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We classify and characterize three-dimensional U(1) quantum spin liquids [deconfined U(1) gauge theories]
with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic
excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3)
spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of
bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some
of these states possess fractional response to an external SO(3) gauge field, due to which we dub them “fractional
topological paramagnets.” We identify 11 other anomalous states that can be grouped into three anomaly classes.
The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected
topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure
but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such
U(1) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched
U(1) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U(1) quantum
spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we
find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U(1) quantum spin
liquids with this symmetry. Finally, we briefly discuss the classification of U(1) quantum spin liquids enriched
by some other symmetries.

DOI: 10.1103/PhysRevB.97.195126

I. INTRODUCTION

Symmetry and entanglement both play important roles in
understanding quantum phases of matter. It is by now well
known that the ground states of quantum many-body systems
may be in phases characterized by long-range entanglement
between local degrees of freedom. Global symmetry may
be realized in interesting ways in such long-range entangled
phases. The simplest (and best understood) cases are gapped
topologically ordered quantum phases as exemplified by the
fractional quantum Hall states. The long-range entanglement
in the fractional quantum Hall ground-state wave functions
enables gapped quasiparticle excitations showing fractional
statistics and fractional charge. The fractional statistics is a
fundamental phenomenon that follows from the topological
order, while the fractional charge describes the implementation
of the global U(1) charge conservation symmetry in this state.

Another prototypical class of states that possess long-range
entanglement are quantum spin liquid phases of insulating
magnets. A wide variety of quantum spin liquids have been
described theoretically. Their universal low-energy physics is
(in most known examples) described by a deconfined emergent
gauge theory coupled to matter fields. In the presence of
global symmetries, it is necessary to also specify the symmetry
implementation in this low-energy theory. Indeed, two phases
with the same structure of long-range entanglement (e.g., same
low-energy gauge theory) can still be sharply distinguished by
their symmetry implementations. This leads to a symmetry
protected distinction between symmetry unbroken phases of
matter (as is familiar from the theory of topological band
insulators).

It is useful to distinguish two very broad classes of spin
liquids. The simplest and best understood are ones in which
all excitations are gapped. These gapped spin liquids are
topologically ordered—they have well defined quasiparticle
excitations with nonlocal “statistical” interactions, ground-
state degeneracies on topologically nontrivial manifolds, etc.
Global symmetries can be implemented nontrivially in topo-
logically ordered phases. For instance, a symmetry may be
fractionalized. Topological phases in the presence of global
symmetries have been dubbed “symmetry enriched topolog-
ical” (SET) matter. Thus symmetry protected distinctions
between different SET phases may be much more striking
than in topological band insulators. Though much of the early
work on spin liquids dealt with SET phases, it is only in the
last few years that there has been tremendous and systematic
progress in understanding their full structure and classification
in two-dimensional systems [1–11]. Some limited progress has
been made for three-dimensional SET phases as well [12–14].
A different broad class of spin liquid phases have gapless
excitations. These are much less understood theoretically
though they have tremendous experimental relevance.

In this paper, we study a particularly simple class of quan-
tum spin liquids in three spatial dimensions (3D) with an emer-
gent gapless photon excitation. Their low-energy dynamics is
described by a deconfined U(1) gauge theory. Microscopic
models for such phases were described in Refs. [15–21].
The emergence of the photon is necessarily accompanied
by the emergence of quasiparticles carrying electric and/or
magnetic charges that couple to the photon. We will restrict
our attention to phases where these “charged” matter fields
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are all gapped.1 One of our main focuses is on the realization
of such U(1) quantum spin liquids in 3D magnets with spin
SO(3) and time-reversal T symmetries. After warming up with
this example, we will describe a general framework to classify
symmetry enriched U(1) quantum spin liquids with a large
class of symmetries. Then we will apply this framework to the
more complicated case where the symmetry is Z2 × T . We will
also briefly discuss such U(1) quantum spin liquids enriched by
some other symmetries. In previous work by two of us [30] (see
also Ref. [8]), we described the various such phases when time
reversal is the only global internal symmetry. The extension
to SO(3) × T , Z2 × T , and other symmetries is nontrivial and
requires some conceptual and technical advances, which we
describe in detail in this paper.

For the case with SO(3) × T symmetry, we find that there
are 15 families of such U(1) quantum spin liquids which
may be distinguished by the symmetry realizations on the
gapped electric/magnetic excitations. We describe the physical
properties of these states. We will show that there are two such
quantum spin liquids that have a “fractional” response to a
background external SO(3) gauge field. For this reason, we dub
them “fractional topological paramagnets.” They are closely
analogous to the fractional topological insulators discussed
theoretically.

Each of the 15 families is further refined when the quantum
spin liquid phase is combined with a symmetry protected
topological (SPT) phase of the underlying spin system pro-
tected by the same SO(3) × T symmetry. This does not change
the bulk excitation spectrum but manifests itself in different
boundary properties. As described in our previous work [30],
this refinement can be nontrivial: some but not all SPT phases
can be “absorbed” by the spin liquid and not lead to a new
state of matter. Including this refinement, we find a total of
168 different such U(1) quantum spin liquids with SO(3) × T
symmetry.

For the case with Z2 × T symmetry, we find there are
38 distinct of such U(1) quantum spin liquids based on the
properties of the bulk fractional excitations. We also obtain the
classification for such spin liquids with some other symmetries.

Studying symmetry enriched U(1) quantum spin liquids is
of conceptual and practical importance not only for quantum
magnetism, but has far reaching connections to many other
topics in modern theoretical physics. First, as emphasized in
previous papers [30], there is a very useful connection to the
theory of symmetry protected topological (SPTs) insulators
of bosons/fermions. It is very helpful to view these U(1)
quantum spin liquids as the gauged version of some SPTs
with a U(1) symmetry, i.e., these quantum spin liquids can
be obtained by coupling the relevant SPTs to a dynamical
U(1) gauge field. There are actually two distinct ways in
which the same U(1) QSL can be viewed as a gauged U(1)
SPT—either as a gauged SPT of the electric charge or a
gauged SPT of the magnetic monopole. This leads to a

1The problem of gapless matter fields coupled to a (compact) U(1)
gauge field is an interesting and extensively studied problem. For
some representative papers from the condensed matter literature see
Refs. [22–29]. A full classification of such phases with gapless matter
fields is beyond the reach of currently available theoretical tools.

generalization of the standard electric-magnetic duality of
three-dimensional Maxwell theory which incorporates the
realization of global symmetry [30–33]. In the presence
of a boundary, this 3 + 1-dimensional “symmetry-enriched”
electric-magnetic duality implies interesting and nontrivial
dualities between 2 + 1-dimensional quantum field theories
[32–35]. This line of thinking has proven to be very powerful
in studying difficult problems in strong correlation physics
in two space dimensions. Examples include quantum Hall
systems, especially the half-filled Landau level [31,36–40],
interacting topological insulator surfaces [32,34,35], quantum
electrodynamics in 2 + 1 dimensions [33,41], and a class
of Landau-forbidden quantum phase transitions known as
deconfined quantum criticality [42]. The lower dimensional
dualities are also interesting on their own as nontrivial results
in 2 + 1 dimensional quantum field theory [43–46]. Therefore
we discuss in detail the relation between different symmetry
enriched U(1) quantum spin liquids and various SPTs.

The rest of the paper is organized as follows. In Sec. II, we
enumerate all possible SO(3) × T symmetric U(1) quantum
spin liquid states based on the properties of their bulk fractional
excitations. However, we will find that 11 of them are anoma-
lous in the sense that these states cannot be realized in any
three-dimensional spin system with time-reversal and SO(3)
spin rotational symmetries. We will present various ways of
understanding the 15 nonanomalous families. In particular,
we describe their physical properties and their construction
as gauged SPTs. In Sec. III, we explain why the other 11 states
are anomalous. In Sec. IV, we discuss the topological response
of the U(1) spin liquids to an SO(3) probe gauge field, which
leads to the notion of “fractional topological paramagnets.”
In Sec. V, we combine the nonanomalous U(1) quantum spin
liquids with 3D bosonic SPTs with the same symmetry, and
discuss how the presence of the SPTs further enriches the
classification of the quantum spin liquids. After warming up
with the example of SO(3) × T symmetric U(1) quantum spin
liquids, in Sec. VI, we describe a general framework to classify
symmetry enriched U(1) quantum spin liquids for a large
class of symmetries. We will apply the general framework
to classify Z2 × T symmetric U(1) quantum spin liquids in
Sec. VII, and to classify U(1) quantum spin liquids with
some other symmetries in Sec. VIII. Finally, we conclude in
Sec. IX. The appendices contain some supplementary details,
and some contents there are interesting and important, albeit
rather technical.

II. U(1) QUANTUM SPIN LIQUIDS ENRICHED
BY TIME-REVERSAL AND SO(3) SPIN

ROTATIONAL SYMMETRIES

We will start by considering systems of interacting spins
on a lattice with SO(3) × T symmetries. The microscopic
Hilbert space thus has a tensor product structure. Further,
all local operators in this Hilbert space will transform under
linear representations of the SO(3) × T symmetry (i.e., integer
spin and Kramers singlet). Also, these local operators can
only create bosonic excitations. Our goal is to classify and
characterize U(1) quantum spin liquids that can emerge in
such systems with the simplifying assumption that only the
emergent photon is gapless.
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FIG. 1. Charge-monopole lattice at θ = 0 (mod 2π ).

A first cut understanding of the different possible such
U(1) spin liquids is obtained by focusing on the properties
of the gapped matter excitations, such as their statistics and
their quantum numbers under the relevant symmetries [30].
In three dimensions, the statistics of particles can be either
bosonic or fermionic. Under time-reversal symmetry, they can
be Kramers doublets or non-Kramers. Under SO(3), they can
either be in a linear representation (spin-1) or its projective
representation (spin-1/2). Note that any excitation with integer
spin can be reduced to spin-1 by binding local excitations (i.e.,
excitations created by local operators), and half-integer spin
excitations can be similarly reduced to ones with minimal
spin-1/2. Thus the only distinction is between linear and
projective realizations of the global symmetry.

In the presence of time-reversal symmetry, it is helpful to
integrate out the gapped matter fields and consider the effective
theory of the photon field. In general, this effective theory has
the form

Leff = LMaxwell + θ

4π2
�E · �B, (1)

where LMaxwell represents the usual Maxwell Lagrangian, and
the second term is of topological character. It is customary to
define a time-reversal transform such that the electric charge is
invariant, namely, under time reversal �E → �E and �B → − �B.
This definition also implies that θ → −θ under time reversal.
It is also known that θ is periodic with a period 4π if the
elementary electric charge is a boson, or a period 2π if the
elementary electric charge is a fermion (see Refs. [47,48] for
arguments from a condensed matter perspective). In all cases,
the possible electric and magnetic charges of excitations form a
two-dimensional lattice, and there are only two distinct config-
urations of this charge-monopole lattice, i.e., θ = 0 (mod 2π )
and π (mod 2π ), as shown in Figs. 1 and 2, respectively. For no-
tational simplicity, we will denote these two cases by θ = 0 and
π , respectively. Notice we take the normalization that the ele-
mentary electric charge is 1, and the minimal magnetic charge
is such that it emits 2π flux seen by the elementary charge.

It is natural to ask whether time-reversal can act on the
charge-monopole lattice in more complicated ways. Some
examples were discussed in Ref. [43], in which the charge-
monopole lattices undergoes a rotation (also known as S-
duality transform) under time-reversal. However, in those
examples the theories can be redefined, through appropriate
electric-magnetic duality transforms, into the conventional

FIG. 2. Charge-monopole lattice at θ = π (mod 2π ).

form with the canonical time-reversal transform ( �E → �E and
�B → − �B). In general, such a redefinition should always be
possible if the theory, while preserving time-reversal symme-
try, has a weakly coupled limit (with gauge coupling e2 � 1).

Denote an excitation with electric charge qe and
magnetic charge qm by (qe,qm). When θ = 0, the lattice
of charge-monopole excitations is generated by the two
particles (1,0) which we denote E and (0,1) which we denote
M . Then the distinct possibilities for the statistics and quantum
numbers of E and M will correspond to distinct U(1) quantum
spin liquids. Under time reversal, an excitation with nonzero
magnetic charge is transformed to another excitation that
differs from the original one by a nonlocal operation. It is then
meaningless to discuss whether these excitations are Kramers
doublets or not, because T 2 is not a gauge invariant quantity
for them [8,49]. On the other hand, all the pure electric charges
should have well-defined T 2, and they are either Kramers
singlet (T 2 = 1) or Kramers doublet (T 2 = −1). More details
can be found in Appendix A.

For the case with θ = π , time reversal interchanges ( 1
2 ,1)

and ( 1
2 ,−1), which generate the entire charge-monopole lattice.

In this case, we will still denote E as the (1,0) excitation, but
we denote M as the (0,2) excitation.

A. Quantum spin liquids with θ = 0

We start with phases where θ = 0. Let us consider the
distinct possibilities for the E and M particles. Note that
U(1) quantum spin liquids with both E and M fermionic are
anomalous, i.e., they cannot be realized in a strictly three-
dimensional bosonic system but they can be realized as the
surface of some four-dimensional bosonic systems [49–51].
We will therefore restrict to situations in which at most one of
E and M is a fermion. Consider the case where E is a boson.
Naively then E may have SO(3) spin S = 0 or S = 1/2, and
may be a Kramers singlet or a doublet, while M may be either
a boson or a fermion, and may have S = 0 or 1/2. This gives
16 distinct possibilities. If instead E is a fermion, it may again
have S = 0 or 1/2, and T 2 = ±1 while M must be a boson
but may have S = 0 or 1/2, corresponding to eight distinct
possibilities. In total this gives 24 distinct possibilities for
the E and M particles, which each correspond to a distinct
symmetry enriched U(1) QSL (see Fig. 3). However, we will
argue below that of these ten are anomalous (i.e., the symmetry
implementation is inconsistent in a strictly 3 + 1-D system and
is only consistent at the boundary of a 4 + 1-dimensional SPT
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FIG. 3. Symmetry protected distinctions among symmetry en-
riched U(1) quantum spin liquids. For example, with SO(3) × T
symmetries, two phases, EbMb and EbT 1

2
Mf 1

2
in this example, cannot

be connected without crossing a phase transition. When the symmetry
is broken, they can be connected without crossing a phase transition.

phase). We will discard these so that there are only 14 distinct
possibilities for the E and M particles at θ = 0. These will
describe 14 distinct families of U(1) QSLs.

In Table I, we list these distinct possible families, and
introduce labels for them that we will use in the rest of the

TABLE I. List of U(1) quantum spin liquids at θ = 0. The
subscripts “b” and “f” refer to bosonic or fermionic statistics of
the associated particle, respectively. T 2

E = 1 (T 2
E = −1) means the

electric charge is a Kramers singlet (doublet). SE and SM refer to
the spin of the corresponding particle under SO(3). In this table, the
spin liquids with both E and M fermions are not listed, because they
are known to be anomalous. We identified ten more anomalous spin
liquids, and they are divided into three classes. More details can be
found in the main texts.

T 2
E SE SM comments

EbMb 1 1 1 E: trivial, M: trivial
EbMf 1 1 1 E: eCmC, M: trivial
EbMb 1

2
1 1 1

2 E: eCm 1
2 , M: trivial

EbMf 1
2

1 1 1
2 E: eCmC 1

2 , M: trivial

EbT Mb −1 1 1 E: trivial, M: eCmT

EbT Mf −1 1 1 E: (eCmC)T ε, M: n = 2 TSC
Eb 1

2
Mb 1 1

2 1 E: trivial, M: eCm 1
2

EbT 1
2
Mb −1 1

2 1 E:trivial, M: eCmT 1
2

EbT 1
2
Mf 1

2
−1 1

2
1
2 E: θ = 2π , M: n = 2 TSC

Ef Mb 1 1 1 E: trivial, M: eCmC

Ef T Mb −1 1 1 E: trivial, M: eCmCT

Ef 1
2
Mb 1 1

2 1 E: trivial, M: eCmC 1
2

Ef 1
2
Mb 1

2
1 1

2
1
2 E: n = 2 TI, M: θ = 2π

Ef T 1
2
Mb −1 1

2 1 E: trivial, M: eCmCT 1
2

T 2
E SE SM comments

Eb 1
2
Mb 1

2
1 1

2
1
2 anomalous (class I)

Ef Mb 1
2

1 1 1
2 anomalous (class I)

Ef T Mb 1
2

−1 1 1
2 anomalous (class II)

Eb 1
2
Mf 1 1

2 1 anomalous (class II)

EbT 1
2
Mf −1 1

2 1 anomalous (class II)

EbT 1
2
Mb 1

2
−1 1

2
1
2 anomalous (class II)

EbT Mf 1
2

−1 1 1
2 anomalous (class III)

Eb 1
2
Mf 1

2
1 1

2
1
2 anomalous (class III)

EbT Mb 1
2

−1 1 1
2 anomalous (class III)

Ef T 1
2
Mb 1

2
−1 1

2
1
2 anomalous (class III)

paper. The rest of this subsection will explain how to obtain
these 14 spin liquids and Sec. III will show that the other ten
spin liquids are anomalous.

Among the 14 quantum spin liquids, the six of them in which
none of E or M carries spin-1/2 have been described in detail
previously [30].2 Below, we demonstrate how the other eight
can be constructed. Many of these spin liquids can be obtained
simply. Specifically, if either E or M is a trivial boson [i.e., has
S = 0 and (for E particles) T 2

E = 1], then the corresponding
spin liquid is obtained by gauging a trivial insulator of the other
particle. For instance, to obtain Eb 1

2
Mb, start with a trivial

insulator formed by bosons with S = 1/2 and a conserved
U(1) charge that is even under time reversal. Coupling this
charge to a dynamical U(1) gauge field produces a quantum
spin liquid which is precisely Eb 1

2
Mb. If instead we wanted

to obtain EbMb 1
2
, we begin with a trivial insulator of a boson

with S = 1/2 and a conserved U(1) charge that is odd under
time reversal. Gauging this insulator produces EbMb 1

2
. This

kind of construction clearly works for six of the eight phases
where one of E or M is a trivial boson while the other has
S = 1/2. It is instructive to also understand these phases from
a different “dual” perspective where we will need to gauge the
U(1) symmetry of some SPTs with symmetries that contain
a U(1) subgroup. We explain this first below. This will also
set the stage to understand the two interesting remaining cases
where neither E nor M is a trivial boson (these are EbT 1

2
Mf 1

2

and Ef 1
2
Mb 1

2
).

(1)EbMb 1
2
. From the point of view of M (that is, viewing M

as the gauge charge), EbMb 1
2

can be viewed as a gauged trivial
bosonic insulator with symmetry ((U(1) × SU(2))/Z2) × T .
From the point of view of E, it can be viewed as a gauged SPT
with symmetry (U(1) � T ) × aSO(3), where the microscopic
boson is a Kramers singlet. This SPT is denoted by eCm 1

2 ,
which means that it can have a surface topologically ordered
(STO) state with Z2 topological order, where the topological
sectors, (1,e,m,ε), have e carrying charge-1/2 under the U(1)
symmetry and m carrying spin-1/2 under the SO(3) symmetry.
This SPT is discussed in more details in Appendix B.

(2) EbMf 1
2
. From the point of view of M , EbMf 1

2
can be

viewed as a gauged trivial fermionic insulator with symmetry
((U(1) × SU(2))/Z2) × T . From the point of view of E, it can
be viewed as a gauged bosonic SPT with symmetry (U(1) �

T ) × SO(3), where the microscopic boson is a Kramers singlet.
We denote this SPT by eCmC 1

2 , which can be viewed as a
combination of eCm 1

2 and eCmC, a well-known SPT with
symmetry U(1) × T or U(1) � T [8,47,48]. In fact, eCmC is
still a nontrivial SPT even if there is additional SO(3) symmetry
that commutes with U(1) × T or U(1) � T .

(3) Eb 1
2
Mb. From the point of view of E, Eb 1

2
Mb can be

viewed as a gauged trivial bosonic insulator with ((U(1) �

2Here we just note that from the point of view of E, EbT Mf can be
viewed as a bosonic SPT with ((U(1) � T )/Z2) × SO(3) symmetry.
On its surface there can be a symmetric Z2 topological order, where
both e and m carry charge-1/2 under U(1) and spin-1 under SO(3).
Interestingly, time reversal exchanges e and m, while their neutral
bound state ε is a Kramers singlet. This surface state is labeled as
(eCmC)T ε.
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T ) × SU(2))/Z2, where the microscopic bosons are Kramers
singlets. From the point of view of M , it can be viewed as the
gauged eCm 1

2 , but with symmetry U(1) × T × SO(3).
(4) EbT 1

2
Mb. From the point of view of E, EbT 1

2
Mb can

be viewed as a gauged trivial bosonic insulator with ((U(1) �

T ) × SU(2))/Z2
2 , where the microscopic bosons are Kramers

doublets. From the point of view of M , it can be viewed as
a gauged SPT eCmT 1

2 under symmetry U(1) × T × SO(3).
This SPT can be viewed as a combination of eCm 1

2 and eCmT ,
another well-known SPT with symmetry U(1) × T [8,47]. It
can be shown that this is still a nontrivial SPT even if there is
additional SO(3) symmetry that commutes with U(1) × T .

(5) Ef 1
2
Mb. From the point of view of E, Ef 1

2
Mb can be

viewed as a gauged trivial fermionic insulator with ((U(1) �

T ) × SU(2))/Z2, where the microscopic fermions are Kramers
singlet. From the point of view of M , it can be viewed as a
gauged eCmC 1

2 with symmetry U(1) × T × SO(3).
(6) Ef T 1

2
Mb. From the point of view of E, Ef T 1

2
Mb

can be viewed as a gauged trivial fermionic insulator with
((U(1) � T ) × SU(2))/Z2

2 , where the microscopic fermions
are Kramers doublets. From the point of view of M , it can be
viewed as a gauged eCmCT 1

2 under symmetry U(1) × T ×
SO(3). This SPT can be viewed as a combination of eCm 1

2 ,
eCmC, and eCmT .

We now turn to the last two cases EbT 1
2
M 1

2
and Ef 1

2
Mb 1

2
.

As both the E and M are nontrivial in these spin liquids, in
both the electric and magnetic pictures they should be viewed
as gauged SPTs. We state their construction here and describe
their properties in greater detail later. We will see that they
should be viewed as “fractional topological paramagnets.”

(7) EbT 1
2
Mf 1

2
. From the point of view of M , EbT 1

2
Mf 1

2
can

be viewed as a gauged n = 2 topological superconductor with
symmetry ((U(1) × SU(2))/Z2) × T . From the point of view
of E, it can be viewed as a gauged bosonic θ = 2π SPT under
symmetry ((U(1) � T ) × SU(2))/Z2

2 , where the microscopic
bosons are Kramers doublets.

