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Developing an Adaptive Robotic Assistant for Close

Proximity Human-Robot Collaboration in Space

Przemyslaw Lasota∗, Stefanos Nikolaidis† and Julie Shah ‡

Massachusetts Institue of Technology, Cambridge, MA, 02139, U.S.A

In this paper, we present a framework for an adaptive and risk-aware robot motion
planning and control, and discuss how such a framework could handle uncertainty in hu-
man workers’ actions and robot localization. We build on our prior investigation, where
we describe how uncertainty in human actions can be modeled using the entropy rate in a
Markov Decision Process. We then describe how we can incorporate this model of uncer-
tainty into simulations of a simple collaborative system, involving one human worker and
one robotic assistant, to produce risk-aware robot motions. Next, we highlight the difficul-
ties associated with localization uncertainty in a space environment and describe how we
can incorporate this uncertainty into an adaptive system as well. Expected advantages of
an adaptive system are described, including increases in overall efficiency due to reductions
in idle time, increases in concurrent motion, faster task execution, as well as subjective
improvements in the worker’s satisfaction with the assistant and reduced worker stress and
fatigue. A pilot experiment designed to evaluate the benefits of introducing risk-aware mo-
tion planning is described. It is found that human-robot teams in which the robot utilizes
risk-aware motion planning show on average 24% more concurrent motion and execute
the task 13% faster, while simultaneously improving safety by having a 19.9% larger mean
separation distance between the human and robot workers. Finally, possible future system
developments and user studies are discussed.

I. Introduction

The introduction of robotic assistants into previously human-only domains is a topic generating a sig-
nificant amount of interest, both on Earth for manufacturing applications, as well as in space. Robonaut 2,
for example, has become a permanent resident of the International Space Station in the beginning of 2011,
and is envisioned to aid operations on the station’s Destiny laboratory. While confined to the interior of
the station for now, there are plans to continue development of Robonaut to make it carry out key support
roles, working alongside astronauts both inside the station and during EVAs.4

Incorporating robots into workplaces, especially those in which humans and robots would work together
in close proximity, poses safety challenges that may be addressed through human-centered design of robot
autonomy and control. One such challenge is the inherent uncertainty in the actions of a human worker.
While some tasks require a strict order of actions to be followed, in many human-only domains, the exact se-
quence of actions to be taken is left to the worker’s discretion. While robots can manage strictly-structured
tasks well by performing pre-programmed motions repetitively, they are not capable of adjusting to the
uncertainty introduced by a human co-worker who is not following a strict sequence of actions. New applica-
tions for human-robot collaboration will require robots that act in a risk-aware manner that accommodates
the uncertainty in the human’s actions and motions.

As recent research in the field has shown, there are many different ways of dealing with such uncertainties.
One example of recent work presents a system which predicts human workspace occupancy based on early
stages of the human workers movement, and then modifies the robots task selection and trajectory generation
based on this information.9 In work focused on improving assisted teleoperation through policy blending
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of user input and prediction, the humans goals and motion trajectories are instead predicted through a
formulation based on Inverse Reinforcement Learning.5,6

Incorporating robotic assistants in a space environment introduces additional difficulties, including un-
certainty in robot localization.2,8 In order to make the introduction of robotic assistants into uncertain
domains possible, a method of adapting the robots to various uncertainties needs to be developed.

II. Uncertainty in Human Actions

Modeling Human-Robot Interaction
The first step in developing an adaptive robotic assistant is to model the uncertainty in the human’s next

action. In our ongoing research we utilize a Markov Decision Process (MDP) to computationally encode a
teaming model that captures knowledge about the role of the robot and the human team member.10

We describe the teaming model as a Markov Decision Process, a tuple {S,A, T,R}, where:

• S is a finite set of states of the world; it models the set of world environment configurations.

• A is a finite set of actions; this is the set of actions the robot can execute.

• T : S × A −→ Π(S) is the state-transition function, which, for each world state and action, gives a
probability distribution over world states; the state transition function models the variability in human
action. For a given robot action a, the human’s next choice of action yields a stochastic transition
from state s to a state s′. We write the probability of this transition as T (s, a, s′). In this formulation,
human behavior is the cause of randomness in our model, although this can be extended to include
stochasticity from the environment or the robot actions as well.

• R : S ×A −→ R is the reward function, giving the expected immediate reward gained by taking each
action in each state. We write R(s, a) for the expected reward for taking action a in state s.

