus (2) holds. O

Exercise (16.41) . — Let k be a field, V' a vector space. Show these statements
are equivalent: (1) V is finite dimensional; (2) V' is Noetherian; (3) V' is Artinian.

Solution: Assume (1). Then any ascending or descending chain of subspaces
V; of V stabilizes, as dim(V7), dim(V3), dim(V3),... stabilizes. Thus (2) and (3)
hold.

Conversely, assume (1) doesn’t hold. Construct a chain Vo G V1 G Vo G ---
of subspaces with dim(V;) = i: set Vj = 0; given V;, there’s v;41 € V —V; as
dim(V) = oo; let V;11 be the subspace generated by V; and v;11. Obviously,
dim(V;41) =i+ 1. Now, by (16.11), the chain shows (2) doesn’t hold.

Note the v; are linearly independent. For j > 1, let W} be the subspace generated
by vj,vj41,.... Then Wiy 2 W5 2 ---. Thus by (16.21), (3) doesn’t hold too. O

Exercise (16.42) . — Let k be a field, R an algebra, M an R-module. Assume M
is finite dimensional as a k-vector space. Prove M is Noetherian and Artinian.

Solution: Plainly, if M is Noetherian or Artinian as a k-vector space, then it is
so as an R-module. Thus (16.41) yields the assertion. O
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Exercise (16.43) . — Let R be a ring, and my, ..., m, maximal ideals. Assume
my---m, =0. Setag:= R,and for 1 <i <m,seta; :=my---m;and V; := a;,_1/0a;.
Using the a; and V;, show that R is Artinian if and only if R is Noetherian.

Solution: Note that each V; is also a vector space over R/m,;.

Assume R is Noetherian. Fix ¢ > 1. Then q; is finitely generated. So V; is finitely
generated. So dim(g/m,)(Vi) < oo. Hence V; is Artinian over R by (16.42). But
Vi := a;—1/a;. Hence, if a; is Artinian, so is a;_1 by (16.22)(2). But a,, = 0. Thus
a; is Artinian for all 7. But ayp = R. Thus R is Artinian.

Conversely, assume R is Artinian. Fix ¢ > 1. Then a; and V; are Artinian by
(16.22)(2). So V; is Noetherian owing to (16.42). But V; := a,_1/a,;. Hence, if a;
is Noetherian, so is a;—1 by (16.13)(2). But a,, = 0. Thus a; is Noetherian for all
i. But ag = R. Thus R is Noetherian. [l

Exercise (16.44) . — Fix a prime number p. Set M,, :={q € Q/Z | p"q =0} for
n > 0. Set M :=|JM,. Find a canonical isomorphism Z/{p") = M,,. Given a
proper Z-submodule N of M, show N = M, for some n. Deduce M is Artinian,
but not Noetherian. Find Ann(M), and deduce Z/ Ann(M) is not Artinian.

Solution: Let x: Q — Q/Z be the quotient map. Given = € Q, note that
r € k1M, if and only if p"z € Z. Define a: Z — Q by a(m) := m/p™. Then
a(Z) = k= tM,. So ka: Z — M, is surjective. But (ka)~10 = k~1Z = (p"). Thus
ko induces the desired isomorphism Z/(p") == M,,.

Given ¢ € N, write ¢ = k(n/p®) where n is relatively prime to p. Then there’s
m € Z with nm = 1 (mod p°). So N 3> mr(n/p°) = k(1/p°®). Hence N D M,.
Since N # M, there’s a largest such e; denote it by n. Thus N = M,,.

Let M D Ny D Ny D --- be a descending chain of submodulles. Then N; = M,
for some n;. Moreover, the sequence n; > ny > --- stabilizes; say n; = n;p1 = ---.
So N; = N;y1 = ---. Thus M is Artinian.

The ascending chain My C My C --- doesn’t stabilize, Thus M isn’t Noetherian.

Given m € Ann(M), note m/p™ € Z for all n. So m = 0. Thus Ann(M) = 0.

So Z/ Ann(M) = Z. But the descending chain Z O (p) D (p?) D --- doesn’t
stabilize. Thus Z isn’t Artinian. O

Exercise (16.45) . — Let R be an Artinian ring. Prove that R is a field if it is a
domain. Deduce that in general every prime ideal p of R is maximal.

Solution: Take any nonzero element x € R, and consider the chain of ideals
(r) D (2%) D ---. Since R is Artinian, the chain stabilizes; so (z¢) = (x¢T!) for
some e. Hence z¢ = az®"! for some a € R. If R is a domain, then we can cancel to
get 1 = ax; thus R is then a field.

In general, R/p is Artinian by (16.22)(2). Now, R/p is also a domain by (2.8).
Hence, by what we just proved, R/p is a field. Thus p is maximal by (2.13). O

Exercise (16.46) . — Let R be a ring, M an Artinian module, «: M — M an
endomorphism. Assume « is injective. Show that « is an isomorphism.

Solution: Consider the chain M D a(M) D --- D a™(M) D - --. It stabilizes: say
a™(M) = a™tY(M). So given m € M, there is m’ € M with a"*(m’) = a™(m).
But « is injective. So a(m’) = m. Thus « is surjective, so an isomorphism. O

Exercise (16.47) . — Let R be a ring; M a module; Ny, Ny submodules. If the
M /N; are Noetherian, show M /(N1 N Ng) is too. What if the M/N; are Artinian?
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Solution: The canonical map M/(N; N Ny) — M/Ny; & M/Ns is injective. If
the M/N; are Noetherian, so is its target by (16.14); whence, by (16.13)(2), its
source is Noetherian too.

Similarly, if the M/N; are Artinian, so is M /(N1 N N2) by (16.22)(3),(2). O

16. Appendix: Noetherian Spaces

Exercise (16.51) . — Let R be a ring. Show:
(1) Define V by a — V(a) = Spec(R/a). Then V is an inclusion-reversing
bijection from the radical ideals a of R onto the closed subspaces of Spec(R).
(2) V gives a bijection from the primes onto the irreducible closed subspaces.
(3) V gives a bijection from the minimal primes onto the irreducible components.

Solution: Assertion (1) follows immediately from the first part of (13.1).

For (2), note that Spec(R/a) is irreducible if and only if nil(R/a) is prime by
(16.49). Plainly, nil(R/a) is prime if and only if a is. Thus (2) holds.

Finally, (2) implies (3), as the irreducible components are closed by (16.50)(5),
so are just the maximal irreducible closed subspaces, but V is lattice-inverting. [

Exercise (16.56) . — Let R be a ring. Prove the following statements:

(1) Spec(R) is Noetherian if and only if the radical ideals satisfy the acc.
(2) If Spec(R) is Noetherian, then the primes satisfy the acc.
(3) If R is Noetherian, then Spec(R) is too.

Solution: For (1), note that, owing to (16.51)(1), the radical ideals satisfy the
acc if and only if the closed sets satisfy the dcc, that is, Spec(R) is Noetherian.
Thus (1) holds. Plainly, (1) immediately implies (2) and (3). O

Exercise (16.61) . — Let X be a topological space, Y and Z constructible subsets,
¢: X’ — X a continuous map, A C Z an arbitrary subset. Prove the following:

(1) Open and closed sets are constructible.

(2) YU Z and Y N Z are constructible.

(3) ¢~ 1Y is constructible in X'.

(4) A is constructible in Z if and only if A is constructible in X.

Solution: For (1), given an open set U and a closed set C, note U = UN X and
C =X nNC. But X is both closed and open. Thus (1) holds.

For (2),say Y =J(U; N C;) and Z = |J(V; N D,) with U; open and C; closed.
Plainly YU Z is constructible. And Y NZ =J; ;(U;NC;)N(V;NDy). But U;NV;
is open, and C; N D; is closed. Thus Y N Z is constructible. Thus (2) holds.

For (3), say Y = J(U; N C;) with U; open in X and C; closed in X. Then
e Y = U Ui Np~1C;). But ¢ 1U; is open in X', and ¢~V is closed in X'.
Thus (3) holds.

For (4), first assume A is constructible in Z. Say A = J(W; N E;) with W;
open in Z and F; closed in Z. Say W; = U; N Z and E; = C; N Z with U; open in
X and C; closed in X. Set B := |J(U; N C;). Then B is constructible in X, and
A=BnNZ. So A is constructible in X by (2).

Conversely, assume A is constructible in X. Let ¢: Z — X be the inclusion.
Then p~tA = A. So A is constructible in Z by (3). Thus (4) holds. O
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Exercise (16.67) . — Find a non-Noetherian ring R with R, Noetherian for every
prime p.

Solution: Take R to be any non-Noetherian, absolutely flat ring, such as F}; see
(16.57). By (13.61), every R, is a field, so Noetherian. O

Exercise (16.68) . — Describe Spec(Z[X]).

Solution: The points of Spec(Z[X]) represent the prime ideals p of Z[X]. By
(2.20) and (2.40), the p are of three distinct types: either p = (0); or p = (F)
with F' € Z[X] prime; or p is maximal and not principal.

As to the topology, note Z[X] is Noetherian by (16.1) and (16.9). Now, for
any Noetherian ring R, the space Spec(R) is Noetherian by (16.56)(3). So every
subspace is also Noetherian by (16.53). Hence, by (16.54), the closed sets V are
the finite unions of irreducible closed subsets W of V. But plainly, these W are the
irreducible closed subsets of Spec(R) that lie in V. Thus by (16.51)(2), the closed
sets V' of Spec(R) are the finite unions of the sets V(p) with p C R prime.

Fix a prime p C Z[X]. If p = (0), then V(p) = Spec(Z[X]). Suppose p = (F)
with F prime. Let ¢: Z — Z[X] be the inclusion, and set ¢* := Spec(yp). If F is
a prime p of Z, then V(p) is the fiber of ¢* over the point of Spec(Z) representing
(p), as pNZ = (p). Otherwise, given a prime p € Z, the corresponding fiber of ¢*
is V({p)), and it intersects V(p) in V({p, F)) by (13.1.1). Plainly, the points of
this intersection, which represent the maximal ideals containing (p, F'), correspond
bijectively to the prime factors of the image of F' in (Z/pZ)[X].

Finally, suppose p is maximal and not principal. Then p = (p, G) with p € Z
prime and G € P prime by (2.20)(2). Hence, by the preceding case, V(p) is the
intersection of V(G) with the fiber of ¢* over the point representing (p). O

Exercise (16.69) . — What are the irreducible components of a Hausdorff space?

Solution: In a Hausdorff space, any pair of distinct points have disjoint open
neighborhoods. Thus every irreducible subspace consists of a single point. [

Exercise (16.70) . — Are these conditions on a topological space X equivalent?

(1) X is Noetherian.
(2) Every subspace Y is quasi-compact.
(3) Every open subspace V' is quasi-compact.

Solution: Yes, they’re equivalent; here’s why. If (1) holds, (16.53) implies Y is
Noetherian, and so quasi-compact; thus (2) holds. Trivially (2) implies (3).

Assume (3). Let Uy C U; C --- be an ascending chain of open subsets of
X. Set V := |JU,. Then V is open, so quasi-compact by (3). But the U, form
an open covering of V. So finitely many cover. Hence U,, = V for some m. So
Up C Uy C --- stabilizes. Thus (1) holds. d

Exercise (16.71) . — Let ¢: R — R’ a map of rings. Assume R’ is algebra finite
over R. Show that the fibers of Spec(p) are Noetherian subspaces of Spec(R’).

Solution: Given p € Spec(R), set k := Frac(R/p). Then the fiber over p is equal
to Spec(R' ®prk) by (13.28)(1). Since R'/R is algebra finite, R’ ® k is algebra finite
over k by (10.39)(3). Hence R’ ® k is Noetherian by (16.10). So Spec(R' ® k) is
Noetherian by (16.56)(3). O
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Exercise (16.72) . — Let M be a Noetherian module over a ring R. Show that
Supp(M) is a closed Noetherian subspace of Spec(R).

Solution: Since M is finitely generated, Supp(M) = V(Ann(M)) by (13.4)(3).
Thus Supp(M) is, by (13.1), a closed subspace of Spec(R).

Set R' := R/ Ann(M). Then V(Ann(M)) = Spec(R’') by (13.1.7). But R’ is
Noetherian by (16.16). So Spec(R’) is by (16.56)(3). Thus Supp(M) is. O

Exercise (16.73) . — Let X be a Noetherian topological space. Then a subset U
is open if and only if this condition holds: given a closed irreducible subset Z of X,
either U N Z is empty or it contains a nonempty subset that’s open in Z.

Solution: Assume U is open. Given a closed irreducible subset Z of X, note
U N Z is open in Z, whether empty or not. Thus the condition holds.

Conversely, assume the condition holds. Use Noetherian induction: form the set
8 of closed subsets C' of X with U N C not open in C. Assume 8§ # (. As X is
Noetherian, an adaptation of (16.4) yields a minimal element Z € 8.

Note that Z # () as U N Z is not open.

Suppose Z = Z1 U Z, with each Z; closed and Z; & Z. By minimality, Z; ¢ 8.
So UN Z; is open in Z;. So Z; — (U N Z;) is closed in Z;, so closed in X.

Set A:=Z—-(UNZ). Then ANZ; =27, —(UNZ;). So AN Z; is closed. But
A=(ANZ)U(ANZs). So Aisclosed. But UNZ =Z — A. SoU N Z is open in
Z, a contradiction. Thus Z is irreducible.

Assume U N Z isn’t empty. By the condition, U N Z contains a nonempty set V'
that’s open in Z. Set B := Z — V. Then B is closed in Z, so closed in X. Also
BS Z. SoB¢8. SoUNB isopen in B.

Set C:=Z—(UNZ). ThenCNB=B—-(UNB)as BC Z. ButCNB=C as
UNZ >V. Hence C'is closed in B, soclosedin X. Bt UNZ=2—-C. SoUNZ
is open in Z, a contradiction. Thus 8§ = (). Thus U is open in X, as desired. (]

Exercise (16.74) . — Let ¢: R — R’ a map of rings. Assume R is Noetherian
and R’ is algebra finite over R. Set X := Spec(R), set X’ := Spec(R'), and set
©* := Spec(p). Prove that ¢* is open if and only if ¢ has the Going-down Property.

Solution: If ¢* is an open mapping, then ¢ has the Going-down Property by
(13.38), whether or not R is Noetherian and R’ is algebra finite over R.

Conversely, assume ¢ has the Going-down Property. Given an open subset U’ of
X', set U := ¢o*U’ € X. We have to see that U is open.

Since R is Noetherian, X is too by (16.56)(3). So let’s use (16.73): given a
closed irreducible subset Z of X with U N Z nonempty, we have to see that U N Z
contains a nonempty subset that’s open in Z.

Since R is Noetherian and R’ is algebra finite, U is constructible by (16.66).
But UNZ # ). So owing to (16.64), we just have to see that U N Z is dense in Z.

Say pe UNZ and p = ¢~ 1p’ with p’ € U’. By (16.51)(2), Z = V(q) for some
prime q of R. Then q C p. But ¢ has the Going-down Property. So there’s a prime
q’ C p’ with ¢=1q' = q. But U’ is open. So q' € U’ by (13.16)(1). Thus q € U.

Finally, given any open set V of X with VN Z # ), sayv € VN Z. Then q C t.
So q €V by (13.16)(1). So VNU # 0. Thus U N Z is dense in Z, as desired. [

Exercise (16.75) . — Let ¢: R — R’ a map of rings, M’ a finitely generated R’'-
module. Assume R is Noetherian, R’ is algebra finite, and M’ is flat over R. Show
Spec(yp) is open.
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Solution: Set a’ := Ann(M’). Then Supp(M’) = V(a’) by (13.4)(3) as M’ is
finitely generated. Also V(a') = Spec(R'/d’) by (13.1.7). Let k: R' — R'/da’ be
the quotient map, and set 1 := k. Then ¥ has the Going-down Property by
(14.8). Thus by (16.74), Spec(¢)) is open.

Given an open set U C Spec(R'), set U’ := UNV(a’). Then Spec(y)(U’) is open
in Spec(R). But Spec(y)(U") = Spec(¢)(U). Thus Spec(yp) is open. O

Exercise (16.76) . — In the setup of (1.29), assume R is a field k. Show:

(1) Then the algebraic subsets of V' form the closed sets of a topology on V.
(2) Then there’s a well-defined map of sets

w: V — X :=Spec(k[V]) given by ¢(v):=my.

Further, ¢(V') consists of the points m € X with Frac(k[V]/m) = k; these m
are closed, and k[V]/m = k. Finally, ¢ is an embedding of topological spaces.

Solution: For (1), let V) be algebraic sets, v € k™ a point. Set I := )", I(Vy),
and let W be the common zeros of all F' € I. For any A, if v € W, then v is a
common zero of all F' € I(V)); hence, W C Vy. Thus W C (), V.

Conversely, if ve (), Vi, then v is a common zero of all ), F) where Fy € I.
So v € W. Thus (), Va = W. Thus any intersection of algebraic sets is algebraic.

Next, let U, W be algebraic sets. Plainly, every element of I(U)I(WW) vanishes
at every point of U U W. Conversely, let v € k™ be a point where every element of
I(U)I(W) vanishes. If every F' € I(U) vanishes at v, then v € U by (1.29)(2). If
not, then there’s F' € I(U) with F(v) # 0. But FG(v) =0 for all G € I(W), and
k is a field; so G(v) =0. Sove W. Sove UUW. Thus I(UUW) = I(U)I(W).
Thus, by induction, any finite union of algebraic sets is algebraic.

Recall from (1.29)(1) that &™ and ) are algebraic. Thus the algebraic sets form
the closed sets of a topology on k™. Moreover, as V NW is algebraic, the algebraic
subsets of V' form the induced topology on V. Thus (1) holds.

For (2) note (1.17)(2), (3) yield a surjection 7y : P — k given by my (F) := F(v)
with Kermry = (X1 —v1,..., X;n — Um). But F(v) =0if F € I(V). So 7y induces
a surjection 7l : k[V] — k by (1) and (1.5.1). Moreover, Ker 7, = m, by (1.9).
Thus m, consists of the f € k[V] such that f(v) = 0. Furthermore, m, is maximal
by (2.13), so prime by (2.15); thus ¢ is a well-defined map of sets.

Since my is maximal, it’s closed in X by (13.16)(2). Since k[V]/m, = k, also
Frac(k[V]/my) = k. Conversely, given m € X with Frac(k[V]/m) = k, notice the
composition k 7 k[V]/m < Frac(k[V]/m) an isomorphism; thus o is too.

For all 4, take v; € k where o(v;) is the residue of ;. Set v := (v1,...,v,,) € k™.
Note 7y (X;) := v;. Then 7, factors though o=1. So 7y (F) = 0 for all F € I(V).
But 7y (F) := F(v). Thus v € V. But z; —v; € m for all i. So m, C m.
But m, is maximal. Thus my = m. Thus ¢(V) consists of all the m € X with
Frac(k[V]/m) = k, and these m are closed.

Given v, w € V with m, = my,, note 7, = 7l,. But 7l (z;) = v; and 7l (z;) = w;
for all i. Thus v =w. Thus ¢ is injective.

Given an ideal a of k[V] and v € V, note that v € ¢~1V(a) if and only if
my := p(v) € V(a), if and only if my D a, if and only if g(v) = 0 for all g € a. So
0 1(V(a)) is the set of common zeros of all the G € P with residue g in a. But the
V(a) form the closed sets of the topology on X by (13.1). Thus ¢ is continuous.

Moreover, given an algebraic set W C V', note W is the set of common zeros of
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all the G € I(W) by (1). So taking a := I(W)/I(V) above yields W = o~ 1(V(a)).
So (W) =V(a)) Ne(V). So p(W) is closed in X. Thus ¢ is closed, continuous,
and injective, that is, an embedding of topological spaces. Thus (2) holds. (I

Exercise (16.77) . — Let X be a topological space, Y a dense subset. Show that
X is irreducible if and only if Y is irreducible.

Solution: If Y is irreducible, then X is irreducible by (16.50)(3).

Conversely, assume X is irreducible. Let U; and Us; be nonempty open sets in
Y. Then there are open sets Uj and U} in X with U/ NY = U; for each i. But
U] N U} is open, so nonempty as X is irreducible. But Y is dense. So there’s
xe (UNUHNY. So Uy NU;z # B. Thus Y is irreducible. O

Exercise (16.78) . — In the setup of (1.29), assume R is an algebraically closed
field k. Set X := Spec(k[V]) and owing to (16.75)(2), view V as a subspace of X.

Show: (1) Then V the set of closed points of X.
(2) Then V is very dense in X; see (15.39).
(3) Then V is irreducible if and only if X is, if and only k[V] is a domain.
(4) Define the dimension of a topological space S to be the sup of the lengths
of chains of its closed irreducible subsets, and denote it by dim S. Then

dimk[V] = dim X = dim V.

Solution: For (1), note that every point of V is closed in X by (16.76)(2).
Conversely, given a closed point m € X, note that the field k[V]/m is a finite
extension of k by the Zariski Nullstellensatz (15.4). But & is algebraically closed.
So k[V]/m = k. Thus, (16.76)(2) yields m € V, as desired.

For (2), notice k[V] is Jacobson by (15.37)(2). So X is Jacobson by (15.40).
Thus V is, by (15.39) and (1), very dense in X, as desired.

For (3), note that V is dense in X by (2); thus V is irreducible if and only if X
is by (16.77). Now, given f: V — k and v € V with f(v)* = 0 for some a > 1,
note that f(v) =0 as k is a field; so k[V] is reduced. Hence X is irreducible if and
only if k[V] is a domain by (16.49). Thus (3) is done.

For (4), note (16.51)(1), (2) yield a bijection between the chains po 2 -+ 2 pa
of primes of k[V] and the chains Xo & --- & Xy of closed irreducible subsets of X.
Thus by (15.9) (even if k isn’t algebraically closed) dim k[V] = dim X.

Next, as V is very dense in X by (2), a closed subset Y of X is equal to the
closure of the intersection YNV by (15.39). Moreover, Y is irreducible if and only
if YNV is by (16.77).

Therefore, given a chain X ; ; X4 of closed irreducible subsets of X,
setting V; := X; NV produces a chain of distinct closed irreducible subsets of
V. Thus dim X < dim V. Similarly, given a chain of closed irreducible subsets
Wy g e ; W, of V, their closures in X form a chain of distinct closed irreducible
subsets. Thus dim X > dim V. Thus dim X = dim V. Thus (4) is done. O

Exercise (16.79) . — In the setup of (1.30), let ¢: V' — W be a polynomial map
of algebraic sets. Assume R is an algebraically closed field k, and ¢*: k[W] — k[V]
makes k[V] a module-finite extension of k[WW]. Show ¢ is surjective.

Solution: Given w € W, note my, is maximal by (2.14). Apply (14.3)(3),(1) to
My ; they yield a maximal ideal m of k[V] with (¢*)"!m = my. So (15.5) yields a
point v € V with my, = m. So (1.30)(4) yields ¢(v) = w. Thus ¢ is surjective. O
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17. Associated Primes

Exercise (17.4) . — Let R be a ring, M a module, a C Ann(M) an ideal. Set
R’ := R/a. Let k: R — R’ be the quotient map. Show that p — p/a is a bijection
from Assp(M) to Assr/ (M) with inverse p’ — k= 1(p’).

Solution: Given p € Assg(M), say p = Anng(m). Then p D a. Set p’ := p/a.
Then p’ C R’ is prime, and p’ = Anng/(m). Thus p’ € Assp/(M); also k= p’ = p.

Conversely, given p’ € Assp/ (M), say p’ = Anng/(m). Set p := x~'p’. Then
p C R is prime, and p = Anng(m). Thus p € Assg(M); also p/a =p’. O

Exercise (17.21) . — Given modules My, ..., M,, set M := M; ®---® M,.. Prove
Ass(M) = Ass(M71) U --- U Ass(M,.).

Solution: Set N := My ® ---@® M,. Then N, My C M. Also, M/N = M. So
(17.6) yields

Ass(N), Ass(M;) C Ass(M) C Ass(N) U Ass(My).
So Ass(M) = Ass(IN) U Ass(M7). The assertion follows by induction on r. O

Exercise (17.22) . — Let R be a ring, M a module, M) for A € A submodules.
Assume M = J M. Show Ass(M) = J Ass(M)).

Solution: Note Ass(M)) C Ass(M) by (17.6). Thus Ass(M) D |J Ass(My).
Conversely, given p € Ass(M), say p = Ann(m) for m € M. Say m € M. Note
Annys, (m) = Annys(m). So p € Ass(M)y). Thus Ass(M) C |J Ass(M,y). O

Exercise (17.23) . — Take R :=Z and M := Z/(2) ® Z. Find Ass(M) and find
two submodules L, N C M with L + N = M but Ass(L) U Ass(N) G Ass(M).

Solution: First, we have Ass(M) = {(0), (2)} by (17.21) and (17.5)(2). Next,
take L :== R-(1,1) and N := R-(0,1). Then the canonical maps R — L and
R — N are isomorphisms. Hence both Ass(L) and Ass(N) are {(0)} by (17.5)(2).
Finally, L + N = M because (a,b) =a - (1,1) + (b—a) - (0,1). O

Exercise (17.24) . — If a prime p is sandwiched between two primes in Ass(M),
is p necessarily in Ass(M) too?

Solution: No, for example, let R := k[X,Y] be the polynomial ring over a field.
Set M := R (R/(X,Y)) and p := (X). Then Ass(M) = Ass(R) U Ass(R/(X,Y))
by (17.21). Further, Ass(R) = (0) and Ass(R/(X,Y)) = (X,Y) by (17.5)(2). O

Exercise (17.25) . — Let R be a ring, S a multiplicative subset, M a module, N
a submodule. Prove Ass(M/N®) D {p € Ass(M/N) | pN S = 0}, with equality if
either R is Noetherian or M /N is Noetherian.

Solution: First, given p € Ass(M/N) with pn S = 0, say p = Ann(m) with
m € M/N. Let m’ € M/N?® be its residue. Then m’ # 0; else, there’s s € S with
sm =0, so s € p, a contradiction. Finally, pm = 0, so pm’ = 0; thus p C Ann(m/).

Conversely, given x € Ann(m’), note am € NS/N. So there’s s € S with
stm = 0. So sx € p. But s ¢ p. So z € p. Thus p D Ann(m’). Thus p = Ann(m/).
Thus p € Ass(M/N¥).

Second, given p € Ass(M/N?), say p = Ann(m’) with m’ € M/N®. Lift m’ to
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m € M/N. Let’s show there’s no s € pN S. Else, sm € N¥/N. So there’s t € S
with tsm = 0. So m € N¥/N. So m’ =0, a contradiction. Thus p N S = ().

It remains to show p € Ass(M/N) if R is Noetherian or M/N is. Either way,
R/ Ann(M/N) is Noetherian by (16.7) or by (16.16). So there are finitely many
x; € p that generate modulo Ann(M/N). Then xz;m € N°/N. So there’s s; € S
with s;z;m = 0. Set s := [[s; € S. Then x;(sm) = 0. Given & € p, say
x =a+ Y ax; with a € Ann(M/N) and a; € R. Then a, z; € Ann(sm). So
x € Ann(sm). Thus p C Ann(sm).

Conversely, given x € Ann(sm), note xsm’ = 0. So xs € p. But s ¢ p. So z € p.
Thus p D Ann(sm). Thus p = Ann(sm). Thus p € Ass(M/N), as desired. O

Exercise (17.26) . — Let R be a ring, and suppose R, is a domain for every prime
p. Prove every associated prime of R is minimal.

Solution: Let p € Ass(R). Then pR, € Ass(R,) by (17.8). But R, is a domain.
So pR, = (0) by (17.5)(2). Thus p is a minimal prime of R by (11.12)(2).

Alternatively, say p = Ann(z) with = € R. Then z/1 # 0 in R,; otherwise, there
would be some s € S, := R —p with sz = 0, contradicting p = Ann(z). However,
for any y € p, we have xy/1 = 0in R,. Since R, is a domain and since x/1 # 0, we
must have y/1 =0 in R,. So there exists some ¢ € S, such that ty = 0. But, p D q
for some minimal prime q by (3.16). Suppose p # q. Then there is some y € p —q.
So there exists some ¢t € R — p with ty = 0 € q, contradicting the primeness of q.
Thus p = q; that is, p is minimal. ]

Exercise (17.27) . — Let R be a ring, M a module, N a submodule, x € R.
Assume that R is Noetherian or M/N is and that « ¢ p for all p € Ass(M/N).
Show aM NN =zN.

Solution: Trivially, N C oM (| N. Conversely, take m € M with xm € N. Let
m’ be the residue of m in M/N. Then zm' = 0. By (17.11), = ¢ z.div(M/N). So
m' =0. Som € N. Soxm € xN. Thus M (N C xN, as desired. O

Exercise (17.28) . — Let R be a ring, M a module, p a prime. Show (1)—(3) are
equivalent if R is Noetherian, and (1)—(4) are equivalent if M is Noetherian:

(1) p is a minimal prime of M. (2) p is minimal in Supp(M).

(3) p is minimal in Ass(M). (4) p is a minimal prime of Ann(M).

Solution: First off, (1) and (2) are equivalent by definition, (13.5), which has
no Noetherian hypotheses.

Assume (2). Then under either Noetherian hypothesis, p € Ass(M) by (17.14).
Say p D q with q € Ass(M). Then q € Supp(M) by (17.13), which has no
Noetherian hypothesis. So p = g by (2). Thus under either hypothesis, (3) holds.

Assume (3). Then p € Supp(M) by (17.13) with no Noetherian hypotheses.
Say p D p’ with p’ € Supp(M). Then under either Noetherian hypothesis, p’ D q
with g € Ass(M) by (17.14). So p =p’ = q by (3). Thus under either Noetherian
hypothesis, (2) holds.

Finally, if M is finitely generated, then (1) and (4) are equivalent by (13.5).
Thus, if M is Noetherian, then (1)—(4) are equivalent. O

Exercise (17.29) . — Let R be a ring, a an ideal. Assume R/a is Noetherian.
Show the minimal primes of a are associated to a, and they are finite in number.
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Solution: Set M := R/a. Then a = Ann(M). Thus the minimal primes of a are
associated to a by (17.28), and they are finite in number by (17.17). O

Exercise (17.30) . — Let M a Noetherian module. Show that Supp(M) has only
finitely many irreducible components Y.

Solution: By (16.51)(3), these Y are the V(p) where p is a minimal prime of
Ann(M). So they’re finite in number by (17.29). d

Exercise (17.31) . — Take R := Z and M := Z in (17.16). Determine when
a chain 0 C M; G M is acceptable —that is, it’s like the chain in (17.16) —
and show that then py ¢ Ass(M).

Solution: If the chain is acceptable, then M; # 0 as M;/0 ~ R/py, and M is a
prime ideal as M; = Ann(M/M;) = py. Conversely, the chain is acceptable if M;
is a nonzero prime ideal p, as then M;/0 ~ R/0 and M/M; ~ R/p.

Finally, Ass(M) = 0 by (17.5)(2). Further, as just observed, given any accept-
able chain, ps = M7 # 0. Thus ps ¢ Ass(M). O

Exercise (17.32) . — Take R := Z and M := Z/(12) in (17.16). Find all three
acceptable chains, and show that, in each case, {p;} = Ass(M).

Solution: An acceptable chain in M corresponds to a chain
(12) C (a1) C {a2) C--- C (an) = Z.

Here (a1)/(12) ~ Z/(p1) with p; prime. So a;p; = 12. Hence the possibilities are
p1 =2, a1 =6 and p; = 3, a; = 4. Further, {(as)/{a1) ~ Z/(p2) with py prime. So
asps = ay. Hence, if a; = 6, then the possibilities are po = 2, as = 3 and py, = 3,
as = 2; if a; = 4, then the only possibility is po = 2 and ay = 2. In each case, as is
prime; hence, n = 3, and these three chains are the only possibilities. Conversely,
each of these three possibilities, clearly, does arise.

In each case, {p;} = {(2), (3)}. Hence (17.16.1) yields Ass(M) C {(2), (3)}. For
any M, if 0 C My C --- C M is an acceptable chain, then (17.6) and (17.5)(2)
yield Ass(M) D Ass(My) = {p1}. Here, there’s one chain with p; = (2) and another
with p; = (3); hence, Ass(M) D {(2), (3)}. Thus Ass(M) = {(2), (3)}. O

Exercise (17.33) . — Let R be a ring, M a nonzero Noetherian module, z,y € R
and a € rad(M). Assume a” +x € z.div(M) for all » > 1. Show a+zy € z.div(M).

Solution: Recall z.div(M) = Upeass(ary P by (17.11), and Ass(M) is finite by
(17.17). So the Pigeonhole Principle yields » > s > 0 and p € Ass(M) with
a"+x, a®*+x € p. Say p = Ann(m). Then (a"* — 1)a®*m = 0. So a®*m = 0 by
(4.15). So a® € p. Hence a, x € p. Thus a+zy € p C z.div(M). O

Exercise (17.34) (Grothendieck Group Ko(R)) . — Let R be a ring, C a subcat-
egory of ((R-mod)) such that the isomorphism classes of its objects form a set A.
Let C be the free Abelian group Z®*. Given M in €, let (M) € A be its class. To
each short exact sequence 0 — M; — Ms — M3 — 0 in €, associate the element
(M) — (My) — (M3) of C. Let D C C be the subgroup generated by all these
elements. Set K(C) := C/D, and let ye: C' — K(C) be the quotient map.

In particular, let N be the subcategory of all Noetherian modules and all linear
maps between them; set Ko(R) := K(N) and g := vn. Show:
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(1) Then K(€) has this UMP: for each Abelian group G and function A\: A - G
with A(Msz) = A(M7) + M(M3) for all exact sequences as above, there’s an
induced Z-map Ag: K(C) — G with A(M) = Ao(ye(M)) for all M € C.

) Then Ky(R) is generated by the various elements v (R/p) with p prime.

) Assume R is a Noetherian domain. Find a surjective Z-map « : Ko(R) — Z.

) Assume R is a field or a PID. Then Ky(R) = Z.

) Assume R is Noetherian. Let ¢: R — R’ and ¢: R’ — R"” be module-
finite maps of rings. Then (a) restriction of scalars gives rise to a Z-map
o1 Ko(R') = Ko(R), and (b) we have (¢p)1 = p1ifr.

Solution: In (1), A induces a Z-map X : C — G by (4.10). But by hypothesis,
A(M3) = AM(My) + AM(M3); so D C Ker(N'). Thus (4.6) yields (1).

For (2), note (17.16) provides a chain0 = My C My C--- C M1 C M, =M
where M;/M; 1 ~ R/p; with p; prime. Then ~o(M;) — vo(M;-1) = y0(R/pi). So
Yo(M) = >0 (R/p;). Thus (2) holds.

For (3), set K := Frac(R), and define A\: A — Z by A(M) := dimg (K @ M).
Given a short exact sequence 0 — M; — My — M3 — 0, note that the sequence
0 KM — K®M, - K®M; — 0 is also exact by (11.2), (12.10), and
(12.13); so A(M3) = M(My) + A(M3). So X induces a Z-map Ag: Ko(R) — Z by
(1). But A\g(R™) =n and R™ € N by (16.14); so A is surjective. Thus (3) holds.

In (4), given a prime p, say p = (p). If p # 0, then p, : R — p is injective, so an
isomorphism. But 0 — p — R — R/p — 0 is exact. Hence vo(R/p) = 0if p # 0,
and yo(R/p) = (R) if p = 0. So vo(R) generates Ky(R) by (2). Thus (3) yields (4).

In (5), as R is Noetherian, R’ and R” are too by (16.10). But, over a Noetherian
ring, a module is Noetherian if and only if it is finitely generated by (16.15). Thus
we need consider only the finitely generated modules over R, R’, and R".

Via restriction of scalars, each finitely generated R’-module is a finitely generated
R-module too by (10.16). So restriction of scalars induces a function from the
isomorphism classes of finitely generated R’-modules to Ko(R). Plainly, restriction
of scalars preserves exactness. Thus (1) yields (a).

For (b), recall that R” is module finite over R by (10.17)(3). So (3¢p) is
defined. Plainly, restriction of scalars respects composition. Thus (b) holds. O

Exercise (17.35) (Grothendieck Group K°(R)) . — Keep the setup of (17.34).
Assume R is Noetherian. Let F be the subcategory of ((R-mod)) of all finitely
generated flat R-modules M and all linear maps between them; set K°(R) := K ()
and 7° := 5. Let o: R — R’ and ¢: R’ — R” be maps of Noetherian rings. Show:

(1) Setting v°(M)¥°(N) := v°(M®N) makes K°(R) a Z-algebra with v°(R) = 1.

(2) Setting v°(M)vo(L) := vo(M ® L) makes Ko(R) a K°(R)-module.

(3) Assume R is local. Then K°(R) = Z.

(4) Setting ' (M) := +°(M ®pr R') defines a ring map ¢': K°(R) — K°(R').

Moreover, ()" = @'
(5) If p: R — R’ is module finite, then ¢: Ko(R') — Ko(R) is linear over K°(R).

(2
(3
(4
(5

Solution: In (1), by construction K°(R) is a Z-module. Given two finitely
generated, flat R-modules M and N, note that M ® N is finitely generated owing
to (8.16), and is flat owing to (9.24) and (8.5)(2). As M is flat, M ® e is exact.
So by (17.34)(1) with G := K°(R), the function N — M ® N induces a Z-map
K°R) — K°(R); in other words, v°(M ® N) depends only on v°(N).

Similarly, as N is flat, M — M ® N induces a Z-map K°(R) — K°(R); in other
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words,, Y'(M ® N) depends only on v°(M). Setting v°(M)7°(N) := 7°(M @ N)
thus gives K°(R) a well-defined two-sided distributive product. It’s associative by
(8.8)(1). It’s commutative by (8.5)(1). And v°(R) = 1 by (8.5)(2). So (1) holds.

To prove (2), argue as in (1) with one major difference: since L needn’t be flat,
given a short exact sequence 0 — M; — My — M3 — 0 where M3 is flat, note that
0—-M®L— My®L — Ms®L — 0 is also exact by (9.8)(1).

For (3), recall that, as R is Noetherian, any finitely generated module is finitely
presented by (16.15). Hence any finitely generated, flat M is free by (10.12), so
M =~ R™ for some n > 0. Thus 7°(R) generates K°(R) as a Z-algebra.

Consider the function R™ — n; it passes to the isomorphism classes of the R™ by
(10.5)(2) or (5.32)(2). Given a short exact sequence 0 — R™ — R™ — R"* — (),
note R" ~ R™ @ R™ by (5.16)(2) and (5.15); so ns = ny + n3. Hence arguing
as in (17.34)(1) shows that this function induces a Z-map \°: K°(R) — Z. But
X(7°(R)) =1, and 7°(R) generates K°(R). Thus (3) holds.

For (4), note that if M is finitely generated over R, then M ®p R’ is finitely
generated over R’ by (8.20), and if Mis flat over R, then M ®p R’ is flat over R’
by (9.22). Moreover @ @ R’ preserves exactness by (9.8). Hence M — M ®pr R’
defines a map ¢': K°(R) — K°(R'). Moreover, 1" (M) = (¢Yp)' (M) as

(M ®R R/) ®R/ R// — M@R R//

by (8.9). Thus (4) holds.
For (5), note (M ®p R') @ L = M ®g L by (8.9)(1). So ¢1(¢'(v°(M))0(L))
is equal to v°(M)¢i(70(L)). Thus, by Z-linearity, (5) holds. O

18. Primary Decomposition

Exercise (18.6) . — Let ¢: R — R’ be a surjective ring map, M an R-module,
Q" G M’ two R'-modules, a: M —» M’ a surjective R-map, p’ a prime of R'. Set
p:=¢ Yp’) and Q := o~ 1Q’. Show Q is p-primary if and only if Q' is p’-primary.

Solution: Note M/Q = M'/Q" and Ker(p) C Ann(M/Q). Thus (17.4) implies
that Assgp(M/Q) = {p} if and only if Assp/(M’'/Q") = {p'}, as desired. O

Exercise (18.7) . — Let R be a ring, and p = (p) a principal prime generated by
a nonzerodivisor p. Show every positive power p” is old-primary and p-primary.
Show conversely, an ideal q is equal to some p™ if either (1) q is old-primary and
V4 =p or (2) R is Noetherian and q is p-primary.

Solution: First, note that Ann(R/p™) = p™. Thus nil(R/p™) = p by (3.32)(4).
Now, given z,y € R with zy € p” but y ¢ p, note p | xy, but pty. But p is prime.
Sop|x. Sox™ € p™. Thus p” is old-primary.

Let’s now proceed by induction to show p” is p-primary. Form the exact sequence

0—p"/p"t = R/p" T — R/p™ — 0.
Consider the map R — p™/p™*t! given by = + ap™. It is surjective, and its kernel
is p as p is a nonzerodivisor. Hence R/p —== p"/p"*tl. But Ass(R/p) = {p}
by (17.5)(2). Thus (17.6) yields Ass(R/p™) = {p} for every n > 1, as desired.

Conversely, assume (1). Then p = ,/q. So p" € q for some n; take n minimal.
Then p™ C q. Suppose there’s x € q — p™. Say x = yp™ for some y and m > 0.
Then m < n as « ¢ p™. Take m maximal. Now, p™ ¢ q as n is minimal. But q is
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M+l contradicting

old-primary. So y € q C p. So y = zp for some z. Then =z = zp
the maximality of m. Thus q = p™, as desired.
Finally, assume (2). Then Ass(R/q) = {p}. So q is old primary and ,/q = p by

(18.3)(5). So (1) holds. Thus by the above, q is equal to some p™. O

Exercise (18.25) . — Fix a prime p € Z. Set M := @, ,Z/(p") and Q := 0 in
M. Show @ is (p)-primary, but not old-primary (even though Z is Noetherian).

Solution: Set M, := @F_, Z/(p"). Then M = (J°, My. So (17.22) yields
Ass(M) = Uy, Ass(My,). But Ass(My) = U:zl Ass(Mpy) by (17.21). Moreover,
Ass(My) = {(p)} by (18.7). Thus Ass(M/Q) = {(p)}. Thus Q is (p)-primary.

Set m := (1,p, p?,...). Then pm =0 € Q, but m ¢ Q. And Ann(M) = (0). So
p ¢ nil(M/Q). Thus Q is not old-primary. O

Exercise (18.26) . — Let k be a field, and k[X, Y] the polynomial ring. Let a be
the ideal (X2, XY). Show a is not primary, but /a is prime. Show a satisfies this
condition: FG € a implies F? € a or G2 € a.

Solution: First, (X) is prime by (2.9). But (X?) C a C (X). So va = (X) by
(3.40). On the other hand, XY € a, but X ¢ aand Y ¢ /a; thus a is not primary
by (18.3)(5). If FG € a,then X | For X |G, s0 F? €aor G? € a. O

Exercise (18.27) . — Let R be PIR; q a primary ideal; p, t prime ideals. Show:
(1) Assume g Cp and t G p. Thent C q. (2) Assume v = ,/q S p. Then v = q.
(3) Assume v & p. Then t is the intersection of all primary ideals contained in p.
(4) Assume p and v are not comaximal. Then one contains the other.

Solution: As R is a PIR, there are p, r € R with p = (p) and v = (r).

For (1), note v G p implies = xp for some z € R, but p ¢ t. So as ¢ is prime,
x €t. So x = yr for some y € R. Thus (1 —yp)r =0 € q.

Note 1 —yp ¢ p. But q C p and p is prime, so \/q C p. Hence 1 —yp ¢ /4. So
r € q by (18.3)(5). Thus t C q, as desired. Thus (1) holds.

For (2), note vt = ,/q D q. But (1) yields vt C q. Thus v = q. Thus (2) holds.

For (3), note t is itself a primary ideal by (18.2). Thus (1) yields what’s desired.

For (4), note some prime m contains both p and v. But (3) implies m can
properly contain at most one prime. So if p and v are distinct, then one is equal to
m, and so contains the other, as desired. Thus (4) holds. O

Exercise (18.28) . — Let Z[X] be the polynomial ring, and set m := (2, X) and
q:= (4, X). Show m is maximal, q is m-primary, and q is not a power of m.

Solution: For any z € Z, form the map ¢, : Z[X]| — Z/(z) restricting to the
quotient map Z — Z/(z) and sending X to 0. Then Ker(y,) = (z, X). Therefore,
ZIX]/(z, X) = L/ (z).

Take z := 2. Then Z[X]/m = Z/(2). But Z/(2) is a field. Thus m is maximal.

Take z := 4. Then Z[X]/q = Z/(4). But 2 is the only nilpotent of Z/{4). So
m = nil(Z[X]/q); moreover, m?(Z[X]/q) = 0. Thus q is m-primary by (18.8)(2).

Finally, X ¢ m* for k > 1. But X € q. Thus q is not a power of m. O
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Exercise (18.29) . — Let k be a field, R := k[X,Y, Z] the polynomial ring in
three variables. Set p; := (X,Y), set ps := (X, Z), set m := (X,Y, Z), and set
a := pipy. Show that a = p; N py Nm? is an irredundant primary decomposition.
Which associated primes are minimal, and which are embedded?

Solution: Clearly a C p; Npy Nm2. Conversely, given F' € m?, write
F=G1X?+GoY? 4+ G32% + G4 XY + G5 XZ + GgY Z.

If F € py, then G3Z2 € py, so G3 € py1, so G3Z% € a. Similarly, if F € po, then
G2Y? € a. Thus a = p; Nps Nm2.

The p; are prime, so primary by (18.2), and m? is primary by (18.11). Thus
a=p; Npy Nm? is a primary decomposition.

The three primes py, p2, m are clearly distinct. Moreover, X € (p; Np2) —m? and
Y2 € (m?2Np;) —pso and Z2 € (m®>Npy) —p1. Thus a = p; Nps Nm? is irredundant.

Plainly, the p; are minimal, and m is embedded. (]

Exercise (18.30) . — Let k be a field, R := k[X,Y, Z] be the polynomial ring. Set
a:= (XY, X —YZ), set q1 := (X, Z) and set q2 := (Y2, X —YZ). Show that
a = g1 Mgz holds and that this expression is an irredundant primary decomposition.

Solution: First, XY =Y (X —YZ) +Y?2Z € q2. Hence a C q; N qo. Conversely,
take F' € q1 Nqe. Then F € g2, 50 F = GY? + H(X — Y Z) with G,H € R. But
Feqy,s0Geqy;say G=AX + BZ with A, B € R. Then

F=(AY + B)XY + (H - BY)(X — ZY) € a.

Thus a D g1 Ng2. Thus a = g1 N g2 holds.

Finally, q; is prime by (2.9). Let’s see g2 is primary. Form the k[Y, Z]-map
v: R — k[Y,Z] with p(X) :=YZ. So Ker(yp) = (X —YZ) by (1.17)(2). But
o HY?) = Y2 + Ker(p). Thus, g2 = ¢~ 1(Y?). Similarly, (X, Y) = ¢~ }(Y). But
(Y2) is (Y)-primary in k[Y, Z] by (18.7). Thus gz is (X, Y)-primary in R by (18.6).
Thus a = q; N g2 is a primary decomposition. It is irredundant as q; # (X,Y). O

Exercise (18.31) . — For i =1, 2, let R; be a ring, M; a R;-module with 0 C M;
primary. Find an irredundant primary decomposition for 0 C M; x M5 over Ry X Rs.

Solution: Set Q1 :=0 x M5 and Q2 := M; x 0. Then 0 = Q1 N Q>.

Say Assg, (M) = {p1}. Set Py :=p1 X Ry. Let’s show Q; is P;-primary.

Set R := Ry X Ry and M := M; x M. Note M/Qy = M; where M is viewed
as an R-module by (z,y)m = xm. Say p; = Anng, (my) with my € M;. Then
By = Anng(m). But P is prime by (2.29). Thus PB; € Assg(M/Q1).

Given any P € Assp(M/Q1), note P = p X Ry with p C Ry prime by (2.29).
But P = Anngr(m) with m € M;. So p = Anng,(m). So p € Assg, (M;). But
0 C M is py-primary. So p = p1. So Assg(M/Q1) = {P1}. Thus Q; is primary.

Similarly, @< is primary. Thus 0 = @1 N Q2 is a primary decomposition; plainly
it’s irredundant. O

Exercise (18.32) . — Let R be a ring, a an ideal. Assume a = y/a. Prove (1) every
prime p associated to a is minimal over a and (2) if R is Noetherian, then the
converse holds, and /a = ﬂpe Ass(R/a) P 1S an irredundant primary decomposition.
Find a simple example showing (1) doesn’t generalize to modules.
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Solution: By (3.17), v/a = (), px» where the p) are the minimal primes over a.

For (1), say p = Ann(x) with x € R/a and x # 0. So z ¢ p,/a for some A. Lift
x tox’ € R. Then 2’ ¢ py. Given y € p, note 2’y € p. So y € px. Thus p C py.
But p) is minimal. So p = py. Thus (1) holds.

