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Sensor placement strategy to inform decisions

Laura Mainini ∗

Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

United Technologies Research Center, Cork, Ireland

and

Karen E. Willcox †
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This paper introduces a computational strategy to determine optimal sets of sensor loca-
tions to support real-time operational decisions. We exploit unsupervised learning strate-
gies (specifically self-organizing maps) to identify the most informative locations to place
sensors. The sensor placement procedure is then combined with a Multi-Step-Reduced Or-
der Modeling approach that exploits the low-dimensional map between the sparse sensed
data and the decisions at hand. The approach is demonstrated for the real-time assessment
of an unmanned aircraft wing panel undergoing structural degradation. For this applica-
tion, we compare the optimal sets of sensor locations with random placements for a variety
of sensor availabilities. By adopting our placement strategy, we achieve improvements in
accuracy and robustness of capability predictions, even when measured data are sparse and
cover less than 10% of the reference data.

I. Introduction

The next generations of transportation systems will be able to autonomously develop operational strate-
gies in real-time, taking into account the evolution of their health condition along with the dynamic changes
of the surrounding environment. One such example is the case of autonomous aerospace vehicles that dy-
namically adapt their mission to the evolution of their structural state. For problems of this kind, one
challenge is the limited time and resources that can be dedicated onboard to data processing. Cost and
weight of state-of-the-art sensing technologies represent another relevant constraint. Furthermore, both on-
board measurements and inference from sparse sensor data introduce uncertainties that can potentially affect
the overall data-to-decisions process. These challenges motivate the development of strategies to optimize
placement of sensors.

To tackle these challenges, in previous works1–3 we proposed a methodological framework combin-
ing a Sense-Infer-Plan-Act formulation of the decision process with a Multi-Step Reduced Order Modeling
(MultiStep-ROM) strategy for efficient real-time computing (Figure 1). Specifically, we model the flow of
information that processes data to make decisions as a Sense-Infer-Plan-Act flow associated with measure-
ments (quantities that can be monitored with sensors and carry information about the state of the system)
and capabilities (quantities that evolve with the state of the system and constrain the decision space accord-
ingly). Then, we adopt MultiStep-ROM to map from measurements to capabilities in support of real-time
operations. The MultiStep-ROM scheme, originally introduced in Ref. 1, combines reduced-order mod-
els, surrogate modeling and clustering techniques to obtain an adaptive offline-online procedure suitable for
time-constrained problems.

Previous studies,3 conducted for the assessment of structural integrity of an unmanned air-vehicle wing
panel, revealed that if sensors are randomly placed and cover less than 90% of the entire wing panel, measured
data may be misleading or insufficient to properly represent the state of the system. In the current paper,
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we aim to overcome these limitations by substituting the random placement with a principled approach,
specifically designed to determine the best sensor locations that support effective decision making. To do
that, we investigate compressive sensing4–15 and sensor placement methodologies,16–21 which are receiving
attention from the scientific community for their effectiveness in compressing high-dimensional quantities
for reconstruction purposes and identifying damage in structural systems, respectively. An open question
concerns the possibility to employ similar techniques to either support classification tasks or directly inform
decisions,22,23 as required for Sense-Infer-Plan-Act problems.

To address this question, we propose a computational methodology to determine the most informa-
tive sensor locations and effectively assist the decision process associated with real-time operations. Our
strategy adopts unsupervised learning techniques, in particular using Self-Organizing Maps, to exploit the
low-dimensional structure of the physical quantities to measure. We demonstrate our approach for data-to-
decisions problems including a structural monitoring task. In order to assess our methodology for classifica-
tion and decision purposes, we couple the strategy with a MultiStep-ROM procedure. Our main goal is to
dramatically improve accuracy and robustness of capability predictions for measurements covering less than
10% of the reference data. Ultimately, such improvements will allow for a drastic reduction in the number of
sensors required to achieve reliable predictions and well-informed decisions, along with large savings in cost
and weight of sensing equipment.

DATA DECISIONS

SENSE INFER PLAN ACT

Parameter

Identification

Full-Order

Capability Evaluation

Measurements System Parameters Capabilities

Model Reduction Model Reduction

Localization

Local models

Original Workflow
EXPENSIVE

MultiStep-ROM
EFFICIENT

1

Figure 1. Sense-Infer-Plan-Act information flow and MultiStep-ROM scheme to address the time-constrained
problem of mapping from measurements to capabilities in real-time.

