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Abstract—Human-robot collaboration presents an opportunity
to improve the efficiency of manufacturing and assembly pro-
cesses, particularly for aerospace manufacturing where tight
integration and variability in the build process make physical
isolation of robotic-only work challenging. In this paper, we
develop a robotic scheduling and control capability that adapts
to the changing preferences of a human co-worker or supervisor
while providing strong guarantees for synchronization and timing
of activities. This innovation is realized through dynamic execu-
tion of a flexible optimal scheduling policy that accommodates
temporal disturbance. We describe the Adaptive Preferences
Algorithm that computes the flexible scheduling policy and
show empirically that execution is fast, robust, and adaptable
to changing preferences for workflow. We achieve satisfactory
computation times, on the order of seconds for moderately-
sized problems, and demonstrate the capability for human-robot
teaming using a small industrial robot.

I. INTRODUCTION

Traditionally, industrial robots in manufacturing and assem-
bly perform work in isolation from people. When this is not
possible, the work is done manually. We envision a new class
of manufacturing processes that achieve significant economic
and ergonomic benefit through robotic assistance in manual
processes. For example, mechanics in aircraft assembly spend
a significant portion of their time retrieving and staging tools
and parts for each job. A robotic assistant can provide pro-
ductivity benefit by performing these non-value-added tasks
for the worker. Other concepts for human and robot co-work
envision large industrial robotic systems (examples in Fig. [T))
that operate in the same physical space as human mechanics.

Fig. 1. (Left) Coriolis Composite Placement Robot; (Right) Electrolmpact
Robotic Drilling Arm

This work is supported by Boeing Research and Technology and ABB, Inc.
Mechatronics US Corporate Research.

In this paper, we present a robotic scheduling and control
capability for human-robot collaborative work that addresses
two key challenges in the manufacturing environment. First,
preferences about task completion are prone to change since
the ordering and timing of activities in many manual processes
are left to the discretion of the human workers. A high level
of adaptability and robustness must therefore be built into any
robotic system that works in close collaboration with people.

Second, human and robotic work in manufacturing and
assembly must meet hard scheduling constraints, including
pulse rates between build stations and flow rates for end-to-
end assembly. The changing preferences of a human co-worker
or supervisor must be accommodated while preserving strong
guarantees for synchronization and timing of activities.

Our approach generalizes from dynamic scheduling meth-
ods [2l 16l [13] first developed to perform scheduling onboard
a deep space satellite [6]. Dynamic scheduling is domain
independent and has been successfully applied to scheduling
within the avionics processor of commercial aircraft [13],
autonomous air vehicles [[12]], robot walking [3]], and recently,
human-robot teaming [8, [11]. We leverage prior art that
addresses efficient real-time scheduling of plans whose tem-
poral constraints are described as Simple Temporal Problems
(STPs) [2! 16, [13]. STPs compactly encode the set of feasible
scheduling policies for plan events that are related through
simple interval temporal constraints. Temporal flexibility in
the STP provides robustness to disturbances at execution.

We make use of this simple yet powerful framework to
model joint human-robot work as a Simple Temporal Problem
with soft constraints (called preferences). The preferences
encode person-specific workflow patterns and human operator
input for suggested workflow. Simple Temporal Problems with
Preferences (STPPs) have been studied previously [4} 15} [7]
for weakest-link optimization criteria, but these solution tech-
niques do not generalize to optimization criteria relevant
to manufacturing applications. Alternatively, an STPP with
arbitrary objective function may be formulated and solved as a
non-linear program (NLP), where the solution is an assignment
of execution times to each event in the plan. This approach
results in brittle solutions; any disturbance in execution time
requires time-consuming re-calculation of the schedule.

In this work, we describe a robotic scheduling capabil-



ity that leverages the strengths of STP and NLP solution
methods: flexibility in execution and optimization of arbitrary
objective functions, respectively. We present the Adaptive
Preferences Algorithm (APA) that uses the output of a non-
linear program solver to compute a flexible optimal scheduling
policy that accommodates temporal disturbance. The algorithm
also supports on-the-fly optimization in response to changing
preferences. In Section we discuss examples of human-
robot interaction that motivate our work. Next, in Section
we briefly review STP dynamic scheduling and optimization
of preferences, since this prior art forms the basis for our
approach. In Sections [[V] and [V] we present the Adaptive
Preferences Algorithm (APA) and its evaluation. We show
empirical results indicating both that APA provides significant
robustness to temporal disturbance and that a robot using
APA can adaptively schedule its actions over a horizon of
20 activities with sub-second speed. Finally in Section [VI]
we apply APA to perform human-robot teaming using a small
industrial robot.