(8) Ef 1
2
Mb 1

2
. From the point of view of E, Ef 1

2
Mb 1

2

can be viewed as a gauged n = 2 topological insulator of
fermions with symmetry ((U(1) � T ) × SU(2))/Z2, where the
microscopic fermions are Kramers singlets. From the point of
view of M , it can be viewed as a gauged bosonic θ = 2π SPT
with symmetry ((U(1) × SU(2))/Z2) × T . The properties of
this SPT is described in Ref. [39].

B. Quantum spin liquids with θ = π

Now we turn to U(1) quantum spin liquids with θ = π .
At θ = π , the charge-monopole lattice is shown in Fig. 2.
Because time-reversal symmetry exchanges ( 1

2 ,1) and ( 1
2 ,−1),

they should have the same statistics and quantum numbers.
Further, they have π mutual braiding statistics. This implies
that E, the bound state of ( 1

2 ,1) and ( 1
2 ,−1), has to be a Kramers

doublet spin-1 fermion [49]. Also, because (− 1
2 ,1) dyon is

the antiparticle of ( 1
2 ,−1) dyon, it has the same properties

as ( 1
2 ,1). Due to the mutual π braiding between ( 1

2 ,1) and
(− 1

2 ,1), their bound state, M , is also a fermion that carries
spin-1 and is non-Kramers. Similar thoughts imply that the
statistics and quantum numbers of ( 1

2 ,1) will determine the

TABLE II. List of U(1) quantum spin liquids at θ = π . SD = 1
(SD = 1

2 ) represents the case where the ( 1
2 ,1) dyon carries spin-1

(spin-1/2).

SD comments

(Ef T Mf )θ 1 E: TI, M: n = 1 TSC
(Ef T Mf )θ 1

2

1
2 anomalous, class II

statistics and quantum numbers of all gapped excitations. So
the classification of U(1) spin liquids with θ = π is equivalent
to the classification of the statistics and quantum numbers of
the ( 1

2 ,1) dyon.
It is known that ( 1

2 ,1) must be a boson [30,49,50]. Under
time-reversal symmetry, T 2 is not a gauge invariant quantity
for ( 1

2 ,1), so it is non-Kramers. Under SO(3), it can carry either
spin-1 or spin-1/2. We will denote the former by (Ef T Mf )θ
and the latter by (Ef T Mf )θ 1

2
. These states are summarized in

Table II.
(Ef T Mf )θ has been described in detail in Ref. [30]. From

the point of view of E, it can be viewed as a gauged free fermion
topological insulator with symmetry (((U(1) � T ))/Z2) ×
SO(3), where the microscopic fermions are Kramers doublets.
From the point of view of M , it can be viewed as a gauged
n = 1 free fermion topological superconductor with symmetry
U(1) × T × SO(3). In Sec. III, we will show that (Ef T Mf )θ 1

2

is anomalous.

III. ANOMALOUS QUANTUM SPIN LIQUIDS
WITH SO(3) × T SYMMETRY

In the enumeration in Sec. II, 11 states are claimed to be
anomalous, where ten of them have θ = 0 and 1 has θ = π . In
this section, we will provide arguments to demonstrate these
anomalies. We start with the ten with θ = 0.

A. Anomalous states with θ = 0

The ten anomalous quantum spin liquid states at θ = 0 are
grouped into three classes, such that within each class any one
of them can be obtained by coupling another in the same class
and some nonanomalous quantum spin liquids. For illustration,
let us demonstrate how to obtain Ef Mb 1

2
by coupling Eb 1

2
Mb 1

2

and Ef 1
2
Mb 1

2
, a nonanomalous quantum spin liquid. To do

this, one can couple Eb 1
2
Mb 1

2
and Ef 1

2
Mb 1

2
, and condense the

bound state of the monopole of Eb 1
2
Mb 1

2
and the antimonopole

of Ef 1
2
Mb 1

2
. This bound state is a trivial boson, so condensing

it will not break any symmetry. After this condensation, the
electric charge ofEb 1

2
Mb 1

2
and that ofEf 1

2
Mb 1

2
will be confined

together, and the resulting bound state is a fermion that carries
no nontrivial quantum number. This is precisely Ef Mb 1

2
.

The above example shows the relation between the two
anomalous quantum spin liquids in class I. We denote this
relation by

Eb 1
2
Mb 1

2

E
f 1

2
M

b 1
2←→ Ef Mb 1

2
. (2)

The relations among the two other classes are listed here.
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Class II.

Eb 1
2
Mf

EbT Mf←→ EbT 1
2
Mf

E
bT 1

2
M

f 1
2←→ EbT 1

2
Mb 1

2

E
f 1

2
M

b 1
2←→ Ef T Mb 1

2
. (3)

Class III.

Eb 1
2
Mf 1

2

E
bT 1

2
M

f 1
2←→ EbT Mf 1

2

EbT Mf←→ EbT Mb 1
2

E
f 1

2
M

b 1
2←→ Ef T 1

2
Mb 1

2
. (4)

Because of these relations, given that the other 14 quantum
spin liquids can be realized in strictly three-dimensional
bosonic systems, showing that any one of the states of a certain
class is anomalous is sufficient to show the entire class is
anomalous. Below, we will show that Eb 1

2
Mb 1

2
, EbT 1

2
Mb 1

2
, and

EbT Mb 1
2

are anomalous.
States of matter that realize a global symmetry nonanoma-

lously allow a consistent coupling of background gauge fields.
In our context, a nonanomalous realization of SO(3) symmetry
thus implies that we can consistently couple background SO(3)
gauge fields. Conversely anomalous states can be detected by
finding inconsistencies when such background gauge fields are
turned on.

Let us therefore couple our spin liquids to a probe SO(3)
gauge field. Because π1(SO(3)) = Z2, there are monopole
configurations of this SO(3) gauge field that are classified byZ2

[52]. One explicit expression of a nontrivial SO(3) monopole
configuration is

A1
μ = A2

μ = 0,A3
μ = AU(1),μ, (5)

where Aμ = ∑
Aa

μT a is the Lie algebra valued SO(3) gauge
field with T a the generators. AU(1),μ is the U(1) gauge field
configuration of a U(1) monopole [52]. One of the physical
consequences of this SO(3) monopole is a Berry phase factor
of an excitation going around a closed loop around it:

exp

(
i
�

2
Sz

)
, (6)

where � is the solid angle of the closed loop with respect to the
monopole and Sz is the representation of one of the generators
of SO(3). For spin-1 particles, Sz can be taken to be Sz

S=1 =
diag(1,0,−1). For spin-1/2 particles, Sz can be taken to be
Sz

S=1/2 = diag(1/2,−1/2). This formula can be easily obtained
by borrowing the well-known result of the Berry phase factor
of a U(1) charge moving around a U(1) monopole and using
(5).

Now consider a Dirac string that ends at this monopole.
According to (6), moving around an infinitesimal loop around
the Dirac string, a spin-1 particle will get a unit phase factor,
which seems normal. But a spin-1/2 particle will see a phase
factor of −1, which is unphysical. To cancel this phase factor,
another defect that also gives a −1 phase factor to spin-1/2
particles around the Dirac string needs to be trapped at the
SO(3) monopole. We will denote such an SO(3) monopole
(with this defect included) by MSO(3).

Next, we argue that the defect trapped at another SO(3)
monopole with

A1
μ = A2

μ = 0,A3
μ = −AU(1),μ (7)

can be essentially the same as the one trapped at the previous
SO(3) monopole, MSO(3). This is because this new SO(3)
monopole can be obtained by performing on MSO(3) a π

rotation around any axis on the xy plane. In the presence of
SO(3) symmetry, the defect trapped by it should be the same
as that trapped in MSO(3) up to a spin rotation. We denote
this SO(3) (anti)monopole (with the same defect included) by
M′

SO(3). Notice if an MSO(3) and an M′
SO(3) are fused together,

the SO(3) gauge field background will be canceled, and what
remains will be an excitation of the original system without any
SO(3) gauge field. These imply that the defect trapped in these
SO(3) monopoles can be viewed as “half” of an excitation of
the quantum spin liquid.

For the quantum spin liquid states Eb 1
2
Mb 1

2
and EbT 1

2
Mb 1

2
,

the Dirac string of a bare SO(3) monopole will give any
excitation with spin-1/2 a −1 phase factor. These excitations
all satisfy �q = qe − qm is odd. For these excitations, a
(Qe,Qm) dyon with odd Qe and Qm will give rise to a phase
2π (Qeqm − Qmqe) around an infinitesimal loop around the
Dirac string, so “half” of such a (Qe,Qm) dyon will give a
phase, which is an odd multiple of π , that exactly cancels the
−1 phase factor due to the bare SO(3) monopole. One can also
check this −1 phase factor cannot be canceled by “half” of any
other type of excitations, where at least one of Qe and Qm is
even.

According to the argument above, fusing a MSO(3) with
M′

SO(3) here should give rise to an (Qe,Qm) dyon, with both
Qe and Qm odd integers. That is,

MSO(3) × M′
SO(3) ∼ D(Qe,Qm). (8)

However, the (Qe,Qm) dyon is a fermion as long as both Qe

and Qm are odd [53], and this is inconsistent: M′ and M
cannot have any nontrivial mutual Berry phase since they differ
merely by a continuous gauge rotation, so the bound state of
the two cannot be a fermion. Therefore the above fusion rule
is physically impossible. This shows that all states in classes I
and II are anomalous.

The anomalies in the states discussed above do not involve
time-reversal symmetry in an essential way, but this is not the
case for EbT Mb 1

2
. For EbT Mb 1

2
, the analogous fusion rule we

will obtain is

MSO(3) × M′
SO(3) ∼ D(Qe,Qm) (9)

with an odd Qe and an even Qm. As Qm is even, we can always
bind −Qm/2 U(1) monopoles to MSO(3) and M′

SO(3) to cancel
their magnetic charges. Thus Qm can be taken to be zero in
the above fusion rule. In this case, the time-reversal partners of
the MSO(3) (and M′

SO(3)) will differ from itself only by a local
operator. This implies that they have a well-defined value for
T 2. However, this is also seen to be impossible: first, note that
a (Qe,0) dyon with odd Qe is a Kramers doublet in this case
and all microscopic degrees of freedom are Kramers singlet.
Suppose the fusion rule in Eq. (9) is possible, then MSO(3) and
M′

SO(3) should satisfy T 4 = −1. The argument in Appendix A
shows this is impossible unless there are microscopic Kramers
doublets, which is absent by assumption. Therefore EbT Mb 1

2

and hence all states in class III are anomalous.
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B. Anomalous state with θ = π

Now we show (Ef T Mf )θ 1
2

is also anomalous. The simplest
way to see this is to first ignore time-reversal symmetry,
then from the point of view of ( 1

2 ,1) and ( 1
2 ,−1) dyons,

this spin liquid is just Eb 1
2
Mb 1

2
. We have shown Eb 1

2
Mb 1

2
is

anomalous with SO(3) symmetry alone even without using
time-reversal symmetry, this implies (Ef T Mf )θ 1

2
must be

anomalous. Another way to see the anomaly is to notice the
relation

(Ef T Mf )θ 1
2

(Ef T Mf )θ←→ Ef T Mb 1
2
. (10)

This also shows (Ef T Mf )θ 1
2

is anomalous, and in the presence
of time-reversal symmetry its anomaly belongs to class II.

A more direct argument similar to the ones used above goes
as follows. In this case, all (qe,qm) dyons with qe an half-odd-
integer and qm an odd integer carry spin-1/2. This implies the
following fusion rule

MSO(3) × M′
SO(3) ∼ D(Qe,Qm) (11)

with Qe = 2n and Qm = 4m + 2, or Qe = 2n + 1 and Qm =
4m, where n and m are integers. One can check this dyon
must be a fermion, which in turn shows that this spin liquid is
anomalous.

C. Some comments

The above arguments show that the 11 quantum spin liquids
cannot be realized in strictly three dimensions made of bosons
if the symmetry SO(3) × T is present. Careful readers may
have noticed that the descendent states of these anomalous
states will still be anomalous if the symmetry is broken
down to (U(1) � Z2) × T ∼= O(2) × T , where U(1) is the spin
rotation around one axis, say the z axis, and Z2 is a discrete
π -spin rotation around an axis perpendicular to the z axis.
In this case, we can couple the system to a U(1) gauge field
corresponding to the spin rotational symmetry around the z

axis, then MSO(3) and M′
SO(3) become the monopoles of this

U(1) gauge field, and the analogous equations of (8) and (9)
still hold. These two monopoles are mapped into each other by
the Z2 transformation. Because this unitary Z2 transformation
flips both Sz, the spin component along the z direction, and
the field value of the U(1) gauge field corresponding to Sz

rotational symmetry, there is no mutual statistics between these
two monopoles. Therefore all previous arguments still apply.
In fact, we conjecture even if the symmetry is broken down to
Z2 × Z2 × T , the descendant states of these anomalous states
will still be anomalous.3 In Appendix C, we will show they can
be realized as the surface of some four dimensional short-range
entangled bosonic systems. In particular, four-dimensional
bosonic SPT states with only SO(3) symmetry were discussed
in Ref. [54] using group cohomology, where the SPT states
have a Z2 classification. This is consistent with our result:
the only anomalous U(1) spin liquid with SO(3) symmetry is
Eb 1

2
Mb 1

2
.

3However, if the symmetry is broken down to U(1) × T , the
descendants of all the anomalous states will become nonanomalous
(see Sec. VIII A).

If these states were not anomalous, they could also be
viewed as some gauged SPTs. So their anomalies imply the
impossibilities of some SPTs, which is discussed in more
general terms in Sec. VI B. One such example is given in
Appendix B. We would also like to mention that, although the
anomalies of these states are shown by examining the SO(3)
monopoles, an alternative argument independent of the SO(3)
monopoles is sketched in Sec. VI.

In passing, we notice that the fact that “half” of a dyon
is confined by itself does not invalidate our arguments. In
fact, the phenomenon where a defect is unphysical unless it
traps a confined object is familiar. The most familiar example
may be that in a conventional two dimensional superconductor
obtained by condensing charge-1 bosonic chargons from a
spin-charge separated described by a Z2 gauge theory, a π

flux always appears with a vison, which is confined by itself
in the superconducting phase [55].

IV. FRACTIONAL TOPOLOGICAL PARAMAGNETS

In this section, we study the topological response of the
spin liquid phases to an external SO(3) gauge field that couples
with the SO(3) spin degrees of freedom. In particular. we show
that the two phases EbT 1

2
Mf 1

2
and Ef 1

2
Mb 1

2
exhibit nontrivial

fractionalized topological response, due to which we dub them
“fractional topological paramagnets.”

We start with nonfractionalized (short-range entangled)
bosonic phases with SO(3) × T symmetry, coupled with a
background SO(3) gauge field Aμ. Since the bulk dynamics is
trivial by assumption, we can integrate out all the bulk degrees
of freedom and ask about the effective response theory for the
SO(3) gauge field A. The simplest topological response is a
theta-term:

S� = �

16π2

∫
trSO(3)F ∧ F, (12)

where F is the SO(3) field strength. The normalization is
chosen so that if the SO(3) symmetry is broken down to
U(1) ∼ SO(2), the term becomes a theta term for the U(1)
gauge field with familiar normalization.

It is important to realize that the period of � is 4π for
purely bosonic systems, in contrary to fermionic systems where
the period is 2π . In fact, a bosonic short-range entangled
phase with � = 2π is a nontrivial SPT state protected by
SO(3) × T . The physics behind is what is known as the
“statistical Witten effect”[48]: consider inserting a monopole
configuration of A of the form of Eq. (5), we can ask about
the SO(3) charge carried by this monopole. But since the
monopole configuration already breaks the symmetry down to
SO(2) ∼ U(1), we can only ask about the U(1) charge it carries.
The standard Witten effect implies that the monopole carries
U(1) charge qs = �/2π = 1. We can bind a gauge charge to
the monopole to neutralize the gauge charge, but this converts
the monopole to a fermion [53].

The above argument also shows that for short-range entan-
gled bosonic phases with SO(3) × T , the minimal nontrivial �
angle is 2π since under time-reversal � → −�. However, it
is also known that for long-range entangled (fractionalized)
phases, time-reversal symmetry could be compatible with
smaller � angles [56,57]. This is because the effective period of
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� is reduced due to the presence of fractionalized excitations.
More formally, in the presence of emergent dynamical gauge
fields, it is more appropriate to integrate out only the gapped
matter fields and keep the low-energy dynamics of the gauge
field explicit. The response theory is then correctly captured
by a �-term and a dynamical term

S̃� = �

16π2

∫
trSO(3)F ∧ F + S ′

�[aμ,Aμ], (13)

where the second term involves the dynamical gauge field aμ.
It is this S̃� that has a reduced period of �. We will explain
this point in more concrete examples at the end of Sec. IV B.
However, to understand the physics, it suffices to simply study
the properties of an SO(3) magnetic monopole (the Witten
effect) carefully—we will mainly focus on this approach here.

We argue below, in the context of U(1) spin liquids, that the
effective period of � is reduced to π when spin-1/2 excitations
are allowed in the bulk. This allows, in principle, time-reversal
symmetric phases with � = π/2 (mod π ).

A. Triviality of � = π

First, we need to show that � = π is in some sense trivial if
(and only if) there are spin-1/2 excitations (either E or M

particle). Our argument proceeds by carefully studying the
Witten effect. Consider again a monopole of A of the form
of Eq. (5), denoted by MSO(3). In general, it could carry both
the SO(2) charge qs = �/2π = 1/2, and the electric-magnetic
charge of the dynamical U(1) gauge field (qe,qm). We de-
note this object as MSO(3) = (qe,qm,qs,qM) = (qe,qm,1/2,1).
Time-reversal symmetry implies that the object M̃SO(3) =
(qe, − qm, − qs,qM) = (qe, − qm, − 1/2,1) must also exist
in the spectrum, and it must have the same statistics with
MSO(3). One can think of M̃SO(3) as MSO(3) attached with
a (0,2qm,1,0) particle (which implies that this particle should
exist in the excitation spectrum). Notice that if qm = 0, this
attachment will change the statistics of MSO(3) from boson
to fermion (or vice versa), and MSO(3) cannot have the same
statistics with M̃SO(3)—this is precisely why in the absence of
fractionalization, � = π cannot be time-reversal symmetric
for a bosonic system. Now, with nonzero (qm,qe), the issue
can be cured by another statistical transmutation if

2qeqm + S(0,2qm,1,0) = 1 (mod 2), (14)

where S(0,2qm,1,0) = 0 if the (0,2qm,1,0) particle is a boson,
and S(0,2qm,1,0) = 1 if it is a fermion.

Furthermore, any excitations in the (ungauged) U(1) spin
liquid (q ′

e,q
′
m,q ′

s ,0) should satisfy the general Dirac quantiza-
tion condition with respect to MSO(3):

qeq
′
m − qmq ′

e − q ′
s = 0 (mod 1). (15)

The two conditions (14) and (15), together with the existence
of (0,2,1,0) in the spectrum, strongly constrains the allowed
values of (qe,qm) for MSO(3) and the allowed spectra of the
U(1) spin liquids. For example, the (Ef T Mf )θ spin liquid
could satisfy Eq. (14) with qe = 0,qm = 1, but this choice
inevitably violates Eq. (15) with q ′

e = 1/2,q ′
m = 1,q ′

s = 0. A
related phase (Ef T Mf )θ 1

2
could satisfy all conditions since the

test particle for Eq. (15) should have q ′
e = 1/2,q ′

m = 1,q ′
s =

1/2—the problem is that this phase is anomalous and cannot

be realized in three dimensions on its own. It can be seen
after some careful examination, that among the anomaly-free
U(1) spin liquids, only those with either E or M particle (but
not both) carrying spin-1/2 are allowed for � = π . These in-
clude (EbMb 1

2
,EbMf 1

2
,Eb 1

2
Mb,EbT 1

2
Mb,Ef 1

2
Mb,Ef T 1

2
Mb).

The values of qe and qm for MSO(3) are chosen in the following
way: if E particle carries spin-1/2, then qe = 1 (mod 2) and
qm = 1/2 (mod 1); if M carries spin-1/2, then qe = 1/2 (mod
1) and qm = 1 (mod 2). This choice is needed to satisfy the
Dirac quantization condition Eq. (15). It is also easy to check
that Eq. (14) is satisfied (for those states without anomaly).

It is now easy to see why � = π should be considered
trivial. In those spin liquids where E particles carry spin-1/2,
we can bind an E particle to MSO(3). This gives another,
equally legitimate, SO(3) monopole with qs = 0 and qe = 0.
We still have qm = 1/2 for the monopole, but this is simply
a consequence of the spin-1/2 carried by E particle, which
should be true regardless of what value � takes. Therefore one
can equivalently view this phase as having � = 0 (mod 2π )
(notice that both qs = 0 and qe = 0 for the redefined monopole
are important to draw this conclusion). The argument is
identical if M particles carry spin-1/2 instead. There is still
the ambiguity whether the redefined qs = 0 monopole is a
boson or a fermion, but this is simply about whether � = 0
or � = 2π (mod 4π ), or whether a boson SPT state has been
stacked on top of the U(1) spin liquid. We therefore conclude
that for a U(1) spin liquid, � = π is trivial.

B. � = π/2: fractional topological paramagnets

We now argue that the two U(1) spin liquid phases
EbT 1

2
Mf 1

2
and Ef 1

2
Mb 1

2
effectively have � = π/2, and hence

can be called “fractional topological paramagnets.” Again,
we consider a monopole MSO(3). In general, it could carry
both an SO(2) charge qs , and the electric-magnetic charge
of the dynamical U(1) gauge field (qe,qm). Since both
the fundamental electric and magnetic excitations (E and
M) of the two spin liquids carry spin-1/2, according to
the argument in Sec. III A, we require (qe,qm) = (1/2,1/2)
for MSO(3), up to integer shifts. We denote this object
as MSO(3) = (qe,qm,qs,qM) = (1/2,1/2,qs,1). Time-reversal
symmetry implies that the object M̃SO(3) = (qe, − qm, −
qs,qM) = (1/2, − 1/2, − qs,1) must also exist in the spec-
trum. Now we take the antiparticle of M̃SO(3) and bind it
together with MSO(3) to get an object (0,1,2qs,0). Since this
object does not carry magnetic charge of the SO(3) gauge field,
it must exist in the U(1) spin liquid phase before coupling to
ASO(3). However, in the spin liquid phase, any particle with
qm = 1 and qe = 0 must carry spin 1/2. Therefore 2qs = 1/2
(mod 1) and qs = 1/4 (mod 1/2). This implies an effective
� = π/2 (mod π ).