This paper is organized as follows. Section II briefly introduces our approach and the main features of the
Self-Organizing Maps, as the unsupervised learning technique at the basis of our sensor placement strategy.
Section III presents the specific application to on-board structural assessment considered in this paper and
discusses the main outcomes. Finally, concluding remarks are summarized in Section IV.

II. Method

This paper proposes a novel strategy to compute optimal sensor sites in support of real-time decisions.
Our method relies on the use of Self-Organizing Maps24–26 to identify the best candidate locations. The
efficiency and effectiveness of SOM in compressing information for reconstruction purposes is well known27,28

and a rich literature introduces SOM as a technique to realize an ordered form of vector quantization.29–32

In contrast with that, this work does not focus on reconstruction goals: we adopt SOM to obtain optimal
sparse measurements to inform classification and decision tasks. To do that, we wish to exploit not only a
sparse representation of the physical quantities to measure/monitor, but also the low-dimensional mapping
that relates capabilities to measurements, which can be computed with a MultiStep-ROM procedure (Figure
1). Section II.A briefly recalls the main stages of the MultiStep-ROM procedure adopted in this paper
to map from measurements to capabilities within the Sense-Infer-Plan-Act framework. Then, Section II.B
introduces our sensor placement strategy based on unsupervised learning and illustrates its integration with
the mapping strategy.
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A. MultiStep-ROM procedure

The MultiStep Reduced-Order Modeling strategy adopted in this paper adheres to the procedure proposed
in Ref. 1, and consolidated in Ref. 2 and 3. The methodology relies on a traditional offline-online structure.
During the offline phase we exploit the information provided by high-fidelity complete datasets to obtain
an adaptive efficient model. The efficient model is then used during the online phase to rapidly process
the information provided by sparse sensor measurements and estimate specific quantities of interest. The
MultiStep procedure is named after the particular four-step structure that characterizes both offline and
online computational phases.

Offline During the offline phase the information provided by high fidelity datasets is extracted and modeled
through a combination of model-order reduction and localization techniques.

1. Data collection The first offline step is the collection of high-fidelity data in the form of complete
snapshots of physical quantities of interest. In particular, we distinguish between quantities to be
monitored online (measurements, qm(x),m = 1, ...M) and quantities that characterize system capabil-
ities but are not directly measured (capabilities, sc(x), c = 1, ...C). Measurements and capabilities are
all functions of system parameters x; high-fidelity dataset are a collection of ne-dimensional complete
snapshots of quantities of interest computed for ns different system conditions x.

2. Projection-based model order reduction The second step computes reduced-order models for
each measurement (q̃m) and capability (s̃c) through parametric Proper Orthogonal Decomposition
(POD).33–42 For each quantity we assemble the ne×ns matrix of complete snapshots and compute the
POD basis vectors via singular value decomposition:43,44

q̃m(x) = q̄m +

nm∑
j=1

αmj (x)φmj m = 1, ...,M ; s̃c(x) = s̄c +

`c∑
j=1

βcj (x)ψcj c = 1, ..., C. (1)

In Equation (1), q̄m and s̄c are the average value of qm and sc, computed over the respective set
of ns snapshots. In the expansion terms, {φmj }

nm
j=1 and {ψcj}

`c
j=1 denote the mth measurement POD

modes and the cth capability POD modes, respectively; similarly, αmj , j = 1, ..., nm indicates the mth
measurement POD modal coefficients and βcj , j = 1, ..., `c represents the cth capability POD modal
coefficients. The model reduction is obtained by truncating the POD expansion such that nm � ne
and `c � ne.

3. Localization The third step exploits unsupervised learning techniques to identify clusters in the
space of the measurement and capability POD coefficients. The clusters empirically identify validity
subdomains over which global complex phenomena can be locally represented with simple models. Our
localization step exploits Self-Organizing Maps, a neural network paradigm that we also adopt in our
sensor placement strategy. The SOM network is trained with ns input points τ (x) defined as follows:

τ (x) =

[
{αmj (x)}j=1,...,nm

m=1,...,M
, {βcj (x)}j=1,...,`c

c=1,...,C

]
= [α(x),β(x)] . (2)

Each vector has dimension npod = nα + nβ , where nα =
∑M
m=1 nm and nβ =

∑C
c=1 `c denote the size

of vectors α(x) and β(x), respectively. SOM training identifies nw clusters in the input space and
computes the representative weight vector wk of each cluster as the one for which the distance from
the training points in k is minimized:

k = arg min
j∈1,...,nw

{‖τ i −wj‖Λ}. (3)

In (3), the distance metric ‖ ·‖Λ is an L2-norm scaled with normalized POD eigenvalues.1 A the end of
the training phase, the weight vectors represent cluster prototypes and embody the average properties
of their training elements.