II. MOTIVATING EXAMPLES

In this section, we discuss two types of applications that
motivate our work: one-on-one robotic assistance for a worker,
and single-operator orchestration of robot teams.

A. Robotic assistant to assembly mechanic

We aim to develop a capability that supports efficient
and productive interaction between a worker and a robotic
assistant, such as the FRIDA robot shown in Fig. 2] Although
important aspects like tolerances and completion times are
well defined, many details of assembly tasks are left largely
up to the mechanic.

Fig. 2.  ABB FRIDA robot acting as a robotic assistant

Assembly of airplane spars is one example of a manual
process where mechanics develop highly individualized styles
for performing the task. Fig. [3] shows a mechanic assembling
a spar. The spar is composed of two pieces that must be
physically manipulated into alignment. After alignment, wet
sealed bolts are hammered into pre-drilled holes and are
fastened with collars. Excess sealant is removed, and the
collars are re-torqued to final specifications. Sequencing of
these tasks is flexible, subject to the constraint that the sealant
is applied within a specified amount of time after opening it.

A robot such as FRIDA can assist a mechanic by picking
bolts and fasteners from a singulator, rotating them in front
of a stationary sealant end-effector, and inserting them into
the bores. This would allow the mechanic to focus on wiping

Fig. 3.  Spar assembly is a manual process that could be improved by a
robotic assistant (image courtesy of Boeing Research and Technology)

sealant, hammering the bolts, and placing and torquing the
collars. This division of labor would provide productivity
benefit through parallelization of tasks.

Our aim is to enable a robotic assistant to adapt to person-
specific workflow patterns. If most mechanics like to hammer
all bolts before torquing collars, the robot will support this
approach by placing all bolts in a pattern that anticipates the
mechanic’s actions. When the robot is paired with a mechanic
that instead prefers to hammer and torque the collar for each
bolt as it is placed, the robot will quickly perceive this differ-
ence and reoptimize its schedule to converge on a turn-taking
pattern with the mechanic. The robot will adapt according to
the mechanic’s preferences, subject to the constraint that the
sealant is utilized within the specified window.

B. Robotic Team Orchestration

We also aim for our capability to enable a single operator
to direct a team of robots, while ensuring that hard scheduling
deadlines such as mandated flow rates are met. Work will
be shifted according to operator preferences through fast re-
computation of the robots’ schedule, while preserving guaran-
tees that assembly will finish within specified deadlines.

Unscheduled maintenance is frequently required for new,
specialized robots that perform traditionally manual work,
including drilling and composite lay-down. Current practices
require all robots halt while one robot is repaired, or while a
quality assurance agent inspects the work. These slowdowns
and subsequent workflow recalculations cost the facilities
hours of productivity that can be avoided with the quick re-
computation and flexible schedules provided by our approach.

III. BACKGROUND

The robotic scheduling and control capability we develop
builds on previous work in STP dynamic scheduling and
optimization of STPs with Preferences (STPPs).

A. Dynamic Scheduling of STPs

A Simple Temporal Problem (STP) [2] consists of a set of
executable events, X. These events are connected via binary
temporal constraints (intervals) b;; that indicate a range for the
temporal distance between events X; and X;. Fig. E| (left)
presents the constraint form graphical depiction of a binary
temporal constraint. Events are represented as nodes, and the
temporal constraint is depicted with an arrow and assigned
interval.



Fig. 4. Left: Constraint form representation; indicates that event B must
occur at least 3 time units after event A but no more than 5 time units after
it, or 3 < Xp — X4 < 5, Right: Distance graph representation; indicates
the same interval as the constraint, but yields two equivalent inequalities,
Xp—Xa<band X4 — Xp < -3

The STP constraint form may be mapped to an equivalent
distance graph form to support efficient inference [2]. Fig.
(right) presents the distance graph form of the temporal
constraint. The interval upperbound is mapped to a positive arc
from X4 to Xp, and the lowerbound is mapped to a negative
arc from Xp to X4.