For (2), assume R is Noetherian. Then the p) are associated to a and are finite in
number by (17.29). But primes are primary by (18.2). So v/a = ﬂpEAss(R/a) pis
a primary decomposition. It is irredundant, as py D) uA P would imply px D p,
for some p by (2.25)(1). Thus (2) holds.

Finally, for an example, take R to be any domain not a field, and m a maximal
ideal. Set k:= R/m and M := R@k. Then Ass(M) = Ass(R)UAss(k) by (17.21).
Further, Ass(R) = {(0)} and Ass(k) = {m} by (17.5)(2). Thus m is embedded.
But plainly Ann(M) = 0. Also, R is a domain. Thus Ann(M) = nil(M). |

Exercise (18.33) . — Let R be a ring, M a module. We call a proper submodule @
irreducible if Q = Ny N Nz implies @ = Ny or @ = Na. Prove: (1) an irreducible
submodule @ is primary if M/Q is Noetherian; and (2) a proper submodule N is
the intersection of finitely many irreducible submodules if M /N is Noetherian.

Solution: For (1), note that @ has an irredundant primary decomposition by
(18.19),say Q = Q1N---NQyp. As Q is irreducible, Q = Q1 or Q@ = Q2N+ -NQy,.
If the latter, then @ = Q; for some i > 2 by recursion. Thus (1) holds.

Alternatively, here’s a proof not using the existence of primary decompositions.
As @Q is irreducible in M, plainly 0 is irreducible in M/Q. And, if 0 is primary in
M/Q, then Q is primary in M by definition (18.1). Thus we may assume @ = 0.

Given z € R and a nonzero m € M such that zm = 0, let’s show = € nil(M).
Set My, :={m’ € M | z™m’ = 0}. Then M; C M C --- is a chain of submodules
of M. But M is Noetherian as Q = 0. So M,, = M, 11 = --- for some n > 1.

Given m’ € z"M N Rm, say m' = 2"m/ with m” € M. But m’ € Rm and
xm = 0, so zm/ = 0. Hence 2""'m"” =0, so m"” € M,,y;. But M, ,; = M,,. So
z™m” = 0. Thus m’ = 0.

Hence "M N Rm = 0. But Rm # 0 and 0 is irreducible. So ™M = 0. Thus
x € nil(M). So 0 is old-primary, so primary by (18.3)(4). Thus again (1) holds.

For (2), form the set 8 of all submodules of M that contain N and are not
an intersection of finitely many irreducible submodules. As M/N is Noetherian,
8 has a maximal element K. As K € §, it’s not irreducible. So K = K1 N Ko
with K g K;. So K; ¢ 8. So K; is an intersection of finitely many irreducible
submodules; hence, K is too. So K ¢ 8, a contradiction. Thus (2) holds. O

Exercise (18.34) . — Let R be a ring, M a module, N a submodule. Consider:
(1) The submodule N is old-primary.
(2) Given any multiplicative subset S, there is s € S with N° = (N : (s)).
(3) Given any z € R, the sequence (N : (z)) C (N : (x2)) C --- stabilizes.
Prove (1) implies (2), and (2) implies (3). Prove (3) implies (1) if N is irreducible.

Solution: Assume (1). To prove (2), note N¥ O (N : (s)) for all s € S.

First, suppose there’s s € nil(M/N)NS. Then there is k > 0 with s*M C N. So
(N : (s*)) = M. But s* € S. Hence N¥ > (N : (s*)) = M. Thus N¥ = (N : (s")).

Next, suppose nil(M/N)N S = (). Given m € N®, there is s € S with sm € N.
Som € N by (1). Thus N = N. So N° = (N : (1)). But 1 € S. Thus (2) holds.

Assume (2). To prove (3), note N5 > (N : (z*)) for all £. But (2) yields k
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with N9 = (N : (z*)). Hence (N : (%)) = (N : (zFt1)) = ... = N . Thus (3)
holds.

Assume (3). To prove (1), given x € Rand m € M — N with zm € N, we must
prove € nil(M/N). Note (3) gives k with (N : (z¥)) = (N : (z¥+1)). Let’s show

N =N'NN" with N':= N+ Rm and N” := N + 2" M. (18.34.1)

Trivially, N € N'N N". Conversely, given m’ € N'NN" note zm’ € N + Rxm.
But 2m € N. So zm/ € N. But m’ = n+ 2*m” with n € N and m” € M. So
xm/ = xn + 28 Im”. So 2¥tim” € N. Hence m” € (N : (xF+1)) = (N : (zF)).
Thus m’ € N. Thus (18.34.1) holds.

Also assume N is irreducible. Recall m ¢ N. Hence N + z*M = N owing to
(18.34.1). So z*M C N. So x € nil(M/N). Thus (1) holds. O

Exercise (18.35) . — Let R be a ring, M a Noetherian module, N a submodule,
m C rad(M) an ideal. Show N ={, 5,(m"M + N).

Solution: Set M’ := M/N and N’ :=[\m"M’. Then by (18.23), there’s x € m
with (1 +2)N’ = 0. But m C rad(M) C rad(M’). So N’ = 0 by (4.15). But
m" M’ = (m"M + N)/N. Thus ((m"M + N)) /N =0, as desired. O

18. Appendix: Old-primary Submodules

Exercise (18.45) . — Let ¢: R — R’ be a ring map, M an R-module, Q" G M’
R'-modules, a: M — M’ an R-map. Set Q := o~ '@Q’, and assume Q G M. Set
p:=nil(M/Q) and p’ := nil(M'/Q’"). If Q' is old-primary, show Q is and p~1p’ = p.
Conversely, when ¢ and « are surjective, show Q' is old-primary if Q is.

Solution: Assume Q' old-primary. Given x € z.div(M/Q), there’s m € M — Q
with zm € Q. Then a(m) € M' — Q' with a(zm) € Q'. But a(zm) = p(z)a(m).
As Q' is old-primary, ¢(z) € p’. So x € p~1p. Thus z.div(M/Q) C ¢~ 1p’.

Given z € p~1p’, there’s n with ¢(x)" € Ann(M’/Q’). So p(z)"a(m) € Q' for
all m € M. But ¢(z)"a(m) = a(z"m). So z"m € Q. So x € p. Thus ¢~ 1p’ C p.

Note p C z.div(M/Q) by (17.10.1). Thus p C z.div(M/Q) C o~ 'p’ C p. Thus
z.div(M/Q) = ¢~ p’ = p, and so (18.3)(1) implies Q is old-primary.

Conversely, assume ¢ and « are surjective and @ is old-primary. Given z’ € R’
and m’ € M' with 2'm’ € @', but m' ¢ Q’, take x € R with p(z) = 2’ and
m € M with a(m) = m’. Then a(zm) = 2'/m’. So zm € Q, but m ¢ Q. As Q
is old-primary, € p. So there’s n with 2™ € Ann(M/Q), or 2" M C Q. Hence
M C Q', or '™ € Ann(M’/Q"). Thus 2’ € p’. Thus Q’ is old-primary. O

Exercise (18.50) . — Let q C p be primes, M a module, and @ an old-primary
submodule with nil(M/Q) = q. Show 0% C Q.

Solution: Given m € 0%, there’s s € Sp with sm = 0. Then sm € @, but s ¢ q.
Som € Q. Thus 05 C Q. ]

Exercise (18.51) . — Let R be an absolutely flat ring, q an old-primary ideal.
Show that q is maximal.
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Solution: Set p := ,/q. Then p is prime by (18.3)(2). So (13.61) yields that p
is maximal and that R, is a field. So pR, = 0. Thus qR, = pR,.

Set S := S, := R—p. Then q° = p° by (11.11)(2)(b). But p = p¥ by
(11.11)(3)(a). Thus q° = p. So given = € p, there’s s € S with sz € q. But s ¢ p.
So = € q by hypothesis. Thus p C . But p is maximal. So p = q. Thus q is
maximal. (]

Exercise (18.52) . — Let X be an infinite compact Hausdorff space, R the ring of
continuous R-valued functions on X. Using (14.26), show that (0) is not a finite
intersection of old-primary ideals.

Solution: Every maximal ideal has the form m, := {f € R | f(x) = 0)} for some
x € X by (14.26)(1). Given an ideal q with ¢ C my N'm, but x # y, let’s now see
that q isn’t old-primary.

Given f € R, set Uy = {z € X | f(z) # 0}. By (14.26)(3), the Uy form a basis
of the topology. But X is Hausdorff, and = # y. So there are f,g with x € Uy and
y €Uy, but UsNU,; = 0. Then f ¢ m, and g" ¢ m, for all n. So f,¢" ¢ q. But
fg=0¢€q. Thus q isn’t old-primary.

Given finitely many old-primary ideals q;, say q; C m,,. As X is infinite, there’s
x € X with © # x; for all i. By the above, there’s f; € q; — m,. Set f =[] fi.
Then f € () q,, but f(z) # 0. Thus (0) # ) q;. O

Exercise (18.53) . — Let R be a ring, X a variable, N, Q C M modules, and
N =(i_; Q; a decomposition. Assume @ is old-primary. Assume N =()._, Q; is
irredundant; that is, (18.13)(1)—(2) hold. Show:

(1) Assume M is finitely generated. Let p be a minimal prime of M. Then p[X]

is a minimal prime of M[X].

(2) Then nil(M[X]/N[X]) = nil(M/N)[X].

(3) Then Q[X] is old-primary in M[X].

(4) Then N[X] =(,_, Q:[X] is irredundant in M[X].

Solution: For (1), note p is, by (13.5), a minimal prime of Ann(M) as M is
finitely generated. Thus p[X] D Ann(M)[X]. Now, given p[X] D B D Ann(M)[X]
with 9 prime, set p’ := PN R. Intersecting with R plainly gives p D p’ O Ann(M).
But p’ is prime. So p’ = p.

So p[X] D P D p/[X] = p[X]. So P = p[X]. Thus p[X] is a minimal prime of
Ann(M[X]). But M[X] is finitely generated over R[X]. Thus (13.5) yields (1).

For (2), note M[X]/N[X] = (M/N)[X] by (4.18)(3). Set a := Ann(M/N).
Then Ann(M[X]/N[X]) = a[X] by (4.19)(1). So nil(M[X]/N[X]) = \/a[X].
But \/a[X] = /a[X] by (3.44)(2) with R/a for R, as R[X]/a[X] = (R/a)[X] by
(1.16). Thus (2) holds.

For (3), set p := nil(M/Q). Then nil(M[X]/Q[X]) = p[X] by (2). Thus given
f € R[X] and m € M[X] with fm € Q[X] but m ¢ Q[X], we must see f € p[X].

Say f =ag+---+a, X" and m = mg+- - - + mgX? with d minimal among all m
with fm € Q[X] but m ¢ Q[X]. Suppose fmg ¢ Q[X]. Let’s find a contradiction.

Say a,mgq & Q, but a,;mg € Q fori > 0. Fix i > 0. Set m/ := a,4;(m—mgX?).
Then fm' € Q[X], as fm € Q[X] and a,+;mq € Q. Also deg(m’) < d. Hence the
minimality of d yields m’ € Q[X]. So a,4im4—; € Q. But i is arbitrary with ¢ > 0.
Also fm € Q[X], so armg + arr1mg—1+ -+ € Q. So a,myg € @, a contradiction.
Thus fmg € Q[X].
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Thus a;mg € Q for all i > 0. But myg ¢ Q. So all a; € p as Q is old-primary.
Thus f € p[X], as desired. Thus (3) holds.

For (4), suppose N[X] = [, ; Q:[X]. Intersecting with M yields N =3, , @,
a contradiction as N =, @; is irredundant. Thus N[X] # ), Q:[X].

Lastly, set p; := nil(M/Q;). The p; are distinct as N = [ Q; is irredundant. So
the p;[X] are distinct. But nil(M[X]/Q;[X]) = p:[X] by (2). Thus (4) holds. O

Exercise (18.54) . — Let k be a field, P := k[X1,...,X,] the polynomial ring.
Given 4, set p; := (X1, ..., X;). Show p; is prime, and all its powers are p; -primary.

Solution: First, p; is prime by (2.9). Now, set P; := k[X1,...,X;]. Let m; be its
ideal generated by Xy, ..., X;. Then m; is maximal in P; by (2.14). So each m!” is
old-primary by (18.9). Hence m*R is old-primary by repeated use of (18.53)(3).
Plainly, m"R = p* and /p7" = p; . But P is Noetherian by (16.10). Thus
(18.3)(4) implies p* is p; -primary. O

Exercise (18.55) . — Let R be a ring, p a prime, M a finitely generated module.
Set @ := 0% C M. Show (1) and (2) below are equivalent, and imply (3):

(1) nil(M/Q)=yp. (2) pis minimal over Ann(M). (3) Q is old-primary.
Also, if M/Q is Noetherian, show (1) and (2) above and (3') below are equivalent:
(3") Q is p-primary.

Solution: Assume (1). Then p D Ann(M/Q) DO Ann(M). Let q be a prime
with p D g D Ann(M). Given x € p, there’s n > 0 with "M C Q. Say my,...,m,
generate M. Then there’s s; € S, with s;2™m; = 0. Set s := [[s;. Then sz M = 0.
So sz™ € Ann(M) C q. But s ¢ q. So x € q. Thus p = q. Thus (2) holds.

Assume (2). Then (18.40) yields both (1) and (3).

Also, assume M /() is Noetherian. If (1) holds, then (3) holds, and so (18.3)(4)
yields (3). Conversely, (3') implies (1) by (18.3)(5), as desired. O

Exercise (18.56) . — Let R be a ring, M a module, ¥ the set of minimal primes
of Ann(M). Assume M is finitely generated. Set N := (1,5, 05». Show:

(1) Given p € ¥, the saturation 0% is the smallest old-primary submodule Q
with nil(M/Q) = p.

(2) Say 0 = N;_, Q; with the Q; old-primary. For all j, assume Q; 2 Nixj Qi-
Set p; :=nil(M/Q;). Then N = 0 if and only if {p1,...,p,} = 2.

(3) If M = R, then N C nil(R).

Solution: For (1), note nil(M/0% ) = p and 0°» is old-primary by (18.55). But
0% C Q for any old-primary @ with nil(M/Q) = p by (18.50). So (1) holds.

In (2), if {p1,...,p,} = %, then Q; D 0% for all i by (1), and thus N = 0.

Conversely, assume (), .y, 0% =: N = 0. But (18.49)(1) with N = 0 implies
¥ C {p1,...,p,}; so ¥ is finite. Also 0°% is old-primary for all p € ¥ by (1).

Given p € X, set ¥ := ¥ — {p}. Let’s show 0% 2 Nyes 0%a. If not, then (1)
and (18.37)(2) give

p = nil(M/0%) D nil(M/Nyesy 059) = Nyesr 4

so (2.25)(1) yields p D q for some q; but p is minimal, so p = ¢, a contradiction.

Thus 0% 5 Nyesr 0% for all p € ¥ . Hence both ¥ and {py,...,p,} are equal to
the set D(M) of (18.39) by (18.39)(4), so to each other. Thus (2) holds.
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For (3), given p € ¥, note p is old-primary by (18.2). So 05> C p by (1). Hence
N CNpexp. Thus (3.17) yields (3). O

Exercise (18.57) . — Let R be a ring, N & M modules. Assume there exists a
decomposition N = ﬂ:;l @; with the @; old-primary. Show that there are at most
finitely many submodules of M of the form N° where S is a multiplicative subset.

Solution: Set p; := nil(M/Q;). Then N¥ = (",.; Q; where I := {i | SNp; = @}
by (18.47). But there are at most 2™ subsets I C {1,...,n}.

Exercise (18.58) . — Let R be a ring, M a module, p € Supp(M). Fix m, n > 1.
Set (pM)™ = (p"M)%» and p™ = (p)(™. (We call p(™ the nth symbolic
power of p.) Assume M is finitely generated. Set N := p(™) (pM)™). Show:
(1) Then p is the smallest prime containing Ann(M /p™M).
(2) Then (pM)™ is old-primary, and nil(M/(pM)(”)) =p.
(3) Say p"M = (;_, Q; with Q; old-primary. Set p; := nil(M/Q;). Assume
p; = p if and only if i < t. Then (pM)™) = ﬂ::1 Q.
(4) Then (pM)™ = p™M if and only if p™M is old-primary.
(5) Let @ be an old-primary submodule with nil(M/Q) = p. Assume p is finitely
generated modulo Ann(M/Q). Then Q D (pM)™ if n > 0.
(6) Then NS = (pM)(™+7) and p is the smallest prime containing Ann(M/N).
(7) Say N = (\i_; Q; with all Q; old-primary. Set p; := nil(M/Q;). Assume
p; = p if and only if i < t. Then Q; = (pM)™*™) for some i.

Solution: For (1), note V(Ann(M/p"M)) = Supp(M/p™M) by (13.4)(3) and
Supp(M/p™" M) = Supp(M) NV (p™) by (13.46)(1). By hypothesis, p € Supp(M).
But p € V(p™). Thus p D Ann(M/p"M). However, any prime q that contains
Ann(M/p™M) contains p™, so contains p by (2.25)(1). Thus (1) holds.

Note (2) follows immediately from (1) and (18.40).

For (3), note (pM)™ = /_, Qf" by (12.12)(6)(a). But p is the smallest prime
containing Ann(M/p" M) by (1). And Q; D p" M, so Aun(M/Q;) D Aun(M/p™M).
So p; D p. So S, Np; # 0 for i > ¢. Hence Qf" = M for i > t by (12.23). Also
Q" = Q, for all i < ¢ by (18.43). Thus (3) holds.

In (4), if p»M = (pM)™, then p” M is old-primary by (2).

Conversely, assume p" M is old-primary. Note nil(M/p™M) = p owing to (1) and
(3.14). So p"M = (pM)™ by (18.43). Thus (4) holds.

For (5), note p"M C Q for n > 0 owing to (3.38). So (pM)(™) c Q5 for
n>> 0 by (12.12)(5)(a). But Q» = Q by (18.43). Thus (5) holds.

For (6), note N> = (pM)™™) as ((p™)% (pM)%)™ = (p+"M)5 by
(12.28). But N € N°%. So Ann(M/N) C M/ Ann(N*¥).

Given x € Ann(M/N), therefore tM C N% = (pM)(™+7). But M is finitely
generated. So there’s s € S, with sz M C p™*"M; that is, sz € Ann(M/p™T"M).
So sz € p by (1). But s ¢ p. So « € p. Thus p D Ann(M/N).

Note N D p™*t"M. So Ann(M/N) D> Ann(M/p™+™M). Hence any prime q
containing Ann(M/N) contains p™*" so contains p by (2.25)(1). Thus p is the
smallest prime containing Ann(M/N). Thus (6) holds.

Finally (7) follows from (6) in the same way that (3) follows from (1). O
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Exercise (18.59) . — Let R be aring, f € R, and N,Q1,...,Q, & M modules
with N = (N, Q; and the Q; old-primary. Set p; := nil(M/Q;) for all i. Assume
f € p; just for ¢ > h. Show ﬂ?lei = N9 = (N : (f)) for n>> 0.

Solution: First, note f € p; if and only if Sy Np; # 0. So S Np; = 0 just for
i < h. Thus (18.47)(1) yields Q; N---NQp = N5,

Second, note N57 =, oo(N : (f*)) and (N : (fP)) D (N : (f*)) for p > n. For
i > h, as f € p;, there’s n; with f™ € Ann(M/Q;). Then given n > max{n;} and
m € N9  note f"m € Q; for i > h, but m € N9 = ﬂ?zl Q;. So f"m € @Q; for all
i. Hence f"m € (), Qi = N. Som € (N : (f*)). Thus N5 C (N : (f)). Thus
NSr = (N : (f™), as desired. O

Exercise (18.60) . — Let R be a ring, p a prime ideal, M a Noetherian module.
Denote the intersection of all p-primary submodules by N. Show N = 0.

Solution: Set B := pR,. By (18.46) and (18.3)(4)~(5), K — ¢ K is bijective
from the ‘B-primary submodules K of M, onto the p-primary submodules of M.
So N = 5! (NK). But 0% = ¢ 10 by (12.12)(3)(a). So let’s prove (K = 0.

For n >0, set K, :== P" M, and Q,, := nilg, (M,/K,). Then Q, D B. But P is
maximal. Hence 9,, =B, unless Q,, = Rj.

Assume 9,, = R,. Then M, =‘B"M,. But R, is local, and P is maximal. So
M, = 0 by Nakayama’s Lemma (10.6). Thus (K = 0, as desired.

Assume ,, = P instead. Then P"(M,/K,) = 0. But *B is maximal. So K, is
P-primary by (18.8)(2). But (K, D (K. Moreover, by (18.23) there’s z € P
with (1 +2)((K,) = 0. But 1+ € Ry is a unit by (3.2), so (1K, = 0. Thus
again [ K = 0, as desired. O

Exercise (18.61) . — Let R be a ring, M a module, and py,...,p, € Supp(M)
distinct primes, none minimal in Supp(M). Assume M is finitely generated, and
(*) below holds (it does, by (18.60) and (18.3)(4)—(5), if M is Noetherian):
(*) For every prime p, the saturation 0% is equal to the intersection of all the
old-primary submodules @ with nil(M/Q) = p.
Show: (1) For 1 < i < n, assume p; 2 p,, and let Q; be an old-primary submodule
with Illl(M/Ql) =; and mj#i Qj ¢ Ql Set P := nj<n Qj' Then P ¢ OSPn.
(2) In the setup of (1), Then there is an old-primary submodule @,, such that
nil(M/Q,) = p, and P ¢ Q,,. Moreover, ﬂj# Q; ¢ Q; for all i.
(3) Owing to (2) and induction on n, there are old-primary submodules Q; for
i=1,...,n with nil(M/Q;) = p; and ﬂj# Q; ¢ Q; for all i.

Solution: For (1), suppose rather P C 0%n. Note p,, € Supp(M); so (13.4)(3)
yields p, D Ann(M). So by (8.16), p, contains a prime p minimal containing
Ann(M). Plainly 0%+ C 0% . So P C 0°¢. Thus nil(M/P) C nil(M/0%).

Note (., p; = nil(M/P) by (18.37)(2). As M is finitely generated, 0 is old-
primary and nil(M/0%%) = p by (18.40). Hence (Nicn Pi Cp. So p; C p for some ¢
by (2.25)(1). But p is minimal and p; is not, a contradiction. Thus (1) holds.

For (2), note 0% is the intersection of all the old-primary submodules @Q,, with
nil(M/Qn) = pn by (*). So by (1), there’s Q, with P ¢ Q,; that is, (), _,, Qi & Qn.

Suppose ﬂj# Q; C Q; for some i < n. Set L := ﬂj#’n Q;. Then L ¢ Q; by a
hypothesis in (1). So there’sl € L — Q;. Given x € p,,, there’s p with 2PM C Q,,.
Then 2Pl € LN Q,, = ﬂj# Q; C Qi. But I ¢ Q;. Soz? € p;. Sox € p;. Thus
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pn C P4, contradicting a hypothesis in (1). Thus (2) holds.

For (3), if n = 1, take Q; to be any of the submodules @ whose existence is
assured by (*) with p := p;. Assume n > 2. Reorder the p; so that p, ¢ p;
for ¢ < n. By induction, there are old-primary submodules Q1,...,Q,—1 with
nil(M/Q;) = pi and (;; Q; ¢ Qi for all i. Finally, (2) now yields (3). O

Exercise (18.62) . — Let R be a ring, M a module, @ an old-primary submodule.
Set q := Ann(M/Q). Show that q is old-primary.

Solution: Given z,y € R with zy € q but y ¢ q, there’s m € M with ym ¢ Q,
but zym € Q. But @ is old-primary. So x € nil(M/Q). But nil(M/Q) := /4, and
q = Ann(R/q); so nil(M/Q) = nil(R/q). Thus q is old-primary. O

Exercise (18.63) . — Let ¢: R — R’ be a ring map, and M an R-module. Set
M’ := M ®g R and a := 1) @ p. Let N' = (),_, Q; be a decomposition in M’
with each @} old-primary. Set N := a~!N’ and Q; := a~1Q}. Set p; := nil(M/Q;)
and p; :=nil(M'/Q}). Show:
(1) Then N = (;_, Q; with Q; old-primary, and p; = ¢~ 'p for all i.
(2) Assume R’ is flat and N = R'a(N). Assume N’ # (,; @; for all j, but
N = ﬂle Q; with t <. Fix t <4 <r. Then p; C p; for some j < t.

Solution: In (1), trivially N = 1 Q;. Now. R'a(Q;) C Q; & M’ for all 4, but
R'a(M) = M';s0 Q; G M. Thus (18.45) yields (1).

For (2), first assume N’ = R'a(N). Then the inclusion N < M induces a map
N ® R' — M’ with image N’. Thus (8.10) yields (M/N)® R' = M'/N’.

Assume R’ is flat too. Then every nonzerodivisor on M/N is also a nonzero-
divisor on M'/N’. But p; C z.div(M'/N’) by (18.37)(6). Hence every x € p; is
a zerodivisor on M/N. Thus p; C z.div(M/N). But z.div(M/N) C U;:1 p; by
(18.37)(5). Thus (3.12) yields the desired j. O

Exercise (18.64) . — Let R be a ring, a an ideal, M a module, 0 = (| Q; a finite
decomposition with @; old-primary. Set p; = nil(M/Q;). Show I'y(M) = ﬂu@i Q;.
(If a C p; for all 4, then (,,,, Q; = M by convention.)

Solution: Given m € I'y(M), recall a C (/Ann(m) by definition (4.14) of
To(M). Given i with a ¢ p;, take a € a — p;. Then there’s n > 0 with a™m = 0.
So a"m € @Q;. But Q; is old-primary. So m € @;. Thus m € mc@pi Q;.

Conversely, given m € ﬂu@i Qi, let a € a. Given j with a C p;, there’s n; with
a“m € Q; as p; = nil(M/Q;). Set n := max{n;}. Then a"m € Q; for all 7, if
a C p; or not. So a”m € (Q; =0. Thus a C /Ann(m), or m € I'y(M). O

Exercise (18.65) . — Let N, @Q; C M be R-modules with @; old-primary. Show:

(1) Assume N = (_, @;. Set p; = nil(M/Q;). Then N = _, ¢p," (Np, ).

(2) Assume M/N is Noetherian. Then (¢ g/ op ' (Ny) = N.

Solution: For (1), note go;il(Npi) = N5 by (12.12)(3)(a). So by (18.47)(1),
@;il(NPi) = npjcp,i Qj' Thus ﬂ::l @;}(Npi) = mi (ﬂpjcpi Q]) = mi Qz =N.

For (2), note N has an irredundant primary decomposition N = Q1N ---Q, by
(18.19). Say Q; is p;-primary. Then Ass(M/N) = {p1,...,p.} by (18.18). So
p; = nil(M/Q;) and Q; is old-primary for all ¢ by (18.3)(5). So (1) yields (2). O
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Exercise (18.66) . — Let ¢: R — R’ be a ring map, M’ an R’-module, M C M’
an R-submodule, and p € Dp(M). Assume 0 = (;_, @} with the @} old-primary
R'-submodules. Show there’s p’ € Dr/(M’) with ¢~ 1p’ = p.

Solution: Omit some Q) so 7 is minimal; then D/ (M) = {p}}7_, by (18.39)(4).
For all i, set p; := nil(M’/Q}) and p; := ¢~ 'p; and Q; := Q; N M. Say Q; 2 M
just for ¢ < ¢. Then 0 = ﬂ;zl Q;, with Q; old-primary and p, = nil(M/Q;) by
(18.45). So Dr(M) C {p1,...,p:} by (18.37)(4). Thus p = p; for some i O

Exercise (18.67) . — Let R be a ring, M a module, 0 = ()/_, Q; an old-primary
decomposition in M. Set p; := nil(M/Q;). Assume (;; @; # 0 for all 4, the p; are
distinct, M is finitely generated, and p; is finitely generated mod Ann(M). Show:

(1) Suppose that p; is minimal over Ann(M). Then Q; = (p M) for r > 0.

(2) Suppose that p; is not minimal over Ann(M). Then replacing Q1 by (p; M)
for r > 0 gives infinitely many distinct old-primary decompositions of 0, still
with (), @; # 0 for all i and the p; distinct. (Thus, when R is Noetherian,
then 0 has infinitely many irredundant primary decompositions, which differ
only in the first component.)

Solution: For (1), note that @ = 01 by (18.48) with N := 0 amd ¢ := 1.
But 0%1 O (py M) for r > 0 by (18.58)(5), and (p; M) is old-primary for
all » by (18.58)(2). Now, 091 is the smallest old-primary submodule @ with
nil(M/Q) = p1 by (18.56)(1). Thus (1) holds.

For (2), set p := p;. For a moment, assume (pM)(") = (pM)"+1) for some 7, or
what’s the same, (p"M)%» = (p"+*1M)% . Then p" M, = p" 1M, by (12.12)(3)(b).
Set A := R,. Then p""'M, = (pA)(p"M,). But p"M, is finitely generated as
p/ Ann(M) and M are. So p” M, = 0 by Nakayama’s Lemma. So p" A C Anny(M,).
Hence pA is minimal over Anna(M,). Hence p is, by (11.12)(2), minimal over
Anng (M), contrary to hypothesis. Thus the (pM)(") are distinct.

However, Q1 D (pM)(") for 7 > 0 by (18.58)(5). So 0 = (pM)")NQ2N---NQ,.
But (pM)") is old-primary by (18.58)(2). Thus replacing Q, by (pM)") for r > 0
gives infinitely many distinct old-primary decompositions of 0.

Fix r. Note nil(M/(pM)()) = p by (18.58)(2). Thus replacing Q; by (pM)(")
leaves the p; the same, so still distinct. Moreover, after replacement, if [ i Q;=0
for some 4, then by (18.39)(4), the set of p; for j # i would be the same as the set
of all p;, a contradiction. Thus (2) holds. O

Exercise (18.68) . — Let R be a ring, M a Noetherian module, 0 = ()_; Q; an
irredundant primary decomposition. Say Q1,...,Q are embedded; Qp11,...,Qr
are minimal. Say Q; is p;-primary for each 4, and set S := R — Jj_;,, p;- Show

the map ¢g: M — S~ M induces an injection 1): M/ ﬂ?:l Qi — S™IM.

Solution: Let p; be an embedded prime. Then p; contains a minimal prime p;,
and so p; S pj. So (R—p;)Np; #0. Sop; NS #0D. So 0° = ﬂ?zl Q; by (18.21).
But 0° = Ker(pg) by (12.12)(3)(a). Thus (4.6.1) yields v, as desired. O
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19. Length

Exercise (19.2) . — Let R be a ring, M a module. Prove these statements:

(1) If M is simple, then any nonzero element m € M generates M.

(2) M is simple if and only if M ~ R/m for some maximal ideal m, and if so,
then m = Ann(M).

(3) If M has finite length, then M is finitely generated.

Solution: Obviously, Rm is a nonzero submodule. So it is equal to M, because
M is simple. Thus (1) holds.

Assume M is simple. Then M is cyclic by (1). So M ~ R/m for m := Ann(M)
by (4.7). Since M is simple, m is maximal owing to the bijective correspondence
of (1.9). By the same token, if, conversely, M ~ R/m with m maximal, then M is
simple. Thus (2) holds.

Assume (M) < co. Let M = My D M; D --- D M, = 0 be a composition
series. If m = 0, then M = 0. Assume m > 1. Then M; has a composition series
of length m — 1. So, by induction on m, we may assume M; is finitely generated.
Further, M /M is simple, so finitely generated by (1). Hence M is finitely generated
by (16.13)(1). Thus (3) holds. O

Exercise (19.4) . — Let R be a ring, M a Noetherian module. Show that the
following three conditions are equivalent:

(1) M has finite length;
(2) Supp(M) consists entirely of maximal ideals;
(3) Ass(M) consists entirely of maximal ideals.

Show that, if the conditions hold, then Ass(M) and Supp(M) are equal and finite.

Solution: Assume (1). Then (19.3) yields (2).

Assume (2). Then (17.16) and (19.2)(2) yield (1) and (3).

Finally, assume (3). Then (17.13) and (17.14) imply that Ass(M) and
Supp(M) are equal and consist entirely of maximal ideals. In particular, (2) holds.
However, Ass(M) is finite by (17.17). Thus the last assertion holds. O

Exercise (19.16) . — Let R be a ring, M a module, @) a p-primary submodule, and
Q12 - 2 Q= Q a chain of p-primary submodules. Set M’ := M/Q. Assume
that M’ is Noetherian. Show that m < ¢(M;) < oo, and that m = ¢(M;) if and
only if m is maximal.

Solution: Given a submodule P of M containing @, set P’ := P/Q. Note
M'/P" = M/P. So P’ is p-primary in M’ if and only if P is p-primary in M.
Thus P — P’ is a bijection from the p-primary submodules of M containing Q
onto the p-primary submodules of M’.

Set m :=pR,. Then P’ +— Py is bijective from the p-primary submodules of M’
to the m-primary submodules of M, by (18.20). Thus (Q7)y 2 - 2 (@;,)py =0
is a chain of m-primary submodules of M.

In particular, 0 is m-primary in M. So Assg, (M) = {m} by definition. But M’
is Noetherian by (16.33). Thus £(M,) < oo by (19.4). and m < £(M,) by (19.3).

Further, m”Mé = 0 for some n > 1 by (18.5). So any proper submodule of M,;
is m-primary by (18.8)(2). But by (19.3), any chain of submodules of M, can
be refined to a composition series, and every composition series is of length ¢ (Mé)
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But (Q})p 2 -+ 2 (Q.,)p = 0 is a chain. Thus that chain is a composition series if
and only if m is maximal; if so, then m = £(My). O

Exercise (19.17) . — Let k be a field, R an algebra-finite extension. Prove that R
is Artinian if and only if R is a finite-dimensional k-vector space.

Solution: As k is Noetherian and as R/k is algebra-finite, R is Noetherian by
(16.10). Assume R is Artinian. Then ¢(R) < oo by (19.5). So R has a composition
series. The successive quotients are isomorphic to residue class fields by (19.2)(2).
These fields are finitely generated k-algebras, as R is. Hence these fields are finite
extension fields of k by the Zariski Nullstellensatz (15.4). Thus R is a finite-
dimensional k-vector space. The converse holds by (16.42). (]

Exercise (19.18) . — Given a prime p € Z, find all four different Artinian rings R
with p? elements. Which R are F,-algebras?

Solution: By (19.11), R = HmESpeC(R) Run. Say Ry consists of ny, elements.
Then p? = [[nm. So either there are two m and ny, = p, or there’s only one m. If
two, then each Ry, is equal to its residue field, which must be F,; thus R = F), x F),.

So assume R is local with maximal ideal m. If m = 0, then R = IF2.

So assume m # 0. Form the map ¢: Z — R with ¢(1) = 1. Say Ker(y) = (k)
with k& > 0. Note 0 # Z/(k) — R, as additive groups. Thus k = p or k = p?.

First, assume k = p. Then F, C R. Note F) (m = 0. Fix a nonzero z € m,
and a variable X. Form the F,-algebra map ¢: Fp[X] — R with ¢(X) = 2. Then
Im(¢) is an additive subgroup of R with at least p+ 1 elements. So ¥ is surjective.
Say Ker () = (X™). Then F,[X]/(X™) = R. But R has p? elements. So m = 2.
Thus R =F,[X]/(X?).

Instead, assume k = p?>. Then Z/(p?) C R. But both rings have p? elements.
Thus R = Z/(p?). In this case, and only this case, R is not an F,-algebra. O

Exercise (19.19) . — Let k be a field, A a local k-algebra. Assume the map from
k to the residue field is bijective. Given an A-module M, prove ¢(M) = dimy(M).

Solution: If M = 0, then ¢(M) = 0 and dim, (M) =0. If M ~ k, then /(M) =1
and dimg (M) = 1. Assume 1 < £(M) < co. Then M has a submodule M’ with
M/M' ~ k by (19.3). So Additivity of Length, (19.7), yields ¢(M') = ¢(M) — 1
and dimg(M’) = dimg(M) — 1. Hence £(M') = dimg(M’) by induction on £(M).
Thus ¢(M) = dimy (M).

If £(M) = oo, then for every m > 1, there exists a chain of submodules,

M=My2 M 2---2 M, =0.
Thus dimg (M) = co. O
Exercise (19.20) . — Prove these conditions on a Noetherian ring R equivalent:

(1) R is Artinian. (2) Spec(R) is discrete and finite. (3) Spec(R) is discrete.

Solution: Condition (1) holds, by (19.8), if and only if Spec(R) consists of
finitely many points and each is a maximal ideal. But a prime p is a maximal
ideal if and only if {p} is closed in Spec(R) by (13.16)(2). It follows that (1) and
(2) are equivalent.

Trivially, (2) implies (3). Conversely, (3) implies (2), since Spec(R) is quasi-
compact by (13.2). Thus all three conditions are equivalent. O
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Exercise (19.21) . — Let ¢: R — R’ be a map of rings. Assume R’ is algebra
finite over R. Given p € Spec(R), set k := Frac(R/p). Consider these statements:
(1) The fibers of Spec(¢p) are finite.
(2) The fibers of Spec(p) are discrete.
(3) All R’ ®p k are finite-dimensional k-vector spaces.
(4) R’ is module finite over R.
Show (1), (2), and (3) are equivalent and follow from (4). Show (4) holds if R’ is
integral over R. If R’ is integral, but not algebra finite, and if (1) holds, does (4)?

Solution: The fiber over p € Spec(R) is Spec(R' ®g k) by (13.28)(1). But R’ is
algebra finite over R by hypothesis. So R’ ®k is algebra finite over k by (10.39)(3).
So R’ ®k is Noetherian by (16.10), and it is Jacobson by (15.7) or by (15.37)(2).

Suppose (1) holds. Since R’ ® k is Jacobson, each ¢ in Spec(R’ ®pg k) is the
intersection of all the maximal ideals m containing q. But there are only finitely
many such m, as (1) holds. So ¢ = m for some m by (2.25)(2). So q is closed in
Spec(R' ®g k) by (13.16)(2). Thus (2) holds.

Conversely, since each R’ ® k is Noetherian, (2) implies (1) by (19.20). By the
same token, (2) holds if and only if each R’ ® k is Artinian. But each is algebra
finite over k. So each is Artinian if and only if each is a finite dimensional k-vector
space by (19.17). Thus (1), (2), and (3) are equivalent.

If (4) holds, then (3) follows owing to (10.39)(2).

Since R’ is algebra finite over R, if it’s integral too, then (10.18) yields (4).

Finally, if R’ is integral over R, but not algebra finite, then (4) can fail even if (1)
holds. For example, take R to be Q and R’ to be the field of algebraic numbers. [

Exercise (19.22) . — Let A be a local ring, m its maximal ideal, B a module-finite
algebra, and {n;} its set of maximal ideals. Show the n; are precisely the primes
lying over m, and mB is a parameter ideal of B; conclude B is semilocal.

Solution: Let A’ be the image of A in B. Then B is module finite over A’, so
integral by (10.18)(3)=(1). So by (14.3)(1), each n; lies over a maximal ideal
of A’, which must be the image m’ of m; also, every prime of B lying over m’ is
maximal, so one of the n;. Thus the n; are precisely the primes of B lying over m.

Hence mB C rad(B). Moreover, B/mB is module finite over A/m, which is a
field; so B/mB has finite length. Thus mB is a parameter ideal. So (19.15)(1)
implies B is semilocal. (I

Exercise (19.23) . — Let R be an Artinian ring. Show that rad(R) is nilpotent.

Solution: Set m := rad(R). Then m D m? D --- is a descending chain. So
m” = m"*! for some . But R is Noetherian by (19.8). So m is finitely generated.
Thus Nakayama’s Lemma (10.6) yields m” = 0.

Alternatively, R is Noetherian and dim R = 0 by (19.8). So rad(R) is finitely
generated and rad(R) = nil(R). Thus (3.38) implies m" = 0 for some r. O

Exercise (19.24) . — Find another solution to (18.67)(1). Begin by setting p := p;
and A := (R/ Ann(M)), and showing A is Artinian.

Solution: Set m := pA. Then m is the only prime of A; moreover, m is finitely
generated. Thus A is, by (16.8), Noetherian, so by (19.20) Artinian.

So m” = (0) for r > 0 by (19.23). So p"M, = 0. Set Q := Q1. Then Q, =0
by (18.47)(1) with N := 0 and t := 1. So Qp, = p"M,. So Q% = (p"M)">»
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by (12.12)(3)(a). But Q% = Q by (18.43), and (p"M)% =: (pM)("). Thus
Q = (pM)"), as desired. 0

Exercise (19.25) . — Let R be a ring, p a prime ideal, and R’ a module-finite
R-algebra. Show that R’ has only finitely many primes p’ over p, as follows: reduce
to the case that R is a field by localizing at p and passing to the residue rings.

Solution: First note that, if p’ C R’ is a prime lying over p, then p'R), C R, is a
prime lying over the maximal ideal pR,. Hence, by (11.12)(2), it suffices to show
that R, has only finitely many such primes. Note also that R, is module finite
over R,. Hence we may replace R and R’ by R, and Ry, and thus assume that p
is the unique maximal ideal of R. Similarly, we may replace R and R’ by R/p and
R'/pR’, and thus assume that R is a field.

There are a couple of ways to finish. First, R’ is now Artinian by (19.10) or by
(16.42); thus, R’ has only finitely many primes by (19.8). Alternatively, every
prime is now minimal by incomparability (14.3)(2). Further, R’ is Noetherian by
(16.10). Thus R’ has only finitely many minimal primes by (17.29). d

Exercise (19.26) . — Let R be a ring, and M a Noetherian module. Show the
following four conditions are equivalent:

(1) M has finite length;

(2) M is annihilated by some finite product of maximal ideals []m;;
(3) every prime p containing Ann(M) is maximal;

(4) R/Ann(M) is Artinian.

Solution: Assume (1). Let M = My D --- D M, = 0 be a composition series;
set m; := Ann(M;_1/M;). Then m; is maximal by (19.2)(2). Also, m;M;_1 C M;.
Hence m; - --my My C M;. Thus (2) holds.

Assume (2). Let p be a prime containing Ann(M). Then p D [[m;. Sop D m;
for some ¢ [[by (2.25)(1). So p = m; as m; is maximal. Thus (3) holds.

Assume (3). Then dim(R/Ann(M)) = 0. But as M is Noetherian, (16.16)
implies R/Ann(M) is Noetherian. Thus (19.8) yields (4).

If (4) holds, then (19.9) yields (1), because M is a finitely generated module
over R/ Ann(M). O

Exercise (19.27) . — (1) Prove that a finite product rings R := []/_, R; is a PIR
if and only if each R; is a PIR.

(2) Using a primary decomposition of (0) and (18.27), prove that a PIR R is
uniquely a finite product of PIDs and Artinian local PIRs.

Solution: For (1), note that, given ideals a; of R;, their product a := [] a; is an
ideal of R. Conversely, every ideal a of R is of that form by (1.23) and induction
on r. Plainly, z := (x1,...,,) generates a if and only if z; generates a; for all 4.
Thus R is a PIR if and only if each R; is, as desired.

For (2), note R is Noetherian. So by (18.19), there’s an irredundant primary
decomposition (0) = (N;_, q;, Set p; = /;.

Suppose p; & pj. Then p; = q; by (18.27)(2). But p; C q; by (18.27)(1). So
q; C q;, contradicting irredundancy. Thus p; ¢ p; for all ¢ # j.

Hence the p; are pairwise comaximal by (18.27)(4). So for any n; > 1, the p'* are
pairwise comaximal by (1.21)(3). But q; D p;* for some n; > 1 by (3.40). So the
q; are pairwise comaximal. So (0) = []'_, q; by (1.21)(4)(b). Thus (1.21)(4)(c)
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yields R -5 TT1_, (R/q;).

As R is a PIR, so is each R/q;. If p; is not maximal, then p; = g, by (18.27)(2),
and thus R/q; is a domain. Else, p;/q; is maximal in R/q;. But q; D p;*. Hence
p;/q; lies in any prime of R/q;, and so is the only prime. Thus R/q; is local, and
by (19.8), Artinian. Thus R is a finite product of PIDs and Artinian local PIRs.

As to uniqueness, suppose R ~ [[7_, R; where R; is a PID or an Artinian local
PIR. Let 7;: R — R; be the projection, and set ¢} := 77{1<0>. Then an adaptation
of the solution to (18.31) shows that (0) = ();_, q; is an irredundant primary
decomposition and that q/ is pi-primary where p, := 7; ' nil(R;). So the p/ are
minimal. So the p; and the g} are uniquely determined by (18.18) and (18.22).
But R/q; = R; for all i. Thus R is a finite product of PIDs and Artinian local
PIRs in one and only one way. (]

Exercise (19.28) . — Let A be a local Artinian ring, m its maximal ideal, B an
algebra, N an A-flat B-module of finite length. Show ¢p(N) = £4(A)-¢{p(N/mN).

Solution: By (19.10) there is a composition series A = ag D -+ D a, = 0.
It yields N = agN D --- D a.N = 0. But N is A-flat, so ;N = a; ® N by
(9.15). Hence a;,_1N/a;N = (a;,-1/a;) ® N by (8.10). But a;_1/a; ~ A/m, and
(A/m)® N = N/mN by (8.27)(1). Hence {5(N) =r-{p(N/mN) by repeated use
of (19.7). But r = £4(A) by (19.3). Thus the asserted formula holds. O

Exercise (19.29) . — Let R be a decomposable ring; say R := [[ R; with R; local.
For all 4, let q; C R; be a parameter ideal of R;. Set q := [[¢; C R. Show that q
is a parameter ideal of R.

Solution: Note R/q =[] R;/q; by (1.23). So £(R/q) = >_£4(R;/q;) by (19.7).
But £(R;/q;) < oo for all i. Thus £(R/q) < oo.

Let m; be the maximal ideal of R;. Then gq; C m;. But the m; x H#i R; are
all the maximal ideals of R by (2.29). So q C rad(R). Thus q is a parameter
ideal. d

Exercise (19.30) . — Let R be a ring, a C nil(R) an ideal. Set R’ := R/a. Use
(19.15)(3) to reprove (13.23)(1) < (2): R is decomposable if and only if R’ is.

Solution: If R = [[R;, then R/a = [[R;/a; for suitable ideals a; C R; by
(1.23). Thus if R is decomposable, then plainly R’ is too.

Conversely, assume R’ decomposable. By (19.29), R’ has a parameter ideal, say
q’ with preimage ¢ C R. Then R/q = R'/q’. So £r(R/q) = {r (R'/q') < co. Also
q C rad(R) as q’ C rad(R’) and a C nil(R) C rad(R). Thus q is a parameter ideal.

By (3.36), Idem(R) — Idem(R’) is bijective. And Idem(R’) — Idem(R'/q’) is so
by (19.15)(3). Hence Idem(R) — Idem(R/q) is bijective. Thus (19.15)(3) implies
R is decomposable. O

Exercise (19.31) . — Let R be an Artinian ring, M a module, x4, ...,x, genera-
tors. Show £(M) < nl(R), with equality if and only if z1,..., 2, is a free basis.

Solution: Induct on n. The equation is trivial for n = 0, as both sides vanish.

Set N := z1R. Then {(M) = 4(N)+¢(M/N) by (19.7). But {(N) < ¢(R), as N
is a quotient of R. And ¢(M/N) < (n—1)¢(R) by induction, as M /N is generated
by the residues of xa, ..., x,. Thus (M) < nl(R).

Assume z1,...,z, is a free basis. Then z; and zo,...,x, yield isomorphisms
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R =% N and R* ! = M/N. So {(N) = {(R); also {(M/N) = (n — 1){(R) by
induction. But ¢(M) = ¢(N) + £(M/N) by (19.7). Thus ¢(M) = nl(R).
Conversely, assume ¢(M) = nf(R). Form the surjection a: R" — M defined
by x1,...,2,. By the above, /(R") = nl(R). So ¢(Ker(«)) = 0 by (19.7). So
Ker(«) = 0. Hence « is an isomorphism. Thus 1, ..., z, is a free basis. O

Exercise (19.32) . — Let K/k be a finite extension of fields, K'/K an extension
containing a normal extension of K. Set s := [K : k], and i := [K : k];, the
separable and inseparable degrees. Show K ®j, K’ is a product of s copies of a local
Artinian K’-algebra of length ¢ with residue field K’.

Solution: Let L be the separable closure of k in K. (See [15, Ch. V] for the field
theory.) Let £ be a primitive element of L/k, and P(X) its irreducible polynomial.
Then X — ¢ defines a k-isomorphism k[X]/ (P(X)) = L. So (8.18) and (8.10)
yield a K’-isomorphism K'[X]/(P(X)) = L ®; K'.

Say P(X) = H;Zl(X—fj) with§; € K’. Then K'[X] / (P(X)) is, by (1.21)(4)(c)
and (1.17)(3), a product of s copies of K’, and X +— &; under the jth projection.
Thus L&y, K’ is a product of s copies of K', and £®1 + &; under the jth projection.