4. Local models The last offline step characterizes each subdomain k with a dedicated set of simple
data-fit models. In practice, we seek for local representations of capability coefficients β as function of
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measurement coefficients α. For every capability coefficient βcj we compute a simple response surface
model βcj (α), valid exclusively over the kth subdomain:

β(k) ≈ β̃(α)(k) = {β̃cj (α)}(k)
j=1,...,`c
c=1,...,C

, k = 1, ..., nc, (4)

with β̃cj (α) ≈ βcj (x) and α = α(x) as defined in (2).

Online The online phase is the computational procedure to run on-board and assist decision making in
real-time.

1. Measurement coefficients reconstruction The first online step reconstructs POD coefficients
of the measured quantities of interest using information provided by incomplete snapshots q̂m, m =
1, ...,M . The measurement POD basis computed offline (1) are used to estimate the coefficients via
gappy POD;45–48 M linear systems is the form

Gmαmg = fm (5)

are solved to determine the unknown POD coefficients αmg =
[
αmg1, ..., α

m
gnm

]>
. In Eq. 5, the ijth

entry of Gm is Gmij = (φmi , φ
m
j )g, the ith entry of vector fm is fmi = (q̂m, φ

m
i )g, and (·, ·)g denotes the

gappy inner product which considers only those elements in the vectors that correspond to the available
sensed data. In the remaining of the paper, αg =

[
(α1

g)>, ..., (αMg )>
]

indicates all the measurement
coefficients reconstructed in this first online step.

2. Classification The second step classifies the sensed information into the closest cluster, that is, the
one whose weight vector wk∗ minimizes the distance

k∗ = arg min
j∈1,...,nw

{‖τ ∗ −wj‖Λα}. (6)

In Eq. 6, vector τ ∗ = [αg,β
∗] includes the measurement coefficients αg reconstructed via gappy POD

and the vector of unknowns β∗. The distance ‖ · ‖Λ is now computed only over the αg elements of the
vectors and denoted ‖ · ‖Λα .

3. Local approximation The third step fully exploits the set of local maps β(k∗) computed offline (Eq.
4) to approximate each modal coefficient of the capabilities as a function of the reconstructed αg:

βcj ≈ β̃cj (αg)(k∗). (7)

4. Capability estimate The last step exploits the POD expansion computed offline (Eq. 1) to estimate
each capability s̃c as a combination of its dominant modes ψcj . In contrast with the offline expansion,
the coefficients βcj are now approximated with the k∗th set of local models:

s̃c(αg) = s̄c +

`k
∗
c∑
j=1

β̃cj (αg)(k∗)ψcj c = 1, ..., C. (8)

B. Sensor placement strategy

This work proposes a sensor placement strategy to compute and leverage sparse representations of mea-
surements and capabilities in support of real time data to decision. Our particular methodology exploits
Self-Organizing Maps and identifies the most informative sensor locations to monitor measurements and
estimate capabilities.

Self-Organizing Maps, also referred to as Kohonen’s Maps, are single-layer neural networks that rely on
unsupervised competitive learning to adapt the neural nodes and compute models from a given set of input
data. SOM neurons have two representations: (i) weight vectors that assume real values in the space of input
data, and (ii) nodes in the topological space of the network. Usually, the input space is a high-dimensional
manifold, while the topological space is a low-dimensional array (for instance, a 2D grid). Given a training
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input dataset, the learning algorithm computes the weight vectors, ωj ∈Rnd , by progressively updating their
element values. At each step, a training vector ti is associated with the closest weight vector ωπ in the input
space

π = arg min
j∈1,...,nω

{‖ti − ωj‖}. (9)

Then, the learning algorithm updates the closest weight vector ωπ and its neighbours according to the
proximity of the corresponding nodes in the topological space. Details about mathematical foundations,
algorithms and possible implementations of SOMs can be found in many relevant works including Ref 25,26
and 49.