A solution to an STP is a time assignment to each event
such that all constraints are satisfied. An STP is said to be
consistent if at least one solution exists. Checking an STP for
consistency can be cast as an all-pairs shortest path problem.
The STP is consistent if and only if there are no negative cycles
in the all-pairs distance graph. This check can be performed
in O(n?) time by applying the Floyd-Warshall algorithm [2].

The all-pairs shortest path graph of a consistent STP is
also a dispatchable form of the STP, enabling flexible real-
time scheduling [6]. The dispatchable STP provides a com-
pact representation of the set of feasible schedules. Dynamic
scheduling of the dispatchable STP provides a strategy that
schedules events online just before they are executed, with
a guarantee that the resulting schedule satisfies the temporal
constraints of the plan. Scheduling events on-the-fly allows the
robot to adapt to temporal disturbance associated with past
events through fast linear-time constraint propagation. More
formally, a network is dispatchable if for each variable X 4 it
is possible to arbitrarily pick a time ¢ within its timebounds
and find feasible execution windows in the future for other
variables through one-step constraint propagation of the X 4
temporal commitment. Dispatching of STPs is described in
more detail with examples in Section [[V]

B. Prior art in STP Preference Optimization

An STP with Preferences (STPP) [5] is a Simple Tempo-
ral Problem with the addition of soft binary constraints, or
preference functions, fy,;(t) relating the temporal durations
between events. The global preference function, F', of an STPP
represents the objective function derived from the preference
values based on a time assignment to each event. An optimal
solution to the STPP is consistent with the temporal constraints
b;; and optimizes the global preference function F'.

Preferences provide an expressive and natural framework
for encoding human input. A supervisor may apply preference
functions to specify the most effective timing for an activity
without providing hard constraints that lead to schedule brit-
tleness. For example, a supervisor may specify the desire for
painting to take four hours, but allow any time up to six hours
as acceptable.

Preference functions may also be applied to encode sta-
tistical information about likely execution times for human

actions, so as to drive the robot schedule to conform to human
behavior. Data mining of typical human workflows can provide
the statistical information necessary to infer preference func-
tions. In addition, preference functions may be used to model
the effect of implicit communications; recent studies indicate
that gestures induce preferences over execution sequence and
timing in human teams [9]. This effect may be reproduced in
human-robot teams using preference functions.

STPPs were originally developed to perform scheduling
for Earth observation satellites [4]. Scientists were asked
to provide preferences indicating the most effective times for
them to access the satellite. The STPP framework was applied
to solve the scheduling problem, using an objective function
that maximized the preferences of the least satisfied scientist.
Solution methods, including a slow constraint propagation
technique and fast binary chop method [7]], have been
designed for this weakest link optimization criterion but do
not readily generalize to other objective functions.

Fairness is not a concern in the optimization of a manu-
facturing process. It is acceptable to sacrifice one interval’s
preference value to improve the preference values for many
other intervals (e.g. slow down one robot so that it does
not block the path for the other robots). For example, for
many manufacturing applications, an approach that optimizes
the STPP with respect to the sum of preference values,
>, Joi;(t), is more appropriate. An STPP with arbitrary
objective function may be formulated and solved as a non-
linear program (NLP), where the solution is an assignment of
execution times to each event in the plan. However, this ap-
proach results in brittle solutions; any disturbance in execution
time requires time-consuming re-calculation of the schedule.
In the next sections, we present a method for computing a
temporally flexible optimal scheduling policy that leverages
the strengths of STP and NLP solution methods. The Adaptive
Preferences Algorithm computes a flexible optimal scheduling
policy that accommodates fluctuations in execution time and
supports robust online optimization in response to changing
preferences.

IV. PROBLEM FORMULATION

The Adaptive Preferences Algorithm (APA) takes as input a
Simple Temporal Problem with Preferences (STPP), composed
of

e a set of variables, X1, ..
events,

« a set of binary temporal constraints of the form b;; en-
coding activity durations and qualitative and quantitative
temporal relations between events X; and X,

« aset of preferences functions of the form f, , (¢) encoding
preference values over the temporal interval b;; , and

« a global objective criterion F' defined as a function of the
preferences functions fy,;(t). We use F' =3, fp,, (1)
for prototyping of the described manufacturing applica-
tions, although note APA generalizes to other forms of
the objective function.

