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Abstract

We study the problem of community detection in hypergraphs under

a stochastic block model. Similarly to how the stochastic block model in

graphs suggests studying spiked random matrices, our model motivates

investigating statistical and computational limits of exact recovery in a

certain spiked tensor model. In contrast with the matrix case, the spiked

model naturally arising from community detection in hypergraphs is dif-

ferent from the one arising in the so-called tensor Principal Component

Analysis model. We investigate the effectiveness of algorithms in the Sum-

of-Squares hierarchy on these models. Interestingly, our results suggest

that these two apparently similar models exhibit significantly different

computational to statistical gaps.

1 Introduction

Community detection is a central problem in many fields of science and engineer-
ing. It has received much attention for its various applications to sociological
behaviours [1, 2, 3], protein-to-protein interactions [4, 5], DNA 3D conforma-
tion [6], recommendation systems [7, 8, 9], and more. In many networks with
community structure one may expect that the groups of nodes within the same
community are more densely connected. The stochastic block model (SBM)
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[10] is arguably the simplest model that attempts to capture such community
structure.

Under the SBM, each pair of nodes is connected randomly and independently
with a probability decided by the community membership of the nodes. The
SBM has received much attention for its sharp phase transition behaviours [11],
[12], [13], computational versus information-theoretic gaps [14], [15], and as a
test bed for many algorithmic approaches including semidefinite programming
[13], [16], spectral methods [17], [18] and belief-propagation [19]. See [20] for a
good survey on the subject.

Let us illustrate a version of the SBM with two equal-sized communities. Let
y P t˘1un be a vector indicating community membership of an even number n of
nodes and assume that the size of two communities are equal, i.e., 1T y “ 0. Let p
and q be in r0, 1s indicating the density of edges within and across communities,
respectively. Under the model, a random graph G is generated by connecting
nodes i and j independently with probability p if yi “ yj or with probability q
if yi ‰ yj. Let py be any estimator of y given a sample G. We say that py exactly
recovers y if py is equal to y or ´y with probability 1´ onp1q. In the asymptotic
regime of p “ a logn{n and q “ b logn{n where a ą b, it has been shown that
the maximum likelihood estimator (MLE) recovers y when

?
a ´

?
b ą

?
2 and

the MLE fails when
?
a´

?
b ă

?
2, showing a sharp phase transition behaviour

[13]. Moreover, it was subsequently shown in [16] and [21] that the standard
semidefinite programming (SDP) relaxation of the MLE achieves the optimal
recovery threshold.

A fruitful way of studying phase transitions and effectiveness of different
algorithms for the stochastic block model is to consider a Gaussian analogue of
the model [22]. Let G be a graph generated by the SBM and let AG be the
adjacency matrix of G. We have

EAG “ p` q

2
11T ` p´ q

2
yyT ´ pI.

It is then useful to think AG as a perturbation of the signal EAG under centered
noise.

This motivates a model with Gaussian noise. Given a vector y P t˘1un with
1T y “ 0, a random matrix T is generated as

Tij “ yiyj ` σWij

where Wij “ Wji „ Np0, 1q for all i, j P rns. This model is often referred to Z2-
synchronization [21, 22]. It is very closely related to the spiked Wigner model
(or spiked random matrix models in general) which has a rich mathematical
theory [23, 24, 25].

In many applications, however, nodes exhibit complex interactions that may
not be well captured by pairwise interactions [26, 27]. One way to increase
the descriptive ability of these models is to consider k-wise interactions, giving
rise to generative models on random hypergraphs and tensors. Specifically, a
hypergraphic version of the SBM was considered in [28, 29], and a version of
the censored block model in [30].
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For the sake of exposition we restrict our attention to k “ 4 in the sequel.
Most of our results however easily generalize to any k and will be presented in
a subsequent publication. In the remaining of this section, we will introduce a
hypergraphic version of the SBM and its Gaussian analogue.

1.1 Hypergraphic SBM and its Gaussian analogue

Here we describe a hypergraphic version of the stochastic block model. Let y
be a vector in t˘1un such that 1T y “ 0. Let p and q be in r0, 1s. Under the
model, a random 4-uniform hypergraph H on n nodes is generated so that each
ti, j, k, lu Ď rns is included in EpHq independently with probability

#
p if yi “ yj “ yk “ yl (in the same community)

q otherwise (across communities).

Let AH , the adjacency tensor of H , be the 4-tensor given by

pAHqijkl “
#
1 if ti, j, k, lu P EpHq
0 otherwise.

Let y“l4 be the 4-tensor defined as

y“l4
ijkl “

#
1 if yi “ yj “ yk “ yl

0 otherwise,

Since y P t˘1un, we have

y“l4 “
ˆ
1 ` y

2

˙b4

`
ˆ
1 ´ y

2

˙b4

.

Note that for any quadruple of distinct nodes pi, j, k, lq we have

pEAHqijkl “ pq1b4 ` pp ´ qqy“l4qijkl .

In the asymptotic regime of p “ a logn{
`
n´1

3

˘
and q “ b logn{

`
n´1

3

˘
, there

is a sharp information-theoretic threshold for exact recovery. Results regarding
this hypergraphic stochastic block model will appear in subsequent publication.
Here we will focus on the Gaussian counterpart.

Analogously to the relationship between the SBM and the spiked Wigner
model, the hypergraphic version of the SBM suggests the following spiked tensor
model:

T “ y“l4 ` σW,

where W is a random 4-tensor with i.i.d. standard Gaussian entries. We note
that here the noise tensor W is not symmetric, unlike in the spiked Wigner
model. This is not crucial: assuming W to be a symmetric tensor will only
scale σ by

?
4!.

3



2 The Gaussian planted bisection model

Given a sample T, our goal is to recover the hidden spike y up to a global sign
flip. Let py be an estimator of y computed from T. Let pppy;σq be the probability
that py successfully recovers y. Since W is Gaussian, pppy;σq is maximized when

py “ argmin
xPt˘1un:1Tx“0

}T ´ x“l4}2F ,

or equivalently py “ argmaxx
@
x“l4,T

D
, the maximum-likelihood estimator (MLE)

of y.
Let fpxq “

@
x“l4,T

D
and pyML be the MLE of y. By definition,

pppyML;σq “ Pr

¨
˝fpyq ą max

xPt˘1uzty,´yu
1
T x“0

fpxq

˛
‚.

Theorem 1. Let ǫ ą 0 be a constant not depending on n. Then, as n grows,
pppyML;σq converges to 1 if σ ă p1 ´ ǫqσ˚ and pppyML;σq converges to 0 if
σ ą p1 ` ǫqσ˚, where

σ˚ “
c

1

8
¨ n3{2

?
log n

.

Here we present a sketch of the proof while deferring the details to the
appendix. Observe that pyML is not equal to y if there exists x P t˘1un distinct
from y such that 1Tx “ 0 and fpxq ě fpyq. For each fixed x, the difference
fpxq ´ fpyq is equal to

@
y“l4, x“l4 ´ y“l4

D
` σ

@
W, x“l4 ´ y“l4

D

which is a Gaussian random variable with mean
@
y“l4, x“l4 ´ y“l4

D
and variance

σ2}x“l4 ´ y“l4}2F . By definition we have

@
x“l4, y“l4

D
“ 1

128

`
p1T1 ` xT yq4 ` p1T1 ´ xT yq4

˘
.

Let φptq “ 1
128

pp1 ` tq4 ` p1 ´ tq4q. Then,
@
x“l4, y“l4

D
“ n4φpxT y{nq so

@
y“l4, x“l4 ´ y“l4

D
“ ´n4

`
φp1q ´ φpxT y{nq

˘
,

}x“l4 ´ y“l4}F “ n2

b
2φp1q ´ 2φpxT y{nq.

Hence, Pr pfpxq ´ fpyq ě 0q is equal to

Pr
G„Np0,1q

ˆ
G ě n2

σ
?
2

¨
b
φp1q ´ φpxT y{nq

˙
.

This probability is maximized when x and y differs by only two indices, that
is, xT y “ n ´ 4. Indeed one can formally prove that the probability that y
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maximizes fpxq is dominated by the probability that fpyq ą fpxq for all x with
xT y “ n ´ 4. By union bound and standard Gaussian tail bounds, the latter
probability is at most

´n
2

¯2

exp

ˆ
´ n4

4σ2
¨ pφp1q ´ φp1 ´ 4{nqq

˙

which is approximately

exp

ˆ
2 logn´ n3 ¨ φ1p1q

σ2

˙
“ exp

ˆ
2 logn´ n3

4σ2

˙
,

and it is onp1q if σ2 ă n3

8 logn
as in Theorem 1.