The training process determines nπ distinct clusters of input data; each cluster is led by a weight vector
(namely, the prototype) representing its centroid in the nd-dimensional input space. The number of clusters
is not imposed a priori; still, it is limited by the number nω of constitutive neurons (weight vectors) of
the SOM network. Therefore, nπ ≤ nω because it may happen that not all the nω vectors end up leading
a cluster. The particular structure of SOM paradigms guarantees that similar points in the input space
preserve their proximity in the topological space. In fact, the SOM realizes an ordered non-linear projection
of the high-dimensional data onto a low-dimensional manifold.

Our strategy for sensor placement exploits SOMs to compute weight vectors in the particular input space
defined by dominant modes of measured quantities of interest and geometry coordinates of the specific system
to monitor. This paper proposes and discusses a first implementation of this strategy to identify a set of
informative sensor locations for all the M measured quantities of interest at once. This goal is achieved by
using a unique SOM network and leveraging the information content of the first dominant modes of measured
quantities only. The first dominant modes of measurements (φm1 , m = 1, ...,M) are computed during the
offline phase of the MultiStep-ROM procedure through proper orthogonal decomposition (see Offline Step
2 in Section II.A). φm1 is a ne-dimensional vector whose elements are associated with spatial coordinates of
physical points ri∈Rnr of the system to monitor. Now, the set of sensor locations (SSL) can be computed
with the following procedure.

Input dataset definition The dataset T collects training input for the SOM networks and consists of ne
points ti =

[
φ1

1(ri), ..., φ
M
1 (ri), ri

]
such that:

T = [t1, ..., tne ]
>

=
[
φ1

1, ..., φ
M
1 , [r1, ..., rne ]

>
]
. (10)

T is a ne × (M + nr) matrix whose first M columns report the first POD modes of the measured quantities
of interest; the remaining nr columns record spatial coordinates of all the ne physical grid points associated
with measured values. These grid points are all eligible sites to place sensors.

Network training Dataset T can now be used to train SOM and compute the nπ weight vectors. At
each training step, the weight vector to update is determined as per Eq 9. Specifically, we introduce the
particular metric ‖ · ‖ρ to measure the distance between the input vector and the weight vectors at each
training step:

‖ti − ωj‖ρ =
√

(ti − ωj)>ρI (ti − ωj). (11)

Eq. 11 indicates a scaled L2-norm where ρ is a vector of weights with ‖ρ‖1 = 1 and I is the identity matrix.
Combining Eq. 9 and 11, the closest weight vector is determined as the one for which the distance from the
training vectors in cluster π is minimized:

π = arg min
j∈1,...,nω

{‖ti − ωj‖ρ}. (12)

The weighted distance regulates the relevance of measurement modes with respect to spatial coordinates
in determining the optimal placement of sensing sites. In terms of practical applications, such a metric
enables our placement strategy to account for the physical constraints related to size and accuracy of sensing
technologies.
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Identification of sensor locations Once training is completed, the weight vectors ωj = [ω1, ..., ωM+nr ]j
enclose the sensor locations. Specifically, weight vectors’ elements corresponding to spatial coordinates (the
last nr entries) identify the most informative sites to place sensors:

SSL = {[ωM+1, ..., ωM+nr ]j}
nc
j=1 (13)

The remaining elements (the first M entries) encode the dominant modes of the measured quantities of
interest. In addition, cardinality and radius of the clusters associated with the weight vectors/neurons may
be employed in future as quantitative measures to assist dynamic policies for an adaptive real-time allocation
of resources.

Sensor placement is a form of resource allocation conducted offline and exploited online. Our strategy
takes most advantage of this offline-online structures when combined with a MultiStep-ROM procedure.
Figure 2 illustrates the information flow that characterizes such an integrated approach. The information
flow shows that the sensor placement strategy is designed to support the decisional process, rather than
measurement reconstruction. Indeed, our main goal is to assist and enable real-time decisions, rather than
the reconstruction of measured quantities of interest from sparse data.

𝐪𝑚 𝐱 𝐬𝑐 𝐱

System Parameters

𝛼𝑗
𝑚 𝐱𝜑𝑗

𝑚 𝜓𝑗
𝑐𝛽𝑗

𝑐 𝐱

𝐰𝑘

 𝜷 𝜶 (𝑘)SSL

𝝎𝜋

Measurements Capabilities

𝐱

SENSE INFER PLAN ACT

 𝐬𝑐

Sensor 
placement

MultiStep-ROM

Figure 2. Sensor placement strategy (red flow) in support of decisional process. Online (dashed lines),
measurements are recorded in the (sparse) SSL determined offline. These sparse measurements are used to
estimate capabilities and constrain the decision space via MultiStep-ROM.