Note K @ K' = K ®p, (L ® K'). So for each of the conjugate embeddings of L
into K, it remains to show K ®p, K’ is local Artinian of length ¢ with residue field
K'. Fix one such embedding.

Note L ®;, K' = K', and K/L is finite. So there’s a maximal subextension E/L
of K/L such that E®y, K’ is local Artinian with residue field K’. Set A :== E®p K'.
It remains to show F = K and the length of A is .

Set p := char k. Recall K/L is purely inseparable. So if p =0, then L = F = K.

Assume p > 0. Given a € K, say f:= a? is in F where ¢ = p® with e > 0 and e
minimal. Set F := E[a]. Then F = E[X] /(X% - ). So

FeorK =FogA=AX]/(X?-8®1).

since the structure map E — A carries 5 to S ® 1.

As E/L is purely inseparable, v := 8" is in L for some r = p/ with f > 0. Set
s=pt andT:=y®1€ Aand B := A[X]/(X*~T). Note ' =1® as v € L.

Let m be the maximal ideal of A. Note o € K'. Set 91 := mA[X] + (X — 1 ® «).
Note X*—T' = (X —1®a)® € M. Set n:=MN/(X*—T). Now, A[X] = A[X —1®q]
by (1.8). Hence, M is maximal in A[X] by (2.32)(2). Thus n is maximal in B.

Note dim A = 0 by (19.8). So m = nil(A) by (15.49). So n is generated by
nilpotents as (X —1®a)® = X* —T". Thus B is local by (15.49), and Artinian by
(19.17). Moreover, B/n = A/m = K'.

Note (X?7—0®1)" = X*—T'. Hence F®p, K’ is a quotient of B. So F®p K’ too
is local Artinian with residue field K’. So, by maximality, « € E. Thus E = K.

Finally, dim; K = i as L is the separable closure of k in K. So (8.14) yields
dimg (K ®r, K') = i. Thus by (19.19) the length of A is i, as desired. O
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20. Hilbert Functions

Exercise (20.14) . — Let k be a field, ¥[X, Y] the polynomial ring. Show (X, Y?)
and (X?2,Y?) have different Hilbert Series, but the same Hilbert Polynomial.

Solution: Set m := (X,Y) and a:= (X,Y?) and b := (X2,Y?). They are graded
by degree. So £(a;) = 1, and £¢(a,) = ¢(m,) for all n > 2. Further, ¢(by) = 0,
£(bs) = 2, and £(b,) = £(m,) for n > 3. Thus the three ideals have the same
Hilbert Polynomial, namely h(n) = n + 1, but different Hilbert Series. O

Exercise (20.15) . — Let k& be a field, P := k[X,Y, Z] the polynomial ring in three
variables, F' € P a homogeneous polynomial of degree d > 1. Set R := P/(F).
Find the coefficients of the Hilbert Polynomial h(R,n) explicitly in terms of d.

Solution: Clearly, the following sequence is exact:
0— P(—d) 25 P R—0.

Hence, Additivity of Length, (19.7), yields h(R,n) = h(P,n) — h(P(—d),n). But
P(—d), = P(n—d); so h(P(—d),n) = h(P,n — d). But £(k) = 1; so (20.4) yields

h(Rn) = (*3") = (*5"") = dn — (d = 3)d/2. O

Exercise (20.16) . — Let K be a field, X4,..., X, variables, ki,...,k, positive
integers. Set R := K[X3,...,X,], and define a grading on R by deg(X;) := k;. Set
q-(t) :==T[—, (1 —t*) € Z[t]. Show H(R, t) = 1/q,(t).

Solution: Induct on r. If » = 0, then ¢, (t) =1, and H(R,t) =1as R=K.
Assume r > 1. Set R’ := K[X;,...,X,_1]. Note R' = R/(X,) by (1.17)(3).
Furthermore, R is a domain by (2.4). Hence the following sequence is exact:

0— R(—k) 2“5 RS R =0

So H(R,t) — H(R(—k1),t) = H(R',t). By induction, H(R', t) = 1/¢,—1(t). So
(1 —tF)YH(R,t) = 1/q,_1(t) by (20.3.1). Thus H(R,t) = 1/q,(t). O

Exercise (20.17) . — Under the conditions of (20.6), assume there is a homoge-
neous nonzerodivisor f € R with My = 0. Prove degh(R,n) > degh(M,n); start
with the case M = R/(f*).

Solution: Suppose M := R/{f*). Set ¢ := kdeg f. Form the exact sequence

0= R(—¢) & R — M — 0 where p is multiplication by f*. Then Additivity of
Length (19.7) yields h(M,n) = h(R,n) — h(R,n — ¢). But

h(R,n) = f8md™ oo and h(Ryn—c) = 8-+
by (20.6). Thus degh(R,n) > deg h(M,n).

In the general case, there is k with f*M = 0 by (12.17)(2). Set M’ := R/(f*).
Then generators m; € M., for 1 < i < r yield a surjection @, M'(—c;) —» M.
Hence ), ¢(M,,_.,) > £(M,) for all n. But degh(M’'(—c;),n) = degh(M’',n).
Hence degh(M’',n) > degh(M,n). But degh(R,n) > degh(M’,n) by the first
case. Thus deg h(R,n) > degh(M,n). O

Exercise (20.18) . — Let R be a ring, q an ideal, and M a Noetherian module.
Assume /(M /qM) < co. Set m := ,/q. Show

deg pm(M,n) = degpq(M,n).
360



Solutions (20.19) / (20.21) Hilbert Functions

Solution: Set a := Ann(M) and set R’ := R/a. Set q' := (q + a)/a and set
m’ := (m +a)/a. Then m’ = /¢’ by (3.39)(1). Moreover, M is a Noetherian
R'-module and ¢(M/q"M) = ¢(M/q" M) for all n. So pq(M,n) = py (M,n) and
similarly pn(M,n) = pw (M,n). Thus we may replace R by R’ and owing to
(16.16) assume R is Noetherian.

There is an m such that m D ¢ D m™ by (3.38). Hence

m"M D q"M D>m™m" M
for all n > 0. Dividing into M and extracting lengths yields
L(M/m"™" M) < L(M/q"M) < (M/m™"M).
Therefore, for large n, we get
pm(M7 TL) S pq(M7 TL) S pm(Ma nm)

The two extremes are polynomials in n of the same degree, say d, (but not the
same leading coefficient). Dividing by n? and letting n — oo, we conclude that the
polynomial pq(M,n) also has degree d, as desired.. [l

Exercise (20.19) . — In the setup of (20.10), prove these two formulas:
(1) e(q, M) = lim d'4(M/q"M)/n® and (2) e(q®, M) = ke(q, M).
n—oo

Solution: For (1), recall from Definition (20.11) that e(q, M)/d! is the leading
coefficient of the polynomial pq(M,n) of degree d. Thus (20.10.2) yields (1).
Derive (2) from (1) as follows:

e(q®, M) = lim d'¢(M/q*"M)/n?
n—oo
=k lim dl (M /g M) /(kn)® = ke(q, M). O

Exercise (20.20) . — Let R be a ring, q C q’ nested ideals, and M a Noetherian
module. Assume ¢(M/qM) < oco. Prove these two statements:
(1) Then e(q’, M) < e(q, M), with equality if the q’-adic filtration is g-stable.
(2) Assume (M) < oo and q C rad(M). Then e(q, M) = £(M).

Solution: For (1), consider the surjection M/q"M —» M/q"™ M for each n > 0.
It yields pq(M,n) > pg:(M,n) for n > 0. Thus e(q, M) > e(q’, M). If the ¢’-adic
filtration is g-stable, then e(q, M) = e(q’, M) by (20.11). Thus (1) holds

In (2), M is Artinian by (19.5). So M D qM D ¢?M D --- stabilizes. Say
q™M = qm " M. But ¢™M is Noetherian as M is. Also, Ann(q™M) D Ann(M);
so rad(q™M) D rad(M) D q. So ¢™M = 0 by Nakayama’s Lemma (10.6). So
UM) =4(M/q"M) for n> 0. So pq(M,n) = €(M). Thus (2) holds. O

Exercise (20.21) . — Let R be a ring, q an ideal, and M a Noetherian module
with ¢(M/qM) < co. Set S := Supp(M) NV (q). Set d := maxpes dim(My,) and
A:={me S |dim(My) = d. Show

e(q, M) =3 cn e(qRm, My). (20.21.1)

Solution: Given n > 0, recall V(q) = V(q") from (13.1). So (13.46)(1) yields
S = Supp(M/q"M). So (19.3.1) yields

M/q"M == HmES
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Solutions (20.22) /(20.31) App: Homogeneity
Hence ¢{(M/q"M) = > {(Mun/q" My) owing to (19.7). Hence

pq (M7 n) = Zmes qum (Mm’ n)'

The terms of degree d are positive, so can’t cancel. Thus (20.21.1) holds. (]

Exercise (20.22) . — Derive the Krull Intersection Theorem, (18.23), from the
Artin-Rees Lemma, (20.12).

Solution: In the notation of (18.23), by (10.3) we must prove N = aN. So
apply (20.12) to N and the a-adic filtration of M; thus we get an m such that
a(NNa™M)=Nna™™ M. But NNa"M = N for all n > 0. Thus N =aN. O

20. Appendix: Homogeneity

Exercise (20.25) . — Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Show that v/a and Ann(M) and nil(M) are homogeneous.

Solution: Take z := Z:;n x; € R with the z; the homogeneous components.

First, suppose = € v/a. Say z¥ € a. Either ¥ vanishes or it is the initial
component of z¥. But a is homogeneous. So ¥ € a. So z, € Va. So x — z, € \/a
by (3.15). So all the z; are in y/a by induction on n. Thus /a is homogeneous.

Second, suppose x € Ann(M). Let m € M. Then 0 = om = Y z;m. If m
is homogeneous, then x;m = 0 for all 4, since M is graded. But M has a set of
homogeneous generators. Thus z; € Ann(M) for all 4, as desired.

Finally, nil(M) is homogeneous, as nil(M) = y/Ann(M) by (12.22). O

Exercise (20.26) . — Let R be a graded ring, M a graded module, and @ an old-
primary submodule. Let Q* C @ be the submodule generated by the homogeneous
elements of (). Show that @Q* is old-primary.

Solution: Let x € R and m € M be homogeneous with zm € @Q*. Assume
x ¢ nil(M/Q*). Then, given ¢ > 1, there is m’ € M with x‘m’ ¢ Q*. So m’ has
a homogeneous component m' with z‘m/” ¢ Q*. Then x‘m” ¢ Q by definition of
Q*. Thus z ¢ nil(M/Q). Since @ is old-primary, m € @. Since m is homogeneous,
m € @Q*. Thus Q* is old-primary by (20.24). O

Exercise (20.30) (Nakayama’s Lemma for a graded module) . — Let R be a graded
ring, a a homogeneous ideal, M a graded module. Assume a = > a; with i > 0
and M =3

i>ig

, My, for some ng. Assume aM = M. Show M = 0.

n>n

Solution: Assume M # 0. Then there is a minimal ng with M,, # 0. But
aM C > M, and ig > 0. So M,,, ¢ aM, a contradiction. Thus M =0. O

n>ig+no

Exercise (20.31) (Homogeneous prime avoidance) . — Let R be a graded ring,
a a homogeneous ideal, a” its subset of homogeneous elements, pi,...,p, primes.
Adapt the method of (3.12) to prove the following assertions:

(1) If a® ¢ p; for all 4, then there is # € a” such that x ¢ p; for all j.
(2) If @ C U, ps, then a C p; for some i.
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Solution: For (1), proceed by induction on n. If n = 1, the assertion is trivial.
Assume that n > 2 and by induction that, for every i, there is an x; € a” such that
x; ¢ p; for all j # 4. Set d; := deg(x;), set yy, := gt ot and set y; = x?"
for i < n. Then y; ¢ p; for i # j. We may assume y; € p, for each ¢ else we're
done. Set x := (y1- - Yn—1) + Yn. Then x € a and is homogeneous of degree
(di+--+dn_1)dy. Sox € a”. But z ¢ p; as, if j = n, then y, € p,, and p, is
prime, and if j < n, then y,, ¢ p; and y; € p;. Thus (1) holds.

Assertion (2) is equivalent to (1), since a is homogeneous, so generated by
a’. O

Exercise (20.32) . — Let R = @ R, be a graded ring, M = @ M,, a graded
module, N = € N,, a homogeneous submodule. Assume M/N is Noetherian. Set

N :={meM|R,meN foralln>>0}.

Show: (1) Then N’ is the largest homogeneous submodule of M containing N and

having, for all n > 0, its degree-n homogeneous component N/, equal to N,,.

(2) Let N = (N Q; be a primary decomposition. Say @; is p;-primary. Set
R+ = ®n>0 Rn Then N/ = ﬂPiZR+ Qz

Solution: In (1), plainly N’ is a submodule containing N. Given m € N’,
let m; be a homogeneous component. As R,m € N for all n > 0 and as N is
homogeneous, R,m; € N for all n>> 0. So m; € N’. Thus N’ is homogeneous.

Plainly, to check the rest of (1), we may replace M by M/N. Thus we may
assume M is Noetherian and N = 0.

As M is Noetherian, N’ is finitely generated, say by g1, ..., g,. Replacing the g;
by all their homogeneous components, we may assume each g; is homogeneous, say
of degree d;. Set d := maxd;. Also, say R,g; =0 for n > v and for all 4.

Set k:=v+d. Given m € N/ with n > k, say m = > x;9; with 2; € R,,_q,.
Thenn—d; > k—d=:v. So z;g; =0. So m =0. Thus N/, =0 for n > k.

Let N C M be homogeneous with N,/ = 0 for n > k. Given p and m € N/,
note R,m € N/, ; so R,m =0 for n > k’. Thus N C N'. Thus (1) holds.

For (2), note 0 =((Q;/N) in M/N. By (18.64),
Tr, (M/N)= (1) (Qi/N).
P7,75R+
But I'r, (M/N) = N'/N by definition (4.14). So N" =, 4z, Qi, as desired. [
Exercise (20.33) . — Under the conditions of (20.6), assume R is a domain whose
integral closure R in Frac(R) is module finite (see (24.18)). Show:

(1) There is a homogeneous f € R with Ry = Ry.
(2) The Hilbert Polynomials of R and R have the same degree and same leading

coefficient.
Solution: By (20.29), R is a graded R-algebra. But R is module finite. So
there are finitely many homogeneous generators x1,...,x, of R as an R-module.

Say z; = a;/b; with a;,b; € R homogeneous. Set f := [[b;. Then fz; € R for each
i. So Ry = Ry. Thus (1) holds.
Consider the short exact sequence 0 = R — R — R/R — 0. Then (R/R); =0
by (12.13). So degh(R/R,n) < deg h(R,n) by (20.17) and (1). But
h(R,n) = h(R,n) + h(R/R,n)
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by (19.7) and (20.6). Thus (2) holds. O

Exercise (20.34) . — Let R = @@ R,, be a graded ring with Ry Artinian. Assume
R = Rylz1,..., x| withx; € Ry, and k; > 1. Set ¢(t) := H:Zl(l—tki). Let € be the
subcategory of ((R-mod)) of all finitely generated graded R-modules M = @ M,
and all homogeneous maps of degree 0; let Cy be its subcategory of all M with
M, = 0 for all n < 0. Using the notation of (17.34), let Ag: Ko(Ro) — Z be a
Z-map. Show that assigning to each M € C the series ) ., Ao(vo(Mp))t" gives
rise to Z-maps K(C) — (1/q(t))Z[t,1/t] and K(Co) — (1/q(¢))Z[t].

Solution: Replacing £ by Ag7o in the proof of (20.5) shows >, Ao(vo(Mp))t"
lies in (1/q(t))Z[t,1/t] for each M € € and lies in (1/q(¢))Z[t] if M, = 0 for all
n < 0. Now, a sequence 0 — M; — My — M35 — 0 in € with M; = @ M,, is
exact (if and) only if each sequence 0 — My,, = My, — Ms,, — 0 is exact. Thus
(17.34)(1) yields the assertion. O

Exercise (20.35) . — Let R be a ring, a: M — N a map of filtered modules
with filtrations F*M and F*N. Set P := Coker(a) and F"P := Im(F"N). Say
an: M/F"M — N/F™N is the map induced by « for all n. Assume F"M = M
and F"N = N for n < 0. Show:

(1) Then M/F™"M — N/F"N — P/F™P — 0 is (right) exact for all n.
(2) Assume G(«) is injective. Then these two sequences are exact for all n:

0— M/F"M % N/F"N — P/F"P — 0, (20.35.1)
0— F"M/F""'M — F"N/F""'N — F"P/F"T'P — 0. (20.35.2)

Solution: For (1), set I := Im(a) and F™I := I N F"N. Then plainly the
following sequence is exact:

0 I/F" — N/F"N — P/F"P — 0.
But a(F"M) lies in F"I. So M/F™"M — I/F™I is surjective. Thus (1) holds.
For (2), consider the diagram
0 0 0

| I l

0 — FrM/ PN S29 pryyprtiy — prp/Eetip

| ! |

0 — M/Friiy —2 o N/FrHIN —— P/Fntip — 0

| | |

0 — M/F"M —**— N/F"N —— P/F"P —— 0
| | |
0 0 0

Its columns are exact. Its two bottom rows are right exact by (1).

By hypothesis, G(«) is injective, and «, is injective for n < 0. So a, is injective
for all n by induction on n. Hence the two bottom rows are exact. So the top row
is also exact by (5.24). Thus (2) holds. O
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Exercise (20.36) . — Let R be aring, 0 — M; — M> — M5 — 0 an exact sequence
of Noetherian modules, and q a parameter ideal of M. Set d; := deg (pq (Ml,n))
for all 7. Show:

(1) If d1 = d2 = dg, then e(q, MQ) = €(C|7 Ml) + €(C|7 M3)

(2) Ifdi =dy > ds, then G(q,Ml) = 6(C|7M2).

(3) If d; < dy = d3, then e(q,Mg) 6(C|7M3).

Solution: Note ¢(My/qM3) < oo as q is a parameter ideal of Ms. So (20.13)(1)
yields £(M;/qM;) < oo for i =1, 3.
For all n, set F"My;= M; Nq"Ms. Then the sequence

0— Ml/Fan — MQ/ang — M3/an3 —0
is exact. So (19.7) and (20.10.2) yield, for n > 0,
p(F.Mlan) +plﬁ((]\Iﬁ"an) :pq(MQan)'

However, F'*M; is a stable g-filtration of My by (20.12). So p(F*Mi,n) and
Pq(Mi,n) have the same degree and leading coefficient by (20.10). Thus, in each
of the three cases, (20.11) yields the desired equality of multiplicities. O

21. Dimension

Exercise (21.10) . — (1) Let A be a Noetherian local ring with a principal prime
p of height at least 1. Prove A is a domain by showing any prime q g p is (0).

(2) Let k be a field, P := k[[X]] the formal power series ring in one variable.
Set R := P x P. Prove that R is Noetherian and semilocal, and that R contains a
principal prime p of height 1, but that R is not a domain.

Solution: To prove (1), say p = (z). Take y € q. Then y = ax for some a. But
x ¢ q since q ; p. Hence a € q. Thus q = qx. But « lies in the maximal ideal of the
local ring A, and q is finitely generated since A is Noetherian. Hence Nakayama’s
Lemma (10.6) yields q = (0). Thus (0) is prime, and so A is a domain.

Alternatively, as a € g, also a = a1z with a; € gq. Repeating yields an ascending
chain of ideals (a) C (a1) C (ag) C ---. It stabilizes as A is Noetherian: there’s a k
such that ay € (ax_1). Then a = bax_1 = bagx for some b. So ax(1—bx) = 0. But
1 — bz is a unit by (3.5) as A is local. So ap = 0. Thus y =0, so A is a domain.

As to (2), every nonzero ideal of P is of the form (X™) by (3.8). Hence P is
Noetherian. Thus R is Noetherian by (16.14).

The primes of R are of the form q x P or P x q where q is a prime of P by (2.29).
Further, m := (X) is the unique maximal ideal by (3.7). Hence R has just two
maximal ideals m x P and P x m. Thus R is semilocal.

Set p := ((X,1)). Then p = mx P. So p is a principal prime. Further, p contains
just one other prime 0 x P. Thus ht(p) = 1.

Finally, R is not a domain as (1,0) - (0,1) = 0. O

Exercise (21.13) . — Let A be a Noetherian local ring of dimension r. Let m be
the maximal ideal, and k := A/m the residue class field. Prove that

r < dimy(m/m?),
with equality if and only if m is generated by r elements.
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Solution: By (21.4), dim(A) is the smallest number of elements that generate a
parameter ideal. But m is a parameter ideal, and the smallest number of generators
of m is dimy(m/m?) by (10.8)(2). The assertion follows. O

Exercise (21.16) . — Let A be a Noetherian local ring of dimension r, and let

Z1,...,C5s € Awith s <r. Set a:= (x1,...,2,) and B := A/a. Prove equivalent:
(1) A is regular, and there are x441,...,2, € A with 21, ..., 2, a regular sop.
(2) B is regular of dimension r — s.

Solution: Assume (1). Then z1,...,z, generate the maximal ideal m of A. So
the residues of 441, ..., z, generate that n of B. Hence dim(B) < r—s by (21.13).
But dim(B) > r — s by (21.5). So dim(B) = r — s. Thus (2) holds.

Assume (2). Then n is generated by r — s elements, say by the residues of
ZTst1,--.,2r € A. Hence m is generated by z1,...,z,. Thus (1) holds. O

Exercise (21.20) . — Let R be a ring, R’ an algebra, and N a nonzero R'-module
that’s a Noetherian R-module.

(1) Prove dimp(N) = dimp/ (N).

(2) Prove each prime in Suppp,/ (V) contracts to a prime in Suppz(N). Moreover,
prove one is maximal if and only if the other is.

(3) Prove each maximal ideal in Suppr(N) is the contraction of at least one and
at most finitely many maximal ideals in Supp g/ (V).

(4) Prove radg(N)R' C radg/(N).

(5) Prove N is semilocal over R if and only if N is semilocal over R'.

Solution: Set Ry := R/ Anng(N) and R} := R’/ Anng/(N). Then
Suppr(N) = Spec(R;) and Suppg (N) = Spec(R})
by (13.4)(3) as N is finitely generated over R. So by Definition (21.1),
dimg(N) = dim(R;) and dimg (N) = dim(R)).

Say ni,...,n, generate N. Define a: R — N®" by a(z) := (zn4,...,an,).
Plainly Ker(a) = Anng/(N). Hence a induces an injection R < N®". But N®"
is Noetherian over R. Thus R} is module finite over Ry, so integral over Rj.

Note that Anng/(N) contracts to Anng(N). Thus R} is an extension of Rj.

For (1), apply (15.23). For (2), apply (14.3)(1).

For (3), fix a maximal ideal m € Suppr(NN). Then m is the contraction of
at least one prime n in Suppg, (V) by (14.3)(3), and n is maximal by (14.3)(1).
There are at most finitely many such n by (19.25). Thus (3) is done.

For (4), note that each maximal ideal n in Suppp/ (N) contracts to a maximal
ideal in Suppg(N) by (2). So radg(N)R' C n. Thus (4) is done.

For (5), note that, each maximal ideal in Suppy (V) is the contraction of at least
one maximal ideal in Suppg,/ (N) by (3). So Suppgr(/N) contains only finitely many
maximal ideals if Suppp/(/N) does. The converse holds, as each maximal ideal n in
Suppp/(N) contracts to a maximal ideal m in Suppg(N) by (2), and as this m is
the contraction of at most finitely many such n by (3). Thus (5) is done. O

Exercise (21.21) . — Let R be aring, M a nonzero Noetherian semilocal module, g
a parameter ideal of M, and 0 = My C My C --- C M, = M a chain of submodules
with M;/M,;_1 ~ R/p; for some p; € Supp(M). Set d := dim(M) and set

I={i|dim(R/p;)=d} and & :={p e Supp(M) |dim(R/p)=4d}.
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Prove: (1) e(q, M) = 3 e(q, B/pi) and (2) e(q, M) = 3, cq Cr, (Mp)e(a, R/p).

Solution: Given any p € Supp(M), recall p D Ann(M) by (13.4)(3). But M is
semilocal. So Ann(M) lies in just finitely many maximal ideals; so p does too. Thus
R/p is semilocal. In addition, as M is Noetherian, so is R/ Ann(M) by (16.16);
thus, R/p is Noetherian.

For (1), form the exact sequences 0 — M;_; — M; — R/p; — 0. By (20.13)(2),
the polynomials pq(M;, n) and pq(M;—1, n) + pq(R/p;, n) have the same degree
and the same leading coefficients. Hence, so do the polynomials pq(M, n) and
> ic1 Pq(R/pi,n). But the degree of py(R/p;,n) is dim(R/p;) by the Dimension
Theorem (21.4). Also d = maxdim(R/p;) by (21.1.1). Thus (1) holds.

For (2), note (17.16) provides a chain as posited. Fix p € ®. If p; # p, then
p; ¢ p as p is minimal, and so R, /p; R, = 0 by (11.8)(2). On the other hand, if
p = p;, then R,/pR, is a field. So M, := (M;), D --- D (Mp), = 0 becomes a
composition series after eliminating duplicates; moreover, (g, (M,) is the number
of ¢ with p; = p. Thus (1) yields (2). O

Exercise (21.22) . — Let k be a field, R a finitely generated k-algebra, and m a
maximal ideal of R. Set A := Ry, and r := dim(A). Set K := A/mA, let L be an
extension of K containing a normal extension of K/k (for example, an algebraic
closure of k), and set B := A®y L. Let n be a maximal ideal of B.

(1) Show B is semilocal, n D rad(B) D mB, and B/mB is Artinian. .

(2) Show dim(By) = r and By/nB, = L.

(3) Assume K = k. Show B is local, and it’s regular if and only if A is too.

(4) Assume B, is regular. Show A is regular too. (Proceed as follows: first
present A as a quotient of a localization Py of a polynomial ring P over k at a
maximal ideal 9t; next, find a similar presentation of B, in terms of @) := P ®;, L;
finally, use (21.18) and (21.14).)

(5) Assume K/k is separable and A is regular. Show B, is regular too.

(6) Find an example with By, regular, but K/k not separable.

Solution: First, as k is a field, L is free over k, so flat over k by (9.6). Apply
(9.22) with R := k, with M := L, and with R’ := A. Thus B is flat over A.
Given any ideal a of R, apply (8.9)(1) and (9.15). Thus

aAQ®r L =aA®4 B =aB. (21.22.1)

Moreover, ® ®j, L is right exact by (8.10). Thus (21.22.1) yields
(AJaA) @, L =(A®y L)/(aA®y L) = B/aB, (21.22.2)
(aA/a’A) @, L = (aA®y L)/(a?A®y L) = aB/a’B. (21.22.3)

For (1), note R/m is a finite extension field of k¥ by (15.4). And R/m = K by
(12.16). So K ®y L is a finite dimensional L-vector space by (8.20). Moreover,
K @y L = B/mB by (21.22.2) with a := m. Thus B/mB is, by (19.17), Artinian.

Hence B/mB has only finitely many maximal ideals by (19.20). But L is integral
over k; so B is integral over A by (10.39). So by (14.3)(1), every maximal ideal
of B contains the maximal ideal of A, namely mA. Thus (1) holds.

For (2), note B, is flat over B by (12.14). And B is flat over A by the beginning.
So B, is flat over A by (9.23). So Hypothesis (b) of (21.7) holds with M := B,,.

Note B,/mB, = (B/mB), by (12.15). Also B/mB is Artinian by (1); so
(B/mB), is Artinian by (19.11). Hence dim(By/mB,) = 0 by (19.8). Thus

367



Solutions (21.22) /(21.22) Dimension

(21.7) yields dim(By) = r.

Recall B/mB = K ®, L by (21.22.2) with a := m. Hence B,/mB, has residue
field L by (19.32) with L for K'. Thus B, /nB, = L. Thus (2) holds.

For (3), note B/mB =k ®;, L = L. So mB is a maximal ideal of B by (2.13).
But rad(B) D mB by (1). So mB is the only maximal ideal of B. Thus B is local.

Moreover, mA/m2A is a k-vector space, say of dimension s. But (21.22.3) with
a = m yields (mA/m?A4) ®, L = mB/m?B. So mB/m?B is an L-vector space of
dimension s too. But B is local; so dim(B) = r by (2). So (21.14) implies that B
is regular if and only if s = r, if and only if A is regular. Thus (3) holds.

For (4), first, say x1,...,x, generate R over k. Mapping a variable X; to z;
yields a presentation R = P/ where P := k[X7,..., X,]. Define 0t by m = 2t/2L.
Then 9 is maximal. And Py /APm = (P/2)o by (12.15). But Ry = Ry by
(11.15.1). Thus P/9 = R/m and Py /APy = A.

Next, plainly, the image of A ®y L in P ®j L is A(P ® L). But right exactness
yields (P ®;, L) /(P ®y L) = (P/A) ®; L. Thus Q/AQ = R®, L.

Note (R Q) L)m = Rm ®x L by (12.30). But R, =: A and A®; L =: B. So
(R®y L)m = B. Let t be the preimage in R ®j, L of n. Then the preimage of B —n
is (R®y L) —t. Thus (11.16) yields (R ®y L) = By.

Owing to (1), the preimage in R of nis m. So the preimage in R of t is m too. But
R ®y L is integral over R by (10.39), as L is integral over k. And m is maximal.
Thus (14.3)(1) implies v is maximal.

Recall Q/AQ = R ®y, L. Define 91 by v = 91/2Q. Then N is maximal. And
Qm/QO = (Q/m@)m by (12.15). But (R Rk L)m = (R Rk L)t by (11.15.1).
Recall (R ®y L) = By. Thus Qun/AQn = By; also, the preimage in P of 91 is M.

Finally, @ := L[Xy,..., ] by (8.18). So sz and Qyn are both h regular of
dimension n by (21.14). Set M := MPyy and N := NQy. Then Pgﬁ/gﬁ A/mA
as P /APy = A; so Pm/zm K. And Qm/‘ﬁ B,/uB, as Qm/QlQm = By; so
Qu/MN = L by (2). Thus (21.14) yields dim( 93?/9)”(2 =n and dimp( ‘II/‘)IZ =n.

Let V be the image of APy in ﬁ/ﬁ% it’s a K-vector space. Set v := dimg (V).
Recall Py /APm = A. Set m := mA. Then dimg(m/m?) = n — v by (21.18).
Recall r := dim(A). So (21.13) yields r <n —v. Thus r < n — v = dimg (m/m?).

Let W be the image of AQx in ‘YI/‘S’KQ; it’s an L-vector space. Set w := dimy,(W).
Recall Qy/AQn = By. Set 1 :=nB,. Then dimy,(n/n?) = n—w by (21.18). Note
r := dim(By) by (2). By hypothesis, B, is regular. So dimy (n/n?) = r by (21.14).
Thus n —w =r.

Recall that the preimage in P of 9t is 9. So Qu is a Py-algebra. So there’s
a map of K-vector spaces V' — W, and it induces a surjection of L-vector spaces
Ver L—W. Sodimg(V®g L) > dimg,(W). But dimz(V ®x L) = dimg (V) as
V is free over K. Sov > w. Thusn—v <n —w.

Insum,r<n—-v<n—w=r Sor=n-—uv Recall n—v=dimg(m/m?) and
r:= dim(A). So A is regular by (21.14). Thus (4) holds.

In (5), by hypothesis, K/k is separable; so K ®j, L is the product of copies of L
by (19.32). But K ®; L = B/mB by (21.22.2). And n D mB by (1). Therefore,
(B/mB), = L by (19.11). But (B/mB), = B,/mB, by (12.15). So mB, is
maximal. Thus mB, = nB,.

Since A is regular and r = dim A, also dimgx(mA/m?A4) = r by (21.14). Set
M = (mA/m?A) @ (K @ L). Then M is a free K ®; L-module of rank 7.
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But M = mA/m?A @, L by (8.9)(1); so M = mB/m?B by (21.22.3). And
K @y L = B/mB by (21.22.2). Thus mB/m?B is a free B/mB-module of rank r.

So (mB/m2B), is a free (B/mB),-module of rank r. But (B/mB), = B,/mB,
and (mB/m?B), = mB,/m?B,, both by (12.15). And mB, = nB, by the above.
Thus nB,/n?B, is a vector space of dimension r over B,/nB,. But dim(B,) = r
by (2). Hence B, is regular by (21.14). Thus (5) holds.

For (6), let K/k be a finite extension that’s not separable. Take A := k and
B := K and n:= (0). Then B, = K. So B, is regular. Thus (6) holds. O

Exercise (21.23) . — Let A be a Noetherian local ring, m its maximal ideal, q a
parameter ideal, P := (A/q)[X1,..., Xs] a polynomial ring. Show:
(1) Set M := (m/q)[X1,...,X;]. Then zdiv(P) =M.
(2) Assume q is generated by a sop x1,...,2s. Let ¢5: P — G4(A) be the map
of (21.11.1). Then Ker(¢,) C z.div(P).

Solution: For (1), fix F' € z.div(P). Then (8.32) gives x € A/q with 2F =0
but z # 0 . Fix a coefficient @ of F. Then za = 0. So a ¢ (A/q)*. So a € m/q.
Thus z.div(P) C 9.

Conversely, fix F' € M. Note A/q is Artinian by (19.12) and (19.10). So there’s
r > 0 with (m/q)” =0 by (19.23). So F" =0. Thus F € z.div(P). Thus (1) holds.

For (2), set a := Ker(¢s). Note a is homogeneous, a = ®a,,. Suppose there’s
F € a,,, but F ¢ z.div(P). Then for all n > m, the map P,,_,, xF, a,, is injective;
0 £(Py—m) < £(a,). But there’s an exact sequence, 0 — a,, — P, — ¢"/q"! — 0;
so (19.7) yields £(q"/q" ) = €(P,) — £(a,). So £(q"/q" 1) < U(P,) — (Pr—m)-

So (20.4) yields ¢(q"/q"*1) < ¢(A/q)((°71") — (*71"7™)). The latter is
a polynomial in n of degree s — 2. But (21.4) yields s = deg(pq(4, n)). So
deg(h(G4(A),n)) = s — 1 by (20.11), a contradiction. Thus a,, C z.div(P) for all
m. But z.div(P) is closed under sum by (1), hence contains a. Thus (2) holds. O

Exercise (21.24) . — Let A be a Noetherian local ring, k C A a coefficient field
(or field of representatives) — that is, k maps isomorphically onto the residue field —
Z1,...,%s a sop. Using (21.23), show the x; are algebraically independent over k.

Solution: Set q := (z1,...,x5). Let Q := k[X1,..., X;] be the polynomial ring
in variables X;. Given F € Q, say F' = Y ', F; with F; homogeneous of degree i.
Note Fj(x1,...,xs) € q° for all i. Assume Fy # 0.

Assume F(z1,...,25) = 0. So Fy(x1,...,25) € g7, Set P := (A/q)[Xq,..., X4].
Let ¢s: P — G4(A) be the map of (21.11.1). View @ C P. Then ¢,(F;) = 0.
So by (21.23)(1)—(2), the coefficients of F; are in the maximal ideal of A/q. But
they’re in k too. So they’re 0. Thus the z; are algebraically independent over k. [

Exercise (21.25) . — Let k be an algebraically closed field, R an algebra-finite
domain, m a maximal ideal of R. Using the dimension theory in this chapter and
(15.1)(1), but not (2), show dim(R) = dim(R,,) = tr.deg, (Frac(R)). (Compare
with (15.10) and (15.12).)

Solution: As dim(R) = sup,, dim(Ry,), the second equality implies the first.

To prove the second equality, note that R/m is a finite algebraic extension of k
by (15.4). So k = R/m, because k is algebraically closed. But R/m = Ry /mRy
by (12.16). Thus k is a coefficient field of Ry /mRy.

Let x1,...,24 € mR,, form a sop for R,,. The x; are algebraically independent
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over k by (21.24). Set K := Frac(R) and n := tr.deg,(K). Then n > d.

By (15.1)(1), there are algebraically independent elements ¢1,...,t, € R such
that R is module finite over P := k[t1,...,t,]. Then K is a finite extension field of
k(t1,...,t,). Thus v = n.

Set n;= m N P. Then n is maximal and dim(Ry,) = dim(P,) by (15.27). By

(15.5), there are ay, . .., a, € ksuch that n = (uy,...,u,) where u; :== t;—a;. Then
(ur,...,uy) 2 -+ 2 (u1) 2 (0) is a chain of primes of length v. Thus dim(P,) > v.

In sum, dim(Ry) = dim(P,) > v =n > d. But d = dim(Ryw) by (21.4). Thus
dim(Ry) = n, as desired. O
Exercise (21.26) . — Let R be a ring, N a Noetherian semilocal module, and

Y1,--,yr asop for N. Set N; := N/(y1,...,y;)N. Show dim(N;) =r —i.

Solution: First, dim(N) = r by (21.4). But (4.21) with a := (y;,...,y;—1) and
b := (y;) yields N; = N;_1/y;N;_1. Hence dim(N;) > dim(V;—1) — 1 for all ¢ by
(21.5), and dim(N,.) = 0 by (19.26)(1) = (3). Thus dim(N;) =7 —i for all ¢. O

Exercise (21.27) . — Let R be a ring, p a prime, M a finitely generated module.
Set R':= R/ Ann M. Prove these two statements: (1) dim(My) = dim(Ry,).
(2) If Ann(M) = (0), then dim(M,) = ht(p).

Solution: For (1), note Supp(M,) = Spec(R,/Ann M,) owing to (13.4)(3).
But Ann M, = (Ann M), by (12.17)(1). So R,/Ann M, = Ry, by (12.15). So
Supp(M,) = Spec(R},). Thus the definitions (21.1) and (15.9) yield (1).

For (2), recall dim(R,) = ht(p) by (21.6.1). Thus (1) yields (2). O
Exercise (21.28) . — Let R be a Noetherian ring, and p be a prime minimal
containing z1,...,x,. Given r’ with 1 < ¢’ < r, set R’ := R/(z1,...,z) and

p' :=p/{x1,...,2). Assume ht(p) = r. Prove ht(p’) =r — r’.

Solution: Let 2} € R’ be the residue of z;. Then p’ is minimal containing
Tyyq,- .- Tp. So ht(p’) <r —1' by (21.8).

On the other hand, R, = Ry by (11.15.1), and R}, = Ry /(z1/1,...,2, /1) by
(12.15) Hence dim(R,,) > dim(R,) — r’ by repeated application of (21.5) with
R, for both R and M. Thus ht(p’) > r — ' by (21.6.1), as required. O

Exercise (21.29) . — Let R be a Noetherian ring, p a prime of height at least 2.
Prove that p is the union of height-1 primes, but not of finitely many.

Solution: If p were the union of finitely many height-1 primes p’, then by Prime
Avoidance (3.12), one p’ would be equal to p, a contradiction.

To prove p is the union of height-1 primes, we may replace R by R/q where q C p
is a minimal prime, as preimage commutes with union. Thus we may assume R
is a domain. Given a nonzero z € p, let g, C p be a minimal prime of (z). Then
ht(g,) = 1 by the Krull Principal Theorem (21.9). Plainly Jq, = p. O

Exercise (21.30) . — Let R be a Noetherian ring of dimension at least 1. Show
that the following conditions are equivalent:

(1) R has only finitely many primes.
(2) R has only finitely many height-1 primes.
(3) R is semilocal of dimension exactly 1.
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Solution: Trivially, (1) implies (2).

Assume (2). Then, by (21.29), there’s no prime of height at least 2. Thus
dim(R) = 1. But, the height-0 primes are minimal, so finite in number by (17.29).
Thus (1) and (3) hold.

Finally, assume (3). Since dim(R) = 1, the height-1 primes are maximal.
Since R is semilocal, R has only finitely many maximal ideals. Thus (2) holds. O

Exercise (21.31) (Artin—-Tate [2, Thm.4]) . — Let R be a Noetherian domain, X
a variable. Set K := Frac(R). Prove the following equivalent:

(1) (fX —1) C R[X] is a maximal ideal for some nonzero f € R.
(2) K = Ry for some nonzero f € R.

(3) K is algebra finite over R.

(4) Some nonzero f € R lies in every nonzero prime.

(5) R has only finitely many height-1 primes.

(6) R is semilocal of dimension 1.

Solution: First, Ry = R[X]/(fX —1) by (11.7). But R C Ry C K, and K is
the smallest field containing R; see (11.2) and (2.3). So Ry is a field if and only
if Ry = K. Thus (1) and (2) are equivalent, and they imply (3).

Assume (3), and say K = R[x1,...,x,]. Let f be a common denominator of
the z;. Then given any y € K, clearly f™y € R for some m > 1.

Let p C R be a nonzero prime. Take a nonzero z € p. By the above, f™(1/z) € R
for some m > 1. So f™(1/z)z € p. So f € p. Thus (3) implies (4).

Assume (4). Given 0 # y € R, the Scheinnullstellensatz (3.14) yields f €
V(). So f* = zy for some n > 1 and x € R. So 1/y = x/f™. Thus (4) implies
(2).

Again assume (4). Let p be a height-1 prime. Then f € p. So p is minimal
containing (f). So p is one of finitely many primes by (17.29). Thus (5) holds.

Note (5) and (6) are equivalent by (21.30)(2) = (3).

Finally, assume (6). Then there are only finitely many nonzero primes, each
of height 1. Take a nonzero element in each; let f be their product. Thus (4)

holds. O
Exercise (21.32) . — Let R be a Noetherian domain, and p a prime element. Show
that (p) is a height-1 prime ideal.

Solution: By (2.5), the ideal (p) is prime. Thus by (21.9) it’s height-1. O

Exercise (21.33) . — Let R be a UFD, and p a height-1 prime ideal. Show that
p = (p) for some prime element p.

Solution: As ht(p) = 1, there’s a nonzero € p. Factor . One prime factor p
must lie in p as p is prime. Then (p) is a prime ideal as p is a prime element by
(2.5). But (0) # (p) C p and ht(p) = 1. Thus, (p) = p, as desired. O

Exercise (21.34) . — Let R be a Noetherian domain such that every height-1 prime
ideal p is principal. Show that R is a UFD.

Solution: It suffices to show that every irreducible element p is prime; see (2.5).
Take a minimal prime p of (p). Then ht(p) = 1 by (21.9). So by hypothesis p = (x)
for some . Then x is prime by (2.5). And p = zy for some y asp € p . But p is
irreducible. So y is a unit. Thus p is prime, as desired. [l
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Exercise (21.35) (Gauss Lemma) . — Let R be a UFD; X a variable; F, G € R[X]
nonzero. Call F' primitive if its coefficients have no common prime divisor. Show:
(1) Then F is primitive if and only if ¢(F') lies in no height-1 prime ideal.
(2) Assume that F' and G are primitive. Then F'G is primitive.
(3) Let f, g, h be the ged’s of the coeflicients of F, G, FG. Then fg = h.
(4) Assume c(F) = (f) with f € R. Then f is the ged of the coefficients of F.

Solution: For (1), note that F is not primitive if and only if ¢(F') C (p) for some
prime element p. But such (p) are precisely the height-1 prime ideals by (21.33)
and (21.32). Thus (1) holds.

For (2), given a height-1 prime ideal p, note ¢(F) ¢ p and ¢(G) ¢ p by (1). So
(2.36) (1) implies ¢(FG) ¢ p. So FG is primitive by (1). Thus (2) holds.

For (3),say F = fF’ and G = gG’. Then F’ and G’ are primitive. So F'G’ is
primitive by (2). But FG = fgF'G’. Thus (3) holds.

For (4), given g € R, note that g divides all the coefficients of F' if and only if
c(F) C {(g). But ¢(F) = (f); also (f) C (g) if and only if g | f. Hence, f divides all
the coefficients of F', and if g does too, then ¢ | f. Thus (4) holds. O

Exercise (21.36) . — Let R be a finitely generated algebra over a field. Assume
R is a domain of dimension r. Let © € R be neither 0 nor a unit. Set R’ := R/(x).
Prove that » — 1 is the length of any chain of primes in R’ of maximal length.

Solution: A chain of primes in R’ of maximal length lifts to a chain of primes
pi in R of maximal length with (z) S p1 G --- G pg. As 2 is not a unit, d > 1.
As z # 0, also p; # 0. But R is a domain. So Krull’s Principal Ideal Theorem,
(21.9), yields htp; = 1. So 0 G p1 G --- G p, is of maximal length in R. But R is
a finitely generated algebra over a field. Thus d = dim R by (15.8), as desired. O

Exercise (21.37) . — Let k be a field, P := k[X;, ..., X,] the polynomial ring, R,
and Ry two P-algebra-finite domains, and p a minimal prime of Ry ® p Ry. Show:
(1) Set C := Ry ®j R, and let ¢ C C be the preimage of p. Then (8.28)(1)

implies that ¢ is a minimal prime of an ideal generated by n elements.
(2) Then (15.12) and (15.29) yield this inequality:

dim(R;) + dim(Rs) < n+ dim((Ry ®p R2)/p). (21.37.1)

Solution: For (1), note Ry @ p R2 = C/opC by (8.28)(1). So g is a minimal
prime of 9pC. But 0p is, by (8.19), generated by n elements. Thus (1) holds.

For (2), say {xz;} is a set of P-algebra generators of Ry. Then together with the
images of the X; in Ry, the z; plainly form a set of k-algebra generators of R;.
Thus R; is algebra finite over k. Similarly, R is too.

Say {uw;} and {v;} are sets of k-algebra generators of Ry and of Ry. Then, in C,
the u; ®1 and 1®wv; plainly form a set of k-algebra generators. Thus C'is k-algebra
finite. So C' is Noetherian by the Hilbert Basis Theorem (16.10). So owing to (1),
Corollary (21.8) yields ht(q) < n.

There is a minimal prime qo C q by (3.16). Set Cy := C/qo. Then (21.6.1)
yields dim((Co)qc,) = ht(q/q0). So dim((Cp)qc,) < n. But Cj is a domain, and is
k-algebra finite as C' is. So (15.12) yields

dim(Cy) = dim((Co)qc,) + dim(Co/qCh).-

But C’o/qu = C/q = (Rl Rp Rg)/p Moreover, dlm(Co) = dlm(Rl) + dlm(RQ) by
(15.29.1). Thus (21.37.1) holds. O
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Exercise (21.38) . — Let k be a field, P := k[X}, ..., X,,] the polynomial ring, R’
a P-algebra-finite domain. Let p be a prime of P, and p’ a minimal prime of pR’.
Prove this inequality: ht(p’) < ht(p).

Solution: Set R; := R’ and Ry := P/p. Then R; ®p R2 = R'/pR’ by (8.27)(1).
Set P :=p’/pR’. Then P is minimal, and (R; ®p R2)/P = R'/p’. So by (21.37)

dim(R') + dim(P/p) < n + dim(R'/p’). (21.38.1)
But dim(P/p) = n — ht(p) and dim(R’/p’) = dim(R’) — ht(p’) by (21.6.1) and
(15.12) and (15.11). Thus (21.38.1) yields ht(p’) < ht(p), as desired. O

Exercise (21.39) . — Let & be a field, P := k[X;,...,X,] the polynomial ring, p;
and po primes of P, and p a minimal prime of p; + po. Prove this inequality:

ht(p) < ht(p1) + ht(p). (21.39.1)

Solution: Set R; := P/p;. Then Ry ®p Ry = P/(p1 + p2) by (8.27)(2). Set
PB:=p/(p1+p2). Then P is minimal, and (R; ®p Ra)/PB = P/p. So (21.37) yields

dim(P/p1) + dim(P/p2) < n + dim(P/p). (21.39.2)
But given any prime q of P, note dim(P/q) = n — ht(q) by (21.6.1) and (15.12)
and (15.11). Thus (21.39.2) yields (21.39.1). O

Exercise (21.40) . — Let k be a field, k[X,Y, Z, W] the polynomial ring. Set
g :=(X,Y) and qo:=(Z, W) and q:=(X,Y, Z, W) and
R:=k[X,Y, Z, W|/(XZ—-YW) and p;:=qR and p:=qR.

Show that p1, pa, p are primes of heights 1, 1,3. Does (21.39.1) hold with P := R?

Solution: Note XZ — YW is irreducible. So R is a domain. Also dim R = 3 by
(21.36) and (15.11). But R/p, = k[X, Y, Z, W]/q1 = k[Z, W]. So p, is prime;
also (15.11) yields dim(R/p;) = 2. Thus (21.6.1) and (15.12) yield ht(p;) = 1.
Similarly, po is prime of height 1, and p is prime of height 3.

Lastly, no, (21.39.1) does not hold with R for P, asp = p;+pa but 3 > 14+1. O

Exercise (21.41) . — Let R be a Noetherian ring; X, X1, ..., X, variables. Show:
dim(R[X]) =1+ dim(R) and dim(R[Xy,...,X,]) =n+ dim(R).