3 Efficient recovery

Before we address the Gaussian model, let us describe an algorithm for hyper-
graph partitioning. Let H be a 4-uniform hypergraph on the vertex set V “ rns.
Let AH be the adjacency tensor of H . Then the problem can be formulated as

max
@
AH , x

“l4
D

subject to x P t˘1un,1Tx “ 0.

One approach for finding a partition is to consider the multigraph realization of
H , which appears in [28, 29] in different terminology. Let G be the multigraph
on V “ rns such that the multiplicity of edge ti, ju is the number of hyperedges
e P EpHq containing ti, ju. One may visualize it as substituting each hyperedge
by a 4-clique. Now, one may attempt to solve the reduced problem

max
@
AG, xx

T
D

subject to x P t˘1un,1Tx “ 0

which is unfortunately NP-hard in general. Instead, we consider the semidefinite
programming (SDP) relaxation

max xAG, Xy
subject to Xii “ 1 for all i P rns,

@
X,11T

D
“ 0,

X ľ 0.

When AG is generated under the graph stochastic block model, this algorithm
recovers the hidden partition down to optimum parameters. On the other hand,
it achieves recovery to nearly-optimum parameters when G is the multigraph
corresponding to the hypergraph generated by a hypergraphic stochastic block
model: there is a constant multiplicative gap between the guarantee and the
information-theoretic limit. This will be treated in a future publication.

Here we had two stages in the algorithm: (1) “truncating” the hypergraph
down to a multigraph, and (2) relaxing the optimization problem on the trun-
cated objective function.
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Now let us return to the Gaussian model T “ y“l4 ` σW. Let fpxq “@
x“l4,T

D
. Our goal is to find the maximizer of fpxq. Note that

fpxq “
ÿ

i1,¨¨¨ ,i4Prns
Ti1i2i3i4 ¨ 1

16

˜
4ź

s“1

p1 ` xisq `
4ź

s“1

p1 ´ xisq
¸

so fpxq is a polynomial of degree 4 in variables x1, . . . , xn. Let fp2qpxq be the
degree 2 truncation of fpxq, i.e.,

fp2qpxq “ 1

8

ÿ

i1,¨¨¨ ,i4Prns
Ti1i2i3i4

˜
ÿ

1ďsătď4

xisxit

¸
.

Here we have ignored the constant term of fpxq since it does not affect the
maximizer. For each ts ă tu Ď t1, 2, 3, 4u, let Qst be n by n matrix where

Qstij “
ÿ

pi1,¨¨¨ ,i4qPrns4
is“i,it“j

Ti1i2i3i4 .

Then,

fp2qpxq “ 1

8

@
Q, xxT

D

where Q “ ř
1ďsătď4Q

st. This Q is analogous to the adjacency matrix of the
multigraph constructed above. It is now natural to consider the following SDP:

max xQ,Xy
subject to Xii “ 1 for all i P rns,

@
X,11T

D
“ 0,

X ľ 0.

(1)

Theorem 2. Let ǫ ą 0 be a constant not depending on n. Let pY be a solution
of (1) and pppY ;σq be the probability that pY coincide with yyT . If σ ă p1´ ǫqσ˚

p2q
where

σ˚
p2q “

c
3

32
¨ n3{2

?
logn

“
c

3

4
¨ σ˚,

then pppY ;σq “ 1 ´ onp1q.

We present a sketch of the proof where details are deferred to the appendix.
We note that a similar idea was used in [16, 21] for the graph stochastic block
model.

We construct a dual solution of (1) which is feasible with high probability,
and certifies that yyT is the unique optimum solution for the primal (1). By
complementary slackness, such dual solution must be of the form S :“ DQ1 ´Q1

where Q1 “ diagpyqQdiagpyq and DQ1 is diagpQ11q. It remains to show that S
is positive semidefinite with high probability.
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To show that S is positive semidefinite, we claim that the second smallest
eigenvalue of ES is Θpn3q and the operator norm }S ´ ES} is Opσn3{2?

lognq
with high probability. The first part is just an easy calculation, and the second
part is application of a nonasymptotic bound on Laplacian random matrices
[21]. Hence, S is positive semidefinite with high probability if σn3{2?

logn À n3,
matching with the order of σ˚

p2q.

4 Standard Spiked Tensor Model

Montanari and Richard proposed a statistical model for tensor Principal Com-
ponent Analysis [31]. In the model we observe a random tensor T “ vb4 ` σW

where v P R
n is a vector with }v} “ ?

n (spike), W is a random 4-tensor
with i.i.d. standard Gaussian entries, and σ ě 0 is the noise parameter. They
showed a nearly-tight information-theoretic threshold for approximate recovery:
when σ " n3{2 then the recovery is information-theoretically impossible, while
if σ ! n3{2 then the MLE gives a vector v1 P R

n with |vT v1| “ p1´ onp1qqn with
high probability. Subsequently, sharp phase transitions for weak recovery, and
strong and weak detection were shown in [32].

Those information-theoretic thresholds are achieved by the MLE for which
no efficient algorithm is known. Montanari and Richard considered a simple
spectral algorithm based on tensor unfolding, which is efficient in both theory
and practice. They show that the algorithm finds a solution v1 with |vT v1| “
p1 ´ onp1qqn with high probability as long as σ “ Opnq [31]. This is somewhat
believed to be unimprovable using semidefinite programming [33, 34], or using
approximate message passing algorithms [35].

For clear comparison to the Gaussian planted bisection model, let us consider
when spike is in the hypercube t˘1un. Let y P t˘1un and σ ě 0. Given a tensor

T “ yb4 ` σW

where W is a random 4-tensor with independent, standard Gaussian entries,
we would like to recover y exactly. The MLE is given by the maximizer of
gpxq :“

@
xb4,T

D
over all vectors x P t˘1un.

Theorem 3. Let ǫ ą 0 be any constant which does not depend on n. Let

λ˚ “
?
2¨n3{2

?
logn

. When σ ą p1 ` ǫqλ˚, exact recovery is information-theoretically

impossible (i.e. the MLE fails with 1´ onp1q probability), while if σ ă p1´ ǫqλ˚

then the MLE recovers y with 1 ´ onp1q probability.

The proof is just a slight modification of the proof of Theorem 1 which ap-
pears in the appendix. Note that both λ˚ and σ˚ are in the order of n3{2{

?
logn.

The standard spiked tensor model and the Gaussian planted bisection model ex-
hibit similar behaviour when unbounded computational resources are given.
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4.1 Sum-of-Squares based algorithms

Here we briefly discuss Sum-of-Squares based relaxation algorithms. Given a
polynomial p P Rrx1, ¨ ¨ ¨ , xns, consider the problem of finding the maximum
of ppxq over x P R

n satisfying polynomial equalities q1pxq “ 0, ¨ ¨ ¨ , qmpxq “ 0.
Most hard combinatorial optimization problems can be reduced into this form,
including max-cut, k-colorability, and general constraint satisfaction problems.
The Sum-of-Squares hierarchy (SoS) is a systematic way to relax a polynomial
optimization problem to a sequence of increasingly strong convex programs,
each leading to a larger semidefinite program. See [36] for a good exposition of
the topic.

There are many different ways to formulate the SoS hierarchy [37, 38, 39, 40].
Here we choose to follow the description based on pseudo-expectation functionals
[36].

For illustration, let us recall the definition of gpxq: given a tensor T “
yb4 ` σW, we define gpxq “

@
xb4,T

D
. Here gpxq is a polynomial of degree 4,

and the corresponding maximum-likelihood estimator is the maximizer

max gpxq
subject to x2i “ 1 for all i P rns,

nÿ

i“1

xi “ 0, x P R
n.

(2)

Let µ be a probability distribution over the set tx P t˘1un : 1Tx “ 0u. We
can rewrite (2) as maxµ Ex„µgpxq over such distributions. A linear functional
rE on Rrxs is called pseudoexpectation of degree 2ℓ if it satisfies rE 1 “ 1 and
rE qpxq2 ě 0 for any q P Rrxs of degree at most ℓ. We note that any expectation
Eµ is a pseudoexpectation, but the converse is not true. So (2) can be relaxed
to

max rE gpxq
subject to rE is a pseudoexpectation of degree 2ℓ,

rE is zero on I

(3)

where I Ď Rrxs is the ideal generated by
řn
i“1 xi and tx2i ´ 1uiPrns.