III. Application to on-board structural assessment

We demonstrate our sensor placement technique for a real-time decision problem associated with struc-
tural assessment on-board an unmanned air vehicle (UAV). We consider the specific test case of UAV com-
posite wing panel that undergoes degradation of its structural properties for a variety of damage conditions.
In particular, our application is represented by a composite square panel subjected to static loading (Figure
3). It is a 18 × 18 square-inch structure consisting of four plain-weave carbon-fiber plies with symmetric
stacking sequence [45◦, 0◦]s; two additional plies, with orientation 0◦ and 45◦, reinforce the borders where 24
bolts are placed to fasten the plate. To obtain the reference data, we adopt a numerical model based on the
finite element method (FEM): the panel is discretized into ne = 3921 laminate plate elements and clamped
along all the four edges at bolt locations; the compression load is applied as uniform displacement imposed
along the entire upper edge. The presence of the damage is modeled by weakening the stiffness properties
of the elements affected by local degradation.

A. Problem setup

We reframe our structural assessment problem as a Sense-Infer-Plan-Act information flow associated with
system parameters (x), measured quantities of interest (qm), and capability quantities of interest (sc).
System parameters define specific damage conditions, and include damage location (yd and zd in Figure 3) and
damage size/extent (∆y and ∆z as in Figure 3, and plies p affected by the damage): x = [yd, zd,∆y,∆z, p].
Measured quantities of interest are the three components of strain that characterize the plane deformation
of the external layer: we place our sensors over ply 4 to measure the normal components along the main
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1 1Figure 3. Panel parameters (damage location and damage size) and loading definition. Panel layout and layers
sequence.

orthotropic axes of the ply (εn1 and εn2), and the shear component on the ply plane (εs12). Accordingly,
measurements are three vector-valued quantities reflecting a finite element representation of the strain field:
q1(x) = εn1

(x), q2(x) = εn2
(x), and q3(x) = εs12(x). Structural capabilities are condensed into a single

vector-valued quantity including element-wise values of maximum failure index. We adopt the definition of
failure index FI as ratio between the experienced stress and the related maximum allowable value (material
strength). Then, for each discretization element, we compute the maximum failure index (FI) over panel
layers and possible failure modes: s1(x)=FI(x)=maxply,mode FI(x,ply,mode).

Given fixed loading and boundary conditions, both deformation field and failure index depend on the
specific damage affecting the structural integrity of the panel. Therefore, in principle, measurements and
capabilities can be determined from structural parameters by solving forward problems. However, the
original Sense-Infer-Plan-Act flow includes a parameter identification step —the solution of inverse problems
to compute structural parameters from strain measurements— followed by a forward problem to estimate
failure index from structural parameters. This process may be very expensive and not suitable for time-
constrained computations. Therefore, we adopt a MultiStep-ROM strategy to obtain capability (failure
index) estimates from measurements (strain components) and support real-time decisions.

The FEM model of the panel is used to simulate the state of the structural component for a variety
of damage conditions x. In particular, we collect complete snapshots of measurements and capabilities for
two distinct samples of the parameter space selected through Latin hypercube exploration. The first sample
constitutes the evaluation set of ns = 3000 different damage conditions employed offline to compute models
and sensor sites. The second sample is the validation set used to test the online phase over nv = 500
different damage conditions. For each damage condition we record M = 3 measurements and C = 1
capability snapshots in the form of column vectors of ne = 3921 elements. Each vector element is associated
with a FEM grid point identified by coordinates ri = (yi, zi).

The evaluation set is used to compute the POD expansions of measurements and capabilities:

εn1
≈ ε̄n1

+

nn1∑
j=1

αn1
j φ

n1
j ;

εn2 ≈ ε̄n2 +

nn2∑
j=1

αn2
j φ

n2
j ; FI ≈ F̄I +

∑̀
j=1

βjψj .