One can also ask whether EbT 1
2
Mf 1

2
and Ef 1

2
Mb 1

2
are the

only two (T -invariant) U(1) spin liquids with � = π/2. An
argument similar to that in Sec. IV A for � = π shows that
these two are indeed the only U(1) spin liquids with � = π/2.

The fractional value of � for the two spin liquids can be
understood quite easily if they are viewed as some gauge
SPT states (as discussed in Sec. II A). For concreteness, we
take Ef 1

2
Mb 1

2
as an example (the logic will be parallel for
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the other state). This state can be obtained from Ef 1
2
Mb by

putting the fermionic E particles into a topological band.
The corresponding surface state for E will have two Dirac
cones—one for each spin. It is well known [58] that this state,
when coupled to an SU(2) gauge field, induces a theta term for
the SU(2) gauge field at �SU(2) = π . This implies � = π/2
for the SO(3) gauge field.

The Witten effect is also easy to study in this picture: an
SO(3) monopole MSO(3) is viewed by the spin-1/2 E particles
as a half-monopole. Therefore it should bind with a magnetic
charge qm = 1/2 (mod 1). Let us choose qm = 1/2. The
monopole is then viewed as a qm = 1 monopole by the spin-up
fermion f↑, and a qm = 0 object viewed by the spin-down
fermion f↓. Since each fermion (up or down) has one Dirac
cone on the surface, similar to the usual topological insulator,
the MSO(3) monopole will trap half of the charge of an f↑
fermion, which gives qe = 1/2 and qs = 1/4, in agreement
with what was obtained earlier using a direct argument.

Alternatively, one can obtain theEf 1
2
Mb 1

2
state fromEbMb 1

2

by putting the spin-1/2 boson M into a bosonic topological
insulating state. The result should be identical, even though
the bosonic state is harder to picture due to the lack of
noninteracting limit.

We can make the picture slightly more precise by writing
down the response theory. We first consider the electric picture,
viewing the state as a gauged fermion SPT. This is the more
convenient choice if the gauge coupling for the Maxwell term
e2 is weak. Integrating out the fermion matter field gives (on a
general oriented manifold Y 4)

S̃�=π/2 = π

2

(
1

16π2

∫
trSO(3)F ∧ F + 1

2π2

∫
f ∧ f

+ 1

2 × 24π2

∫
trR ∧ R

)
, (16)

where f = da is the field strength for the dynamical gauge
field, and R is the Riemann curvature tensor. The first term
comes from the �SU(2) = π response of the fermion topo-
logical band. The second and third terms are the U(1) and
gravitational theta terms induced by the fermions. The gauge
field strength f satisfies the cocycle condition

∫ (
f

π
+ wT M

2 + w
SO(3)
2

)
= 0 (mod 2), (17)

where wT M
2 is the second Stiefel-Whitney class of the tangent

bundle on Y 4, w
SO(3)
2 is the second Stiefel-Whitney class of

the SO(3) gauge bundle [physically, it measures the Z2-valued
SO(3) monopole number and serves as an obstruction to lifting
the gauge bundle to an SU(2) one], and the integration is
taken on arbitrary 2-cycles on Y 4. The Maxwell term for f

is suppressed in the above equation for simplicity. Physically,
this cocycle condition simply represents the fact that charge-1
objects under aμ must carry spin-1/2 of the global SO(3)
symmetry and must also be a fermion. When wT M

2 is trivial,
this requires an SO(3) monopole to be accompanied by a half
U(1) magnetic charge, a conclusion we have drawn previously
in less formal terms.

To show that Eq. (16) is time-reversal invariant, we only
need to show that 2S̃�=π/2 is trivial (mod 2π ). This was shown

explicitly in Ref. [42] (Sec. VII A therein). This also provides
an explicit example, in which � = π is trivial in the sense that
S̃�=π = 2S̃�=π/2 is trivial.

A similar result can also be obtained in the magnetic picture
(with an inverted Maxwell coupling e2). Integrating out the
bosonic (M) degrees of freedom gives

S̃ ′
�=π/2 = π

2

(
1

16π2

∫
trF ∧ F − 1

2π2

∫
f̃ ∧ f̃

)
, (18)

where the inverted sign of the U(1) theta term and the absence
of the gravitational term is simply reflecting the fact that for
a bosonic integer quantum Hall state in two dimensions with
U(2) = U(1) × SU(2)/Z2 symmetry, the spin and charge Hall
conductance are opposite in sign and the net thermal Hall
conductance is zero [59,60]. The cocycle condition for the dual
field strength is now

∫ (
f̃

π
+ w

SO(3)
2

)
= 0 (mod 2). (19)

Following an argument similar to that in Ref. [42]
(Sec. VII A therein), one can show that S̃ ′

�=π = 2S̃ ′
�=π/2 is

trivial (mod 2π ). Therefore the effective theory in the magnetic
picture is also time-reversal invariant.

C. Surface states

Perhaps the most striking property of a topological insulator
is the presence of protected surface states. It is natural then
to ask about the physics at the surface of the fractional
topological paramagnets. Specifically, we consider an interface
between the vacuum and a material in a fractional topological
paramagnet phase. The gauged SPT point of view then makes it
natural that both EbT 1

2
Mf 1

2
and Ef 1

2
Mb 1

2
have protected states

at such an interface.
Protected surface states for U(1) quantum spin liquids with

time reversal were described in Ref. [30]. As discussed there,
in states where both E and M are nontrivial (i.e., not simply
a boson transforming trivially under the global symmetry) the
surface to the vacuum necessarily has protected states. Of the
15 families of U(1) quantum spin liquids with SO(3) × T , only
EbT 1

2
Mf 1

2
and Ef 1

2
Mb 1

2
therefore necessarily have protected

surface states. In both these cases the parent SPTs (either in the
E or M points of view) are such that the surface exhibits the
phenomenon of symmetry enforced gaplessness, i.e, there is
no symmetry preserving gapped surface even with topological
order. Symmetry preserving surfaces are necessarily gapless.
For the fractional topological paramagnets, a gapless surface
state is readily described from the fermion point of view. Both
states then have two gapless surface Dirac cones (one for
each spin) that are coupled to the bulk U(1) gauge field. Time
reversal acts differently on the surface Dirac fermions in the
two states (the time reversal is inherited from that on the bulk
fermionic quasiparticle).

V. COMBINING U(1) QUANTUM SPIN LIQUIDS AND
BOSONIC SPTS UNDER SYMMETRY SO(3) × T

We have thus far described the distinct possible realizations
of symmetry for the bulk excitations of U(1) quantum spin
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TABLE III. Properties of the surface Z2 topological orders of the
four root states of bosonic SPTs with symmetry SO(3) × T .

T 2
e T 2

m Se Sm comments

eT mT −1 −1 1 1
ef mf 1 1 1 1 e and m are fermions
e 1

2 m 1
2 1 1 1

2
1
2

e 1
2 mT 1 −1 1

2 1

liquids with time-reversal and SO(3) spin rotational sym-
metries. However, strictly speaking, this is not the complete
classification of such spin liquids. We can, in principle, obtain
distinct spin liquids with the same symmetry fractionalization
patterns by simply combining spin liquids with SPT states
protected by the global SO(3) × T symmetry. This was demon-
strated for time-reversal invariant U(1) spin liquids in Ref. [30].
Further, it was shown that not all SPTs remain nontrivial
when combined with a spin liquid. In other words, some SPTs
can “dissolve” into some spin liquids without leading to a
distinct state. Determining the distinct spin liquids that result
when SPTs are combined with spin liquids is a delicate but
unavoidable task that is part of any classification of symmetry
enriched spin liquids. In this section we undertake this task for
the SO(3) × T symmetric U(1) QSLs of primary interest in this
paper. We will show that each of the 15 families of such U(1)
spin liquids described so far is further refined to give a total of
168 distinct phases. We expect that this is the complete classi-
fication of U(1) QSLs enriched with SO(3) × T symmetry.

Bosonic SPTs with symmetry SO(3) × T are classified by
Z4

2. The four root states all admit surface Z2 topological order
{1,e,m,ε}, with different assignments of fractional quantum
numbers to the anyons e,m,ε [notice that e,m here denote the
anyons in the 2d surface topological order, which are not to be
confused with E,M in earlier sections denoting electric and
magnetic charges in the 3d bulk U(1) gauge theory]. These
surface Z2 topological orders realize symmetries in a way
that is impossible for a purely two-dimensional system (see
Table III; more details can be found in Appendix F). The
surface topological order provides a nonperturbative character-
ization of these SPTs; we therefore label the SPTs themselves
by their surface Z2 topological orders. The four root states
generate in total 16 distinct SPTs, and each can be viewed
as a combination of some of the root states. For example, if
ef mf and e 1

2m 1
2 are taken as two root states, weakly coupling

them produces a new SPT denoted by ef mf ⊕ e 1
2m 1

2 . In this
example, the notation of the state can be simplified because
a surface phase transition can be induced such that the bound
state of the ε’s from the surface ef mf and e 1

2m 1
2 is condensed.

This condensation will not change the bulk property, but
the surface now has Z2 topological order ef 1

2mf 1
2 , where

both the e and m are spin-1/2 fermions. So for simplicity
ef mf ⊕ e 1

2m 1
2 can be denoted by ef 1

2mf 1
2 .

Below, in Sec. V A, we use the same strategy as in Ref. [30]
to determine if these nontrivial SPTs are trivial or still non-
trivial in the presence of the excitations in the quantum spin
liquids. Then in Sec. V B, we apply these results to obtain the
enriched classification of U(1) quantum spin liquids combined
with SPTs.

TABLE IV. Triviality of the root states of bosonic SPTs with
symmetry SO(3) × T in the presence of nontrivial bosonic excita-
tions. The rows represent the nontrivial SPT states, and the columns
represent the quantum numbers of the bosonic exciton. C2 means the
elementary boson carries electric charge 1, and C̃2 means it carries
magnetic charge 1. Notice that the electric (magnetic) charge is even
(odd) under time reversal. T means the elementary boson is a Kramers
doublet, and 1

2 means it carries spin 1
2 . A cross (hook) means the

topological order is anomalous (nonanomalous) in the presence of
the excitation from the quantum spin liquid.

C2 C̃2 C2T C2 1
2 C̃2 1

2 C2T 1
2

eT mT × × √ × × ×
ef mf × × × × × ×
e 1

2 m 1
2 × × × × × ×

e 1
2 mT × × × √ × ×

ef T mf T × × × × × ×
eT 1

2 mT 1
2 × × × × × ×

eT 1
2 mT × × × × × √

ef 1
2 mf 1

2 × × × × × ×
ef mf ⊕ e 1

2 mT × × × × × ×
e 1

2 mT 1
2 × × × × × ×

ef T 1
2 mf T 1

2 × × × × × ×
ef T mf T ⊕ e 1

2 mT × × × × × ×
eT 1

2 mT 1
2 ⊕ e 1

2 mT × × × × × ×
ef 1

2 mf 1
2 ⊕ e 1

2 mT × × × × × ×
ef 1

2 mf 1
2 ⊕ eT 1

2 mT × × × × × ×

A. SPTs in the presence of nontrivial excitations

Tables IV and V show whether the nontrivial SPTs are
trivial or nontrivial in the presence of fractional excitations
with all possible statistics and relevant quantum numbers.
Below, we explain the reasons for the entries of these tables.
The notations that will be used below are defined in the
captions of these tables.

1. SPTs with component e f m f always enrich the classification
of the quantum spin liquids

When time-reversal symmetry is broken on its surface,
ef mf has surface thermal Hall conductance κxy = 4 (mod) 8

in units of π2

3
k2
B

h
T .4 Thus it always enriches the classification of

the quantum spin liquids [30,47]. The same is true for all SPTs
that are obtained by combining ef mf and other root states.
Besides ef mf , these include ef T mf T , ef 1

2mf 1
2 , ef mf ⊕

e 1
2mT , ef T 1

2mf T 1
2 , ef T mf T ⊕ e 1

2mT , ef 1
2mf 1

2 ⊕ e 1
2mT ,

and ef 1
2mf 1

2 ⊕ eT 1
2mT .

4To characterize the SPT ef mf more formally, one can consider
its response to a change of the background metric. Then this SPT
is characterized by a bulk gravitational response term given by

1
24π

∫
trR ∧ R, whereR is the Riemann curvature tensor. In this formal

language, because none of the U(1) quantum spin liquids discussed
has a gravitational response term that can cancel this one, this SPT
cannot be “absorbed” by any of these spin liquids.
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TABLE V. Trivialness of the root states of bosonic SPTs with
symmetry SO(3) × T in the presence of nontrivial fermionic excita-
tions. The rows represent the nontrivial SPT states, and the columns
represent the quantum numbers of the fermionic excition. C2 means
the elementary fermion carries electric charge 1, and C̃2 means it
carries magnetic charge 1. Notice electric (magnetic) charge is even
(odd) under time reversal. T means the elementary fermion is a
Kramers doublet, and 1

2 means it carries spin- 1
2 . A cross (hook) means

the topological order is anomalous (nonanomalous) in the presence
of the excitation from the quantum spin liquid.

C2 C̃2 C2T C2 1
2 C̃2 1

2 C2T 1
2

eT mT
√ × × × × ×

ef mf × × × × × ×
e 1

2 m 1
2 × × × × × ×

e 1
2 mT × × × × × √

ef T mf T × × × × × ×
eT 1

2 mT 1
2 × × × × × ×

eT 1
2 mT × × × √ × ×

ef 1
2 mf 1

2 × × × × × ×
ef mf ⊕ e 1

2 mT × × × × × ×
e 1

2 mT 1
2 × × × × × ×

ef T 1
2 mf T 1

2 × × × × × ×
ef T mf T ⊕ e 1

2 mT × × × × × ×
eT 1

2 mT 1
2 ⊕ e 1

2 mT × × × × × ×
ef 1

2 mf 1
2 ⊕ e 1

2 mT × × × × × ×
ef 1

2 mf 1
2 ⊕ eT 1

2 mT × × × × × ×

2. SPTs with a component Z2 topological order where both
e and m carry spin-1/2 are anomalous in the presence

of the nontrivial excitations

These SPTs include e 1
2m 1

2 , eT 1
2mT 1

2 , ef 1
2mf 1

2 , e 1
2mT 1

2 ,
ef T 1

2mf T 1
2 , eT 1

2mT 1
2 ⊕ e 1

2mT , ef 1
2mf 1

2 ⊕ e 1
2mT , and

ef 1
2mf 1

2 ⊕ eT 1
2mT . In this case, the SO(3) � = 2π (see

Appendix F).5 But as discussed in Sec. IV, none of the spin
liquids have � = 2π . So coupling these SPTs with spin liquids
cannot change � from 2π to 0 (mod 4π ), and all these
surface states will remain anomalous even when coupled to
a spin liquid. Below we provide more physical reasoning to
demonstrate their anomalies in the presence of the excitations
from the spin liquids.

To see their anomalies, we can first assume that such a state
can exist in a purely two-dimensional system. Then, in the
case where the nontrivial excitations carry quantum numbers
C2, C̃2, or C2T , we can tunnel an SO(3) monopole through
the system, which leaves a flux. This is a local process, but due
to the spin-1/2 of e and m, both e and m will see a −1 phase
factor around the flux, no matter how far they are away from it.
To cancel this nonlocal effect, an ε has to be generated in the
process of tunneling the monopole. As shown in Appendix G,
this process will not induce any polarization charge or spin
because of the symmetry of the system. Therefore this local

5More formally, this is characterized by �

16π2

∫
trSO(3)F ∧ F , a

response term to a background SO(3) gauge field, where F is the
SO(3) field strength and � = 2π for these states.

process generates a single neutral and spinless fermion in the
system, which is impossible and shows these states are still
anomalous even in the presence of the nontrivial excitations.

When the quantum numbers of the nontrivial excitations
are C2 1

2 , C̃2 1
2 , or C2T 1

2 , tunneling an SO(3) monopole is no
longer a local process, but tunneling a bound state of an SO(3)
monopole and half of a U(1) monopole is still local. Again,
this process will generate a single neutral and spinless fermion
in the system, which is impossible and shows the anomalies of
these states in the presence of these nontrivial excitations.

3. eT mT is anomalous in the presence of non-Kramers bosons

It is known that the anomaly of eT mT only comes from
time-reversal symmetry, so the presence of bosons with quan-
tum numbersC2, C̃2,C2 1

2 , or C̃2 1
2 will not remove the anomaly.

4. e 1
2 mT and eT 1

2 mT are anomalous in the presence of nontrivial
excitations with quantum numbers C2, C̃2, C2T, and C̃2 1

2

It turns out that e 1
2mT and eT 1

2mT are also still anomalous
in the presence of nontrivial excitations with quantum numbers
C2, C̃2, C2T , or C̃2 1

2 . To see this, for the cases where excita-
tions carry quantum numbers C2, C̃2, or C2T , we can again
tunnel an SO(3) monopole through the system. This will leave
a flux such that e and ε see a −1 phase factor no matter how far
they are away from it. To cancel this nonlocal effect, an m will
have to be generated in the process. As argued in Appendix G,
this process cannot induce any polarization charge or spin.
Because the SO(3) flux background is invariant under time
reversal, such a local process generates a Kramers doublet that
carries no other nontrivial quantum number. But there are no
such local degrees of freedom in these cases, so this is impos-
sible. Thus these Z2 topological orders are still anomalous.

If the excitations carry quantum number C̃2 1
2 , one can

tunnel a bound state of an SO(3) monopole and half of a
U(1) monopole. A similar argument shows an m needs to be
produced in the process. Again, because both SO(3) and U(1)
commute with T , the flux background left on the system is
time-reversal invariant. This again shows that a local process
generates a Kramers doublet with no other nontrivial quantum
number and thus it is impossible.

5. (eT mT,bC2T ), (e 1
2 mT,bC2 1

2 ), (eT 1
2 mT,bC2T 1

2 ),
(e 1

2 mT, f C2T 1
2 ), (eT mT, f C2), and (eT 1

2 mT, f C2 1
2 )

are nonanomalous

Denote eT mT in the presence of bosons with quantum
number C2T by (eT mT,bC2T ). It turns out this is nonanoma-
lous [30]. To see this, we can attach a boson with quantum
number C2T to the e particle, then eT mT will be relabelled
as eC2mT . This is a nonanomalous state. To construct it, one
can first construct eC2T , which is nonanomalous because the
topological order can be confined by condensing m without
breaking any symmetry. Then putting the ε into a quantum spin
Hall state makes it eC2mT [61,62]. Similarly, with parallel no-
tations, (e 1

2mT,bC2 1
2 ), (eT 1

2mT,bC2T 1
2 ), (e 1

2mT,f C2T 1
2 ),

(eT mT,f C2), and (eT 1
2mT,f C2 1

2 ) are also nonanomalous.
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6. Other entries in Table IV and V are anomalous

For other entries in Tables IV and V, the arguments utilized
above do not apply. However, they are still expected to be
anomalous. Below we sketch the logic to show this, and more
details can be found in Appendix H.

Suppose any of these Z2 topological orders is nonanoma-
lous, that is, it can be realized in a purely two-dimensional
system, it must allow a physical edge, i.e., a boundary that
separates this state and the trivial vacuum. It is believed that the
K-matrix formalism can describe all two-dimensional Abelian
topological orders, and in particular, K-matrix theory naturally
allows a physical edge [63]. So if no K-matrix description of a
Z2 topological order exists, it should not be edgeable, i.e., it is
anomalous. We note the K-matrix formalism has already been
applied to check edgeability or to classify SPTs and symmetry-
enriched topological orders in the literature [1,7,8,59].

Indeed, in Appendix H, we will show all other entries are
not edgeable. This implies they are still anomalous.

B. Enriched classification of quantum spin
liquids combined with SPTs

In the previous section, we have shown when the nontrivial
bosonic SPTs are in an environment with some nontrivial
particles, which ones are still nontrivial and which ones become
trivial. In most cases, the nontrivial SPTs remain nontrivial.
Then each of the quantum spin liquids can become 24 = 16
distinct ones after being weakly coupled with the bosonic
SPTs. In the presence of the excitations in the quantum spin
liquids, the cases where nontrivial SPTs become trivial are
when eT mT coupled with EbT Mb, EbT Mf , or Ef Mb, when
e 1

2mT coupled with Eb 1
2
Mb or Ef T 1

2
Mb and when eT 1

2mT

coupled with EbT 1
2
Mb, EbT 1

2
Mf 1

2
, Ef 1

2
Mb, or Ef 1

2
Mb 1

2
. For

these quantum spin liquids, each can become 23 = 8 distinct
one after weakly coupled with the bosonic SPTs. All these SPT-
enriched quantum spin liquids are different from each other.
Therefore, when weakly coupled with bosonic SPTs with time-
reversal and SO(3) spin rotational symmetries, there are in total
6 × 16 + 9 × 8 = 168 distinct U(1) quantum spin liquids.

VI. A GENERAL FRAMEWORK TO CLASSIFY
SYMMETRY ENRICHED U(1) QUANTUM SPIN LIQUIDS

The above discussion on the classification of SO(3) × T
symmetric U(1) quantum spin liquids provides a good ex-
ample. In this section, we describe a general framework to
classify symmetry enriched U(1) quantum spin liquids. It
involves three steps: enumerating all putative states, examining
the anomalies of these states, and coupling these states to
3D bosonic SPTs with the same symmetry. This framework
is physics based. After discussing this framework, we will
briefly discuss a supplementary formal approach to classify
such states, which can be potentially more useful for thinking
about these problems more abstractly.

A. Enumerate putative states

We begin with the first step: enumerating all putative
states. As discussed earlier, different symmetry enriched U(1)
quantum spin liquids are distinguished by the properties of their

excitations, and to determine the phase, we need to specify the
statistics and symmetry quantum numbers of the excitations.

We start with the simpler case where the symmetry G is
unitary and connected, that is, all elements in the symmetry
group are unitary and they can all be continuously connected
to the identity element. In this case, the symmetry cannot
exchange the type of the fractional excitations. Also, one
can tune θ such that the charge-monopole lattice is of the
θ = 0-type, and both E and M are bosons (this is shown more
explicitly in the examples in Sec. VIII B). To fully determine
the properties of the excitations, we just need to specify the
symmetry quantum numbers of E and M . More precisely, we
need to assign (projective) representations to E and M , which
are classified by the second group cohomology H 2(G,U(1)).
While doing this, we also need to keep in mind that E and M

are equivalent in this case, so that, for example, Eb 1
2
Mb and

EbMb 1
2

are the same SO(3) symmetric phase. When this is
done, all putative states will be listed.