Solution: The second equation follows from the first by induction on n.

To prove the first equation, let B C R[X] be a prime, p C R its contraction. Note
that the monomials X? for i > 0 form a free basis of R[X]; so it’ss a flat R-algebra.
So the local homomorphism R, — R[X]q is flat by (13.60). So (21.7) gives

dim(R[X]q) = dim(R,) + dim(R[X]y /pR[X]qy). (21.41.1)

Set k := Frac(R/p). Then k = (R/p), by (12.16). So R[X]q /pR[X]p = k[X]p
by (12.32) with a:=p and S := R—p and T := R[X] —*B. But dim(k[X]yp) <1
by (15.11) and (15.12). Plainly, dim(R,) < dim(R). Thus (21.41.1) yields
dim(R[X]qgp) < dim(R) + 1.

Plainly, dim(R[X]) = supy{dim(R[X]y)}. Hence, dim(R[X]) < dim(R) + 1.
Finally, the opposite inequality holds by (15.32). O
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Solutions (21.42) / (21.42) Dimension

Exercise (21.42) (Jacobian Criterion) . — Let k be a field, P := k[X1,..., X,]
the polynomial ring, 2 C P an ideal, x := (21,...,2,) € k™. Set R := P/ and
M := (X1 —z1,...,X,, —x,). Prove the following statements:

(1) Say 2 = (Fy,...,Fy). Assume Fj(x) = 0 for all . For all 4,5, define
O0F;/0X; € P formally as in (1.18.1), and set a;; := (0F;/0X,)(x). Let r be
the rank of the m by n matrix (a;;). Set d := dim Roy. Then these conditions
are equivalent: (a) Roy is regular; (b) r =n —d; and (¢) r > n —d.

(2) Assume 2l is prime, F ¢ 2, and k is algebraically closed. Then there’s a
choice of x with F'(x) # 0 and 2 C 9t and Ryy regular.

Start with the case 2 = (G). Then reduce to it by using a separating
transcendence basis for K := Frac(R) over k and a primitive element.

Solution: In (1), plainly X; —4,...,X,, — 2, form a minimal generating set of
M. But M is maximal and k = P/ by (2.14). So X; — z1,...,X,, — @, induce
a basis of M/M? over k by (10.8)(2). Set m := MPyy. Then M/M? = m/m? by
(12.34) with M := 9 and m := M. Thus dimg(m/m?) = n.

Set a := AP. By (1.18), the residues of the m polynomials 3, a;;(X; — z;)
span (m? +a)/m?. But (a;;) has rank r. Thus dimy(m? +a)/m? =r. Set n:=m/a
and d’ := dimy,(n/n?). The exact sequence 0 — (m? 4+ a)/m? — m/m? — n/n?> - 0
of (21.18) yields n — r = d’. But MRyy = n and d := dim(Ryy). So d < d’ by
(21.13), and Ry is regular if and only if d = d’ by (21.14), as MRyny = n. Thus
(1) holds.

For (2), first consider the case 20 = (G). Then G is irreducible as 2 is prime.
Assume 0G/0X; = 0 for all j, and let’s find a contradiction. Let p be the charac-
teristic of k. If p = 0, then G is constant, a contradiction. If p > 0, then the only
monomials X{*--- X" appearing in G have p | i; for all j. But the coefficients of
G are pth powers, as k is algebraically closed. Hence G = G for some G; € P, a
contradiction. Thus 0G/0X; # 0 for some j.

Then 0G/0X; ¢ A = (G), as deg G > deg 0G/0X,; and G is irreducible. By
hypothesis, F' ¢ A. Set H := F - 0G/0X;. Then H ¢ 2.

By the Hilbert Nullstellensatz (15.37)(2), P is Jacobson, since k is Jacobson
by (15.33). So there’s a choice of maximal ideal 9t of P such that 2 C 91, but
H ¢ M by (15.33.1) as 2 is prime. Since k is algebraically closed, 9t corresponds
to an x by (15.5). Then G(x) = 0, but F(x) # 0 and (0G/0X;)(x) # 0. Also
dim P = n by (15.11), so dim Pyy = n by (15.12), so dim Rey = n — 1 by (21.5).
Thus (1) implies Ryy is regular of dimension n — 1. Thus (2) holds when 2 = (G).

For 2 arbitrary, set d := dim R. As R is a domain, d := tr.deg;, K by (15.10).
But k is algebraically closed. So [15, Prp.4.11(c), p.367] or [19, Thm. 31, p. 105]
provides a transcendence basis &1,...,&; of K/k such that K is separable over
L = k(&,...,&4). So [15, Thm.4.6, p.243] or [19, Thm.19, p.84] provides a
primitive element ;41 € K; that is, K = L(£441).

Set R = k[&1,...,&a+1]. Then K = Frac(R’). So dim(R’) = d by (15.10). Let
P":=k[X71,..., X}, ] be the polynomial ring. Define P’ — R’ by X — §&; for all 4,
and let 2’ be the kernel. Then P’/ = R'. But dim(R') = d and dim(P’) =d +1
by (15.11). So ht(A") = 1 by (15.12) as ht(A’) = dim(P},). But P’ is a UFD.
Thus (21.33) provides a G’ € P’ such that A’ = (G').

Note K = Frac(R’) = Frac(R). Say & = x;/s; with x;,s; € R and s; # 0 for all
i. Set s := [[s;. Then & € Ry for all i. Thus R’ C R,. Similarly, R, C R/, for
some nonzero s’ € R'. So R C R, C R,,. So R, C (Rs)s C (R.)s. But ' is a
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Solutions (21.43) / (22.3) Completion

unit in R),. So (R.)s = R.,. Thus R., = (R)s .

Let f € R be the residue of F. Say f = f'/s"™ with f' € R’. Then f' # 0 as
f # 0since F ¢ 2. Say f’ is the residue of F’ € P’. The first case yields a maximal
ideal M D A’ of P’ with F’ ¢ M’ and R}y, regular of dimension d. Let 9 C P
be the preimage of M R,,. Then M(R;)y = MR, by (11.12)(2). So F ¢ M as
F' ¢ M. Also, Rop = Ry, by (11.16) as (R)s = R.,. Also A C M as Ron # 0.
As k is algebraically closed, 9t corresponds to an x by (15.5). Thus (2) holds. O

Exercise (21.43) . — Let R be an integral domain, q a parameter ideal of R,
and M a Noetherian module. Set K := Frac(R) and r := dimg (M ® K). Show
6(q7 M) = e(q,R)r.

Solution: Set p := (0). Plainly, p is the only prime with dim(R/p) = dim(R).
And q is a parameter ideal of M by (19.14). So (21.21)(2) yields

e(q?M) = e(q’R)eRp (MP)
But lg,(M,) =7 as R, = K and M, = M ® R,. O

Exercise (21.44) (Chevalley-Zariski) . — Let K be a field of characteristic p > 0.
Assume there is a in the algebraic closure of K with b := a? € K, and let L be a
field containing K (a). Let X, Y be variables; set P := K[X,Y] and Q := L[ X,Y].
Set M:=(XP —b, Y)CPand N:=(X —a,Y) CQ. Set F:=Y? — XP +b; set
R:= P/PF and S := Q/QF. Show that 9 and 9N are maximal, that dim(Ryy) = 1
and dim(Sy) = 1, and that Rgy is regular, but Sy is not.

Solution: Note P/(Y) = K[X] by (1.17)(5). So P/MM = K[X]/(X? — b) by
(1.9). But K[X]/(X? —b) = K(a) by [3, 15.2.6(a), p.444] or [15, pp. 224, 225].
Hence P/9 = K(a). Thus 9 is maximal.

So Py is regular of dimension 2 by (21.14). But Ryy = Po/PmF by (12.15)
as R:= P/PF. Thus (21.5) yields dim(Ryy) = 1.

Note M = (F,Y) and R := P/PF. So Y generates 9MR. So Y generates MRoy.
Thus (21.14) implies Rgy is regular.

Note Q/9M = L by (1.17)(3). Thus N is maximal. So Qy is regular of dimension
2 and dimy (MQy/N%Qxn) = 2 by (21.14). But Sn = Qu/QnF by (12.15) as
S :=Q/QF. Thus (21.5) yields dim(Syn) = 1. Now, F = Y?— (X —a)?; so F € 2.
So (21.18) yields MQy/MN?Qm —= NSor /N> S, as the first term in (21.18.1) is
0. So dimz (MSy/M?Ser) = 2. Thus (21.14) implies Sy is not regular. O

22. Completion

Exercise (22.3) . — Let R be a ring, M a module, F'*M a filtration. Prove that

Ker(rip) = [ | F"M. (22.3.1)

where £,/ is the map of (22.1.2). Conclude that these conditions are equivalent:
(1) kp: M — M is injective; (2) ﬂF"M = {0}; (3) M is separated.

Assume M is Noetherian and F*M is the a-adic filtration for a proper ideal a
with either (a) a C rad(M) or (b) R a domain and M torsionfree. Prove M C M.
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Solution: A constant sequence (m) has 0 as a limit if and only if m € F"M for
all n. Thus (22.3.1) holds. So (1) and (2) are equivalent. Moreover, (2) and (3)
are equivalent, as in (22.1) each was proved to hold if and only {0} is closed.

Assume M is Noetherian. First, assume (a) too. Then (2) holds by (18.35) with
N :=0, and so (1) follows. Thus M C M.

Instead, assume (b). Set N := (a”M. By (18.23) or (20.22), there’s x € a
with (1+2)N = (0). But 1+x # 0 as a is proper. Also, M is torsionfree. So again
(2) holds and (1) follows. Thus M C M. O

Exercise (22.8) . — Let R be a ring, M a module, F*M a filtration. Use (22.7)
to compute FFM C M. Then use (22.3) to show M is separated.

Solution: By (22.7), we may identify M with the set of (qn) € [l M/F"M
such that ¢, is the residue of g,11. Then @ is the subset of (g,) such that
qn € (FFM N F"M)/F"M. So q, =0 for n < k. So (\FkM = 0. Thus (22.3)
implies M is separated. (Il

Exercise (22.9) . — Let Q9 D Q1 D Q2 D --- be a descending chain of modules,
a1l Q41 = @, the inclusions. Show Q. = Hm Q..

Solution: Define 6: Q. — [[Qx by 6(q) := (¢) where g, := ¢. Plainly ¢ is a
canonical isomorphism from [ Q,, onto I'&an viewed inside [] Qp.

Alternatively, let o, : (\Qn < @n be the inclusion. Plainly a family of maps
Bn: P — Qp with a"*13,,1 = (3, amounts to a single map 8: P — (Q, via
anf = By, for all n. Thus (@, has the requisite UMP. O

Exercise (22.12) . — Let R be aring, M a module, F*M a filtration, and N C M
a submodule. Give N and M/N the induced filtrations: F"N := N N F"M and
F"(M/N):= F"M/F"N. Show the following: (1) N ¢ M and Z/\l\/]v = M/\N
(2) If N D F*M for some k, then kN is bijective, kyrn: M/N —= W
Solution: Set P := M/N. Then F"P = F*M/F"N := F"M/(N N F"M).
For (1), form this commutative diagram, whose rows are exact:
0 — F'"N — F"M — F"P — 0

L]

0O — N —M ——P —0
By the nine lemma, (5.24), the next commutative diagram has exact rows too:
0 — N/F""IN — M/F""'M — P/F""1P — 0
0cnﬂ»ll l l
0 — N/F*"N — M/F"M —— P/F"P — 0

Furthermore, a"*! is surjective. So (22.10)(1)—(2) and (22.7) yield the desired
exact sequence 0 - N — M — P — 0. Thus (1) holds.
Note (2) holds, as F"P = 0 for n > k, so every Cauchy sequence stabilizes. O

Exercise (22.13) . — Let R be a ring, M a module, F*M a filtration. Show:
(1) The canonical map kpr: M — M is surjective if and only if M is complete.
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(2) Given (my,) € C(M), its residue m € M is the limit of the sequence (Karmay).

Solution: For (1), first assume ) surjective. Given (m,,) € C(M), let m € M
be its residue. Say m = kp;m/. Then the constant sequence (m’) has residue m
too. Set m/, :=m, —m/ for all n. Then (m/,) € Z(M) as M := C(M)/Z(M). So
(my,) converges to m’. Thus M is complete.

Conversely, assume M complete. Given m € M , say that m is the residue of
(my) € C(M). As M is complete, (m,,) has alimit, say m’ € M. Set m/, :== m,,—m/
for all n. Plainly the residue of (m),) is equal to m — kpym/. But (m],) converges

to 0, so its residue is 0. So m — /<;M7ﬁ’ = 0. Thus k) is surjective. Thus (1) holds.

In (2), given ng, we must find ny with m —kpmy, € Fro M for all n/ > ny. But
(my,) is Cauchy. So m,, — m, € F" M for all n,n’ > n; for some n;. Fix n’ > ny
and set m/, := m, — my,s. Then m, —m!, = m, —m, for all n”. But (m,) is
Cauchy, so (m],) is too. Let m’ € M be its residue. Plainly m’ = m — kym,,. But
m,, € F™M for all n > n;. Som’ € FrolI by (22.1). Thus (2) holds. O

Exercise (22.14) . — Let R be a ring, M a module, and F*M a filtration. Show
that the following statements are equivalent: (1) ks is bijective;

(2) M is separated and complete; (3) sas is an isomorphism of filtered modules.

Assume M is Noetherian and F*M is the a-adic filtration for a proper ideal a
with either (a) a C rad(M) or (b) R a domain and M torsionfree. Prove that M
is complete if and only if M = M.

Solution: Note (1) and (2) are equivalent by (22.3) and (22.13)(1). Trivially,
(3) implies (1), and the converse holds, since ;' FnM = Fr M by (22.1).

To do the second part, note M is separated by (22.3), and apply (2)<(1). O
Exercise (22.15) . — Let R be a ring, a: M — N a map of filtered modules,
o : M — N a continuous map such that o’k = kya. Show o = a.

Solution: Given m € M, say m is the residue of (my) € C(M). Then m is
the limit of (kprmy,) by (22.13)(2). But o is continuous. So a’m is the limit of
(&'kpmy). But o'kpr = kyva. Thus o'm is the limit of (kyamy,).

By construction, am is the residue of (am,). So am is the limit of (kyam,,)
by (22.13)(2). But N is separated by (22.8). So the limit of (kyam,) is unique.

Thus o/'m = am. Thus o/ = a. O
Exercise (22.16) . — Let R be a ring, M a module, F*M a filtration. Show:
(1) G(rn): G(M) — G(M) is bijective. (2) &ar: M — M is bijective.
(3) Kyp = k- (4) M is separated and complete.

Solution: In (1), the maps Gy, (knr): F*"M/F" 1M — F”Z/W\/F"'HZ/W\ are, by
definition, induced by ry. But FFM = FEM for all k. Also, ks induces a
bijection FM/F" 1M 5 Fa) /Fr+1M by (22.12)(1)~(2). Thus (1) holds.

For (2), let k,: M/F"M — M\/Fnl\/j be the map induced by rps for n >
0. Then ky = l'gl/@n by (22.7). But F"M := FnM. So Kn is bijective by
(22.12)(1)—(2). Thus (2) holds.

For (3), recall from (22.1) that xp; and k37 are maps of filtered modules, so
continuous. Apply (22.15) with o := sy and o' := k7. Thus (3) holds.

For (4), note x> is bijective by (2) and (3). Thus (22.14) yields (4). O
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Exercise (22.28) . — Let R be a ring, a an ideal, X a variable. Filter R[[X]] with
the ideals b,, consisting of the H =: > h; X" with h; € a” for all i. Show: (1) that

R[[X]] = R/[[)?]] and (2) that if R is separated and complete, then so is R[[X]].

Solution: For (1), owing to (22.7), it suffices to find a canonical isomorphism
: (lim R/a™)[[X]] = Im(R[[X]]/by). Plainly (R/a™)[[X]] = R[[X]]/by. So given
F=> fiX"e (limR/a™)[[X]], let f;n € R/a™ be the image of f; for all 4, n. Note
that the vector (3, fi,, X") lies in @(R[[X]]/bn) Set p(F) := (3, finX").

Suppose ¢(F) = 0. Then f; , =0 for all i,n. So F' = 0. Thus ¢ is injective.

Finally, given G =: (3, ;n X*) € hm(R[[X]]/by), note g; := (gin) € Im(R/a™)
for all i. Note (> ¢;X") = G. Thus ¢ is surjective, so an isomorphism.

For (2), note R = R by (22.14). Also, R/[[)?]] is separated and complete by
(22.16)(4). Thus (1) implies (2).

Alternatively, here’s a direct proof of (2). First, as R is separated, [|a™ = 0 by
(22.3). So (b, = 0. Thus (22.3) implies R[[X]] is separated.

As to the completeness of R[[X]], fix a Cauchy sequence (F,,). Given ng, there’s
ny with F,, — Fyy € by, for n,n’ > ny. Say F,, =: Y fn;X". Then f,;— fn; € a™
for all ¢. Thus (f,;) is Cauchy in R. But R is separated and complete. So (fn,;)
has a unique limit g;.

Set G := > .50 ¢; X%, Let’s show G = lim F,,. Given i, there’s n’ > n; with
fori—gi € a™. But foi—9i = fui—fori+ fari—gi- SO fni—gi € a™ forn > ny.
So F,, — G € by,. Thus G =lim F,,. Thus R[[X]] is complete. O

Exercise (22.29) . — In Zs, evaluate the sum s :=1+2+ 4+ 8+ ---.

Solution: Set a,, :=2" and b,, := 1—a,41 and ¢, := 1+a1+---+a,. Then (b,)
converges to 1. Moreover, (¢,,) is Cauchy, and it represents s € Zy. But byc,, = by,.

Hence bps = 1. Thus s =1/by =1/(1 —2) = —1. O
Exercise (22.30) . — Let R be a ring, a”™!: Q,,11 — @, linear maps for n > 0.
Set o := antl...am_| for m > n and o = 1. Assume the Mittag-Leffler

Condition: for all n > 0, there’s m > n such that
QnDap™ Quit D DA Qm =y Qi =+
Set P, := ﬂm>n o Qm,, and prove OzZHPnH = P,. Conclude that I'Lm1 Q. =0.
Solution: Given n, there’s m > n + 1 with P, = o'Qy, and Py = o'y 1 Q.

But o'Q,, = ot a1 Qr,. Thus ot P, = P,.

n
To conclude 1'&n1 @ = 0, form this commutative diagram with exact rows:

0= [1P: = T1Qn — T1(Qn/Pn) — 0
Lol ]
0= [1P: = T1Qn — T1(Qn/Pa) — 0

where each 6 is the map of (22.5). Apply the Snake Lemma (5.10). It yields the
following exact sequence of cokernels:

]gll P, = ].gll @n — lgll(Qn/Pn)
Since a1 P, = P,, the restriction aﬁ“‘PnH is surjective. So @1
by (22.10)(1). Thus it suffices to show l'gll(Qn/Pn) =0.
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Since al'Qm = Py, the induced map (Q./Py) — (Qn/Pp) is 0. Thus replacing
each @, with @, /P,, we need only show @11 Q,=0 assuming ot =0.

Given (¢n) € []Qn, set p, := > ;= alqy, noting o = a™al =0 for all h > m.
Then Op,, := p, — @ p, 11 = gn. So 0 is surjective. Thus L Q. =0. O

Exercise (22.31) . — Let R be a ring, and a an ideal. Set S := 1+ a and set
T:= /ﬁ%l(flx). Given t € R, let t,, € R/a" be its residue for all n. Show:

(1) Given t € R, then t € T if and only if ¢, € (R/a™)* for all n.

(2) Then T'= {t € R | t lies in no maximal ideal containing a}.

(3) Then S C T, and R is the completion of S™'R and of T~!R.

(4) Assume kg: R — Ris injective. Then KS—1R i and k-1 are too.

(5) Assume a is a maximal ideal m. Then R = Ra.

Solution: For (1), by (22.7), regard R as a submodule of [IR/a™. Then each
t, is equal to the projection of kr(t). Thus t, is a unit if kg(t) is. Conversely,
assume t,, is a unit for each n. Then there are u,, € R with u,t =1 (mod a™). By
the uniqueness of inverses, u, 1 = u, in R/a™ for each n. Set v := (u,) € [[ R/a™.
Then u € R, and ukg(t) = 1. Thus kg(t) is a unit. Thus (1) holds.

For (2), note T ={t € R | ¢, € (R/a™)* for all n} by (1). But ¢, € (R/a™)* if
and only if ¢,, lies in no maximal ideal of R/a™ by (2.22). Thus (1.9) yields (2).

For (3), note S C T owing to (2) as no maximal ideal can contain both = and
1+ z. Moreover, the UMP of localization (11.3) yields this diagram:

o] o

ST'R — T7'R R
Further, S and 7' map into (R/a™)*; hence, (11.4) and (12.15) yield:
R/a" =S 'R/a"S7'R and R/a" =T 'R/a"T'R.
Therefore, R is, by (22.7), equal to the completion of each of SR and T7'R in
their a-adic topology. Thus (3) holds.

For (4), say kg-1p(z/s) = 0. But kg-1x(x/s) = kr(z)kr(s)~t. So kr(z) = 0.
But kp is injective. So z = 0. So x/s = 0 in S™'R. Thus kg1 is injective.
Similarly, kp-15 is injective. Thus (4) holds.

For (5), note T = R —m by (2). Thus (3) yields (5). O

Exercise (22.32) . — Let R be a ring, a an ideal, M a finitely generated module.
Show R - kp (M) = M.

Solution: As M is finitely generated the canonlcal map R®M — Mis surjective
by (22.19). But its image is R - ka/(M). Thus R - k(M) = M. O

Exercise (22.33) . — Let R be a ring, M a module, F*M a filtration, and N a
submodule. Give N the induced filtration: F"N := N N F"M for all n. Show:
(1) N is the closure of kpsN in M. (2) ),/ N is the closure of N in M.
Solution: For (1), set P := M/N, and give P the induced filtration. Then
the canonical sequence 0 — N — M 2 P — 0 is exact by (22.12)(1). So
N =a '{0} ¢ M. But P is separated by (22.16)(4); so {0} is closed by (22.1).
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Solutions (22.34) / (22.36) Completion

But @ is continuous by (22.1). Thus N is closed in M.

Every m € N is the residue of some sequence (m,) € C(N) by (22.1). Then
m is the limit in N of (kymy) by (22.13)(2). But ky = = fy|N and the inclusion
N < Mis continuous; see (22.1). So m is the limit in M of (Karmy). Thus Ky N
is dense in N. But N is closed in M by the above. Thus (1) holds.

For (2), first let’s show that every open set U of M is equal to nj_le for some
open set V of M. Write U as the union of the sets m + F*M for suitable m and
n. Let V be the corresponding union of the sets kym + F"M. Then V is open.

Moreover, /{X/}V is the union of the sets njfwl(/{Mm + F”]\//.T) And it is easy to
check that /9;4 (kpm + F”M\) =m+ KJX}F”T\J\. But n&lF”]\/j = F"M by (22.1).
Thus U = k), V.

F1na11y7 given a closed set X of M contalnlng N, set U:=N-X. By the above,
U= HMV for some open set V of M. Set Y := M — V. Then /@MY X. So
Y O kyN. So (1) implies Y > N. So X D /<VMN Now, N is closed in M by
(1), and kas is continuous by (22.1); so Ky, 'N is closed in M. Thus iyt N is the

smallest closed set containing N; in other words, (2) holds.
Alternatively, note that (22.7) yields

N =1im N/(N 0 F"M) = lim(N + F"M)/F"M C lim M /F"M = M.
Now, given m € M, let g, be the residue of m in M/F"M. Then rp(m) is the
vector (g,). Hence kpr(m) € N if and only if m € N + F"M for all n, that is, if

and only if m € (N 4+ F"M). Thus HMN AN+ F*M). But (N + F"M)
is equal to the closure of N in M by (22.1). Thus (2) holds. O

Exercise (22.34) . — Let R be a ring, a an ideal. Show that every closed maximal
ideal m contains a.

Solution: As m is closed, m =, (m+a™). But m # R. So m+a” # R for some
n. But m is maximal. So m = m+ a” D a”. But m is prime. Thus m D a. O

Exercise (22.35) . — Let R be a ring, a an ideal. Show equivalent:
(1) a Crad(R). (2) Every element of 1+ a is invertible.
(3) Given any finitely generated R-module M, if M = aM, then M = 0.
(4) Every maximal ideal m is closed.

Show, moreover, that (1)—(4) hold if R is separated and complete.

Solution: Assume (1). Then (3.2) yields (2).

Assume (2). By (10.3), there’s a € a with (1+a)M = 0. Thus (2) implies (3).

Assume (3). Consider (4). Set M := R/m. Then M # 0. So (3) yields
M # aM. But aM = (a+m)/m. So a4+ m # R. So a C m. Thus (22.1) yields (4).

Assume (4). Then (22.34) yields (1).

Moreover, assume R is complete. Form the a-adic completions R and @. Then
R =R, and a =a by (22.14)(2)=(3). But d C rad(R) by (22.4). Thus (1) holds,
and so (2)—(4) hold too O

Exercise (22.36) . — Let R be a Noetherian ring, a an ideal. Show equivalent:

(1) R is a Zariski ring; that is, R is Noetherian, and a C rad(R).
(2) Every finitely generated module M is separated.
(3) Every submodule N of every finitely generated module M is closed.
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Solutions (22.37) / (22.38) Completion

(4) Every ideal b is closed. (5) Every maximal ideal m is closed.
(6) Every faithfully flat, finitely generated module M has a faithfully R-flat M.
(7) The completion R is faithfully R-flat.

Solution: Assume (1). In (2), M is finitely generated. But R is Noetherian.
So M is Noetherian. Set N :=(,~,a"M. Then there’s a € a with (1 +a)N =0
by (18.23). But 1 +a € R* by (22.35). So N = 0. Thus, (22.3) yields (2).

Assume (2). Then in (3), M/N is separated. So {0} is closed by (22.1). Also,
the quotient map M — M/N is continuous by (22.1). Thus (3) holds.

Trivially, (3) implies (4), and (4) implies (5). And (5) implies (1) by (22.35).

Assume (1) again. To prove (6), note M is flat over R by (22.22). So by
(9.19) (3)=(1), it remains to show M (R/m) # 0 for all maximal ideals m of R.

Note M ® (R/m) = M/mM by (8.27)(1). And mM = (mM) by (22.20). Set
N := M/mM. Then M/(mM) = N by (22.12)(1). Thus M ® (R/m) = N.

Note a C rad(R) by (1). Soa C m. So a"N = 0 for all . So every Cauchy
sequence stabilizes. Hence N = N. So M ® (R/m) =N. But N = M ® (R/m),
and M is faithfully flat; so N # 0 by (9.19)(1)=(3). Thus (1) implies (6).

Trivially (6) implies (7).

Finally, assume (7). Given a maximal ideal m, set k := R/m. Then RRKk#0
by (9.19)(1)=(3). But R®k = k by (22.19). So lim(k/a"k) # 0 by (22.7). So
k/a™k # 0 for some n > 1. So a”k = 0. So a” C m. So a C m. Thus (1) holds. O

Exercise (22.37) . — Let R be a ring, a an ideal, M a Noetherian module. Prove:
(1) Moz a™M = ey Ker(M 0y My) where ¥ := {m D a | m maximal }.

(2) M =0 if and only if Supp(M) N V(a) = 0.

Solution: Set N := (), a"M and K := (), oy Ker(¢m).

For (1), use double inclusion. The Krull Intersection Theorem (18.23) yields
x € a with (14 2)N =0. Given m € ¥, note (14 2)pn(N) =0. But z € a C m;
so (14+x)/1 € RX by (3.2). So pn(N)=0. So N C Ker(¢n). Thus N C K.

To show N D K, fix a maximal ideal m. By (12.4)(2), (¢m)m: Mm = (Mu)m-
So Ker((¢m)m) = 0. Thus (12.13) and (9.3) yield (Ker(¢m))m = Ker((¢m)m) = 0.

Suppose m € U. Then K C Ker(pm). Hence (aK)m C Kn C (Ker(pm))m by
(12.12)(1)(b). Thus (aK)m = Ky = 0.

Suppose m ¢ . Then aR,, contains a unit. Thus (aK )y, = Ky.

So (aK)m = Ky in any case. So (13.53) yields aK = K. So

K=aK=0d’K=--=(_,a"K.

But a”M D a"K for all n. Thus N D K. But N C K. So N = K. Thus (1) holds.

For (2), first assume M = 0. Then (22.8.1) gives M = N. But M > aM D N.
Thus M = aM. Conversely, assume M = aM. Then a®M = a1 M for all n > 0.
So a”M = M for all n. Hence C(M) = Z(M). Thus M =0.

Thus M = 0 if and only if M = aM, or equivalently, M/aM =0. But M/aM =0
if and only if Supp(M/aM) = by (13.8). And Supp(M/aM) = Supp(M)NV(a)
by (13.46)(1) as M is finitely generated. Thus (2) holds. O

Exercise (22.38) . — Let R be a ring, my, ..., m,, maximal ideals, and M module.
Set m := (m;, and give M the m-adic topology. Show M = [ Mp,.
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Solution: For each n > 0, the m" are pairwise comaximal by (1.21)(3). So
R/m™ = [, R/m!" by (1.21)(4)(b)—(c). Tensor with M; then (8.27)(1) and
(8.10) yield M/m" M = [, M/m? M. But M/m? M = My, /m? My, by (12.34).
So M/m"M = [~ (M, /m?My,). Taking inverse limits, we obtain the assertion
by (22.7), because inverse limit commutes with finite product by its construction,
or by (8.14) as completion is a linear functor by (22.1). O

Exercise (22.39) . — Let R be a ring, a an ideal. Show:
(1) If G4(R) is a domain, then R is a domain.
(2) If Go(R) is a domain, and (5, a™ = 0, then R is a domain.
(3) There’s an alternative proof, based on (2), that a regular local ring A is a
domain.

Solution: Consider (1). Let z,5 € R be nonzero. Note R is separated by
(22.16)(4). So (),>0@" = 0 by (22.3). So there are r,s > 0 with z € a” —a" !
and y € @° —a°TL. Let 2/ € G,(R) and ' € G4(R) be the residues of z and y.
Then 2’ # 0 and y’ # 0. Note G(fi) = G(R) by (22.16)(1).

Assume G(R) is a domain. Then 'y’ # 0. Hence 2y’ € Gry4(R) is the residue
of zy € a"*5. Hence zy # 0. Thus Risa domain, as desired. Thus (1) holds.

For (2), assume ()a™ = 0. Then R C R by (22.3). So R is a domain if R is.
Thus (1) implies (2).

For (3), denote the maximal ideal of A by m. Then (), .,m" = 0 owing to
(18.23) and (3.2). But G(A) is a polynomial ring by (21.15), so a domain. Thus
(2) implies A is a domain, as desired. O

Exercise (22.40) . — Show:

(1) Let R be a Noetherian ring, a an ideal. Assume that G4(R) is a normal
domain and that (,-,(sR + a") = sR for any s € R. Then R is a normal
domain owing to (16.40) and induction on n.

(2) Owing to (1), a regular local ring A is normal.

Solution: In (1), G4(R) is a domain; so R is one too by (22.39). Given any
x € Frac(R) that is integral over R, there is a nonzero d € R such that dz™ € R
for all n > 0 by (16.40). Say = = y/s with y,s € R. Let’s show y € sR + a” for
all n by induction. Then y € (), ~,(sR+a") = sR. So y/s € R as desired.

For n = 0, trivially y € sR+a". Givenn > 0 with y € sR+a", say y = sz+w with
z € Rand w € a”. Given ¢ > 0, set wy := d(z — 2)9. Then wy = Y, £(%)da’ 277"
But dz' € R. So w, € R. But = 2 + (w/s). So d(w/s)? = w, or dw? = wys?.

Given any nonzero a,a’ € R, let v(a) be greatest with a € a¥(@); there is such
a v(a), as [),>o@" = 0 by the hypothesis with s := 0. Denote the residue of a in
Gy(a)(R) by G(a). Plainly G(ad’) = G(a)G(d’) if and only if G(a)G(a") # 0.

But G(R) is a domain. Hence G(d)G(w)? = G(dw?) = G(wys?) = G(wg)G(s)7.
So G(d)(G(w)/G(s))! = G(w,) € G(R). But G(R) is normal. So (16.40) yields
G(w)/G(s) € G(R). Plainly G(w)/G(s) € G,(R) where v := v(w) — v(s). Say
G(w)/G(s) = G(t) for t € R. But w € a®. Hence w = st (mod a"*!). Hence
y = s(z+1t) (mod a”*1). Thus y € sR+ a"*! as desired. Thus (1) holds.

For (2), let m denote the maximal ideal. Since A is Noetherian, (18.35) yields
sA = (,,>0(sA +m") for every s. Since A is regular, G(A) is a polynomial ring
by (21.15). But a polynomial ring is a normal domain by (10.22)(1). Thus (1)
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Solutions (22.41) / (22.43) Completion
implies (2). O

Exercise (22.41) . — Let R be a ring, a an ideal, M a module with /(M) < co.
Show: (1) If M is simple, then M is simple if a C Ann(M), but M = 0 if not.

(2) Then EE(Z/W\) < ¢r(M), with equality if and only if a C rad(M).

Solution: For (1), assume M is simple, and set m := Ann(M).

Assume a C m. Then a™M = 0 for n > 1. So every Cauchy sequence stabilizes.
So M = M. Thus M is simple.

Conversely, assume a ¢ m. Now, m is maximal by (19.2)(2). So a” +m = R.
So a”M = M. So every sequence converges to 0. Thus M = 0. Thus (1) holds.

In (2), M is Noetherian by (19.5). Let M = My D My D --- D My, =0be a
composition series. Set m; := Ann(M;_1/M;). Then M>M >-->M,=0is
a chain of submodules by (22.18), in which J\Z:/J\Z is simple if a C m; and is 0
if not by (1). So by (19.3), EE(M\) < ¢r(M), with equality if and only if a C m;
for all ¢. But the m; are maximal by (19.2)(2), and {m;} = Supp(M) by (19.3)
again; so [\ m; = rad(M). Thus (2) holds. O

Exercise (22.42) . — Let R be a ring, M a module with two filtrations F*M and
G* M. For all m, give G™M the filtration induced by F*M, and let (G™M)¥ be its
completion; filter M ¥ by the (G™M)¥, and let (M) be the completion. Define
H*M by HPM := FPM + GPM, and let M be the completion. Show:

(MG = lim lim M/(F"M +G™M)=M". (22.42.1)
Solution: Note (M¥)¢ = lim M /(G™M)F by (22.7). Now, for all m,
MF /(G M) = (M/G™M)F = @n((M/GmM)/(F”(M/GmM))

by (22.12)(1) and by (22.7) again. But F"(M/G™M) = F*"M/(F"MNG™M) by
definition. So (M/G™M)/F"*(M/G™M) = M/(F"M+G™M) by the two Noether
isomorphisms, (4.8.2) and (4.8.1). Thus the first equality in (22.42.1) holds.

For the second equality in (22.42.1), note that M = %iinp M/HPM by (22.7)
again. Set My, ,, := M/(F"M + G™M). Thus it suffices to find a canonical map
a: @m @n My, — @p M, ,, and to show « is an isomorphism.

Let’s show the projections 7: [[,, 1, Mm,n — [, My, induce the desired a.

Let (zmn) € 1,11, Mm,n be in fm lim My, . Then the residue Ty, of
T, 0 Mp 4 is x4 for all p < m and ¢ < n according to (22.5). In particular,

!/

r;,, = Tq,q for all ¢ < p. So (wp,) € @p M, . Thus 7 induces a map «a.

Suppose a((xmyn)) = 0. Then z,, = 0 for all p. Hence z,, , = 0 for any m,n,
as Ty.p = x;,p if p > max{m,n}. Thus « is injective.

For surjectivity, given (zp,,) € Im My, 5, set @ n := x;, , where p > max{m, n}.
Then z,,, is well defined, as (zp,) € @Mp,p. Plainly () € M@an
Plainly a((@m,)) = (2p,p). Thus o is surjective, so bijective, as desired. O

Exercise (22.43) . — Let R be a ring, a and b ideals. Given any module M, let
M?* be its a-adic completion. Set ¢ := a + b. Assume M is Noetherian. Show:

(1) Then (M®)* = M°. (2) Assume a D b and M® = M. Then M° = M.
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Solution: For (1), use (22.42). Let F*M be the a-adic filtration, G*M the
b-adic filtration. Then HPM := aPM + b?M. So ¢*?"'M C HPM C ¢ M. Thus
M= MH. Now, M® = M¥. And (M*®)® is the b-adic completion of M®, whereas
(M®)¢ is the completion under the filtration by the (b™M)®. But b™M® = (b™M)*
by (22.20). Thus (M*®)* = (MF)¥. Thus (22.42) yields (1).

For (2), note ¢ = a. Thus (1) yields (2). O

Exercise (22.44) . — Let R be aring, a an ideal, X a variable, F,,, G € R[[X]] for
n > 0. In R[[X]], set b := (a, X). Show the following:

(1) Then b™ consists of all H =: Y h; X* with h; € a™~* for all i < m.

(2) Say F,, =: Y fn:X". Then (F,) is Cauchy if and only if every (f, ;) is.
(3) Say G =: Y. ¢;:X". Then G = lim F,, if and only if g; = lim f,, ; for all i.
(4) If R is separated or complete, then so is R[[X]].
(5) The b-adic completion of R[X] is R[[X]].

Solution: For (1), given such an H, note h; X* € b™ for all i < m. Moreover,
Sism X = (s hi-m X ™) X™ € b™. Thus H € b™.

Conversely, given H =: Y h;X* € b™, let’s show h; € a™~* for all i < m. If
m =1, then H = hy + (Z¢>1 hi,lXi’l)X with hg € a. So assume m > 1.

Note that H is a finite sum of series of the form (a + FX)G with a € a, with
F € R[[X]], and with G € b™~!. Then aG € b™. But FG € b™~1. So by induction,
FG =Y a;X" with a; € a™ 17" for i <m —1. So FGX = > .., a;-1 X" with
a;—1 € a™ % for i < m. Thus h; € a™~¢ for all i < m. Thus (1) holds.

For (2), first assume (F},) is Cauchy. Fix ¢ > 0. Given ng, there’s n; > i with
F, — Fpy1 € 6™ for n > ny. So fri— fat1,: € a™ by (1). Thus (f, ;) is Cauchy.

Conversely, assume every ( f, ;) is Cauchy. Given ng, there’s nq with fp, ; — frnt1.
in a"0~¢ for n > n; and i < ng. So F,, — F,, 41 € b™ for n > n; by (1). Thus (F),)
is Cauchy. Thus (2) holds.

For (3), the proof is similar to that of (2).

For (4), first assume R is separated. Given H € (),,~, 0™, say H =: Y h; X"
Fix i. Then h; € (),,50 ™ by (1). So h; = 0. So H = 0. Thus R[[X]] is separated.

Instead, assume R is complete. Assume (F,,) is Cauchy. Say F, =: Zf,”X
Then every (f,;) is Cauchy by (2), so has a limit, g; say. Set G := " g;X*. Then
G = lim F,, by (3). Thus R[[X]] is complete. Thus (4) holds.

For (5), set ¢ := aR[X]. Then ¢* = a"R[X] for all n > 0. To use (22.42), set
M = R[X] and let F*M be the c-adic filtration and G*M the (X)-adic filtration.
Then HPM := a?M + (X)P M. So (a, X)2P~1 C HPM C (a, X)?M. So M* is the
completion in question in (5). Moreover, M,, ,, := R[ 1/(c™ 4+ (X)™). Thus owing
to (22.42), it remains to show Jm IL man = = R[[X]).

Note that My, = (R[X]/c")/((¢" 4+ (X)™)/c"). But R[X}/c" = (R/a™)[X] by
(1-16). Thus My, = (B/a™)[X]/(X)™ = L' (BfaM) X'

Note that [T o (IT ( Jam X)) = [T (TS 0R/a"A)Xl. Hence, for all m,
W My, = ((hm R/a X])/{(X)™. But lim R/a™ = R by (22.7). Moreover,
lim RLX]/(X)™ = RIX] by (22.6). Thus lim_lim_ My, = RIX]] O
Exercise (22.45) . — Let R be a ring, a an ideal, M a Noetherian module, z € R.
Prove: if x ¢ z.div(M), then x ¢ z.div(]\/Z); and the converse holds if a C rad(M).
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Solution: Assume z ¢ z.div(M). Then p, is injective on M. So by Exactness of
Completion (22.18), the induced map fi, is injective on M. Thus = ¢ z.div(]/\/[\).

Conversely, assume z ¢ z.div(]\/f) and a C rad(M). Then [i, is injective on M.
So its restriction is injective on the image of kp;: M — M. But ks is injective by

—~

(22.3) as a C rad(M); further, i, induces p,. Thus z ¢ z.div(M). O
Exercise (22.46) . — Let k be a field with char(k) # 2, and X,Y variables. Set
P :=k[X,Y] and R := P/(Y? — X% — X3). Let x,y be the residues of X,Y, and
set m := (x,y). Prove R is a domain, but its completion R with respect to m isn’t.

Solution: First off, R is a domain as Y2 — X2 — X3 is irreducible in P.

Set 9M := (X,Y). Then (22.2) yields P = k[[X,Y]]. Moreover, (22.20) yields
(Y2 - X2 - X3 = (Y2 - X2 — X3 P. But on R, the 9M-adic topology coincides
with the m-adic. Thus (22.12)(1) yields R = P/(Y2 — X2 — X3).

In 13, the binomial theorem yields
VIFX=1+4(1/2)X — (1/8)X%+---.
Moreover, Y2 — X2 — X3 is not irreducible; in fact,

Y2-X2-X3=(Y - XVI+X)(Y +XV1+X).

Thus R is not a domain. (I
Exercise (22.47) . — Given modules My, M,, ..., set Py := Hflzl M,,, and let
7r’,§+1 : Pyy1 — Py be the projections. Show @k>1 Py =T11"1 M,.

Solution: Let & : P, — M), be the projections. It’s easy to see that a family of
maps Oi: N = P, with 8, = W’;+1ﬁk+1 amounts to an arbitrary family of maps
ag: N — My via ap = £, Bk. Thus @k>1 P, and Hff:l M, have equivalent UMPs,
which are described in (22.5) and (4.13). O

Exercise (22.48) . — Let p € Z be prime. For n > 0, define a Z-linear map

an: Zf{p) = Z/(p") by an(1)=p""".
Set A:= D, >, Z/(p) and B :=D,>, Z/(p"). Set a =P an;so a: A= B.
Show: (1) Then o is injective, and the p-adic completion A is just A.

(2) In the topology on A induced by the p-adic topology on B, the completion A
is equal to [[°2, Z/(p).
(3) The natural sequence of p-adic completions
A% BL(B/a)”
is not exact at B. (Thus p-adic completion is neither left nor right exact.)
Solution: In (1), plainly each «,, is injective; so « is too. Now, note pA = 0. So
every Cauchy sequence stabilizes. Thus A = A, as desired. Thus (1) holds.

For (2), set Ay, := a~!(p*B). These A}, are the fundamental open neighborhoods
of 0 in the topology induced from the p-adic topology of B. And

Ar=a"' 00 0D D, ")/ (P") =00 @00 D, Z/(p))-
Hence A/A, = @F_, 2/ (p) = [1'_, Z/(p). But 4 = lim,  A/Ay by (22.7). Thus

A=lim, [15_, Z/(p). Finally, take M, := Z/(p) in (22.47). Thus (2) holds.
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For (3), note that, by (2) and (22.12)(1), the following sequence is exact:
04— B2 (B/A)” —o0.

But A = A by (1). And A # A as A is countable yet A isn’t. Thus Im(@) # Ker(f3),
as desired. Thus (3) holds. O

Exercise (22.49) . — Preserve the setup of (22.48). Set A := o~ !(pFB) and
P:=TI;2,Z/(p). Show T&nllpl A = P/A, and conclude lim is not right exact.

Solution: The sequences 0 — Ay — A — A/A; — 0 give this exact sequence:
0 — lim Ay, — lim A — lim A/Aj, — lim' A, — lim" A
by (22.10)(2). Now, lim' A = 0 by (22.10)(1). Also, lim A = A by (22.9) with
@, := Afor all n. And @Ak = 0 by (22.9) with Q,, :== 4, for all n, as [ A, =0.
Thus the following sequence is exact:

0 —>A—>1LnA/Ak—>Li£11Ak—>O.

But A/A;, = Hizl Z/{p); see the solution to (22.48)(2). So @A/Ak = P by
(22.47). Moreover, A := @ Z/{p). Thus 1'&1}01 Ay = P/A.

Note P/A#0. So A — @A/Ak isn’t surjective. Thus lim isn’t right exact. [J

Exercise (22.50) . — Let R be a ring, a an ideal, and M a module. Show that
Anng(M)R C Anng(M), with equality if R is Noetherian, M finitely generated.

Solution: Given z € Anng(M) and (m,,) Cauchy in M, note xm,, = 0 for n > 0.
So x(m,) = (0). So Anng(M) C Anng(M). Thus Anng(M )R C Anng(M).
Assume R is Noetherian and M is finitely generated Then R is flat by (22 22)

So (9.34) yields Anng(M)R = Ann; (M ®gr R). But (22.19) yields M®grR = M.
Thus equality holds, as desired. ([l

Exercise (22.51) . — Let R be a ring, a an ideal, M a module. Assume aM = 0.
Set b := Anng(M). Show b = Anng(M ).

Solution: First, note a C b C R. Hence a”t! C a”b CAa" for any n > 0. Thus
the topology on R induces that on b. Thus (22.1) yields b C R.

Given a Cauchy sequence (by) in b and one (my,) in M, their product (bpymy,) is
(0). But b C R. Thus ¢ b C Anns a(M ) It remains to show Anng (A) Cb.

Given z € Anns (M ), represent x by a Cauchy sequence (xn) € C(R). Then
there’s ny with =, — x,,» € a for all n,n’ > n;.

Given any m € M, note (z, — xn)m € aM for all n,n’ > ny. But (x,m)
represents z s (m), which is 0; so z,m € aM forn > 0. So  TniM € aM forn > n;.
But aM =0. Soz, € bforn>ny. Sozx € b Thus AnnR(M) C b, as desired.

(In passing, note that (22.1) yields M = M as R-modules. ) O

Exercise (22.52) . — Let R be a ring, a an ideal, and M, N, P modules. Assume
aM C PC N C M. Prove:
(1) The (a—adlc) topology on M induces that on N.
(2) Then (aM) cPcNcM, and N/P = N/P.
(3) The map Q— Q is a leeCtIOIl from the R-submodules @ with P C Q C N
to the R-submodules Q' with PcC Q' C N. Its inverse is Q' — Ky HQ.
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Solution: For (1), note aM C N C M. Multiplying by a™ for any n > 0 yields
a1 M C a®N C a"M. Thus (1) holds.

For (2), note (1) implies the topology on M induces the topologies on N, P,
aM. Hence, the topology on N induces that on P, and that on P induces that on
aM. Thus (22.12)(1)—(2) yield (2).

For (3), note @ — @Q/P is a bijection from the R-submodules Q with P C Q C N
to the R-submodules of N/P, and Q’ —Q'/ Pisa leectlon from the R-submodules
Q' with P € Q' C N to the R-submodules of N/P. But N/P = N/P and
Q/P = Q/P by (2); also, these identifications come from ;. Thus (3) holds. [

Exercise (22.53) . — Let R be a ring, a C b ideals, and M a finitely generated
module. Let ® be the set of maximal ideals m € Supp(M) with m D a. Use the
a-adic topology. Prove:

(1) Then Mis a finitely generated ﬁ-module, and bAM = bAM C M.

(2) The map p + P is a bijection Supp(M/bM) —= Supp(]/w\/aj/\/[\). Its inverse

is p’ — /ﬁg p It restricts to a bijection on the subsets of maximal ideals.

(3) Then Supp(M / aM ) and Supp(M ) have the same maximal ideals.

(4) Then the m with m € ® are precisely the maximal ideals of R in Supp(]\/] ).
(5) Then xp' rad(ﬂ) = Nmeo M and rad(J/\/[\) = (Nmea m)/\.
(6) Then @ is finite if and only if M is semilocal.

(7) If M = R, then ® = {b} if and only if R is local with maximal ideal b.

Solution: For (1), fix a surjection R" — M. It induces a map R™ — M, Wthh
is surjective by (22.12)(1). But completion is a linear functor, so R" =R by
(8.14). So there’s a surjection R" — M. Thus M isa finitely generated R-module.

