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TRANSLATION PRINCIPLE FOR DIRAC INDEX

SALAH MEHDI, PAVLE PANDŽIĆ AND DAVID VOGAN

Abstract. Let G be a finite cover of a closed connected transpose-stable
subgroup of GL(n,R) with complexified Lie algebra g. Let K be a maximal
compact subgroup of G, and assume that G and K have equal rank. We prove
a translation principle for the Dirac index of virtual (g, K)-modules. As a
byproduct, to each coherent family of such modules, we attach a polynomial
on the dual of the compact Cartan subalgebra of g. This “index polynomial”
generates an irreducible representation of the Weyl group contained in the co-
herent continuation representation. We show that the index polynomial is the
exact analogue on the compact Cartan subgroup of King’s character polyno-
mial. The character polynomial was defined in [K1] on the maximally split
Cartan subgroup, and it was shown to be equal to the Goldie rank polyno-
mial up to a scalar multiple. In the case of representations of Gelfand-Kirillov
dimension at most half the dimension of G/K, we also conjecture an explicit
relationship between our index polynomial and the multiplicities of the ir-
reducible components occuring in the associated cycle of the corresponding
coherent family.

1. Introduction

Let G be a connected real reductive group; precisely, a finite cover of a closed
connected transpose-stable subgroup of GL(n,R) with complexified Lie algebra g.
Let K be a maximal compact subgroup of G. Write g = k+p for the corresponding
Cartan decomposition of g, where k is the complexified Lie algebra of K.

Let T ⊂ K be a maximal torus, so that Hc = GT is a maximally compact

Cartan subgroup, with Lie algebra hc. Let Λ ⊂ Ĥc ⊂ h⋆c be the lattice of weights of
finite-dimensional (g,K)-modules. For a fixed λ0 ∈ h⋆c regular, a family of virtual
(g,K)-modules Xλ, λ ∈ λ0+Λ, is called coherent if for each λ, Xλ has infinitesimal
character λ, and for any finite-dimensional (g,K)-module F , and for any λ,

(1.1a) Xλ ⊗ F =
∑

µ∈∆(F )

Xλ+µ,

where ∆(F ) denotes the multiset of all weights of F . (A more complete discussion
appears in Section 4.) The reason for studying coherent families is that if X is
any irreducible (g,K)-module of infinitesimal character λ0, then there is a unique
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coherent family with the property that

(1.1b) Xλ0 = X.

For any invariant of Harish-Chandra modules, one can therefore ask how the in-
variant of Xλ changes with λ ∈ λ0 + Λ. The nature of this dependence is then a
new invariant of X . This idea is facilitated by the fact that

(1.1c) Xλ is irreducible or zero whenever λ is integrally dominant;

zero is possible only for singular λ. (See for example [V2], sections 7.2 and 7.3.)
The notion of “integrally dominant” is recalled in (4.2); we write (λ0 +Λ)+ for the
cone of integrally dominant elements. We may therefore define

(1.1d) Ann(Xλ) = annihilator in U(g) of Xλ (λ ∈ (λ0 + Λ)+).

The ideal Ann(Xλ) is primitive if Xλ is irreducible, and equal to U(g) if Xλ = 0.
Write rk(U(g)/Ann(Xλ)) for the Goldie rank of the algebra U(g)/Ann(Xλ). Let
Wg be the Weyl group of g with respect to hc. Joseph proved that the N-valued
map defined on integrally dominant λ ∈ λ0 + Λ by

(1.1e) λ 7→ rk(U(g)/Ann(Xλ))

extends to a Wg-harmonic polynomial PX on h⋆c called the Goldie rank polynomial
for X . The polynomial PX is homogeneous of degree ♯R+

g − Dim(X), where ♯R+
g

denotes the number of positive hc-roots in g and Dim(X) is the Gelfand-Kirillov
dimension of X . Moreover, PX generates an irreducible representation of Wg. See
[J1], [J2] and [J3].

There is an interpretation of the Wg-representation generated by PX in terms of
the Springer correspondence. For all λ ∈ (λ0+Λ)+ such that Xλ 6= 0 (so for exam-
ple for all integrally dominant regular λ), the associated variety V(gr(Ann(Xλ)))
(defined by the associated graded ideal of Ann(Xλ), in the symmetric algebra S(g))
is the Zariski closure of a single nilpotent GC-orbit O in g⋆, independent of λ. (Here
GC is a connected complex reductive algebraic group having Lie algebra g.) Bar-
basch and Vogan proved that the Springer representation of Wg attached to O
coincides with the Wg-representation generated by the Goldie rank polynomial PX

(see [BV1]).
Here is another algebro-geometric interpretation of PX . Write

(1.1f) O ∩ (g/k)∗ =

r∐

j=1

Oj

for the decomposition into (finitely many) orbits of KC. (Here KC is the complex-
ification of K.) Then the associated cycle of each Xλ is

(1.1g) Ass(Xλ) =

r∐

j=1

mj
X(λ)Oj (λ ∈ (λ0 + Λ)+)

(see Definition 2.4, Theorem 2.13, and Corollary 5.20 in [V3]). The component

multiplicity mj
X(λ) is a function taking nonnegative integer values, and extends to

a polynomial function on h∗c . We call this polynomial the multiplicity polynomial
for X on the orbit Oj . The connection with the Goldie rank polynomial is that
each mj

X is a scalar multiple of PX ; this is a consequence of the proof of Theorem
5.7 in [J2].
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On the other hand, Goldie rank polynomials can be interpreted in terms of the
asymptotics of the global character chg(Xλ) of Xλ on a maximally split Cartan
subgroup Hs ⊂ G with Lie algebra hs,0. Namely, if x ∈ hs,0 is a generic regular
element, King proved that the map

(1.1h) λ 7→ lim
t→0

tDim(X) chg(Xλ)(exp tx)

on λ0 + Λ extends to a polynomial CX,x on h⋆c . We call this polynomial King’s
character polynomial. It coincides with the Goldie rank polynomial PX up to a
constant factor depending on x (see [K1]). More precisely, as a consequence of
[SV], one can show that there is a formula

(1.1i) CX,x =

r∑

j=1

ajxm
j
X ;

the constants ajx are independent of X , and this formula is valid for any (g,K)-
module whose annihilator has associated variety contained in O. The polynomial
CX,x expresses the dependence on λ of the leading term in the Taylor expansion of
the numerator of the character of Xλ on the maximally split Cartan Hs.

In this paper, we assume that G and K have equal rank. Under this assumption,
we use Dirac index to obtain the analog of King’s asymptotic character formula
(1.1h), or equivalently of the Goldie rank polynomial (1.1e), in the case when Hs

is replaced by a compact Cartan subgroup T of G. In the course of doing this, we
first prove a translation principle for the Dirac index.

To define the notions of Dirac cohomology and index, we first recall that there
is a Dirac operator D ∈ U(g) ⊗ C(p), where C(p) is the Clifford algebra of p with
respect to an invariant non-degenerate symmetric bilinear form B (see Section 2).
If S is a spin module for C(p) then D acts on Y ⊗S for any (g,K)-module Y . The
Dirac cohomology HD(Y ) of Y is defined as

HD(Y ) = KerD/KerD ∩ ImD.

It is a module for the spin double cover K̃ of K. Dirac cohomology was introduced
by Vogan in the late 1990s (see [V4]) and turned out to be an interesting invariant
attached to (g,K)-modules (see [HP2] for a thorough discussion).

We would now like to study how Dirac cohomology varies over a coherent family.
This is however not possible; since Dirac cohomology is not an exact functor, it
cannot be defined for virtual (g,K)-modules. To fix this problem, we will replace
Dirac cohomology by the Dirac index. (We note that there is a relationship between
Dirac cohomology and translation functors; see [MP], [MPa1], [MPa2], [MPa3].)

Let t be the complexified Lie algebra of the compact Cartan subgroup T of G.
Then t is a Cartan subalgebra of both g and k. In this case, the spin module

S for K̃ is the direct sum of two pieces S+ and S−, and the Dirac cohomology
HD(Y ) breaks up accordingly into HD(Y )+ and HD(Y )−. If Y is admissible and

has infinitesimal character, define the Dirac index of Y to be the virtual K̃-module

(1.2a) I(Y ) = HD(Y )+ −HD(Y )−.

This definition can be extended to arbitrary finite length modules (not necessarily
with infinitesimal character), replacing HD by the higher Dirac cohomology of [PS].
See Section 3. Then I, considered as a functor from finite length (g,K)-modules to

virtual K̃-modules, is additive with respect to short exact sequences (see Lemma 3.3
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and the discussion below (3.7)), so it makes sense also for virtual (g,K)-modules.
Furthermore, I satisfies the following property (Proposition 4.3): for any finite-
dimensional (g,K)-module F ,

I(Y ⊗ F ) = I(Y )⊗ F.

Let now {Xλ}λ∈λ0+Λ be a coherent family of virtual (g,K)-modules.