Next, we go to the more complicated case where the
symmetry is G × T (or, more generally, G � T ), with G

a connected unitary group. Again, the elements in G will
not change the type of fractional excitations. However, time
reversal will necessarily change some types of fractional
excitations, and we will always take the convention that the
emergent electric (magnetic) field is even (odd) under time
reversal. Then there are two types of charge-monopole lattice,
with θ = 0 and θ = π , respectively.

Consider the states at θ = 0 first. Then the U(1) quantum
spin liquids are classified by the statistics and symmetry
quantum numbers carried by E and M . As for statistics, the
only constraint at this point is just that E and M cannot both be
fermions. Below we discuss the symmetry quantum numbers,
or in other words, projective representations.

Let us start from the case with θ = 0. Here we need to
distinguish two types of projective representations: the electric
(standard) one and the magnetic (twisted) one. The electric
projective representations are applicable to E, and they are
classified by H2(G × T ,UT (1)), where G × T acts on the
U(1) coefficient by taking the complex conjugate if the group
element is antiunitary. This is the standard classification of
the projective representations of a group with antiunitary
elements. However, another type of projective representations
apply to M , which are classified by another group cohomology
H2(G × T ,UM

T (1)) (see Appendix I for more details). This
group cohomology differs from the standard one in the group
action on the U(1) factors, and this difference comes from the
convention that the magnetic (electric) field is odd (even) under
time reversal. After assigning statistics and symmetry quantum
numbers to E and M as above, all putative G × T symmetric
U(1) quantum spin liquids with θ = 0 will be listed.

As for states with θ = π , the properties of all excitations are
determined by the properties of the ( 1

2 , ± 1) dyons, which must
be bosons. So to list all putative states, we only need to assign
symmetry quantum numbers to these two dyons. As discussed
in Appendix I, these symmetry quantum numbers are given
by the dyonic (mixed) projective representations, which are
classified by another group cohomology H 2(G × T ,UD(1) ×
UD(1)). After assigning symmetry quantum numbers to the
( 1

2 , ± 1) dyons, all putative G × T symmetric U(1) quantum
spin liquids with θ = π will be listed.
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If the symmetry group is G or G × T , where G is unitary but
not connected, the elements in G can also permute fractional
excitations, as we will see in examples below. The putative
states in this more complicated scenario can be listed in a
similar manner as above: one has to fix the shape of the
charge-monopole lattice, specify the statistics of the relevant
excitations, and specify the symmetry quantum numbers of
the relevant excitations. The first two steps are identical as
the previous cases, but the classification of symmetry quantum
numbers will be more complicated in this case, and in this
paper we do not attempt to give a mathematical framework for
this step, although it can be done in a case-by-case manner.

B. Examine the anomalies

After enumerating all putative symmetry enriched U(1)
quantum spin liquids, we need to examine which ones are
anomalous. A general way of doing this is to consider whether
the corresponding SPT of this spin liquid can exist. Denote
the symmetry of the U(1) quantum spin liquid by G, which
is supposed to be a completely general on-site symmetry in
this subsection (it can contain antiunitary elements, and its
unitary elements do not need to be continuously connected with
identity). By the corresponding SPT of a spin liquid, we mean
an SPT protected by a U(1) central extension of G,6 which
becomes this spin liquid once this U(1) symmetry is gauged.
Clearly, by definition, as long as this SPT can exist, the spin
liquid state must be anomaly-free. If this SPT is intrinsically
inconsistent, then the corresponding spin liquid state must be
anomalous. To see this, suppose this SPT is problematic but the
corresponding spin liquid is anomaly-free, then we will show
this leads to a contradiction, because of a systematic method to
ungauge the gauge theory and generate the corresponding SPT.

More precisely, suppose this spin liquid can be realized,
one can bring in a trivial insulator made of particles that have
the same properties (same statistics and quantum numbers)
as the particles that make up this corresponding SPT, and
condense the bound state between the particle in this trivial
insulator and the electric charge or magnetic monopole of the
spin liquid. This is a systematic method to ungauge the gauge
theory: it will confine the dynamical U(1) gauge field, and
the resulting state will be precisely the corresponding SPT
of the spin liquid state (an example is shown in Fig. 4) [31].
This leads to a contradiction to the original assumption that
such SPT is problematic. Therefore a sufficient and necessary
condition for a symmetry enriched U(1) quantum spin liquid
to be anomaly-free is that its corresponding SPT is consistent.

How do we check whether the corresponding SPT is
consistent? One way is to consider whether it has a consistent
surface state. This condition—known as “edgeability”—was
defined in Ref. [8]. Assuming such SPT is consistent, one
can first condense certain charges on the surface of this SPT
and get a surface superfluid. Then one can try to condense
certain vortices to restore the symmetry on the surface. If the
symmetric surface state is consistent (but possibly anomalous),

6In the more standard terminology, this U(1) central extension of G

is the projective symmetry group of G, which was first introduced in
Ref. [64].

FIG. 4. There is a systematic ungauging procedure that takes a
symmetry enriched U(1) quantum spin liquid to its corresponding
SPT. Consider the time-reversal symmetric U(1) quantum spin liquid
(Ef T Mf )θ (the upper left system), and we will try to get its cor-
responding SPT from the perspective of the electric charge. To do
this, we first introduce an auxiliary trivial time-reversal symmetric
insulator made of fermions that are Kramers doublets, where these
fermions are denoted by c (the lower left system). Next, we condense
the bound state of E, the electric charge of the U(1) spin liquid, and
c†, the holes in the auxiliary trivial insulator. This bound state is a
boson and a Kramers singlet, so this condensation will preserve the
time-reversal symmetry. The dynamical U(1) gauge field in the U(1)
gauge theory will be confined, and the resulting state is precisely
the Fu-Kane-Mele topological insulator [65], which viewed from
the perspective of the electric charge, is the corresponding SPT of
(Ef T Mf )θ (the right system).

one can build up the three dimensional bulk SPT (for example,
by a layer construction or a Walker-Wang type construction).
If the putative symmetric surface state is inconsistent, then this
SPT is inconsistent, because it has an invalid edge state.

In summary, a systematic physical way to examine whether
a putative symmetry enriched U(1) quantum spin liquid is
anomalous is to check whether its corresponding SPT can
have a legitimate surface state. If so, this spin liquid state is
nonanomalous. Otherwise, it is anomalous. These relations are
sketched in Fig. 5.

This method of anomaly detection applies to any symmetry
enriched U(1) quantum spin liquids, but for some particular
cases, there are more physical ways of doing it by focusing on
the spin liquid state itself, instead of its corresponding SPT.
For example, we have used the SO(3) monopole to detect the

FIG. 5. That the G symmetric U(1) quantum spin liquid is
anomaly-free is equivalent to that it has a corresponding SPT, which is
in turn equivalent to that this SPT can have a consistent (but possibly
anomalous) 2D surface state.
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anomaly of some putative SO(3) symmetric spin liquid states
in Sec. III. However, for some more subtle cases, the anomalies
are examined by considering the corresponding SPTs. Some
examples are given in Sec. VII, where Z2 × T symmetric states
are discussed.

C. Couple the spin liquids with SPTs

The above two steps classify symmetry enriched U(1)
quantum spin liquids in terms of the properties of the bulk
excitations. To complete the classification of the symmetry
enriched U(1) quantum spin liquids, one has to consider
coupling these spin liquids and 3D bosonic SPTs with the
same symmetry. In general, when an SPT is coupled with
a U(1) spin liquid, the result is still a U(1) spin liquid with
the bulk fractional excitations carrying the same symmetry
fractionalization pattern, but the new state can have a different
type of surface compared to the original one, due to the
nontrivial surface of the SPT. Therefore one has to check if
this SPT can be “absorbed” by the U(1) spin liquid. Physically,
this amounts to checking if the nontrivial surface of the SPT
remains nontrivial if it is coupled with the bulk excitations in
the spin liquid. Examples of such exercises are given in Sec. V.

D. A formal framework

We would like to close this section by briefly discussing
a more formal approach to classify symmetry enriched U(1)
quantum spin liquids. In this formal approach, the problem
amounts to classifying the action, or more precisely, the uni-
versal part of the partition function, of the U(1) gauge theories.
To encode the information about symmetries, in this action, the
U(1) gauge field should be coupled to a background gauge field
corresponding to the symmetry and a background space-time
metric. If the global symmetry includes time reversal, the
equivalent of coupling a background gauge field is to place
the theory on an unorientable space-time manifold.

Note that we are considering spin liquids that arise in a
UV system made out of bosons. To impose this restriction
directly in the low-energy continuum theory, we demand
that the low-energy theory can be consistently formulated on
an arbitrary nonspin space-time manifold. On an orientable
manifold, this is achieved by requiring that the emergent gauge
field be either an ordinary U(1) gauge field (when the emergent
electric charge E is a boson) or that it is a Spinc connection7

(when E is a fermion). On an unorientable manifold, there
is a generalization of a Spinc connection known as Pinc±
connections—the ± sign corresponds to the two possibilities
that E is non-Kramers or Kramers under time reversal (more
detail is in Ref. [32]). We will not make an explicit distinction in
the schematic discussion below between these different kinds
of U(1) connections.

Denote the U(1) gauge field by a, the gauge field corre-
sponding to the global symmetry by b, and the background

7A Spinc connection differs from an ordinary U(1) gauge field
through a modification of its flux quantization condition: the curvature

F of a Spinc connection satisfies
∫

F

2π
= ∫ wT M

2
2 (modZ) on oriented

2-cycles, where wT M
2 is the second Stieffel-Whitney class of the

tangle bundle of the manifold. For more details, see Refs. [32,43]
and references therein.

metric by g. In general, the action can be written as

S[a; b,g] = SU(1)[a] + SSPT[b,g] + Smixed[a; b,g]. (20)

The first term contains the Maxwell action and the θ term
of a U(1) gauge field, and it is present in general for a U(1)
quantum spin liquid and are independent of symmetries. The
third term, SSPT[b,g], depends only on b and g. This term
physically describes 3D bosonic SPTs with the same symmetry
as the U(1) spin liquid, and adding it into the action means
coupling a U(1) spin liquid and a bosonic SPT with the same
symmetry. As discussed before, this will potentially change the
system into a different U(1) spin liquid. In order to see if such
an SPT can be “absorbed” into a U(1) spin liquid, one needs to
check if the universal part of the partition function will change
due to the presence of this term. The last term, Smixed[a; b,g],
only involves terms that couple a with b and/or g. This term
encodes the information about symmetry fractionalization on
the bulk excitations.

In general, such an action is constrained by gauge invari-
ance. In addition, certain constraints on these fields may apply
analogous to the modification of the flux quantization condition
for Spinc connections when E is a fermion. For example, for
fractional topological paramagnets, there is a constraint on
such fields given by (17). To classify symmetry enriched U(1)
quantum spin liquids, one can first write down all possible
such actions and then classify the resulting universal part of
the partition function. We leave this for future work.

VII. U(1) QUANTUM SPIN LIQUIDS ENRICHED
BY Z2 × T SYMMETRY

In this section, we apply the above general framework to
classify U(1) quantum spin liquids enriched by Z2 × T sym-
metry. This symmetry can be relevant for experimental candi-
dates of quantum spin liquids made of non-Kramers quantum
spins, i.e., for example, two-level systems made of mz = ±1
states of a spin-1 atom, where time reversal flips Sz and Z2 acts
as a π spin rotation around the x axis. Below we will first list
all putative states, including the anomalous ones. Then we will
examine the anomalies of these states. We will leave the prob-
lem of coupling these spin liquids with SPTs for future work.

It turns out there are two types of Z2 actions that deserve
separate discussions. In the first type, the Z2 symmetry does
not change one type of fractional excitation to another. More
precisely, the electric charge and magnetic monopole will
both retain their characters under this type of Z2 action. In
the second type, the Z2 symmetry changes the fractional
excitations. In particular, it can change the electric charge
into the antielectric charge, and at the same time change the
magnetic monopole into the antimagnetic monopole. This
type of Z2 action is physically a charge conjugation. One may
wonder whether it is possible to change an electric charge
into a magnetic monopole, but Ref. [66] pointed out this is
impossible in a strictly 3D system. Below we will discuss
these two types of Z2 actions in turn.

A. Z2 not acting as a charge conjugation

We start from the case where Z2 does not act as a charge
conjugation, that is, it does not change a type of fractional
excitation to another type. We will begin with the simpler case
that has θ = 0. In this case, to classify the quantum numbers
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TABLE VI. List of nonanomalous Z2 × T symmetric U(1) quan-
tum spin liquids that have θ = 0 and have Z2 not acting as a charge
conjugation. All these states are anomaly-free. T 2

E = 1 (T 2
E = −1)

represents the case where E is a Kramers singlet (doublet) under T .
T ′2

E = 1 (T ′2
E = −1) represents the case where E is a Kramers singlet

(doublet) underT ′. [T ,Z2]M = + ([T ,Z2]M = −) represents the case
where Z2 and T commute (anticommute) on M .

T 2
E T ′2

E [T ,Z2]M

EbMb 1 1 +
EbT Mb −1 1 +
EbT ′Mb 1 −1 +
EbT T ′Mb −1 −1 +
EbMb− 1 1 −
Ef Mb 1 1 +
Ef T Mb −1 1 +
Ef T ′Mb 1 −1 +
Ef T T ′Mb 1 −1 +
Ef T T ′Mb− −1 −1 −
EbMf 1 1 +
EbT Mf −1 1 +
EbT ′Mf 1 −1 +
EbT T ′Mf −1 −1 +
EbMf − 1 1 −

of the electric charge, it is appropriate to look at the projective
representations of Z2 × T , which are classified by Z2

2, where
the nontrivial projective representations can be viewed as being
a Kramers doublet under the original time reversal and/or under
a new antiunitary symmetry T ′, whose generator is the product
of the generator of Z2 and the generator of T . Although it is not
meaningful to talk about whether the magnetic monopole is a
Kramers singlet or doublet under T or T ′, there are still two
types of quantum numbers of the magnetic monopole under
Z2 × T : on the monopole the Z2 and T can either commute
or anticommute.8 This relation between Z2 and T is gauge
invariant for the monopole, but not gauge invariant for the
charge.

Therefore we can make a list of putative U(1) quantum
spin liquids with this type of symmetry, and there are 3 ×
22 × 2 = 24 of them, as listed in Tables VI and VII. It turns
out the 15 states in Table VI are anomaly-free, and the nine
states in Table VII are anomalous, which can be grouped into
three anomaly classes. We will give the construction of the
nonanomalous states in Appendix J. Later in Sec. VII C, we
will give the strategy to show the anomalies of the states in
Table VII, and we will finish the arguments for this anomaly
detection in Appendix J.

Before moving to the case with θ = π , we note that
one point deserves immediate clarification. That is, one may
wonder, for example, whether EbT Mb and EbT ′Mb are truly
distinct, since they are related to each other by relabellingT ↔
T ′ and E ↔ M . At the first glance, these two states indeed
seem to have identical physical properties when examined on
their own. However, once the definitions of T and T ′ are

8If T and Z2 commute (anticommute), T ′ defined above will also
commute (anticommute) with Z2.

TABLE VII. List of anomalous Z2 × T symmetric U(1) quantum
spin liquids that have θ = 0 and have Z2 not acting as a charge
conjugation. All these states are anomaly-free. T 2

E = 1 (T 2
E = −1)

represents the case where E is a Kramers singlet (doublet) under
T . T ′2

E = 1 (T ′2
E = −1) represents the case where E is a Kramers

singlet (doublet) under T ′. [T ,Z2]M = + ([T ,Z2]M = −) represents
the case where Z2 and T commute (anticommute) on M . The last
column indicates the anomaly classes.

T 2
E T ′2

E [T ,Z2]M anomaly class

EbT ′Mf − 1 −1 − class a
Ef T Mb− −1 1 − class a
EbT ′Mb− 1 −1 − class a
Ef T ′Mb− 1 −1 − class b
EbT Mf − −1 1 − class b
EbT Mb− −1 1 − class b
EbT T ′Mf − −1 −1 − class c
EbT T ′Mb− −1 −1 − class c
Ef Mb− 1 1 − class c

fixed, these states are distinct. One physical way to see this
is to consider the two states at the same time, clearly without
breaking either T or T ′, one state cannot be connected to
another without encountering a phase transition. Therefore all
these 24 states are truly distinct.

Now we turn to the states with θ = π . In this case, the
quantum number of the ( 1

2 ,1) dyon determines the quantum
numbers of all other dyons. However, the ( 1

2 ,1) dyon does not
have any projective representation of the Z2 × T symmetry, so
there is only one state: (Ef T T ′Mf )θ , as described in Table VIII.
The electric charge has to be Kramers doublet under bothT and
T ′, because it is a bound state of the ( 1

2 ,1) and ( 1
2 , − 1) dyons,

which have π mutual braiding and are exchanged under both T
and T ′. Naively, the M particle (the (0,2) dyon in this context)
can either have Z2 and T commuting or anticommuting. But
it turns out the latter possibility can be ruled out, as shown
in Appendix K. This (Ef T T ′Mf )θ state can be viewed as a
descendant of the SO(3) × T symmetric (Ef T Mf )θ , so it is
anomaly-free. In summary, if Z2 does not change one type
of fractional excitation into another type, there are 16 distinct
anomaly-free Z2 × T symmetric U(1) quantum spin liquids.

B. Z2 acting as a charge conjugation

Now we turn to the more complicated case where the Z2

symmetry acts as a charge conjugation. Let us first pause to lay
out the principle of organizing these states. Let us focus on the
case with θ = 0 for the moment. In this case, it is meaningful

TABLE VIII. The Z2 × T symmetric U(1) quantum spin liquids
that have θ = π and have Z2 not acting as a charge conjugation.
This state is anomaly-free. T 2

E = 1 (T 2
E = −1) represents the case

where E is a Kramers singlet (doublet) under T . T ′2
E = 1 (T ′2

E = −1)
represents the case where E is a Kramers singlet (doublet) under T ′.
[T ,Z2]M = + ([T ,Z2]M = −) represents the case where Z2 and T
commute (anticommute) on M .

T 2
E T ′2

E [T ,Z2]M

(Ef T T ′Mf )θ −1 −1 +
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TABLE IX. List of anomaly-free Z2 × T symmetric U(1) quan-
tum spin liquids that have θ = 0 and have Z2 acting as a charge
conjugation. T 2

E = 1 (T 2
E = −1) represents the case where E is a

Kramers singlet (doublet) under T . T ′2
M = 1 (T ′2

M = −1) represents
the case where M is a Kramers singlet (doublet) under T ′. Z2

E,M

represents the result of acting the charge conjugation twice on E and
M , respectively.

T 2
E Z2

E T ′2
M Z2

M

(EbMb)− 1 1 1 1
(EbZMb)− 1 −1 1 1
(EbT Mb)− −1 1 1 1
(EbT ZMb)− −1 −1 1 1
(EbMbZ)− 1 1 1 −1
(EbMbT ′ )− 1 1 −1 1
(EbMbT ′Z)− 1 1 −1 −1
(Ef Mb)− 1 1 1 1
(Ef ZMb)− 1 −1 1 1
(Ef T Mb)− −1 1 1 1
(Ef T ZMb)− −1 −1 1 1
(EbMf )− 1 1 1 1
(EbMf Z)− 1 1 1 −1
(EbMf T ′ )− 1 1 −1 1
(EbMf T ′Z)− 1 1 −1 −1
(Ef T MbT ′ )− −1 1 −1 1
(EbT Mf T ′ )− −1 1 −1 1
(Ef ZMbT ′Z)− 1 −1 −1 −1
(EbT ZMf Z)− −1 −1 1 −1
(Ef T ZMbZ)− −1 −1 1 −1
(EbZMf T ′Z)− 1 −1 −1 −1

to discuss whether E is a Kramers doublet under the original
time reversal T , and whether M is a Kramers doublet under
T ′. Also, notice now it is also meaningful to ask whether Z2

squares to +1 or −1 for both E and M (see Appendix A for
more details). We will use (· · · )− to indicate that Z2 acts as a
charge conjugation, and a subscript Z to represent that certain
excitation has Z2 squaring to −1. For example, (Ef T MbT ′Z)−
means Z2 flips both the electric charge and magnetic charge,
and E is a fermionic Kramers doublet under T , while M is a
boson where Z2 squares to −1, and M is also a Kramers doublet
under T ′. With this notation, we can list all 3 × 22 × 22 = 48
possible distinct states with θ = 0 and Z2 acting as a charge
conjugation, and they are shown in Tables IX and X.

Similarly, for states with θ = π and Z2 acting as a charge
conjugation, there are only two states: (Ef T Mf T ′)θ− and
(Ef T Mf T ′)θ−Z . In both states, Z2 takes the ( 1

2 ,1) dyon into the
(− 1

2 ,−1) dyon. Because time reversal takes ( 1
2 ,1) into ( 1

2 ,−1),
then we knowT ′ takes ( 1

2 ,1) to (− 1
2 ,1). This implies that M , the

bound state of ( 1
2 ,1) and (− 1

2 ,1), is a Kramers doublet under T ′
[30,49]. The difference in these two states is that Z2 squares
to +1 (−1) on the ( 1

2 ,1) dyon in the former (latter). In fact,
the former state is just the time-reversal symmetric (Ef T Mf )θ
further equipped with a charge-conjugation symmetry, so it
must be anomaly-free.

So without examining anomalies, there are in total 50
possible distinct Z2 × T symmetric U(1) quantum spin liquids
where Z2 acts as a charge conjugation. It turns out that, together
with the anomaly-free (Ef T Mf T ′)θ−, 22 of these states are free

TABLE X. List of anomalous Z2 × T symmetric U(1) quantum
spin liquids that have θ = 0 and haveZ2 acting as a charge conjugation
at θ = π . T 2

E = 1 (T 2
E = −1) represents the case where E is a Kramers

singlet (doublet) under T . T ′2
M = 1 (T ′2

M = −1) represents the case
where M is a Kramers singlet (doublet) under T ′. Z2

E,M represents the
result of acting the charge conjugation twice on E and M , respectively.
The last column lists the anomaly classes.