The space of pseudoexpectations is a convex set which can be described as
an affine section of the semidefinite cone. As ℓ increases, this space gets smaller
and in this particular case, it coincides with the set of true expectations when
ℓ “ n.

4.2 SoS on spiked tensor models

We would like to apply the SoS algorithm to the spiked tensor model. In par-
ticular, let us consider the degree 4 SoS relaxation of the maximum-likelihood
problem. We note that for the spike tensor model with the spherical prior, it
is known that neither algorithms using tensor unfolding [31], the degree 4 SoS
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relaxation of the MLE [33], nor approximate message passing [35] can achieve
the statistical threshold, therefore the statistical-computational gap is believed
to be present. Moreover, higher degree SoS relaxations were considered in [34]:
for any small ǫ ě 0, degree at least nΩpǫq is required in order to achieve recovery
when σ « n1`ǫ.

We show an analogous gap of the degree 4 SoS relaxation for t˘1un and 1Tx

prior.

Theorem 4. Let T “ yb4 ` σW be as defined above. Let gpxq “
@
xb4,T

D
. If

σ À n

logΘp1q n
, then the degree 4 SoS relaxation of maxx gpxq gives the solution

y, i.e., rEgpxq is maximized when rE is the expectation operator of the uniform
distribution on ty,´yu.

On the other hand, if σ Á n logΘp1q n then there exists a pseudoexpectation
rE of degree 4 on the hypercube t˘1un satisfying 1Tx “ 0 such that

gpyq ă max
rE

rE gpxq,

so y is not recovered via the degree 4 SoS relaxation.

The proof of Theorem 4 is very similar to one that appears in [33, 34]. In
the proof it is crucial to observe that

n3

logΘp1q n
À max

rE:degree 4
pseudo-exp.

rE
@
W, xb4

D
À n3 logΘp1q n.

The upper bound can be shown via Cauchy-Schwarz inequality for pseudoex-
pectations and the lower bound, considerably more involved, can be shown by
constructing a pseudoexpectation rE which is highly correlated to the entries of
W. We refer the readers to the appendix for details.

4.3 Comparison with the planted bisection model

Here we summarize the statistical-computational thresholds of two models, the
planted bisection model and the spiked tensor model.

• For the planted bisection model, there is a constant c ą 0 not depend-

ing on n such that for any ǫ ą 0 if σ ă pc ´ ǫq n3{2
?
logn

then recovery is

information-theoretically possible, and if σ ą pc ` ǫq n3{2
?
logn

then the re-

covery is impossible via any algorithm. Moreover, there is an efficient
algorithm and a constant c1 ă c such that the algorithm recovers y with

high probability when σ ă c1 n3{2
?
logn

.

• For the spiked tensor model, there is a constant C ą 0 not depending

on n such that for any ǫ ą 0 if σ ă pC ´ ǫq n3{2
?
logn

then the recovery

is information-theoretically possible, and if σ ą pC ` ǫq n3{2
?
logn

then the
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recovery is impossible. In contrast to the planted bisection model, all effi-
cient algorithms known so far only successfully recover y in the asymptotic
regime of σ À n.

We note that the efficient, nearly-optimal recovery is achieved for the planted
bisection model by “forgetting” higher moments of the data. On the other
hand, such approach is unsuitable for the spiked tensor model since the signal
yb4 does not seem to be approximable by a non-trivial low-degree polynomial.
This might shed light into an interesting phenomenon in average complexity, as
in this case it seems to be crucial that second moments (or pairwise relations)
carry information.

All information-theoretic phase transition exhibited in the paper readily gen-
eralize to k-tensor models and this will be discussed in a future publication. In
future work we will also investigate the performance of higher degree SoS algo-
rithms for the planted bisection model.
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A Proof of Theorem 1

In this section, we prove Theorem 1 for general k.

Theorem 5 (Theorem 1, general k). Let k be a positive integer with k ě 2. Let
y P t˘1un with 1T y “ 0 and T be a k-tensor defined as T “ y“lk ` σW where
W is a random k-tensor with i.i.d. standard Gaussian entries. Let pyML be the
maximum-likelihood estimator of y, i.e.,

pyML “ argmax
xPt˘1un:1Tx

@
T, x“lkD

.

For any positive ǫ,

(i) pyML is equal to y with probability 1 ´ onp1q if σ ă p1 ´ ǫqσ˚, and

(ii) pyML is not equal to y with probability 1 ´ onp1q if σ ą p1 ` ǫqσ˚

where

σ˚ “
c

k

2k
¨ n

k´1

2?
2 logn

.

First we prove the following lemma.

Lemma 6. Let φ be a function defined as φptq “ 1
22k´1

`
p1 ´ tqk ` p1 ` tqk

˘
.

Then,
@
x“lk, y“lkD

“ nkφ

ˆ
xT y

n

˙

for any x, y P t˘1un such that 1Tx “ 1T y “ 0.

Proof. Note that x“lk “ 1
2k

`
p1 ` xqbk ` p1 ´ xqbk˘

. Hence,

@
x“lk, y“lkD

“ 1

22k

ÿ

s,tPt˘1u
x1 ` sx,1 ` tyyk .

Since 1Tx “ 1T y “ 0, we have

@
x“lk, y“lkD

“ 1

22k
`
2p1T1 ` xT yqk ` 2p1T1 ´ xT yqk

˘

“ nk

22k´1

˜ˆ
1 ` xT y

n

˙k

`
ˆ
1 ´ xT y

n

˙k
¸

“ nkφ

ˆ
xT y

n

˙

as desired.

Proof of Theorem 5. Let

fpxq “
@
x“lk,T

D
“

@
x“lk, y“lk ` σW

D
.
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By definition, pyML is not equal to y if there exists x P t˘1un distinct from y or
´y such that 1Tx “ 0 and fpxq is greater than or equal to fpyq. For each fixed
x P t˘1un with 1Tx “ 0, note that

fpxq ´ fpyq “
@
y“lk, x“lk ´ y“lkD

` σ
@
W, x“lk ´ y“lkD

is a Gaussian random variable with mean ´nkpφp1q ´ φpxT y{nq and variance

σ2}x“lk ´ y“lk}2F “ 2σ2nkpφp1q ´ φpxT y{nqq.

Hence, Pr pfpxq ´ fpyq ě 0q is equal to

Pr
G„Np0,1q

˜
G ě nk{2

σ
?
2

¨
d
φp1q ´ φ

ˆ
xT y

n

˙¸
.

Let σ˚ be

σ˚ “
a
φ1p1q ¨ n

k´1

2?
2 logn

.

Since φ1p1q “ k
2k
, it matches with the definition in the statement of the Theorem.

Upper bound. Let us prove that pppyML;σq “ 1 ´ onp1q if σ ă p1 ´ ǫqσ˚. By
union bound, we have

1 ´ pppyML;σq ď
ÿ

xPt˘1unzty,´yu
1
Tx“0

Pr pfpxq ´ fpyq ě 0q

“
ÿ

xPt˘1unzty,´yu
1
Tx“0

Pr
G„Np0,1q

˜
G ě nk{2

σ
?
2

¨
d
φp1q ´ φ

ˆ
xT y

n

˙¸

ď
ÿ

xPt˘1unzty,´yu
1
Tx“0

exp

ˆ
´ nk

4σ2

ˆ
φp1q ´ φ

ˆ
xT y

n

˙˙˙
.

The last inequality follows from a standard Gaussian tail bound PrGpG ą tq ď
expp´t2{2q.

A simple counting argument shows that the number of x P t˘1un with

1Tx “ 0 and xT y “ n ´ 4r is exactly
`
n{2
r

˘2
for r P t0, 1, ¨ ¨ ¨ , n{2u. Moreover,

for any t ě 0 we have φptq “ φp´tq. Hence,

1 ´ pppyML;σq ď 2

rn{4sÿ

r“1

ˆ
n{2
r

˙2

exp

ˆ
´ nk

4σ2

ˆ
φp1q ´ φ

ˆ
1 ´ 4r

n

˙˙˙
.

Note that φp1q ´φp1´xq ě φ1p1qx´Opx2q. Hence, there exists an absolute
constant C ą 0 such that φp1q ´ φp1 ´ 4r{nq is at least p1 ´ ǫqφ1p1q ¨ 4r{n if
r ă Cn and is at least Ωp1q otherwise. Since σ ă p1 ´ ǫqσ˚ we have

´ nk

4σ2

ˆ
φp1q ´ φ

ˆ
1 ´ 4r

n

˙˙
ď ´2r logn

1 ´ ǫ
ď ´2p1 ` ǫqr logn

15



if r ă Cn, and ´ nk

4σ2

`
φp1q ´ φ

`
1 ´ 4r

n

˘˘
“ ´Ωpn lognq otherwise. It implies

that

1 ´ pppyML;σq ď 2

˜
Cnÿ

r“1

expp´2ǫr lognq ` n expp´Ωpn lognqq
¸

À n´2ǫ ` n expp´Ωpn lognqq “ onp1q.