The policy π of the robot is the assignment of an action π(s) at every state s. The optimal policy π∗ can
be calculated using dynamic programming.11 Under this formulation, the role of the robot is represented by
the optimal policy π∗, whereas the robot’s knowledge of the role of the human co-worker is represented by
the transition probabilities T .

Quantitative Evaluation of Predictable, Convergent Joint Action
During team training, we expect the human and robot to perform similar patterns of actions as the

human and robot converge on a collaboration strategy. This means that the same states will be visited
frequently and the robot uncertainty about the human’s action selection will decrease.

To evaluate the convergence of the robot’s computational teaming model and the human mental model,
we assume a uniform prior and compute the entropy rate7 of the Markov chain (Eq. 1). The Markov chain
is induced by specifying a policy π in the MDP framework. For the policy π we use the robot actions that
match human preference, as it is elicited by the human after training with the robot. Additionally, we use
the states s ∈ S that match the preferred sequence of configurations to task completion. For a finite state
Markov chain X with initial state s0 and transition probability matrix T the entropy rate is always well
defined.7 It is equal to the sum of the entropies of the transition probabilities T (s, π(s), s′), for all s ∈ S,
weighted by the probability of occurrence of each state according to the stationary distribution µ of the
chain (Equation 1).

H(X) = −
∑
s∈S

µ(s)
∑
s′∈S

T (s, π(s), s′)log [T (s, π(s), s′)] (1)

Interestingly, the conditional entropy, given by Eq. 1, also represents the robot’s uncertainty about the
human’s action selection. Post-hoc analysis of the human subject experiments10 indicates that this measure
decreases as human and robot train together, and increases when the human deviates from the robot’s
probabilistic model of human action-intent (Fig.1-Left). The entropy rate measure has also been shown
to produce different results (of statistical significance) for various interactive planning techniques (Fig.1-
Right), and to correlate to objective and subjective measures of team performance.10 This measure can
be generalized to encode situations where the human has multiple preferences or acts stochastically. We
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propose that these results provide first support that entropy rate may be used as a component of a dynamic
assessment of risk, and may be used to generate risk-aware robot motions and action selections.

Figure 1. (Left) From prior human subject experiments10 - in this trial the participant changed strategies for working
with the robot from training to execution. The entropy rate decreases over all three rounds of interactive planning,
and then sharply increases at execution as the person acts out a different strategy than planned. (Right) The entropy
rate measure was also shown to produce different results, of statistical significance, for human-inspired interactive plan-
ning through cross-training versus training through traditional interactive reinforcement learning.10 These differences
correlated with improvements in objective and subjective measure of team performance for cross-training.

Adaptive Motion Planning
In this work, we take the next step to use these uncertainty models to adapt robot motions. Once we

know the probability distributions of human actions, we can determine with what probability the human
worker will occupy various locations in the workspace shared with the robot. Take, for example, a sample
workspace shown in Figure 2.

If we know with high probability that the human worker will be placing a screw at the third location
from the left next, we can utilize task and human motion models to determine what portion of the shared
workspace will be occupied by the worker while he or she executes the task. In the case of the sample
human-robot collaboration workspace shown in Figure 2, we can simplify this procedure by approximating
the obstructed space by a cylinder extending from the person’s shoulder down to the target location on the
table, as shown by the virtual representation of the workspace depicted in Figure 3. Once the anticipated
obstructed space is determined, the robot can choose actions which maneuver around this space.

Figure 2. Sample human-robot collaboration workspace

III. Uncertainty in Localization

While the described approach is applied to adapt to uncertainty in the human’s next action, the basic
method is by no means limited to just this one type of uncertainty. If robotic assistants like Robonaut 2
are to be used in space, for example, several other uncertainties can arise. Due to environmental conditions
and technological limitations (e.g. gyro bias, thermal bias, and attitude estimation errors), localization
technology in a space environment comes with a significant amount of uncertainty. We plan to make use
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Figure 3. Virtual counterpart to the workspace of Figure 2

of a high fidelity localization uncertainty model, developed specifically for space application, to adapt robot
motion planning. This will be done by using the localization probabilities given by the model along with
the probabilistic models of which portions of the workspace the human worker is expected to occupy, as
described in the previous section. These two sources of information can be used to calculate with how much
confidence the robot will be able to successfully navigate around the human worker.