T 2
E Z2

E T ′2
M Z2

M anomaly class

(EbZMbZ)− 1 −1 1 −1 class 1
(EbT ZMbT ′Z)− −1 −1 −1 −1 class 1
(Ef T MbZ)− −1 1 1 −1 class 1
(EbZMf T ′ )− 1 −1 −1 1 class 1
(Ef T MbT ′Z)− −1 1 −1 −1 class 1
(EbT ZMf T ′ )− −1 −1 −1 1 class 1
(EbT ZMbZ)− −1 −1 1 −1 class 2
(Ef MbZ)− 1 1 1 −1 class 2
(EbT ZMf )− −1 −1 1 1 class 2
(EbZMbT ′Z)− 1 −1 −1 −1 class 3
(EbZMf )− 1 −1 1 1 class 3
(Ef MbT ′Z)− 1 1 −1 −1 class 3
(EbZMbT ′ )− 1 −1 −1 1 class 4
(Ef T ZMbT ′ )− −1 −1 −1 1 class 4
(Ef T ZMbT ′Z)− −1 −1 −1 −1 class 4
(EbT MbT ′Z)− −1 1 −1 −1 class 4
(EbT Mf Z)− −1 1 1 −1 class 4
(EbZMf Z)− 1 −1 1 −1 class 4
(EbT MbZ)− −1 1 1 −1 class 5
(EbT Mf T ′Z)− −1 1 −1 −1 class 5
(EbT ZMf T ′Z)− −1 −1 −1 −1 class 5
(EbT ZMbT ′ )− −1 −1 −1 1 class 5
(Ef ZMbT ′ )− 1 −1 −1 1 class 5
(Ef ZMbZ)− 1 −1 1 −1 class 5
(EbT MbT ′ )− −1 1 −1 1 class 6
(EbT Mf )− −1 1 1 1 class 6
(Ef MbT ′ )− 1 1 −1 1 class 6

of anomaly. The other 28 states are all anomalous, and there
are six anomaly classes. The strategy to show the anomalies
will be given in Sec. VII C, and the arguments for this
anomaly detection will be completed in Appendix J. Therefore
combined with the 16 states where Z2 does not permute any
excitation, there are in total 38 distinct nonanomalous Z2 × T
symmetric U(1) spin liquid states, and they can be found in
Tables VI, VIII, IX, and XI.

We note that models that discuss Z2 × T symmetric U(1)
quantum spin liquids have been proposed in the literature, and

TABLE XI. List of Z2 × T symmetric U(1) quantum spin liquids
that have θ = π and have Z2 acting as a charge conjugation. T 2

E = 1
(T 2

E = −1) represents the case where E is a Kramers singlet (doublet)
under T . T ′2

M = 1 (T ′2
M = −1) represents the case where M is a

Kramers singlet (doublet) under T ′. Z2
E,M,D represents the result of

acting the charge conjugation twice on E, M , and the ( 1
2 ,1) dyon,

respectively.

T 2
E Z2

E T ′2
M Z2

M Z2
D comments

(Ef T Mf T ′ )θ− −1 1 −1 1 1
(Ef T Mf T ′ )θ−Z −1 1 −1 1 −1 anomalous, class 1
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a prototypical set includes but is not limited to Ref. [19–21]. In
these models, the Z2 × T symmetric U(1) quantum spin liquid
states are (EbMb)−.

C. Strategy of anomaly detection

In this section we lay out the strategy to show the anomaly
of the other 36 states. It turns out to be easier to first
show that (EbZMbZ)− is anomalous with the Z2 symmetry
(independent of time reversal), and this will be done later in
this section. This immediately implies that (Ef MbZ)− and
(EbZMf )− are also anomalous with Z2 symmetry, because
these states can be related to (EbZMbZ)− by tuning θ by 2π .
It also immediately implies that (EbT ZMbZ)−, (EbZMbT ′Z)−,
(EbT ZMbT ′Z)−, (Ef T MbZ)−, (EbZMf T ′)− are anomalous with
Z2 × T symmetry, because breaking T will make them one
of (EbZMbZ)−, (Ef MbZ)−, and (EbZMf )−. Furthermore, this
means (Ef T Mf T ′)θ−Z is anomalous, because even if the time-
reversal symmetry is broken, this state is smoothly connected
to the anomalous (EbZMbZ)−.

Next, using a generalization of the method for showing the
anomaly of (EbZMbZ)−, we show (EbT MbT ′)− and EbT T ′Mb−
are anomalous with Z2 × T symmetry in Appendix J. It
turns out this is enough to show the remaining states are all
anomalous. More precisely,

(1) Showing that (EbT MbT ′)− is anomalous is sufficient to
show that the other entries in Table X are anomalous.

(2) Showing that EbT T ′Mb− is anomalous is sufficient to
show that the rest entries in Table VII are anomalous.

To see the first claim, let us consider (EbT MbZ)− and
(EbZMbT ′)−. These two states must be simultaneously anoma-
lous or anomaly-free, because they are related to each other
by the relabelling T ↔ T ′ and E ↔ M . Suppose they are
anomaly-free, then by combining them with the states that
will be constructed in Appendix J 1, we will get (EbT MbT ′)−,
which is in contradiction with that (EbT MbT ′)− is anomalous.
This means if (EbT MbT ′ )− is anomalous, then (EbT MbZ)− and
(EbZMbT ′)− will also be anomalous. Combining these three
anomalous states with the anomaly-free states constructed in
Appendix J 1, one can show all other entries in Table X are also
anomalous.

To see the second claim, consider Ef T Mb− and Ef T ′Mb−.
These two states must also simultaneously be anomalous
or anomaly-free, because they are related to each other by
the relabelling T ↔ T ′ and E ↔ M . Suppose they are
anomaly-free. By combining them and the anomaly-free
states constructed in Appendix J 1, we can get EbT T ′Mb−,
which contradicts that EbT T ′Mb− is anomalous. This means
if EbT T ′Mb− is anomalous, then Ef T Mb− and Ef T ′Mb− must
also be anomalous. Combining these anomalous states with
the anomaly-free states constructed in Appendix J 1, one can
show all other entries in Table VII are also anomalous.

1. Anomaly of (EbZ MbZ)−

In the spirit of Sec. VI B, here we will show that (EbZMbZ)−
is anomalous with a Z2 charge-conjugation symmetry (inde-
pendent of time reversal), by showing its corresponding SPT
has an inconsistent surface.

To show the anomaly of (EbZMbZ)−, we will consider from
the perspective of EbZ , and suppose there is an SPT made of

EbZ that after gauging becomes (EbZMbZ)−. On the surface of
this SPT, we first condense the bound state of two EbZ , and this
makes the surface a superfluid with a Z4 symmetry. There will
be various vortices, and the 4π vortex is the minimal trivial
boson. So we can then condense the 4π vortices to restore
the U(1) symmetry, and this gives a symmetric gapped surface
state where the U(1) charge of the excitations is quantized in
units of 1/2.

The particle contents of the surface can be written as
{1,MbZ,X,NI } × {1,EbZ}, where MbZ is the remnant of the
strength-1 monopole, X carries half charge under U(1), and
NI ’s are neutral. In general, there can be many flavors ofNI , but
only the case with a single X needs to be considered, because
other X’s can be related to a single one by attaching certain NI .
Notice in this notation the inverses and bound states of these
excitations are understood to be implicitly displayed. We would
like to check whether such a surface is consistent. That is, it
has consistent braiding, fusion and symmetry transformation
rules.

As for braiding, we know EbZ is local, MbZ and X have
mutual π statistics, and MbZ has no mutual statistics with NI .
X and NI can have complicated braiding though, and it can
even be non-Abelian.

As for fusion, we have

MbZ × MbZ = 1, (21)

X × X = EbZ + EbZN1 + EbZN2MbZ, (22)

and

NI × NJ = Nk + MbZNk. (23)

Equation (21) comes from that this surface is obtained by
condensing M2

bZ , and (22) and (23) are obtained under the
constraint due to charge conservation. Notice in (22) the fusion
product cannot be EbZMbZ , because this will be inconsistent
with the general condition that a particle and its antiparticle
should have the same topological spin. Also, all potential
fusion multiplicities are suppressed, and they turn out to be
unimportant for our discussion.

Now if we are willing to break the U(1) symmetry on the
surface by condensing EbZMbZ ,9 X will be confined and NI ’s
will remain, and we will be left with {1,MbZ,NI } that has a Z4

symmetry. Notice that {1,MbZ,NI } is closed under fusion and
braiding, and it is known that in three dimensions there is no
bosonic SPT protected by Z4 symmetry. This means NI can
be further confined (without breaking the Z4 symmetry), and
we are left with {1,MbZ}. In other words, NI ’s can be viewed
as emergent particles of a system made of MbZ in the presence
of the Z4 symmetry but in the absence of the U(1) symmetry.
However, because neither MbZ nor NI carries a U(1) charge,
even in the presence of U(1) symmetry NI can still be viewed
as emergent particles of a system made of MbZ .

So we can get rid of NI and be left with {1,MbZ,X} ×
{1,EbZ}. Now the fusion of X must be

X × X = EbZ. (24)

9This is a boson in this surface topological order.
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The only possible consistent topological order of this state is a
Z2 topological order (or its twisted version, the double-semion
theory).

Let us turn to symmetry assignment, and we will particularly
consider how charge-conjugation acts on X. Notice when
defining the charge-conjugation action on X, there is an
ambiguity due to our freedom to multiply it by a gauge
transformation. However, because this topological order is a
Z2 gauge theory, the action of the global charge-conjugation
symmetry twice should have an unambiguous result on X. So
in order to be consistent with the above fusion rule, X must go
to ±iX upon acting with charge conjugation twice. Below we
show this is impossible.

Suppose the action of charge conjugation on X is imple-
mented by a generic matrix C

Xi → CijX
†
j , X

†
i → C∗

ijXj . (25)

Notice the indices label different components of X that differ
by some local operations. This implies that acting charge-
conjugation twice on X gives

Xi → (CC∗)ijXj . (26)

Now consider the operator XiMijXj with an arbitrary matrix
M , which is a charge-1 boson, so the charge-conjugation acting
on it twice gives −1. This requires

(CC∗)T M(CC∗) = −M. (27)

Because M is arbitrary, this is possible only if CC∗ = ±i,
which confirms the previous statement that X → ±iX upon
acted by Z2 twice. However, no matrix C can possibly satisfy
CC∗ = ±i. To see this, suppose CC∗ = ±i, then (CC∗)2 =
−1. On the other hand, C∗C = ∓i and (CC∗)2 = CC∗CC∗ =
C(C∗C)C∗ = 1, which contradicts with the previous result.

The above contradiction shows that there cannot even be any
X. So the surface is just {1,EbZ,MbZ}, where everything is lo-
cal. This means that there is a charge neutral excitation that has
Z2 squaring to −1, which contradicts the original assumption.
Therefore this SPT cannot exist, and furthermore, (EbZMbZ)−
is anomalous with a Z2 charge-conjugation symmetry. Notice
from the above argument we see the anomaly of (EbZMbZ)−
is independent of time reversal.

Note this argument can be easily modified to show that
Eb 1

2
Mb 1

2
is anomalous with SO(3) symmetry, by changing

every Z2 symmetry by SO(3) symmetry, and changing every
excitation with charge conjugation squaring to −1 by an
excitation with spin-1/2. This is of course consistent with
our conclusion from Sec. III, where we have used the SO(3)
monopole to show the anomaly.

D. Anomaly classes

Before finishing this section, we make some brief remarks
on the anomaly classes of these anomalous spin liquid states.
Here by an anomaly class, we mean a group of anomalous
states, which can be turned into each other by coupling it
with a state that is anomaly-free. Because the anomalous spin
liquid states can in principle be realized on the surface of some
4 + 1-d Z2 × T symmetric bosonic SPTs, analyzing the
anomaly classes of these 37 anomalous spin liquid states gives
some information on the properties of these SPTs.

We first discuss the anomalous spin liquid states with Z2

acting as a charge conjugation. It is straightforward to check
that within each of the following six groups of anomalous
states, all states have the same anomaly:

1. (EbZMbZ)−, (EbT ZMbT ′Z)−, (Ef T MbZ)−, (EbZMf T ′)−,
(Ef T MbT ′Z)−, (EbT ZMf T ′)−, (Ef T Mf T ′)θ−Z .

2. (EbT ZMbZ)−, (Ef MbZ)−, (EbT ZMf )−.
3. (EbZMbT ′Z)−, (EbZMf )−, (Ef MbT ′Z)−.
4. (EbZMbT ′)−, (Ef T ZMbT ′ )−, (Ef T ZMbT ′Z)−,

(EbT MbT ′Z)−, (EbT Mf Z)−, (EbZMf Z)−.
5. (EbT MbZ)−, (EbT Mf T ′Z)−, (EbT ZMf T ′Z)−,

(EbT ZMbT ′)−, (Ef ZMbT ′)−, (Ef ZMbZ)−.
6. (EbT MbT ′)−, (Ef MbT ′)−, (EbT Mf )−.
It is clear that combining group 1 and group 4 results in

group 3, combining group 1 and group 5 results in group 2, and
combining group 4 and group 5 results in group 6. This implies
that the 4D bosonic SPTs with Z2 × T symmetry at least have
a classification of Z3

2. Group cohomology gives precisely the
same classification [54], and our results suggest that the surface
states of these SPTs can be the above anomalous U(1) gauge
theories.

Notice there is another SPT that is beyond group cohomol-
ogy, and that SPT is protected purely by Z2 symmetry [67,68].
One physical realization of the bulk of this SPT is to consider a
decorated domain wall construction, where on each Z2 domain
wall we place an ef mf state [67]. The surface properties of
this beyond-group-cohomology SPT is unclear at this point,
and it may be interesting to work it out.

Taking all these together, we propose that the complete
classification of 4D bosonic SPTs with Z2 × T symmetry is
Z4

2. This agrees with the classification of 4D bosonic SPTs
with Z2 × ZP

2 symmetry, where ZP
2 is a reflection symmetry

that results in a trivial action when acted twice [69].
Next, we discuss the anomalous spin liquid states with Z2

not acting as a charge conjugation, whose anomaly classes can
be organized as

a. EbT ′Mf −, Ef T Mb−, EbT ′Mb−.
b. EbT Mf −, Ef T ′Mb−, EbT Mb−.
c. EbT T ′Mb−, EbT T ′Mf −, Ef Mb−.
First notice all these states are anomalous with the full

Z2 × T symmetry. If T is broken, all these states should be
nonanomalous Z2 symmetric states. Second, class a and class
b differ by the relabelling T ↔ T ′ and E ↔ M , and class c
can be obtained by combining states in class a and class b.
Notice before that class 2 and class 3 differ by this relabelling,
so do class 4 and class 5, and that class 6 can be obtained by
combining class 2 and class 3, or by combining class 4 and
class 5. This suggests states in class c here are of the same
anomaly class as states in class 6 as above. We do not attempt
to completely settle down the relation among these anomaly
classes in this paper.

VIII. U(1) QUANTUM SPIN LIQUIDS ENRICHED BY
SOME OTHER SYMMETRIES

In the spirit of the general framework in Sec. VI, in this
section we briefly discuss U(1) quantum spin liquids with
some other symmetries. Part of the motivation comes from the
existing lattice models that realize U(1) quantum spin liquids
with O(2) × T = (U(1) � Z2) × T symmetry [15–17,70]. In
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all these models, the improper Z2 rotation of the O(2) symme-
try acts as a charge conjugation. References [15–17] studied a
couple of different lattice models that realize (EbMb 1

2
)−, where

θ = 0 and both E and M are bosons, and M carries half charge
under the U(1) subgroup of O(2). Reference [70] constructed
two other models of O(2) × T symmetric U(1) quantum spin
liquids, where one of them has a bosonic monopole and
the other has a fermionic monopole. These two states are
(EbMb)− and (EbMf )−, respectively. Notice, for simplicity,
in this section, we will not consider the refined classification
that considers coupling these spin liquids with SPTs.

A. SO(N) × T symmetry

We can generalize our classification of SO(3) × T
symmetric U(1) quantum spin liquids to SO(N ) × T
symmetric U(1) quantum spin liquids, with the integer
N > 3. The projective representations of SO(N ) × T have the
same classification as those of SO(3) × T : there is a spinor
representation of SO(N ) and a Kramers doublet representation
of time reversal. Therefore the enumeration of states with this
symmetry goes in a parallel way as those with SO(3) × T
symmetry, and all nonanomalous states with SO(3) × T can
be generalized to their SO(N ) × T analogs. Furthermore,
π1(SO(N )) = Z2 and the monopole structure of an SO(N )
gauge field is similar to that of an SO(3) gauge field, so
the generalization of the anomalous states in the SO(3) × T
case will still be anomalous. Therefore we conclude that
with SO(N ) × T symmetry there will also be 15 distinct
nonanomalous U(1) quantum spin liquids, and they have
similar properties as those with only SO(3) × T symmetry in
terms of the bulk fractional excitations.

For the special case of SO(2) × T ∼= U(1) × T , its pro-
jective representations on E are classified by Z2

2. One of
the nontrivial root projective representation corresponds to
Kramers doublet of time reversal, while the other corresponds
to half-charge of SO(2), which is protected by time reversal
here. Therefore, although SO(2) has no projective representa-
tion on its own, the projective representations of SO(2) × T on
E can still be viewed as descendants of those of SO(3) × T .

If θ = 0, there is no projective representation on M . So there
are 3 × 22 = 12 putative states with θ = 0, which can all be
viewed as descendant states of SO(3) × T symmetric states
when the symmetry is reduced to SO(2) × T . Notice some
distinct SO(3) × T symmetric states have the same SO(2) × T
symmetric descendant, because there is no fractional quan-
tum number on monopoles anymore. The descendants of
the 15 anomaly-free states of course remain anomaly-free.
By inspecting the anomaly classes of anomalous SO(3) × T
symmetric states listed in Sec. III, we see in each anomaly
class there is at least one state that has a trivial monopole
when the symmetry is reduced to U(1) × T , which means all
these anomalous states will become anomaly-free. So all these
12 SO(2) × T symmetric states with θ = 0 are anomaly-free.

If θ = π , the properties of the ( 1
2 , ± 1) dyons will determine

the phase, which does not have any projective representation
of this symmetry. So it contributes one anomaly-free state,
which can be viewed as a descendant of the SO(3) × T sym-
metric (Ef T Mf )θ state when the symmetry is broken down to

U(1) × T . Therefore there are in total 13 distinct anomaly-free
U(1) quantum spin liquids with U(1) × T symmetry.

B. SO(N) symmetry

In the following few sections, we will consider the case in
the absence of time-reversal symmetry. In this section, we start
by discussing U(1) quantum spin liquids with only SO(3) spin
rotation symmetry, which can be realized in systems with a
spin chirality term in the Hamiltonian.

As for the elementary excitations, we focus on (1,0) and
(qe,1), with qe a real number. It is not hard to see there must be
bosons for some qe, and we will consider such a bosonic (qe,1)
excitation. Due to the absence of time-reversal symmetry, θ in
(1) can be tuned continuously, so that the (qe,1) particle chosen
above can be tuned to (0,1) by Witten effect. That is to say, now
we fix (0,1) to be a boson. Similarly, we can make (1,0) also a
boson. Therefore the statistics of the elementary excitations is
irrelevant here due to the absence of time-reversal symmetry.

Next, we turn to their quantum numbers under symmetry.
Due to the absence of time-reversal symmetry, the distinction
between electric charge and magnetic monopole also becomes
irrelevant. By enumerating the quantum numbers of E = (1,0)
and M = (0,1) under SO(3), we can have EbMb, Eb 1

2
Mb,

and Eb 1
2
Mb 1

2
, and these exhaust all (including anomalous)

SO(3) symmetric U(1) spin liquids. EbMb and Eb 1
2
Mb are

clearly not anomalous, and their description as a gauged SPT
is similar to their cousins with SO(3) × T symmetry. Also, as
argued in Sec. III, Eb 1

2
Mb 1

2
is anomalous even with only SO(3)

symmetry.
Therefore, with only SO(3) symmetry, there are only two

(anomaly-free) distinct possible symmetry realizations in the
U(1) quantum spin liquids: EbMb and Eb 1

2
Mb. This concludes

the classification of U(1) quantum spin liquids with SO(3)
symmetry.

Similar reasoning as above can be applied to U(1) quantum
spin liquids with SO(N ) symmetry with N > 3. First, all these
SO(N ) groups have one nontrivial projective representation,
the spinor representation. Also, as mentioned above, the
monopole properties of an SO(N ) gauge field is similar to
that of an SO(3) gauge field. Therefore the arguments for the
enumeration of all the states, construction of the nonanomalous
states and examination of the anomalous states are parallel to
that of SO(3), and gives only two distinct SO(N ) symmetric
U(1) quantum spin liquids. For the special case of SO(2) ∼=
U(1), because of the absence of any nontrivial projective
representation of this symmetry, there will be only a single
type of symmetric U(1) quantum spin liquid.

C. Z2 symmetry

For the case with Z2 symmetry, as above, all states can be
symmetrically tuned so that it has the θ = 0 type of charge-
monopole lattice with both E and M bosonic. Also notice there
is no projective representation of Z2, so nontrivial states must
have Z2 acting as charge conjugation. Then there can be EbMb,
(EbMb)−, (EbZMb)−, and (EbZMbZ)−. The first three states
can clearly be realized, but as shown before, (EbZMbZ)− is
anomalous with a Z2 symmetry. So there are three distinct Z2
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symmetric U(1) quantum spin liquids: EbMb, (EbMb)−, and
(EbZMb)−.

D. O(2) symmetry

Similar considerations can be applied to the case with O(2)
symmetry. There will still be two spin liquid states where the
improper Z2 component does not act as a charge conjugation,
and these are the descendants of EbMb and Eb 1

2
Mb with

SO(3) × T symmetry. As shown in Sec. III, the descendant
of Eb 1

2
Mb 1

2
is still anomalous with O(2) symmetry. Again,

for a complete classification, states where Z2 acts as a charge
conjugation need to be taken into account. Unlike the case
with O(2) × T symmetry, the fractional excitations always
have integer charges under the U(1) subgroup of O(2), if
the improper Z2 component acts as a charge conjugation. So
these states include (EbMb)−, (EbZMb)−, (EbZMbZ)−, and the
first two are anomaly-free, while the last one is anomalous.
Therefore there are in total 4 distinct nonanomalous O(2) sym-
metric U(1) quantum spin liquids: EbMb, Eb 1

2
Mb, (EbMb)−

and (EbZMb)−.

IX. DISCUSSION

In this paper we have classified and characterized 3D
symmetry enriched U(1) quantum spin liquids. One of our
focuses is on such spin liquids with time-reversal and SO(3)
spin rotational symmetries. Twenty-six states were enumerated
based on the properties of the bulk fractional excitations,
among which only 15 can be realized in 3D lattice systems.
We explain in details how to view these quantum spin liquids
as gauged version of some SPTs. The other 11 are shown to be
anomalous, i.e., they cannot be realized in a 3D bosonic system
with these symmetries. In Appendix C, they are constructed on
the surface of some 4D bosonic short-range entangled states.