.X,, representing executable



The output of the algorithm is a dispatchably optimal (DO)
form of the STPP that supports fast dynamic scheduling.
We define an STPP as dispatchably optimal if it is possible
to maximize the global preference function F' through the
following procedure: for each variable X, it is possible to
arbitrarily pick a time ¢ within the DO form’s timebounds
and find feasible execution windows in the future for other
variables through fast one-step constraint propagation of the
X, temporal commitment.

Notice that the proposed problem may be formulated as
a non-linear optimization problem to solve for event execu-
tion times. This approach provides a solution that is brittle
to disturbance, requiring recomputation when an event does
not execute at precisely the specified time. In contrast, our
approach compiles a temporally flexible optimal scheduling
policy that accommodates fluctuations in execution time. This
method leverages the insight that there are many potential
schedules that are consistent with an optimal time assignment
to preference functions. Section presents the compi-
lation algorithm that computes the DO form for the STPP.
Section presents the dispatcher algorithm that generates
a schedule using the STPP DO form, and supports robust
online reoptimization in response to changing preferences.

A. Compiler for STPP DO Form

The Compiler takes as input a STPP composed of events
X, constraints b;;, and preference functions fy,(¢). It then
reformulates and optimizes the STPP as a non-linear pro-
gram. The resulting optimal timestamps are used to modify
the network so that intervals with preference functions are
tightened to the values returned by the optimizer; intervals
without preferences retain their flexibility. After an all-pairs-
shortest-path computation, the resulting output is a DO plan,
which encodes a flexible scheduling policy that maximizes
the global preference function F' subject to the given binary
temporal constraints b;;.

Pseudocode for the compilation algorithm is provided in
Fig. [l The first step (Line 1) of APAcompilePlan is to
compute the all-pairs-shortest-path form of the STP using the
Floyd-Warshall algorithm [1]. This process exposes implicit
constraints and is necessary to ensure events are scheduled in
the proper order with requisite temporal distances between
events. The result of the APSP computation is a fully-
connected network, with binary constraints relating each pair
of events. Many of the added constraints are redundant and
can be removed from the problem (Line 2) without loss of
information [6]]. Our empirical investigations indicate that
pruning of redundant constraints reduces the total number
of constraints by 40-50%. The resulting network is the most
compact representation of the binary temporal constraints that
still contains all feasible solutions present in the original
problem [6].

In Line 3, we use the resulting representation as input to
a standard, third-party optimization solver [1]. The STPP
is formulated as a nonlinear program as follows. Events
are encoded as variables with ranges that span the possible

function APAcompilePlan(STPP plan)
STP compiled plan = perform APSP( plan)
compiled plan = prune redundant edges(compiled plan)
optimal _execution times = new NLP Solver(compiled plan)
given prefs = gather constraints with preferences (plan);
for(each interval b’ {ij} in compiled plan)
if( there exists a constraint relating events Xi and Xj in given_prefs)
set b’ {ij} to difference in optimal execution_times[Xj-Xi];
end if
9. end for
10. perform APSP (compiled plan);
11. return compiled plan;

P NN AR

Fig. 5. Pseudocode for the compilation algorithm

execution times computed by the APSP computation. Binary
constraints are formulated as linear inequality constraints re-
lating the variables. For the manufacturing applications we are
interested in, the objective function is defined as 3, fo,, (¢),
the sum of the preference values evaluated across each binary
interval constraint. The preference functions are permitted to
be nonlinear, resulting in the nonlinear formulation. The solver
returns an assignment of event execution times that optimizes
the global preference value ' subject to the given constraints
bij.

Note that we do not use the output of the nonlinear optimizer
directly to set the schedule, as this will provide no robustness
to uncertainty and disturbance in the execution. Instead, we use
the output as follows to reformulate the STPP and compute a
temporally flexible, optimal scheduling policy.