By a theorem of Huang and Pandžić, the k-infinitesimal character of any K̃-type
contributing to the Dirac cohomology HD(Y ) of an irreducible (g,K)-module Y is
Wg-conjugate to the g-infinitesimal character of Y (see Theorem 2.2). In terms of

the virtual representations Ẽ of K̃ defined in Section 4, the conclusion is that we
may write

(1.2b) I(Xλ0) =
∑

w∈Wg

awẼwλ0

with aw ∈ Z. Then, for any ν ∈ Λ, we have (Theorem 4.7):

(1.2c) I(Xλ0+ν) =
∑

w∈Wg

awẼw(λ0+ν)

with the same coefficients aw. It follows that I(Xλ0) 6= 0 implies I(Xλ0+ν) 6= 0,
provided both λ0 and λ0 + ν are regular for g (Corollary 4.10).

Combining the translation principle for Dirac index (1.2c) with the Weyl dimen-
sion formula for k, we conclude that the map

(1.2d) λ0 + Λ→ Z, λ 7→ dim I(Xλ)

extends to a Wg-harmonic polynomial QX on t⋆ (see Section 5). We call the poly-
nomial QX the index polynomial attached to X and λ0. If QX is nonzero, its
degree is equal to the number R+

k of positive t-roots in k. More precisely, QX

belongs to the irreducible representation of Wg generated by the Weyl dimension
formula for k (Proposition 5.2). Furthermore, the coherent continuation represen-
tation generated by X must contain a copy of the index polynomial representation
(Proposition 5.3). We also prove that the index polynomial vanishes for small rep-
resentations. Namely, if the Gelfand-Kirillov dimension Dim(X) is less than the
number ♯R+

g − ♯R+
k of positive noncompact t-roots in g, then QX = 0 (Proposition

5.6).
An important feature of the index polynomial is the fact that QX is the exact

analogue of King’s character polynomial (1.1h), but attached to the character on
the compact Cartan subgroup instead of the maximally split Cartan subgroup (see
Section 6). In fact, QX expresses the dependence on λ of the (possibly zero) leading
term in the Taylor expansion of the numerator of the character ofXλ on the compact
Cartan T : for any y ∈ t0 regular, we have

lim
t→0+

t♯R
+
g −♯R+

k chg(Xλ)(exp ty) =

∏
α∈R

+
k

α(y)
∏

α∈R
+
g

α(y) QX(λ).

In particular, if G is semisimple of Hermitian type, and if X is the (g,K)-module
of a holomorphic discrete series representation, then the index polynomial QX co-
incides, up to a scalar multiple, with the Goldie rank polynomial PX (Proposition
6.5). Moreover, if X is the (g,K)-module of any discrete series representation (for
G not necessarily Hermitian), then QX and PX are both divisible by the prod-
uct of linear factors corresponding to the roots generated by the τ -invariant of X
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(Proposition 6.9). Recall that the τ -invariant of the (g,K)-module X consists of
the simple roots α such that the translate of X to the wall defined by α is zero (see
Section 4 in [V1] or Chapter 7 in [V2]).

Recall the formula (1.1i) relating King’s character polynomial to the multiplicity
polynomials for the associated cycle. In Section 7, we conjecture a parallel relation-
ship between the index polynomial QX and the multiplicity polynomials. For that,
we must assume that the Wg-representation generated by the Weyl dimension for-
mula for k corresponds to a nilpotent GC-orbit OK via the Springer correspondence.
(At the end of Section 7, we list the classical groups for which this assumption is
satisfied.) Then we conjecture (Conjecture 7.2): if V(gr(Ann(X))) ⊂ OK , then

(1.2e) QX =
∑

j

cjmj
X .

Here the point is that the coefficients cj should be integers independent of X . We
check that this conjecture holds in the case when G = SL(2,R) and also when
G = SU(1, n) with n ≥ 2.

In the following we give a few remarks related to the significance of the above
conjecture.

Associated varieties are a beautiful and concrete invariant for representations,
but they are too crude to distinguish representations well. For example, all holo-
morphic discrete series have the same associated variety. Goldie rank polynomials
and multiplicity functions both offer more information, but the information is some-
what difficult to compute and to interpret precisely. The index polynomial is easier
to compute and interpret precisely; it can be computed from knowing the restriction
to K, and conversely, it contains fairly concrete information about the restriction to
K. In the setting of (1.2e) (that is, for fairly small representations), the conjecture
says that the index polynomial should be built from multiplicity polynomials in a
very simple way.

The conjecture implies that, for these small representations, the index polyno-
mial must be a multiple of the Goldie rank polynomial. This follows from the fact
that each mi

X is a multiple of PX , mentioned below (1.1g). The interesting thing
about this is that the index polynomial is perfectly well-defined for larger represen-
tations as well. In some sense it is defining something like “multiplicities” for OK

even when OK is not a leading term.
This is analogous to a result of Barbasch, which says that one can define for any

character expansion a number that is the multiplicity of the zero orbit for finite-
dimensional representations. In the case of discrete series, this number turns out
to be the formal degree (and so is something really interesting). This indicates
that the index polynomial is an example of an interesting “lower order term” in
a character expansion. We can hope that a fuller understanding of all such lower
order terms could be a path to extending the theory of associated varieties to a
more complete invariant of representations.

2. Setting

Let G be a finite cover of a closed connected transpose-stable subgroup of
GL(n,R), with Lie algebra g0. We denote by Θ the Cartan involution of G corre-
sponding to the usual Cartan involution of GL(n,R) (the transpose inverse). Then
K = GΘ is a maximal compact subgroup of G. Let g0 = k0 ⊕ p0 be the Cartan
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decomposition of g0, with k0 the Lie algebra of K. Let B be the trace form on g0.
Then B is positive definite on p0 and negative definite on k0, and p0 is the orthogo-
nal of k0 with respect to B. We shall drop the subscript ‘0’ on real vector spaces to
denote their complexifications. Thus g = k⊕p denotes the Cartan decomposition of
the complexified Lie algebra of G. The linear extension of B to g is again denoted
by B. Let GC be a connected reductive algebraic group over C with Lie algebra g.

Let C(p) be the Clifford algebra of p with respect to B and let U(g) be the
universal enveloping algebra of g.

The Dirac operator D is defined as

D =
∑

i

bi ⊗ di ∈ U(g)⊗ C(p),

where bi is any basis of p and di is the dual basis with respect to B. Then D is
independent of the choice of the basis bi and is K-invariant. Moreover, the square
of D is given by the following formula due to Parthasarathy [P]:

(2.1) D2 = −(Casg⊗1 + ‖ρg‖
2) + (Cask∆ +‖ρk‖

2).

Here Casg is the Casimir element of U(g) and Cask∆ is the Casimir element of
U(k∆), where k∆ is the diagonal copy of k in U(g)⊗C(p), defined using the obvious
embedding k →֒ U(g) and the usual map k→ so(p)→ C(p). See [HP2] for details.

If X is a (g,K)-module, then D acts on X ⊗ S, where S is a spin module for
C(p). The Dirac cohomology of X is the module

HD(X) = KerD/KerD ∩ ImD

for the spin double cover K̃ of K. If X is unitary or finite-dimensional, then

HD(X) = KerD = KerD2.

The following result of [HP1] was conjectured by Vogan [V3]. Let h = t ⊕ a be a
fundamental Cartan subalgebra of g. We view t∗ ⊂ h∗ by extending functionals on
t by 0 over a. Denote by Rg (resp. Rk) the set of (g, h)-roots (resp. (k, t)-roots).
We fix compatible positive root systems R+

g and R+
k for Rg and Rk respectively. In

particular, this determines the half-sums of positive roots ρg and ρk as usual. Write
Wg (resp. Wk) for the Weyl group associated with (g, h)-roots (resp. (k, t)-roots).

Theorem 2.2. Let X be a (g,K)-module with infinitesimal character corresponding
to Λ ∈ h∗ via the Harish-Chandra isomorphism. Assume that HD(X) contains the

irreducible K̃-module Eγ with highest weight γ ∈ t∗. Then Λ is equal to γ+ρk up to
conjugation by the Weyl group Wg. In other words, the k-infinitesimal character of

any K̃-type contributing to HD(X) is Wg-conjugate to the g-infinitesimal character
of X.

3. Dirac index

Throughout the paper we assume that g and k have equal rank, i.e., that there is
a compact Cartan subalgebra h = t in g. In this case, p is even-dimensional, so (as
long as p 6= {0}) the spin module S for the spin group Spin(p) (and therefore for

K̃) is the direct sum of two pieces, which we will call S+ and S−. To say which is
which, it is enough to choose an SO(p)-orbit of maximal isotropic subspaces of p.
We will sometimes make such a choice by fixing a positive root system ∆+(g, t) for
t in g, and writing n = nk + np for the corresponding sum of positive root spaces.
Then np is a choice of maximal isotropic subspace of p.
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The full spin module may be realized using np as S ≃
∧
np, with the C(p)-action

defined so that elements of np act by wedging, and elements of the dual isotropic
space n−p corresponding to the negative roots act by contracting. (Details may be
found for example in [Chev] at the beginning of Chapter 3.) In particular, the
action of C(p) respects parity of degrees: odd elements of C(p) carry

∧even
np to∧odd

np and so on. Because Spin(p) ⊂ Ceven(p), it follows that Spin(p) preserves
the decomposition

S ≃
∧

np =
∧even

np ⊕
∧odd

np
def.
= S+ ⊕ S−.