The anomalies of the anomalous states become clear when
the properties of the SO(3) monopoles are examined. Al-
though checking the topological defects of the gauge field that
corresponds to certain symmetry has been widely applied to
detect anomalies, to the best of our knowledge, the properties
of SO(3) monopoles have not been investigated in previous
studies. We expect it to be helpful in studying other problems
that involves SO(3) symmetries. When combined with bosonic
SPTs with time-reversal and SO(3) spin rotational symmetry,
we find a further refined classification which shows there are
168 different U(1) quantum spin liquids.

After warming up with the example of SO(3) × T symmet-
ric U(1) quantum spin liquids, we have described a general
framework to classify such spin liquid states with a general
symmetry. This approach is again physics-based, and it has
the advantage of providing us with intuition both on the
classification and the physical characterization. However, it
is not always easy to implement this framework, and so
it is desirable to find a simpler systematic way to do the
classification. The field theoretic formal approach discussed in
Sec. VI may be potentially helpful. Another possibly helpful
formal approach is to generalize the categorical theory that is
used to study 2d SETs to U(1) quantum spin liquids [9,11].
This may be possible because in both cases the excitations are

all particle like, although there are infinitely many types of
fractional excitations in a U(1) quantum spin liquid.

In the spirit of this general framework, we have also dis-
cussed U(1) quantum spin liquids with some other symmetries,
and found some very rich structures. In particular, we discussed
U(1) spin liquids with Z2 × T symmetry in great detail. Based
on the properties of the bulk fractional excitations, there are 38
such Z2 × T symmetric states that are free of anomaly. The
anomalies of the other 37 such Z2 × T symmetric states are
detected based on the method in the general framework. The
study of Z2 × T symmetric U(1) quantum spin liquids has
some implications on some SPTs, as discussed in Appendix J.

Besides looking for a simper systematic classification of
these symmetry enriched U(1) quantum spin liquids, the other
most important open questions are, of course, which micro-
scopic models and experimental systems realizing these dif-
ferent symmetry enriched U(1) quantum spin liquids, and how
to detect and distinguish them numerically or experimentally.
One particular interesting theoretical aspect of this question
is how lattice symmetries interplay with these quantum spin
liquids. These are beyond the scope of the current paper and
are worth further investigating in the future, and we note some
recent progress in this aspect [71–74].

Another interesting theoretical challenge is to classify and
characterize symmetry enriched gapped quantum spin liquids,
some of which can be obtained by condensing some excitations
in the U(1) quantum spin liquids. One complication in this
problem is that there usually exists looplike excitations, whose
properties are not completely understood to date. Because
some of these gapped quantum spin liquids are descendants
of the U(1) quantum spin liquids, relating the properties of
looplike excitations in the former to the properties of the
particle-like excitations in the latter may shed light on this
problem.
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APPENDIX A: SOME REMARKS ON TIME-REVERSAL
AND CHARGE-CONJUGATION SYMMETRIES

In this appendix, we discuss some general properties of
time-reversal and charge-conjugation symmetries. In partic-
ular, we would like to check the values of T 2 and C2 on a
fractionalized excitation. By abuse of notation, we will denote
this excitation by E in general, which includes but does not
limit to the case where E is the electric charge of a U(1)
quantum spin liquid. In general, E can be a multicomponent
object, and let us denote the ith component as Ei .
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We first consider time-reversal symmetry T . We assume the
antiunitary time-reversal symmetry acts on Ei as

T : Ei → UijEj (A1)

with U a generic matrix. That is, time reversal changes E to
something that differs from it only by a local operator. We also
assume E

†
i MijEj is always a local object, for any matrix M .

Notice in the above notation, some components of E can be a
bound state of the fractionalized excitation E and some local
particles.

Straightforward algebra indicates that acting time reversal
twice, the original E becomes

Ei → (U ∗U )ijEj (A2)

and the local object becomes

E
†
i MijEj → E

†
i ((U ∗U )†M(U ∗U ))ijEj (A3)

Suppose the system is made of Kramers singlets. That is,
E

†
i MijEj is invariant upon acted by time reversal twice for any

M , which is equivalent to that

(U ∗U )†M(U ∗U ) = M (A4)

for any matrix M . This is possible only if U ∗U = eiφI ,
where I is the identity matrix. Because (U ∗U )2 = e2iφI and
U ∗UU ∗U = U ∗(UU ∗)U = I . This implies eiφ = ±1. That
is, T 2 acting on such fractionalized excitations must give ±1
[30].

The above argument also shows even if there is microscopic
Kramers doublet in the system, as long as time reversal takes
the form (A1) and T 2 is well-defined, T 2 can only be ±1.
However, if there are microscopic Kramers doublets in the
system, it is possible to have T 4 = −1. Notice in the case
where T 4 = −1, T 2 does not have to be well-defined.

Now T 4 = −1 (or T 2 = ±i) can happen if time reversal
changes the relevant excitation by a nonlocal operation, and a
typical example for this case is (eCmC)T ε mentioned in the
main text, where under time reversal e and m are exchanged.
It can also happen if time reversal changes this excitation by a
local operation. In this case, time reversal has to attach a local
Kramers doublet to the relevant nontrivial excitation. To see
this, without loss of generality, let us assume the time-reversal
partner of E is F , i.e., E → F under time reversal. To have
T 2 = ±i for E, we need F → ±iE under time reversal. These
also imply T 2 = ∓i for F , so E and F defer by a local Kramers
doublet.

We now consider charge-conjugation symmetry C. In gen-
eral, it is a unitary symmetry acting on Ei as

C : Ei → VijE
†
j , (A5)

where V is a matrix. Taking the hermitian conjugate of the
above equation, we have

C : E
†
i → V ∗

ijEj . (A6)

So C acting twice should give

C2 : Ei → (V V ∗)ijEj . (A7)

Again, we require the local operator E
†
i MijEj to have C2 = 1,

for any matrix M . Following the same logic as we did for

time-reversal symmetry, we conclude that C2 = ±1 on the
fractionalized excitation E.

Also notice that the value of C2 is invariant under a U(1)
gauge transform Uθ , namely (UθC)2 = C2. This means that the
value C2 = ±1 is a physically meaningful quantity.

The simple discussion here on C2 should be enough for
our purpose. In the context of gapped topological orders (for
example in Z2N gauge theories), the mathematically more
precise meaning of C2 on fractionalized excitations has been
discussed in Ref. [9].

APPENDIX B: AN SPT: eCm 1
2

In this appendix we describe a 3D SPT, eCm 1
2 , under

symmetry U(1) × SO(3), U(1) × T × SO(3) or (U(1) � T ) ×
SO(3). The defining property of this SPT is that it can have
a symmetric surface Z2 topological order with excitations
{1,e,m,ε}, where e carries charge-1/2 under U(1) andm carries
spin-1/2 under SO(3). We begin by giving field theoretic
descriptions of this surface state with the above symmetries.

If the symmetry is simply U(1) × SO(3), a field theory for
this surface can be described by the following Lagrangian:

L =
∑
s=±

|(∂μ − iaμ)zs |2 + V (|z|2)

+ 1

4e2
(εμνλ∂νaλ)2 − 1

2π
Ada, (B1)

where Ada is a shorthand for εμνλAμ∂νaλ. zs is a two-
component complex field that transforms as a doublet under
SO(3), aμ is a noncompact U(1) gauge field, and A is a
background U(1) gauge field corresponding to the global U(1)
symmetry.

Condensing a bound state of two z’s in the singlet channel
(i.e., letting 〈z1∂xz2 − z2∂xz1〉 �= 0, for example) gives us the
above surface topological order, where the uncondensed single
z will be identified as m that carries spin-1/2. After this
condensation, the flux of a is quantized in units of π , and
the last term in the above Lagrangian implies that this π -flux
carries charge-1/2 under the global U(1). This π -flux can be
identified as e. The resulting state is precisely eCm 1

2 .
If the symmetry is (U(1) � T ) × SO(3), the surface theory

of eCm 1
2 can still be described by the field theory given by

(B1), but now the spin operator is represented as �S ∼ z† �σ i∂tz

and under time reversal

z → z†, �a → �a, a0 → −a0. (B2)

In order to obtain eCm 1
2 , we need to make 〈z1∂xz2 − z2∂xz1〉 =

〈z†1∂xz
†
2 − z

†
2∂xz

†
1〉 �= 0.

If the symmetry is U(1) × T × SO(3), the surface state of
eCm 1

2 can be described by a field theory similar to (B1):

L =
∑

s,α=±
|(∂μ − iaμ)zsα|2 + V (|z|2)

+ 1

4e2
(εμνλ∂νaλ)2 − 1

2π
Ada. (B3)

Notice now each component of zs contains two components,
zsα with α = ±, and the generators of spin rotations become
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�S = 1
2z

†
sα �τss ′zs ′α . Under time reversal,

zsα → (σ2)αα′(τ2)ss ′zs ′α′ , �a → −�a, a0 → a0, (B4)

where σ and τ are the standard Pauli matrices. The reason to
give more components to z is to make it not a Kramers doublet.
To get eCm 1

2 , we can also condense the bound state of two z’s
in the singlet channel, that is, let 〈zT σ1τ2∂xz〉 �= 0. Similar
argument as above implies the resulting state is eCm 1

2 .
To see that this state as a strictly 2D system is anomalous,

consider tunneling a U(1) monopole through this 2D system.
This will leave a 2π flux on the system. For such a local
process, no excitations far away should be able to tell the
existence of this 2π flux. But e carries half charge under U(1),
it will pick up a nontrivial phase factor upon circling around
this 2π flux, regardless how far it locates away from it. To
cancel this phase factor, an m needs to be present at the 2π

flux. Because m carries spin-1/2, this then implies tunneling a
monopole leaves a spin-1/2 on the surface. This is not possible
for a strictly 2D system with symmetry U(1) × SO(3). Notice
that time-reversal symmetry is not involved in the anomaly,
so this surface is still anomalous even if the symmetry is
U(1) × SO(3).

To visualize this SPT, the simplest way is to do a layer
construction similar to that used in Ref. [8]. Because a similar
method will be used in Appendix C to construct 4 + 1-d
systems whose surfaces realize the anomalous quantum spin
liquids, we do not explicitly display it for eCm 1

2 here.
Notice when the symmetry is (U(1) � T ) × SO(3), to

realize eCm 1
2 , we have assumed that the microscopic bosons

are Kramers singlet. Below, we argue that for microscopic
Kramers doublet charged bosons, eCm 1

2 cannot be realized.
This fact is important, because otherwise gauging eCm 1

2 in
such a system would lead to EbT Mb 1

2
, which is argued to be

anomalous in Sec. III.
Suppose eCm 1

2 can be realized in a system made of Kramers
doublet charged bosons. Fusing two e’s gives a charge-1 local
particle, which must be a Kramers doublet by assumption.
Given the excitation content of this theory and that time reversal
keeps the U(1) charge, the time-reversal action on e can always
be represented as

ei → Uij ej . (B5)

Now notice eiMij ej is a local charge-1 operator for any matrix
M , so this operator must be a Kramers doublet, which implies
that

(U ∗U )T M(U ∗U ) = −M. (B6)

This is possible only if U ∗U = ±i. As shown in Appendix A,
no matrix U can have this property. This implies that eCm 1

2
cannot be realized in a system made of Kramers doublet
charged bosons.

APPENDIX C: ANOMALOUS SPIN LIQUIDS AS SURFACE
STATES OF SOME 4 + 1-D SYSTEMS

In this appendix, we will show the anomalous spin liquids
can be obtained on the surface of some 4 + 1-d systems. The
simplest way to construct these 4 + 1-d surface states is the

FIG. 6. Layer construction of the 4 + 1-d system whose surface
realize an anomalous spin liquid.

following layer construction, which has been widely used to
construct topological states [8,13,50,75].

For example, to construct a 4 + 1-d system whose surface
can realize EbT Mb 1

2
, one can start by stacking alternating

layers of nonanomalous spin liquids EbT Mb and Eb 1
2
Mb (see

Fig. 6). Then on the ith, i + 1th, and i + 2th layers, one
can condense the bound state of Ei , Mi+1, and Ei+2 with
the subscript indicating the layer index. This bound state,
Bi = EiMi+1Ei+2, is a trivial boson, and Bi’s with different
i’s commute, so they can be simultaneously condensed without
breaking any symmetry. After this condensation, the gauge
field in the 4 + 1-d bulk will be confined (or Higgsed) and
this bulk becomes short-range entangled, but on the surface
some nontrivial excitations still survive. These survivors are
E1 and M

†
1E2 on the top surface, and EN and EN−1M

†
N on

the bottom surface. Now the top (bottom) surface realizes
EbT Mb 1

2
, and E1 (EN−1M

†
N ) and M

†
1E2 (EN ) can be viewed as

the electric charge and magnetic monopole, respectively. The
4 + 1-d system constructed here is an SPT under symmetry
SO(3) × T because its surface, EbT Mb 1

2
, is anomalous.

To obtain 4 + 1-d systems whose surface realize all other
anomalous spin liquids, one only needs to replace each layer
by the appropriate nonanomalous spin liquid and condense the
proper bound states.

For some spin liquids, there is a more isotropic construction
of the corresponding 4 + 1-d systems by using a nonlinear
Sigma model (NLSM) with appropriate topological terms and
anisotropies, similar to that used in Ref. [76]. For example,
to construct the corresponding 4 + 1-d bulk of EbT 1

2
Mb 1

2
,

consider a 4 + 1-d O(6) NLSM with a theta term at θ = 2π .
Its surface theory is a 3 + 1-d six-component NLSM with a
Wess-Zumino-Witten (WZW) term at level-1, with Lagrangian

L = 1

g
(∂μna)2

+ 2πi

�5

∫ 1

0
duεabcdef na∂unb∂xnc∂ynd∂zne∂τnf (C1)

with �5 the surface area of a five-dimensional unit sphere. The
six-component vector transforms under time reversal as

n1,2,3 → −n1,2,3 n4,5,6 → n4,5,6. (C2)

This theory is invariant under O(6) × T .
To see how EbT 1

2
Mb 1

2
can be accessed by the above theory,

let us first add some SO(3) × SO(3) anisotropy, such that the
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first (second) three components transform as a vector under the
first (second) SO(3). Consider the weak coupling limit of the
theory where both the first and the second three components
are ordered. Now disorder the second three components by
proliferating its hedgehog defects. In this way, the second three
components themselves form a trivial state that preserves the
second SO(3) symmetry. Due to the WZW term, the hedgehog
defects of the first three components carry spin-1/2 under
the second SO(3), and it will be identified as the magnetic
monopole of EbT 1

2
Mb 1

2
later.

Now disorder the first three components by proliferating
the spin wave excitations while keeping its hedgehog defects
gapped. In this way we will get a U(1) spin liquid. One way
to see this is to write the first three components in the CP 1

representation,

na = z†ασ αβ
a zβ, for a = 1, 2, 3, (C3)

where z is a two-component complex spinon field with |z1|2 +
|z2|2 = 1, and σ ’s are the standard Pauli matrices. Under the
previous defined time reversal and the first SO(3), the spinon
field transforms as a Kramers doublet and SU(2) doublet. This
spinon will be identified as the electric charge of EbT 1

2
Mb 1

2

later.
The Lagrangian that only involves the first three compo-

nents can now be written as the following gauge theory:

L′ = |(∂μ − iaμ)z|2 + V (|z|2) + 1

4e2
(εμνλ∂νaλ)2, (C4)

where aμ is an emergent U(1) gauge field due to the U(1)
gauge redundancy in (C3), i.e., na is invariant when z → zeiθ

for any real θ . The ordered state of the first three components
corresponds to the Higgs phase of the U(1) gauge theory,
and proliferating spin wave excitations corresponds to making
spinons gapped and give rise to a U(1) spin liquid, where the
gapped spinons are the electric charge. The monopole of this
U(1) spin liquid, which is the source of magnetic flux, should
be identified as the unproliferated hedgehog defect, which is
the source of the skyrmions.

Finally, adding a weak anisotropy to collapse the SO(3) ×
SO(3) symmetry to its diagonal SO(3) subgroup, we get
EbT 1

2
Mb 1

2
with SO(3) × T symmetry, where the electric

charge is a Kramers doublet and SU(2) doublet, and the
magnetic monopole is an SU(2) doublet. The construction
above gives a 4 + 1-d system whose surface realizes EbT 1

2
Mb 1

2
.

If time reversal is ignored, the above construction gives the
4 + 1-d system whose surface realizes Eb 1

2
Mb 1

2
. The 4 + 1-d

system whose surface can realize EbT Mb 1
2

can be obtained
similarly, where time reversal acts in the same way as before,
while under SO(3) only the last three components transform
as a vector and the first three components do not transform.

Notice in the construction based on NLSMs, even if SO(3) is
broken to Z2 × Z2, all components still transform nontrivially
under this symmetry. Then it is believed that the constructed
4 + 1-d states are still nontrivial SPTs. This motivates us to
conjecture that even if the symmetry is broken to Z2 × Z2 × T ,
the descendants of the anomalous states remain anomalous
because they still live on the surface of some SPTs.

TABLE XII. Surface Z2 topological ordered states of SPTs under
symmetry U(1) × T × SO(3). The topological sectors are denoted by
{1,e,m,ε}. qe and qm represents the charge of e and m under U(1), T 2

e

and T 2
m represents the Kramersness of e and m under time reversal,

and Se and Sm represents the spin of e and m, respectively. If the
symmetry is (U(1) � T ) × SO(3), eCmT will be absent and all other
six root states remain.

qe qm T 2
e T 2

m Se Sm comments

eCmC 1
2

1
2 1 1 1 1

eT mT 0 0 −1 −1 1 1
ef mf 0 0 1 1 1 1 e and m are fermions
eCm 1

2
1
2 0 1 1 1 1

2

e 1
2 m 1

2 0 0 1 1 1
2

1
2

e 1
2 mT 0 0 1 −1 1

2 1
eCmT 0 0 1 −1 1 1

APPENDIX D: CLASSIFICATION OF SOME SPTs

In this appendix, we classify some SPTs which, once
gauged, can become some of the U(1) quantum spin liquids
studied in the main text.

1. Bosonic SPT with symmetry (U(1) � T ) × SO(3)

We start with bosonic SPT with symmetry (U(1) � T ) ×
SO(3), where the microscopic boson is a Kramers singlet.
Without SO(3) symmetry, the classification of this SPT is
well established. They are classified by Z3

2, where the three
root states are eCmC, eT mT , and ef mf [47]. With SO(3)
symmetry, Appendix B shows there is another root state:
eCm 1

2 . In fact, there two more root states: e 1
2mT and e 1

2m 1
2 .

That these two are nontrivial SPTs can be inferred from
the classification of bosonic SPT with symmetry U(1) × T .
Indeed, once SO(3) is broken to U(1), e 1

2mT and e 1
2m 1

2
become eCmT and eCmC, respectively.

Therefore we propose the classification of these SPTs isZ6
2.

Notice that among the six root states, only two of them need
protection from the U(1) symmetry: eCmC and eCm 1

2 .

2. Bosonic SPT with symmetry U(1) × T × SO(3)

If the symmetry is U(1) × T × SO(3), the understanding of
bosonic SPTs with symmetry U(1) × T implies there is one
more root state: eCmT . This state is protected by both U(1)
and time reversal.

Therefore we propose the classification of these SPTs isZ7
2.

The properties of the surface Z2 topologically ordered states
of the root states are summarized in Table XII.

3. SPT with symmetry ((U(1) × SU(2))/Z2) × T of fermions

For fermionic SPT with symmetry ((U(1) × SU(2))/Z2) ×
T , free fermion band theory gives a Z classification, and each
state can be labeled by an integer k, which is basically the
number of pairs of massless Dirac fermions on the surface.
The root state can have a surface state with two massless Dirac
fermions with the following Hamiltonian:

H = ψ†(−i∂xσx − i∂yσz) ⊗ τ0ψ, (D1)
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where σ and τ are the standard Pauli matrices with σ0 = τ0 =
I , and σ acts on the internal indices of the Dirac fermions and
τ acts on the spin indices. Under U(1),

ψ → ψeiθ . (D2)

Under SU(2),

ψ → σ0 ⊗ Uψ (D3)

with U an SU(2) matrix. And under time reversal,

ψ → iσy ⊗ τ0ψ
†. (D4)

Notice the inverse of this root state, i.e., the state that can triv-
ialize the root state when coupled together, can have the same
surface Hamiltonian as this root state except that time reversal
acts as ψ → −iσ2 ⊗ τ0ψ

†. This means the state labeled by
k and that labeled by −k are identical after gauging the U(1),
because the aforementioned sign difference in the time-reversal
action can be eliminated by a U(1) gauge transformation [30].

When the U(1) symmetry is gauged, the monopole of the
corresponding U(1) gauge field is a Kramers doublet that
carries spin-1/2 [77,78]. Because the method that leads to this
result will be used extensively later, it is helpful to review it
here.

Since the surface is described by two free Dirac fermions,
which is a conformal field theory, one can use state-operator
correspondence to study the properties of monopoles, by imag-
ining putting the surface on a sphere with 2π flux threading
out. Guaranteed by the index theorem, each Dirac fermion will
contribute a zero mode in the background of the 2π flux, in
our case denoted by f1 and f2, respectively. We also denote the
flux background with both zero modes empty by |0〉. Because
the time-reversal symmetry flips the U(1) charge here, the
physical gauge invariant states must have one of the zero
modes being occupied. That is, it should be f

†
1 |0〉 or f

†
2 |0〉,

which are bosonic. In light of state-operator correspondence,
these two states correspond to two different charge-neutral
monopole operators, denoted by M1 and M2, respectively.
Also, |0〉 corresponds to the operator of the (−1,1) dyon, and
f

†
1 f

†
2 |0〉 corresponds to the operator of (1,1) dyon. Then the

quantum numbers of the monopole can be read off from the
properties of these states.

For example, for the surface theory described above, be-
cause the two Dirac fermions transform as spin-1/2 under
SU(2), the monopoles M1 ∼ f

†
1 |0〉 and M2 ∼ f

†
2 |0〉 also

transform as spin-1/2. As for time reversal, these two states
transform as

M1 ∼ f
†
1 |0〉 → f1f

†
1 f

†
2 |0〉 = f

†
2 |0〉 ∼ M2,

M2 ∼ f
†
2 |0〉 → f2f

†
1 f

†
2 |0〉 = −f

†
1 |0〉 ∼ −M1. (D5)

This means the monopoles are Kramers doublet under time
reversal. Therefore, after gauging the U(1) symmetry, this state
becomes EbT 1

2
Mf 1

2
.