In Line 4, the algorithm iterates through all constraints in the
original STPP and makes a list given_prefs of those that have
preference functions associated with them. Line 5 searches
through each constraint b;j in the partially compiled plan. If
bgj also exists in given_prefs, then bgj is updated, setting both
the upper and lower bounds of the constraint to the optimized
time of execution (with a small tolerance built in). Finally, in
Line 10, the APSP network is computed to expose implicit
constraints of the tightened network. The result (Line 11) is
a DO form of the STPP that preserves temporal flexibility in
the network where there is no impact on the time assignments
to preference values.

We now walk through an illustrative example for applying
the compilation algorithm. Consider the STPP shown in Fig.
[6l This network is an all-pairs-shortest path graph (Line 1),
with all implicit constraints exposed, and does not contain
any redundant constraints (Line 2). Line 3 generates a list
containing the following constraints with preference functions:
b AD and b BC-

Line 4 creates a solver with variables for each event:
A, B,C, D. All six intervals act as inequality constraints (e.g.
for interval AC, we have 1 < C'A < 5). The objective function
is given by

fotobal = —(D—A)* +15(D—A)—50—(B—C)?+2(B—C).
(1)



AD(t) = -t2 + 15t - 50
BC(t) = -t2 + 2t

Fig. 6. Example STPP to illustrate compilation

The non-linear program is solved, and yields optimal execu-
tion times of A =0,B = 3,C = 4, D = 7.5. Next, we create
a new copy of the plan and replace intervals AD[5,10] with
ADI7.5,7.5] and BC|0,2] with BC[1,1]. Performing Floyd
Warshall on this new network then produces the DO form of
the STPP, given in Fig. [/| Any choice of times satisfying the
constraints in Fig. [/| produces a solution that maximizes the
global preference value fgiopal -

Fig. 7. DO Form of the STPP in Fig. [f]

Next, we provide a proof that the STPP-DO form computed
by APAcompilePlan encodes all feasible solutions in the
original STPP that are consistent with a given optimal time
assignment to preference functions. In the next section, we
discuss the method for dispatching the DO form of the STPP.

Lemma (STPP-DO Form): Given an STPP with an optimal
time assignment t;,; — f3,(t) to each preference function,

(i) the STPP-DO form encodes all feasible solutions in the
STPP that are consistent with ¢, — f3,.(t), and

(ii) the STPP-DO form supports dispatchable scheduling.

Proof: (i) Lines 5-8 in APAcompilePlan tighten constraints
in the original STPP, ensuring that any solution satisfies ¢;,, —
Jfv,;(t) and achieves the optimal global preference value. Line
10 computes the all-pairs-shortest-path form of the resulting
STP, which by definition contains all feasible solutions present
in the original problem [6] that also satisfy tp,, — qu;j (t).

(i) The resulting STPP-DO form returned at Line 11 is
an all-pairs-shortest-path STP, which by definition is also a
dispatchable STP [6].

B. Dispatcher

In this section, we present a dispatcher algorithm that
supports two functions: the dispatcher (functionl) generates a
schedule using the STPP DO form, and (function2) supports
robust online reoptimization in response to changing prefer-
ences. The dispatcher takes as input an STP compiled_plan

that encodes the DO form of an STPP S. The dispatcher
schedules events on-the-fly just before they are executed while
guaranteeing that the resulting schedule satisfies the temporal
constraints of the plan. This guarantee is achieved through
constraint propagation of temporal commitments to executed
events. The output of the dispatcher is an assignment of event
execution times that optimizes the STPP S’ global preference
value F', subject to the given temporal constraints of S.

The dispatcher also supports robust online replanning of
the DO form, in response to changing preference functions
and disturbances in the optimal execution. In these situations,
the DO form must be recompiled by calling the algorithm
APAcompilePlan with the modified STPP S’. As discussed
in Section [V] this recompilation takes on the order of seconds
for moderately-sized real-world problems.

Function1 of the dispatcher is achieved using the standard
STP dispatching algorithm [6]. Function2 is achieved by
augmenting the STP dispatching algorithm with two additional
methods. The first method triggers recompilation for changing
preference functions or deviations from the optimal schedule;
the second method runs concurrently to ensure the dispatcher
makes progress during recompilation and that the execution
schedule satisfies the hard constraints of the STPP S.

Fig. [§ presents the STPP dispatching algorithm. Aug-
mentations to the standard STP dispatching algorithm are
highlighted. We walk through the dispatch of the DO plan
in Fig. |/| to illustrate the algorithm.