The group K̃ acts on S as usual, through the map K̃ → Spin(p) ⊂ C(p), and
hence also the Lie algebra k acts, through the map α : k → so(p) →֒ C(p). We

call these actions of K̃ and k the spin actions. It should however be noted that
although we wrote S ≃

∧
np, the t-weights of S for the spin action are not the

weights of
∧
np, i.e., the sums of distinct roots in np, but rather these weights

shifted by −(ρg − ρk). This difference comes from the construction of the map α
and the action of C(p) on S.

In particular, the weights of S+ ≃
∧even

np are

−ρg + ρk + (sum of an even number of distinct roots in np).

Similarly, the weights of S− ≃
∧odd

np are

−ρg + ρk + (sum of an odd number of distinct roots in np).

The Dirac operator D interchanges X ⊗ S+ and X ⊗ S− for any (g,K)-module
X . (That is because it is of degree 1 in the Clifford factor.) It follows that the Dirac
cohomology HD(X) also breaks up into even and odd parts, which we denote by
HD(X)+ and HD(X)− respectively. If X is of finite length, then HD(X) is finite-
dimensional, as follows from (2.1), which implies that KerD2 is finite-dimensional
for any admissible moduleX . If X is of finite length and has infinitesimal character,

then we define the Dirac index of X as the virtual K̃-module

(3.1) I(X) = HD(X)+ −HD(X)−.

The first simple but important fact is the following proposition, which is well known
for the case of discrete series or finite-dimensional modules.

Proposition 3.2. Let X be a finite length (g,K)-module with infinitesimal char-

acter. Then there is an equality of virtual K̃-modules

X ⊗ S+ −X ⊗ S− = I(X).

Proof. By Parthasarathy’s formula for D2 (2.1), X ⊗ S breaks into a direct sum of
eigenspaces for D2:

X ⊗ S =
∑

λ

(X ⊗ S)λ.

Since D2 is even in the Clifford factor, this decomposition is compatible with the
decomposition into even and odd parts, i.e.,

(X ⊗ S)λ = (X ⊗ S+)λ ⊕ (X ⊗ S−)λ,

for any eigenvalue λ ofD2. SinceD commutes withD2, it preserves each eigenspace.
Since D also switches parity, we see that D defines maps

Dλ : (X ⊗ S±)λ → (X ⊗ S∓)λ
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for each λ. If λ 6= 0, then Dλ is clearly an isomorphism (with inverse 1
λDλ), and

hence
X ⊗ S+ −X ⊗ S− = (X ⊗ S+)0 − (X ⊗ S−)0.

Since D is a differential on KerD2, and the cohomology of this differential is exactly
HD(X), the statement now follows from the Euler-Poincaré principle. �

Corollary 3.3. Let
0→ U → V →W → 0

be a short exact sequence of finite length (g,K)-modules, and assume that V has
infinitesimal character (so that U and W must have the same infinitesimal character

as V ). Then there is an equality of virtual K̃-modules

I(V ) = I(U) + I(W ).

Proof. This follows from the formula in Proposition 3.2, since the left hand side of
that formula clearly satisfies the additivity property. �

To study the translation principle, we need to deal with modules X ⊗ F , where
X is a finite length (g,K)-module, and F is a finite-dimensional (g,K)-module.
Therefore, Proposition 3.2 and Corollary 3.3 are not sufficient for our purposes,
because they apply only to modules with infinitesimal character. Namely, if X is
of finite length and has infinitesimal character, then X ⊗ F is of finite length, but
it typically cannot be written as a direct sum of modules with infinitesimal char-
acter. Rather, some of the summands of X ⊗F only have generalized infinitesimal
character. Recall that χ : Z(g) → C is the generalized infinitesimal character of a
g-module V if there is a positive integer N such that

(z − χ(z))N = 0 on V, for every z ∈ Z(g),

where Z(g) denotes the center of U(g). Here is an example showing that Proposition
3.2 and Corollary 3.3 can fail for modules with generalized infinitesimal character.

Example 3.4 ([PS], Section 2). Let G = SU(1, 1) ∼= SL(2,R), so that K =
S(U(1)×U(1)) ∼= U(1), and g = sl(2,C). Then there is an indecomposable (g,K)-
module P fitting into the short exact sequence

0→ V0 → P → V−2 → 0,

where V0 is the (reducible) Verma module with highest weight 0, and V−2 is the
(irreducible) Verma module with highest weight -2. One can describe the g-action
on P very explicitly, and see that Casg does not act by a scalar on P , so P does
not have infinitesimal character.

Using calculations similar to [HP2], 9.6.5, one checks that for the index defined
by (3.1) the following holds:

(3.5) I(P ) = −C1; I(V0) = −C1; I(V−2) = −C−1,

where C1 respectively C−1 is the one-dimensional K̃-module of weight 1 respectively
−1. So Corollary 3.3 fails for P . It follows that Proposition 3.2 must also fail. This
can also be seen directly, by computing P ⊗ S+ − P ⊗ S−.

The reason for the failure of both Proposition 3.2 and Corollary 3.3 is the fact
that the generalized 0-eigenspace for D contains two Jordan blocks for D, one
of length 1 and the other of length 3. The block of length 3 does contribute to
P ⊗ S+ − P ⊗ S−, but not to I(P ). With this in mind, a modified version of
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Dirac cohomology, called “higher Dirac cohomology”, has been recently defined by
Pandžić and Somberg [PS]. It is defined as H(X) =

⊕
k∈Z+

Hk(V ), where

Hk(V ) = ImD2k ∩KerD
/
ImD2k+1 ∩KerD.

For a module X with infinitesimal character, H(X) is the same as HD(X); in
general,H(X) containsHD(X) = H0(X). If X is an arbitrary finite length module,
then H(X) is composed from contributions from all odd length Jordan blocks in
the generalized 0-eigenspace for D. It follows that if we let H(X)± be the even and
odd parts of H(X), and define the stable index as

(3.6) I(X) = H(X)+ −H(X)−,

then Proposition 3.2 holds for any module X of finite length, i.e.,

(3.7) I(X) = X ⊗ S+ −X ⊗ S−

([PS], Theorem 3.4). It follows that the index defined in this way is additive with
respect to short exact sequences ([PS], Corollary 3.5), and it therefore makes sense
for virtual (g,K)-modules, i.e., it is well defined on the Grothendieck group of the
Abelian category of finite length (g,K)-modules. Let us also mention that there is
an analogue of Theorem 2.2 for H(X) ([PS], Theorem 3.3.)

There is another way to define the index that circumvents completely the dis-
cussion of defining Dirac cohomology in the right way. Namely, one can simply use
the statement of Proposition 3.2, or (3.7), as the definition of the index I(X). It
is clear that with such a definition the index does make sense for virtual (g,K)-
modules. Moreover, one shows as above that all of the eigenspaces for D2 for
nonzero eigenvalues cancel out in (3.7), so what is left is a finite combination of

K̃-types, appearing in the 0-eigenspace for D2.
Whichever of these two ways to define I(X) we take, we will from now on work

with Dirac index I(X), defined for any virtual (g,K)-module X , and satisfying
(3.7).

4. Coherent families

Fix λ0 ∈ t∗ regular and let T be a compact Cartan subgroup of G with com-

plexified Lie algebra t. We denote by Λ ⊂ T̂ ⊂ t∗ the lattice of weights of
finite-dimensional representations of G (equivalently, of finite-dimensional (g,K)-
modules). A family of virtual (g,K)-modules Xλ, λ ∈ λ0 + Λ, is called coherent
if

(1) Xλ has infinitesimal character λ; and
(2) for any finite-dimensional (g,K)-module F , and for any λ ∈ λ0 + Λ,

(4.1) Xλ ⊗ F =
∑

µ∈∆(F )

Xλ+µ,

where ∆(F ) denotes the multiset of all weights of F .

See [V2], Definition 7.2.5. The reason that we may use coherent families based on
the compact Cartan T , rather than the maximally split Cartan used in [V2], is our
assumption that G is connected.

A virtual (g,K)-module X with regular infinitesimal character λ0 ∈ h⋆c can be
placed in a unique coherent family as above (see Theorem 7.2.7 in [V2], and the
references therein; this is equivalent to (1.1b)). Using this, one can define an action
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of the integral Weyl group W (λ0) attached to λ0 on the set M(λ0) of virtual
(g,K)-modules with infinitesimal character λ0. Recall that W (λ0) consists of those
elements w ∈ Wg for which λ0 − wλ0 is a sum of roots. If we write Q for the root
lattice, then the condition for w to be in W (λ0) is precisely that w preserves the
lattice coset λ0 +Q (see [V2], Section 7.2). Then for w ∈ W (λ0), we set

w ·X
def.
= Xw−1(λ0).