εs12 ≈ ε̄s12 +

ns12∑
j=1

αs12
j φs12

j ;

(14)

These modal terms are employed as described in Section II.A and illustrated in Figure 2. In particular, the
POD coefficients are used offline to obtain local models for βj in the form of linear polynomial functions
of α = [αn1

1 , αn1
2 , αn2

1 , αn2
2 , αs12

1 , αs12
2 ]. Then, local models βj(α) and POD modes are employed online to

estimate FI. POD modes φn1
1 , φn1

2 , φn2
1 , φn2

2 , φs12
1 , and φs12

2 are used to reconstruct coefficients α from
incomplete measurements ε̂n1

, ε̂n2
, and ε̂s12 by solving three distinct systems (5), one for each measured
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quantity of interest. Reconstructed coefficients αg are used to identify the most representative set of linear

models (6) and compute approximations of capability coefficients β̃j(αg)(k∗). Finally, POD modes {ψj}`j=1

are used to compute the final estimate of capability F̃I. The online procedure is repeated for all the 500
damage conditions of the validation set.

B. Sensor placement

The online measurements ε̂n1
, ε̂n2

, and ε̂s12 are incomplete snapshots of strain components whose non-zero
elements are measured at the grid-points indicated by the SSL. The SSL is determined offline through the
sensor placement strategy proposed in Section II.B.

Input dataset definition We consider the first dominant mode of each component of strain measured
over ply 4: φn1

1 , φn2
1 , and φs12

1 are represented in Figure 4. All the grid points lay over the same plane,
therefore two spatial coordinates are sufficient to identify their physical location. Dataset T is defined as
follows:

T = [φn1
1 , φn2

1 , φs12
1 ,y, z] (15)

where y and z collect y- and z-coordinates of each grid point, respectively.

(a) First POD mode for εn1 (b) First POD mode for εn2 (c) First POD mode for εs12

Figure 4. First dominant mode of each component of strain measured over ply 4. Modes are computed via
parametric POD from a set of 3000 different damage conditions affecting panel integrity.

Network training Sensing technologies are usually expensive and we wish to contain costs by limiting the
amount of sensors needed to achieve reliable estimates of capabilities. In this paper we assess the efficiency
of our placement strategy for a range of sensor availabilities, that is, for different fractions of information fp
measured online with respect to the complete data used offline. At the matter of fact, the neurons of the
SOM embody the sensors that we wish to place over ply 4 in the most efficient way. Therefore, the size of
SOM network (nω) reflects the number of available sensors. During the training phase, the sensors (neurons)
are virtually moved over the panel until the most representative locations are reached.

This work considers 20 different SOMs, each providing locations for different amounts of available sensors.
Table 1 reports the details about the networks and their corresponding fractions of information fp = nω

ne
. For

all the SOM networks we set ρ = [0.30, 0.30, 0.30, 0.05, 0.05]; this choice largely privileges the characterization
of the modal behavior (0.9 overall) over the spatial distribution of the sensors (0.1). In contrast with that,
assigning larger relevance to spatial coordinates would result in a more uniform distribution of sensors over
the panel, but would also limit the leading role of the information content in our placement strategy. The
role of ρ is to account for physical constraints related to sensor size and accuracy by preventing the SOM to
locate the neurons too close to each other.

Identification of sensor locations Once training is completed the last 2 elements of the weight vectors
indicate the coordinates to place the sensors. Figures 5a-c and 5d-f illustrate SSL #3 and SSL #6, respec-
tively. As reported in Table 1, SSL #3 consists of 9 points and covers only fp = 0.23% of the reference
data; similarly, SSL #6 consists of 20 points and covers fp = 0.51% of the complete dataset. The sensor
distributions are illustrated with red dots and superimposed to the first POD modes. A row-wide comparison
of the figures shows that sensors are distributed to capture extremes (maximum and minimum) and shape
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SSL # 1 2 3 4 5 6 7 8 9 10

nω 4 6 9 12 16 20 25 30 36 42

fp [%] 0.10 0.15 0.23 0.31 0.41 0.51 0.61 0.76 0.91 1.07

SSL # 11 12 13 14 15 16 17 18 19 20

nω 49 56 64 72 81 90 100 144 225 400

fp [%] 1.25 1.43 1.63 1.81 2.07 2.29 2.55 3.65 5.74 10.13

Table 1. Characteristics of SOMs used to identify different Sets of Sensor Locations (SSLs). All the SOMs
employed in this paper consists of a 2D grid of nω neurons

of all the main modal components at the same time: accordingly, sensor sites are close to each other in the
proximity of steep slopes (in the neighborhoods of maximum and minimum).