First, in Line 1, all events without predecessors are added
to the Enabled list. In our example from Fig. event A
is initially added to the Enabled list. In Line 2, the current
time is set to zero. Line 3 contains the first major change to
the standard dispatching algorithm. Here a concurrent thread
is started to shadow dispatch the STP associated with the
orig_plan. This thread is used to ensure the dispatcher makes
progress during recompilation and that the execution schedule
satisfies the hard constraints of orig_plan.

Dispatching continues until there are no unexecuted events
in the plan (Line 5). If new preference functions are made
available or the execution deviates from the optimal scheduling
policy, recompilation is triggered (Line 6). Execution control
is switched to the STPdispatch thread (Line 7). The orig_plan
is updated with execution commitments (Line 8) and is com-
piled (Line 9). Next, execution control is transferred back to
STPPdispatch (Line 9), and execution proceeds in Lines 11-25
according to the standard STP dispatching algorithm.

The dispatcher listens for notice of successful event execu-
tions from the robot (Line 13). Executed events are recorded in
the Executed list and removed from the Enabled list (Lines 14-
17). In Lines 18-21, the dispatcher commands an event to be
executed if it is both enabled, meaning all predecessors have
been executed, and is alive, meaning the current time is within
the event’s feasible window of execution. In our example, at
t = 0 Event A is enabled and alive, and is executed.

If an event is executed (Line 24), the Enabled list is
updated (Line 26), and the commitment is propagated through
the network compiled_plan to update liveness windows for



function STPPdispatch(STP compiled_plan, STPP orig_plan)

1. Enabled = {first event}; Executed = {}

2. current time=0

3. new thread STPdispatch(orig plan)

4. while(size of Executed < number of events)

5. if(new preferences or deviation from optimal schedule)

6 switch execution control to STPdispatch thread

7 orig_plan’ =replace past intervals with rigid links(orig_plan)
8 compiled plan =compilePlan(orig_plan’)

9 switch execution control to STPPdispatch
10.  endif
11. for(eachevente in plan)
12. if(Executed does not contain e)
13. if( robot signals event has been performed)
14. add event and execution time to Executed
15. remove event from Enabled
16. event_executed = true
17. end if
18. if(event e is in Enabled)
19. Interval bounds = extract ‘liveness’ bounds for e
20. if( bounds lowerbound < current time < bounds upperbound)
21. signal robot to execute event e
22. end if
23. end if
24, if(event executed)
25. event_executed = false;
26. Enabled = gather enabled events
27. propagate event commitment to compute liveness windows
28. wait for next live event or until robot signals an executed event
29. end if
30. endif
31.  endfor
Fig. 8. Pseudocode for the dispatching algorithm

all connected unexecuted events. With event A successfully
executed, the liveness windows for events B, (', and D are
updated to B : [3.5,4.5], C : [2.5,3.5], D : [7.5,7.5]. Once
A executes, event C is added to the Enabled list. Event C is
alive when the current time is between 2.5 seconds and 3.5
seconds. Executing event C at 2.5 seconds then leads to the
situation shown in Fig. [0} executed events are shown with
squares around letters.

Fig. 9. Dispatching & propagation status after event A has been executed
at ¢ = 0 and event C has been executed at t = 2.5

With events A and C in the Executed list, event B becomes
enabled and is executed at ¢ = 3.5. This commitment is
propagated forward, and event D is executed at ¢ = 7.5. The
resulting schedule maximizes the global preference value and
satisfies the temporal constraints of the problem.

The signal-and-response structure (signal in Line 21 and

robot response in Line 13) provides robustness in execution
by allowing for situations that prevents the robot from com-
pleting the task at precisely the specified time. For example,
consider event C is commanded at ¢ = 2.5 but is delayed at
execution till £ = 3.0. The STPP DO form accommodates this
disturbance on-the-fly through one-step constraint propagation.
The liveness windows for events B and D are updated to
B :[4.0,4.0], D : [7.5,7.5].

The compiler and dispatcher presented in Figs. [5] and [§]
have been implemented and tested successfully. Section
presents an empirical evaluation of APA, and Section
describes a robot demonstration applying APA to one-to-one
human-robot teaming.