Let’s use R" — M to construct the following commutative diagram:

bR % bM
S|
bR > M
First, bM C M by (22.52)(2) with P := bM and N := M. Next, bM C M by
definition; namely, the product of a Cauchy sequence in b and one in M is one in
M. In fact, the latter is a sequence in bM. So take v to be the inclusion.
Similarly, take 8 to be the inclusion of submodules of R". Plainly, R" — M
restricts to give a and §. Trivially, the resulting diagram is commutative.

Plainly, multiplication by b preserves surjections; so bR" — bM is surjective.
But again, completion preserves surjections by (22. 12)( ). Thus 0 is surjectlve

Again, completion preserves finite direct sums; so R = R and 09" = b
AT /\@r
But plainly, multlphcatlon by an ideal preserves { ﬁmte direct sums; so bR =b

and bR™ = b®". Hence bR = b el and bR = b ; correspondingly, 8 = 1. So §f3
is surjective; so 7y is too. Thus (1) holds.

For (2), set ¢ := Anng(M/bM). Note a(M/bM) =0. So ¢ = Annﬁ(]\/f//b\]%)
by (22.51). As M is finitely generated, so is M/bM; hence, ]\4//5\]\4 is too by (1).
Thus (13.4) yields Supp(M/bM) = V(c) and Supp(]\m/[) = V(o).

The topology on M induces that on bM by (22.52)(1); so W/l = ]\//T/b/]\/\[ by
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(22.12)(1). Moreover, 6M = bM by (1). Thus Supp(M/bM) = V(2).

The map p — p/c is a bijection from the ideals p containing ¢ to the ideals of R/c;
also, p is prime or maximal if and only if p/¢ is. The map p’ — p’/¢ is similar. By
(22.52)(1), the topology on p induces that on ¢. So kg induces an identification
p/c =P/ by (22.12) (1)~(2). In particular, R/c = R/¢; this identification is a ring
isomorphism, so preserves prime ideals and maximal ideals. Thus (2) holds.

For (3), note M is finitely generated by (1). So Supp(]\/i/ﬁ]/\i\) = Supp(Z/\l\)ﬂV(a)
by (13.46)(1). But every maximal ideal of R contains @ by (22.4). Thus (3) holds.

For (4), note Supp(M/aM) = Supp(M) NV (a) by (13.46)(1) as M is finitely
generated. Thus (2) with b = a and (3) yield (4).

For (5), note (J,cp M = rad(M) by (4). So Kt rad(M) = Nimes £ M. But
kil =m by (2). So rp'rad(M) = ),cp m. Thus (22.52)(3) yields (5).

Finally, (6) and (7) both follow immediately from (4). O

Exercise (22.54) (UMP of completion) . — Let R be a ring, M a filtered module.

Show: (1) Then kpr: M — M is the universal example of a map of filtered modules
a: M — N with N separated and complete.
(2) Assume R is filtered. Then kg: R — R is the universal example of a filtered
ring map ¢: R — R’ with R’ separated and complete.

Solution: For (1), first note that M is separated and complete by (22.16)(4),
and sy is a map of filtered modules by (22.1).

Second, recall from (22.1) that any given « induces a map of filtered modules
a: M — N with aky = kya. But N is separated and complete. So xpy is
injective by (22.3) and surjective by (22.13)(1). Thus sy is an isomorphism of
filtered modules by (22.1).

Set 8 := /ﬁvl&. Then 3: M > Nisa map of filtered modules with Bk = a.
Finally, given any map of filtered modules 8': M — N with B'ky = a, note
knB'kpm = kna. So kyB' =@ by (22.15). Thus 8’ = . Thus (1) holds.

For (2), revisit the proof of (1) taking a := ¢. It is clear from their construction
in (22.1) that @ and kg are maps of filtered rings; thus £ is too. Thus (2) holds. O

Exercise (22.55) (UMP of formal power series) . — Let R be aring, R’ an algebra,
b an ideal of R', and z1,...,2, € b. Let A:= R[[X1,...,X,]] be the formal power
series ring. Assume R’ is separated and complete in the b-adic topology. Show
there’s a unique map of R-algebras ¢: A — R’ with ¢(X;) = z; for all ¢, and ¢ is
surjective if the induced map R — R’/b is surjective and the x; generate b.

Solution: Set P := R[X;,...,X,] and a := (X3,...,X,). Give P the a-adic
filtration. Then P = A by (22.2). Form the unique R-algebra map 7 : P — R’
with 7(X;) = z;. Notice 7 respects the filtrations. So by (22.54)(2), there’s a
unique map of filtered rings p: A — R’ with pxp = .

Assume R — R'/b is surjective and the x; generate b. Then P/a — R’'/b and
a/a® — b/b? are surjective. But b/b? generates G(R') as an R’/b-algebra. So G()
is surjective. So G(yp) is too, as G(¢)G(kp) = G(w). Thus ¢ is by (22.23)(2). O

Exercise (22.56) . — Let R be a ring, a a finitely generated ideal, and X1,..., X,
variables. Set P := R[[X1,...,X,]]. Prove P/aP = (R/a)[[X1,...,X,]]. (But, it’s
not always true that R’ ®p P = R'[[X1,...,X,]] for an R-algebra R’; see (8.18).)
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Solution: Let k: R — R/a be the quotient map. By (22.55), there is a unique
ring map ¢: P — (R/a)[[X1,...,X,]] with ¢|R = k and ¢(X;) = X, for all i. As
Kk is surjective, so is p. But Ker(y) consists of the power series whose coefficients
map to 0 under &, that is, lie in a. Hence Ker(¢) = aP by (3.19)(5) as a is finitely
generated. Thus ¢ induces an isomorphism P/aP == (R/a)[[X1,..., X,]].

Alternatively, the two R-algebras are equal, as they have the same UMP: each is
universal among complete R-algebras R’ with distinguished elements z; and with
aR’ = 0. Namely, the structure map ¢: R — R’ induces a unique map 7: P — R’
such that 7(X;) = z; for all ¢ by (22.55). Then 7 factors through a unique map
P/aP — R'. Indeed 7 factors through the quotient P/ where 2 is the ideal of
power series with coefficients in a as aR’ = 0. But 2 = aP by (3.19)(5) as a
is finitely generated. So 7 factors through P/aP. On the other hand, ¢ factors
through a unique map ¢: R/a — R’ as aR’ = 0; then v factors through a unique
map (R/a)[[X1,...,X,]] = R’ such that n(X;) = z; for all i by (22.55). O

Exercise (22.57) (Cohen Structure Theorem I) . — Let A — B be a local homo-
morphism, b C B an ideal. Assume that A = B/b and that B is separated and
complete in the b-adic topology. Prove the following statements:

(1) The hypotheses hold if B is a complete Noetherian local ring, b is its maximal
ideal, and A is a coefficient field.
(2) Then B ~ A[[X;,...,X,]]/a for some r, variables X;, and some ideal a.

Solution: For (1), note A = B/b holds by definition of coefficient field (21.24).
Moreover, as B is Noetherian, it is separated by (22.3). Thus (1) holds.

For (2), say b = (z1,...,2,), and take variables Xy,..., X,. Form the unique
surjection of A-algebras : A[[X71,...,X,]] = B with ¢(X;) = x; of (22.55), and
set a := Ker(p). Then A[[X1,...,X,]]/a = B. Thus (2) holds. O

Exercise (22.58) (Cohen Structure Theorem II) . — Let A — B be a flat local
homomorphism of complete Noetherian local rings, and b C B an ideal. Denote the
maximal ideal of A by m, and set B’ := B/mB. Assume that A = B/b and that
B’ is regular of dimension r. Find an A-isomorphism ¢: B = A[[Xq,..., X,]] for
variables X; with ¢(b) = (X1,...,X,). Moreover, if b = (z1,...,x,) for given x;,
find such a ¢ with ¥(z;) = X.

Solution: As B is complete, Noetherian, and local, B = B by (22.14). So B is
equal to its completion in the b-adic topology by (22.43)(2). Thus by (22.16)(4)
or by (22.14) again, B is separated and complete in the b-adic topology.

Set k := A/m. Then B’ = B ® k. Form the exact sequence of A-modules
0—>b6b—>B—>A—0 Ityelds0—b®k— B — k — 0, which is exact by
(9.8)(1). Let n’ be the maximal ideal of B’. Now, k is a field. Thus b® k =n'.

As B’ is regular of dimension r, there are x1,..., 2z, € b whose images in n’ form
a regular sop, and so generate n’. But n’ = b® k = b/mb, and mb = (mB)b. Also,
b is finitely generated as B is Noetherian. Thus by (10.8)(2), the x; generate b.

Fix any x1,...,2, € b that generate b. Then their images in n’ generate n’, and
so form a regular sop as dim(B’) = r. Set P := A[[X1,...X,]] for variables X;.
By (22.55), there’s a surjection of A-algebras ¢: P — B with ¢(X;) = ;. Set
a:= Ker(p). We must show a = 0, for then 1 is bijective, and ¢ := 1)~! works.

As A > Bisflat, 0 > a®k > PRk 95 B®k — is exact by (9.8)(1).
Now, B® k = B’, and G(B’) is the polynomial ring, over B’/n’/, in the images
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of z1,...,z, by (21.15), and B’/n’ = k owing to the second paragraph above.
Moreover, P ® k = k[[X1,...X,]] owing to (22.56). But ¢(X;) = x;. Hence
G(p®k)=1. So ¢ ® k is bijective by (22.23). Hence a ® k = 0. Thus a = ma.
As A is Noetherian, so is P by (22.27). Hence a is finitely generated as a
P-module. But a = (mP)a. Thus (10.6) implies a = 0, as desired. O

Exercise (22.59) . — Let k be a field, A := k[[X1,...,X,]] the power series ring
in variables X; with n > 1, and F € A nonzero. Find an algebra automorphism ¢
of A such that ¢(F') contains the monomial X2 for some s > 0; do so as follows.
First, find suitable m; > 1 and use (22.55) to define ¢ by

(X)) =X+ XM for 1 <i<n-—1and o(X,) = X,. (22.59.1)
Second, if k is infinite, find suitable a; € k* and use (22.55) to define ¢ by
o(X;) =X, +a; X, for 1 <i<n-—1and p(X,) = X,. (22.59.2)

Solution: First, note that (22.55) yields, for any m;, a unique endomorphism
¢ of A defined by (22.59.1). Plainly, ¢ is an automorphism, whose inverse ¢’ is
defined by ¢'(X;) := X; — X7 for 1 <i¢ <n—1and ¢'(X,,) := X,.

To find suitable m;, order the monomials of F' lexicographically. Say [[ X;* is
smallest. Take m > max{s;} and m; :== m"~*. Then ¢([] X;") contains X3 with
s:=Y m;s;. Given any other HXf in F, say t; = s; for ¢ < h, but t;, > s,. Set
t:=Y mgt;. Thent —s>m" " =3, m"%s; > 0. Thus ¢(F) contains X3.

Second, note that similarly (22.55) yields, for any a;, a unique automorphism ¢
of A defined by (22.59.2). Suppose now k is infinite.

To find suitable a;, say F' = )" .. . F; with F; homogeneous of degree i and Fi; # 0.
As k is infinite, Fy(as,...,a,) # 0 for some a; € k* by (3.28)(1) with 8 := k*.

As F is homogeneous, we may replace a; by a;/a,. Set ¢ := Fg(ay,...,an,-1,1).
Then ¢(F') contains the term cX 2, as desired. O
Exercise (22.60) . — Let A be a complete Noetherian local ring, k a coefficient

field, z1,...,x5 a sop, Xi,..., X, variables. Set B := k[[X1,...,X;]]. Find an
injective map ¢: B — A such that p(X;) = x; and A is B-module finite.

Solution: As A is Noetherian, A is separated by (22.3). Set q := (x1,...,xs).
It’s a parameter ideal. So A has the g-adic topology by (22.1). Thus (22.55)
provides ¢: B — A with ¢(X;) = z;.

Set n:= (Xy,...,Xs), and form this canonical commutative diagram:

kX1, Xs] = (A/q)[Xq,..., XS]

! “|
Cn(B) — s Gq(4)
where ¢, the surjective map of (21.11.1).

Given F € Ker(G(yp)), view F € (A/q)[X1,...,Xs]. Then ¢s(F) = 0. So by
(21.23)(1)—(2), the coefficients of F' are in the maximal ideal of A/q. But they’re
in k too. So they’re 0. So G(y) is injective. Thus by (22.23)(1), also @ is injective.

Note B is complete by (22.2). So @ = ¢. Thus ¢ is injective.

As A/q has finite length, it has finite k-dimension by (19.19). But the ¢,(X;)
generate q/q* over A/q. Hence G4(A) is Gy (B)-module finite. But B is complete.
Also A is separated. Thus by (22.24), A is B-module finite. O
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Exercise (22.61) . — Let R be a ring, M a nonzero Noetherian module, and q a
parameter ideal of M. Show: (1) M is a nonzero Noetherian R-module, and q is a
parameter ideal of M; and (2) e(q, M) = e(q, M) and dim(M) = dim(M ).

Solution: First, for all n > 0, note Mm = Z/W\/W by (22.12)(1). And
q"M =G M by (22.20). Also, £x(M/q"M) < 0o by (20.9). Thus by (22.41)(2)

Cr(M/q"M) = €5(M /G M). (22.61.1)

For (1), note kpr: M — M is injective by (22.3). But M # 0. Thus M # 0.
Moreover, M is a Noetherian R-module by (22.26).

Set m := rad(M). Then m = rad(M) owing to (22.53)(5). But ¢ C m. Thus
q C m by (22.1). Also, éﬁ(ﬂ/ﬁ]\//f) < oo by (22.61.1). Thus q is a parameter
ideal. Thus (1) holds.

For (2), note pq(M, n) = (]/W\ n) owing to (22.61.1) and (20.10.2). Hence.
d(M) = d( ) by (21.2); so dim(M) = dim(]\//.T) by (21.4). Thus (2) holds. O

Exercise (22.62) . — Let A be a Noetherian local ring, m the maximal ideal, k the
residue field. Show: (1) A is a Noetherian local ring with M as maximal ideal and
k as residue field; and (2) A is regular of dimension r if and only if A is so.

Solution: For (1), note A is Noetherian by (22.26), and it’s local with @ as
maximal ideal by (22.53)(7). And A/f = k by (22.12)(1)—(2). Thus (1) holds.

For (2), note (1) holds. So m/m? = ﬁ/n/;z by (22 12)(1)-(2). But m? = m2
by (22.20). So m/m? = m/m% But dim(A4) = dim(4 A) by (22.61)(2). Thus the
second paragraph of (21.14) implies (2). O

Exercise (22.63) . — Let A be a Noetherian local ring, kK C A a coefficient field.
Show A is regular if and only if, given any surjective k-map of finite-dimensional
local k-algebras B —» C, every local k-map A — C' lifts to a local k-map A — B.

Solution: First, assume A is regular. Given a: B — C and v: A — C, we must
lift v to some f: A — B. As B and C are finite dimensional, they’re Artinian
by (16.42). It follows, as explained in (22.1), that B and C are separated and
complete. Let n and p be the maximal ideals of B and C.

So (22.54)(2) yields a map of filtered rings ¢ : A = C with Yk = . Now, A
ia regular, so A is too by (22.62)(2). So A = k[[X1,...,X,]] for variables X; by
(22.58). As ¢ is a map of filtered rings, (X;) € p for all 7.

As a: B — C is surjective, each 1 (X;) lifts to some z; € n. So (22.55) yields
a k-algebra map ¢: A — B with ©(X;) = x; for all i. Then ap(X;) = ¥(X;). So
(22.55) implies ap = 1. Set §:= pk4. Then aff =+, as desired.

Conversely, assume, given any a: B — C, every v: A — C'liftstoa 5: A — B.
Let m be the maximal ideal of A. By (22.62), A is Noetherian and local with @
as maximal ideal and k as coefficient field; also, if Ais regular, then so is A.

Say z1,...,x, € m generate, and r is minimal. Then dimy(m/m?) = r by (10.9).
So dimy(A/@2) = r + 1. Let P := k[[X1,...,X,]] be the power series ring. By
(22.55), there’s a surjective map of k-algebras p: P —» A with o(X;) = ;. Set
a:= (Xi,...,X,). Then ¢ induces a surjection po: P/a? —» /Al/ﬁ2 But plainly
dimy(P/a?) = r + 1. Hence ¢, is bijective. Precede ;' by the quotient map
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A —» A/@2 to get 12: A — P/a2. Notice 15 (z;) is the residue of X;.

Recursively, let’s construct a local k-map v, : A P/a™ lifting 9,1 for m > 2.
By hypothesis, 1,,—1r4 lifts to some local k-map 5: A — P/a™. So (22.54)(2)
yields a local k-map v, : A P/a™ with ¢, k4 = B. Let v: P/a™ — P/a™~ ! be
the quotient map. Then Yy, k4 = ¥m_1k4. Thus (22.54)(2) yields Yy, = ¥m—_1.

By (22.6), P = @Pn. So (22.5) yields a local k-map : A = P lifting all 1,,.
So ¥(x;) = X; (mod a?) for all i. But ¢(X;) = z;. So ¢¥p(X;) = X; (mod a?).
But G(P) = k[X1,...,X;]. So G(vp) = 1. So ¢y is bijective by (22.23). Hence
© is injective. But ¢ is also surjective. So ¢ is bijective. But by (22.27), P is
regular, so Alis regular too, as desired. O

Exercise (22.64) . — Let k be a field, ¢: B — A a local homomorphism of Noe-
therian local k-algebras, and n, m the maximal ideals. Assume k = B/n = A/m,
the induced map ¢’: n/n? — m/m? is injective, and A is regular. Show B is regular.

Solution: Let’s reduce to the case where A and B are complete. Note (22.62)
(1)-(2) imply A and B are Noetherian local rings with m and 0 as maximal ideals,
A is regular, and if B is regular, so is B. Also, (22.12)(1)—(2) and (22.20) yield

B/i=B/n, A/fi=A/m, d/8>=n/n?, and @/@%=m/m?

hence, k = B/ = A/, and the induced map @': i/f% — /M2 is injective. So we
may replace A and B by A and B, and thus assume A and B complete.

Take by, ...,b, € n whose residues in n/n? form a k-basis. Set a; := ¢(b;) for all
i. As ¢ is injective, the residues of ai,...,a, are linearly independent in m/m?.
Complete a1, ...,a, to ai,...,a, € m whose residues form a basis of m/m?. As A
is regular, r = dim(A) by (21.14). So by (22.58), there’s a canonical isomorphism
A =E[[Xy,...,X,]] for some variables X, and with a,; corresponding to Xj.

Set A’ := k[[X1,...,X,]]. Then (22.55) yields k-surjections ¢: A” — B and
k: A — A" with ¢(X;) =b; for all i and k(X;) = X; for 1 <i<n and k(X;) =0
for n <@ <. Then rpY(X;) = X, for 1 <i < n;so kpy =14 by (22.55). So ¢
is injective too. So v is an isomorphism. Thus (22.27) implies B is regular. (I

Exercise (22.65) . — Let R be a Noetherian ring, and X3, ..., X,, variables. Show
that R[[X1,...,X,]] is faithfully flat.

Solution: The inclusion of R in R[[X1,...,X,]] factors as follows:
R— RIX1,...,Xa] = R[[X1,...,Xn]].

The first map is flat by (9.20). The second map is flat by (22.22). Hence the
composition is flat by (9.23). Given any ideal a of R, its extension aR[[ X7, ..., X,]]
contains only power series with all coefficients in a; so a = aR[[X1,...,X,]] N R.
Thus (9.28)(3)=-(1) yields the result. O

Exercise (22.66) (Gabber—Ramero [9, Lem.7.1.6]) . — Let R be a ring, a an ideal,
N a module. Assume N is flat. Prove the following:

~

(1) The functor M — (M ® N) is exact on the Noetherian modules M.
(2) Assume R is Noetherian. Then for all finitely generated modules M, there’s
a canonical isomorphism M @ N = (M ® N) , and N is flat over R.
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Solution: For (1), let 0 - M’ — M — M"” — 0 be an exact sequence of
Noetherian modules. As N is flat, 0 = M@ N - M QN —- M" @ N — 0 is
exact too. Hence 0 — (M’ @ N) — (M ® N) — (M” @ N) — 0 is exact by
(22.12)(1), provided the (a-adic) topology on M ® N induces that on M’ ® N.

Set F"M' := M’ na"M and F*(M' @ N) := (M’ ® N)N (a"M @ N). The F"M’
form an a-stable filtration by the Artin-Rees Lemma (20.12). But N is flat. So
(F"M"Y®@ N = F"(M' ® N) by (9.18). Hence the F"(M' ® N) form an a-stable
filtration. Thus by (22.1), it defines the a-adic topology. Thus (1) holds.

In (2), the first assertion follows from (1) and (8.14) (and (16.15)). The second
assertion results from the Ideal Criterion (9.15): given any ideal a, the inclusion

a — R induces an injection a ® N < N owing to the first assertion and to (1). O

Exercise (22.67) . — Let P be the polynomial ring over C in variables Xy, ..., X,,,
and A its localization at (X1, ..., X,). Let C be the ring of all formal power series in
X1,...,X,, and B its subring of series converging about the origin in C™. Assume
basic Complex Analysis (see [8, pp.105-123]). Show B is local, and its maximal
ideal is generated by X;,...,X,,. Show P C A C B C C, and P=A=B=cC.
Show C' is faithfully flat over both A and B, and B is faithfully flat over A.

Solution: Set mp :={F € B| F(0) =0}. Plainly, mp is an ideal. But B —mp
consists of units (see (22.89) or [8, 1., p. 108]). Thus by (3.5), B is local, and mp
maximal.

Trivially, PC BC C. Set mp :={F € P| F(0) =0}. Then mp =mpnNP. But
plainly mp = (X3,...,X,). So mp is maximal. Moreover, by (11.3), the inclusion
P — B induces an inclusion A — B. Thus PC AC B C C.

Let my and mg be the ideals of A and C generated by X1,..., X,,. They are the
maximal ideals of A and C by (11.12)(1) and (3.7). Next, let b be the ideal of B
generated by Xi,...,X,, and let’s show b = mp.

More generally, fix » > 1. Let’s show b” = m’; = BNmg. Note X1,...,X,, € mp.
So b" C m;. Now, mp lies in the set of all F' € C' with vanishing constant term,
which is plainly equal to mg. So m; C my,. Thus it suffices to show BNmg C b".

Given F' € mg, say F = 37" M;G; where the M; are the monomials of degree
r and G; € C. By induction on d > 0, let’s define G, 4 for all j so that (1) G4
and G q—1 differ only in degree d if d > 1 and (2) there’s no monomial N of degree
7+ d that appears in M;G; 4 for two different j and (3) F =370, M;Gj 4.

Set G0 := G; for all j. Then (2) and (3) hold with d := 0.

Assume d > 1 and the G 4—1 are defined. Initially set G 4 := G ,q—1 for all j.
If there’s a monomial IV of degree r 4 d that appears in both M;G; 4 and M;G; 4
with 1 < ¢ < j < m, then let a be the coefficient of N in M;G} 4, replace G 4 by
Gja— (aN/M;), and replace G; q by Gi.q + (aN/M;). Repeat until (2) holds (only
finitely many triples N, j, ¢ are involved). Then (1) and (3) hold for the G; 4 too.

Replace G; by limg o G 4, which exists owing to (1). Note F = Z;n:l M;G,
owing to (3). Also, all the M;G; have different monomials owing to (2). Hence,
each monomial N of each M;G; appears in F, and N has the same coefficient in
both M;G; and F.

Suppose also F' € B. Then F is absolutely uniformly convergent in a neighbor-
hood U of the origin. Hence, owing to the preceding paragraph, each M;G; too is
absolutely uniformly convergent in U by the Comparison Test. So G; € B for all
j. Thus F' € b". Thus BNmg C b". Thus b” = m = BNmg,.
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Suppose also F' € P. Recall that each monomial of each M;G; appears in F'. So
G; € P for all j. Thus PNmg C mp. But plainly mp C mg,. Thus mp = PNmg.

Som, = PN(ANmE,). But m} is mp-primary by (18.9), so saturated by (18.20);
so PNmpA =m}p by (11.12)(1). But mp A =m’. Thus PN(ANmg) = PNnmy.
Thus, by (11.12)(1) again, m’y = A Nmf,.

Som’y = AN (BNmg). But my = BNmg. Thus m’y = ANmip.

Hence, there are induced injections:

P/mp — A/m’y — B/mp — C/m¢.

But the composition P/m} — C/my, is plalnly burjectlve So all the displayed
maps are bijective. Thus (22.7) yields P=A=B=C. But P=C by (22.2).
Thus P = A= B = C.

Recall P is Noetherian by the Hilbert Basis Theorem, (16.10); so A is Noetherian
by (16.33). Recall B is Noetherian by (22.89) or [8, 3.7, p. 122]. But A and B
are local. So (22.36)(1)=(7) implies A is faithfully flat over A, and B is faithfully
flat over B. But A = B = C. Thus C is faithfully flat over both A and B. Finally,
by (9.25), B is flat over A; so by (10.30), faithfully flat. a

Exercise (22.68) . — Let R be a Noetherian ring, and a and b ideals. Assume
a C rad(R), and use the a-adic topology. Prove b is principal if bR is.

Solution: Since R is Noetherian, b is finitely generated. But a C rad(R). Hence,
b is principal if b/ab is a cyclic R-module by (10.8)(2). But b/ab = b/(ab)” by
(22.12)(1)-(2), and b = bR by (22.20).

Assume bR = Rb for some b € R. Then b / ab = RV where V' is the residue
of b. Given x € R say x is the limit of the Cauchy sequence (kRYn) with y, € R.

Then = — kgy, € @ for some n. So b’ = y,b' as ba C (ba) Thus b/ab = RV, as
desired. 0

Exercise (22.69) (Nakayama’s Lemma for adically complete rings) . — Let R be
a ring, a an ideal, M a module. Assume R is complete, and M separated. Show

mi,...,my € M generate assuming their images m/,...,m}, in M/aM generate.

Solution: Note that mj,...,m) generate G(M) over G(R). Thus my,...,my,
generate M over R by the proof of (22.24).

Alternatively, by (22.24), M is finitely generated over R and complete. As M is
separated, M = M by (22.3) and (22.13)(1). So M is also an R-module. As R is
complete, kz: R — R is surjective by (22.13)(1). But a is closed by (22.1); so a is
complete; 80 kq: a — @ is surjective too. Hence aM = aM. Thus M/aM = M/aM.
So the m; generate M /aM. But a C rad( R) by (22.4). So by Nakayama’s Lemma
(10.8)(2), the m; generate M over R, so also over R as kg is surjective. O

Exercise (22.70) . — Let A — B be a local homomorphism of Noetherian local
rings, m the maximal ideal of A. Assume B is quas1—ﬁn1te over A; that is, B / mB
is a finite-dimensional A/m-vector space. Show that B is module finite over A.

Solution: Take y1,...,yn € B whose residues generate the vector space B/mB
By (22 69), the y; generate B as an A-module if their residues Y. generate B /mB
and if B is separated in the m-adic topology. Let’s check those two conditions.

Set b := mB. Let n be the maximal ideal of B. Given n > 0, note (b") = b"B
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by (22.20) with R := B and a := n. But "B = m"B = (m"A)B. Moreover,
m"A = ()" by (22.20) with R := A and a := m. Thus
(b™) = (W)"B. (22.70.1)

Since B/b is finite-dimensional over A/m, it is Artinian by (19.10). So n/b is
nilpotent by (19.23). Thus there is m > 0 with n™ C b C n.

Hence B/b is discrete in the n-adic topology. So B/b = (B/b)A. However,
(B/b) = B/b by (22.18) with R := B and a := n. Also b = mB by (22.70. 1)
with n := 1. Hence B/b = B/mB. Thus the Y. generate B/@B over A, so over A.

Again since n™ C b C n, the m-adic topology on B is the same as the n-adic. But
B is the separated completion of B for the n-adic topology. So B has the topology
defined by the filtration F"B := (b”) . But (b") = (m )”B by (22.70.1). Thus
B has the f-adic topology, and by (22.16)(4), is separated in it, as desired. [

Exercise (22.71) . — Let A be the non-Noetherian local ring of (18.24). Using
E. Borel’s theorem that every formal power series in z is the Taylor expansion of
some C°°-function (see [14, Ex. 5, p. 244]), show A = R[[z]], and A is Noctherian;
moreover, show A is a quotient of A (so module finite).

Solution: Consider the Taylor-series map 7: A — R[[z]] of (18.24); it’s defined
o P , .
by 7(F):=3,", £ n'(o) ", It’s a ring map; so 7(z*A) C x*R][[z]] for each k. By
Borel’s Theorem, 7 is surjective. Thus 7 induces a surjective map

Tk A/xkA—»R /ka

Suppose 7(F) = 2*G where G € R[[z]]. By Borel’s Theorem, G = 7(H) for
some H € A. So 7(F — z*H) = 0. But Ker(7) = MNyn>02"A by (18.24). Hence

F —2*H € 2*A. Thus 7, is injective, so bijective. Thus A = R[[z]] by (22.7).
Finally, R[[z]] is Noetherian by (22.27), so A is Noetherian too.
Moreover, since T is surjective, A is a quotient of A. O

Exercise (22.72) . — Let R be a ring, ¢ an ideal, M a module. Prove that, if M is
free, then M/qM is free over R/q and multiplication of G4(R) on G4(M) induces
an isomorphism oar: Gq(R) ®p/q M/qM —= G4(M). Prove the converse holds if
either (a) q is nilpotent, or (b) M is Noetherian, and q C rad(M).

Solution: Recall from (20.7) that G4(M) is a graded G4(R)-module and that
Gq(R) is a graded Gq,0(R)-algebra; also Go(M) = M/qM and G40(R) = R/q.
Thus the multiplication pairing induces the desired map oy,.

Note that og is an isomorphism by (8.5)(2) applied with R/q for R.

Assume M is free, say M = R® for some A. Let’s show oy = 01’;. First, given
ideals a, b, set ¢ := a/b, and note that aM = a” by (4.28) and that a®/b" = ¢*
by (5.4). Given n > 0, take a := " and b := q"*1. Thus Gqn(M) = (Gq.n(R))%.

Taking n := 0 yields M/qM = (R/q)*. Thus M/qM is a free R/q-module,
as desired. But G4(R) ®p/q (R/9)* = (Gq(R) ®r/q (R/q))* by (8.10). Thus
oM = 01’}3. But op is an isomorphism, thus o), is too, as desired.

Conversely, assume M /qM is free over R/q. Say my € M for A € A yield a free
basis of M/qM. Set F := R, and define a: F — M by a(ey) := my where the e
form the standard basis. Then « induces an isomorphism o': F/qF == M/qM.

Assume o)y is an isomorphism too. Consider the commutative diagram
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Gq(R) ®p/q F/aF — G4(F)

1®“¢ Gq(a)l

G4(R) ®p/q M/qM s Gq(M)

Its top, left, and bottom maps are isomorphisms. So its right map Gq(a) is too.
So a: F — M is an isomorphism by (22.23). But g™ = (0) for some n in case (a),
and (q"M = 0 by (18.35) in case (b); so M < M by (22.3). Thus « is injective.

For surjectivity of a, set N := Im(a). Then M = N 4+ qM as o' is surjective.
Hence q(M/N) = M/N. So M/N = 0, in case (a) by (3.31), and in case (b) by
(10.6). So M = N. Hence « is surjective, so bijective. Thus M is free. g

22. Appendix: Hensel’'s Lemma

Exercise (22.76) . — Let R be aring, a an ideal, X a variable, F' € R[X]. Assume
its residue F' € (R/a)[X] has a supersimple root @ € R/a, and R is separated and
complete. Show F' has a unique supersimple root a € R with residue a.

Solution: Sect G := (X — a). As a is a supersimple root, (2.34) yields a unique
H € (R/a)[X] coprime to G with F = GH. So (22.75) yields unique coprime
G, H € R[X] with F = GH, with residues G, H, and with G monic. Hence
G = X — a with a € R with residue a. Thus, by (2. 34)7 a is as desired. O

Exercise (22.86) . — Show that (22.75) is a formal consequence of (22.85) when
R is a local ring with maximal ideal a such that k := R/a is algebraically closed.

Solution: Set n := deg(G). Induct on n. Note that the case n = 0 is trivial.

Assume n > 1. As k is algebraically closed, G = (X - C)Sél with ¢ € k and
s > 1 and G1(0) # 0. Let ¢ be the R-algebra automorphism of R[X] defined by
o(X) := X + ¢, and let ¥ be the corresponding k-algebra automorphism of k[X].
Replace F' by ¢(I") and G, Gy, H by (@), 3(Gy), @(H), and thus assume ¢ = 0.

Set U := GyH. Then F = X*U and U(0) # 0. Say F =: 3 f;X?. Then
reducing mod a[X] yields f, = U(0) and f, = 0 for i < s. So f, € R* and
fi € afor i < s. Thus (22.85) yields U, V € R[X] where U(0) € R* and where
V=X*4+0v,1X5"t+... 4 v with all v; € a such that F = UV.

Reducing mod a[X] yields F=UVandV = X*. But k[X] isa UFD. So U = U.
So U = GlH But deg(Gy) = deg(G) —sand s > 1. Also, Gy is monic as G is,
and G1 and H are coprime as G and H are. So by induction, U = G1 H where G,
is monic and G; and H are coprime with residues G1 and H.

Set G :=VG;. Then F =UV = VG1H = GH and G = X*G; = G mod a[X].
As V and G; are monic, so is G. By (10.33)(2), as G and H are coprime, so are
G and H. Finally, the factorization F' = GH is unique by (22.73). |

Exercise (22.87) . — Let k be a field, B,, := k[[X7, ..., X,,]] the local ring of power
series in n variables X;. Use (22.59) and (22.84) to recover, by induction, the
conclusion of (22.27), that B,, is Noetherian.

Solution: The case n = 0 is trivial. So assume n > 1 and B,,_1 Noetherian.
Given a nonzero ideal a C B,, take a nonzero F' =: > f; X! € a. By (22.59),
there’s an algebra automorphism ¢ of B, such that ¢(F') contains a term of the
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form ¢X; with ¢ # 0. Say s is smallest; then f;(0) =0 for j < s and f,(0) # 0. It
suffices to show (a) is finitely generated; so replace a by ¢(a) and F by ¢(F).
For any G € a, there are Q € B, and P € B,,_1[X,] with G = QF + P and
with deg(P) < s by (22.84). Set M :=an) ; ' B,_1Xi. Then P € M. Thus
a=(F)+M. But B,_; is Noetherian; so M is a ﬁnltely generated B,,_;-submodule
of 07, ' B 1X¢. Thus a is finitely generated, as desired. O

Exercise (22.88) . — Let k be a field, B, := k[[X1,...,X,]] the local ring of
power series in n variables X;. Use (22.27) and (22.59) and (22.85) to show, by
induction, that B,, is a UFD.

Solution: The case n = 0 is trivial. So assume n > 1. Fix a nonzero nonunit
F € B,,. Now, B, is Noetherian by (22.27). So F = F},-- - F,. with F; irreducible.
Suppose also F' = FY,--- F], with F} irreducible. We must show that r = r’ and
that after reordering, F; = W, F, with W; a unit.

By (22.59), there’s an algebra automorphism ¢ of B, with (pF)(0,...,0,X,)
nonzero. Plainly, we may replace F, Fj, and F} by ¢F, ¢F;, and ¢F]. Then
F(0,...,0,X,) is nonzero. So the F;(0,...,0,X,) and Fj(0,...,0,X,) are too.

By (22.85), F = UV and F; = U;V; and F]' = UJ’-V]-’ with U, U;, Uj’- € B and
V, Vi, V/ € By—1[X»] monic with all nonleading coefficients in (Xi,..., Xy—1).
But F; and FJ’ are irreducible in B,,. So V; and Vj’ are irreducible in B,,_1[X,].
Moreover, UV = [[U;V; = [[U;V]. SoU = [[U; = [[Uj and V = [[V; = [[V]
owing to the uniqueness assertion in (22.85).

By induction, B,_; is a UFD. So B, _1[X,] is a UFD too. Hence r = r’ and
Vi = WV with W/ € B,,_1[X,,]*. Thus F; = W, F] with W, € B), as desired. O

Exercise (22.90) . — (Implicit Function Theorem) Let R be a ring, T1,...,T,, X
variables. Given a polynomial F' € R[T},...,T,, X] such that F(0,...,0,X) has a
supersimple root ag € R. Show there’s a unique power series a € R[[T1,...,T,]]
with a(0,...,0) = ag and F(T1,...,T,,a) =0.

Solution: Set A := R[[T1,...,T;]] and a = (T1,...,T,). Then A is a-adically
separated and complete by (22.2), and A/a = R by (3.7).

View F € A[X]. Tts residue in R[X] is F(0,...,0,X). So (22.76) implies F has
a unique supersimple root a € A with a(0,...,0) = ag, as desired. ([

Exercise (22.91) . — Let A be the filtered direct limit of Henselian local rings Ay
with local transition maps. Show A is local and Henselian.

Solution: For all A, let m) be the maximal ideal of Ay. Set m := lignmx. Then
A is local with maximal ideal m by (7.21). Set k := A/m and k) := Ax/my. Then
(7.9) implies k = lim k5. Use 7 to indicate residues modulo m and m.

Let X be a variable. Given F € A[X] monic, assume F = GH with G, H € k[X]
monic and coprime. By (7.5)(1) applied coefficientwise, there’s Ag such that F" and
G, H come from Fy, € Ay, [X X] and Gxys Hy, € ky,[X]. Take them monic. For all
A > Ao, let F,\ € A,\[X] and G’,\7 HA € kx[X] be the images of FAO and GAO, HAO

Note F — GH = 0. So (7.5)(3) yields A1 > Ao with Fy, = GA1H>\1

As G, H are coprime, there are G/, H' € k[X] with GG+ HH = 1. By
(7. 5)( ), ( ), there’s Ay > A; such that G, H' come from G’AQ, H;Q € kx,[X]
and G)\ G>\2 +H)\ HAQ = 1. Thus G)\z, HAQ are coprime.
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As A,, is Henselian, F), = Gy, H), with monic and coprime G,,, Hy, having
residues G»,, Hy,. Let G, H € A[X] be the images of G»,, Hy,. Then F' = GH
with monic and coprime G, H having residues G, H. Thus A is Henselian. ([l

Exercise (22.92) . — Let A be a local Henselian ring, m its maximal ideal, B an
integral A-algebra, and n a maximal ideal of B. Set B = B/mB. Show:

(1) Idem(B) — Idem(B) is bijective. (2) B, is integral over A, and Henselian.

Solution: For (1), let {B,} be the set of module-finite subalgebras of B. By
(10.14)(1)=(2), every x € B lies in some B, namely Alx]. By (10.18)(2)=-(3),
given A, p, there’s v with By, By C B,. Thus (7.2) yields B = ligBA.

Set By := By/mB,. Then B = li%mﬁk by (7.9). Furthermore, (7.5) implies
Idem(B) = hﬂldem(BA) and Idem(B) = ligldem(EA). But A is Henselian; so
each B, is decomposable by (22.78)(1)=(3); so Idem(B,) — Idem(B,) is bijective
by (19.15)(5). Thus (1) holds.

For (2), let ny be the contraction of n in By. Then B, = li%m(BA)nA by (11.25).
But (Bj)un, is module-finite over A, as it is a direct summand of By by (11.18).
So (Bx)n, is integral over A by (10.18)(3)=-(1). Thus B, is integral over A.

As each (B))n, is module-finite over A, each is Henselian by (22.79). So B, is
Henselian by (22.91). Thus (2) holds. O

Exercise (22.93) . — Let A be local ring. Show that A is Henselian if and only if,
given any module-finite algebra B and any maximal ideal n of B, the localization
B, is integral over A.

Solution: If A is Henselian, then (22.92)(2) implies B, is integral over A.

Conversely, by (22.78), we need only to show that B is decomposable. Now,
B is semilocal by (19.22). So by (13.59), given maximal ideals ny, ng C B with
(Bny )ny # 0, we need only to show that n; = ns.

Fix a prime of (B, )n,, and let p C B and q C A be its contractions. Then p can
contain no element outside of either n; or ny; so p lies in both n; and ns.

Plainly B/p is an integral extension of A/q. And both n;/p lie over the unique
maximal ideal of A/q by (14.3)(1). Also, B/p is a domain. But both B, are
integral over A, and By, /pBn, = (B/p)a, by (12.15); hence, both (B/p),, are
integral over A/q. So ny1/p =ny/p by (14.16). Thus n; = ng, as desired. O

Exercise (22.94) . — Let A be a local ring, and a an ideal. Assume a C nil(A).
Set A’ := A/a. Show that A is Henselian if and only if A’ is so.

Solution: If A is Henselian, then A’ is Henselian owing to (22.73).

Conversely, assume A’ is Henselian. Let B be a module-finite A-algebra. Set
B’ := B/aB. Then B’ is a module-finite A’-algebra. So B’ is decomposable by
(22.78)(1)=(3). But aB C nil(B). So B is decomposable by (13.23)(2)=(1) or
by (19.30). Thus A is Henselian by (22.78)(3)=(1). O

Exercise (22.95) . — Let A be a local ring. Assume A is separated and complete.
Use (22.78)(4)=-(1) to give a second proof (compare (22.75)) that A is Henselian.

Solution: Let m be the maximal ideal of A, and B a module-finite A-algebra with
an isomorphism «: B = A". Give B the m-adic topology. Then kg = kar«
by (22.54)(1). Plainly k4r = k7. But x4 is an isomorphism by (22.14)(2)=-(3).
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Thus kp is an isomorphism; put otherwise, B = B.

Moreover, (19.15)(1) implies B has finitely many maximal ideals n; and they’re
precisely the primes lying over m.

For n > 1, let k,: B/m"B — B/mB be the quotient map. Then Idem(ky)
is bijective by (3.36), as mB/m"B C nil(B/m"B). So B/m"B is decomposable
by (19.15)(3). Hence B/m"B = [[(B/m"B),, by (11.18). Thus (12.15) yields
B/m"B = HB ,/m" By,

Set B; = lim By, /m By,,. Then B; is the m-adic completion of By, by (22.7).
Also l&nB/m"B B but B = B by the above. Thus B = [[ B;. But B; is local
by(22.53)(7). So B is decomposable. Thus A is Henselian by (22.78)(4)=(1). O

Exercise (22.96) . — Let R be a ring, a an ideal, u € R*, and n > 2. Assume R
is separated and complete, and u = 1 (mod n?a). Find an nth root of .

Solution: Set F(X) := X" —u. Then F(1) = 1 —u = 1 (mod n?a), and
(0F/0X)(1) = n. Hence (22.82) yields a root a € R of F. Thus a" = u. O

Exercise (22.97) . — Let p, a1, ..., as, k be integers, and X7, ..., X, variables. Set
F .= alX{f—f— - ~+aSX§. Assume p prime, each a; and k prime to p, and s > k > 0.
Using (2.46), show F' has a nontrivial zero in Z.

Solution: Note F(0,...,0) = 0. So (2.46) yields b; € Z with F(by,...,bs) =0
(mod p), but b; # 0 (mod p) for some j. Set G(X) := F(b1,...,X,...,bs) with X
in the jth position. Then G(b;) = 0 (mod p) and (0G/0X;)(G(b;) = kbi™" £ 0
(mod p). So G has a root in Zp by (22.76). Thus F has a nontrivial zero in 2; O

Exercise (22.98) . — Find a cube root of 2 in Zs.

Solution: Set F' := X? — 2 € Z[X] and F' := 0F/0X. Then F(3) = 25 = 0
(mod 5) and F'(3) =27 =2 (mod 5). So (22.76) yields a root in Zs.

O

Exercise (22.99) . — Find a cube root of 10 in Zs.

Solution: Set F := X3 — 10 € Z[X] and F’ := 9F/0X. Then F(1) = —9 and
F'(1)=3. So F(1) =0 (mod 3). But F'(1) =0 (mod 3) and F (1) ¢ 9(3); so both
(22.76) and (22.82) appear to fail to provide a root. However, F(4) = 54 = 0
(mod 3). Moreover, F'(4) = 48; so F(4) € (F'(4))%(3). Thus after all, (22.82)
does yield a root of F', so a cube root of 10. (]

Exercise (22.100) . — In the setup of (22.84), if n > 1, find an alternative proof
for the existence of @ and P as follows: take a variable Y; view R[[X]] as an R[[Y]]-
algebra via the map ¢ with ¢(Y) := F: and show 1, X,..., X"! generate R[[X]]
as a module by using Nakayama’s Lemma for adically complete rings (22.69).

Solution: Give R[[X]] the (a, X)-adic topology. Then R[[X]] is separated and
complete by (22.44)(4). But F' € (a, X). So (22.55) yields an R-algebra map
¢: R[[Y]] = R[[X]] with (V) = F. Via ¢, view R[[X]] as an R[[Y]]-algebra.

Give R[[Y]] the (a, Y)-adic topology. Then R[[Y]] is complete by (22.44)(4). As
o(Y) = F, the topology induced on R[[X]] is the (a, F)-adic. But (a, F) C (a, X).
Since the (a, X) adic topology is separated, so is the (a, F')-adic.

Note R[[X]]/aR[[X]] = (R/a)[[X]] by (22.56). Denote the residue of F by F.
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Then F = X"U with U a unit in (R/a)[[X]] by (3.7). Hence

R[X])/(a, F) = (R/a)[[X]]/(F) = (R/a)[[X]]/(X").
Thus 1, X,..., X"~ ! generate R[[X]]/(a, F) over R[[Y]].
So 1, X,..., X" ! generate R[[X]] over R[[Y]] owing to (22.69). So there are
G; € R|[[Y]] such that G = E?:_Ol 0(G;) X' Say G; = g; + H;(Y)Y with g; € R and
H; € R[[Y]]. Set P:=>"¢; X" and Q :=Y_ p(H;)X*. Thus G = QF + P. O

Exercise (22.101) . — Let R be a ring, M a Noetherian module, q a parameter
ideal of M, and © € q™. Set M’ := M/xM and d := dim(M). For n > m, form

M/q" ™M 25 M/q"M — M’ /q" M’ — 0. (22.101.1)

Show: (1) Then (22.101.1) is (right) exact.
(2) Then £(M'/q" M) > €(M/q" M) — ((M/q"~™ M),
(3) Then pq(M',n) > pq(M,n) — pq(M,n —m) for n>> 0.
(4) If z ¢ p for all p € Supp(M) with dim(R/p) = d, then e(q, M") > me(q, M).
(5) If the residue T € q™/q™ "' of z is G4(M)-regular, then u, in (22.101.1) is
injective, x is M-regular, and equality holds in (2)—(4).

Solution: For (1), note M 2% M — M’ — 0 is exact. Tensoring with A/q"
yields M/q"M 22 M/q"M — M’/q"M' — 0 by (8.25)(1); it’s exact by (8.10).
But zq" ™M C q"M. Thus (1) holds.

For (2), set I := Im(u,). Then (22.101.1) yields these two sequences:

M/ ™M —-I1—0 and 0—1— M/q"M — M'/q"M' — 0.

The first is exact by definition of I; the second is exact owing to (1). So (19.7)
yields £(M/q"~"M) > £(I) and £(I) = &(M/q"M) — £(M'/q"M’). Thus (2) holds.

Notice (3) follows from (2) and (20.10.2).

For (4), note deg(pq(M,n)) = d by (21.4) as d := dim(M). So (20.11) yields
pq(M,n) = e(q, M)n?/d! + Q(n) with deg(Q) < d — 1. Now, dim(M') =d — 1 by
(21.5). So similarly py(M’,n) = e(q, M')n?=1/(d—1)!+ P(n) with deg(P) < d—2.

Notice n? — (n — m)? = dn?'m + Q'(n) with deg(Q') < d — 2. Similarly,
deg(Q(n) — Q(n —m)) < d — 2. Therefore,

pa(M,n) — pg(M,n —m) = e(q, M)ymn?=/(d — 1)! + Q" (n)
with Q" (n) := Q'(n) + (Q(n) — Q(n —m)). Note deg(Q") < d — 2. So (3) yields
e(q, M")n"1/(d = 1)! + P(n) = me(q, M)n?~*/(d — 1)l + Q"(n).
But deg(P) < d — 2 and deg(Q"”) < d — 2. Thus (4) holds.

For (5), assume T is Gq(M)-regular. Then i, in (22.101.1) is injective owing
to (20.35)(2). So ¢{(M'/q"M') =L(M/q"M)—L(M/q"~™M) for n > m by (19.7).
Hence pq(M’',n) = pq(M,n) — pq(M,n —m) for n > 0 by (20.10.2).