Lower bound. Now we prove that pppyML;σq “ onp1q if σ ą p1 ´ ǫqσ˚. Let
A “ ti P rns : yi “ `1u and B “ rnszA. For each a P A and b P B, let Eab be
the event that fpypabqq is greater than fpyq where ypabq is the ˘1-vector obtained
by flipping the signs of ya and yb. For any HA Ď A and HB Ď B, note that

1 ´ pppyML;σq ě Pr

˜
ď

aPHA,bPHB

Eab

¸

“ Pr

ˆ
max

aPHA,bPHB

´
fpypabqq ´ fpyq

¯
ą 0

˙

since any of the event Eab implies that pyML ‰ y. Recall that

fpypabqq ´ fpyq “ ´nk
ˆ
φp1q ´ φ

ˆ
1 ´ 4

n

˙˙
` σ

A
W, pypabqq“lk ´ y“lk

E
.

So, 1 ´ pppyML;σq is at least

Pr

¨
˝max
aPHA

bPHB

A
W, pypabqq“lk ´ y“lk

E
ą nk

σ

ˆ
φp1q ´ φ

ˆ
1 ´ 4

n

˙˙˛
‚.

Fix HA Ď A and HB Ď B with |HA| “ |HB| “ h where h “ n
log2 n

. Let

pX ,Y,Zq be the partition of rnsk defined as

X “ tα P rnsk : α´1pHA YHBq “ Hu,
Y “ tα P rnsk : |α´1pHA YHBq| “ 1u,
Z “ tα P rnsk : |α´1pHA YHBq| ě 2u.

Let WX , WY and WZ be the k-tensor supported on X , Y, Z respectively. For
each a P HA and b P HB, let

Xab “
A
WX , pypabqq“lk ´ y“lk

E
,

Yab “
A
WY , pypabqq“lk ´ y“lk

E
,

Zab “
A
WZ , pypabqq“lk ´ y“lk

E
.

Claim. The followings are true:
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(i) Xab “ 0 for any a P HA and b P HB .

(ii) For fixed a P HA and b P HB, the variables Yab and Zab are independent.

(iii) Each Yab can be decomposed into Ya ` Yb where tYauaPHA
Y tYbubPHB

is a
collection of i.i.d. Gaussian random variables.

Proof of Claim. First note that
`
pypabqq“lk ´ y“lk˘

α
is non-zero if and only if

|α´1paq| and |α´1pbq| have the same parity. This implies (i) since when α P X

we have |α´1paq| “ |α´1pbq| “ 0. (ii) holds because Y X Z “ 0.
For s P HA YHB, let Ys be the subset of Y such that

Ys “ tα P Y : |α´1psq| “ 1u.

By definition, Ys are disjoint and Y “ Ť
sPHAYHB

Ys. Hence,

Yab “
ÿ

sPHAYHB

A
WYs

, pypabqq“lk ´ y“lk
E
.

Moreover,
@
WYs

, pypabqq“lk ´ y“lkD
is zero when s R ta, bu. So,

Yab “
ÿ

αPYaYYb

Wαppypabqq“lk ´ y“lkqα.

Note that for α P Ya

ppypabqq“lk ´ y“lkqα “

$
’&
’%

`1 if |α´1pAzHAq| “ 0

´1 if |α´1pBzHBq| “ 0

0 otherwise.

So,
ÿ

αPYa

Wαppypabqq“lk ´ y“lkqα “
ÿ

αPYa

|α´1pAzHAq|“0

Wα ´
ÿ

αPYa

|α´1pBzHBq|“0

Wα

which does not depend on the choice of b. Let

Ya “
ÿ

αPYa

|α´1pAzHAq|“0

Wα ´
ÿ

αPYa

|α´1pBzHBq|“0

Wα

and Yb respectively. Then Yab “ Ya ` Yb and tYsusPHAYHB
is a collection of

independent Gaussian random variables. Moreover, the variance of Ys is equal

to 2k
`
n
2

´ h
˘k´1

, independent of the choice of s.

By the claim, we have
@
W, pypabqq“lk ´ y“lkD

“ Ya ` Yb ` Zab. Moreover,

max
aPHA

bPHB

pYa ` Yb ` Zabq ě max
aPHA

bPHB

pYa ` Ybq ´ max
aPHA

bPHB

p´Zabq

“ max
aPHA

Ya ` max
bPHB

Yb ´ max
aPHA

bPHB

p´Zabq.
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We need the following tail bound on the maximum of Gaussian random
variables.

Lemma 7. Let G1, . . . , GN be (not necessarily independent) Gaussian random
variables with variance 1. Let ǫ ą 0 be a constant which does not depend on N .
Then,

Pr

ˆ
max

i“1,¨¨¨ ,N
Gi ą p1 ` ǫq

a
2 logN

˙
ď N´ǫ.

On the other hand,

Pr

ˆ
max

i“1,¨¨¨ ,N
Gi ă p1 ´ ǫq

a
2 logN

˙
ď expp´NΩpǫqq

if Gi’s are independent.

By the Lemma, we have

max
aPHA

Ya ě p1 ´ 0.01ǫq
c
2 logh ¨ 2k

´n
2

´ h
¯k´1

max
bPHA

Yb ě p1 ´ 0.01ǫq
c
2 logh ¨ 2k

´n
2

´ h
¯k´1

max
aPHA

bPHB

Zab À
a
log h ¨ maxVarpZabq

with probability 1 ´ onp1q. Note that

VarpZabq “ }pypabqq“lk ´ y“lk}2F ´ pVarpYAq ` VarpYBqq

“ 2nk
ˆ
φp1q ´ φ

ˆ
1 ´ 4

n

˙˙
´ 4k

´n
2

´ h
¯k´1

ď 8nk´1

ˆ
φ1p1q ´ p1 ´ op1qq k

2k

˙

which is opnk´1q. Hence,

max
aPHA

bPHB

A
W, pypabqq“lk ´ y“lk

E
ě 2p1 ´ 0.01ǫ´ op1qq

c
2 logn ¨ 2k

´n
2

´ h
¯k´1

ě p1 ´ 0.01ǫ´ op1qq
c
knk´1 logn

2k´5
.

On the other hand, since σ ą p1 ` ǫqσ˚ we have

nk

σ

ˆ
φp1q ´ φ

ˆ
1 ´ 4

n

˙˙
ă nk

1 ` ǫ
¨ 4φ

1p1q
n

¨
d

2 logn

nk´1φ1p1q

ă 1

1 ` ǫ

c
nk´1 logn

2k´5

18



which is less than
max
aPHA

bPHB

A
W, pypabqq“lk ´ y“lk

E

with probability 1 ´ onp1q. Thus, 1 ´ pppyMLq ě 1 ´ onp1q.

B Proof of Theorem 2

In this section, we prove Theorem 2 for general k.
Let k be a positive integer with k ą 2. Let y P t˘1un with 1T y “ 0 and T

be a k-tensor defined as T “ y“lk ` σW where W is a random k-tensor with
i.i.d. standard Gaussian entries. Let fpxq “

@
x“lk,T

D
and let fp2qpxq be the

degree 2 truncation of fpxq, i.e.,

fp2qpxq “
ÿ

αPrnsk
Tα

˜
1

2k´1

ÿ

1ďsătďk
xαpsqxαptq

¸
.

For each ts ă tu Ď rks, let Qst be n by n matrix where

Qstij “ 1

2

¨
˚̊
˝

ÿ

αPrnsk
αpsq“i,αptq“j

Tα `
ÿ

αPrnsk
αpsq“j,αptq“i

Tα

˛
‹‹‚

Then,

fp2qpxq “ 1

2k´1

@
Q, xxT

D

whereQ “ ř
1ďsătďk Q

st. We consider the following SDP relaxation for maxx fp2qpxq:

max xQ,Xy
subject to Xii “ 1 for all i P rns,

@
X,11T

D
“ 0,

X ľ 0.

(4)

Theorem 8 (Theorem 2, general k). Let ǫ ą 0 be a constant not depending on

n. Let pY be a solution of (4) and pppY ;σq be the probability that pY coincide with
yyT . Let σp2q be

σp2q “
c
kpk ´ 1q
22k´1

¨ n
k´1

2?
2 logn

If σ ă p1 ´ ǫqσp2q, then pppY ;σq “ 1 ´ onp1q.