We view M(λ0) as a lattice (a free Z-module) with basis the (finite) set of irre-
ducible (g,K)-modules of infinitesimal character λ0. A decomposition into irre-
ducible components of this W (λ0)-representation, known as the coherent continu-
ation representation, was obtained by Barbasch and Vogan (see [BV2]). The study
of coherent continuation representations is important for deeper understanding of
coherent families.

A weight λ ∈ λ0 + Λ is called integrally dominant if

(4.2) 〈α∨, λ〉 ≥ 0 whenever 〈α∨, λ0〉 ∈ N (α ∈ Rg).

Recall from the introduction that we write (λ0 + Λ)+ for the cone of integrally
dominant weights.

The notion of coherent families is closely related with the Jantzen-Zuckerman
translation principle. For example, if λ is regular and λ + ν belongs to the same
Weyl chamber for integral roots (whose definition is recalled below), then Xλ+ν

can be obtained from Xλ by a translation functor, i.e., by tensoring with the finite-
dimensional module Fν with extremal weight ν and then taking the component
with generalized infinitesimal character λ+ ν. The following observation is crucial
for obtaining the translation principle for Dirac index.

Proposition 4.3. Suppose X is a virtual (g,K)-module and F a finite-dimensional
(g,K)-module. Then

I(X ⊗ F ) = I(X)⊗ F.

Proof. By Proposition 3.2 and (3.7),

I(X ⊗ F ) = X ⊗ F ⊗ S+ −X ⊗ F ⊗ S−,

while
I(X)⊗ F = (X ⊗ S+ −X ⊗ S−)⊗ F.

It is clear that the right hand sides of these expressions are the same. �

Combining Proposition 4.3 with (4.1), we obtain

Corollary 4.4. Let Xλ, λ ∈ λ0+Λ, be a coherent family of virtual (g,K)-modules
and let F be a finite-dimensional (g,K)-module. Then

(4.5) I(Xλ)⊗ F =
∑

µ∈∆(F )

I(Xλ+µ).

�

This says that the family {I(Xλ)}λ∈λ0+Λ of virtual K̃-modules has some coher-

ence properties, but it is not a coherent family for K̃, as I(Xλ) does not have
k-infinitesimal character λ. Also, the identity (4.5) is valid only for a (g,K)-module

F , and not for an arbitrary K̃-module F .
Using standard reasoning, as in [V2], Section 7.2, we can now analyze the rela-

tionship between Dirac index and translation functors. We first define some virtual
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representations of K̃. Our choice of positive roots R+
k for T in K defines a Weyl

denominator function

(4.6a) dk(exp(y)) =
∏

α∈R+
k

(eα(y)/2 − e−α(y)/2)

on an appropriate cover of T . For γ ∈ Λ + ρg, the Weyl numerator

Nγ =
∑

w∈Wk

sgn(w)ewγ

is a function on another double cover of T . According to Weyl’s character formula,
the quotient

(4.6b) chk,γ = Nγ/dk

extends to a class function on all of K̃. Precisely, chk,γ is the character of a virtual

genuine representation Ẽγ of K̃:

(4.6c) Ẽγ =

{
sgn(x) (irr. of highest weight xγ − ρk) xγ is dom. reg. for R+

k

0 γ is singular for Rk

It is convenient to extend this definition to all of t∗ by

(4.6d) Ẽλ = 0 (λ /∈ Λ + ρg).

With this definition, the Huang-Pandžić infinitesimal character result clearly
guarantees what we wrote in (1.2b):

I(Xλ0) =
∑

w∈Wg

awẼwλ0 .

We could restrict the sum to those w for which wλ0 is dominant for R+
k , and get

a unique formula in which aw is the multiplicity of the K̃ representation of highest
weight wλ0 − ρk in I(Xλ0). But for the proof of the next theorem, it is more
convenient to allow a more general expression.

Theorem 4.7. Suppose λ0 ∈ t∗ is regular for g. Let Xλ, λ ∈ λ0+Λ, be a coherent
family of virtual (g,K)-modules based on λ0 + Λ. By Theorem 2.2, we can write

(4.8) I(Xλ0) =
∑

w∈Wg

awẼwλ0 ,

where Ẽ denotes the family of finite-dimensional virtual K̃-modules defined in (4.6),
and aw are integers.

Then for any ν ∈ Λ,

(4.9) I(Xλ0+ν) =
∑

w∈Wg

awẼw(λ0+ν),

with the same coefficients aw.

Proof. We proceed in three steps.
Step 1: suppose both λ0 and λ0 + ν belong to the same integral Weyl chamber,

which we can assume to be the dominant one. Let Fν be the finite-dimensional
(g,K)-module with extremal weight ν. Let us take the components of (4.5), written
for λ = λ0, with k-infinitesimal characters which are Wg-conjugate to λ0 + ν. By
Theorem 2.2, any summand I(Xλ0+µ) of the RHS of (4.5) is a combination of
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virtual modules with k-infinitesimal characters which are Wg-conjugate to λ0 + µ.
By [V2], Lemma 7.2.18 (b), λ0 + µ can be Wg-conjugate to λ0 + ν only if µ = ν.
Thus we are picking exactly the summand I(Xλ0+ν) of the RHS of (4.5).

We now determine the components of the LHS of (4.5) with k-infinitesimal char-

acters which are Wg-conjugate to λ0 + ν. Since Ẽ is a coherent family for K̃, and

Fν can be viewed as a finite-dimensional K̃-module, one has

Ẽwλ0 ⊗ Fν =
∑

µ∈∆(Fν)

Ẽwλ0+µ.

The k-infinitesimal character of Ẽwλ0+µ is wλ0 + µ, so the components we are
looking for must satisfy wλ0 + µ = u(λ0 + ν), or equivalently

λ0 + w−1µ = w−1u(λ0 + ν),

for some u ∈ Wg. Using [V2], Lemma 7.2.18 (b) again, we see that w−1u must fix

λ0 + ν, and w−1µ must be equal to ν. So µ = wν, and the component Ẽwλ0+µ is

in fact Ẽw(λ0+ν). So (4.9) holds in this case.
Step 2: suppose that λ0 and λ0 + ν lie in two neighbouring chambers, with

a common wall defined by a root α, and such that λ0 + ν = sα(λ0). Assume
further that for any weight µ of Fν , λ0 + µ belongs to one of the two chambers.
Geometrically this means that λ0 is close to the wall defined by α and sufficiently
far from all other walls and from the origin. We tensor (4.8) with Fν . By (4.5) and

the fact that Ẽ is a coherent family for K̃, we get
∑

µ∈∆(Fν)

I(Xλ0+µ) =
∑

w∈Wg

aw
∑

µ∈∆(Fν)

Ẽw(λ0+µ).

By our assumptions, the only λ0 +µ conjugate to λ0 + ν via Wg are λ0 + ν and λ0.
Picking the corresponding parts from the above equation, we get

I(Xλ0+ν) + cI(Xλ0) =
∑

w∈Wg

aw
(
cẼwλ0 + Ẽw(λ0+ν)

)

where c is the multiplicity of the zero weight of Fν . This implies (4.9), so the
theorem is proved in this case.

Step 3: to get from an arbitrary regular λ0 to an arbitrary λ0 + ν, we first apply
Step 1 to get from λ0 to all elements of λ0 +Λ in the same (closed) chamber. Then
we apply Step 2 to pass to an element of a neighbouring chamber, then Step 1 again
to get to all elements of that chamber, and so on. �

Corollary 4.10. In the setting of Theorem 4.7, assume that both λ0 and λ0 + ν
are regular for g. Assume also that I(Xλ0) 6= 0, i.e., at least one of the coefficients
aw in (4.8) is nonzero. Then I(Xλ0+ν) 6= 0.

Proof. This follows immediately from Theorem 4.7 and the fact that Ẽw(λ0+ν) can
not be zero, since w(λ0 + ν) is regular for g and hence also for k. �

5. Index polynomial and coherent continuation representation

As in the previous section, let λ0 ∈ t⋆ be regular. For each X ∈M(λ0), there is
a unique coherent family {Xλ | λ ∈ λ0 +Λ} such that Xλ0 = X . Define a function
QX : λ0 + Λ→ Z by setting

(5.1) QX(λ) = dim I(Xλ) (λ ∈ λ0 + Λ).
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Notice that QX depends on bothX and on the choice of representative λ0 for the in-
finitesimal character of X ; replacing λ0 by w1λ0 translates QX by w1. By Theorem
4.7 and the Weyl dimension formula for k, QX is a polynomial function in λ. (Note
that taking dimension is additive with respect to short exact sequences of finite-
dimensional modules, so it makes sense for virtual finite-dimensional modules.) We
call the function QX the index polynomial associated with X (or {Xλ}).

Recall that a polynomial on t∗ is called Wg-harmonic, if it is annihilated by any
Wg-invariant constant coefficient differential operator on t∗ without constant term
(see [V1], Lemma 4.3.)

Proposition 5.2. For any (g,K)-module X as above, the index polynomial QX is
Wg-harmonic. If QX 6= 0, then it is homogeneous of degree equal to the number
of positive roots for k; more precisely, it belongs to the irreducible representation of
Wg generated by the Weyl dimension formula for k.