V. EMPIRICAL EVALUATION

The STPP DO form is designed to be temporally flexible,
reducing the impact of disturbance on the schedule. In this
section, we empirically investigate the benefit of this flexi-
bility in two ways and compare the results to the non-linear
programming (NLP) solution. We also present computation
times for on-demand recompilation of the plan, showing that
a robot using APA can quickly adapt its schedule in response
to changing preferences.

Empirical results are produced using a random problem
generator that creates structured problems in the same manner
as prior art [10l [14]. The generator takes as input the number
n of events, the number of user-specified constraints ¢, and
the set P of preference functions. Each temporal constraint
relating plan events is generated by randomly selecting two
events from an array and connecting them with a binary
interval constraint. Constraint upper and lower bounds are set
randomly and then scaled by the difference in array indices
between the two events. This creates a network that has a
natural structure, with more distant events related through
longer temporal durations than local events. Each preference
function in P is assigned to a binary constraint in the order
the constraints are generated. Following the precedence of
previous work in STPPs [7]], we consider preference functions
of constant, linear, and quadratic form only. Only positive-
valued preference functions are permitted. A randomized
multiplier is applied to distinguish relative importance among
preference functions. The output of the generator is an STPP,
which is provided as input to the compiler. The APA compiler,
dispatcher, and random problem generator are implemented
in Java, and non-linear (here, quadratic) programs are solved
using the Java implementation of Gurobi [Il]. Results are
generated using an Intel Core i7-2620M 2.70 GHz Processor.

First we run simulations to evaluate the cumulative time a
robot spends re-computing the schedule in response to frequent
small disturbances, for example, from a human co-worker
that does not precisely follow the optimal scheduling policy.
This measure represents the total execution time the robot
spends unresponsive to the human co-worker’s preferences for
workflow. Fig. [T0| presents results showing the worst-case cu-
mulative compilation time for randomly-generated structured
problems, in response to frequent small disturbances in the



optimal schedule. Each data point signifies the average and
standard deviation across fifty randomly generated problems.
Results were computed for problem sizes ranging from 25 to
250 events. The number of preference functions was set at 20%
the number of events, based on the observation that real-world
problems typically have many fewer preference functions than
events. Cumulative compilation time for the inflexible NLP
approach scales with the number of events in the plan, whereas
the STPP DO approach scales with the number of preference
functions. The result is that the STPP DO form provides on
average an 80% reduction in cumulative compilation time.
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Fig. 10. Cumulative Compilation Time as a function of the number of events
in the plan

Next, we compute a comparative measure of the temporal
flexibility between both the STPP-DO form and the NLP solu-
tion and the original STPP. We compiled 50 random problems
and compared the resulting interval durations to the original
problems’ interval durations. This ratio then represents the
percentage of flexibility retained from the original problem;
higher values of this ratio correspond to an increased robust-
ness to disturbances during execution. We compare this to the
flexibility ratio for the NLP-specified schedule on the same 50
problems; Fig. [IT] presents the results. The DO form captures
on average more than 70% of the temporal flexibility in the
original plan, whereas the NLP solution captures less than 1%.
The DO form provides a marked improvement in robustness
to disturbance over the NLP solution while achieving global
optimization of the schedule.

DO Form Flexibili NLP Solution
Number of Events Rato Flexibility Ratio
50 74.7% £ 33% 1.0% £ 0.3%
100 75.4% £ 3.2% 0.5% + 0.1%
150 72.2% £ 3.1% 0.4% & 0.1%
200 71.7% £ 2.0% 0.2% £ 0.05%
Fig. 11.  Plan Flexibility of DO Form and NLP Solution

Finally, we present the computation times for single on-
demand recompilation of the plan. These results simulate the
execution latency associated with operator-specified changes to
the workflow. Fig. [[2] presents the compilation time results for
randomly-generated structured problems ranging in size from
50 to 1000 events. The number of preference functions is set at

20% the number of events. We empirically analyzed the impact
of the number of preference functions, ranging from 20% to
80% of the number of events, and found no significant effect
on performance. Instead, the number of temporal constraints
appears to be the primary driver of computation time.
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Fig. 12. Compilation Time as a function of the number of events in the plan

The results show satisfactory compilation times on the order
of seconds for problems with hundreds of events. Compilation
time is less than five seconds for problems with 400 events and
less than 1 second for 150 events or less. These results provide
sufficient capability for one-to-one human-robot collaboration,
indicating a robot can adaptively schedule its actions over a
horizon of approximately 75 activities with sub-second speed.