Proof. First note that Qst “ nk´2

2k´1 yy
T ` σW st where

W st
ij “

ÿ

αPrnsk
αpsq“i,αptq“j

Wα.

19



So we have

Q “ nk´2 ¨ kpk ´ 1q
2k

yyT ` σĎW

where ĎW “ ř
1ďsătďkW

st.
The dual program of (4) is

max trpDq
subject to D ` λ11T ´Q ľ 0,

D is diagonal.

(5)

By complementary slackness, yyT is the unique optimum solution of (4) if
there exists a dual feasible solution pD,λq such that

@
D ` λ11T ´Q, yyT

D
“ 0

and the second smallest eigenvalue of D ` λ11T ´ Q is greater than zero. For
brevity, let S “ D ` λ11T ´ Q. Since S is positive semidefinite, we must have
Sy “ 0, that is,

Dii “
nÿ

j“1

Qijyiyj

for any i P rns.
For a symmetric matrix M , we define the Laplacian LpMq of M as LpMq “

diagpM1q ´M (See [21]). Using this language, we can express S as

S “ diagpyq
`
LpdiagpyqQdiagpyqq ` λyyT

˘
diagpyq.

Note that

diagpyqQdiagpyq “ nk´2 ¨ kpk ´ 1q
2k

11T ` σdiagpyqĎWdiagpyq.

Hence, the Laplacian of diagpyqQdiagpyq is equal to

nk´1 ¨ kpk ´ 1q
2k

ˆ
Inˆn ´ 1

n
11T

˙

looooooooooooooooooooomooooooooooooooooooooon
deterministic part

` σL
`
diagpyqĎWdiagpyq

˘
looooooooooooomooooooooooooon

noisy part

.

This matrix is positive semidefinite if

σ
››LpdiagpyqĎWdiagpyq

›› ď nk´1 ¨ kpk ´ 1q
2k

.

Moreover, if the inequality is strict then the second smallest eigenvalue of S is
greater than zero.

By triangle inequality, we have

››LpdiagpyqĎWdiagpyqq
›› ď max

iPrns

nÿ

j“1

ĎWijyiyj `
ÿ

1ďsătďk
}diagpyqW stdiagpyq}

ď max
iPrns

nÿ

j“1

ĎWijyiyj `
ˆ
k

2

˙?
2nk´1.
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The second inequality holds with high probability since W st has independent
Gaussian entries. Since

řn
j“1

ĎWijyiyj is Gaussian and centered, with high prob-
ability we have that

max
iPrns

nÿ

j“1

ĎWijyiyj ď p1 ` 0.1ǫq
a
2 logn ¨

˜
max
iPrns

Var

˜
nÿ

j“1

ĎWijyiyj

¸¸1{2

ď p1 ` 0.1ǫq
a
2 logn ¨

dˆ
k

2

˙
nk´1.

Hence,

››LpdiagpyqĎWdiagpyqq
›› ď p1 ` 0.1ǫ` op1qq

d
2

ˆ
k

2

˙
nk´1 logn

with high probability. So, S ľ 0 as long as

σp1 ` 0.1ǫ` op1qq
d
2

ˆ
k

2

˙
nk´1 log n ă nk´1 ¨ kpk ´ 1q

2k

or simply

p1 ` 0.1ǫ` op1qqσ ă
c
kpk ´ 1q
22k´1

¨ n
k´1

2?
2 logn

“ σp2q.

So, when σ ă p1 ´ ǫqσp2q with high probability pY “ yyT .

C Pseudo-expectation and its moment matrix

C.1 Notation and preliminaries

Let V be the space of real-valued functions on the n-dimensional hypercube
t´1,`1un. For each S Ď rns, let xS “

ś
iPS xi. Note that txS : S Ď rnsu is

a basis of V . Hence, any function f : t˘1un Ñ R can be written as a unique
linear combination of multilinear monomials, say

fpxq “
ÿ

SĎrns
fSxS .

The degree of f is defined as the maximum size of S Ă rns such that fS is
nonzero.

Let ℓ be a positive integer. Let us denote the collection of subsets of rns of
size at most ℓ by

`rns
ďℓ

˘
, and the size

ˇ̌
ˇ
`rns

ďℓ
˘ˇ̌
ˇ of it by

`
n

ďℓ
˘
.

LetM be a square symmetric matrix of size
`
n

ďℓ
˘
. The rows and the columns

of M are indexed by the elements in
`rns

ďℓ
˘
. To avoid confusion, we use M rS, T s

to denote the entry of M at row S and column T .
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We say M is SoS-symmetric if M rS, T s “ M rS1, T 1s whenever xSxT “
xS1xT 1 on the hypercube. Since x P t˘1un, it means that S‘T “ S1 ‘T 1 where
S ‘ T denotes the symmetric difference of S and T . Given f P V with degree
at most 2ℓ, we say M represents f if

fU “
ÿ

S,TPprns
ďℓq:

S‘T“U

M rS, T s.

We use Mf to denote the unique SoS-symmetric matrix representing f .
Let L be a linear functional on V . By linearity, L is determined by pLrxSs :

S Ď rnsq. Let XL be the SoS-symmetric matrix of size
`
n

ďℓ
˘
with entries

XrS, T s “ LrxS‘T s. We call XL the moment matrix of L of degree 2ℓ.
By definition, we have

Lrf s “
ÿ

UPp rns
ď2ℓq

fULrxU s

“
ÿ

S,TPprns
ďℓq

Mf rS, T sXLrS, T s

“ xXL,Mf y

for any f of degree at most 2ℓ.

C.2 A quick introduction to pseudo-expectations

For our purpose, we only work on pseudo-expectations defined on the hypercube
t˘1un. See [36] for general definition.

Let ℓ be a positive integer and d “ 2ℓ. A pseudo-expectation of degree d on
t˘1un is a linear functional rE on the space V of functions on the hypercube
such that

(i) rEr1s “ 1,

(ii) rErq2s ě 0 for any q P V of degree at most ℓ “ d{2.

We say rE satisfies the system of equalities tpipxq “ 0umi“1 if rErf s “ 0 for any
f P V of degree at most d which can be written as

f “ p1q1 ` p2q2 ` ¨ ¨ ¨ ` pmqm

for some q1, q2, . . . , qm P V .
We note the following facts:

• If rE is a pseudo-expectation of degree d, then it is also a pseudo-expectation
of any degree smaller than d.

• If rE is a pseudo-expectation of degree 2n, then rE defines a valid probability
distribution supported on P :“ tx P t˘1un : pipxq “ 0 for all i P rmsu.
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The second fact implies that maximizing fpxq on P is equivalent to maxi-

mizing rErf s over all pseudo-expectations of degree 2n satisfying tpipxq “ 0umi“1.
Now, let d be an even integer such that

d ą maxtdegpfq, degpp1q, ¨ ¨ ¨ , degppmqu.

We relax the original problem to

max rErf s
subject to rE is degree-d pseudo-expectation on t˘1un

satisfying tpipxq “ 0umi“1.

(SoSd)

We note that the value of (SoSd) decreases as d grows, and it reaches the
optimum value maxxPP p0pxq of the original problem at d “ 2n.

C.3 Matrix point of view

Let rE be a pseudo-expectation of degree d “ 2ℓ for some positive integer ℓ.
Suppose that rE satisfies the system tpipxq “ 0umi“1. Let XrE be the moment

matrix of rE of degree 2ℓ, hence the size of XrE is
`
n

ďℓ
˘
.

Conditions for rE being pseudo-expectation translate as the following condi-
tions for XrE:

(i) XH,H “ 1.

(ii) X is positive semidefinite.

Moreover, rE satisfies tpipxq “ 0umi“1 if and only if

(iii) Let U be the space of functions in V of degree at most d which can be
written as

řm
i“1 piqi for some qi P V . Then,

@
Mf , XrE

D
“ 0 for any f P U .

Hence, (SoSd) can be written as the following semidefinite program

max xMf , Xy
subject to XH,H “ 1

xMq, Xy “ 0 for all q P B

X ľ 0,

(SDPd)

where B is any finite subset of U which spans U , for example,

B “ txSpipxq : i P rms, |S| ď d ´ degppiqu.

D Proof of Theorem 4

Let y P t˘1un such that 1T y “ 0, σ ą 0, and W P pRnqb4 be 4-tensor with
independent, standard Gaussian entries. Given a tensor T “ yb4 ` σW, we
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would like to recover the planted solution y from T. Let fpxq “
@
T, xb4

D
. The

maximum-likelihood estimator is given by the optimum solution of

max
xPt˘1un:1Tx“0

fpxq.