Proof. The last statement follows from (4.9); the rest of the proposition is an im-
mediate consequence. �

Recall the natural representation of W (λ0) (or indeed of all Wg) on the vector
space S(t) of polynomial functions on t∗,

(w · P )(λ) = P (w−1λ).

The (irreducible) representation of W (λ0) generated by the dimension formula for
k is called the index polynomial representation.

Proposition 5.3. The map

M(λ0)→ S(t), X 7→ QX

intertwines the coherent continuation representation of W (λ0) with the action on
polynomials. In particular, if QX 6= 0, then the coherent continuation representa-
tion generated by X must contain a copy of the index polynomial representation.

Proof. Let {Xλ} be the coherent family corresponding to X . Then for a fixed
w ∈ W (λ0), the coherent family corresponding to w · X is λ0 + ν 7→ Xw−1(λ0+ν)

(see [V2], Lemma 7.2.29 and its proof). It follows that

(w ·QX)(λ) = QX(w−1 · λ)

= dim I(Xw−1λ)

= Qw·X(λ),

i.e., the map X 7→ QX is W (λ0)-equivariant. The rest of the proposition is now
clear. �

Example 5.4. Let F be a finite-dimensional (g,K)-module. The corresponding
coherent family is {Fλ} from [V2], Example 7.2.12. In particular, every Fλ is
finite-dimensional up to sign, or 0. By Proposition 3.2 and (3.7), for any Fλ,

dim I(Fλ) = dim(Fλ ⊗ S+ − Fλ ⊗ S−) = dimFλ(dimS+ − dimS−) = 0,

since S+ and S− have the same dimension (as long as p 6= 0). It follows that

QF (λ) = 0.

(Note that the index itself is a nonzero virtual module, but its dimension is zero.
This may be a little surprising at first, but it is quite possible for virtual modules.)
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This means that in this case Proposition 5.3 gives no information about the coherent
continuation representation (which is in this case a copy of the sign representation
of Wg spanned by F ).

Example 5.5. Let G = SL(2,R), so that weights correspond to integers. Let λ0 =
n0 be a positive integer. There are four irreducible (g,K)-modules with infinitesimal
character n0: the finite-dimensional module F , the holomorphic discrete series D+

of lowest weight n0 + 1, the antiholomorphic discrete series D− of highest weight
−n0 − 1, and the irreducible principal series representation P .

The coherent family Fn corresponding to F is defined by setting Fn to be the
finite-dimensional module with highest weight n− 1 if n > 0, F0 = 0, and if n < 0,
Fn = −F−n. Thus s · F = −F , i.e., F spans a copy of the sign representation of
W (λ0) = {1, s}. As we have seen, the index polynomial corresponding to F is zero.

By [V2], Example 7.2.13, the coherent family D+
n corresponding to D+ is given

as follows: for n ≥ 0, D+
n is the irreducible lowest weight (g,K)-module with lowest

weight n+1, and for n < 0, D+
n is the sum ofD+

−n and the finite-dimensional module

F−n. It is easy to see that for each n ∈ Z, I(D+
n ) is the one-dimensional K̃-module

En with weight n. So the index polynomial QD+ is the constant polynomial 1.
Moreover, s ·D+ = D+ + F .

One similarly checks that the coherent family D−
n corresponding to D− is given

as follows: for n ≥ 0, D−
n is the irreducible highest weight (g,K)-module with

highest weight −n − 1, and for n < 0, D−
n = D−

−n + F−n. For each n ∈ Z,
I(D−

n ) = −E−n, so the index polynomial QD− is the constant polynomial −1.
Moreover, s ·D− = D− + F .

Finally, one checks that the coherent family corresponding to P consists entirely
of principal series representations, that the W (λ0)-action on P is trivial, and that
the corresponding index polynomial is 0.

Putting all this together, we see that the coherent continuation representation at
n0 consists of three trivial representations, spanned by F +D++D−, D+−D− and
P , and one sign representation, spanned by F . The index polynomial representation
is the trivial representation spanned by the constant polynomials. The map X 7→
QX sends P , F and F +D++D− to zero, and D+−D− to the constant polynomial
2.

The conclusion of Example 5.4 about the index polynomials of finite-dimensional
representations being zero can be generalized as follows.

Proposition 5.6. Let X be a (g,K)-module as above, with Gelfand-Kirillov di-
mension Dim(X). If Dim(X) < ♯R+

g − ♯R+
k , then QX = 0.

Proof. We need to recall the setting of [BV3], Section 2, in particular their Theorem
2.6.(b) (taken from [J2]). Namely, to any irreducible representation σ of Wg one
can associate its degree, i.e., the minimal integer d such that σ occurs in the Wg-
representation Sd(t). Theorem 2.6.(b) of [BV3] says that the degree of any σ
occurring in the coherent continuation representation attached to X must be at
least equal to ♯R+

g − Dim(X). By assumption, the degree of QX , ♯R+
k , is smaller

than ♯R+
g −Dim(X). On the other hand, by Proposition 5.3 the index polynomial

representation has to occur in the coherent continuation representation. It follows
that QX must be zero. �
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Example 5.7. Wallach modules for Sp(2n,R), SO∗(2n) and U(p, q), studied in
[HPP], all have nonzero index, but their index polynomials are zero. This can also
be checked explicitly from the results of [HPP], at least in low-dimensional cases.

The situation here is like in Example 5.4; the nonzero Dirac index has zero
dimension. In particular the conclusion QX = 0 in Proposition 5.6 does not imply
that I(X) = 0.

We note that in the proof of Proposition 5.6, we are applying the results of [BV3]
to (g,K)-modules, although they are stated in [BV3] for highest weight modules.
This is indeed possible by results of Casian [C1]. We explain this in more detail.
Let B be the flag variety of g consisting of all the Borel subalgebras of g. For a point
x ∈ B, write bx = hx + nx for the corresponding Borel subalgebra, with nilradical
nx, and Cartan subalgebra hx.

Define a functor Γbx
from the category of g-modules into the category of g-

modules which are bx-locally finite, by

Γbx
M =

{
bx − locally finite vectors in M

}
.

Write Γq
bx
, q ≥ 0, for its right derived functors. Instead of considering the various

bx, x ∈ B, it is convenient to fix a Borel subalgebra b = h + n of g and twist
the module M . By a twist of M we mean that if π is the g-action on M and
σ is an automorphism of g then the twist of π by σ is the g-action π ◦ σ on M .
Then Casian’s generalized Jacquet functors Jq

bx
are functors from the category of

g-modules into the category of g-modules which are b-locally finite, given by

Jq
bx
M =

{
Γq
bx

HomC(M,C)
}0

where the superscript ‘0’ means that the g-action is twisted by some inner auto-
morphism of g, to make it b-locally finite instead of bx-locally finite. In case bx is
the Borel subalgebra corresponding to an Iwasawa decomposition of G, J0

bx
is the

usual Jacquet functor of [BB], while the Jq
bx

vanish for q > 0.

The functors Jq
bx

make sense on the level of virtual (g,K)-modules and induce
an injective map

X 7→
∑

x∈B/K

∑

q

(−1)qJq
bx
X

from virtual (g,K)-modules into virtual g-modules which are b-locally finite. Note
that the above sum is well defined, since the Jq

bx
depend only on the K-orbit of x

in B.
An important feature of the functors Jq

bx
is the fact that they satisfy the following

identity relating the nx-homology of X with the n-cohomology of the modules Jq
bx
X

(see page 6 in [C1]):
∑

p,q≥0

(−1)p+q trhH
p(n, Jq

bx
X) =

∑

q

(−1)q trhHq(nx, X)0.

Here the superscript ‘0’ is the appropriate twist interchanging hx with h, and trh
denotes the formal trace of the h-action. More precisely, if Z is a locally finite
h-module with finite-dimensional weight components Zµ, µ ∈ h∗, then

trh Z =
∑

µ∈h∗

dimZµ e
µ.
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Using this and Osborne’s character formula, the global character of X on an
arbitrary θ-stable Cartan subgroup can be read off from the characters of the Jq

bx
X

(see [C1] and [C2]). In particular, we deduce that if τ is an irreducible representation
of the Weyl group Wg occuring in the coherent representation attached to X then
τ occurs in the coherent continuation representation attached to Jq

bx
X for some

q ≥ 0 and some Borel subalgebra bx. Moreover, from the definitions, one has
Dim(X) ≥ Dim(Jq

bx
X). Applying the results in [BV3] to the module Jq

bx
X , we

deduce that:

do(τ) ≥ ♯R+
g −Dim(Jq

bx
X) ≥ ♯R+

g −Dim(X),

where do(τ) is the degree of τ .

6. Index polynomials and Goldie rank polynomials

Recall thatHs denotes a maximally split Cartan subgroup ofG with complexified
Lie algebra hs. As in Section 4, we let X be a module with regular infinitesimal
character λ0 ∈ h⋆s , and {Xλ}λ∈λ0+Λ the corresponding coherent family on Hs. With
notation from (1.1d) and (1.1e), Joseph proved that the mapping

λ 7→ PX(λ) = rk(U(g)/Ann(Xλ)),

extends to aWg-harmonic polynomial on h∗s , homogeneous of degree ♯R+
g −Dim(X),

where Dim(X) is the Gelfand-Kirillov dimension of X (see [J1], [J2] and [J3]). He
also found relations between the Goldie rank polynomial PX and Springer repre-
sentations; and (less directly) Kazhdan-Lusztig polynomials (see [J4] and [J5]).