By hypothesis d = dim(M). Moreover, (1q"M = 0 by (18.23). So (22.23)(1)
implies p, is injective; that is, « is M-regular. Hence dim(M’) =d — 1 by (21.5).
So proceeding as in (4), conclude e(q’, M’) = me(q, M). Thus (5) holds. O

Exercise (22.102) . — Let R be a ring, N a Noetherian module, M a submodule,
q a parameter ideal of M. Give N the g-adic filtration and M a g-filtration F'*M
with FOM = M and F*"M C q"N for all n. Assume q = a + b where a and b are
ideals with bIN C F'M. Show:
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Solutions (22.103) / (22.103) App: Hensel's Lemma

(1) Then q"N C F"M + a™N for all n > 0.
(2) Then M Ng"N C F"M + M Nna™N for all n > 0.
(3) Then there’s ¢ such that setting M’ := M Na°N yields, for all n > ¢,

Mﬂqu C F”M—i—a”_cM’.

(4) Take cand M’ as in (3). Say a is generated by a elements and M’ is generated
by C elements. Set R’ := R/ Ann(M). Then, for all n > 0,

)E(R’/qCR’).
(5) Under the conditions of (4), assume F'*M is stable. Then

pq(an) —p(F.M,TL) _pq(N/Mvn)

is a polynomial in n of degree at most a — 1.

f((Mﬂqu)/FnM) SC(?’L—C‘FG—I

a—1

Solution: For (1), note q" = a™ + ¢"~'b. However, bN C F1M, and F*M is a
g-filtration. So q"~'6N C q"~'F'M C F"M. Thus (1) is done.

For (2), given z in M N¢"N, by (1), x = y+ z with y € F"M and z € a®N. So
z=x—y € M. Thus (2) is done.

For (3), note (20.12) yields ¢ such that a” °M’ = M Na™N for all n > 0. Thus
(2) completes (3).

For (4), note a”~°M’ has ("~¢7%7")C generators. Moreover,

qcanfcM/ C q’nM C FTLM

So (F™"M +a" “M')/F™M is a module over R'/q°R’. So by (19.31), its length is
at most ("_gf‘f_l)Cf(R’/ch/). Thus (3) completes (4).

For (5), set P := N/M. Then the following two sequences are exact:
0—>M/(MNg"N)— N/¢"N — P/q"P — 0;
0—-(MnNg"N)/F"M — M/F"M — M/(MNg"N)— 0.

So (19.7) yields
(N/q"N) = £(M/F"M) = £(P/q"P) = (M Nq"N)/F"M).
Thus (20.10.2) and (4) complete (5). |

Exercise (22.103) . — Let R be a ring, M a Noetherian module, z1,...,z4 a sop
of M. Set q:=(x1,...,24) and P := M/x1 M. Assume z; is M-regular. Show

e(q, M) = e(q, P).
Solution: Apply (22.102). Take a:= (z2,...,24) and b := (x1). Take N := M

and M := x1 M, and F™(x;M) := 219" M with q~! := R. Then, plainly, all the
hypotheses of (22.102) are satisfied. Thus (22.102)(5) yields

Pa(M,n) — p(F*(21M),1) = po(P,n) + Q(n) with deg@ < d —2.
Note that p,, : M[—1] = 1 M is an isomorphism of filtered modules. Thus
pq(M,n —1) = p(F*(z1M),n).

As zq,...,24 form a sop, dim(M) = d. But z; is M-regular. So (21.5) yields
dim(P) = d — 1. Hence (21.4) yields degpq(M,n) = d and degpq(P,n) = d — 1.
Thus (20.11) yields pq(M,n) = e(q, M)n?/d! + Q' (n) with deg @’ < d — 1, and
pq(P,n) = e(q, P)n?1/(d — 1) + Q"(n) with deg Q" < d — 2.
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Note n¢ — (n — 1)¢ = en®~! + E(n) with deg(E) < e — 2 for all e. Therefore,
pq(Mﬂl) _Pq(M»n - 1) = e(q,M)nd_l/(d— 1)' + D(n>
with deg(D) < d — 2. However,

Pq(P,n) +Q(n) = e(q, P)n™ ! /(d — 1)! +(Q + Q")(n)
with deg(Q + Q") < d — 2. Thus e(q, M) = e(q, P), as desired. O

23. Discrete Valuation Rings

Exercise (23.7) . — Let R be a normal Noetherian domain, x € R a nonzero
nonunit, a an ideal. Show that every p € Ass(R/(z)) has height 1. Conversely, if
R is a UFD and if every p € Ass(R/a) has height 1, show a is principal.

Solution: Given p € Ass(R/zR), note pR, € Ass(R,/zR,) by (17.8). Hence
depth(R,) = 1 by (23.5)(2). But R, is normal by (11.32). Hence dim(R,) =1
by (23.6)(3)=(4). Thus (21.6.1) yields ht(p) = 1, as desired.

Conversely, assume that R is a UFD and that all the primes p; of a have height
1. Then p; = (p;) for some prime element p; € R by (21.33) as R is a UFD. The
corresponding primary ideal of a is p;'* for some n,; by (18.7). Thus a = (\(p;").

Finally, set y := [[p;*. Then (y) C (p;"). Conversely, if all p;"* divide some z,
then y divides z too, as the p; are distinct prime elements in R, a UFD. Hence the
opposite inclusion holds. Thus (y) = ((p;*) = a, as desired. O

Exercise (23.9) . — Let A be a DVR with fraction field K, and f € A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) # dim(Ay).

Solution: Let R be aring, A ; R C K. Then there’s an x € R— A. Say x = ut"
where u € A* and t is a uniformizing parameter. Then n < 0. Set y := u~'¢t=""1,
Then y € A. Sot~! = 2y € R. Hence wt™ € R for any w € AX and m € Z. Thus
R = K, as desired.

Since f is a nonzero nonunit, A G Ay C K. Hence Ay = K by the above. Thus
dim(Ay) = 0. But dim(A4) =1 by (23.6), as desired. O

Exercise (23.11) . — Let R be a domain, M a Noetherian module. Show that M
is torsionfree if and only if it satisfies (S;).

Solution: Assume M satisfies (S1). By (23.10), the only prime in Ass(M) is
(0). Hence z.div(M) = {0} by (17.11). Thus M is torsionfree.

Conversely, assume M is torsionfree. Suppose p € Ass(M). Then p = Ann(m)
for some m € M. But Ann(m) = (0) for all m € M. So p = (0) is the only
associated prime. Thus M satisfies (S1) by (23.10). O

Exercise (23.12) . — Let R be a Noetherian ring. Show that R is reduced if and
only if (Rg) and (S;) hold.

Solution: Assume (Rg) and (S;) hold. Consider any irredundant primary de-
composition (0) = (q;. Set p; := /q;. Then p; € Ass(R) by (18.3)(5) and
(18.18). So p; is minimal by (S1). Hence the localization R, is a field by (Ro).
So p; Ry, = 0. But p; Ry, O q;R,,. Hence p; Ry, = q;R,,. Therefore, p; = q; by
(18.20). So (0) = (M p; = 1/(0). Thus R is reduced.

Conversely, assume R is reduced. Then R, is reduced for any prime p by (13.57).
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So if p is minimal, then Ry is a field. Thus (Ro) holds. But (0) =, ,inimal P- SO
p is minimal whenever p € Ass(R) by (18.18). Thus R satisfies (S1). O

Exercise (23.16) . — Show an equicharacteristic regular local ring A is a UFD.

Solution: First, 4 too is a regular local ring by (22.62). And A is faithfully flat
by (22.36)(1)=>(7). Thus by (23.8), it suffices to show A is a UFD.

By (22.16)(4), Alis separated and complete. But Ais equicharacteristic. Hence,
A contains a coefficient field, say k, by (22.81). So A E[[X1,...,X,]] where

ro= dim(;l\) by (22.58). Thus Ais a UFD by (22.88), as desired. O
Exercise (23.17) . — Let R be aring, 0 - N - M — L — 0 a short exact
sequence, and z1,...,z, € R. Set a; : (x1,...,xz;) for 0 <i < n. Prove:

(1) Assume z1,...,x, is L-regular. Then a,M NN = a;N for 0 < i < n.
(2) Then xq,...,x, is both N-regular and L-regular if and only if z,...,z, is
M-regular, a;, M NN = a;N for 0 <i <n, and N/a,N #0 and L/a, L # 0.

Solution: First, for all 4, set N; := N/a;N and M; := M/a;M and L; := L/a;L.

Then there’s a canonical sequence N; —% M; ﬁ—> L; — 0. It’s exact, because
plainly, §; is surjective, and Ker8; = (N + a;M)/a;M = Im ;. Plainly, «; is
injective if and only if a;M NN = a; N.

If «; is injective, then for 0 < ¢ < n this commutative diagram has exact rows:

O%NZ&MZ%IQ%O

[RETESY J, [REZERY l Hayyq J{

O%NZ&)MZ%LZ—)O

The three vertical cokernels are N; 1, M;11, Li11 by (23.4.1). Denote the three
kernels by A;, B;, C;. If «; is injective, then (5.10) yields this exact sequence:

0— Al — B; — Cz — Ni+1 % Mi+1 — Li+1 —0 (23.17.1)

For (1), induct on 4. If ¢ = 0, then (1) is trivial, since ag = (0). Given ¢ with
0 <i < n,assume ;M NN = a;N. Then (23.17.1) is exact. But x1,...,x, is
L-regular. So C; = 0. So ;41 is injective. Thus a;;.1 M NN = a;11 N, as desired.

For (2), first assume z1,...,x, is L-regular. Then C; = 0 for 0 < ¢ < n.
Further, (1) yields a;M NN = a;N for 0 < i < n. Hence (23.17.1) is exact for
0 <i<n. Assume z1,...,2, is N-regular too. Then A; =0 for 0 < i < n. Hence

B; =0 for 0 <i <n. Further, N, # 0 and L,, # 0 as x1, ..., %, is both N-regular
and L-regular. So M, # 0. Thus z1,...,z, is M-regular.

Conversely, assume a;M NN = a;N for 0 < 7 < n. Then «; is injective for
0 <i<mn. So (23.17.1) is exact for 0 < i < n. Assume z1,...,x, is M-regular
too. Then B; = 0 for 0 < ¢ < n. Hence A; and C; = 0 for 0 < i < n. Assume
N/a,N # 0 and L/a,L # 0 too. Then x1,...,x, is both N-regular and L-regular.
Thus (2) holds. O

Exercise (23.18) . — Let R be a ring, M a module, F': ((R-mod)) — ((R-mod))
a left-exact functor. Assume F(M) is nonzero and finitely generated. Show that,
for d = 1,2, if M has depth at least d, then so does F(M).
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Solution: As F' is linear, Ann(M) C Ann(F(M)). Thus rad(M) C rad(F(M)).

Assume depth(M) > 1. Then there’s = € rad(M) with M 22 M injective. So
x € rad(F(M). Also, as F is left exact, F(M) £% F(M) is injective too. Thus
depth(F(M)) > 1.

Assume depth(M) > 2. So there’s an M-sequence z,y € rad(M) C rad(F(M)).
Notice z,y yield the following commutative diagram with exact rows:

0— M2 M — M/zM

w| | ]

0— M2 M — M/zM

Applying the left-exact functor F' yields this commutative diagram with exact rows:

0 — F(M) 25 F(M) — F(M/xzM)

o | o | o |

0 — F(M) X% F(M) — F(M/xzM)

Thus again z is a nonzerodivisor on F(M). Further F'(M)/xF (M) — F(M/xzM).

As M/xM LN M/xM is injective and F' is left exact, the right-hand vertical
map [, is injective. So its restriction

F(M)/zF(M) = F(M)/zF (M)
is also injective. Thus z,y is an F(M)-sequence. Thus depth(F(M)) > 2. O

Exercise (23.19) . — Let k be a field, A a ring intermediate between the polynomial
ring and the formal power series ring in one variable: k[X] C A C k[[X]]. Suppose
that A is local with maximal ideal (X). Prove that A is a DVR. (Such local rings
arise as rings of power series with curious convergence conditions.)

Solution: Let’s show that the ideal a :=[1,5,(X") of A is zero. Clearly, a is a
subset of the corresponding ideal (1,5, (X™) of k[[X]], and the latter ideal is clearly
zero. Hence (23.3) implies A is a DVR. O

Exercise (23.20) . — Let L/K be an algebraic extension of fields; Xi,...,X,
variables; P and @ the polynomial rings over K and L in Xi,...,X,,. Show:

(1) Let g be a prime of @, and p its contraction in P. Then ht(p) = ht(q).
(2) Let F, G € P be two polynomials with no common prime factor in P. Then
F and G have no common prime factor H € Q.

Solution: In (1), @ = L ®x P by (8.18). But L/K is algebraic. So Q/P is
integral by (10.39)(1). Further, P is normal by (10.22)(1), and @ is a domain.

Hence we may apply the Going-down Theorem (14.6): given any chain of primes
po & -+ S pr = p, proceed by descending induction on i for 0 < 7 < 7, and thus
construct a chain of primes qo & --- G q, = q with q; N P = p;. Thus htp < htq.

Conversely, any chain of primes qg g e ; 4, = q contracts to a chain of primes
po C -+ C pr = p, and p; # p;+1 by Incomparability, (14.3)(2); so htp > htq.
Hence ht p = ht q. Thus (1) holds.

Alternatively, by (15.12), ht(p) + dim(P/p) = n and ht(q) + dim(Q/q) = n as
both P and @ are polynomial rings in n variables over a field. But, by (15.10),
dim P/p = tr.degy Frac(P/p) and dim@/q = tr.deg; Frac(Q/q), and these two
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transcendence degrees are equal as @/ P is integral. Thus again, (1) holds.

For (2), assume F, G have a common prime factor H € Q. Set q := QH. Then
qQq is principal and nonzero. Hence Q4 is a DVR by (23.6). Thus ht(q) = 1.

Set p := qN P. Then p contains F'; whence, p contains some prime factor H' of
F. Then p O PH', and PH' is a nonzero prime. Hence p = PH’ since htp = 1
by (1). However, p contains G too. Therefore, H' | G, contrary to the hypothesis.
Thus (2) holds. (Caution: if F':= X; and G := X3, then F and G have no common
factor, yet there are no ¢ and v such that F + ¢G = 1.) (]

Exercise (23.21) . — Prove that a Noetherian domain R is normal if and only if,
given any prime p associated to a principal ideal, p Rz, is principal.

Solution: Assume R normal. Say p € Ass(R/(x)). Then pR, € Ass((R/(x)),)
by (17.8). But R/(z)), = R,/(x/1)) by (12.15). So depth(R,) =1 by (23.5)(2).
But R, is normal by (11.32). Hence pR,, is principal by (23.6).

Conversely, assume that, given any prime p associated to a principal ideal, pR,, is
principal. Given any prime p of height 1, take a nonzero x € p. Then p is minimal
containing (x). So p € Ass(R/(z)) by (17.14). So, by hypothesis, pR,, is principal.
So Ry is a DVR by (23.6). Thus R satisfies (Ry).

Given any prime p with depth(R,) = 1, say pR,, € Ass(R, /(x/s)) with = # 0 by
(23.5)(2). Then (z/s) = (x/1) C Ry. So p € Ass(R/(x)) by (17.8) and (12.15).
So, by hypothesis, pR, is principal. So dim(R,) = 1 by (23.6). Thus R also
satisfies (S2). So R is normal by Serre’s Criterion, (23.15). O

Exercise (23.22) . — Let R be a ring, M a nonzero Noetherian module. Set
® := {p prime | dim(M,) =1} and X := {p prime | depth(M,)=1}.

Assume M satisfies (S1). Show ® C X, with equality if and only if M satisfies (Sz).
Set S := R — z.div(M). Without assuming (S;), show this sequence is exact:

M — S7T'M — [[,cx S™" M, /M, (23.22.1)

Solution: Assume (S;). Then, given p € ®, note p ¢ Ass(M) by (23.10). So
(17.11) yields a nonzerodivisor = € p. Plainly, p is minimal containing (z). So p
is minimal in Supp(M/xM) by (13.46)(2). So p € Ass(M/xzM) by (17.14). So
pR, € Ass((M/xzM),) by (17.8). But (M/xzM), = M,/xM, by (12.15). Hence
depth(M,) =1 by (23.5)(2). Thus & C X.

However, as (S;) holds, (S2) holds if and only if ® D 3. Thus ® = X if and only
if M satisfies (Sz).

Finally without assuming (S;), consider(23.22.1). Trivially the composition is
equal to 0. Conversely, given m € S™!'M vanishing in [[ S™'M,/M,, say m =n/s
with n € M and s € S. Then n/1 € sM, for all p € ¥. But s/1 € R, is, plainly,
a nonzerodivisor on M, for every prime p; so if p € Ass(M,/sM,), then p € ¥ by
(23.5)(2). Hence n € sM by (18.65))2). Som € M. Thus (23.22.1) is exact. O

Exercise (23.23) (Serre’s Criterion) . — Let R be a Noetherian ring, and K its
total quotient ring. Set ® := { p prime | ht(p) = 1}. Prove equivalent:

(1) R is normal.
(2) (R1) and (S2) hold.
(3) (R1) and (S7) hold, and R — K — []
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Solution: Assume (1). Then R is reduced by (14.25). So (23.12) yields (Ro)
and (S1). But R, is normal for any prime p by (14.9). Thus (2) holds by (23.6).

Assume (2). Then (R;) and (S;) hold trivially. Thus (23.22) yields (3).

Assume (3). Let z € K be integral over R. Then z/1 € K is integral over R,
for any prime p. Now, R, is a DVR for all p of height 1 as R satisfies (R1). Hence,
xz/1 € R, for all p € . So x € R by the exactness of the sequence in (3). But R is
reduced by (23.12). Thus (14.25) yields (1). O

23. Appendix: M-sequences

Exercise (23.24) . — Let R be a ring; M a module; x, y an M-sequence. Show:
(1) Given m,n € M with zm = yn, there’s p € M with m = yp and n = zp.
(2) Assume y ¢ z.div(M). Then y, x is an M-sequence too.

Solution: For (1), let n; be the residue of n in M; := M/xM. Then yny = 0,
but y ¢ z.div(M1). Hence ny = 0. So there’s p € M with n = zp. So xz(m—yp) = 0.
But = ¢ z.div(M). Thus m = yp. Thus (1) holds.

For (2), note M/{(y, )M # 0 as x, y is an M-sequence. Set M; := M/yM.
Given m; € My with xmq = 0, lift m; to m € M. Then xm = yn with n € M. By
(1), there’s p € M with m = yp. Som; = 0. So z ¢ z.div(M;). Thus (2) holds. O

Exercise (23.26) . — Let R be a ring, a C R an ideal, M a module, x1,...,z,
an M-sequence in a, and R’ an algebra. Set M’ := M ®pr R’. Assume R’ flat and
M'/aM' # 0. Prove z1,...,xz, is an M’-sequence in aR’.

Solution: For all 4, set M; := M/{x1,...,2;)M and M/ := M'/{z1,...,x;)M’".
Then M! = M; ®r R’ by right exactness of tensor product (8.10). Moreover,
by hypothesis, x;41 is a nonzerodivisor on M;. Thus the multiplication map
Moot My — M; is injective. Hence pg, ,: M{ — M; is injective by flatness.
Finally (x1,...,2,) C a, so M| # 0. Thus the assertion holds. O

Exercise (23.27) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM # 0. Let z1,...,z, be an M-sequence in a, and p € Supp(M/aM). Prove:
(1) z1/1,...,2,/1 is an My-sequence in a,, and (2) depth(a, M) < depth(a,, M,).

Solution: First, (M/aM), # 0 as p € Supp(M/aM). Thus (12.15) yields
M, /aM, # 0. Second, R, is R-flat by (12.14). Thus (23.26) yields (1). Thus the
definition of depth in (23.4) first yields r < depth(a,, M} ), and then yields (2). O

Exercise (23.31) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM # 0, and x € a — z.div(M). Show depth(a, M/xM) = depth(a, M) — 1.

Solution: Set r := depth(a, M/zM). Then there’s a maximal M/xM-sequence

Zo,...,%y in a by (23.29). Plainly x,zs,...,z, is a maximal M-sequence in d.
Thus depth(a, M) =r + 1. O
Exercise (23.32) . — Let R be a ring, M a nonzero Noetherian semilocal mod-

ule, and = € rad(M) — z.div(M). Show that depth(M) = dim(M) if and only if
depth(M/xM) = dim(M /xM).

Solution: Note rad(M/xM) = rad(M) by (23.4.2). So M/xM is semilocal.
Also (23.31) yields depth(M/xzM) = depth(M) — 1. Moreover, (21.5) yields
dim(M/xM) = dim(M) — 1. Thus the assertion holds. O
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Solutions (23.33) /(23.51) App: M-sequences

Exercise (23.33) . — Let R be aring, R’ an algebra, and N a nonzero R’-module
that’s a Noetherian R-module. Assume N is semilocal over R (or equivalently by
(21.20)(5), semilocal over R’). Show depthy(NN) = depthp, (V).

Solution: Set r := depthz(N). By (23.29), there is a maximal N-sequence
x1,..., 2, inradg(N). Its image in R’ lies in rad g/ (N) by (21.20)(4), and is plainly
N-regular. Set N, := N/{(z1,...,2.)N. Then depthg, (N,) = depthg (N) — r and
depth(N,) =0 by (23.31). Thus we have to prove depthy, (N,) = 0.

By (23.5)(1), there’s a maximal ideal m € Assg(N,). Say m = Anng(n) where
n € N,. Set R} := R'/Anng/(N,). Then R} is Noetherian by (16.16). Let 8
be the set of annihilators in R} of nonzero elements of N,.. Let T be the subset of
annihilators that contain Anng; (n). Then T has a maximal element, 90, say. Then
My € Assg, (N,) by (17.9). Let n be the preimage in R’ of 90;.

Then n € Assp/(N,) by (17.4). Let m’ be the contraction of n in R. Then
m’ D m. But m is maximal. So m’ = m. So n is maximal by (17.13) and
(21.20)(2). Thus (23.5)(1) implies depthp (N,) = 0, as desired. O

Exercise (23.40) . — Let R be a ring, a an ideal, and M a Noetherian module
with M/aM # 0. Find a maximal ideal m € Supp(M/aM) with

depth(a, M) = depth(ay, My). (23.40.1)

Solution: There is a maximal M-sequence z1, ..., z, in a by (23.29). Given any
p € Supp(M/aM), note z1/1,...,2,/1 is an My-sequence by (23.27)(1).

Set M, := M/{x1,...,z,)M. Then a C z.div(M,) by maximality. So a C p for
some p € Ass(M,) by (17.20). Fix any maximal ideal m containing p.

Then m € Supp(M,) by (17.13). But M, is a quotient of M. So m € Supp(M).
But @ C m; so m € V(a). Thus (13.46)(1) yields m € Supp(M/alM).

Further, (17.8) yields pRy € Ass((M,)m). So pRy = Ann(m) for some nonzero
m € (My)m. S0 aRy C pRy C 2.div(M;)m. But (M, )m = Mun/{x1,...,2,) My by
(12.15). Sox1/1,...,2,/1is maximal in aRy. Thus (23.29) yields (23.40.1). O

Exercise (23.42) . — Let R be a ring, and M a nonzero Noetherian semilocal
module. Set d := dim(M). Show depth(M) = d if and only if M is Cohen-
Macaulay and dim(M,,) = d for all maximal m € Supp(M).

Solution: Assume depth(M) = d. Then depth(M,) = dim(M,) for all p in
Supp(M) by (23.39). Thus M is Cohen-Macaulay. Moreover, all maximal chains
of primes in Supp(M) are of length d by (23.37). Thus dim(My) = d for all
maximal m € Supp(M).

Conversely, assume that M is Cohen-Macaulay and that dim(My,) = d for all
maximal m € Supp(M). Now, by (23.40), there’s some maximal m € Supp(M)
with depth(M) = depth(M,,). But depth(My,) = dim(My,) as M is Cohen—

Macaulay. Moreover, dim(My,) = d as m is maximal. Thus depth(M) = d. O
Exercise (23.51) . — Let R be a ring, M a module, and z1,...,z, € R. Set
a:= (r1,...,2,) and assume M/aM # 0. For all p € Supp(M) [\ V(a), assume
x1/1,...,2,/1 is My-regular. Prove z,...,x, is M-regular.

Solution: Induct on n. If n = 0, then the assertion is trivial.

Assume n > 1 and x1,...,2,—1 is M-regular. Set M; := M/{x1,...,z;)M. We
have to prove p,, : M,_1 — M,_1 is injective. By (13.9), it suffices to prove
P /1t (Mp_1)p — (Mp_1), is injective for every prime p.
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Assume p ¢ Supp(M). Then M, = 0. In any event, (12.15) yields
(My—1)p = My /(@1 /1,. .., 2p_1/1)M,. (23.51.1)

So (My,—1)p = 0. Thus, in this case, p, /1 is injective.

Assume a ¢ p. Then x; ¢ p for some j. So z;/1 € Ry. If j < n—1, then
(My—1)p = 0 owing to (23.51.1). If j = n, then p, /5 is invertible. Thus, in both
these cases, jiz, /1 1s injective.

So assume p € Supp(M)(V(a). Then z1/1,...,2,/1is My-regular. Thus g, /1

is, by (23.51.1), injective, as desired. O
Exercise (23.52) . — Let R be a ring, M a Noetherian module, z1,...,z, an
M-sequence in rad(M), and o a permutation of 1,...,n. Prove that z,1,...,Zsp

is an M-sequence too; first, say o just transposes i and 7 + 1.

Solution: Say o transposes ¢ and ¢ + 1. Set M; := M/(z1,...,2;)M. Then
M1 == Mj/x; 1 M; by (23.4.1), and rad(M;) = rad(M) by (23.4.2). Hence
Ti, Ti41 is an M;_j-sequence. Hence z;11, x; is an M;_;-sequence too owing
to (23.24)(1) and to (23.25). So x1,...,%i—1,%i+1, T; 1S an M-sequence. But
M/{x1,...,%i—1,Tir1, ;)M = My1. Thus 251, ..., 2Tsp is an M-sequence.

In general, o is a composition of transpositions of successive integers. Thus the
general assertion follows.

Alternatively, note 1, ..., z, is M-quasi-regular by (23.48). So z41, ..., Ty I8,
plainly, M-quasi-regular for any o. Arguing as in the proof of (23.50)(2)=(3), we

conclude that x,1,...,Zs, is an M-sequence. O
Exercise (23.53) . — Let R be a ring, a an ideal, and M a Noetherian module.
Let x1,...,2, be an M-sequence, and nq,...,n, > 1. Prove these two assertions:

(1) a7, ..., 2P is an M-sequence. (2) depth(a, M) = depth(y/a, M).

Solution: For (1), induct on 7. If » = 0, then the assertion is trivial.

Assume 7 > 0. Set M; := M /(x1,...,2;)M and M} := M /{27, ... 2" )M for
all 5. Then M, is nonzero and a quotient of M. Thus M # 0.

Given p € Supp(M)NV((z1,...,z,)), note p € Supp(M,) by (13.46)(1) as M
is Noetherian. So z1/1,...,z,/1is My-regular by (23.27)(1). But V({(z1,...,z,))
is equal to V((z]*,...,27)). So by (23.51), it suffices to prove z7*/1,..., 20" /1
is My-regular. So replacing R, M, x; by R, M,, x;/1, we may assume R is local.

Since x1,...,x, is M-regular, z, ¢ z.div(M,_1). So =} ¢ z.div(M,_1). Hence
X1y..., Tpo1,2 is M-regular. But R is local; so z1,...,2,_1, 2" € rad(M). Thus
(23.52) yields that =", z1,...,2z,—1 is M-regular.

Set N := M/(z}"). Then therefore z1,...,2,_1 is N-regular. So z7*,..., 2, ]
is N-regular by induction. Hence ', z}*, ...,z 1" is M-regular. But R is local.
Thus (23.52) yields that «7',..., 2z is M-regular, as desired.

For (2), note depth(a, M) < depth(y/a, M) as a C v/a. Furthermore, the oppo-
site inequality holds since, given any M-sequence x1,...,z, in v/a, there are n; > 1
with z;" € a, and since 27", ...,z is M-regular by (1). Thus (2) holds. O

MNpr—1

»r

Exercise (23.54) . — Let R be a ring, a an ideal, M a nonzero Noetherian module,
z € R. Assume a C z.div(M) and a+ (z) C rad(M). Show depth(a+ (z), M) < 1.
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Solution: Set b := a + (x). Assume depth(b, M) > 1. Then there’s b € b with
b ¢ zdiv(M). Say b = a + zy with a € a and y € R. Then (17.33) yields r > 1
with b, := a" + z ¢ z.div(M).

Given any b’ € b, say b/ = o’ + xy/ with o’ € a and 3y’ € R. Set o’ :=a' — a"y/'.
Then o” € a. So @’ € z.div(M). So a”, b, is not M-regular. But a”, b, € rad(M).
So b, a” too isn’t M-regular by (23.52). So a” € z.div(N) where N := M/b. M.
Say a”’n = 0 with n € N nonzero.

Note y'b,n = 0. So (a’ + y'b.)n = 0. But o’ + ¢y'b. = ¥. So b'n = 0.
Thus b C z.div(N). So the M-sequence b, is maximal in b. Thus (23.29) yields
depth(b, M) = 1. O

Exercise (23.55) . — Let R be aring, a an ideal, M a nonzero Noetherian module,
x € R. Set b := a+(z). Assume b C rad(M). Show depth(b, M) < depth(a, M)+1.

Solution: Set r := depth(a, M). By (23.29), there’s a maximal M-sequence
T1,...,2T, in a. Set M, := M/(xl,...,mT>M. Then a C z.div(M,); moreover,
rad(M) C rad(M,). So depth(b, M,) < 1 by (23.54). Thus by induction on r,
(23.31) yields depth(b, M) < r + 1, as desired. O

Exercise (23.56) . — Let R be a ring, M a nonzero Noetherian module. Given
any proper ideal a, set c(a, M) := min{dim M, | p € Supp(M/aM)}. Prove M is
Cohen—Macaulay if and only if depth(a, M) = ¢(a, M) for all proper ideals a.

Solution: Given any maximal ideal m € Supp(M), note Supp(M/mM) = {m} by
(13.46)(1). So c(m, M) = dim(My,). But depth(m, M) < depth(My) < dim(My)
by (23.27)(2) and (23.5)(3). Thus, for all such m, if depth(m, M) = ¢(m, M), then
depth(My,) = dim(My,); that is, M is Cohen—Macaulay.

Conversely, assume M is Cohen—Macaulay, and fix a proper ideal a. Recall
Supp(M/aM) = Supp(M) NV (a) by (13.46)(1), and Supp(M) = V(Ann(M)) by
(13.4)(3). Set R’ := R/ Ann(M). Then M is a Noetherian R’-module. Given any
ideal b of R, set b’ := bR’. Then aM = a’M.

Moreover, (1.9) and (2.7) imply the map p — p’ is a bijection from the primes
of R containing Ann(M) to the primes of R'. Note M, = M, by (12.26)(2). So
p € Suppr(M) ifand only if p’ € Suppp/ (M). Alsop D aifand only if p’ D a’. Thus
p — p’ restricts to a bijection from Suppr(M/aM) to Suppg (M/a’ M). Moreover
dimpg, (M,) = dimR;/(MRP,) by (21.20)(1). Thus c(a, M) = ¢(a’, M).

Further depth(a, M) = depth(a’, M), as plainly a sequence in a is an M-sequence
if and only if its image in a’ is an M-sequence. Thus replacing R by R’ and a by
o/, we may assume Ann(M) = 0, and, by (16.16), that R is Noetherian.

Note Supp(M) = Spec(R) by (13.4)(3). So dim(M,) = ht(p) for p € Supp(M).

For any p € Supp(M/aM), note depth(a, M) < depth(a,, M,) by (23.27)(2).
But, plainly, depth(ap, M,) < depth(M,). Finally, depth(M,) < dim(M,) by
(23.5)(3). Thus depth(a, M) < ¢(a, M). It remains to show the opposite inequality.

There’s a maximal ideal m € Supp(M/aM) with depth(a, M) = depth(am, Mm)
by (23.40). So it suffices to prove depth(awm, My) > c¢(am, My) because, plainly,
c(am, M) > ¢(a, M). Thus replacing R by Ry, we may assume R is local.

Suppose a is m-primary. Then depth(a, M) = depth(M) by (23.53)(2). Also
c(a, M) = dim(M). But M is Cohen-Macaulay, so depth(M) = dim(M). Thus
depth(a, M) = c(a, M), as desired.

Suppose a is not m-primary, and belongs to the set 8 of all ideals a’ such that

409



Solutions (23.57) / (23.58) App: M-sequences

depth(a’, M) # c(a’, M). As R is Noetherian, 8§ has maximal elements. We may
suppose a is maximal.

Let ® be the set of minimal primes p of a. Note c(a, M) = minyeq ht(p). As R
is Noetherian, @ is finite by (17.29). As a is not m-primary, m ¢ ®. Hence by
(3.12), there’s x € m — [, p. Set b:=a+ (z). Then c(b, M) > c(a, M).

Say a can be generated by r elements, but not fewer. Then c(a, M) = r by
(21.8). But b can be generated by r 4+ 1 elements. So ¢(b, M) < r+ 1 by (21.8)
again. So c¢(a, M)+ 1> ¢(b, M) > c(a, M). Thus c¢(a, M)+ 1 = ¢(b, M).

But a is maximal in 8; so b ¢ 8. So depth(b, M) = ¢(b, M). But (23.55) yields
depth(b, M) < depth(a, M) + 1. Thus c(a, M) < depth(a, M), as desired. O

Exercise (23.57) . — Prove that a Noetherian local ring A of dimension r > 1 is
regular if and only if its maximal ideal m is generated by an A-sequence. Prove
that, if A is regular, then A is Cohen—Macaulay and universally catenary.

Solution: Assume A is regular. Given a regular sop 1, ..., Z,, let’s show it’s an
A-sequence. Set Ay := A/(z1). Then A; is regular of dimension r — 1 by (21.16).
So x1 # 0. But A is a domain by (21.17). So z; ¢ z.div(A4). Further, if r > 2,

then the residues of zo,...,z, form a regular sop of A;; so we may assume they
form an Aj-sequence by induction on r. Thus z1,...,z, is an A-sequence.
Conversely, if m is generated by an A-sequence 1, ..., z,, then n < depth(A) <r

by (23.4) and (23.5)(3), and n > r by (21.13). Thus then n = depth(4) = r,
and so A is regular and Cohen—Macaulay, so universally catenary by (23.45). O

Exercise (23.58) . — Let R be a ring, and M a nonzero Noetherian semilocal
module. Set m := rad(M). Prove: (1) M is a nonzero Noetherian semilocal R-

— —

module, and m = rad(M); and (2) depthp(M) = depthyp(M) = depthﬁ(]\//?).

Solution: For (1), note m is a parameter ideal of M by (19.14). So M is a
nonzero Noetherian R-module by (22.61)(1). Now, in (22.53), set a :=m; then
® is the set of maximal ideals in Supp(M). So M is semilocal by (22.53)(6). And
rad(M) = (N,cqp) = @ by (22.53)(5) and (13.4)(4). Thus (1) holds.

For (2), given an M-sequence 1, ..., z, inm, set M; := M/(xz1,...,2;)M. Then

M; = M/({z1,...,2)M) = M/{x1,...,a;)M

by (22.18) and (22.20)(b). But x;11 ¢ z.div(M;); so z;41 ¢ z.div(]\/%) by (22.18).

—

Also M, #0 as z1,...,z, € rad(M) by (1). Thus depthr(M) < depthy(M).

Given any = € R, note xy = kr(z)y for all y € M. Hence, given any J\/Z-sequence
Z1,...,%y in m, the kp(z;) form an M-sequence in #, that is in rad(]\//f) by (1).
Thus depthR(JT/[\) < depthﬁ(J\//.T).

By (23.29), there’s an M-sequence x1,...,x, in m with m C z.div(M,) and
r = depthp(M). Then (17.20) yields a nonzero R-map a: R/m — M,. Its
completion is an R-map a: R/M — M,, as R/m = % by (22.18).

Plainly, a(1) = kp,a(l). But (1) # 0 as a # 0. And kp.: M, — M, is
injective by (22.3). So (1) # 0. So & # 0. So @ C z.div(M,) as ma(l) = 0. So
r = depthﬁ(ﬁ) by (23.29). But r = depthz(M) < depthR(M\) < depthﬁ(]/\/[\).
Thus (2) holds. O
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Exercise (23.59) . — Let A be a DVR, t a uniformizing parameter, X a variable.
Set P := A[X]. Set my := (1 —tX) and my := (t, X). Prove P is Cohen-Macaulay,
and each m; is maximal with ht(m;) = i.

Set S; ;=P —m; and S := 5, NS,. Set B:= S~ 'P and n; := m;B. Prove B is
semilocal and Cohen-Macaulay, n; is maximal, and dim(By,) = i.

Solution: Set K := Frac(A). Let ¢: P — K be the ring map with p(X) = ¢!
and ¢|A the inclusion A — K. Set n := Ker(y). Plainly ¢ is surjective, so n is
maximal. So by (2.20)(2), either n = (F) with F irreducible, or n = (¢, G) with
G € P. But t ¢ n as ¢|A is the inclusion. Thus n = (F).

However, 1 —tX € n. Sol—tX = FH. But 1 —tX is irreducible. So H is a
unit. So my; = n. Thus m; is maximal. Further, (21.8) yields ht(m;) = 1.

However, P/(X) = A, and A/(t) is a field. Thus my is maximal too. Further, my
isn’t principal, as no nonunit divides both ¢ and X. Thus (21.8) yields ht(mg) = 2.

Let m be any maximal ideal of P other than m; or ms. By (3.12), there’s
re€m—myUmy. Sox € mNS. But myNS =0 and myNS = . Hence (11.12)(2)
implies n; and ny, are the only maximal ideals of B. Thus B is semilocal. But
A is Cohen—Macaulay. So P is Cohen—Macaulay by (23.43). But P,, = By,
by (12.25)(2) as m; NS = (. Thus B is Cohen-Macaulay by (23.41). Lastly,
dim(By,) = ¢ as ht(m;) = 4. O

Exercise (23.60) . — Let R be a ring, M a nonzero Noetherian semilocal module,
and x1,...,Ty, € rad(M). For all 4, set M; := M/(xy,...,z;)M. Assume that
depth(M) = dim(M) and dim(M,,) = dim(M) — m. For all 4, show zq,...,2; is
an M-sequence, and depth(M;) = dim(M;) = dim(M) — 4.

Solution: Note that rad(M) = rad(M;) for all i by (23.4.2). Hence (21.5) gives
dlm(Ml/CL'ZJrlMZ) Z dlm(MZ) — 1 for all ¢. But Mi/xiJrlMi = Mi+1 by (23.4.1).
And dim(M,,) = dim(M) — m. Thus dim(M;) = dim(M) — ¢ for all 4.

Proceed by induction on i. The case i = 0 is trivial. So fix ¢ < m, and assume
the assertions hold as stated.

Note dim(M;/x;41M;) = dim(M;) — 1. So x;41 ¢ p for all p € Supp(M;) with
dim(R/p) = dim(M;) by (21.5). But depth(M;) = dim(M;). So x;41 ¢ p for all
p € Ass(M;) by (23.37). So x;41 ¢ z.div(M;) by (17.11). But xy,...,z; form an

M-sequence. Thus z1,...,2;, ;11 do too.
Finally, note depth(M;) = dim(M;) and z;y; € rad(M) — z.div(M;). But
rad(M) = rad(M;). Thus (23.32) gives depth(M;41) = dim(M;41). O

Exercise (23.61) . — Let & be a field, P := k[X;,...,X,] a polynomial ring, and
Fi,...,Fy € P. Set 2 := (Fy,..., F,). For all i,j, define 0F;/0X; € P formally
as in (1.18.1). Let 2’ be the ideal generated by 2 and all the maximal minors of
the m by n Jacobian matrix (0F;/0X;). Set R := P/ and R’ := P/'. Assume
dim R = n—m. Show that R is Cohen-Macaulay, and that, when k is algebraically
closed, R is normal if and only if either " = 0 or dim R’ <n —m — 2.

Solution: Given a maximal ideal 9t O 2 of P, note Py is regular of dimension
n by (21.14), so Cohen-Macaulay by (23.57). But repeated use of (21.5) gives
dim Roy > n — m, and dim Rogy < n —m as dim R =n — m; so dim Roy = n — m.
So (23.60) implies Ryy is Cohen—Macaulay. Thus R is Cohen—Macaulay.

So (23.39) implies (S;) holds for all g. In particular (Sg) holds for R. Thus
Serre’s Criterion (23.23) yields R is normal if and only if (Ry) holds. From now
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on, assume k is algebraically closed.

First, suppose n — m = 0. Then dim Rgy = 0 for every 9. So (R;) holds if and
only if every Ry is regular. As k is algebraically closed, 9 = (X7 —x1,..., X —xzy)
for some x := (z1,...,2,) € k™ by (15.5). So Rgy is regular if and only if the
Jacobian matrix (0F;/0X;) has rank n at x by (21.42)(1), so if and only if its
determinant D is nonzero at x, that is, D ¢ 9. But A" = (A, D), so D ¢ M if and
only if ' Pyy = Pon. Hence Ryy is regular if and only if Ry, = 0. Thus (R;) holds
if and only if Ry = 0 for all 901, or equivalently by (13.8), R’ = 0, as desired.

So from now on, suppose n —m > 1. Then no minimal prime q of R is maximal,
as dim Rgy = n — m for every 9. So every minimal q lies in some height-1 prime
p. Then (12.25)(3) implies Ry is the localization of R, at qR,, which is a minimal
prime. Hence, if R, is a domain, then R, is its fraction field.

So (Ro) holds if R, is a domain for every height-1 prime p of R. So by (23.10),
(R1) holds if and only if R, is a DVR for every such p. Thus we must show that R, is
a DVR for every height-1 prime p if and only if either " =0 or dim R’ < n—m—2.

Note that, dim R’ > n — m — 2 means there exists a maximal chain of primes
po G -+ G pr in R with %'/ C po and 7 > n —m — 2. In such a chain, p, is
maximal. Sodim R, =n—-m. Son—m >r. Soeitherr =n—-morr=n-m-—1.
If r = n — m, then p; has height 1. If r = n — m — 1, then py can’t be minimal by
(23.37), as R, is Cohen-Macaulay of dimension n — m. Thus po has height 1.

Conversely, given a height-1 prime p of R with 21'/20 C p, let m be any maximal
ideal containing p. Then R, is Cohen—-Macaulay of dimension n—m. So by (23.37),
in any maximal chain of primes p; ; e ; p, with p; = p and p,, = m, necessarily
r=n—m—1. ThusdimR >n—m — 2.

Hence dim R’ < n —m — 2 if and only if every height-1 prime p of R satisfies
p 2 A'/2A. Thus it now suffices to prove this: fix any height-1 prime p of R; then
Ry is a DVR if and only if p 7 2’ /2L

Given a maximal ideal m D p, note (Rwm)p, = R, by (12.25)(3). But Ry is
Cohen—Macaulay. Thus (23.37) yields dim Ry = 1 + dim(Ry, /pRy).

First, suppose R, is a DVR. Say pR, = (t/s) with ¢t € R and s € R —p. Say
p=1{(g1,...,9q) with g; € R. Then g¢;/1 = tt;/ss; for some t; € R and s; € R — p.
Set f := ss;---s,. Then pRy = tRy. Since p is prime, its contraction in P is
also prime. So (21.42)(2) yields a maximal ideal with m D p but f ¢ m such that
(R/p)wm is regular. So (12.25)(2) and (12.15) yield

(B/P)m = ((R/P)f)m = (Rf/PRf)m = R /tRin.

So Ry is regular by (21.16) with a := (t) as dim Ry /tRm = dim(Rm) — 1. So
m % A /A by (21.42)(1). Thus p 2 A’ /2.

Conversely, suppose p 2 2" /2. Say f € A’ /A, but f ¢ p. Then (21.42)(2) yields
a maximal ideal m D p with f ¢ m and (R/p)m regular. So m 2 A'/2A. So Rn
is regular by (21.42)(1). So Ry is normal by (22.40)(2). So (Rw), is normal by
(11.82). But Ry, = (Rw)p. Thus, by (23.6)(2)=(1), R, is a DVR, as desired. O

Exercise (23.62) . — Let k be a field, P := k[[X, Y]] the formal power series ring.
Set M := (X,Y) and C :=Y? — X3, Given a € k, set L :=Y —aX. Show:

(1) Set R := P/(C). Then R is Cohen-Macaulay, dim(R) = 1, and e(9M, R) = 2.
(2) Set R’ := P/{C,L). Then R’ is Cohen—Macaulay and dim(R') = 0. Also,
e, R)=2ifa#0, and e(M,R') =3 ifa=0.
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Solutions (23.63) / (23.63) App: M-sequences

Solution: For (1), recall P is regular local of dimension 2 by (22.27). So P is
Cohen—Macaulay by (23.57). So R is Cohen-Macaulay of dimension 1 by (23.32).

Let x,y be the residues of X, Y in R. Note x,y generate the maximal ideal, m
say, of R. Moreover, for j > 1 and 25 < n,

2"y = " =0 and 2"y =Ny =0 (mod m™TY).
So a™, 2" 1y generate m™/m" 1. Thus dimy(m"/m"+!) < 2.
Let’s show 2", 2"~ !y are linearly independent. Given a,b € k with
aX"+bX"Y = (Y2 - X3)F +G where F € Pand G € M,

suppose a # 0 or b # 0. Write F' = >
degree m, and F,,, # 0. If mg < n — 3, then deg F,,,Y? < n, a contradiction.
Next, if mg = n — 2, then X3F,,, € M and so Y2F,,, = aX" +bX"" 'Y, a
contradiction. Finally, if mg > n — 1, then F,, (Y2 — X3) € M"*! a contradiction.
Thus 2", 2"~ 'y are linearly independent in m"/m"+1,

Therefore, dimg(m™/m"*1) = 2. So (19.19) yields ¢/(m™/m"*1) = 2. Now, use
(20.9.2) with M := R and with F*M :=m® and proceed by induction to get

F,, where F,, is homogeneous of

((R/m"™ ) =1+ f(m'/m"t1).
i=1
Hence (20.10.2) yields pn(R,n) = 2n + 1, and so e(m, R) = 2. Thus (1) holds.

For (2), first R/L is Cohen-Macaulay by (23.32). Let T,7 be the residues of
x,y in R/L. Then 7 = aT and 7> = 7°.

First assume a # 0. Then a?Z%(1 — Z/a?) = 0. But 1 — Z/a? is a unit by (3.2)
as R is local. Hence 72 = 0. So 1,7 generate R/L as k-vector space. Hence
dimy(R/L) = 2. So {(R/L) = 2. So (20.20)(2) yields e(m,R/L) = 2.

Finally, assume a@ = 0. Then 5 = 0 and R/L = k[z]/(z®), so dimy(R/L) = 3. So,
as above, e(m, R/L) = 3. Thus (2) holds. O

Exercise (23.63) . — In the setup of (21.44), assume p > 2, and show that
S = R®g L, that both R and S are domains, and that R is normal, but S isn’t.

Solution: First, Q = P®x L by (8.18). Thus, by right exactness, S = R®g L.

Next, let’s check F' is irreducible in P. Otherwise, F' = (Y — A(X))(Y — B(X)).
SoA+B=0.S0oF=Y?—- 42 So A2 = X? —b. But X? — b is irreducible in P,
so not a square. Thus F' is irreducible in P. Similarly, F' is irreducible in @), since
XP —bis not a square as 2 1 p. Hence, both PF and QF are prime ideals by (2.5).
Thus both R and S are domains.

Note Sy is a domain of dimension 1, but isn’t regular, by (21.44). So Sy isn’t
normal by (23.6). Thus (11.29) implies S isn’t normal.

As R is a domain, so has no embedded primes, R satisfies (S2) by (23.10). Fix
a maximal ideal p of R. Then dim(R,) = 1 by (21.5). So to see that R is normal
by Serre’s Criterion (23.15), it remains to show R, is regular.

Define B C P by p = B/PF. If P = M, then R, is regular by (21.44). So
assume P # M.

Note, if F' ¢ B2, then dimg (p/p?) = dimg (PB/P?) — 1 by (21.18). But (21.14)
yields dimg (8/98?) = 2. Thus, by (21.14) again, if F ¢ B2, then R, is regular.

Assume now L is an algebraic closure of k. Then @ is integral over P by (10.39).
So by (14.3)(3),(1), there’s a maximal ideal  of @ lying over 9. Then (15.5)
yields ¢, d € L with Q = (X — ¢, Y — d).
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Note F € p € Q. Thus F(c,d) = 0. But as P # M, plainly Y ¢ PB. So Y ¢ Q.
Hence d # 0. But Fy = 2Y. So Fy(c¢,d) = 2d. But p > 2. So 2d # 0. So (1.18)
yields F = Fx(c,d)(X — ¢) + Fy(c,d)(Y — d) + G with G € Q%. As Fy(c,d) # 0,
plainly F ¢ Q2. So F ¢ B?. Thus R, is regular.