Consider the SoS relaxation of degree 4

max rErf s
subject to rE is a pseudo-expectation of degree 4 on t˘1un

satisfying
nÿ

i“1

xi “ 0.

Let EUpty,´yuq be the expectation operator of the uniform distribution on ty,´yu,
i.e., EUpty,´yuqrxSs “ yS if |S| is even, and EUpty,´yuqrxSs “ 0 if |S| is odd.

If EUpty,´yuq is the optimal solution of the relaxation, then we can recover y
from it up to a global sign flip. First we give an upper bound on σ to achieve
it with high probability.

Theorem 9 (Part one of Theorem 4). Let T “ yb4 ` σW and fpxq “@
T, xb4

D
be as defined above. If σ À n?

log n
, then the relaxation maxrE

rErf s
over pseudo-expectation rE of degree 4 satisfying

řn
i“1 xi “ 0 is maximized when

rE “ EUpty,´yuq with probability 1 ´ onp1q.

We can reduce Theorem 9 to the matrix version of the problem via flattening
[31]. Given a 4-tensor T, the canonical flattening of T is defined as n2 ˆ n2

matrix T with entries Tpi,jq,pk,ℓq “ Tijkℓ . Then, T “ ryryT ` σW where ry is

the vectorization of yyT , and W is the flattening of W. Note that this is an
instance of Z2-synchronization model with Gaussian noises. It follows that with
high probability the exact recovery is possible when σ À n?

logn
(see Proposition

2.3 in [21]).
We complement the result by providing a lower bound on σ which is off by

polylog factor.

Theorem 10 (Part two of Theorem 4). Let c ą 0 be a small constant. If

σ ě nplognq1{2`c, then there exists a pseudo-expectation rE of degree 4 on the

hypercube t˘1un satisfying
řn
i“1 xi “ 0 such that rErf s ą fpyq with probability

1 ´ onp1q.

D.1 Proof of Theorem 10

Let gpxq be the noise part of fpxq, i.e., gpxq “
@
W, xb4

D
. Let rE be a pseudo-

expectation of degree 4 on the hypercube which satisfies the equality
řn
i“1 xi “

0. We have rErf s ě σrErgs since rErpxT yq4s ě 0.
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Lemma 11. Let gpxq be the polynomial as defined above. Then, there exists a
pseudo-expectation of degree 4 on the hypercube satisfying 1Tx “ 0 such that

rErgs Á n3

plognq1{2`op1q .

We prove Theorem 10 using the lemma.

Proof of Theorem 10. Note that gpyq “
@
W, yb4

D
is a Gaussian random vari-

able with variance n4. So, gpyq ď n2 log n with probability 1 ´ op1q. Let rE
be the pseudo-expectation satisfying the conditions in the lemma. Then, with
probability 1 ´ op1q we have

rErf s ´ fpyq “ ´pn4 ´ rErpyTxq4sq ` σprErgs ´ gpyqq

ě ´n4 ` σ

ˆ
n3

logn
` n2 logn

˙

ě ´n4 ` p1 ´ op1qq σn3

plognq1{2`op1q .

Since σ ą nplognq1{2`c for some fixed constant c ą 0, we have rErf s ´ fpyq ą 0
as desired.

In the remainder of the section, we prove Lemma 11.

D.1.1 Outline

We note that our method shares a similar idea which appears in [33] and [34].
We are given a random polynomial gpxq “

@
W, xb4

D
where W has indepen-

dent standard Gaussian entries. We would like to construct rE “ rEW which has
large correlation with W. If we simply let

rErxi1xi2xi3xi4 s “ 1

24

ÿ

πPS4

Wiπp1q,iπp2q,iπp3q,iπp4q

for ti1 ă i2 ă i3 ă i4u Ď rns and rErxT s be zero if |T | ď 3, then

rErgs “ 1

24

ÿ

1ďi1ăi2ăi3ăi4ďn

˜
ÿ

πPS4

Wiπp1q,iπp2q,iπp3q,iπp4q

¸2

so the expectation of rErgs over W would be equal to
`
n
4

˘
« n4

24
. However,

in this case rE does not satisfies the equality 1Tx “ 0 nor the conditions for
pseudo-expectations.

To overcome this, we first project the rE constructed above to the space of
linear functionals which satisfy the equality constraints (x2i “ 1 and 1Tx “ 0).
Then, we take a convex combination of the projection and a pseudo-expectation
to control the spectrum of the functional. The details are following:
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(1) (Removing degeneracy) We establish the one-to-one correspondence be-
tween the collection of linear functionals on n-variate, even multilinear
polynomials of degree at most 4 and the collection of linear functionals
on pn ´ 1q-variate multilinear polynomials of degree at most 4 by posing
xn “ 1. This correspondence preserves positivity.

(2) (Description of equality constraints) Let ψ be a linear functional on pn´1q-
variate multilinear polynomials of degree at most 4. We may think ψ as

a vector in R
pn´1

ď4 q. Then, the condition that ψ satisfies
řn´1

i“1 xi ` 1 “ 0
can be written as Aψ “ 0 for some matrix A.

(3) (Projection) Let w P R
pn´1

ď4 q be the coefficient vector of gpxq. Let Π be the
projection matrix to the space tx : Ax “ 0u. In other words,

Π “ Id ´AT pAAT q:A

where Id is the identity matrix of size
`
n´1

ď4

˘
and p¨q: denotes the pseudo-

inverse. Let e be the first column of Π and ψ1 “ Πw
eTw

. Then pψ1qH “ 1
and Aψ1 “ 0 by definition.

(4) (Convex combination) Let ψ0 “ e
eT e

. We note that ψ0 corresponds to the
expectation operator of uniform distribution on tx P t˘1un : 1Tx “ 0u.
We will construct ψ by

ψ “ p1 ´ ǫqψ0 ` ǫψ1

with an appropriate constant ǫ. Equivalently,

ψ “ ψ0 ` ǫ

eTw
¨
ˆ
Π ´ eeT

eT e

˙
w.

(5) (Spectrum analysis) We bound the spectrum of the functional
´
Π ´ eeT

eT e

¯
w

to decide the size of ǫ for ψ being positive semidefinite.

D.1.2 Removing degeneracy

Recall that
gpxq “

ÿ

i,j,k,lPrns
Wijklxixjxkxℓ.

Observe that g is even, i.e., gpxq “ gp´xq for any x P t˘1un. To maximize such
an even function, we claim that we may only consider the pseudo-expectations
such that whose odd moments are zero.

Proposition 12. Let rE be a pseudo-expectation of degree 4 on hypercube sat-
isfying

řn
i“1 xi “ 0. Let p be a degree 4 multilinear polynomial which is even.

Then, there exists a pseudo-expectation rE1 of degree 4 such that rErps “ rE1rps
and rE1rxSs “ 0 for any S Ď rns of odd size.
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Proof. Let rE be a pseudo-expectation of degree 4 on hypercube satisfying
řn
i“1 xi “

0. Let us define a linear functional rE0 on the space of multilinear polynomials
of degree at most 4 so that rE0rxSs “ p´1q|S|rErxSs for any S P

`rns
ď4

˘
. Then, for

any multilinear polynomial q of degree at most 2, we have

rE0rqpxq2s “ rErqp´xq2s ě 0.

Also, rE0 satisfies rE0r1s “ 1 and

rE0

«˜
nÿ

i“1

xi

¸
qpxq

ff
“ ´rE

«˜
nÿ

i“1

xi

¸
qp´xq

ff
“ 0

for any q of degree 3. Thus, rE0 is a valid pseudo-expectation of degree 4 satis-
fying

řn
i“1 xi “ 0.

Let rE1 “ 1
2

prE` rE0q. This is again a valid pseudo-expectation, since the space

of pseudo-expectations is convex. We have rE1rppxqs “ rErppxqs “ rE0rppxqs since
p is even, and rE1rxSs “ p1 ` p´1q|S|qrErxSs “ 0 for any S of odd size.

Let E be the space of all pseudo-expectations of degree 4 on n-dimensional
hypercube with zero odd moments. Let E 1 be the space of all pseudo-expectations
of degree 4 on pn´1q-dimensional hypercube. We claim that there is a bijection
between two spaces.