Recall from (1.1h) King’s analytic interpretation of the Goldie rank polynomial:
that for x ∈ hs,0 regular, the expression

(6.1) lim
t→0+

td chg(Xλ)(exp tx)

is zero if d is an integer bigger than Dim(X); and if d = Dim(X), it is (for generic x)
a nonzero polynomial CX,x in λ called the character polynomial. Up to a constant,
this character polynomial is equal to the Goldie rank polynomial attached to X .
In other words, the Goldie rank polynomial expresses the dependence on λ of the
leading term in the Taylor expansion of the numerator of the character of Xλ on
the maximally split Cartan Hs. For more details, see [K1] and also [J2], Corollary
3.6.

The next theorem shows that the index polynomial we studied in Section 5 is
the exact analogue of King’s character polynomial, but attached to the character
on the compact Cartan subgroup instead of the maximally split Cartan subgroup.

Theorem 6.2. Let X be a (g,K)-module with regular infinitesimal character and
let Xλ be the corresponding coherent family on the compact Cartan subgroup. Write
rg (resp. rk) for the number of positive t-roots for g (resp. k). Suppose y ∈ t0 is
any regular element. Then the limit

(6.3) lim
t→0+

td chg(Xλ)(exp ty)

is zero if d is an integer bigger than rg − rk. If d = rg − rk, then the limit (6.3) is
equal to

∏
α∈R

+
k

α(y)
∏

α∈R
+
g

α(y) QX(λ),
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where QX is the index polynomial attached to X as in (5.1). In other words,
the index polynomial, up to an explicit constant, expresses the dependence on λ of
the (possibly zero) leading term in the Taylor expansion of the numerator of the
character of Xλ on the compact Cartan T .

Proof. The restriction to K of any G-representation has a well defined distribution
character, known as the K-character. The restriction of this K-character to the set
of elliptic G-regular elements in K is a function, equal to the function giving the G-
character (see [HC], and also [AS], (4.4) and the appendix). Therefore Proposition
3.2 and (3.7) imply

chg(Xλ)(exp ty) =
chk(I(Xλ))

chk(S+ − S−)
(exp ty).

Also, it is clear that

lim
t→0+

chk(I(Xλ))(exp ty) = chk(I(Xλ))(e) = dim I(Xλ) = QX(λ).

Therefore the limit (6.3) is equal to

lim
t→0+

td
chk(I(Xλ))(exp ty)

chk(S+ − S−)(exp ty)
= QX(λ) lim

t→0+

td

chk(S+ − S−)(exp ty)
.

On the other hand, it is well known and easy to check that

chk(S
+ − S−) =

dg
dk

,

where dg (resp. dk) denotes the Weyl denominator for g (resp. k). It is immediate
from the product formula (4.6a) that we know that

dg(exp ty) = trg
∏

α∈R+
g

α(y) + higher order terms in t

and similarly

dk(exp ty) = trk
∏

α∈R+
k

α(y) + higher order terms in t.

So we see that

lim
t→0+

td

chk(S+ − S−)(exp ty)
= lim

t→0+
td−rg+rk

∏
α∈R+

k
α(y)

∏
α∈R+

g
α(y)

.

The theorem follows.
�

We are now going to consider some examples (of discrete series representations)
where we compare the index polynomial and the Goldie rank polynomial. To do
so, we identify the compact Cartan subalgebra with the maximally split one using
a Cayley transform.

Recall that if X is a discrete series representation with Harish-Chandra param-
eter λ, then

I(X) = ±HD(X) = ±Eλ,

where Eλ denotes the K̃-type with infinitesimal character λ. (The sign depends
on the relation between the positive system defined by λ and the fixed one used
in Section 3 to define the index. See [HP1], Proposition 5.4, or [HP2], Corollary
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7.4.5.) The index polynomial QX is then given by the Weyl dimension formula for

this K̃-type, i.e., by

(6.4) QX(λ) =
∏

α∈R+
k

〈λ, α〉

〈ρk, α〉
.

Comparing this with [K2], Proposition 3.1, we get:

Proposition 6.5. Suppose G is linear, semisimple and of Hermitian type. Let
X be the (g,K)-module of a holomorphic discrete series representation. Then the
index polynomial QX coincides with the Goldie rank polynomial PX up to a scalar
multiple.

Of course, QX is not always equal to PX , since the degrees of these two polyno-
mials are different in most cases.

In the following we consider the example of discrete series representations for
SU(n, 1). The choice is dictated by the existence of explicit formulas for the Goldie
rank polynomials computed in [K2].

The discrete series representations for SU(n, 1) with a fixed infinitesimal charac-
ter can be parametrized by integers i ∈ [0, n]. To see how this works, we introduce
some notation. First, we take for K the group S(U(n) × U(1)) ∼= U(n). The
compact Cartan subalgebra t consists of diagonal matrices, and we identify it with
Cn+1 in the usual way. We make the usual choice for the dominant k-chamber C:
it consists of those λ ∈ Cn+1 for which

λ1 ≥ λ2 ≥ · · · ≥ λn.

Then C is the union of n+1 g-chambersD0, . . . , Dn, whereD0 consists of λ ∈ C such
that λn+1 ≤ λn, Dn consists of λ ∈ C such that λn+1 ≥ λ1, and for 1 ≤ i ≤ n− 1,

Di = {λ ∈ C
∣∣λn−i ≥ λn+1 ≥ λn−i+1}.

Now for i ∈ [0, n], and for λ ∈ Di, which is regular for g and analytically integral
for K, we denote by Xλ(i) the discrete series representation with Harish-Chandra
parameter λ. We use the same notation for the corresponding (g,K)-module. For
i = 0, Xλ(i) is holomorphic and this case is settled by Proposition 6.5; the result is
that both the index polynomial and the Goldie rank polynomial are proportional
to the Vandermonde determinant

(6.6) V (λ1, . . . , λn) =
∏

1≤p<q≤n

(λp − λq).

The case i = n of antiholomorphic discrete series representations is analogous. For
1 ≤ i ≤ n − 1, the index polynomial of Xλ(i) is still given by (6.6). On the other
hand, the character polynomial is up to a constant multiple given by the formula
(6.5) of [K2], as the sum of two determinants. We note that King’s expression can
be simplified and that the character polynomial of Xλ(i) is in fact equal to
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(6.7)

∣∣∣∣∣∣∣∣∣∣∣∣∣

λn−2
1 . . . λn−2

n−i λn−2
n−i+1 . . . λn−2

n

λn−3
1 . . . λn−3

n−i λn−3
n−i+1 . . . λn−3

n
...

...
...

...
λ1 . . . λn−i λn−i+1 . . . λn

1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

up to a constant multiple.
For i = 1, (6.7) reduces to the Vandermonde determinant V (λ1, . . . , λn−1). Simi-

larly, for i = n−1, we get V (λ2, . . . , λn). In these cases, the Goldie rank polynomial
divides the index polynomial.

For 2 ≤ i ≤ n−2, the Goldie rank polynomial is more complicated. For example,
if n = 4 and i = 2, (6.7) becomes

−(λ1 − λ2)(λ3 − λ4)(λ1 + λ2 − λ3 − λ4),

and this does not divide the index polynomial. For n = 5 and i = 2, (6.7) becomes

− (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)(λ4 − λ5)

(λ1λ2+λ1λ3−λ1λ4−λ1λ5+λ2λ3−λ2λ4−λ2λ5−λ3λ4−λ3λ5+λ2
4+λ4λ5+λ2

5),

and one can check that the quadratic factor is irreducible.
More generally, for any n ≥ 4 and 2 ≤ i ≤ n − 2, the Goldie rank polynomial

(6.7) is divisible by (λp − λq) whenever 1 ≤ p < q ≤ n− i or n− i+1 ≤ p < q ≤ n.
This is proved by subtracting the qth column from the pth column. On the other
hand, if 1 ≤ p ≤ n − i < q ≤ n, we claim that (6.7) is not divisible by (λp − λq).
Indeed, we can substitute λq = λp into (6.7) and subtract the qth column from the
pth column. After this we develop the determinant with respect to the pth column.
The resulting sum of two determinants is equal to the Vandermonde determinant
V (λ1, . . . , λp−1, λp+1, . . . , λn), and this is not identically zero.

This proves that for X = Xλ(i) the greatest common divisor of PX and QX is

(6.8)
∏

1≤p<q≤n−i

(λp − λq)
∏

n−i+1≤r<s≤n

(λr − λs).