Multi-robot orchestration problems involve problems of one
to two orders of magnitude larger, with thousands to tens
of thousands of events. The current non-linear programming
approach does not scale to these sizes, and we are exploring
techniques to improve the efficiency of the compilation. The
bottleneck in the algorithm’s speed lies in the non-linear
optimizer. We are currently investigating the reformulation of
the non-linear program as an approximate linear program. This
approach is feasible for non-linear programs where the non-
linear terms are found only in the objective function, and the
objective function is composed of separable, concave terms.
Both of these conditions hold for the described approach, if
the preferences functions strictly relate event execution times
to the plan start.

VI. ROBOTIC DEMONSTRATION

We have applied the Adaptive Preferences Algorithm to
perform human-robot teaming using a small ABB IRB 120
industrial robot (set-up shown in [I3)). This demonstration is
based on the spar building application described in Section
The robot’s job is to apply sealant to each hole, and
the mechanic places and torques the fasteners. The mechanic
and robot must work together to ensure that each fastener
is placed within three seconds of sealant application. This
requires that the robot adapt to the timing of the mechanic’s
actions to avoid applying the sealant too early. One set of
workers, group A, likes to place all fasteners before torqueing
them. The other set, group B, likes to place and torque each
fastener before moving on to the next. The robot uses APA to



adaptively schedule its actions based on the type of worker
it is paired with; worker-type is inferred from the timing
of the mechanic’s actions. Specifically, APA tracks the two
different sets of preference functions and switches to the set
that achieves the maximum possible global preference value.
The STPP representation of this joint human-robot plan is
shown in Figure [T4] Video of the demonstration can be found
at http://tinyurl.com/7n439eg.

Fig. 13. Demonstration Set-up
Fastener 1 Fastener 2 Fastener 3 Fastener 4
Torque (T1) @2 ® @9
[3, 100] [3, 100] [3, 100] [3,100]
ft)=0 ft)=0 f(t)=0 ft)=0
g(t) =40 -2t g(t) =40 -2t g(t) = 40 - 2t g(t) =40 -2t
Place
Fastener @ @ @ @
[1,3] [, 3] [1, 3] [1,3]
Apply >(s2 >(s3 >
Sealant [3, 100] u [3, 100] J [3, 100]
f(t) =40 — 2t f(t) =40 — 2t f(t) =40 — 2t
g(t)=0 gy =0 g =0

Fig. 14. STPP for the Robotic Demonstration; the f preference functions
correspond to group A workers, while preferences, g, correspond to group B
workers

Trials of human-robot teaming demonstrated that the robot
was successfully able to adapt its schedule to both types of
workers. When a group A mechanic performed the assembly
task, the robot applied the sealant in regular intervals every
3 seconds to keep just ahead of the mechanic, allowing the
mechanic to place the fasteners in the holes before the sealant
dried. When a group B mechanic performed the task, the robot
began by applying the sealant every 3 seconds. However, once
it sensed that the mechanic had torqued the first fastener before
inserting the second, the robot recompiled its schedule using
group B preferences. The robot changed its pace to match
the mechanic’s using the newly computed flexible optimal
scheduling policy. This required slowing down the rate of
sealant application to every 7 seconds. Using the Adaptive
Preferences Algorithm, the robot was able to make on-the-fly
decisions about how to most effectively aid each worker.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the Adaptive Preferences Al-
gorithm (APA) that computes a flexible optimal policy for

robot scheduling and control in assembly manufacturing. We
show through empirical evaluation that the method is fast,
adaptable and robust to uncertainty in execution, and supports
interaction with human co-workers and supervisors whose
preferences about task completion are prone to change. We
also demonstrate the use of APA in human-robot teaming
trials using a small industrial robot and show that the robot
successfully adapts to the task preferences of different types of
workers. As future work, we are investigating an approximate
linear program formulation of the problem, with the aim of
scaling-up APA to multi-robot orchestration problems involv-
ing thousands to tens of thousands of events.
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