Proposition 13. Let ψ P E. Let us define a linear functional ψ1 on the space
of pn ´ 1q-variate multilinear polynomials of degree at most 4 so that for any
T Ď rn´ 1s with |T | ď 4

ψ1rxT s “
#
ψrxTYtnus if |T | is odd

ψrxT s otherwise.

Then, ψ ÞÑ ψ1 is a bijective mapping from E to E 1.

Proof. We say linear functional ψ on the space of polynomials of degree at most
2ℓ is positive semidefinite if ψrq2s ě 0 for any q of degree ℓ.

Note that the mapping ψ1 ÞÑ ψ where ψrxSs “ ψ1rxSztnus for any S Ď rns
of even size is the inverse of ψ ÞÑ ψ1. Hence, it is sufficient to prove that ψ is
positive semidefinite if and only if ψ1 is positive semidefinite.
(ñ) Let q be an n-variate polynomial of degree at most 2. Let q0 and q1 be
polynomials in x1, ¨ ¨ ¨ , xn´1 such that

qpx1, ¨ ¨ ¨ , xnq “ q0px1, ¨ ¨ ¨ , xn´1q ` xnq1px1, ¨ ¨ ¨ , xn´1q.

We get ψ1rq2s “ ψ1rpq0 ` xnq1q2s “ ψ1rpq20 ` q21q ` 2xnq0q1s. For i “ 1, 2, let qi0
and qi1 be the even part and the odd part of qi, respectively. Then we have

ψ1rq2s “ ψ1rpq200 ` q201 ` q210 ` q211q ` 2xnpq00q11 ` q01q10qs
“ ψrpq200 ` q201 ` q210 ` q211q ` 2pq00q11 ` q01q10qs
“ ψrpq00 ` q11q2 ` pq10 ` q01q2s ě 0.

27



The first equality follows from that ψ1rqs “ 0 for odd q. Hence, ψ1 is positive
semidefinite.
(ð) Let q be an pn ´ 1q-variate polynomial of degree at most 2. Let q0 and q1
be the even part and the odd part of q, respectively. Then,

ψrq2s “ ψrpq20 ` q21q ` 2q0q1s.

Note that q20 ` q21 is even and q0q1 is odd. So,

ψrq2s “ ψ1rpq20 ` q21q ` 2xnq0q1s “ ψ1rpq0 ` xnq1q2s ě 0.

Hence ψ is positive semidefinite.

In addition to the proposition, we note that ψ satisfies
řn
i“1 xi “ 0 if and

only if ψ1 satisfies 1`řn´1

i“1 xi “ 0. Hence, maximizing rErgs over rE P E satisfyingřn
i“1 xi “ 0 is equivalent to

max
ψ1PE 1

ψ1rg1s subject to ψ1 satisfies 1 `
n´1ÿ

i“1

xi “ 0,

where g1px1, ¨ ¨ ¨ , xn´1q “ gpx1, ¨ ¨ ¨ , xn´1, 1q.

D.1.3 Matrix expression of linear constraints

Let F be the set of linear functional on the space of pn´ 1q-variate multilinear
polynomials of degree at most 4. We often regard a functional ψ P F as a

`
n´1
ď4

˘

dimensional vector with entries ψS “ ψrxSs where S is a subset of rn´1s of size
at most 4. The space E 1 of pseudo-expectations of degree 4 (on pn ´ 1q-variate
multilinear polynomials) is a convex subset of F .

Observe that ψ P F satisfies 1 `
řn´1

i“1 xi “ 0 if and only if

ψ

«˜
1 `

n´1ÿ

i“1

xi

¸
xS

ff
“ 0

for any S Ď rn´ 1s with |S| ď 3.
Let s, t and u be integers such that 0 ď s, t ď 4 and 0 ď u ď minps, tq. Let

Mu
s,t be the matrix of size

`
n´1
ď4

˘
such that

pMu
s,tqS,T “

#
1 if |S| “ s, |T | “ t, and |S X T | “ u

0 otherwise

for S, T P
`rn´1s

ď4

˘
. Then, the condition that ψ P F satisfying 1 ` řn´1

i“1 xi “ 0
can be written as Aψ “ 0 where

A “ M0
0,0 `M0

0,1 `
3ÿ

s“1

pM s´1
s,s´1 `M s

s,s `M s
s,s`1q.
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D.1.4 Algebra generated by Mu
s,t

Let m be a positive integer greater than 8. For nonnegative integers s, t, u, let
Mu
s,t be the

`
m
ď4

˘
ˆ

`
m
ď4

˘
matrix with

pMu
s,tqS,T “

#
1 if |S| “ s, |T | “ t, and |S X T | “ u

0 otherwise,

for S, T Ď rms with |S|, |T | ď 4. Let A be the algebra of matrices

ÿ

0ďs,tď4

s^tÿ

u“0

xus,tM
u
s,t

with complex numbers xus,t. This algebra A is a C˚-algebra: it is a complex
algebra which is closed under taking complex conjugate. A is a subalgebra of
the Terwilliger algebra of the Hamming cube Hpm, 2q [41], [42].

Note that A has dimension 55 which is the number of triples ps, t, uq with
0 ď s, t ď 4 and 0 ď u ď s ^ t.

Define

βus,t,r :“
s^tÿ

p“0

p´1qp´t
ˆ
p

u

˙ˆ
m´ 2r

p´ r

˙ˆ
m´ r ´ p

s´ p

˙ˆ
m´ r ´ p

t ´ p

˙

for 0 ď s, t ď 4 and 0 ď r, u ď s^t. The following theorem says that matrices in
the algebra A can be written in a block-diagonal form with small sized blocks.

Theorem 14 ([42]). There exists an orthogonal
`
m
ď4

˘
ˆ

`
m
ď4

˘
matrix U such that

for M P A with

M “
4ÿ

s,t“0

s^tÿ

u“0

xus,tM
u
s,t,

the matrix UTMU is equal to the matrix

¨
˚̊
˚̊
˝

C0 0 0 0 0
0 C1 0 0 0
0 0 C2 0 0
0 0 0 C3 0
0 0 0 0 C4

˛
‹‹‹‹‚

where each Cr is a block diagonal matrix with
`
m
r

˘
´

`
m
r´1

˘
repeated, identical

blocks of order 5 ´ r:

Cr “

¨
˚̊
˚̋

Br 0 ¨ ¨ ¨ 0
0 Br ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ Br

˛
‹‹‹‚,
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and

Br “
˜

ÿ

u

ˆ
m´ 2r

s´ r

˙´1{2ˆ
m ´ 2r

t ´ r

˙´1{2
βus,t,rx

u
s,t

¸4

s,t“r
.

For brevity, let us denote this block-diagonalization of M by the tuple of
matrices pB0, B1, B2, B3, B4q with p5 ´ rq ˆ p5 ´ rq matrix Br’s.

D.1.5 Projection

Recall that g1px1, ¨ ¨ ¨ , xn´1q is equal to

ÿ

i,j,k,ℓPrns
Wijkℓxti,j,k,ℓuztnu.

Let c P R
pn´1

ď4 q be the coefficient vector of g1. Since entries of W are independent
Standard Gaussians, c is a Gaussian vector with a diagonal covariance matrix
Σ “ ErccT s where

ΣS,S “

$
’&
’%

n if |S| “ 0

12n´ 16 if |S| “ 1 or |S| “ 2

24 if |S| “ 3 or |S| “ 4.

Let w “ Σ´1{2c. By definition, w is a random vector with i.i.d. standard normal
entries.

Let Π “ Id ´ AT pAAT q`A where pAAT q` is the Moore-Penrose pseudoin-
verse of AAT and Id is the identity matrix of order

`
n´1
ď4

˘
. Then, Π is the

orthogonal projection matrix onto the nullspace of A. Since A, AT and Id are
all in the algebra A, the projection matrix Π is also in A.

Let e be the first column of Π and

ψ0 :“ e

eT e
and ψ1 :“ Πw

eTw
.

We have Aψ0 “ Aψ1 “ 0 by definition of Π, and pψ0qH “ pψ1qH “ 1 since
pΠwqH “ eTw.

Let ǫ be a real number with 0 ă ǫ ă 1 and ψ “ p1 ´ ǫqψ0 ` ǫψ1. This
functional still satisfies Aψ “ 0 and ψH “ 1, regardless of the choice of ǫ. We
would like to choose ǫ such that ψ is positive semidefinite with high probability.

D.1.6 Spectrum of ψ

Consider the functional ψ0 “ e
eT e

. It has entries

pψ0qS “

$
’&
’%

1 if S “ H
´ 1
n´1

if |S| “ 1 or 2
3

pn´1qpn´3q if |S| “ 3 or 4,
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for S Ď rn ´ 1s of size at most 4. We note that this functional corresponds to
the degree 4 or less moments of the uniform distribution on the set of vectors
x P t˘1un´1 satisfying

řn´1

i“1 xi ` 1 “ 0.