Comparing with the simple roots Ψi corresponding to the chamber Di described on
p. 294 of [K2], we see that the linear factors of (6.8) correspond to roots generated
by the compact part of Ψi. On the other hand, the set of compact roots in Ψi

is equal to the τ -invariant of Xλ(i), as proved in [HS], Proposition 3.6 (see also
[K1], Remark 4.5). Recall that the τ -invariant of a (g,K)-module X consists of the
simple roots α such that the translate of X to the wall defined by α is 0; see [V1],
Section 4.

In particular, we have checked a special case of the following proposition.

Proposition 6.9. Assume that G is a real reductive Lie group in the Harish-
Chandra class and that G and K have equal rank. Let X be the discrete series
representation of G with Harish-Chandra parameter λ. Then the index polynomial
QX and the Goldie rank polynomial PX are both divisible by the product of linear
factors corresponding to the roots generated by the τ-invariant of X.
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Proof. The τ -invariant of X is still given as above, as the compact part of the simple
roots corresponding to λ. In particular, the roots generated by the τ -invariant are
all compact, and the corresponding factors divide QX , which is given by (6.4).

On the other hand, by [V1], Proposition 4.9, the Goldie rank polynomial is
always divisible by the factors corresponding to roots generated by the τ -invariant.
We note that the result in [V1] is about the Bernstein degree polynomial, which
is up to a constant factor equal to the Goldie rank polynomial by [J2], Theorem
5.7. �

Note that for G = SU(n, 1), the result we obtained is stronger than the con-
clusion of Proposition 6.9. Namely, we proved that the product of linear factors
corresponding to the roots generated by the τ -invariant of X is in fact the greatest
common divisor R of PX and QX . We note that it is easy to calculate the degrees of
all the polynomials involved. Namely, if 2 ≤ i ≤ n−2, the degree of R is

(
i
2

)
+
(
n−i
2

)
.

Since Dim(X) = 2n− 1 (see [K2]), and ♯R+
g =

(
n+1
2

)
, the degree of PX is

(
n−1
2

)
. It

follows that the degree of PX/R is i(n− i)− (n− 1). On the other hand, since the
degree of QX is ♯R+

k =
(
n
2

)
, the degree of QX/R is i(n− i).

7. Index polynomials and nilpotent orbits

Assume again that we are in the setting (1.1) of the introduction, so that Y =
Yλ0 is an irreducible (g,K)-module. (We use a different letter from the X in the
introduction as a reminder that we will soon be imposing some much stronger
additional hypotheses on Y .) Recall from (1.1g) the expression

(7.1a) Ass(Yλ) =

r∐

j=1

mj
Y (λ)O

j (λ ∈ (λ0 + Λ)+),

and the fact that each mj
Y extends to a polynomial function on t∗, which is a

multiple of the Goldie rank polynomial:

(7.1b) mj
Y = ajY PY ,

with ajY a nonnegative rational number depending on Y . On the other hand, the
Weyl dimension formula for k defines a polynomial on the dual of the compact
Cartan subalgebra t∗ in g, with degree equal to the cardinality ♯R+

k of positive
roots for k. Write σK for the representation of the Weyl group Wg generated by
this polynomial. Suppose that σK is a Springer representation, i.e., it is associated
with a nilpotent GC-orbit OK :

(7.1c) σK
Springer
←→ OK ⊂ g∗.

Here GC denotes a connected complex reductive algebraic group having Lie alge-
bra g. Assume also that there is a Harish-Chandra module Y of regular infinitesimal
character λ0 such that

(7.1d) V(gr(Ann(Y ))) = OK .

Recall from the discussion before (1.1f) that V(gr(Ann(Y ))) is the variety associated
with the graded ideal of Ann(Y ) in the symmetric algebra S(g).

Our assumptions force the degree of the Goldie rank polynomial PY attached to
Y to be

♯R+
g −Dim(Y ) = ♯R+

g −
1

2
dimOK =

1

2
(dimN − dimOK) = ♯R+

k ,
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where N denotes the cone of nilpotent elements in g⋆. In other words, the Goldie
rank polynomial PY has the same degree as the index polynomial QY .

We conjecture that for representations attached to OK , the index polynomial
admits an expression analogous to (1.1i).

Conjecture 7.2. Assume that the Wg-representation σK generated by the Weyl
dimension formula for k corresponds to a nilpotent GC-orbit OK via the Springer
correspondence. Then for each KC-orbit O

j
K on OK∩(g/k)⋆, there exists an integer

cj such that for any Harish-Chandra module Y for G satisfying V(gr(Ann(Y ))) ⊂
OK , we have

QY =
∑

j

cjm
j
Y .

Here QY is the index polynomial attached to Y as in Section 5.

Example 7.3. Consider G = SL(2,R) with K = SO(2). Then σK is the trivial
representation of Wg ≃ Z/2Z and OK is the principal nilpotent orbit. OK has two
real forms O1

K and O2
K . One checks from our computations in Example 5.5 and

from the table below that c1 = 1 and c2 = −1. This shows that the conjecture is
true in the case when G = SL(2,R).

Y V(Y ) QY

finite-dimensional modules {0} 0
holomorphic discrete series O1

K 1
antiholomorphic discrete series O2

K −1
principal series O1

K ∪ O
2
K 0

Here V(Y ) ⊂ V(gr(Ann(Y ))) is the associated variety of Y .

Example 7.4. Let n > 1 and let G = SU(1, n) with K = U(n). Then OK is
the minimal nilpotent orbit of dimension 2n. It has two real forms O1

K and O2
K .

The holomorphic and antiholomorphic discrete series representations Y 1
λ and Y 2

λ all
have Gelfand-Kirillov dimension equal to n. By [Ch], Corollary 2.13, the respective
associated cycles are equal to

Ass(Y i
λ) = mi

Y i(λ)Oi
K , i = 1, 2,

with the multiplicity mi
Y i(λ) equal to the dimension of the lowest K-type of Y i

λ.
The index of the holomorphic discrete series representations is the lowest K-type
shifted by a one dimensional representation of K with weight ρ(p−), so it has
the same dimension as the lowest K-type. The situation for the antiholomorphic
discrete series representations is analogous, but there is a minus sign. Hence

mi
Y i(λ) = (−1)i−1QY i(λ), i = 1, 2.

This already forces the coefficients c1 and c2 from Conjecture 7.2 to be 1 and -1
respectively.

Since OK is the minimal orbit, it follows that for infinite-dimensional Y ,

V(gr(Ann(Y ))) ⊆ OK ⇒ V(gr(Ann(Y ))) = OK .
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If V(gr(Ann(Y ))) = OK and Y is irreducible, then V(Y ) must be either O1
K or

O2
K . This follows from minimality of OK and from [V3], Theorem 1.3. Namely, the

codimension of the boundary of Oi
K in Oi

K is n ≥ 2.

On the other hand, by [KO], Lemma 3.5, V(Y ) = Oi
K implies Y is holomorphic

if i = 1, respectively antiholomorphic if i = 2. Let us assume i = 1; the other case
is analogous.

It is possible to write Y as a Z-linear combination of generalized Verma modules;
see for example [HPZ], Proposition 3.6. So we see that it is enough to check the
conjecture assuming Y is a generalized Verma module. In this case, one easily

computes that I(Y ) is the lowest K-type of Y shifted by the one dimensional K̃-
module with weight ρ(p−); see [HPZ], Lemma 3.2. So the index polynomial is the
dimension of the lowestK-type. By [NOT], Proposition 2.1, this is exactly the same

as the multiplicity m1
Y of O1

K in the associated cycle. This proves the conjecture
in this case (with c1 = 1).

Whenever G is a simple group with a Hermitian symmetric space, the associated
varieties O1

K and O2
K of holomorphic and antiholomorphic discrete series are real

forms of a complex orbit OK attached by the Springer correspondence to σK .
The argument above proves Conjecture 7.2 for holomorphic and antiholomorphic
representations. But in general there can be many more real forms of OK , and the
full statement of Conjecture 7.2 is not so accessible.

We mention that neither of the two assumptions (7.1c) and (7.1d) above is
automatically fulfilled. Below, we list the classical groups for which the assumption
(7.1c) is satisfied, i.e the classical groups for which σK is a Springer representation.

To check whether σK is a Springer representation, we proceed as follows (see
[Car], Chapters 11 and 13):

(i) we identify σK as a Macdonald representation;
(ii) we compute the symbol of σK ;
(iii) we write down the partition associated with this symbol;
(iv) we check whether the partition corresponds to a complex nilpotent orbit.

Recall that complex nilpotent orbits in classical Lie algebras are in one-to-one
correspondence with the set of partitions [d1, · · · , dk] with d1 ≥ d2 ≥ · · · ≥ dk ≥ 1
such that (see [CM], Chapter 5):

• d1 + d2 + · · ·+ dk = n, when g ≃ sl(n,C);
• d1 + d2 + · · · + dk = 2n+ 1 and the even dj occur with even multiplicity,
when g ≃ so(2n+ 1,C);
• d1 + d2 + · · ·+ dk = 2n and the odd dj occur with even multiplicity, when
g ≃ sp(2n,C);
• d1 + d2 + · · · + dk = 2n and the even dj occur with even multiplicity,
when g ≃ so(2n,C); except that the partitions having all the dj even and
occurring with even multiplicity are each associated to two orbits.