Alternatively, observe that R, is regular as follows. Set S := Q/FQ. Note that
rank((0F/0X0Y)(c,d)) =1 as Fy(c.d) # 0. But dim(Sq) =1 by (21.44). So Sq
is regular by (21.42)(1). Thus (21.22)(4) implies R, is regular, as desired. O

24. Dedekind Domains

Exercise (24.4) . — Let R be a domain, S a multiplicative subset.

(1) Assume dim(R) = 1. Then dim(S™!R) = 1 if and only if there is a nonzero
prime p of R with pN .S = 0.

(2) Assume dim(R) > 1. Then dim(R) =1 if and only if dim(R,) = 1 for every
nonzero prime p of R.

Solution: Consider (1). Suppose dim(S7'R) = 1. Then there’s a chain of
primes 0 S p’ in S™'R. Set p := p’ N R. Then p is as desired by (11.12)(2).
Conversely, suppose there’s a nonzero p with p NS = (. Then 0 ; pS~'Ris a
chain of primes in S7!'R by (11.12)(2); so dim(S~!R) > 1. Now, given a chain of
primes 0 = po S --- S plin ST'R, set p; :=p;NR. Then 0 =py G --- S p,isa
chain of primes in R by (11.12)(2). Sor < 1 as dim(R) = 1. Thus dim(S~!R) = 1.
Consider (2). If dim(R) = 1, then (1) yields dim(R,) = 1 for every nonzero p.
Conversely, let pg G --- S p, be a chain of primes in R. Set p] := p;Rp, . Then
po G -+ S Pl is a chain of primes in R, by (11.12)(2). So if dim(R,,) = 1, then
r < 1. Thus if dim(R,) = 1 for every nonzero p, then dim(R) < 1, as required. O

Exercise (24.5) . — Let R be a Dedekind domain, and S a multiplicative subset.
Assume 0 ¢ S. Show that S™!'R is Dedekind if there’s a nonzero prime p with
pNS =0, and that S™' R = Frac(R) if not.

Solution: Note S™!R is a domain by (11.2) as 0 ¢ S.

Assume there’s a nonzero p with pN .S = 0. Then dim(S~'R) = 1 by (24.4)(1).
Moreover, S~ R is Noetherian by (16.7). And S™!'R is normal by (11.32). Thus
SR is Dedekind.

Assume there’s no nonzero p with pN.S = (. Then (0) is maximal by (11.12)(2).
So S71R is a field by (2.12). Thus (2.3) gives S™'R = Frac(R). O

Exercise (24.19) . — Let R be a Dedekind domain, and a, b, ¢ ideals. By first
reducing to the case that R is local, prove that
an(b+c¢)=(anb)+ (anc),
a+(bNne)=(a+b)N(a+c).
Solution: By (13.53), it suffices to establish the two equations after localizing
at each maximal ideal p. But localization commutes with intersection and sum by
(12.12)(6)(b), (7)(b). So the new equations look like the original ones, but with a,

b, ¢ replaced by ay, by, ¢,. And R, is a DVR by (24.6). So replace R by R,.
Take a uniformizing parameter t. Then (23.1.3) yields i, j, k with a = (t') and
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b= (t/) and ¢ = (t*). So the two asserted equations are equivalent to these two:
max{i, min{j, k} } = min{max{i, j}, max{i, k}},
min{i, max{j, k} } = max{min{i,j}, min{i, k}}.

However, these two equations are easy to check for any integers i, j, k. O

Exercise (24.20) . — Let R be a Dedekind domain; z1,...,2, € R; and ai,...,a,
ideals. Prove that the system of congruences x = x; mod a; for all ¢ has a solution
xz € R if and only if z; = z; mod (a; + a;) for ¢ # j. In other words, prove the
exactness (in the middle) of the sequence of R-modules

R % 69?:1 R/a; & ®i<j R/(a; + aj)

where (y) is the vector of residues of y in the R/a; and where ¥(y1,...,yy) is the
vector of residues of the y; — y; in R/(a; + a;).

Solution: Plainly Ker(t)) D Im(y). To prove Ker(y) C Im(yp), it suffices, by
(13.9), to do so after localizing at any maximal ideal. So assume R is local. Then
(24.6) implies R is a DVR.

Each «; is now a power of the maximal ideal by (23.1.3). Reorder the a; so that
a; C -+ C a,. Then a3 + a; = a; for all j. Given z € Ker(¢), represent z by
(21,...,2n) with z; € R. Then 21 — z; € a; for all j. So (#1,...,21) represents z
too. So Im(z;) = z. Thus Ker(¢) C Im(p), as desired. O

Exercise (24.21) . — Prove that a semilocal Dedekind domain A is a PID. Begin
by proving that each maximal ideal is principal.

Solution: Let py,...,p, be the maximal ideals of A. Let’s prove they are prin-
cipal, starting with p;. By Nakayama’s lemma (10.6), p1A,, # p?Ap,; so p1 # p3.
Take y € p; —p?. The ideals p?, po, ..., p, are pairwise comaximal because no two
of them lie in the same maximal ideal. Hence, by the Chinese Remainder Theorem,
(1.21)(4)(c), there’s an z € A with x = y mod p? and = = 1 mod p; for i > 2.

The Main Theorem of Classical Ideal Theory (24.8) gives (z) = p}'p5? .- pi~
with n; > 0. But o & p; for i > 2; so n; = 0 for i > 2. Further, z € p; — p?; so
ny = 1. Thus p; = (z). Similarly, all the other p; are principal.

Finally, let a be any nonzero ideal. Then the Main Theorem, (24.8), yields
a=[[p;" for some m;. Say p; = (x;). Then a = ([Jx;""), as desired. O

Exercise (24.22) . — Let R be a Dedekind domain, and a a nonzero ideal. Prove
(1) R/a is a PIR, and (2) a is generated by two elements.

Solution: To prove (1), let p1,...,p, be the associated primes of a, and set
S :=(); Sp,- Then S is multiplicative. Set R’ := S™'R. Then R’ is Dedekind by
(24.5). Let’s prove R’ is semilocal.

Let q be a maximal ideal of R’. Set p := qN R. Then q = pR’ by (11.12)(2).
So p is nonzero, whence maximal since R has dimension 1. Suppose p is distinct
from all the p;. Then p and the p; are pairwise comaximal. So, by the Chinese
Remainder Theorem, (1.21)(4)(c), there’s a u € R that is congruent to 0 modulo
p and to 1 modulo each p;. But Sy, := R —p;. Hence, v € pN S, but q =pR’, a
contradiction. Thus p1R’,...,p, R’ are all the maximal ideals of R'.

So R’ is a PID by (24.21); so every ideal in R’ /aR’ is principal. But by (12.15),
R'/aR' = S7'(R/a). Finally, note that each u € S maps to a unit in R/a, as its
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image lies in no maximal ideal of R/a. So S~!(R/a) = R/a by (11.15.1) and
(11.4). Thus (1) holds.

Alternatively, we can prove (1) without using (24.21), as follows. The Main
Theorem of Classical Ideal Theory, (24.8), yields a = pi"* ---p.* for distinct max-
imal ideals p;. The p;* are pairwise comaximal. So, by the Chinese Remainder
Theorem, (1.21)(4)(c), there’s a canonical isomorphism:

R/a = R/p* X -+ X R/pp*.

Next, we prove each R/p;" is a PIR. Thus (19.27)(1) yields (1).

To prove R/p;'" is a PIR, note p;/p;"* is the only prime in R/p}"*, so each u € Sy,
maps to a unit in R/p}. So R/pl" = S, (R/pl) by (11.15.1) and (11.4). But
SpH(R/pM) = Ry, /1 Ry, by (12.15). Further, Ry, is a DVR by (24.6), so a PIR
by (23.1.3). Thus R/p;* is a PIR. Thus again (1) holds.

Consider (2). Let x € a be nonzero. By (1), there is a y € a whose residue
generates a/(z). Then a = (z,y). O

Exercise (24.23) . — Let R be a Dedekind domain, and M a finitely generated
module. Assume M is torsion; that is, (M) = M. Show M ~ (P, ; R/p;" for
unique nonzero primes p; and unique n;; > 0.

Solution: Say my,...,m, generate M. Since M is torsion, for each j there’s a
nonzero x; € R with z;m; = 0. As R is a domain, z; - - - z,, is nonzero, and it is in
Ann(M). Thus Ann(M) # 0.

Using (24.8), write Ann(M) = [\, p;*. Then V(Ann(M)) = U, V(p:) by
(13.1). But V(Ann(M)) = Supp(M) by (13.4)(3). Also, as each p; is maximal,
V(p) = {p:} by (13.16)(1), (2). Thus Supp(M) = {p1, .., pu}-

Hence M has finite length by (19.26). Thus (19.3) yields M =[], M,,.

By (24.6), each R,, is a DVR; so each is a local PID by (23.1). Therefore,
My, = @ Ry, /p. " Ry, with unique n;; > 0 by (5.41)(3). But p; is maximal. So
Ry, /pi" Ry, = R/p;" by (12.34). Thus M ~ @, ; R/p;". O

(3

Exercise (24.24) . — Let R be a Dedekind domain; X a variable; F, G € R[X].
Show ¢(FG) = ¢(F)c(G).

Solution: By (13.56), it suffices to show ¢(FG)R, = ¢(F)c(G)R,, for any given
nonzero prime p. But R, is a DVR by (24.6), so a UFD by (23.1). So (21.35)(4)
implies that ¢(F)R, = (f) and ¢(G)R, = (g) and ¢(FG)R, = (h) where f, g, h
are the ged’s of the coefficients of F, G, FG viewed in R,[X]|. But fg = h by
(21.35)(3). Thus ¢(FG) = ¢(F)c(G), as desired. O

Exercise (24.25) . — Let k be an algebraically closed field, P := k[X7,...,X,] a
polynomial ring, and Fy,...,F,, € P. Set P := (Fy,...,F,,). For all i, j, define
O0F;/0X; € P formally as in (1.18.1). Let A be the ideal generated by 8 and all
the n — 1 by n — 1 minors M of the m by n matrix (0F;/0X;). Set R := P/p.
Assume R is a domain of dimension 1. Show R is Dedekind if and only if 1 € 2.

Solution: Let 91 D B be a maximal ideal of P. Since k is algebraically closed,
M= (X1 —21,...,Xn — Tp) for some x := (21,...,2,) € k" by (15.5).

Assume 1 € 2. Then there’s a minor M ¢ 9. So M(x) # 0. So ((0F;/0X;)(x))
has rank at least n — 1. But dim Rgy = 1 by (15.12). Hence Ryy is regular by
(21.42)1)(c)=-(a), so a DVR by (23.6). Thus (24.6) implies R is Dedekind.

Assume 1 ¢ 2. Then there’s an M O A. So M (x) = 0 for every minor M. So
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((0F;/0X;)(x)) has rank less than n—1. So Ry, is not regular by (21.42)(1). Thus
(24.6) implies R is not Dedekind. O

25. Fractional ldeals

Exercise (25.2) . — Let R be a domain, M and N nonzero fractional ideals. Prove
that M is principal if and only if there exists some isomorphism M ~ R. Construct
the following canonical surjection and canonical isomorphism:

T M®N —» MN and a: (M:N)-—=5 Hom(N,M).

Solution: If M ~ R, let x correspond to 1; then M = Rxz. Conversely, assume
M = Rzx. Then x # 0 as M # 0. Form the map R — M with a — az. It’s
surjective as M = Rz. It’s injective as ¢ # 0 and M C Frac(R).

Form the canonical map M x N — MN with (z,y) — zy. It’s bilinear. So it
induces a map m: M ® N — M N, and plainly 7 is surjective.

Define « as follows: given z € (M : N), define a(z): N — M by a(2)(y) = yz.
Clearly, a is R-linear. Say y # 0. Then yz = 0 implies z = 0; thus, « is injective.

Finally, given #: N — M, fix a nonzero n € N, and set z := 6(n)/n. Given
y € N,say y = a/b and n = ¢/d with a,b,¢,d € R. Then bey = adn. So
bch(y) = adf(n). Hence 0(y) = yz. Therefore, z € (M : N) as y € N is arbitrary
and 6(y) € M; further, § = «(z). Thus, « is surjective, as desired. O

Exercise (25.6) . — Let R be a domain, M and N fractional ideals. Prove that
the map m: M @ N — MN of (25.2) is an isomorphism if M is locally principal.

Solution: By (13.9), it suffices to prove that, for each maximal ideal m, the
localization 7y : (M ® N)w — (M N )y, is bijective. But (M @ N)y = My ® Ny, by
(12.30), and (M N)w = MuyNy by (25.4). By hypothesis, My, = Ry for some
x. Clearly Ryx ~ Ry. And Ry ® Ny = Ny, by (8.5)(2). Thus mp >~ 1y, . ]

Exercise (25.9) . — Let R be a domain, M and N fractional ideals. Show:
(1) Assume N is invertible. Then (M : N) = M - N—1.
(2) Both M and N are invertible if and only if their product M N is. If so, then
(MN)~' = N~1M1.

Solution: For (1), note that N~™! = (R: N) by (25.8). So M(R: N)N = M.
Thus M(R : N) C (M : N). Conversely, note that (M : N)N C M. Hence
(M:N)=(M:N)N(R:N)CM(R:N). Thus (1) holds.

In (2), if M and N are invertible, then (M N)N~1M~1 = MM~! = R; thus
MN is invertible, and N~'M~! is its inverse. Conversely, if MN is invertible,
then R = (MN)(MN)~t = M(N(MN)~1); thus, M is invertible. Similarly, N is
invertible. Thus (2) holds. O

Exercise (25.12) . — Let R be a UFD. Show that a fractional ideal M is invertible
if and only if M is principal and nonzero.

Solution: By (25.7), a nonzero principal ideal is always invertible.

Conversely, assume M is invertible. Then trivially M # 0. Say 1 =Y. m;n;
with m; € M and n; € M~!. Fix a nonzero m € M.

Then m = 22:1 m;n;m. But nym € Rasm € M and n; € M~"'. Set

d:=ged{n;m}i_; € R and z:=)._,(nym/d)m; € M.
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Then m = dz.
Given m’ € M, write m’/m = a/b where a,b € R are relatively prime. Then

d = ged{n;m'};_, = ged{n;ma/b};_, = aged{n,m};_,/b = ad/b.
So m' = (a/b)m = (ad/b)x = d'z. But d’ € R. Thus M = Ruz. O

Exercise (25.15) . — Show that it is equivalent for a ring R to be either a PID, a
1-dimensional UFD, or a Dedekind UFD.

Solution: If R is a PID, then R is a 1-dimensional UFD by (2.17).

Assume R is a 1-dimensional UFD. Then every nonzero prime is of height 1, so
principal by (21.33). So R is Noetherian by (16.8). Also R is normal by (10.21).
Thus R is Dedekind.

Finally, assume R is a Dedekind UFD. Then every nonzero ordinary ideal is
invertible by (25.14), so is principal by (25.12). Thus R is a PID.

Alternatively and more directly, every nonzero prime is of height 1 as dim R = 1,
so is principal by (21.33). But, by (24.8), every nonzero ideal is a product of
nonzero prime ideals. Thus again, R is a PID. [l

Exercise (25.17) . — Let R be a ring, M an invertible module. Prove that M is
finitely generated, and that, if R is local, then M is free of rank 1.

Solution: Say a: M@ N = Rand 1 = a(}_ m; ®n;) with m; € M and n; € N.
Given m € M, set a; := a(m ® n;). Form this composition:

BM=MR-~~->MIMIN=MINSIM -~ RM=DM.

Then B(m) = > a;m;. So the m; generate (M ). But § is an isomorphism. Thus
the m; generate M.
Suppose R is local. Then R — R* is an ideal. So u := a(m; ® n;) € R* for some
i. Set m’ ;= u~tm; and n’ := n;. Then a(m’®@n’) = 1. Thus B(m) = a(men’)m'’.
Define v: M — R by v(m) := a(m ®@n’). Then v(m') = 1; so v is surjective.
Define p1: R — M by p(x) := xm/. Then pr(m) = v(m)m’ = B(m), or pv = 3. But
[ is an isomorphism. So v is injective. Thus v is an isomorphism, as desired. [

Exercise (25.18) . — Show these conditions on an R-module M are equivalent:
(1) M is invertible.
(2) M is finitely generated, and My, ~ Ry, at each maximal ideal m.
(3) M is locally free of rank 1.

Assuming the conditions, show M is finitely presented and M ® Hom(M, R) = R.

Solution: Assume (1). Then M is finitely generated by (25.17). Further, say
M ® N ~ R. Let m be a maximal ideal. Then My ® Ny ~ Rn. Hence My, ~ Ry
again by (25.17). Thus (2) holds.

Conditions (2) and (3) are equivalent by (13.62).

Assume (3). Then (2) holds; so My, ~ Ry, at any maximal ideal m. Also, M is
finitely presented by (13.15); so Homg (M, R)n = Hompg,, (My, Ryw) by (12.19).

Consider the evaluation map

ev(M,R): M @ Hom(M, R) — R defined by ev(M, R)(m,a) := a(m).

Plainly, ev(M, R)yw = ev(My, Ry). Plainly, ev(Ry, Ry) is bijective. So ev(M, R)
is bijective by (13.9). Thus the last assertions hold; in particular, (1) holds. O
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Exercise (25.23) . — Let R be a Dedekind domain, S a multiplicative subset.
Prove M +— S~ M induces a surjective group map 7: Pic(R) — Pic(S™!R).

Solution: First, assume S™'R = Frac(R). Since Frac(R) is a field, plainly
Pic(S™'R) = 0. Thus, trivially, 7 is a surjective group map.

So assume ST!R # Frac(R). By (24.5), then S™!R is Dedekind.

Given fractional ideals M and N of R, note (S~!M)(S™!N) = S~Y{(MN) by
(25.4). So if MN = R, then (S~*M)(S™IN) = S7IR; in other words, if M is
invertible, so is ST'M. Thus M +— S~'M defines a map F(R) — F(S~1R), and
as noted, this map preserves multiplication; in other words, it’s a group map.

Suppose M = xR for some nonzero x € K. Then S™'M = zS~!'R. Thus
M + S7'M carries P(R) into P(S~!R), so induces a group map on the quotients,
namely, 7: Pic(R) — Pic(S™1R).

Finally, given P € F(S~!'R), note P is finitely generated over S~'R by (25.10).
So there’s a nonzero y € SR with yP C S™!R by (25.3). Hence there’s a nonzero
ordinary ideal a of R with S™!'a = yP by (11.12)(1). Since R is Dedekind, a is
invertible by (25.20). Thus F(R) — F(S™!R) is surjective, so 7 is too. O

26. Arbitrary Valuation Rings

Exercise (26.3) . — Prove that a valuation ring V' is normal.

Solution: Set K := Frac(V), and let m be the maximal ideal. Take x € K
integral over V, say 2" 4+ a12" "' +--- +a, = 0 with a; € V. Then

l+az ™+ Faz " =0. (26.3.1)

If z ¢ V, then 271 € m by (26.2). So (26.3.1) yields 1 € m, a contradiction.
Hence x € V. Thus V is normal. (I

Exercise (26.11) . — Let V be a valuation ring. Prove these statements:
(1) Every finitely generated ideal a is principal.
(2) V is Noetherian if and only if V' is a DVR.

Solution: To prove (1), say a = (z1,...,x,) with z; # 0 for all 4. Let v be the
valuation. Suppose v(z1) < v(z;) for all i. Then z;/xz; € V for all i. So z; € (x1).
Hence a = (x1). Thus (1) holds.

To prove (2), first assume V is Noetherian. Then V is local by (26.2), and
by (1) its maximal ideal m is principal. Hence V is a DVR by (23.6). Conversely,
assume V' is a DVR. Then V is a PID by (23.1), so Noetherian. Thus (2) holds. O

Exercise (26.16) . — Let V' be a domain. Show that V' is a valuation ring if and
only if, given any two ideals a and b, either a lies in b or b lies in a.

Solution: First, suppose V is a valuation ring. Suppose also a ¢ b; say = € a,
but z ¢ b. Take y € b. Then z/y ¢ V; else x = (x/y)y € b. So y/x € V. Hence
y = (y/x)x € a. Thus b C a.

Conversely, let z,y € V — {0}, and suppose z/y ¢ V. Then (x) ¢ (y); else,
x = wy with w € V. Hence (y) C (z) by hypothesis. So y = zx for some z € V; in
other words, y/x € V. Thus V is a valuation ring. [l
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Exercise (26.17) . — Let V be a valuation ring of K, and V C W C K a subring.
Prove that W is also a valuation ring of K, that its maximal ideal p lies in V, that
V/p is a valuation ring of the field W/p, and that W =V,,.

Solution: First, let x € K —W C K —V. Then 1/z € V C W. Thus W is a
valuation ring of K.

Second, let y € p. Then (26.2) implies 1/ye K —W C K —-V. Soy e V.

Third, x € W — V implies 1/x € V; whence, V/p is a valuation ring of W/p.

Fourth, V, C W, = W. Conversely, let € W —V. Then 1/z € V. But 1/x ¢ p
as p is the maximal ideal of W. So z € V,,. Thus W = V.

Exercise (26.18) . — Let K be a field, 8 the set of local subrings ordered by
domination. Show that the valuation rings of K are the maximal elements of 8.

Solution: Given a valuation ring V' of K, note V € 8 by (26.2). Given W € 8§
dominating V', let m and n be the maximal ideals of V and W.

Given any nonzero x € W, note 1/x ¢ nas z(1/x) =1 ¢ n. So also 1/x ¢ m. So
x € V by (26.2). Hence, W = V. Thus V is maximal.

Alternatively, n C V and W =V, by (26.17). But n D m as W dominates V.
So n =m. Hence, W = V. Thus V again is maximal.

Conversely, let V' € 8§ be maximal. By (26.6), V is dominated by a valuation
ring W of K. By maximality, V = W. O

Exercise (26.19) . — Let V be a valuation ring of a field K. Let ¢: V — R
and ¥: R — K be ring maps. Assume Spec(yp) is closed and ¢: V — K is the
inclusion. Set W := ¢(R). Show W = V.

Solution: Since ©p: V — K is the inclusion, V.C W C K. So W is also a
valuation ring, its maximal ideal p lies in V, and W =V, by (26.17).

Set m := ¢y~'p. Then m is a maximal ideal of R, as W := ¢(R). So {m} is a
closed subset of Spec(R) by (13.16)(2). But Spec(yp) is closed. So {¢~'m} is a
closed subset of Spec( ). So p~'m is the maximal ideal of V by (13.16)(2). But
e lm=p W lp=pnV =p. SoV,=V. Thus W =V. O

Exercise (26.20) . — Let ¢: R — R’ be a map of rings. Prove that, if R’ is
integral over R, then for any R-algebra C, the map Spec(¢o®g C) is closed; further,
the converse holds if also R’ has only finitely many minimal primes. To prove
the converse, start with the case where R’ is a domain, take C to be an arbitrary
valuation ring of Frac(R’) containing ¢(R), and apply (26.19).

Solution: First, assume R’ is integral over R. Then R’ ®p C is integral over C
by (10.39)(1). Thus (14.11) implies that Spec(p ® g C) is closed.

For the converse, replacing R by ¢(R), we may assume ¢: R < R’ is an inclusion.

First, assume R’ is a domain. Set K := Frac(R’). By (26.7), the integral closure
of R in K is the intersection of all valuation rings V of K containing R. So given
a V, it suffices to show R’ C V. By hypothesis, Spec(p ®pr V) is closed. Define
Y: R@rV = Kby ¥(x®y) =xy. Then o (p®rV): V — K is the inclusion.
So (26.19) yields (R’ ®@g V) = V. Thus R’ C V, as desired.

To derive the general case, let pi,...,p, be the minimal primes of R, and
ki: R' — R'/p; the quotient map. Given any R-algebra C, note that k; g C
is surjective. So Spec(k; ®g C) is closed by (13.1.7). But a composition of closed
maps is closed. So by the first case, each R’/p; is integral over R. Thus (10.42)(1)
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implies that []/_, R'/p; is integral over R.

Set M :=(N;_, p;- Then the canonical map R'/M — [[_, R'/p; is injective. So
R’/M is integral over R. So given any x € R’, there are a; € R and n > 1 with
y =a"+ax" 4+ +a, €N But N is the nilradical of R’ by (3.17). So
y™ = 0 for some m > 1. Thus x is integral over R, as desired. O

Exercise (26.21) . — Let V be a valuation ring with valuation v: K* — I', and p
a prime of V. Set A := v(V;). Prove the following statements:

(1) A and I'/A are the value groups of the valuation rings V/p and V.
(2) v(V —p) is the set of nonegative elements A>qg of A, and p =V — v~ 1As,.
(3) A is isolated in I'; that is, given o € A and 0 < 5 < «, also 8 € A.

Solution: For (1), set L := V},/pV,. Note that p = pV,, and that V/p and V,
are valuation rings of L and K by (26.17) with W :=V;,.

By definition, the value group of V/p is L™ /(V/p)*. Let’s see that the latter is
equal to A. Form the quotient map x: V, = L. Note V,, —p = x~*(L — 0). But
Vo —p="V,and L — 0= L*. So « induces a surjection o: V;* — L*. Moreover,
as Kk is a ring map, ¢ is a homomorphism of multiplicative groups.

Let m be the maximal ideal of V. Then V —m = &~ 1((V/p) — (m/p)). But
V—m=V>*and (V/p) — (m/p) = (V/p)*. So V* = o= 1(V/p)*. So o induces
an isomorphism V,*/V* - L*/(V/p)*. Thus the value group of V/p is equal to
Vy©/V*, which is just A.

The value group of V, is K*/V,;*. Form the canonical map K*/V* — K* /V,*.
It is surjective, its source is I, and its kernel is V) /V*, or A. Thus (1) holds.

For (2), recall T'>¢ := v(V —0). But Asg :=v(V;)NI'>. Thus Asg D v(V —p).

Conversely, given a € Asg, say a = v(z) with z € V;* and a = v(y) with
y € V—0. Then v(z) = v(y). Soz = yu withu € V*. Soz € V. But z isn’t in the
maximal ideal of V},, which is p by (26.17). Thus z € V —p. Thus As¢ = v(V —p).

So V—p C v tAsg. Conversely, given z € K* with v(z) € Asg, say v(z) = v(y)
with y € V —p. Then z = yu withu € V*. Sox € V —p. Thus V —p = v 1A,
Thus (2) holds.

For (3), given « € A and 0 < 3 < @, say a = v(x) with z € V — p owing to (2)
and say = v(y) withy € V—0. Buta— > 0. Sov(z/y) > 0. Soz/y € V, or
reyV.Butz¢p. Soy¢p. Soye V. Thus f € A. Thus (3) holds. O

Exercise (26.22) . — Let V be a valuation ring with valuation v: K* — I'. Prove
that p — v(V) is a bijection ~ from the primes p of V" onto the isolated subgroups
A of T and that its inverse is A — V — vt As.

Solution: The v(V}) are isolated by (26.21)(3). So 7 is well defined. It is
injective owing to (26.21)(2). Let’s prove it is surjective and find its inverse.

Given an isolated subgroup A, set p := V — v !Asg. Let’s check that p is an
ideal. Given nonzero z,y € p and z € V, note v(z), v(y), v(z) > 0. Suppose
x +yz # 0. Then (26.8.2) and (26.8.1) yield

oe +y2) > minf{u(x), v(y)} = min{v(x), o(y) + v(=)} > minfo(z), v(y)} > 0.

But z, y € p, sov(z), v(y) ¢ A. But A is isolated. So v(x+yz) ¢ A. Sox+yz € p.
Thus p is an ideal.

Let’s check p is prime. Given z, y € V — p, note v(x), v(y) € Asg. But Axg is
a semigroup. So v(zy) = v(z) +v(y) € A>o. Thus 2y € V —p. Thus p is prime.
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Finally, (26.21)(2) now implies that v(V —p) = v(V*)>0. But o(V —p) = Axg
by definition of p. Thus v(V,,*) = A, as desired. O

Exercise (26.23) . — Let V be a valuation ring, such as a DVR, whose value group
I' is Archimedean; that is, given any nonzero «, 3 € I', there’s n € Z such that
na > . Show that V is a maximal proper subring of its fraction field K.

Solution: Let R be a subring of K strictly containing V', and fix a € R — V.
Given b € K, let @ and 8 be the values of @ and b. Then o < 0. So, as I' is
Archimedean, there’s n > 0 such that —na > —f. Then v(b/a™) > 0. So b/a™ € V.
Sob=(b/a™)a™ € R. Thus R =K. O

Exercise (26.24) . — Let R be a Noetherian domain, K := Frac(R), and L a finite
extension field (possibly L = K). Prove the integral closure R of R in L is the
intersection of all DVRs V of L containing R by modifying the proof of (26.7):
show y is contained in a height-1 prime p of R[y| and apply (26.14) to R[y],.

Solution: Every DVR V is normal by (23.6). Soif Visa DVR of L and V' D R,
then V O R. Thus 5z V D R.

To prove the opposite inclusion, take any 2 € K — R. To find a DVR V of L
with VDO Rand x ¢ V, set y := 1/z. If 1/y € R[y], then for some n,

1y =apy™ +ay" ' +---+a, with ay€R.

Multiplying by z™ yields 2" — ap,z™ — -+ —ag = 0. So z € R, a contradiction.

Thus y is a nonzero nonunit of R[y]. Also, R[y] is Noetherian by the Hilbert Basis
Theorem (16.10). So y lies in a height-1 prime p of R[y] by the Krull Principal
Ideal Theorem (21.9). Then R[y], is Noetherian of dimension 1.

However, L/K is a finite field extension; so L/ Frac(R[y]) is one too. Hence the
integral closure R’ of R[y], in L is a Dedekind domain by (26.14). So by the
Going-up Theorem (14.3)(3), there’s a prime q of R’ lying over pR[y],. Then as
R’ is Dedekind, R} is a DVR of L by (24.6). Further, y € qR;. Thus = ¢ Ry, as
desired. O
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Disposition of the Exercises in [4]

Chapter 1, text

1.12, p. 8,— Essentially (4.16)
1.13, p.9,— Essentially (3.13) and (3.32)
1.18, p. 10,— Essentially (1.13) and (3.39)

Chapter 1, pp. 10-16

1.— Essentially (3.2), owing to (3.13.1).
2.— Essentially (3.42) and (4.20) and
(2.36)(2)
3.— Essentially (3.43) and (8.32) and
(2.36)(2)
4.— Contained in (3.44)(2)
5.— Contained in (3.7), (3.19), and (3.20)
6.— Essentially (3.33)(1)
7.— Essentially (2.38)
8.— Contained in (3.16)
9.— Essentially (3.14)
10.— Essentially (3.37)
11.— Contained in (1.2), (2.37), and
(1.24)(5)
12.— Essentially (3.22)
13.— Essentially (14.13)
14.— Essentially (2.26)
15.— Contained in (13.1)
16.— Essentially (13.17) and (16.68)
17.— Contained in (13.1), (13.2), (13.39),
and (13.41)
18.— Essentially (13.16)
19.— Essentially (16.49)
20.— Contained in (16.50), (16.69), and
(16.51)(3)
21.— Contained in (13.1), (13.1.6), and
(13.36), and (13.35)
22.— Essentially contained in (13.18),
(1.12), and (13.1)
23.— Essentially (13.43), and (1.24)(5)
24.— Essentially (1.25), (1.26), (1.27), and
(1.28)
25.— Essentially (13.44)
26.— Essentially (14.26)
27.— Contained in (1.30)(1), (1.17)(2),(3),
(2.13), and (15.5)
28.— Contained in (1.30)

Chapter 2, text

2.2, p.20,— Contained in (4.17)
2.15, p. 27— Contained in (8.8)
2.20, p. 29— Contained in (9.22)

Chapter 2, pp.31-35

1.— Essentially (8.29)
2.— Essentially (8.27)(1)

3.— Essentially (10.10)(2)
4.— Contained in (9.5)
5.— Contained in (9.20)
6.— Essentially (8.31)
7.— Contained in (2.32)
8.—1i) Contained in (9.21)
ii) Contained in (9.23)
9.— Essentially (5.5)
10.— Essentially (10.27)
11.— Contained in (10.5)(2), (8.25), and
(5.32)
12.— Immediate from (5.15), (5.16), and
(5.7)
13.— Contained in (8.21)
14.— Contained in (7.4)
15.— Contained in (7.5)
16.— Essentially (6.4)
17.— Essentially (7.2), and (7.11)
18.— Essentially (6.4)
19.— Essentially (7.9)
20.— Essentially (8.10)
21.— Contained in (7.4) and (7.16)(1)
22.— Essentially (7.20), and (7.16)(2)
23.— Essentially (8.33)
24.— Essentially (9.15)
25.— Essentially (9.8)(2)
26.— Essentially (9.15)
27.— Contained in (10.25)
28.— Essentially (10.26), and (2.38) and
(13.22)

Chapter 3, text
3.0, p. 37,— Essentially (11.1)

Chapter 3, pp.43-49

1.— Essentially (12.17)(2)
2.— Essentially (12.27)
3.— Contained in (12.26)(2) and (3)
4.— Essentially (11.15.1)
5.— Essentially (13.57)
6.— Essentially (3.26)
7.— Contained in (3.24) and (3.25)
8.— Essentially (11.23) and (3.25)
9.— Essentially (2.26), (14.7), and (11.26)
10.— Essentially (13.21)
11.— Essentially (13.22) and (13.2)
12.— Contained in (12.38)
13.— Contained in (12.38) and (13.52)
14.— Essentially (13.54)
15.— Essentially (10.5) or (5.32)(2)
16.— Essentially (9.28) and (13.47)
17.— Essentially (9.25)
18.— Essentially (13.48)
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19.—i) essentially (13.8) and (13.1);
iii), iv), v) contained in (13.4);
vi) essentially (13.7);
ii), vii) essentially (13.46);
viii) essentially (13.49)

20.— Essentially (13.24),

21.—i) essentially (13.25);
i) (13.26);
iii) (13.27);
iv) (13.28)

22.— Essentially (13.29)

23.— Essentially (13.39) and (13.40)

24.— Essentially (13.42)(2)

25.— Essentially (13.30)

26.— Essentially (13.31)

27.— Essentially (13.32)

28.— Contained in (13.33)

29.— Essentially (13.34)

30.— Essentially (13.33)(4)

Chapter 4, pp. 55-58

1.— Essentially (18.49)(2)
2.— Contained in (18.32)(1)
3.— Essentially (18.51)
4.— Essentially (18.28)
5.— Essentially (18.29)
6.— Essentially (18.52)
7.— Essentially (1.15)(1), (2.32)(1), and
(18.53)
8.— Essentially (18.54)
9.— Contained in (18.39)
10.— Contained in (18.50), (18.55),
(12.12)(8), and (18.39)(2)
11.— Essentially (18.56)
12.— Contained in (12.12)(6a),(4a), (12.41),
and (18.57)
13.— Contained in (18.58)
14.— Essentially (17.9)
15.— Essentially (18.59)
16.— Contained in (18.47)
17.— Essentially (18.41)(2)
18.— Contained in (18.44)
19.— Essentially (18.50) and (18.61)
20.— Essentially (4.17)(2) and (12.22) and
(12.42) and (18.58)(2)
21.— Essentially (18.62) and (18.3)(2) and
(18.12)(1) and (4.17)(4) and (18.38)
22.— Essentially (18.39)(4)
23.— Contained in (18.49)(1) and
(18.37)(6) and (12.23) and (18.43)
and (18.46) and (18.47) and (18.48)

Chapter 5, pp.67-73

1.— Essentially (14.11)
2.— Essentially (14.12)
3.— Contained in (10.39)
4.— Essentially (14.17)
5.— Essentially (14.10)

6.— Essentially (10.41)

7.— Essentially (10.38)

8.— Essentially (14.4)

9.— Essentially (15.17)
10.— Essentially (13.37) and (13.38)
11.— Essentially (14.8)
12.— Essentially (10.35) and (11.22)
13.— Essentially (14.18)
14.— Essentially (10.36) and (10.37)
15.— Essentially (14.19)
16.— Contained in (15.1) and (15.2)
17.— Contained in (15.5)
18.— Essentially (15.4)
19.— Contained in (15.5)
20.— Essentially (15.3)
21.— Essentially (15.19)
22.— Contained in (15.20)
23.— Contained in (15.33) and (15.44)
24.— Essentially (15.37)(2), and (15.46)
25.— Essentially (15.43)
26.— Essentially (15.39), and (15.40)
27.— Essentially (26.18)
28.— Essentially (26.16), and part of

(26.17)

29.— Contained in (26.17)
30.— Contained in (26.8)
31.— Contained in (26.8)
32.— Essentially (26.21), and (26.22)
33.— Essentially (26.9)
34.— Essentially (26.19)
35.— Essentially (26.20)

Chapter 6, pp. 78-79

1.— Essentially (10.4), and (16.46)
2.— Contained in (16.11)
3.— Essentially (16.47)
4.— Contained in (16.16) and (16.44)
5.— Essentially (16.53)
6.— Essentially (16.70)
7.— Essentially (16.54) and (16.55)
8.— Essentially (16.56) and (16.58)
9.— Contained in (16.51)(3) and (16.55)
10.— Essentially (16.72)
11.— Essentially (16.59)
12.— Essentially (16.56)(2) and (16.57)

Chapter 7, pp. 84-88

1.— Essentially (16.8)
2.— Essentially (16.25)
3.— Contained in (18.34)
4.— Essentially (16.31)
5.— Essentially (16.18)
6.— Essentially (15.41)
7.— Follows easily from (16.10)
8.— Essentially (16.26)
9.— Essentially (16.29)
10.— Essentially (16.32)
11.— Essentially (16.67)
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12.— Essentially (16.28)

13.— Essentially (16.71)

14.— Essentially (15.21)

15.— Essentially (10.12), and (9.15)

16.— Contained in (13.15)

17.— Contained in (18.33)

18.— Contained in (18.18), (17.3), and
(17.16)

19.— Contained in (18.18) and (18.34)

20.— Essentially (16.63) and (16.64)

21.— Essentially (16.65)

22.— Essentially (16.73)

23.— Essentially (16.66)

24.— Essentially (16.74)

25.— Contained in (16.75)

26.— Contained in (17.34)

27.— Essentially (17.35)

Chapter 8, pp. 91-92

1.— Essentially (18.58)(5), and (18.67)

2.— Essentially (19.20)
3.— Essentially (19.17)
4.— Essentially (19.21)
5.— Essentially (19.25)
6.— Essentially (19.16)

Chapter 9, p. 99

1.— Essentially (24.5) and (25.23)
2.— Essentially (24.24)
3.— Essentially (26.11)(2)
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4.— Essentially (23.3)
5.— Contained in (25.21)
6.— Essentially (24.23)
7.— Essentially (24.22)
8.— Essentially (24.19)
9.— Essentially (24.20)

Chapter 10, pp. 113-115

1.— Contained in (22.48)

2.— Essentially (22.49)

3.— Essentially (22.37)

4.— Contained in (22.45) and (22.46)
5.— Essentially (22.43)(1)

6.— Contained in (22.35)

7.— Contained in (22.36)

8.— Essentially (22.67)

9.— Essentially (22.75)

10.— Contained in (22.76) and (22.83) and

(22.90)
11.— Essentially (22.71)
12.— Essentially (22.65)

Chapter 11, pp. 125-126

1.— Contained in (21.42)

2.— Essentially (22.60)

3.— Essentially (15.10) with (15.12)
4.— Essentially (16.30)

5.— Essentially (20.34)

6.— Essentially (15.32)

7.— Essentially (21.41)



Use of the Exercises in this Book

List of Abbreviations

Ex.= Exercise
Lem.= Lemma

Cor.= Corollary
Eg.= Example

Sbs.= Subsection
Thm.= Theorem

Prp.= Proposition
Rmk.= Remark

“Ap” in front of any of the above indicates the subsection is in an appendix.

NOTE: an exercise is indexed only if it’s used later.

Chapter 1

Ex. (1.14) is used in Ex. (13.24) and
Ex. (13.27).

Ex. (1.15) is used in Ex. (1.16) and
Ex. (2.32).

Ex. (1.16) is used in Eg. (2.19), Thm. (2.20),
Ex. (2.40), Ex. (11.34) Ex. (12.32),
Cor. (15.6), Ex. (15.32), ApEx. (18.53),
Ex. (22.44), ApThm. (22.78), and
ApPrp. (23.43).

Ex. (1.17) is used in Ex. (1.18), Ex. (1.19),
Ex. (1.29), Ex. (2.9), Eg. (2.11),
Eg. (2.14), Ex. (2.32), Ex. (2.33),
Ex. (3.19), Sbs. (8.19), Lem. (15.1),
Lem. (15.8), Ex. (16.30), ApEx. (16.76),
Ex. (18.30), Ex. (19.32), Ex. (20.16), and
Ex. (21.44).

Ex. (1.18) is used in Ex. (1.19), Ex. (21.42),
and ApThm. (22.82).

Ex. (1.19) is used in Ex. (2.34), Lem. (14.4),
Ex. (14.13), ApThm. (22.81), and
ApEg. (22.83).

Ex. (1.20) is used in Ex. (2.44).

Ex. (1.21) is used in Ex. (1.22), Sbs. (2.16),
ApEx. (5.41), Ex. (8.34), Ex. (13.18),
Ex. (13.58), Thm. (19.8), Ex. (19.27),
Ex. (19.32), Ex. (22.38), ApThm. (22.78),
Prp. (24.7), Ex. (24.21), and Ex. (24.22).

Ex. (1.23) is used in Ex. (2.29), Prp. (11.18),
Ex. (16.34), Ex. (19.27), Ex. (19.29), and
Ex. (19.30).

Ex. (1.24) is used in Ex. (10.25), Ex. (10.26),

and Ex. (13.43).

Ex. (1.25) is used in Ex. (1.26) and
Ex. (1.27).

Ex. (1.26) is used in Ex. (1.27), Ex. (1.28),
and Ex. (13.45).

Ex. (1.27) is used in Ex. (13.45).

Ex. (1.28) is used in Ex. (13.45).

Ex. (1.29) is used in Ex. (1.30), Ex. (15.24),
ApEx. (16.76), and ApEx. (16.78).

Ex. (1.30) is used in ApEx. (16.79).

Chapter 2

Ex. (2.9) is used in Eg. (2.11), Ex. (18.26),
Ex. (18.30), and ApEx. (18.54).

Ex. (2.18) is used in Thm. (2.20), Ex. (8.29),
and ApPrp. (22.77).

Ex. (2.23) is used in Ex. (2.24), Ex. (2.25),
Sbs. (13.1), Prp. (13.11), ApEg. (16.58),
and Lem. (23.5).

Ex. (2.24) is used in Thm. (19.8).

Ex. (2.25) is used in ApSbs. (15.33),

Ex. (18.32), ApPrp. (18.37),

ApEx. (18.56), ApEx. (18.58),

ApEx. (18.61), Ex. (19.21), Ex. (19.26),
and Ex. (24.7).

Ex. (2.28) is used in Ex. (2.29).

Ex. (2.29) is used in, Ex. (13.32),

Ex. (13.35), Ex. (13.57), Ex. (13.58),
Ex. (15.28), Ex. (18.31), Ex. (19.15),
Ex. (19.29), and Ex. (21.10).

Ex. (2.30) is used in ApEx. (5.37).

Ex. (2.32) is used in Ex. (3.42), Ex. (15.18),
Ex. (15.32), ApEg. (16.58), Ex. (19.32),
and ApPrp. (23.43).

Ex. (2.33) is used in Ex. (2.34), and
ApPrp. (22.77).

Ex. (2.34) is used in ApEx. (22.76).

Ex. (2.36) is used in Ex. (21.35).

Ex. (2.87) is used in Ex. (13.44) and
ApSbs. (15.33).

Ex. (2.40) is used in Ex. (2.41), Ex. (10.43),
and ApEx. (16.68).

Ex. (2.42) is used in Ex. (2.43) and
Ex. (3.28).

Ex. (2.43) is used in Ex. (2.44).

Ex. (2.44) is used in Ex. (2.45) and
Ex. (2.46).

Ex. (2.46) is used in ApEx. (22.97).

Chapter 3

Ex. (3.10) is used in Eg. (3.20), Ex. (9.28),
and Thm. (14.6).

Ex. (3.16) is used in Sbs. (3.17), Ex. (3.26),
Ex. (3.41), Ex. (14.21), Ex. (15.20),
Ex. (17.26), ApThm. (18.39),
ApEx. (18.61), and Ex. (21.37).
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Ex. (3.19) is used in Eg. (3.20), Ex. (16.25),
and Ex. (22.56).

Ex. (3.21) is used in Ex. (3.42).

Ex. (3.22) is used in Prp. (19.15).

Ex. (3.24) is used in Ex. (2.26), Ex. (3.25),
Ex. (3.26), and Ex. (13.40).

Ex. (3.25) is used in Ex. (3.26), Ex. (11.23),

Ex. (11.24), Ex. (13.39), and Ex. (13.40).

Ex. (3.27) is used in Ex. (16.30).

Ex. (3.28) is used in Rmk. (15.2) and
Ex. (22.59).

Ex. (3.31) is used in Eg. (10.7) and
Ex. (22.72).

Ex. (3.32) is used in Ex. (18.7) and
ApPrp. (18.37)

Ex. (3.33) is used in Ex. (13.44).

Ex. (3.34) is used in Ex. (10.23) and
Ex. (13.44).

Ex. (3.35) is used in Ex. (3.36) and
Ex. (13.18).

Ex. (3.36) is used in Ex. (19.30) and
ApEx. (22.95).

Ex. (3.37) is used in Prp. (18.8).

Ex. (3.38) is used in Ex. (3.39), Ex. (3.40),
Ex. (4.14), Ex. (16.25), Lem. (18.4),
Thm. (18.23), ApEx. (18.58),

Thm. (19.8), Lem. (19.13), Ex. (19.23),
Ex. (20.18), and Prp. (24.7).

Ex. (3.39) is used in Ex. (13.36) and
Ex. (20.18).

Ex. (3.40) is used in Ex. (18.26) and
Ex. (19.27).

Ex. (3.41) is used in Ex. (13.58).

Ex. (3.42) is used in Ex. (3.43) and
Ex. (3.44).

Ex. (3.44) is used in ApEx. (18.53).

Chapter 4

Ex. (4.8) is used in Sbs. (4.13), Ex. (5.28),
Ex. (6.20), Sbs. (7.10), Cor. (8.9),
Thm. (8.13), Ex. (9.33), and Ex. (16.37).

Ex. (4.14) is used in Ex. (7.15), Ex. (9.17),
ApEx. (18.64), and ApEx. (20.32).

Ex. (4.15) is used in Lem. (10.6),
Ex.(17.33), and Ex. (18.35).

Ex. (4.16) is used in Ex. (4.17) and
ApLem. (18.38).

Ex. (4.17) is used in ApPrp. (18.37).

Ex. (4.18) is used in Ex. (6.17), Ex. (12.31),
ApEx. (18.53), and ApPrp. (23.43).

Ex. (4.19) is used in ApEx. (18.53).

Ex. (4.20) is used in Ex. (8.32).

Ex. (4.21) is used in Ex. (8.27), Cor. (21.7),
Ex. (21.26), Sbs. (23.4), ApPrp. (23.49).

Ex. (4.24) is used in Ex. (10.41).

Ex. (4.25) is used in ApThm. (5.38) and
Ex. (13.18).

Ex. (4.26) is used in Prp. (5.8) and

Ex. (8.14).
Ex. (4.28) is used in Ex. (22.72).
Ex. (4.29) is used in ApEx. (5.41).

Chapter 5

Ex. (5.5) is used in Prp. (5.19), Prp. (5.20),
and Prp. (16.13).
Ex. (5.15) is used in Prp. (5.20), Ex. (5.28),
Prp. (10.12), Thm. (13.15), and
Ex. (17.35).
Ex. (5.18) is used in Prp. (5.19), Prp. (5.20),
Ex. (5.29), Ex. (5.30), Sbs. (7.8),
Prp. (10.12), Prp. (12.18), and
Prp. (13.14).
Ex. (5.21) is used in ApEx. (5.41).
Ex. (5.22) is used in ApEx. (5.42).
Ex. (5.24) is used in Prp. (20.13),
ApEx. (20.35), and Ex. (22.12).
Ex. (5.27) is used in Ex. (9.33).
ApEx. (5.36) is used in ApEx. (5.37).
ApEx. (5.37) is used in ApThm. (5.38).
ApEx. (5.41) is used in ApEx. (5.42),
Ex. (8.26), and Ex. (24.23).

Chapter 6

Ex. (6.15) is used in Ex. (6.20), Thm. (8.13),
Lem. (9.5). and Ex. (9.33),

Ex. (6.17) is used in Ex. (8.31).

Ex. (6.19) is used in Prp. (7.7) and
Ex. (7.23).