(a) SSL #3, fp = 0.23% (b) SSL #3, fp = 0.23% (c) SSL #3, fp = 0.23%

(d) SSL #6, fp = 0.51% (e) SSL #6, fp = 0.51% (f) SSL #6, fp = 0.51%

Figure 5. The Set of Sensor Locaitons (SSLs #3 and #6 of Table 1) are represented with red dots and
superimposed to the first POD modes of each measured quantity.

C. Results and discussion

In previous works3 we extensively investigated different levels of measurements sparsity for the case of
random placement of sensors. For the structural application considered in this paper, we found that for
measurements with less than 90% of the entire wing panel, online estimates of capabilities are robust to
both sensor locations and sensor accuracy. Conversely, if sensors cover less than the 10% of the reference
grid-points, measured data may be misleading or insufficient to properly represent the state of the system.
These results refer to the circles (©) in Figures 6; the diagram displays the percentage normalized root mean
square error Ec of capability estimate F̃I with respect to the reference value FI obtained with finite element
simulations.

Ec =
1

nv

nv∑
i=1

εi with εi =
‖FIi − F̃I

i‖2
(FImax − FImin)

√
ne
× 100%. (16)
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In Eq. 16, Ec is an average value computed over the nv damage cases of the validation set; FImax and FImax

are the maximum and minimum values in snapshot FIi, respectively. For a given fraction of measured data
fp, there are multiple points represented with the same marker and different shades of color: each point refers
to a different level of noise introduced to corrupt sensor measurements. Error values in Figure 6 are averaged
over 50 random samples of additive Gaussian noise contributions at a given value of standard deviation σ.
Specifically, σ = 10µε covers common sensor accuracy of 1-5%, while σ = 100µε corresponds to much less
probable noise of the same order of the value to measure.

Figure 6. Percentage normalized root mean square error Ec of capability estimates with respect to the
reference values obtained with finite element simulations. A comparison between values obtained for sensing
sites randomly located over the plate (©) and values obtained with our particular strategy for sensor placement
(×). σ denotes the standard deviation of Gaussian noise added to corrupt the measurements.

A comparison of the two sets of data in Figure 6 (©-marked values and ×-marked values) reveals
two interesting outcomes. First, the estimate error Ec is reduced by adopting our strategy in place of a
random selection of sensor sites/locations. In particular, significant improvements emerge for fractions of
measurements fp comprised between 0.5% and 5% of the reference grid-points. In this interval we observe
a stable Ec ≈ 2 − 3%, that is two orders of magnitude smaller than the approximation error recorded for
random selections of similar amounts of sensor sites. Second, for a given fraction of sensed data fp we observe
similar values of estimate error Ec for all the considered levels of noise, as the values obtained for different
values of σ nearly superimpose. These results differ significantly from the case of random placement, for
which error curves increase with noise. Hence, our placement strategy drastically enhances the robustness
of capability estimates to measurement uncertainties.

IV. Concluding remarks

This paper introduced a new methodology to determine optimal sets of sensor locations (SSLs) to support
real time decisions. The main objective is the identification of a small number of measurement sites to limit
cost and weight of the sensing technologies required onboard. In addition, measured data must be rich
in information content to properly support the decision task. Our strategy exploits unsupervised learning
techniques to compute the most informative sites to place sensors. Specifically, we adopt Self-Organizing
Maps and introduce a training metric accounting for spatial constraints related to size, shape, and accuracy of
sensing devices. Finally, the methodology can be integrated with a MultiStep-ROM procedure to efficiently
leverage measured data to decisions.

This work proposed and discussed an implementation of the placement strategy oriented to the identifi-
cation of a unique SSL for all the quantities of interest to measure. The computed SSL is a trade-off among
all the measured quantities to capture their informative content at once. The approach is demonstrated for
the structural assessment of an unmanned air vehicle wing panel. For this application, the SSLs determined
with our strategy are compared with random placements for a variety of sensor availabilities ranging from
fp ≈ 0.10% to fp ≈ 10%; the error associated to online estimates of capabilities illustrates that the SSLs de-
termined with our placement strategy allow for dramatic improvements in terms of accuracy and robustness
to uncertainty. In particular, we achieve a significant error reduction (two orders of magnitude) for small
fractions of measurements fp ranging from 0.5% to 5% of the reference grid points. Future developments
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include the study of alternative implementations to enhance computational efficiency and enable a dynamic
selection of the most informative locations to monitor online.
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