Now we turn to the classification of such fermionic SPTs.
Upon adding interactions, the free fermion classification col-
lapses to Z4 [77]. It can be shown that the state with eight
massless Dirac fermions on the surface is trivial, and the state
with 4 massless Dirac fermions on the surface is equivalent
to eT mT 1

2 , a bosonic SPT with symmetry SO(3) × T . There

can be interacting SPTs beyond band theory, which can be
viewed as bosonic SPTs with symmetry SO(3) × T . They are
classified by Z4

2. One of the root states of these bosonic SPTs
coincide with a free fermion SPT that can have four massless
Dirac fermions on the surface, so we propose the complete
classification is Z4 × Z3

2.

4. SPT with symmetry ((U(1) � T ) × SU(2))/Z2 of
Kramers singlet fermions

Consider fermionic SPT with symmetry ((U(1) � T ) ×
SU(2))/Z2 and assume T 2 = 1 for these fermions. Free
fermion band theory gives a Z2 classification. The root state
can have a surface state with two massless Dirac fermions,
described by the same Hamiltonian as (D1), with the only
difference that under time reversal

ψ → σy ⊗ τyψ. (D6)

When the U(1) symmetry of these Dirac fermions is gauged,
the monopole of the corresponding U(1) gauge field carries
spin-1/2 [39]. This can also be seen by using the method
of state-operator correspondence reviewed above. Notice in
this case the time-reversal symmetry does not flip the U(1)
charge, so it is convenient to momentarily suppose equipping
the system with a further charge-conjugation symmetry. We
will determine the properties of the monopoles in the presence
of this further symmetry first, and then break this symmetry.
Because the properties of the monopoles are described by some
discrete data, breaking this symmetry will not change any of
them.

Again, each Dirac fermion will contribute a zero mode to
the 2π flux background, and the neutral bosonic monopoles
correspond to the two states with one zero mode occupied:
M1,2 ∼ f

†
1,2|0〉. Because the two Dirac fermions carry spin-

1/2 under SU(2), as above, the monopoles must also carry
spin-1/2. It is not meaningful to discuss whether monopoles
are Kramers doublet or not under time reversal, so this
finishes determining the properties of the monopoles. From
this discussion, we see that after gauging the U(1) symmetry
this state becomes Ef 1

2
Mb 1

2
.

Although it is not meaningful to discuss whether monopoles
are Kramers doublet or not under time reversal, it is interesting
and helpful to determine how monopoles transform under time
reversal. To be consistent with that time reversal and SU(2)
commute on the monopole, under time reversal the monopole
operators must transform as M1,2 → M

†
1,2 (with a possible

phase ambiguity).
How do we understand this time-reversal action on

monopoles from the point of view of state-operator correspon-
dence? This is a little tricky because in this case the 2π flux
will be turned into a −2π flux under time reversal, which also
has two zero modes, denoted by f̃1,2, where f̃1,2 is contributed
by ψ1,2, respectively. In particular, denote |0̃〉 as the state with
−2π flux background and neither zero mode occupied. This
is the time-reversal partner of |0〉, so it corresponds to the
(−1,−1) dyon. Similarly, f̃

†
1 f̃

†
2 |0̃〉 is the time-reversal partner

of f
†
1 f

†
2 |0〉, so it corresponds to the (1,−1) dyon.

Under time reversal,

f
†
1 |0〉 → f̃

†
2 |0̃〉, f

†
2 |0〉 → −f̃

†
1 |0̃〉, (D7)
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where an unimportant U(1) phase factor has been suppressed.
For this to be compatible with that M1,2 → M

†
1,2 under time

reversal, we must identify (with an unimportant phase factor)

M
†
1 ∼ f̃

†
2 |0̃〉, M

†
2 ∼ −f̃

†
1 |0̃〉. (D8)

To the best of our knowledge, this identification of the Hermi-
tian conjugate of the monopoles in the context of state-operator
correspondence has not been given before, and it will be used
later. We remark that this identification is true as long as
the long-distance conformal field theory is described by two
massless Dirac fermions, and it should be independent of the
microscopic symmetries of the system, although we obtained
it by considering a system with a particular symmetry.

Now we return to the classification of these fermionic SPTs.
Upon adding interaction, the nontrivial state is stable. There
are also SPTs beyond band theory with a root state that can be
viewed as bosonic SPTs with symmetry SO(3) × T , and they
can be classified by Z4

2. One of the four root states becomes
trivial in the presence of fermions with this symmetry (see
Table V), therefore, we propose that the total classification
is Z4

2.

APPENDIX E: RELATIONS BETWEEN THE
CLASSIFICATION OF SO(3) × T SYMMETRIC U(1)

QUANTUM SPIN LIQUIDS AND THE CLASSIFICATION OF
SOME RELEVANT SPTs

In the main text SO(3) × T symmetric U(1) quantum spin
liquids can be classified into 15 phases, as summarized in
Tables I and II. In particular, how they can be viewed as gauged
SPTs are also discussed. It is helpful to understand the relation
between the classification of the U(1) quantum spin liquids and
the classification of the relevant SPTs. Below we give some
examples.

From the point of view of E, EbMb, EbMf , EbMb 1
2
, and

EbMf 1
2

can all be regarded as the gauged insulators of Kramers
singlet bosons with symmetry (U(1) � T ) × SO(3). In
Appendix D, we propose that the bosonic SPTs under this
symmetry are classified by Z6

2, where only two of the six root
states requires protection from the U(1) symmetry. It is not
hard to see, after gauging this U(1) symmetry, the Z2

2 subset of
SPTs coming from these two root states become precisely the
above four quantum spin liquids.

With the same symmetry as above, if the bosons are Kramers
doublet, Appendix B shows that only one of the two root
states survives. Gauging the trivial insulator and the nontrivial
SPT from the other root state leads to EbT Mb and EbT Mf ,
respectively.

From the point of view of M , EbMb, EbT Mb, Eb 1
2
Mb,

EbT 1
2
Mb, Ef Mb, Ef T Mb, Ef 1

2
Mb, and Ef T 1

2
Mb can be

thought of as the gauged bosonic insulators with symme-
try U(1) × T × SO(3). In Appendix D we propose that the
bosonic SPTs under this symmetry are classified by Z7

2, where
only three of the root states requires protection from the U(1)
symmetry. Gauging the Z3

2 subset of the SPTs generated by
these three root states gives precisely the above eight quantum
spin liquids.

From the point of view of M , both EbMf 1
2

and EbT 1
2
Mf 1

2

can be viewed as a gauged topological superconductor of

fermions with symmetry ((U(1) × SU(2))/Z2) × T . In Ap-
pendix D, we propose that the topological superconductors
with this symmetry are classified by Z4 × Z3

2, where the
first Z4 factor represents those can be realized with free
fermions, and the last Z3

2 factor corresponds to interacting
topological superconductors beyond band theory. For states
that can be realized by band theory, the nontrivial topological
superconductors can have 2k massless Dirac fermions on the
surface, where k = 0,1,2,3 (mod 4). Gauging states with even
k leads to EbMf 1

2
(up to a bosonic SPT eT mT 1

2 ) and gauging
states with odd k leads to EbT 1

2
Mf 1

2
. For states beyond band

theory, gauging them results in the same quantum spin liquid
as their corresponding state within band theory up to a bosonic
SPT with symmetry SO(3) × T .

From the point of view of E, both Ef 1
2
Mb and Ef 1

2
Mb 1

2
can

be viewed as gauged topological insulators of fermions with
symmetry ((U(1) � T ) × SU(2))/Z2, where the microscopic
fermions are Kramers singlets. In Appendix D, we propose
that these topological insulators are classified byZ5

2, where the
firstZ2 factor corresponds to those realizable by free fermions,
and the nontrivial state can have two massless Dirac fermions
on the surface. Gauging the trivial state leads to Ef 1

2
Mb and

gauging the nontrivial state leads to Ef 1
2
Mb 1

2
. Gauging the

states beyond band theory gives the same quantum spin liquids
as their corresponding free fermion cousins up to a bosonic SPT
under symmetry SO(3) × T .

The above examples show that gauging different SPTs may
results in the same quantum spin liquid, and no one single class
of SPTs will lead to all quantum spin liquids after gauging, so
the classification of these quantum spin liquids does not form
a simple group structure, while the classification of SPTs does.
As mentioned in the introduction, viewing a single quantum
spin liquid as two different gauged SPTs leads to some helpful
dualities on the surface theories of these SPTs, which can be
inferred from the above discussion.

Also, if two different quantum spin liquids can be viewed
as two different SPTs with the same microscopic constitutes
and symmetry, the quantum phase transition between them
can also be viewed as the gauged version of the quantum
phase transition between the two corresponding SPTs. For
example, the quantum phase transition between Ef 1

2
Mb and

Ef 1
2
Mb 1

2
can be viewed as the gauged version of the quantum

phase transition between the trivial and nontrivial fermionic
insulators with symmetry ((U(1) � T ) × SU(2))/Z2. We will
not go into the details in this paper.

APPENDIX F: BOSONIC SPTS WITH
SO(3) × T SYMMETRY

In this appendix, we discuss bosonic SPTs with symmetry
SO(3) × T , with the assumption that the microscopic degrees
of freedom are non-Kramers bosons with spin-1. Group coho-
mology gives classificationZ3

2 [54], but it misses one root state
[47], and the complete classification should be Z4

2. The four
root states all have anomalous surface Z2 topological orders,
where symmetries are realized in a way impossible in a purely
two dimensional system (see Table III). Among the four root
states, eT mT and ef mf are protected by time reversal alone.
Below we review the anomalies of e 1

2m 1
2 and e 1

2mT .
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Suppose e 1
2m 1

2 is realizable in a purely two dimensional
system, then tunneling an SO(3) monopole through it leaves
a π flux seen by both e and m. Because such a local process
should not have nonlocal observable effect, an ε, the fermionic
bound state of e and m, must be trapped at this π flux. Due
to time-reversal symmetry, there is no polarization spin in this
process and this flux is just a fermion. Therefore a local process
generates a fermion in this 2D system, which is impossible.
Notice this anomaly is just the SO(3) version of the anomaly of
eCmC under symmetry U(1) × T . In fact, when the symmetry
SO(3) × T is broken down to U(1) × T , the descendant state
of e 1

2m 1
2 is precisely eCmC, which has a U(1) theta angle to

be 2π . This also implies the SO(3) � = 2π for e 1
2m 1

2 .
As for e 1

2mT , tunneling an SO(3) monopole leaves a π -
flux seen by e and ε, so this process must trap an m. Because
SO(3) commutes with T , the SO(3) flux is invariant under
time reversal, and a Kramers doublet is generated by this local
process. This contradicts the assumption that there is no local
Kramers doublet particles. Again, this anomaly is the SO(3)
version of the anomaly of eCmT under symmetry U(1) × T ,
and the descendant state of e 1

2mT is just eCmT when the
symmetry SO(3) × T is broken down to U(1) × T .

APPENDIX G: CONSTRAINTS ON THE HALL
CONDUCTANCES DUE TO TIME-REVERSAL

AND SPIN ROTATIONAL SYMMETRIES

Suppose in addition to a U(1)c charge-conservation symme-
try, a two-dimensional gapped system also has time-reversal
symmetry and spin rotational symmetry. One can also consider
the spin quantum Hall conductance, σ s

xy , which relates the
spin current due to a gradient Zeeman field [79]. This can
be formally viewed as the response of the system to a probe
gauge field, As , which corresponds to the Sz rotation symmetry,
U(1)s . There can also be quantum spin Hall conductance, σ cs

xy ,
which relates the spin current and the electric field of the gauge
field Ac, the gauge field corresponding to symmetry U(1)c [80].
This appendix discusses the constraints on these Hall conduc-
tances due to time-reversal and spin rotational symmetries. The
results are useful in determining what polarization charge or
spin will be generated when flux is inserted in the system, or
equivalently, when a monopole tunnels through the system.

To this end, we first reorganize the charge conservation and
Sz rotation symmetries in terms of two other U(1) symmetries,
denoted by U(1)↑ and U(1)↓. These two U(1) symmetries can
be viewed as separate conservations of spin-up and spin-down
particles. The corresponding gauge fields and charges of these
two symmetries are related to Ac and As by

A↑ = Ac + As, A↓ = Ac − As,

Q↑ = Qc + Qs

2
, Q↓ = Qc − Qs

2
. (G1)

Notice under the charge quantization condition that Q1 and Q2

can independently take any integers, Qc and Qs have to either
be both even or both odd.

Now we can discuss the Hall conductances due to coupling
to A↑ and A↓. The general Hall response theory reads

L = 1

4π
(σ ↑

xyA↑dA↑ + σ ↓
xyA↓dA↓ + 2σ ↑↓

xy A↑dA↓), (G2)

where AdB is a shorthand for εμνλAμ∂νBλ. Using (G1), we
get

σ c
xy = σ ↑

xy + σ ↓
xy + 2σ ↑↓

xy ,

σ s
xy = σ ↑

xy + σ ↓
xy − 2σ ↑↓

xy , σ cs
xy = σ ↑

xy − σ ↓
xy. (G3)

Clearly, any element in the spin rotational symmetry that
takes spin up to spin down (such as rotation around x axis by
π ) requires σ

↑
xy = σ

↓
xy . Below we study the constraints from

time-reversal symmetry. Notice that the U(1)s charge is always
odd under time reversal, but the U(1)c charge can either be time
reversal even or odd, and we discuss these two cases separately.

We start from the case where the U(1)c charge is even under
time reversal, which means

A0
1,2 → A0

2,1,
�A↑,↓ → − �A↓,↑. (G4)

For the response theory to be time-reversal symmetric, we need

σ ↑
xy = −σ ↓

xy, σ ↑↓
xy = 0. (G5)

For the case where the U(1)c is odd under time reversal,
time-reversal transformation takes

A0
↑,↓ → −A0

↑,↓, �A↑,↓ → �A↑,↓. (G6)

For the response theory to be time-reversal symmetric, we need

σ ↑
xy = σ ↓

xy = σ ↑↓
xy = 0. (G7)

From these constraints and (G3) one can easily obtain the
constraints on σ c

xy , σ s
xy and σ cs

xy . We note all these constraints
can also be obtained simply by applying Laughlin’s flux
insertion argument.

We notice that all these Hall conductance vanishes if the
system has both time-reversal symmetry and spin rotational
symmetry that contains at least O(2) � U(1)s � Z2, where
U(1)s is a rotational symmetry around one axis and Z2 is the
π -rotation around another axis perpendicular to the previous
one. This implies that inserting flux or tunneling a monopole
through such two-dimensional systems will not lead to any
polarization charge or spin.

APPENDIX H: NONEDGEABILITY OF SOME Z2

TOPOLOGICAL ORDERS IN THE PRESENCE OF
NONTRIVIAL PARTICLES

In the Sec. V A, we claimed some Z2 topological orders are
not edgeable even in the presence of some nontrivial particles,
i.e., they do not allow for a physical edge separating it and the
trivial vacuum. In this appendix, we will justify this claim by
showing that these Z2 topological orders allow no K-matrix
theory to describe them.

1. Brief review of the K -matrix theory

We begin with a brief review of some general aspects of the
K-matrix theory. For more details, see Refs. [1,7,59,63]. The
Lagrangian of a K-matrix theory of a system that couples to
an external U(1) gauge field Ac is given by

L = KIJ

4π
aIdaJ − qI

c

2π
AcdaI (H1)

with K a symmetric invertible matrix with all entries integers
and qc a vector with all entries integers.
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An excitation of this theory can be represented by an integral
excitation vector l. The charge of this excitation under the
external gauge field Ac is

lT K−1qc, (H2)

and this excitation has self-statistics angle

πlT K−1l. (H3)

For two excitations represented by excitation vectors l1 and l2,
respectively, the mutual braiding angle between them is

2πlT1 K−1l2. (H4)

A simple example is that

K = ( 2
2

)
, (H5)

which represents Z2 topological order, where e can be taken to
be represented by excitation vector (1,0)T and m can be taken
to be represented by (0,1)T .

The 2+1-d bulk theory (H1) allows the following boundary
theory:

L = 1

4π
(KIJ ∂tφI ∂xφJ − VIJ ∂xφI ∂xφJ ), (H6)

where φI are bosonic fields such that eilI φI is the annihilation
operator of excitation l on the boundary. These bosonic fields
satisfy Kac-Moody algebra

[φI (x),∂yφJ (y)] = 2πi(K−1)IJ δ(x − y). (H7)

VIJ is called the velocity matrix that gives the velocities of
these bosonic fields.

The above summarizes the topological properties of the K-
matrix theory (H1). Below we review the symmetry actions on
this theory.

In general, symmetries act on the gauge fields aI as a matrix.
For example, we denote the time-reversal action as

aI → TIJ aJ (H8)

with T an integral matrix. Notice the above equation only
gives the transformation of the spatial components of the gauge
fields, and the temporal components should have a minus sign
in front due to the antiunitary nature of time-reversal symmetry.

It is important to notice the above does not fully specify the
symmetry action, and to that end, one needs to specify how the
boundary bosonic fields transform. In general, they transform
as

φI → TIJ φJ + tI (H9)

with tI a real vector [1].
To make the bulk theory (H1) invariant under antiunitary

time-reversal symmetry, we need

K → T T KT = −K. (H10)

If the U(1) charge is even under time reversal, we further
require

qc → T T qc = qc, (H11)

while if the U(1) charge is odd under time reversal, we require

qc → T T qc = −qc. (H12)

2. Nonedgeability of some Z2 topological orders in the
presence of nontrivial particles

Now, by showing that some Z2 topological orders even in
the presence of nontrivial particles do not allow a K-matrix
theory description, we show their nonedgeability because K-
matrix theories are supposed to capture all two-dimensional
Abelian states.

Here, we list the Z2 topological orders of interests. We
denote eT mT in the presence of bosons with quantum numbers
C2T 1

2 by (eT mT,bC2T 1
2 ), and eT mT in the presence

of fermions with quantum number C̃2 by (eT mT,f C̃2).
Besides these two, we will also consider (e 1

2mT,bC2T 1
2 ),

(eT 1
2mT,bC2 1

2 ), (eT mT,f C2T ), (eT mT,f C2 1
2 ),

(eT mT,f C̃2 1
2 ), (eT mT,f C2T 1

2 ), (e 1
2mT,f C2 1

2 ), and
(eT 1

2mT,f C2T 1
2 ), with similar notations as before.

We immediately have two main difficulties in showing their
nonedgeability. First, in some cases, the nontrivial particles
carry spin-1/2 and we need to incorporate SU(2) symmetry in
the K-matrix theory, but continuous non-Abelian symmetries
are usually not manifest in a K-matrix theory and dealing with
them directly is generally difficult. To resolve this difficulty,
we will instead just show that the descendants of the relevant
states are still not edgeable when the SU(2) symmetry is broken
down to U(1), which is sufficient to show the original states
are nonedgeable with the full SU(2) symmetry. To distinguish
this U(1) from the original charge U(1), we will denote the
charge U(1) by U(1)c, and this U(1) by U(1)s . Unit charge
under U(1)s will be denoted by C ′2. Therefore, for example,
we will consider (eT mT,f C2C ′2) instead of (eT mT,f C2 1

2 ).
Now (H1) needs to be modified to include the coupling to As ,
the external gauge field corresponding to U(1)s ,

L = KIJ

4π
aIdaJ − qI

c

2π
AcdaI − qI

s

2π
AsdaI . (H13)

Notice the charge of U(1)s is always odd under time reversal,
so time-reversal symmetry requires that

qs → T T qs = −qs. (H14)

The second difficulty is that in general the state that we are
interested in may be described by a K matrix with a large
dimension, but dealing with a large-dimensional K matrix
is daunting. However, the following observation suggests we
actually only need to consider a 2 × 2 K matrix.

Notice all these Z2 topological orders come from eT mT ,
e 1

2mT , and eT 1
2mT . For both cases, the nontrivial topological

quasiparticles only need a single component to describe them.
This is because whenever there are two components of them,
one can condense some bound states of them that are singlets
under all symmetries. This will not change the topological
order or the symmetry of the system, but only one component
will be left over [8]. More concretely, this means to describe
the putative Z2 topological orders that we are interested in, we
should always be able to write the K matrix as

K = 2σx ⊕ L, (H15)

where L is an invertible symmetric integral matrix that can
be large in dimension, and L describes only local excitations.
For bosons, L can be written as σx ⊕ σx ⊕ · · · ⊕ σx , while
for fermions, L can be written as σz ⊕ σz ⊕ σx ⊕ · · · . In this
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form, any excitation with an excitation vector of the form
(1,0, · · · )T can be identified as e, and all excitations with an
excitation vector of the form (0,1, · · · )T can be viewed as m,
where the “· · · ” can be nonzero. At this moment, the nontrivial
topological quasiparticle that we are after, for example, the
Kramers doublet e particle in eT mT , can still be represented
by (1,0, · · · )T with “· · · ” nonzero. But we can always bind
proper local excitations to this excitation so that the excitation
vector becomes (1,0,0,0, · · · )T with “· · · ” all zeros.

The argument above shows that, in order to show the
nonedgeability of those Z2 topological orders, it is sufficient
to show that no 2 × 2 K matrix can describe the topological
quasiparticles with the corresponding quantum numbers, up
to binding local excitations. Let us demonstrate this via the
following example. In (eT mT,bC2T C ′2), eT mT can be rela-
belled as, for example, eC2C ′2mT . The above statement means
that, in order to show that (eT mT,bC2T C ′2) is not edgeable,
it is sufficient to show that none of eT mT , eC2C ′2mT , and all
other states related to these by binding a local excitation made
up of bC2T C ′2 can be realized by a 2 × 2 K matrix.

Because time reversal should not convert a local excitation
into a nonlocal one, we expect that the matrix T can be written
in the following form:

T =
(

T0 T1

0 T2

)
, (H16)

where T0 is a 2 × 2 integral matrix. Plugging this form of K

and T into (H10), we see time-reversal symmetry requires that

T T
0 σxT0 = −σx. (H17)

It is easy to show the only solutions are T0 = ±σz or T0 = ±ε,
where ε = iσy .

Notice in all the cases we consider, the quantum numbers
of e and m are always nontrivial. If T0 = ±ε, then T 2

0 = −1.
This does not allow Kramers doublet structure, and it also does
not allow nonzero qc and qs that satisfy (H11) or (H12) and
(H14). So this choice of T0 can never work.

So we can focus on the case with T0 = ±σz. Without loss
of generality, we take T0 = −σz. Notice now e, represented
by the excitation vector (1,0)T , is always a Kramers singlet
independent of t . If the second entry of t is π/2, m, represented
by excitation vector (0,1)T , is a Kramers doublet.