Proposition 15. Let ψ be a vector in R
pn´1

ď4 q such that Aψ “ 0 and p be
an pn ´ 1q-variate multilinear polynomial of degree at most 2. Suppose that
ψ0rp2s “ 0. Then, ψrp2s “ 0.

Proof. Let U “ tx P t˘1un´1 :
řn´1

i“1 xi ` 1 “ 0u. Note that ψ0 is the expec-
tation functional of the uniform distribution on U as we seen above. Hence,
ψ0rp2s “ 0 if and only if ppxq2 “ 0 for any x P U .

On the other hand, the functional ψ is a linear combination of functionals
tp ÞÑ ppxq : x P Uu since Aψ “ 0. Hence, if ψ0rp2s “ 0 then ψrp2s “ 0 as
ppxq2 “ 0 for any x P U .

Recall that ψ “ p1 ´ ǫqψ0 ` ǫψ1 where ψ0 “ e
eT e

and ψ1 “ Πw
eTw

. Let
ψ1
1 “ eTw ¨ pψ1 ´ ψ0q. Then,

ψ1
1 “ Πw ´ eTw

eT e
e

“
ˆ
Π ´ eeT

eT e

˙
w

and ψ “ ψ0 ` ǫ
eTw

ψ1
1. We note that Aψ1

1 “ 0 since ψ1
1 is a linear combination

of ψ0 and ψ1.
Let Xψ0

and Xψ1
1
be the moment matrix of ψ0 and ψ1

1 respectively. Let Xψ

be the moment matrix of ψ. Clearly,

Xψ “ Xψ0
` ǫ

eTw
Xψ1

1
.

Moreover, for any p P R
pn´1

ď2 q satisfying Xψ0
p “ 0, we have Xψ1

1
p “ 0 by the

proposition. Hence, Xψ ľ 0 if

ǫ

|eTw| }Xψ1
1
} ď λmin,‰0pXψ0

q

where λmin,‰0 denotes the minimum nonzero eigenvalue.
We note that eTw and }Xψ1

1
} are independent random variables. It fol-

lows from that w is a gaussian vector with i.i.d. standard entries, and that e

and
´
Π ´ eeT

eT e

¯
are orthogonal. Hence, we can safely bound eTw and }Xψ1

1
}

separately.
To bound }Xψ1

1
} we need the following theorem.

Theorem 16 (Matrix Gaussian ([43])). Let tAku be a finite sequence of fixed,
symmetric matrices with dimension d, and let tξku be a finite sequence of inde-
pendent standard normal random variables. Then, for any t ě 0,

Pr

«›››››
ÿ

k

ξkAk

››››› ě t

ff
ď d ¨ e´t2{2σ2

where σ2 :“
›››››
ÿ

k

A2
k

››››› .
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For each U Ď rn´1s with size at most 4, let YU be the
`
n´1

ď2

˘
ˆ

`
n´1

ď2

˘
matrix

with entries

pYU qS,T “
#
1 if S ‘ T “ U

0 otherwise.

We can write Xψ1
1
as

Xψ1
1

“
ÿ

UĎrn´1s
|U |ď4

pψ1
1qUYU .

Since ψ1
1 “

´
Π ´ eeT

eT e

¯
w, we have

Xψ1
1

“
ÿ

UĎrn´1s
|U |ď4

ÿ

VĎrn´1s
|V |ď4

ˆ
Π ´ eeT

eT e

˙

U,V

wV YU

“
ÿ

V

wV

˜
ÿ

U

ˆ
Π ´ eeT

eT e

˙

U,V

YU

¸
.

By Theorem 16, }Xψ1
1
} is roughly bounded by p}ΣX} lognq1{2 where

ΣX :“
ÿ

V

˜
ÿ

U

ˆ
Π ´ eeT

eT e

˙

U,V

YU

¸2

.

Proposition 17. For each I, J P
`rn´1s

ď2

˘
, the pI, Jq entry of ΣX only depends

on |I|, |J | and |I X J |, i.e., ΣX is in the algebra A.

Proof. Note that

ΣX “
ÿ

V

ÿ

U1,U2

ˆ
Π ´ eeT

eT e

˙

U1,V

ˆ
Π ´ eeT

eT e

˙

V,U2

YU1
YU2

“
ÿ

U1,U2

˜ˆ
Π ´ eeT

eT e

˙2
¸

U1,U2

YU1
YU2

“
ÿ

U1,U2

ˆ
Π ´ eeT

eT e

˙

U1,U2

YU1
YU2

.

Hence,

pΣXqI,J “
ÿ

KPprn´1s
ď2 q

ˆ
Π ´ eeT

eT e

˙

I‘K,J‘K
,

which is invariant under any permutation π on rn´ 1s as Π ´ eeT

eT e
is. It implies

that ΣX P A.
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The block-diagonalization of ΣX is pu0uT0 , u1uT1 , u2uT2 , 0, 0q where

u0 “
c
npn´ 3qpn´ 5q

3n´ 14

”
1 ´ 1?

n´1
´

b
n´2

2pn´1q 0 0
ıT

u1 “
d

pn´ 6qp3n4 ´ 24n3 ` 59n2 ´ 66n` 32q
2pn ´ 1qpn´ 2qp3n´ 14q

”
1 ´ 1?

n´3
0 0

ıT

u2 “
d

pn´ 6qp3n4 ´ 24n3 ` 59n2 ´ 66n` 32q
2pn ´ 1qpn´ 3qp3n´ 14q

“
1 0 0

‰T
.

Hence, }ΣX} is equal to the maximum of }ui}2 among i “ 0, 1, 2, which is
at most p1{2 ` onp1qqn2. We get the following result:

Proposition 18. If ǫ ă on

´
1

n
?
logn

¯
, then with probability 1´onp1q the moment

matrix Xψ is positive-semidefinite.

Proof. By theorem 16, we have

Pr
`
}Xψ1

1
} ě t

˘
ď

ˆ
n´ 1

ď 2

˙
¨ e´t2{2}ΣX}.

Let t “ 3n
?
logn. Since }ΣX} ď p1{2 ` op1qqn2, we have }Xψ1

1
} ď 3n

?
logn

with probability 1 ´ n´Ωp1q. On the other hand, note that

Pr
`
|eTw| ď t

˘
ď t?

2π
.

It implies that |eTw| ą gpnq with probability 1 ´ onp1q for any gpnq “ o1p1q.
Thus,

}Xψ1
1
}

|eTw| À n
?
log n

gpnq
almost asymptotically surely. Together with the fact that λmin,‰0pXψ0

q “ 1 ´
onp1q, we have Xψ ľ 0 whenever ǫ ă gpnq

n
?
log n

for some gpnq “ onp1q.

D.1.7 Putting it all together

We have constructed a linear functional ψ on the space of pn ´ 1q-variate mul-
tilinear polynomials of degree at most 4, which satisfies (i) ψr1s “ 1, (ii) ψ

satisfies
řn´1

i“1 xi ` 1 “ 0, and (iii) ψrp2s ě 0 for any p of degree 2. It implies
that ψ is a valid pseudo-expectation of degree 4.

Now, let us compute the evaluation of

g1pxq “
ÿ

i,j,k,ℓPrns
Wijkℓxti,j,k,ℓuztnu
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by the functional ψ. Recall that c is the coefficient vector of g1 and w “ Σ´1{2c
where Σ “ ErccT s. We have

ψrg1s “ cTψ “ wTΣ1{2
ˆ

e

eT e
` ǫ

eTw

ˆ
Π ´ eeT

eT e

˙
w

˙

“ eTΣ1{2w

eT e
` ǫ ¨

wTΣ1{2
´
Π ´ eeT

eT e

¯
w

eTw
.

Note that

E

„
wTΣ1{2

ˆ
Π ´ eeT

eT e

˙
w


“

B
Σ1{2

ˆ
Π ´ eeT

eT e

˙
,ErwwT s

F

“ tr

ˆ
Σ1{2

ˆ
Π ´ eeT

eT e

˙˙
,

which is at least p
?
6{12´ onp1qqn4. Also, |eTw| “ Op1q and |eTΣ1{2w| “ Opnq

with high probability. Hence, with probability 1 ´ onp1q, we have

ψrg1s Á Opnq ` n4

nplognq1{2`op1q Á n3

plog nq1{2`op1q .
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