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Abstract

We study the scheduling of human-robot teams where the hu-
man and robotic agents share decision-making authority over
scheduling decisions. Our goal is to design AI scheduling
techniques that account for how people make decisions under
different control schema.

Introduction
There is a growing desire to integrate robots to work inter-
dependently with people in traditionally manual manufac-
turing processes. While robots are not yet capable of per-
forming all of the same tasks as people, robots can improve
the efficiency their human teammates by performing non-
value-added tasks such as the fetching of parts. However,
the real-time choreography of these teams in time and space
is a challenging computational problem; scheduling under
hard upper- and lower-bound temporal constraints is known
to be NP-Hard (Bertsimas and Weismantel 2005)

Researchers and industry practitioners have proposed
fully autonomous solutions to the coordination of these
teams(Alsever 2011; Bertsimas and Weismantel 2005; Gom-
bolay, Wilcox, and Shah 2013). These solutions work well
in domains where people are able to fully encode the domain
knowledge for the autonomous system. However, people of-
ten make use of implicit knowledge or previous experience,
which can be time-consuming to translate for an AI agent.
In such cases, the human remains a critical component of
the system, providing high level guidance and feedback on
the generated plans and schedules (Durfee, Boerkoel Jr.,
and Sleight 2013; Hamasaki et al. 2004; Zhang et al. 2012;
Clare et al. 2012). Significant research effort has been aimed
at supporting the human’s role through careful design and
validation of supervisory control interfaces (Adams 2009;
Barnes et al. 2011; Chen, Barnes, and Qu 2010; Cum-
mings, Brzezinski, and Lee 2007; Goodrich et al. 2009;
Jones et al. 2002; Hooten, T.Hayes, and Adams 2011). Col-
laborative human-robot decision-making, in which a human
shares decision-making authority with an autonomous robot,
is less well studied.

Given full knowledge of the world-state, a robot may po-
tentially outperform a person in planning and scheduling for
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Figure 1: Members of a human-robot team complete a set of
fetch and build tasks to complete a Lego kit while negotiat-
ing shared resources.

the team. However, human workers often develop a sense of
identity from their role. If decision-making authority over
a person’s role is taken away from the worker and given to
a robotic counterpart, workers may feel devalued and resist
the adoption of this technology. To successfully integrate
robots into the human workspace, we need to ensure that the
technology will improve the productivity of the team and
be appreciated by its human operators. In this paper, we
summarize recent experiments that inform the mechanism
design for shared decision-making in human-robot teams.

Shared Control of Human-Robot Teams
We recently conducted a human-subject experiment to ex-
amine the impact of shared human-robot decision-making
on the productivity of the team and human worker satis-
faction (Gombolay et al. 2014). Experiment participants
worked in teams of three, with one other human teammate
and one robot teammate. The goal was to complete a set of
fetch and build tasks to assemble a Lego model. The task
involved spatial-resource and temporal constraints (Figure
2).

We evaluated three conditions for shared decision-making
authority between the human subject and the robotic team-
mate. In the manual condition, the participant allocated
the fetch and build tasks among members of the team. In
the semi-autonomous condition, the participant allocated
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him/herself tasks and the robot allocated the remaining
tasks. In the autonomous condition, the robot allocated the
tasks to team members. In all conditions, the robot opti-
mized the sequencing of the tasks. We evaluated two hy-
potheses. First, we hypothesized the team would be more
efficient when the robot retained more control over alloca-
tion. Second, we hypothesized participants would prefer to
retain a role in the decision-making process.

The robot used Tercio, a fast, near-optimal scheduling al-
gorithm, to perform task allocation and scheduling (Gom-
bolay, Wilcox, and Shah 2013). The algorithm divides the
scheduling process into task allocation and sequencing sub-
routines. The algorithm iterates between the subroutines,
solving for the optimal task allocation and then finding a
corresponding task sequence. If the schedule does not sat-
isfy deadlines for completion time, a second task allocation
is selected and the corresponding task sequence is produced.
The process terminates once a user-defined makespan is
achieved. The output of the algorithm is encoded as a flex-
ible, dispatchable scheduling policy (Tsamardinos, Muscet-
tola, and Morris 1998).

Results

We found statistically significant evidence that giving hu-
man subjects more control authority over task allocation
negatively influenced team fluency (p < 0.02) and the de-
sire of the subject to work with the robot again (p < 0.001).
We also found evidence of a complex relationship between
human/robot decision-making authority and human prefer-
ences over task allocation; people sought looser couplings
between human and robot work when they did not retain pri-
mary decision-making authority. Specifically, participants
with full control over task allocation more frequently chose
to rely on their teammates to complete pre-requisite tasks.
For example, participants more frequently assigned a team
member to fetch the parts that the participant needed to com-
plete his or her build task. In contrast, participants more fre-
quently isolated their work when they retained only partial
control, by chosing to fetch parts for their own build tasks.

In post-hoc analysis conducted since (Gombolay, Wilcox,
and Shah 2013), we have also found inequities in work shar-
ing as a function of decision-making authority. Repeated-
measure analysis of variances demonstrated significant dif-
ferences in the amount of work allocated to the human par-
ticipant as a function of the level of control F (2, 46) = 5.3,
p = 0.0085. Specifically, the participant allocated statisti-
cally significantly more work to him or herself in both the
manual (M = 401, SD = 112), t(23) = 2.37, p = 0.003,
and semi-autonomous conditions (M = 399, SD = 81.4),
t(23) = 2.37, p = 0.01, as compared to the amount of
work the robot chose to allocate to the participant in the au-
tonomous condition (M = 352, SD = 60.6). The explana-
tion for these results remains an open question and is the
subject of ongoing experimentation. For example, partic-
pants may lack trust in the abilities of their teammates, may
be acting altruistically in taking on disproportionate work,
or may be trying to ensure an important role for themselves
on the team.

Figure 2: Subjects allocate more work to themselves when
they have control over which tasks they will perform.

Human-in-the-Loop System Design Guidance
These results provide some initial guidance for the suc-
cessful introduction of semi-autonomous robots into hu-
man teams, and open many questions. First, providing
human teammate subjects more decision-making authority
over robot behavior is not sufficient to improve worker sat-
isfaction, and may in fact degrade team performance. Also,
team fluency does appear to positively correlate with will-
ingness to collaborate with robotic technology. Finally, the
human preference to decouple human and robotic work ap-
pears to negatively affect team performance.

We have follow-on studies underway to fully character-
ize this last phenomenon and test mitigation strategies, since
many applications require people to retain partial decision-
making authority. Human must often act as safe-guards, and
compensate for the fact that is impractical to encode full
knowledge of the task and environment into an AI agent.
Our initial results indicate that care must be taken in design-
ing the mechansism for sharing decision-making authority.
Human operators may make fundamentally different deci-
sions based on how much decision-making authority they
are given.

We are currently developing new AI scheduling tech-
niques that utilize a humans in-the-loop while countering
the natural bias created by separating the human from full
control over the system. The design of our technique will
be informed by human-subject experiments that character-
ize the biases created by giving human supervisors vari-
ous levels of decision-making authority. We will leverage
statistical and machine learning approaches to model the
decision-making strategies of human operators as a function
of decision-making authority and offer corrective guidance
to the human operator to counter the bias. We hypothesize
that this new system will produce measurable improvements
in human-robot team planning and scheduling, as compared
to methods to that do not mitigate human bias.
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