For example, when G = SU(p, q), with q ≥ p ≥ 1, the Weyl group Wg is the
symmetric group Sp+q, and Wk can be identified with the subgroup Sp × Sq. The
representation σK is parametrized, as a Macdonald representation, by the partition
[2p, 1q−p] (see [M] or Proposition 11.4.1 in [Car]). This partition corresponds to a
2pq-dimensional nilpotent orbit, so σK is Springer. Note that when g is of type
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An, there is no symbol to compute, and any irreducible representation of Wg is a
Springer representation.

When G = SOe(2p, 2p + 1), with p ≥ 1, the group Wk is generated by a root
subsystem of typeDp×Bp. In this case, σK is parametrized by the pair of partitions
([α], [β]) = ([1p], [1p]) and its symbol is the array

(
0 2 3 · · · p+ 1

1 2 · · · p

)
.

(See [L] or Proposition 11.4.2 in [Car].) The partition of 4p + 1 associated with
this symbol is [3, 22p−2, 12]. This partition corresponds to a 2p(2p+1)-dimensional
nilpotent orbit, i.e., σK is a Springer representation.

When G = Sp(p, q;R), with q > p ≥ 1, the Weyl group Wk is generated by a
root subsystem of type Cp×Cq so that σK is parametrized by the pair of partitions
([α], [β]) = ([∅], [2p, 1q−p]). Its symbol is the array

(
0 1 2 · · · q

1 2 · · · q + 1

)
,

where in the second line there is a jump from q − p to q − p + 2. (See [L] or
Proposition 11.4.3 in [Car].) The partition of 2p+ 2q associated with this symbol
is [3, 22p−2, 12(q−p)+1]. This partition does not correspond to a nilpotent orbit, i.e.,
σK is not a Springer representation.
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G Generator for σK Springer ? OK dimC(OK)

SU(p, q), q ≥ p ≥ 1
∏

1≤i<j≤p
p+1≤i<j≤p+q

(Xi − Xj) for p ≥ 2 Yes [2p, 1q−p ] 2pq

∏

2≤i<j≤q+1

(Xi − Xj) for q ≥ 2, p = 1 (minimal orbit if p = 1)

σK is trivial for p = q = 1 (principal orbit if p = q = 1)

SOe(2p, 2p + 1), p ≥ 1
∏

1≤i<j≤p
p+1≤i<j≤2p

(X2
i − X2

j )
∏

p+1≤i≤2p

Xi for p ≥ 2 Yes [3, 22p−2, 12] 2p(2p + 1)

X2 for p = 1 (subregular orbit if p = 1)

SOe(2p, 2p − 1), p ≥ 1
∏

1≤i<j≤p
p+1≤i<j≤2p−1

(X2
i − X2

j )
2p−1∏

i=p+1

Xi for p ≥ 2 Yes [3, 22p−2] 2p(2p − 1)

σK is trivial for p = 1 (principal orbit if p = 1)

SOe(2, 2q + 1), q ≥ 2
∏

2≤i<j≤q+1

(X2
i − X2

j )
q+1∏

i=2
Xi Yes [3, 12q ] 2(2q + 1)

SOe(2p, 2q + 1)
∏

1≤i<j≤p
p+1≤i<j≤p+q

(X2
i − X2

j )
p+q∏

i=p+1

Xi Yes [3, 22p−2, 12(q−p)+2 ] 2p(2q + 1)

q ≥ p + 1 ≥ 3

SOe(2p, 2q + 1)
∏

1≤i<j≤p
p+1≤i<j≤p+q

(X2
i − X2

j )
p+q∏

i=p+1
Xi for q ≥ 2 No - -

p ≥ q + 2 ≥ 2 Xp+1
∏

1≤i<j≤p

(X2
i − X2

j ) for q = 1

∏

1≤i<j≤p

(X2
i − X2

j ) for q = 0

Sp(2n,R), n ≥ 1
∏

1≤i<j≤n

(Xi − Xj) for n ≥ 2 Yes [2n] n(n + 1)

σK is trivial for n = 1 (principal orbit if n = 1)

Sp(p, q;R), q ≥ p ≥ 1
∏

1≤i<j≤p
p+1≤i<j≤p+q

(X2
i − X2

j )
p+q∏

i=1
Xi for p ≥ 2 No - -

∏

2≤i<j≤q+1

(X2
i − X2

j )
∏

1≤i≤q+1

Xi for q ≥ 2, p = 1

X1X2 for p = q = 1

SOe(2p, 2q), q ≥ p ≥ 1
∏

1≤i<j≤p
p+1≤i<j≤p+q

(X2
i − X2

j ) for p ≥ 2 Yes [3, 22p−2, 12(q−p)+1 ] 4pq

∏

2≤i<j≤q+1

(X2
i − X2

j ) for q ≥ 2, p = 1

σK is trivial for p = q = 1 (principal orbit for p = q = 1)

SO⋆(2n), n ≥ 1
∏

1≤i<j≤n

(Xi − Xj) for n ≥ 2 Yes [2n] for n even n(n − 1)

σK is trivial for n = 1 [2n−1, 12] for n odd
(trivial orbit if n = 1)

(minimal orbit if n = 3)
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The following theorem provides a sufficient condition for both assumptions (7.1c)
and (7.1d) to hold. In contrast with the previous table, it includes exceptional
groups.

Theorem 7.5. Suppose G is connected semisimple, T is a compact Cartan subgroup
in G contained in K, and λ0 is the Harish-Chandra parameter for a discrete series
representation Y0 of G. Assume that the set of integral roots for λ0 is precisely the
set of compact roots, i.e.,

(7.6) {α ∈ ∆(g, t)|λ0(α
∨) ∈ Z} = ∆(k, t).

Then σK is the Springer representation for a complex nilpotent orbit OK . Let
{Yλ0+µ|µ ∈ Λ} be the Hecht-Schmid coherent family of virtual representations cor-
responding to Y0 and form the virtual representation

Y
def.
=

∑

w∈Wk

(−1)wYwλ.

Then Y is a nonzero integer combination of irreducible representations having as-
sociated variety of annihilator equal to OK .

Proof. The character of Y on the compact Cartan T is a multiple (by the cardinality
of Wk) of the character of Y0. Consequently the character of Y on T is not zero, so
Y is not zero. By construction the virtual representation Y transforms under the
coherent continuation action of the integral Weyl group W (λ0) = Wk by the sign
character of W (λ0). By the theory of τ -invariants of Harish-Chandra modules, it
follows that every irreducible constituent of Y must have every simple integral root
in its τ -invariant.

At any regular infinitesimal character λ0 there is a unique maximal primitive
ideal J(λ0), characterized by having every simple integral root in its τ invariant.
The Goldie rank polynomial for this ideal is a multiple of

q0(λ) =
∏

〈α∨,λ0〉∈N

〈α∨, λ〉;

so the Goldie rank polynomial for every irreducible constituent of Y is a multiple of
q0. The Weyl group representation generated by q0 is σK (see (7.1)); so by [BV1],
it follows that the complex nilpotent orbit O0 attached to the maximal primitive
ideal J0 must correspond to σK as in (7.1c). At the same time, we have seen that
the (nonempty!) set of irreducible constituents of the virtual representation Y all
satisfy (7.1d).

�

Theorem 7.5 applies to any real form of E6, E7 and E8, and more generally
to any equal rank real form of one root length. It applies as well to G2 (both
split and compact forms. The theorem applies to compact forms for any G, and
in that case OK = 0). However, for the split F4 and taking λ0 a discrete series
parameter for the nonlinear double cover, the integral root system (type C4) strictly
contains the compact roots (type C3 × C1). So the above theorem does not apply
to split F4. Nevertheless the representation σK does correspond to a (special)
nilpotent orbit OK . At regular integral infinitesimal character, there are (according
to the representation-theoretic software atlas; see [atlas]) exactly 27 choices for an
irreducible representation Y as in (7.1d). There are two real forms of the orbit OK .
The Y ’s come in three families (“two-sided cells”) of nine representations each, with
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essentially the same associated variety in each family. One of the three families
contains an Aq(λ) (with Levi of type B3) and therefore has associated variety equal
to one of the two real forms. In particular, the condition (7.6) is sufficient but not
necessary for assumptions (7.1c) and (7.1d) to hold. Note that for rank one F4, the
representation σK is not in the image of the Springer correspondence.

For the classical groups, Theorem 7.5 applies to all the cases of one root length,
explaining all the “yes” answers in Table 7 for types A and D. In the case of two
root lengths, the hypothesis of Theorem 7.5 can be satisfied in the noncompact case
exactly when G is Hermitian symmetric (so the cases SOe(2, 2n−1) and Sp(2n,R);
more precisely, for appropriate nonlinear coverings of these groups).

We do not know a simple general explanation for the remaining “yes” answers in
the table. Just as for F4, the integral root systems for a discrete series parameter
λ0 are too large for Theorem 7.5: in the case of SOe(2p, 2q + 1), for example, the
root system for K is Dp × Bq, but (for p ≥ 2) the integral root system cannot be
made smaller than Bp ×Bq.
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