IV. Potential Benefits

There are several reasons why incorporating such adaptations is beneficial. A robot which does not adapt
to a human worker and simply performs a pre-set sequence has to stop any time the human worker is in the
way of the robot’s next task. Additionally, precedence complications could arise when the human worker
performs a task which needs to be done prior to a certain robot action. For example, if the human places
screws to be drilled by the robot in a sequence other than the robot’s pre-programmed plan, the robot will
have to sit idle until the human places a screw at the robot’s anticipated drilling location. These problems
could potentially lead to significant decreases in efficiency, especially if the pre-programmed sequence the
robot is using is particularly different from the worker’s preferred order of actions. Consequently, we expect
that having a robot which can successfully predict the human’s next action will lead to significant decreases
in robot idle time, resulting in improved system efficiency.

Incorporating risk-aware motion planning on top of a system capable of predicting human actions pro-
duces additional benefits. A risk-aware robot is capable of not only moving to the right location at the
right time, but also moving there in a way which avoids the portion of the workspace which the human
worker is anticipated to occupy. We predict that having a robot which moves in such a manner will lead to
significant increases in concurrent motion of the human-robot team, as the two partners are less likely to
utilize interfering paths. By having more concurrent motion, the team will execute the task more efficiently,
leading to potential decreases in task execution time.

Beyond objective improvements in efficiency, having an adaptive robot also has the potential to increase
the human worker’s comfort with the robotic assistant. We expect that by adapting to the human’s next
most likely action and using risk-aware motion planning, the number of times in which the robot will reach
toward the same space as the human and have to come to an abrupt stop will decrease, thus benefiting
human trust in the system.

Incorporating task localization uncertainty will ensure that the system will provide all of these benefits
by making the system more robust. This is especially true in settings where localization uncertainty can
have a significant impact, such as space environments, as mentioned in the introduction section. Using
a probabilistic model for anticipating human actions as well as human and robot localization will lead to
executions which minimize interference with the human, allowing all the previously mentioned benefits to
be realized.
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V. Pilot Experiment

While there are many possible benefits of having a robotic co-worker capable of predicting human actions
and planning risk-aware motions, if one were to test a system with both of these capabilities, it would be
difficult to determine the individual benefits of each component. Consequently, a small pilot study was
designed in order to determine the benefit of using risk-aware motions alone while keeping the prediction
capability of the robot constant. In order to achieve this, we assumed the system is capable of predicting
the human’s actions with perfect accuracy, and then observed the performance of two types of human-robot
teams: one in which the robot used risk-aware motion planning, and one in which the robot moves to each
location using a pre-programmed shortest path.

In order to emulate a system which predicts the human’s next action with perfect accuracy, the screw
placement sequence was predetermined and the subjects were told to place the screws in this specific sequence.
The subjects were split into two conditions: one group worked with a robot which anticipated the human
worker’s next action and adapted by using risk-aware motion planning to move around the human in the
workspace (adaptive condition); the other group worked with a robot which did not attempt to adapt
its motions and simply moved to the targets using a shortest path motion (non-adaptive condition). In
both groups, a safety procedure was running in the background which decreased the speed of the robot
in an exponential manner when the separation distance between the human and robot fell below a certain
threshold, and stopped the robot completely if this distance fell below an even lower designated threshold.

In the adaptive condition, the robot’s motions needed to avoid the human worker. The risk-aware motion
plans needed to achieve this were constructed offline using the Constrained Bi-directional Rapidly-Exploring
Random Tree (CBiRRT) algorithm from the CoMPS suite in OpenRAVE.1,3 For each possible pair of robot
action and anticipated human location, a virtual environment was constructed with a cylinder placed at
the anticipated human location to simulate expected human workspace occupancy, as show in Figure 3. A
trajectory was then computed and then saved in a database to be used by the adaptive system. This offline
motion planning method was used in order to ensure repeatability of motions, as the CBiRRT algorithm
uses a Rapidly-Exploring Random Tree (RRT) which inherently produces different motions each time.

The robot used for this study was an ABB IRB-120. A PhaseSpace motion capture system was used to
track the position of the human in the workspace to determine what actions the human worker is taking,
as well as to provide the safety system described above with information needed to slow down and stop the
robot when necessary.

The task performed by the subjects consisted of placing screws at eight locations on a table while the
robot went over each placed screw with a brush to emulate applying a sealant. The workspace is shown in
Figure 2. In order to see how an adaptive, risk-aware system differs from the non-adaptive system, let us
take the example configuration shown in Figure 2. Imagine that the human worker has just finished placing
the second screw, and is expected to place the third screw in the location directly to the right of the second
screw. Based on this information, the system will construct the virtual environment shown in 3. If the robot
already applied sealant to the first screw, its next action is to move to the second screw and apply sealant
there. A non-adaptive robot will take the shortest-path route to the second screw, represented by the blue
arrow in the figure. This will likely cause the robot to have to stop abruptly as the human worker reaches
through its planned path. An adaptive, risk-aware robot will avoid such a conflict by selecting a path to its
goal which moves around the region of expected human occupancy. One example of such a path is shown in
the figure as a green arrow.