Chapter 7

Ex. (7.2) is used in Eg. (7.3), Prp. (7.7),
Ex. (7.11), Ex. (7.12), Ex. (7.13),
Ex. (7.14), Ex. (7.15), Ex. (7.23), and
ApEx. (22.92).

Ex. (7.14) is used in Ex. (7.16).

Ex. (7.15) is used in Ex. (13.20).

Ex. (7.16) is used in Ex. (7.18), Ex. (13.31),
Ex. (13.32), and Ex. (14.13).

Ex. (7.17) is used in Ex. (7.21).

Ex. (7.19) is used in Ex. (7.20) and
Ex. (7.21).

Ex. (7.21) is used in ApEx. (22.91).

Ex. (7.22) is used in Ex. (7.23).

Chapter 8

Ex. (8.7) is used in Thm. (8.8), Sbs. (8.19),
Ex. (8.28), Ex. (10.10), and Ex. (12.30).

Ex. (8.14) is used in Sbs. (8.15), Ex. (9.33),
Ex. (17.35), Ex. (19.32), Cor. (22.19),
Ex. (22.38), Ex. (22.53), and Ex. (22.66).

Ex. (8.20) is used in Ex. (21.22).

Ex. (8.22) is used in Eg. (9.16).

Ex. (8.24) is used in Ex. (10.10), Ex. (13.30),
and Ex. (13.49).

Ex. (8.25) is used in ApEx. (22.101).

Ex. (8.27) is used in Ex. (8.28), Ex. (8.29),
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Ex. (8.30), Ex. (8.34), Ex. (9.27),

Ex. (9.28), Ex. (10.10), Ex. (10.25),
Ex. (10.30), Ex. (13.28), Ex. (13.46),
Ex. (13.47), Ex. (13.49), Thm. (14.8),
Prp. (17.20), Ex. (19.28), Ex. (21.38),
Ex. (21.39), Ex. (22.36), Ex. (22.38),
ApPrp. (23.43), and ApPrp. (23.47).

Ex. (10.33) is used in Ex. (10.34),
ApSbs. (22.73), ApThm. (22.75),
ApThm. (22.78), and ApEx. (22.86).

Ex. (10.34) is used in ApThm. (22.75).

Ex. (10.35) is used in Ex. (14.18) and
Thm. (16.18).

Ex. (10.36) is used in Ex (10.37).

Ex. (8.28) is used in Ex. (21.37).

Ex. (8.30) is used in Ex. (12.35).

Ex. (8.31) is used in Ex. (8.32), and
ApPrp. (23.43)

Ex. (8.32) is used in Ex. (21.23).

Ex. (8.33) is used in Ex. (13.32).

Ex. (10.37) is used in Ex (14.19).

Ex. (10.39) is used in Ex. (15.17),
ApEx. (16.71), Ex. (19.21), Ex. (21.22),
Ex. (23.20), ApEx. (23.63), and
Ex. (26.20).

Ex. (10.41) is used in Ex. (14.25).

Ex. (10.42) is used in Ex. (14.25) and

Chapter 9 Ex. (26.20).

Ex. (9.14) is used in Lem. (9.15), and
Ex. (9.35).

Ex. (9.18) is used in Ex. (22.66).

Ex. (9.19) is used in Ex. (9.25), Ex. (9.26),
Ex. (9.28), Ex. (10.30), Ex. (13.47),
Ex. (16.28), and Ex. (22.36).

Ex. (9.20) is used in Ex. (22.65).

Ex. (9.22) is used in Prp. (13.12),
Ex. (13.21), Ex. (13.47), Ex. (13.48),
Thm. (14.8), Ex. (17.35), Ex. (21.22), and
Cor. (22.22).

Ex. (9.23) is used in Ex. (13.60), Ex. (14.20),
Ex, (21.22), and Ex. (22.65).

Ex. (9.24) is used in Ex. (14.20) and
Ex. (17.35).

Ex. (9.25) is used in Ex. (22.67).

Ex. (9.26) is used in Ex. (13.48).

Ex. (9.27) is used in Ex. (10.24).

Ex. (9.28) is used in Ex. (9.29), Ex. (9.31),
Ex. (10.31), Ex. (22.65), and Thm. (23.8).

Ex. (9.80) is used in Ex. (9.31).

Ex. (9.33) is used in Prp. (12.19).

Ex. (9.34) is used in Ex. (12.17) and

Chapter 11

Ex. (11.5) is used in Prp. (11.18),
Ex. (11.21), and Ex. (13.58).
Ex. (11.19) is used in Thm. (15.7).
Ex. (11.23) is used in Ex. (11.24),
Ex. (13.39), and Ex. (13.40).

Ex. (11.24) is used in Ex. (13.39).

Ex. (11.25) is used in Ex. (13.40) and
ApEx. (22.92).

Ex.(11.28) is used in Ex. (13.22) and
Ex. (13.57).

Ex. (11.29) is used in Ex. (11.32),
Thm. (14.3), Ex. (14.12), Ex. (14.15),
Ex. (14.25), and ApEx. (23.63).

Ex. (11.30) is used in Ex. (11.31) and
Thm. (24.13).

Ex.(11.31) is used in Thm. (15.4).

Ex. (11.32) is used in Sbs. (14.9),

Ex. (14.25), Ex. (23.7), Thm. (23.8),
Thm. (23.14), Thm. (23.15), Ex. (23.21),
ApEx. (23.61). and Ex. (24.5).

Ex. (11.34) is used in Ex. (11.35),

Ex. (22.50). Ex. (12.31), Ex. (15.32), and Ex. (16.30).
Ex. (9.35) is used in ApPrp. (23.47) and
Thm. (25.21). Chapter 12

Ex. (12.4) is used in Prp. (12.3), Ex. (12.5),
Prp. (12.12), Ex. (12.24), Ex. (12.25),
Ex. (12.33), Ex. (12.34), Ex. (13.21),
Ex. (13.28), Ex. (13.51), Ex. (13.59),

Chapter 10

Ex. (10.9) is used in Prp. (10.12),
Ex. (14.23), Sbs. (21.14), Ex. (21.42), and

Ex. (22.63). Thm. (19.3), and Ex. (22.37).
Ex. (10.10) is used in Prp. (10.12) and Ex. (12.5) is used in Prp. (12.18),
Prp. (13.7). Ex. (12.24), Ex. (12.25), Prp. (13.14), and

Ex. (10.23) is used in Ex. (10.24).

Ex. (10.24) is used in Ex. (10.25).

Ex. (10.25) is used in Ex. (10.26),
Ex.(13.21), and Ex. (13.22).

Ex. (10.26) is used in Ex. (13.21),
Ex.(13.61), and ApEg. (16.57).

Ex. (10.29) is used in Prp. (13.11).

Ex. (10.30) is used in Ex. (10.31),
Ex. (13.48), Ex. (13.60), and Ex. (22.67).

Ex. (10.32) is used in ApThm. (22.78).

Thm. (13.15).
Ex. (12.6) is used in Thm. (12.13),
Cor. (12.14), Ex. (13.38), and
ApEx. (15.47).
Ex. (12.17) is used in Prp. (12.18),
Ex. (12.27), Prp. (13.4), ApThm. (18.39),
ApLem. (18.40), Ex. (20.17), Ex. (21.27),
and ApThm. (23.45).
Ex. (12.24) is used in Ex. (12.25) and
Ex. (12.32).
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Ex. (12.25) is used in Ex. (13.48),
Ex. (13.50), Ex. (13.60), Ex. (13.62),
ApEx. (15.48), Ex. (16.30),
ApDfn. (23.41), ApPrp. (23.43),
ApEx. (23.59), and ApEx. (23.61).

Ex. (12.26) is used in Ex. (12.33),
Ex. (14.25), ApPrp. (23.43), and
ApEx. (23.56).

Ex. (12.28) is used in ApEx. (18.58).

Ex. (12.30) is used in Ex. (12.33),
Prp. (13.7), Prp. (13.12),

Ex. (13.28),Ex. (21.22), ApEx. (23.47),
and Ex. (25.6).

Ex.(12.31) is used in Ex. (12.32) and
ApPrp. (23.43).

Ex. (12.32) is used in Ex. (21.41).

Ex. (12.33) is used in Ex. (12.35).

Ex. (12.34) is used in Ex. (21.42),
Ex. (22.38), and Ex. (24.23).

Ex. (12.36) is used in Ex. (13.64).

Ex. (12.37) is used in Ex. (12.38).

Ex. (12.38) is used in Ex. (13.52).

Ex. (12.40) is used in ApPrp. (18.43).

Ex. (12.41) is used in ApPrp. (18.44).

Ex. (12.42) is used in Lem. (18.12).

Chapter 13

Ex. (13.10) is used in Prp. (13.14) and
Ex. (16.29).

Ex. (13.16) is used in Ex. (13.22),
Ex. (13.23), ApEx. (15.40),
ApEx. (16.74), ApEx. (16.76),
ApEx. (19.20), Ex. (19.21), Ex. (24.23),
and Ex. (26.19).

Ex. (13.18) is used in Ex. (13.22) and
Ex. (13.23).

Ex. (13.19) is used in Ex. (13.20).

Ex. (13.21) is used in Ex. (13.22) and
Ex. (13.61).

Ex. (13.22) is used in Ex. (13.33) and
Ex. (13.61).

Ex. (13.23) is used in ApEx. (19.30) and
ApEx. (22.94).

Ex. (13.24) is used in Ex. (14.11).

Ex. (13.25) is used in Ex. (13.26),
Ex. (13.29), Ex. (13.38), and Thm. (14.8).

Ex. (13.26) is used in Ex. (13.28).

Ex. (13.27) is used in Ex. (13.28).

Ex. (13.28) is used in Ex. (13.30),
Ex. (13.31), ApEx. (16.71), and
Ex. (19.21).

Ex. (13.29) is used in Ex. (13.38).

Ex. (13.30) is used in Ex. (13.32).

Ex. (13.31) is used in Ex. (13.32),
Ex. (13.33), and Ex. (13.38).

Ex. (13.32) is used in Ex. (13.33).

Ex. (13.33) is used in Ex. (13.34).

Ex. (13.36) is used in Ex. (13.37) and

ApThm. (16.66).

Ex. (13.37) is used in ApPrp. (16.59).

Ex. (13.38) is used in ApEx. (16.74).

Ex. (13.39) is used in Ex. (13.40) and
ApPrp. (16.49).

Ex. (13.41) is used in Ex. (13.43).

Ex. (13.43) is used in Ex. (13.44) and
Ex. (13.45).

Ex. (13.44) is used in Ex. (13.45).

Ex. (13.46) is used in Ex. (13.47),
ApEx. (18.58), Lem. (19.13), Lem. (20.9),
Prp. (20.13), Ex. (20.21), Sbs. (21.2),
Lem. (21.3), Thm. (21.4), Cor. (21.5),
Ex. (22.37), Ex. (22.53), Sbs. (23.4),
Ex. (23.22), ApEx. (23.40),

ApEx. (23.53), and ApEx. (23.56).

Ex. (13.47) is used in Ex. (13.48).

Ex. (13.48) is used in Thm. (14.8).

Ex. (13.49) is used in Thm. (14.8),

Prp. (17.20), ApPrp. (23.43), and
ApEx. (23.53).

Ex. (18.53) is used in Ex. (13.54),

Ex. (13.55), Ex. (13.64), Ex. (22.37),
Ex. (24.19), and Prp. (25.13).

Ex. (13.55) is used in Ex. (13.56) and
Ex. (14.25).

Ex. (13.56) is used in Ex. (24.24).

Ex.,(13.57) is used in Ex. (13.58),

Ex. (13.61), Ex. (14.21), Ex. (14.25),
ApEx. (15.48), and Ex. (23.12).

Ex. (13.58) is used in Ex. (14.22), and
Ex. (14.25).

Ex. (13.59) is used in Thm. (19.3) and
ApEx. (22.93).

Ex. (13.60) is used in Ex. (21.41).

Ex. (18.61) is used in ApEg. (16.57),
ApEx. (16.67), and ApEx. (18.51).

Ex. (13.62) is used in Ex. (13.63),

Ex. (13.64), ApEx. (15.48), and
Ex. (25.18).
Ex. (13.63) is used in Ex. (14.24).

Chapter 14

Ex. (14.11) is used in Ex. (26.20).

Ex. (14.12) is used in Ex. (14.13),
Ex. (15.19), Ex. (15.24), and Prp. (26.6).

Ex. (14.13) is used in Ex. (15.20) and
Prp. (26.6).

Ex. (14.15) is used in Ex. (14.17).

Ex. (14.16) is used in Ex. (14.17) and
ApEx. (22.93).

Ex. (14.18) is used in Ex. (14.19).

Ex. (14.20) is used in Ex. (15.29).

Ex. (14.21) is used in Ex. (14.22),
Ex. (14.23), and ApEx. (15.48).

Ex. (14.22) is used in Ex. (14.23) and
Ex. (14.25).

Ex. (14.23) is used in Ex. (14.24),
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ApEx. (15.48), and ApPrp. (23.47).
Ex. (14.25) is used in Ex. (23.23).
Ex. (14.26) is used in ApEx. (18.52).

Chapter 15

Ex. (15.18) is used in ApThm. (16.66).

Ex. (15.19) is used in Ex. (15.20).

Ex. (15.25) is used in Cor. (21.7).

Ex. (15.23) is used in Ex. (15.29),
Ex. (21.20), Eg. (24.3), Cor. (24.14), and
Eg. (24.16).

Ex. (15.25) is used in (21.7).

Ex. (15.26) is used in Prp. (21.19).

Ex. (15.27) is used in Ex. (21.25).

Ex. (15.29) is used in Ex. (21.37).

Ex. (15.32) is used in Ex. (21.41).

ApEx. (15.39) is used in ApEx. (15.40) and
ApEx. (16.78).

ApEx. (15.40) is used in ApEx. (16.78).

Ex. (15.49) is used in Ex. (19.32).

Chapter 16

Ex. (16.2) is used in Lem. (16.9), Ex. (16.24),
Ex. (16.27), Ex. (16.28), and Ex. (16.32).

Ex. (16.29) is used in Ex. (16.30).

Ex. (16.33) is used in Ex. (19.16) and
Ex. (22.67).

Ex. (16.37) is used in Ex. (16.38) and
ApLem. (23.35).

Ex. (16.40) is used Ex. (22.40).

Ex. (16.41) is used in Ex. (16.42).

Ex. (16.42) is used in Ex. (16.43),

Ex. (19.17), Ex. (19.25), and Ex. (22.63).

Ex. (16.43) is used in Thm. (19.8).

Ex. (16.44) is used in Eg. (19.6).

ApEx. (16.51) is used in ApEx. (16.56),
ApPrp. (16.59), ApThm. (16.66),

ApEx. (16.68), ApEx. (16.74),
ApEx. (16.78), Ex. (17.30), and
ApPrp. (18.49).

ApEx. (16.56) is used in ApEg. (16.57),
ApEg. (16.58), ApThm. (16.66),

ApEx. (16.68), ApEx. (16.71),
ApEx. (16.72), and ApEx. (16.74).

ApEx. (16.61) is used in ApLem. (16.62),
ApPrp. (16.63), ApLem. (16.65), and
ApThm. (16.66).

ApEx. (16.73) is used in ApEx. (16.74).

ApEx. (16.74) is used in ApEx. (16.75).

ApEx. (16.77) is used in ApEx. (16.78).

Chapter 17

Ex. (17.4) is used in Prp. (17.12),
Prp.(17.11), Thm. (17.14), Prp. (17.18),
Prp. (17.19), Prp. (17.20), Ex. (18.6), and
ApEx. (23.33).

Ex. (17.21) is used in Ex. (17.23),
Ex.(17.24), Lem. (18.12), Lem. (18.17),

Ex. (18.25), and Ex. (18.32).
Ex. (17.22) is used in Ex. (18.25).
Ex. (17.28) is used in Ex. (17.29).
Ex. (17.29) is used in Ex. (17.30),
Ex. (18.32), Ex. (19.25), Ex. (21.30),
Ex. (21.31), and ApEx. (23.56).
Ex. (17.31) is used in Sbs. (19.1).
Ex. (17.32) is used in Sbs. (19.1).
Ex. (17.33) is used in ApEx. (23.54).
Ex. (17.34) is used in Ex. (17.35) and
ApEx. (20.34).

Chapter 18

Ex. (18.6) is used in Eg. (18.16) and
Ex. (18.30).

Ex. (18.7) is used in Eg. (18.16), Ex. (18.25),
Ex. (18.30), and Ex. (23.7).

Ex. (18.27) is used in Ex. (19.27).

Ex. (18.31) is used in Ex. (19.27).

Ex. (18.35) is used in Ex. (22.3), Ex. (22.40),
Ex. (22.72), and ApPrp. (23.50).

ApEx. (18.45) is used in ApPrp. (18.46),
ApPrp. (18.47), ApEx. (18.63), and
ApEx. (18.66).

ApEx. (18.50) is used in ApEx. (18.56).

ApEx. (18.53) is used in ApEx. (18.54).

ApEx. (18.55) is used in ApEx. (18.56).

ApEx. (18.56) is used in ApEx. (18.67).

ApEx. (18.58) is used in ApEx. (18.67).

ApEx. (18.60) is used in ApEx. (18.61).

ApEx. (18.63) is used in Thm. (23.8).

ApEx. (18.64) is used in ApEx. (20.32).

ApEx. (18.65) is used in Lem. (23.13) and
Ex. (23.22).

ApEx. (18.67) is used in Ex. (19.24).

Chapter 19

Ex. (19.2) is used in Thm. (19.3), Ex. (19.4),
Eg. (19.6), Ex. (19.17), Ex. (19.26),
Ex. (22.41), and Thm. (26.13).

Ex. (19.4) is used in Thm. (19.8),

Cor. (19.9), Lem. (19.13), Ex. (19.16),
Lem. (20.9), Prp. (20.13), Thm. (21.4),
Lem. (26.12), and Thm. (26.13).

Ex. (19.17) is used in Ex. (19.21),

Ex (19.32), and Ex. (21.22).
Ex. (19.19) is used in Ex. (19.32),

Ex. (22.60), and ApEx. (23.62).
Ex. (19.20) is used in Ex. (19.21),

Ex. (19.24), and Ex. (21.22).

Ex. (19.22) is used in ApEx. (22.93).

Ex. (19.23) is used in Ex. (19.24),

Ex. (21.23), Sbs. (22.1), and Ex. (22.70).

Ex. (19.25) is used in Ex. (21.20).

Ex. (19.26) is used in Ex. (21.26) and
Ex. (24.23).

Ex. (19.27) is used in Ex. (24.22).

Ex. (19.29) is used in Ex. (19.30).
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Ex. (19.30) is used in ApEx. (22.94).
Ex. (19.31) is used in ApEx. (22.102).
Ex. (19.32) is used in Ex (21.22).

Chapter 20

Ex. (20.17) is used in ApEx. (20.33).

Ex. (20.18) is used in Sbs. (21.2).

Ex. (20.20) is used in ApEx. (23.62).

Ex. (20.22) is used in Ex. (22.3).

ApEx. (20.25) is used in ApThm. (20.27).
ApEx. (20.26) is used in ApThm. (20.27).
ApEx. (20.35) is used in ApEx. (22.101).

Chapter 21

Ex. (21.10) is used in Thm. (21.17) and
Thm. (23.6).

Ex. (21.13) is used in Sbs. (21.14),
Ex. (21.16), Ex. (21.22), Ex. (21.42),
Eg. (22.27), and ApEx. (23.57).

Ex. (21.16) is used in Thm. (21.17),
Prp. (21.19), ApPrp. (23.47),
ApEx. (23.57), and ApEx. (23.61).

Ex. (21.20) is used in ApEx. (23.33),
ApPrp. (23.43), and ApEx. (23.56).

Ex.(21.21) is used in ApEx. (21.43).

Ex. (21.22) is used in ApEx. (23.63).

Ex. (21.23) is used in Ex. (21.24) and
Ex. (22.60).

Ex. (21.24) is used in Ex. (21.25) and
Ex. (22.57).

Ex. (21.26) is used in ApPrp. (23.38).

Ex. (21.29) is used in Ex. (21.30).

Ex. (21.30) is used in Ex. (21.31).

Ex. (21.32) is used in Ex. (21.35).

Ex. (21.33) is used in Ex. (21.35),

Ex. (21.42), Ex. (23.7), Ex. (25.15), and
Sbs. (25.22).

Ex. (21.34) is used in Thm. (23.8) and
Sbs. (25.22).

Ex. (21.35) is used in Ex. (24.24).

Ex. (21.36) is used in Ex. (21.40).

Ex. (21.37) is used in Ex. (21.38) and
Ex. (21.39).

Ex. (21.39) is used in Ex. (21.40).

Ex. (21.42) is used in ApEx. (23.61),
ApEx. (23.63), and Ex. (24.25).

Ex. (21.44) is used in ApEx. (23.63).

Chapter 22

Ex. (22.3) is used in Ex. (22.8), Ex. (22.14),
Lem. (22.24), Ex. (22.28), Ex. (22.36),
Ex. (22.37), Ex. (22.39), Ex. (22.45),

Ex. (22.54), Ex. (22.57), Ex. (22.60),
Ex. (22.61), Ex. (22.69), Ex. (22.72),
Eg. (23.2), and ApEx. (23.58).

Ex. (22.8) is used in Ex. (22.15).

Ex. (22.9) is used in Eg. (22.11) and
Ex. (22.49).

Ex. (22.12) is used in Ex. (22.16),
Thm. (22.18), Cor. (22.19), Cor. (22.20),
Thm. (22.26), Ex. (22.33), Ex. (22.36),
Ex. (22.42), Ex. (22.46), Ex. (22.48),
Ex. (22.52), Ex. (22.53), Ex. (22.61),
Ex. (22.62), Ex. (22.64), Ex. (22.66),
Ex. (22.68), and Eg. (23.2).
Ex. (22.13) is used in Sbs. (22.1),
Ex. (22.14), Ex. (22.15), Lem. (22.24),
Ex. (22.33), Ex. (22.54), and Ex. (22.69).
Ex. (22.14) is used in Ex. (22.16),
Ex. (22.28), Ex. (22.35), Ex. (22.58),
ApThm. (22.81), and ApEx. (22.95).
Ex. (22.15) is used in Ex. (22.16) and
Ex. (22.54).
Ex. (22.16) is used in Sbs. (22.1),
Thm. (22.26), Ex. (22.28), Ex. (22.33),
Ex. (22.39), Ex. (22.54), Ex. (22.58),
Ex. (22.70), and Ex. (23.16).
Ex. (22.28) is used in ApThm. (22.84).
Ex. (22.34) is used in Ex. (22.35).
Ex. (22.85) is used in Ex. (22.36),
ApThm. (22.75), and ApCor. (22.85).
Ex. (22.36) is used in Ex. (22.67) and
Ex. (23.16).
Ex. (22.39) is used in Ex. (22.40).
Ex. (22.40) is used in ApEx. (23.61).
Ex. (22.41) is used in Ex. (22.61).
Ex. (22.42) is used in Ex. (22.43) and
Ex. (22.44).
Ex. (22.43) is used in Ex. (22.58).
Ex. (22.44) is used in ApEx. (22.100).
Ex. (22.47) is used in Ex. (22.48) and
Ex. (22.49).
Ex. (22.48) is used in Ex. (22.49).
Ex. (22.51) is used in Ex. (22.53).
Ex. (22.52) is used in Ex. (22.53).
Ex. (22.53) is used in Ex. (22.61),
Ex. (22.62), ApEx. (22.95), and
ApEx. (23.58).
Ex. (22.54) is used in Sbs. (22.1),
Ex. (22.55), Ex. (22.63), and
ApEx. (22.95).
Ex. (22.55) is used in Ex. (22.56),
Ex. (22.57), Ex. (22.58), Ex. (22.59),
Ex. (22.60), Ex. (22.63), Ex. (22.64),
ApThm. (22.82), and ApEx. (22.100).
Ex. (22.56) is used in Ex. (22.58),
ApEx. (22.100), and ApEg. (23.30).
Ex. (22.58) is used in Ex. (22.63),
Ex. (22.64), Eg. (23.2), and Ex. (23.16).
Ex. (22.59) is used in ApEx. (22.87),
ApEx. (22.88), and ApSbs. (22.89).
Ex. (22.61) is used in Ex. (22.62) and
ApEx. (23.58).
Ex. (22.62) is used in Ex. (22.63),
Ex. (22.64), ApSbs. (22.89), and
Ex. (23.16).
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Ex. (22.67) is used in ApSbs. (22.89).

Ex. (22.69) is used in Ex. (22.70) and
ApEx. (22.100).

ApEx. (22.76) is used in ApThm. (22.81),
ApEg. (22.83), ApEx. (22.90),
ApEx. (22.97), ApEx. (22.98), and
ApEx. (22.99).

ApEx. (22.86) is used in ApSbs. (22.89).

ApEx. (22.87) is used in ApSbs. (22.89).

ApEx. (22.88) is used in ApSbs. (22.89) and
Ex. (23.16).

ApEx. (22.91) is used in ApEx. (22.92).

ApEx. (22.92) is used in ApEx. (22.93).

ApEx. (22.102) is used in ApEx. (22.103).

Chapter 23

Ex. (23.7) is used in Thm. (23.8).

Ex. (23.11) is used in Lem. (23.13) and
ApPrp. (23.47).

Ex. (23.12) is used in Thm. (23.15) and
Ex. (23.23).

Ex. (23.17) is used in ApThm. (23.48).

Ex. (23.22) is used in Ex. (23.23).

Ex. (23.23) is used in ApEx. (23.61).

ApEx. (23.24) is used in ApThm. (23.29) and
ApEx. (23.52).

ApEx. (23.26) is used in ApEx. (23.27) and
ApPrp. (23.34).

ApEx. (23.27) is used in ApThm. (23.29),
ApLem. (23.36), ApPrp. (23.39),
ApEx. (23.40), ApEx. (23.53), and
ApEx. (23.56).

ApEx. (23.31) is used in ApEx. (23.32),
ApEx. (23.33), ApPrp. (23.39), and
ApEx. (23.55).

ApEx. (23.32) is used in ApPrp. (23.38),
ApPrp. (23.39), ApPrp. (23.43),
ApPrp. (23.47), ApEx. (23.60), and
ApEx. (23.62).

ApEx. (23.33) is used in ApPrp. (23.43).

ApEx. (23.40) is used in ApDfn (23.41),
ApEx. (23.42), and ApEx. (23.56).

ApEx. (23.42) is used in ApPrp. (23.43).

ApEx. (28.51) is used in ApEx. (23.53).

ApEx. (28.52) is used in ApEx. (23.53) and
ApEx. (23.54).

ApEx. (23.53) is used in ApEx. (23.56).

ApEx. (23.54) is used in ApEx. (23.55).

ApEx. (23.55) is used in ApEx. (23.56).

ApEx. (28.57) is used in ApEx. (23.61) and
ApEx. (23.62).

ApEx. (23.60) is used in ApEx. (23.61).

Chapter 24

Ex. (24.4) is used in Ex. (24.5), Prp. (24.6),
and Cor. (24.9).

Ex. (24.5) is used in Prp. (24.6), Ex. (24.22),
and Ex. (25.23).

Ex. (24.21) is used in Ex. (24.22).

Chapter 25

Ex. (25.2) is used in Ex. (25.6) and
Sbs. (25.22).

Ex. (25.6) is used in Prp. (25.19) and
Sbs. (25.22).

Ex. (25.9) is used in Thm. (25.14).

Ex. (25.12) is used in Ex. (25.15).

Ex. (25.15) is used in Sbs. (25.22).

Ex. (25.17) is used in Ex. (25.18) and
Sbs. (25.22).

Ex. (25.18) is used in Prp. (25.19) and
Sbs. (25.22).

Chapter 26

Ex. (26.3) is used in Thm. (26.7).
Ex. (26.11) is used in Cor. (26.15).
Ex. (26.17) is used in Ex. (26.18),
Ex. (26.19), and Ex. (26.21).
Ex. (26.19) is used in Ex. (26.20).
Ex. (26.21) is used in Ex. (26.22).
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A (1.2)
(R-alg)): (6.1)
(R-mod)): (6.1)
(Rings)): (6.1)
(Sets)): (6.1)
a:b): (1.4)

M :N): (25.1)

N :a): (4.16)

N :L): (4.17)
Rn): (23.10)
Sn): (23.10)
(zx): (4.10)
]_[MA: (65)

11 Ro: (8.33)

L] My: (6.5)

ﬂCI)\: (1.4)

@ My: (4.13)
Ha)\: (1.4)

[1My: (4.13)
Soax: (1.4)
>>Ny: (4.10)

> Br: (4.13)

>  Ray: (1.4)

>> Rmy: (4.10)
OF/0X: (1.18)
Va: (3.13)

(a): (1.4)
(at,...,an): (1.4)
(ma1,...,myn): (4.10)
D(f): (13.1)
V(a): (13.1)

a’c: (1.4)

ac: (1.4)

aN: (4.1)

aR': (1.4)

as: (11.9)

b/a: (1.9)

dg: (8.19)

a®a': (8.4)

B: M —» N: (5.14)
Ta(M): (4.14)
Sun: (4.10)

Lt (4.13)

nr: (4.4)

bz (4.4)

T (4.13)

Pzy)* (1.8)

ps: (11.1); (12.2)
or: (11.6); (12.2)
op: (11.13); (12.2)
14: (6.1)

1y (4.2)

C: (2.3)

(
(
(
(
(
(
(
(
(
(

Notation

Fa: (1.2)

Fq: (2.3)

Q: (2.3)

R: (2.3)

Z: (1.1)

Z(ml (22.1)
Dr(M): (18.39)
F(R): (25.22)
P(R): (25.22)
R(Ma,): (20.7)
R(q): (20.7)
c(F): (2.36)
d(M): (21.2)
D(M): (6.20)
eu: (4.10)

e(q, M): (20.11)
Flz: (1.8)
F.(M): (5.35)
Gq(M): (20.7)
Gq4(R): (20.7)
G(M): (20.7)
Gn(M): (20.7)
G(R): (20.7)
Gn(R): (20.7)
h(M, n): (20.3)
H(M, t): (20.3)
FIXB: (3.8)
K(€): (17.34)
KO°(R): (17.35)
Ko(R): (17.34)
4(M): (19.1)
Lr(M): (19.1)
LM: (4.8)

M: (22.1)
M(m): (20.1)
M~1: (25.7)
M/N: (4.6)

M = N: (4.2)
My: (12.2)
MA: (4.13)
MUN: (6.16)
MN: (25.1)
MI[X]: (4.1)

M ~ N: (4.2)
My: (12.2)
M™: (4.13)
M@ N: (4.13)
M ®p N: (8.2)
m®n: (8.2)
NS: (12.11)
p(F*M,n): (20.7)
P(F*M,t): (20.7)
Py (10.1)
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pq(M,n): (20.7)
Py(M,t): (20.7)
R'/R: (1.1)

R/a: (1.5)

R=R" (1.1)

R~ R: (1.1)

R®A: (4.10)
R[[X1,...,X,]]: (3.7)
R[X]: (1.3)
R[X1,...,Xn]: (1.3)

R’ x R": (1.11)
Rp: (11.13)

RE: (1.1)

Ri]] R2: (8.17)
Ry: (11.6)

Rf: (4.10)

s(M): (21.2)
S—IR: (11.1)
S—IR’: (11.15)
S—T: (1.2)

S: (3.25)

So: (2.1)

Sp: (11.13)

Sp: (11.6)

T(M): (13.52)
TSM: (12.38)

vp: (24.8)

z/s: (11.1); (11.15)
Ann(M): (4.1)
Ann(m): (4.1)
Ass(M): (17.1)
Bilg(M, M’; N): (8.1)
Coim(a): (4.9)
Coker(a): (4.9)
deg(F): (1.7)
depth(M): (23.4)
depthp(M): (23.4)
depth(a, M): (23.4)
dim(M): (21.1)
dim(R): (15.9)
Endgr(M): (4.4)
ev (2.44)

Frac(R): (2.3)
ged: (2.5)

Hom (M, N): (4.2)
Idem(yp): (1.10)
Idem(R): (1.10)
Im(a): (4.2)
Ker(a): (4.2)

lim My: (22.5)



lim! My: (22.5)
SI0M): (12.22)
nil(R): (3.13)
ord(;,y(F): (1.8)
Pic(R): (25.22)

Notation

rad(M): (4.1)
rad(R): (3.1)
rank(M): (4.10)
Spec(R): (13.1)
Supp(M): (13.3)
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Suppr(M): (13.3)

tr: (24.11)
TI'ﬂ(R’RI)(M,N,P; Q) (88)
z.div(M): (17.10)

z.div(R): (2.1)



Index

A transition map: (6.4)
algebra: (1.1) category: (6.1)
algebra finite: (4.5) directed set: (7.1)
coproduct: (8.17) discrete: (6.5)
extended Rees Algebra: (20.7) filtered: (7.1)
faithfully flat: (9.4) functor: (6.4)
finitely generated: (4.5) product: (6.1)
finitely presented: (7.6) small: (6.4)
flat: (9.4)

generators: (4.5) D

group algebra: (26.9)
homomorphism: (1.1)
integral over a ring: (10.13)

diagram
chase: (5.10)
commutative: (1.5)

localization: (11.15) E
map: (1'1)_ element
module finite: (10.13) annihilator: (4.1)

structure map: (1.1)

subalgebra: (4.5)
generated by: (4.5)

tensor product: (8.17)

Cauchy sequence: (22.1)
complementary idempotents: (1.10)
constant term: (3.7)

coprime: (2.16)

algebraic set: (1.29); (16.76) degree: (1.7)
polynomial map: (1.30) equation of integral dependence: (10.13)
regular map: (1.30) formal power series: (3.7)
coordinate ring: (1.29) free: (4.10)
ideal of: (1.29) generators: (1.4); (4.10)
polynomial map: (16.76) grlex hind monomial: (2.3)
Zariski topology: (16.76) grlex hind term: (2.3)
grlex leading coefficient: (2.3)

C grlex leading monomial: (2.3)
canonical: (1.1); (4.2) grlex leading term: (2.3)
category theory homogeneous: (20.1)

coequalizer: (6.6) homogeneous component: (20.23)
colimit: (6.4) homogeneous of degree n: (15.2); (20.23);
composition law: (6.1) (20.28)
associative: (6.1) idempotent: (1.10)
coproduct: (6.5) initial component: (20.23)
direct limit: (6.4) integral over a ring: (10.13)
has: (6.4) integrally dependent on a ring: (10.13)
indexed by: (6.4) irreducible: (2.5)
preserves: (6.4) Kronecker delta function: (4.10)
dually: (5.2) lift: (5.15)
filtered direct limit: (7.1) limit: (22.1)
identity: (6.1) linear combination: (1.4); (4.10)
unitary: (6.1) linearly independent: (4.10)
inclusion: (6.5) multiplicative inverse: (1.1)
initial object: (6.5) nilpotent: (3.13); (12.22)
insertion: (6.4) nonzerodivisor: (2.1); (17.10)
inverse: (6.1) order: (1.8)
isomorphism: (6.1) p-adic integer: (22.1)
map: (6.1) prime: (2.5)
morphism: (6.1) reciprocal: (1.1)
object: (6.1) relatively prime: (2.18)
pushout: (6.16) residue of: (1.5)
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restricted vectors: (4.10); (4.13)

root: (1.19)
simple: (1.19)
supersimple: (1.19)

uniformizing parameter: (23.1)

unit: (1.1)
zerodivisor: (2.1); (17.10)

F
field: (2.3)
coefficient field: (21.24)
discrete valuation of: (23.1)
fraction field: (2.3)
Galois extension: (10.37)
p-adic valuation: (23.2)
rational functions: (2.4)
residue field: (3.4)
Trace Pairing: (24.11)
trace: (24.11)
functor: (6.2)
additive: (8.15)
adjoint: (6.3)
adjoint pair: (6.3)
counit: (6.14)
unit: (6.14)
universal: (6.14)
cofinal: (7.22)
constant: (6.4)
contravariant: (6.1)
covariant: (6.2)
diagonal: (6.4)
direct system: (6.4)
exact: (9.2)
faithful: (9.2)
forgetful: (6.2)
isomorphic: (6.2)
left adjoint: (6.3)
left exact: (9.2)
linear: (8.4); (8.12)
natural bijection: (6.3)
natural transformation: (6.2)
right adjoint: (6.3)
right exact: (9.2)

I

ideal: (1.4)

associated prime: (17.1)

chain stabilizes: (16.3)

comaximal: (1.21); (1.21)

contraction: (1.4)

diagonal: (8.19)

extension: (1.4)

Fitting: (5.35)

fractional: (25.1)
invertible: (25.7)
locally principal: (25.5)
principal: (25.1)
product: (25.1)
quotient: (25.1)

Index
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generate: (1.4)
homogeneous: (20.23)
idempotent: (1.24); (1.24)
intersection: (1.4)
length of chain: (15.9)
lie over: (14.2)
maximal: (2.10)
minimal prime of: (3.17)
multiplicity: (20.11)
nested: (1.9)
nilpotent: (3.13)
parameter ideal: (19.12)
prime: (2.2)
height: (21.6)
maximal chain: (2.41); (15.13)
minimal: (3.17); (13.5)
nth symbolic power: (18.58)
principal: (1.4)
product: (1.4)
proper: (1.4)
radical: (3.13)
saturated: (11.9)
saturation: (11.9)
sum: (1.4)
transporter: (1.4)
variety: (13.1)

L

lattice: (1.25)

Boolean: (1.25)
complement: (1.25)
distribute: (1.25)

Lemma

Artin Character: (24.10)
Artin—Rees: (20.12)
Artin—Tate: (16.17)
Equational Criterion
for Vanishing: (8.16)
Fitting: (5.34)
Five: (5.23)
Gauss’: (21.35)
Hensel’s: (22.75)
ver. 2 (22.82)
Ideal Criterion for Flatness: (9.15)
Localization and normalization commute:
(11.32)
Nakayama’s: (10.6)
for adically complete rings: (22.69)
for graded modules (20.30)
for nilpotent ideals (3.31)
Nine: (5.24)
Noether Normalization: (15.1)
Nonunit Criterion: (3.5)
Prime Avoidance: (3.12)
Homogeneous: (20.31)
Schanuel’s: (5.17)
Snake: (5.10)
Zorn’s: (2.21)



M

map

R-linear: (4.2)

R-map: (4.2)

automorphism: (1.1)
bilinear: (8.1)

bimodule homomorphism: (8.6)
endomorphism: (1.1); (4.4)
extends: (1.1)

extension: (1.1)

Going-down Property: (13.38)
Going-up Property: (13.37)
homogeneous: (20.23)
homomorphism: (1.1); (4.2)
isomorphism: (1.1); (4.2)
lift: (5.14)

local homomorphism: (10.11)
Noether Isomorphisms: (4.8)
of filtered modules: (22.1)
polynomial: (1.30); (1.29)
quasi-flat: (21.7)

quotient map: (1.5); (4.6)
retraction: (5.7)

section: (5.7)

trilinear: (8.8)

matrix of cofactors: (10.2)
module: (4.1)

S-torsion: (12.38)

a-dic topology: (22.1)

ascending chain condition (acc): (16.11)
annihilator: (4.1)

Artinian: (16.21)

associated graded: (20.7)
associated prime: (17.1)
bimodule: (8.6)

bimodule homomorphism: (8.6)
catenary: (15.13)

chain stabilizes: (16.11); (16.21)
characteristic polynomial: (10.1)
closed under: (4.1)
Cohen—Macaulay: (23.41)
coimage: (4.9)

cokernel: (4.9)

colength: (19.1)

complete: (22.1)

composition series: (19.1)
cyclic: (4.7)

depth: (23.4)

descending chain condition (dcc): (16.21)
dimension: (21.1)

direct product: (4.13)

direct sum: (4.10)

discrete: (22.1)

embedded prime: (17.1)
endomorphism: (4.4)

extension of scalars: (8.6)
faithful: (4.4)

faithfully flat: (9.4)

filtration: (20.7)
g-adic: (20.7)
g-filtration: (20.7)
Hilbert—Samuel Function: (20.7)
Hilbert—Samuel Polynomial: (20.7)
Hilbert—Samuel Series: (20.7)
shifting: (20.7)
stable g-filtration: (20.7)
topology: (22.1)
finitely generated: (4.10)
finitely presented: (5.12)
flat: (9.4)
free: (4.10)
free basis: (4.10)
free of rank ¢: (4.10)
generate: (4.10)
graded: (20.1)
homogeneous component: (20.1)
Hilbert Function: (20.3)
Hilbert Polynomial: (20.3)
Hilbert Series: (20.3)
shifting (20.1)
homomorphism: (4.2)
image: (4.2)
inverse limit: (22.5)
inverse system: (22.5)
Mittag-Leffler Condition: (22.30)
invertible: (25.16)
irreducible: (18.33)
isomorphism: (4.2)
kernel: (4.2)
length: (19.1)
localization: (12.2)
localization at f: (12.2)
localizaton at p: (12.2)
locally finitely generated: (13.13)
locally finitely presented: (13.13)
locally free: (13.13)
maximal condition (maxc): (16.11)
minimal condition (minc): (16.21)
minimal generating set: (10.9)
minimal prime of: (13.5)
modulo: (4.6)
M-regular: (23.4)
M-sequence: (23.4)
length: (23.4)
maximal: (23.28)
multiplicity: (20.11)
Noetherian: (16.11)
nonzerodivisor: (17.10)
parameter ideal: (19.12)
presentation: (5.12)
prime of: (17.1)
projective (5.14)
quotient map: (4.6)
quotient: (4.6)
R-linear map: (4.2)
radical: (4.1)



Rees Module: (20.7)
reflexive: (6.20)

residue: (4.6)

restriction of scalars: (4.5)
scalar multiplication: (4.1)
semilocal: (4.1)

separated: (22.1)

separated completion: (22.1)
Serre’s Condition: (23.10)
simple: (19.1)

standard basis: (4.10)

sum: (4.8)

support: (13.3)

tensor product, see also
torsion: (24.23)

torsionfree: (13.52)
universally catenary: (23.44)
zerodivisor: (17.10)

R
ring: (1.1)
absolutely flat: (10.25)
acted on by group: (1.1)
algebra, see also
Artinian: (16.21)

ascending chain condition (acc): (16.3)

associated graded: (20.7)
associated prime: (17.1)
Boolean: (1.2)

catenary: (15.13)
Cohen—Macaulay: (23.41)
decomposable: (11.17)
Dedekind domain: (24.1)
dimension: (15.9)

Discrete Valuation Ring (DVR): (23.1)

domain: (2.3)

dominates: (26.5)

embedded prime: (17.1)
extension: (1.1)

factor ring: (1.5)

field, see also

formal power series ring: (3.7)
graded: (20.1)

Grothendieck Group: (17.34); (17.35)

Henselian (22.73)

homomorphism: (1.1)

Ideal Class Group: (25.22)

integral closure: (10.19)

integral domain: (2.3)

integrally closed: (10.19)

Jacobson: (15.33)

Jacobson radical: (3.1)

kernel: (1.5)

Laurent series: (3.8)

local homomorphism: (10.11)

local: (3.4)
equicharacteristic: (22.80)
residue field: (3.4)

Index

localization: (11.1)

localization at f: (11.6)
localizaton at p: (11.13)

map: (1.1)

maximal condition (maxc): (16.3)
minimal prime of: (3.17); (13.5)
modulo: (1.5)

nilradical: (3.13)

Noetherian: (16.1)
nonzerodivisor: (2.1)

normal: (10.19); (14.9)
normalization: (10.19)

of invariants: (1.1)

p-adic integers: (22.1)

Picard Group: (25.22)
polynomial ring: (1.3)

Principal Ideal Domain (PID): (2.17)

Principal Ideal Ring (PIR): (9.35)
product ring: (1.11)

quasi-finite: (22.70)

quotient map: (1.5)

quotient ring: (1.5)

radical: (3.1)

reduced: (3.13)

regular local: (21.14)

regular system of parameters: (21.14)

residue ring: (1.5)
ring of fractions: (11.1)
semilocal: (3.4)
Serre’s Conditions: (23.10)
spectrum: (13.1)
principal open set: (13.1)
quasi-compact: (13.2)
Zariski topology (13.1)
subring: (1.1)
total quotient ring: (11.2)

Unique Factorization Domain (UFD): (2.5)

universally catenary: (23.44)
valuation: (26.1)
Zariski: (22.36)
zerodivisor: (2.1)

S

sequence

M-quasi-regular: (21.11)
Cauchy: (22.1)
converge: (22.1)
exact: (5.1)
M-sequence: (23.4)
length: (23.4)
maximal: (23.28)
regular sequence: (23.4)
short exact: (5.3)
isomorphism of: (5.17)
split exact: (5.7)

submodule: (4.1)
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pi-primary component: (18.13)
old-primary: (18.1)



acceptable chain: (17.31)

homogeneous: (20.23)

p-primary: (18.1)

primary: (18.1)

primary decomposition: (18.13)
irredundant: (18.13)
minimal (18.13)

saturated: (12.11)

saturation: (12.11)

torsion: (13.52)

subset

characteristic function: (1.2)

multiplicative: (2.2)
generated by (11.20)
saturated: (3.11)
saturation: (3.25)

symmetric difference: (1.2)

system of parameters (sop): (21.2)
regular (21.14)

system of parameters (sop): (21.2)

T
tensor product: (8.2)
adjoint associativity: (8.8)
associative law (8.8)
cancellation: (8.9)
commutative law: (8.5)
left adjoint: (8.9)
right adjoint: (8.9)
unitary law: (8.5)
Theorem

Additivity of Length: (19.7)
Akizuki-Hopkins: (19.8)
Characterization of DVRs: (23.6)
Cauchy—Davenport: (2.45)
Cayley—-Hamilton: (10.1)
Chevalley’s: (16.66)
Chevalley—Warning: (2.46)
Chinese Remainder: (1.21)
Cohen Existence: (22.81)
Cohen Structure I: (22.57)
Cohen Structure II: (22.58)
Determinant Trick: (10.2)
Dimension: (21.4)
Direct limits commute: (6.11)
Elementary Divisors: (5.38)
Exactness

Left, of Hom: (5.11)

of Completion: (22.18)

of Filtered Direct Limits: (7.9)

of Localization: (12.13)

Right, of tensor product: (9.2)
Finiteness of Integral Closure

finite separable extension: (24.13)

Noether’s: (24.17)
First Uniqueness: (18.18)
Gauss’s: (10.21)
Going-up: (14.3)

Index

Going-down
for flat modules: (14.8)
for integral extensions: (14.6)
Hilbert Basis: (16.10)
Hilbert—Serre: (20.5)
Incomparability: (14.3)
Jordan—Holder: (19.3)
Krull Intersection: (18.23); (20.22)
Krull Principal Ideal: (21.9)
Krull-Akizuki: (26.13)
Lasker—Noether: (18.19)
Lazard: (9.13)
Lying over: (14.3)
Main of Classical Ideal Theory: (24.8)
Maximality: (14.3)
Noether on Invariants: (16.18)
Nullstellensatz
Alon’s Combinatorial: (2.44)
Generalized Hilbert: (15.37)
Hilbert: (15.7)
Scheinnullstellensatz: (3.14)
Zariski: (15.4)
Samuel’s: (20.9)
Schwartz—Zippel: (2.42)
Second Uniqueness Theorem: (18.22)
Serre’s Criterion: (23.15); (23.23)
Stone’s: (13.44)
Structure: (5.41); (5.41)
Tower Law for Integrality: (10.17)
Unmixedness: (23.37)
Watts: (8.13)
Weierstra§ Division: (22.84)
Weierstral Preparation: (22.85)
topological space
Ty: (13.22)
To: (13.16)
closed point: (13.16)
closed map: (13.37)
compact: (13.43)
constructible subset (16.60)
irreducible component: (16.48)
irreducible: (16.48)
Jacobson: (15.39)
locally closed subset: (15.39)
Noetherian: (16.48)
Noetherian induction (16.54)
open map: (13.38)
quasi-compact: (13.2)
totally disconnected: (13.22)
very dense subset: (15.39)
topology
a-adic: (22.1)
constructible: (13.32)
discrete: (1.2)
separated: (22.1)
Zariski: (13.1); (16.76)
totally ordered group: (26.8)
Archimedean: (26.23)



Index

isolated subgroup: (26.21) free module: (4.10)

value group: (26.8) inverse limit: (22.5)
kernel: (4.2)

localization: (11.3); (12.3)
polynomial ring: (1.3)
pushout: (6.16)

residue module: (4.6)
residue ring: (1.5)

tensor product: (8.3)

U
unitary: (6.1)
Universal Mapping Property (UMP)
coequalizer: (6.6)
cokernel: (4.9)
colimit: (6.4)
completion: (22.54)
coproduct: (6.5)

direct limit: (6.4) AY
direct product: (4.13) valuation

direct sum: (4.13) discrete: (23.1)
formal power series: (22.55) general: (26.8)
fraction field: (2.3) p-adic: (23.2)
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