After the experiment, the subjects filled out a brief questionnaire to assess their satisfaction with the
robot as a co-worker and to determine how safe they felt during task execution. The questionnaire contained
seven questions to which they provided answers using a standard five-point Likert scale. The questions asked
were as follows:

• I trusted the robot to do the right thing at the right time.

• The robot did not understand how I wanted to do the task.

• The robot and I performed the task well together.

• I felt safe when working with the robot.

• The robot moved too fast for my comfort.
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• The robot came too close to me for my comfort.

• I trusted the robot would not harm me.

The two main hypotheses in this experiment were:

• H1. The adaptive system will lead to more concurrent motion, a higher average robot speed, and a
shorter total execution time when compared to the non-adaptive system.

• H2. Subjects who worked with the adaptive system will be more satisfied with its performance as
a co-worker and feel more comfortable and safer working with it than subjects in the non-adaptive
condition.

VI. Results and Discussion

A total of five subjects participated in the pilot experiment. The subjects were randomly assigned to
each condition, with three to the adaptive and two to the non-adaptive condition. The sequence selected for
the study was a simple placing of the screws in order from left to right. This sequence was selected, because
it provides an even mix of conflicting and non-conflicting motions and is easy to remember and execute.

There were three sources of data: data recorded by the system, a video of the task execution, and post
experiment questionnaire responses. The system recorded information about robot speed and separation
distance during task execution. The video was used to determine total task execution time, the percentage
of concurrent motion, as well as for qualitative analysis of the human worker’s response to the robot. The
questionnaire assessed the human workers’ satisfaction with the robot as a co-worker and how safe they felt
working with it.

As expected, the mean separation distance between the human and robot during task execution was
higher in the adaptive condition, as the robot was actively evading regions which were expected to be
occupied by the human. The average separation distance for the non-adaptive condition was 20.2 cm while
in the adaptive condition this distance was 19.9% higher at 24.2 cm.

The robot speed is defined with the use of a speed multiplier given by the safety system, which is a value
in the range of 0 to 1. When the separation distance falls below the speed reduction threshold, an exponential
function outputs a number in this range based on the remaining separation distance. The product of the
preset robot speed, which is set to a constant for all motions in this task, and the speed multiplier is used
to set the robot’s actual speed. The mean velocity multiplier was 10.2% higher for the adaptive condition
(0.97 for adaptive, 0.88 for non-adaptive), which indicates that not only was the overall separation distance
higher, but also that the threshold distance which triggers a reduction in speed was reached less often by
the adaptive system.

The adaptive system also performed better in terms of percentage of concurrent motion. The percentage
of concurrent motion was calculated by analyzing the video of the task execution and dividing the number
of seconds of concurrent motion by the time of task execution during which concurrent motion was possible.
The portion during which concurrent motion was possible was defined to be from when the robot motion
starts to when the human finishes placing the last screw. This is because it is possible for the human to get
ahead of the robot and finish the task early while the robot still has a few screws to apply sealant to. During
this portion of task execution, concurrent motion is not possible, since the human is done with his tasks,
and so this segment is ignored in concurrent motion calculations. Based on these definitions, the percentage
of concurrent motion for the non-adaptive condition was 68% which is 24% lower than the 92% obtained
in the adaptive condition. This result indicates that the adaptive system’s capability of avoiding locations
where the human is expected to move to next allows the human worker to move toward successive target
locations more freely and with less hesitation. This result was confirmed by reviewing the video recordings
of the experiment and observing how the subjects in the two groups performed the task. One can see that
the subjects in the non-adaptive condition initially attempt to work concurrently, but quickly switch to a
strategy in which they wait and attempt to time their motions to evade the robot. This timing strategy is
not present during task execution in the adaptive condition, with the subjects reaching toward successive
target locations without waiting for the robot.

The results of the aforementioned metrics are summarized in table 1 below:
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Mean Separation Distance
(cm)

Mean Velocity Multiplier Percent of Concurrent
Motion (%)

Adaptive 24.2 0.97 92

Non-Adaptive 20.2 0.88 68
Table 1: Comparison of team fluency metrics for both conditions

The adaptive system also performs better in another key metric: total task execution time. Despite
the adaptive system’s wide motions being much less direct than the straight-line paths of the non-adaptive
system (see Figure 3), the human-robot teams in which the adaptive system was used completed the task on
average in 41s, which is 13% faster than teams with the non-adaptive system at 47s, as can be seen in Figure
4 below. This shows that that the benefit of allowing for more concurrent motion and having the robot slow
down less often outweighs the penalty of having the robot take less direct paths toward its targets.

Figure 4. Comparison of total task execution time for the two conditions

The fact that teams which used the adaptive system completed the task faster is a very important result,
as this indicates that a robotic co-worker can be made safer to work with, by having it maintain a larger
separation distance, while simultaneously increasing the overall efficiency of the team.

The results discussed thus far all provide support for our first hypothesis, showing that there is a clear
benefit to having the robot use risk-aware motions when working with a human partner.

In order to see if there is support for the second hypothesis, which states that human subjects working with
the adaptive system will be more satisfied with their robotic co-worker and feel more safe and comfortable,
the post experiment questionnaires were evaluated. In terms of the subjects’ satisfaction with the robotic
co-worker, the survey responses did not provide a clear result. While subjects indicated the adaptive system
better understood how they wanted to perform the task when compared to the non-adaptive counterpart,
they also indicated they trust the non-adaptive system more to do the right thing at the right time. The two
systems received the same rating when the subjects were asked if they and the robot worked well together.
Based on these three questions and the corresponding responses, it appears there was no perceived difference
in how well the robot performed as a teammate. One possible explanation for this trend, in light of the
previously mentioned execution strategies employed by the subjects in the two conditions, is that the strategy
used by the subjects in the non-adaptive condition, namely to wait and carefully time their motions to avoid
the robot, is a quick subconscious adjustment which is not consciously perceived by the subject as a burden.

When looking at the second aspect of the second hypothesis, perceived comfort and safety when working
with the robot, the non-adaptive system actually received higher marks than the adaptive system. In the
adaptive condition, subjects indicated the robot moved too fast more often, whereas in the non-adaptive
condition they trusted the robot would not harm them and they reported they felt safe working with the
robot. Both systems received the same ranking when asked if the robot came too close for the person’s
comfort. These results suggest that overall the adaptive system was perceived as less safe by the subjects.
This is an interesting trend given that, in the adaptive condition, the robot kept a larger distance from the
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subjects and actively avoided producing conflicting motions. One possible explanation for why the subjects
in the adaptive condition reported feeling less safe, is that the wide motions used to avoid the human were
less predictable than the short straight-line paths of the non-adaptive system. A robot which moves less
predictably can potentially be perceived as less safe, even if the motions are technically safer due to a larger
separation distance and less conflicting motions.

VII. Conclusions and Future Work

Based on the results of the pilot study, one can see that the introduction of risk-aware motion planning
can lead to significant increases in team efficiency by encouraging more concurrent motion which leads to
shorter task execution times. Now that the effect of risk-aware motion planning decoupled from the potential
benefits of predicting human actions has been studied, the next step is to develop a full adaptive system
which combines human action prediction and risk-aware motion planning while compensating for localization
uncertainty. Once this system is developed, we intend to run a large-scale user study to verify its anticipated
benefits. We propose an experiment in which subjects will work on the same task as in the pilot study,
but this time a virtual environment will be constructed in real time to simulate probability distributions
over likely human actions and plan risk-aware robot motions. The robot’s motion and task selection will be
determined by an algorithm which utilizes the human action and localization uncertainties.

Subjects will be assigned to one of two conditions, one in which the robot adapts based on action
prediction, and one in which it simply follows a pre-programmed sequence. Additionally, the group of
subjects in which the robot adapts will be divided into several sub-groups of varying levels of uncertainty
in human actions as well as uncertainty in localization of both the human and robot workers. While the
human worker and robot work together on the task, several key parameters will be measured, including:
robot idle time, the amount of concurrent motion, the number of times the robot was forced to stop due to
interference with the human, and total execution time. Additionally, subjective measures of human comfort
and satisfaction with the robotic assistant will be measured with the use of a questionnaire. The data
collected will then be analyzed to determine the merit of the adaptive system as compared to a standard
non-adaptive robot. As an additional benefit, we anticipate the results will be used to inform the design of
tracking and localization systems for human-robot collaboration in space environments.
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