With this choice of T0, in order to satisfy (H11) or (H12)
and (H14), qc and qs can only be taken as

qc = (0,q1)T qs = (q2,0)T (H18)

when the charge under Ac is even under time reversal, or

qc = (q1,0)T qs = (q2,0)T (H19)

when the charge under Ac is odd under time reversal. In the
first case, e carries charge q1/2 under Ac and zero charge under
As . In the second case, e carries zero charge under both Ac

and As .
eT mT is not edgeable in the presence of bC2T C ′2. The

above discussions immediately imply that eT mT is not edge-
able in the presence of bC2T C ′2. This is because e cannot
be a Kramers doublet, an odd number of bC2T C ′2s have to
be attached to it to cancel its Kramersness. Then e carries
nonzero charge under As , which is in contradiction with e

always carrying zero charge under As . So (eT mT,bC2T 1
2 )

is not edgable.
eC ′2mT is not edgeable in the presence of bC2T C ′2. Here,

e is not a Kramers doublet but it carries nonzero charge under
As . To cancel this charge, an odd number of bC2T C ′2s have
to be attached to e, which makes it a Kramers doublet. This is
again impossible as argued above. One can also try to switch
the label between e and m, then it becomes eT mC ′2. The
argument above implies this is inconsistent even in the presence
of bC2T C ′2. So (e 1

2mT,eC2T 1
2 ) is not edgeable.

eT C ′2mT is not edgeable in the presence of bC2C ′2. Here
no matter how many bC2C ′2’s are attached, the Z2 topological
order always has both e and m being Kramers doublet. This
cannot be realized. So (eT 1

2mT,bC2 1
2 ) is not edgeable.

eT mT is not edgeable in the presence of f C̃2 or f C̃2C ′2.
Here, e is a Kramers doublet, so an odd number of f C̃2s or
f C̃2C ′2 need to be attached to it, which makes it become
ε and the new e carry C̃2. This is in contradiction with e

carrying zero charge under Ac in this case. So (eT mT,f C2)
and (eT mT,f C2 1

2 ) are not edgeable.
eT mT and eT C ′2mT are not edgeable in the presence of

f C2T or f C2T C ′2. Here e and m are Kramers doublets,
and attaching any number of f C2T or f C2T C ′2 always
leaves both e and m Kramers doublets, so (eT mT,f C2T ),
(eT mT,f C2T 1

2 ) and (eT 1
2mT,f C2T 1

2 ) are not edgeable.
eT mT and eC ′2mT are not edgeable in the presence

of f C2C ′2. Here an odd number of f C2C ′2s need to be
attached to e, which converts it to ε and make the new e carry
nonzero charge under Ac and As . However, e cannot carry
nonzero charge under both Ac and As . So (eT mT,f C2 1

2 ) and
(e 1

2mT,f C2 1
2 ) are not edgeable.

In summary, none of the Z2 topological orders is edgeable in
the presence of the relevant nontrivial excitations. This implies
they are all still anomalous.

APPENDIX I: PROJECTIVE REPRESENTATIONS: THE
ELECTRIC (STANDARD), THE MAGNETIC (TWISTED),

AND THE DYONIC (MIXED) ONES

In this appendix, we discuss in detail various projective
representations of a symmetry group G: the electric (standard),
the magnetic (twisted) and the dyonic (mixed) ones. We always
assume this group G can contain time reversal, but besides, for
simplicity, all other elements form a connected unitary group.
That is, these elements are all unitary and they can all be
continuously connected to the identity element. We will see
although all these projective representations are classified by
some group cohomologies, but different cases are classified by
different group cohomologies.

1. Electric (standard) projective representations

We begin with the familiar case of standard projective
representations. Although our results will be identical to the
ones in textbooks, we will use a different formulation that is
more appropriate for our purposes and easier to generalize to
twisted projective representations.

Suppose there is a symmetry G, which can, in principle,
contain antiunitary element. If all elements of G only change
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an excitation by a local operation, then it is appropriate to
discuss the standard projective representations of G on this
excitation.

A prototypical example of this case is that the relevant
excitation is the electric charge E of a U(1) quantum spin
liquid. In general, the action of an element g ∈ G on E can be
written as

Ei → U (g)ijEj . (I1)

Here different components of Ei differ from each other by a
local operation and U(g) is a matrix representation of g.

Because E∗
i AijEj is a local operator for any matrix A, this

operator is supposed to transform in the linear representation
of G. For g1,g2 ∈ G, acting g1 followed by g2 on this operator
gives

E†(U (g1)s(g2)U (g2))† · As(g2g1)

·(U (g1)s(g2)U (g2))E, (I2)

where now E represents a column vector with components
Ei , and, for an arbitrary matrix M , Ms(g) = M if g is unitary,
while Ms(g) = M∗ if g is antiunitary. For the special case where
M is just a phase factor, s(g) = 1 (s(g) = −1) if g is unitary
(antiunitary).

The above result should be identical to the one obtained by
acting g2g1 on this local operator directly:

E† · U †(g2g1) · As(g2g1) · U (g2g1) · E. (I3)

For these two results to be identical for an arbitrary matrix A,
we must have

U (g1)s(g2)U (g2) = ω(g2,g1)U (g2g1), (I4)

where ω(g2,g1) is a phase factor.
The above equation can be written in the following equiv-

alent way:

U (g2g1) = ω(g2,g1)−1U (g1)s(g2)U (g2). (I5)

For any g1,g2,g3 ∈ G, applying this equation to U(g1g2g3)
yields

U (g1g2g3)

= ω(g1,g2g3)−1U (g2g3)s(g1)U (g1)

= ω(g1,g2g3)−1ω(g2,g3)−s(g1)U (g3)s(g1g2)U (g2)s(g1)U (g1)

= ω(g1g2,g3)−1U (g3)s(g1g2)U (g1g2)

= ω(g1g2,g3)−1ω(g1,g2)−1U (g3)s(g1g2)U (g2)s(g1)U (g1).

This implies the following associativity condition for the phase
factor ω’s:

ω(g1g2,g3)ω(g1,g2) = ω(g1,g2g3)ω(g2,g3)s(g1). (I6)

There is a gauge freedom for the phase factor ω’s. To see
this, notice the symmetry action of g ∈ G on E can be modified
by a gauge transformation:

Ei → λ(g)U (g)ijEj ≡ Ũ (g)ijEj , (I7)

where λ(g) is a U(1) phase factor. The action of g ∈ G on
any local operator will be the same, which means Ũ (g) is an
equally good representation of g. Under this transformation, it

is straightforward to check that

Ũ (g2)s(g1)Ũ (g1) = ω̃(g1,g2)Ũ (g1g2), (I8)

where

ω̃(g1,g2) = ω(g1,g2) · λ(g1)λ(g2)s(g1)

λ(g1g2)
. (I9)

The factor systems ω and ω̃ related in this way should be
regarded to be in the same class, because they give rise to
identical results in any local operator. It is straightforward to
check that the relation (I9) is an equivalence relation, that is, it
is reflexive, symmetric and transitive. Furthermore, it is clear if
ω1 and ω2 are the two classes of factor systems corresponding
to representations U1(g) and U2(g), respectively, ω1 · ω2

will be the factor system of the representation U1(g) · U2(g).
This defines a multiplication operation among the classes of
factor systems. With this multiplication, the classes of factor
systems form an Abelian group, where the trivial element
is the class of factor systems of a linear representation.
In fact, this Abelian group form a structure of group
cohomology H 2(G,UT (1)) [54]. In this group cohomology,
the n-cochains ωn(g1,g2, · · · ,gn) take value as a phase factor,
the 1-coboundary operation is defined as

d1ω1(g1,g2) = ω1(g1)ω1(g2)s(g1)

ω1(g1g2)
(I10)

and the 2-coboundary operation is defined as

d2ω2(g1,g2,g3) = ω2(g2,g3)s(g1)ω2(g1,g2g3)

ω2(g1g2,g3)ω2(g1,g2)
. (I11)

It is straightforward to check that d2d1 = 1. Also, the
solutions to the associativity condition (I6) are 2-cocycles,
and different solutions are identified up to a 1-coboundary.
Therefore the classes of factor systems, or the (standard)
projective representations, are indeed classified by this coho-
mology. Below we will see the twisted and mixed projective
representations are also classified by some group cohomolo-
gies, which are, however, different from this H 2(G,UT (1)).

2. Magnetic (twisted) projective representations

Next, we turn to twisted projective representations. A pro-
totypical example where it is appropriate to consider twisted
projective representations is, when the symmetry includes time
reversal, to consider the fractional quantum numbers on the
magnetic monopole, M .

Suppose g ∈ G is unitary, its action onM can be represented
as

Mi → U (g)ijMj . (I12)

Suppose g ∈ G is antiunitary, its action on M can be
represented as

Mi → U (g)ijM
∗
j . (I13)

Again, because M∗
i AijMj is a local operator for any matrix

A, it is supposed to transform in the linear representation of G.
Similar to the analysis in the previous case, this implies, for
g1,g2 ∈ G,

U (g1)s(g2)U (g2)s(g1) = ω(g2,g1)U (g2g1), (I14)

where ω(g2,g1) is a phase factor.
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Similar as standard projective representations, these phase
factors need to satisfy an associativity condition:

ω(g1g2,g3)ω(g1,g2)s(g3)

= ω(g1,g2g3)ω(g2,g3)s(g1). (I15)

Further, there is also a gauge freedom that leads to the following
equivalence relation

ω(g1,g2) ∼ ω̃(g1,g2)

= ω(g1,g2) · λ(g1)s(g2)λ(g2)s(g1)

λ(g1g2)
, (I16)

where λ’s are phase factors.
Just as in the case of the standard projective representa-

tions, the classes of factor systems of a twisted projective
representation also form an Abelian group, whose multipli-
cation, trivial element, and inverse element are defined in
parallel as in the case of the standard projective representation.
This group is also described by a cohomology, denoted by
H 2(G,UM

T (1)). This cohomology is different from the previous
one, H 2(G,UT (1)), in the coboundary operations. In this
cohomology, the n-cochains ωn(g1,g2, · · · ,gn) still take values
as phase factors, the 1-coboundary operation is defined as

d1ω1(g1,g2) = ω1(g1)s(g2)ω1(g2)s(g1)

ω1(g1g2)
(I17)

and the 2-coboundary operation is defined as

d2ω2(g1,g2,g3) = ω2(g1,g2g3)ω2(g2,g3)s(g1)

ω2(g1g2,g3)ω2(g1,g2)s(g3)
. (I18)

It is straightforward to check d2d1 = 1. Again, the solutions
of the associativity condition are 2-cocycles, and they are
identified up to a 1-coboundary. Therefore twisted projective
representations are classified by H 2(G,UM

T (1)).
Interestingly, for the cases with G = 1, G = Z2, and G =

U(1), H 2(G × T ,UM
T (1)) = H 2(G × Z2,U(1)), where the lat-

ter is the standard group cohomology with G × Z2 acting
trivially on the U(1) coefficient. It will be interesting to know
if this relation is always true.

3. Dyonic (mixed) projective representations

In the case of a G symmetric U(1) quantum spin liquid
at θ = π , the property of the phase is determined by the
( 1

2 ,1) and ( 1
2 , − 1) dyons. Denote these two dyons by D(+)

and D(−), respectively. The symmetry quantum numbers of
these two dyons are given by the dyonic (mixed) projective
representations.

Again, assume the only part of the symmetry that can change
the type of fractional excitations is time reversal, the action of
g ∈ G on D(+) and D(−) can be written as

D
(+)
i → U+(g)ijD

(+), D
(−)
i → U−(g)ijD

(−) (I19)

if g is unitary, and

D
(+)
i → U+(g)ijD

(−), D
(−)
i → U−(g)ijD

(+) (I20)

if g is antiunitary.

Now using that D
(+)∗
i AijD

(+)
j and D

(−)∗
i AijD

(−)
j are local

operators for any matrix A, we get

U
s(g2)
i (g1)Us(g1)·i(g2) = ωi(g2,g1)Ui(g2g1), (I21)

where i = ±, and ωi(g2,g1) is a phase factor.
In this case the associativity condition becomes

ωi(g1,g2g3)ωi(g2,g3)s(g1)

= ωi(g1g2,g3)ωs(g3)·i(g1,g2), (I22)

and the equivalence relation becomes

ωi(g1,g2) ∼ ω̃i(g1,g2)

= ωi(g1,g2) · λs(g2)·i(g1)λi(g2)s(g1)

λi(g1g2)
. (I23)

Similar as the twisted projective representations, the
mixed projective representations also form an Abelian
group and are also classified by a group cohomology,
denoted by H 2(G,UD(1) × UD(1)). Here, the n-cochains
ωi,n(g1,g2, · · · ,gn) take values as a phase factor (for i = ±
separately), the 1-coboundary operation is defined as

d1ωi,1(g1,g2) = ωs(g2)·i,1(g1)ωi,1(g2)s(g1)

ωi,1(g1g2)
(I24)

and the 2-coboundary operation is defined as

d2ωi,2(g1,g2,g3) = ωi,2(g1,g2g3)ωi,2(g2,g3)s(g1)

ωi,2(g1g2,g3)ωs(g3)·i,2(g1,g2)
. (I25)

It is straightforward to check d2d1 = 1. Clearly, the solutions
of the associativity condition are 2-cocycles, and different
solutions are identified up to a 1-coboundary. So the mixed
projective representations are classified by H 2(G,UD(1) ×
UD(1)).

APPENDIX J: EXAMINE THE ANOMALIES OF Z2 × T
SYMMETRIC U(1) QUANTUM SPIN LIQUIDS WITH θ = 0

In this appendix, we will give more details of the anomaly-
detection of the 72 different putative U(1) quantum spin liquids
with Z2 × T symmetry that have θ = 0. Among these states,
Z2 does not act as a charge conjugation for 24 of them and acts
as a charge conjugation for the other 48. These 72 states are
all listed in Sec. VII, and they are copied in Tables XIII, XIV,
XV, and XVI for convenience.

We will first show that the 15 states in Table XIII and
the 21 states in Table XV are anomaly-free, and give their
constructions. Then we will show that the nine states in
Table XIV and the 27 states in Table XVI are anomalous.

Among the 36 anomaly-free states mentioned above, 26 of
them have at least one of E and M being a trivial boson. These
states clearly do not suffer from any anomaly, and they can be
viewed as some gauged trivial insulators. The other ten states,

EbT Mf ,EbT ′Mf ,EbT T ′Mf ,Ef T T ′Mb−,

(Ef T MbT ′)−,(EbT Mf T ′)−,(Ef ZMbT ′Z)−,

(EbT ZMf Z)−,(Ef T ZMbZ)−,(EbZMf T ′Z)−, (J1)

can be viewed as gauged free-fermion SPTs, which will
be constructed below. To show that all other states are
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TABLE XIII. List of nonanomalous Z2 × T symmetric U(1)
quantum spin liquids that have θ = 0 and have Z2 not acting as a
charge conjugation. All these states are anomaly-free. T 2

E = 1 (T 2
E =

−1) represents the case where E is a Kramers singlet (doublet) under
T . T ′2

E = 1 (T ′2
E = −1) represents the case where E is a Kramers

singlet (doublet) under T ′. [T ,Z2]M = + ([T ,Z2]M = −) represents
the case where Z2 and T commute (anticommute) on M .

T 2
E T ′2

E [T ,Z2]M

EbMb 1 1 +
EbT Mb −1 1 +
EbT ′Mb 1 −1 +
EbT T ′Mb −1 −1 +
EbMb− 1 1 −
Ef Mb 1 1 +
Ef T Mb −1 1 +
Ef T ′Mb 1 −1 +
Ef T T ′Mb 1 −1 +
Ef T T ′Mb− −1 −1 −
EbMf 1 1 +
EbT Mf −1 1 +
EbT ′Mf 1 −1 +
EbT T ′Mf −1 −1 +
EbMf − 1 1 −

anomalous, as discussed in Sec. VII C, it is sufficient to show
that (EbT MbT ′)− and EbT T ′Mb− are anomalous.

The rest of this appendix is organized as follows. In
Appendix J 1, we will construct the relevant free-fermion SPTs,
which after gauging give rise to states in (J1). Then we will
show that (EbT MbT ′ )− is anomalous in Appendix J 2, and that
EbT T ′Mb− is anomalous in Appendix J 3.

1. Constructions of the relevant free-fermion SPTs

This section gives the construction of the free-fermion
SPTs corresponding to states in (J1). All these free-fermion
topological insulators have two Dirac cones on the surface,

TABLE XIV. List of anomalous Z2 × T symmetric U(1) quantum
spin liquids that have θ = 0 and have Z2 not acting as a charge
conjugation. All these states are anomaly-free. T 2

E = 1 (T 2
E = −1)

represents the case where E is a Kramers singlet (doublet) under
T . T ′2

E = 1 (T ′2
E = −1) represents the case where E is a Kramers

singlet (doublet) under T ′. [T ,Z2]M = + ([T ,Z2]M = −) represents
the case where Z2 and T commute (anticommute) on M . The last
column indicates the anomaly classes.

T 2
E T ′2

E [T ,Z2]M anomaly class

EbT ′Mf − 1 −1 − class a
Ef T Mb− −1 1 − class a
EbT ′Mb− 1 −1 − class a
Ef T ′Mb− 1 −1 − class b
EbT Mf − −1 1 − class b
EbT Mb− −1 1 − class b
EbT T ′Mf − −1 −1 − class c
EbT T ′Mb− −1 −1 − class c
Ef Mb− 1 1 − class c

TABLE XV. List of anomaly-free Z2 × T symmetric U(1) quan-
tum spin liquids that have θ = 0 and have Z2 acting as a charge
conjugation. T 2

E = 1 (T 2
E = −1) represents the case where E is a

Kramers singlet (doublet) under T . T ′2
M = 1 (T ′2

M = −1) represents
the case where M is a Kramers singlet (doublet) under T ′. Z2

E,M

represents the result of acting the charge conjugation twice on E and
M , respectively.

T 2
E Z2

E T ′2
M Z2

M

(EbMb)− 1 1 1 1
(EbZMb)− 1 −1 1 1
(EbT Mb)− −1 1 1 1
(EbT ZMb)− −1 −1 1 1
(EbMbZ)− 1 1 1 −1
(EbMbT ′ )− 1 1 −1 1
(EbMbT ′Z)− 1 1 −1 −1
(Ef Mb)− 1 1 1 1
(Ef ZMb)− 1 −1 1 1
(Ef T Mb)− −1 1 1 1
(Ef T ZMb)− −1 −1 1 1
(EbMf )− 1 1 1 1
(EbMf Z)− 1 1 1 −1
(EbMf T ′ )− 1 1 −1 1
(EbMf T ′Z)− 1 1 −1 −1
(Ef T MbT ′ )− −1 1 −1 1
(EbT Mf T ′ )− −1 1 −1 1
(Ef ZMbT ′Z)− 1 −1 −1 −1
(EbT ZMf Z)− −1 −1 1 −1
(Ef T ZMbZ)− −1 −1 1 −1
(EbZMf T ′Z)− 1 −1 −1 −1

and the surface Hamiltonian can be written as

H =
2∑

i=1

ψ
†
i (−i∂xσx − i∂yσz)ψi. (J2)

The differences among these states are in the symmetry
assignments. Denote ψ = (ψ1,ψ2)T , in all cases there is a
U(1) symmetry under which ψ → eiθψ . We will also assign
time-reversal and Z2 symmetries to these states, such that
there is no symmetry-allowed fermion bilinear term that can
open a gap on the surface. Then we will show the bosonic
monopoles of these topological insulators have the desired
nontrivial properties, using the method in Ref. [78] (reviewed
in Appendix D).

Let us start with the case where Z2 does not act as a charge
conjugation, and give the construction of free-fermion SPTs
corresponding to EbT Mf and Ef T T ′Mb−. For the correspond-
ing SPT of EbT Mf , let the symmetries be assigned as

T : ψ → σyψ
†, Z2 : ψ → τyψ, T ′ : ψ → σyτyψ

†.

(J3)

Clearly, the actions of T and Z2 commute on the fermion,
so after gauging the fermion will become the Mf . Now we
check the symmetry quantum number of the E, which is the
monopole of ψ . Using state-operator correspondence, this is
equivalent to checking the properties of the two zero-energy
state in the presence of a 2π flux background with one of the
two zero modes being occupied. Denote these zero modes by
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TABLE XVI. List of anomalous Z2 × T symmetric U(1) quan-
tum spin liquids that have θ = 0 and have Z2 acting as a charge
conjugation at θ = π . T 2

E = 1 (T 2
E = −1) represents the case where E

is a Kramers singlet (doublet) underT . T ′2
M = 1 (T ′2

M = −1) represents
the case where M is a Kramers singlet (doublet) under T ′. Z2

E,M

represents the result of acting the charge conjugation twice on E and
M , respectively. The last column lists the anomaly classes.

T 2
E Z2

E T ′2
M Z2

M anomaly class

(EbZMbZ)− 1 −1 1 −1 class 1
(EbT ZMbT ′Z)− −1 −1 −1 −1 class 1
(Ef T MbZ)− −1 1 1 −1 class 1
(EbZMf T ′ )− 1 −1 −1 1 class 1
(Ef T MbT ′Z)− −1 1 −1 −1 class 1
(EbT ZMf T ′ )− −1 −1 −1 1 class 1
(EbT ZMbZ)− −1 −1 1 −1 class 2
(Ef MbZ)− 1 1 1 −1 class 2
(EbT ZMf )− −1 −1 1 1 class 2
(EbZMbT ′Z)− 1 −1 −1 −1 class 3
(EbZMf )− 1 −1 1 1 class 3
(Ef MbT ′Z)− 1 1 −1 −1 class 3
(EbZMbT ′ )− 1 −1 −1 1 class 4
(Ef T ZMbT ′ )− −1 −1 −1 1 class 4
(Ef T ZMbT ′Z)− −1 −1 −1 −1 class 4
(EbT MbT ′Z)− −1 1 −1 −1 class 4
(EbT Mf Z)− −1 1 1 −1 class 4
(EbZMf Z)− 1 −1 1 −1 class 4
(EbT MbZ)− −1 1 1 −1 class 5
(EbT Mf T ′Z)− −1 1 −1 −1 class 5
(EbT ZMf T ′Z)− −1 −1 −1 −1 class 5
(EbT ZMbT ′ )− −1 −1 −1 1 class 5
(Ef ZMbT ′ )− 1 −1 −1 1 class 5
(Ef ZMbZ)− 1 −1 1 −1 class 5
(EbT MbT ′ )− −1 1 −1 1 class 6
(EbT Mf )− −1 1 1 1 class 6
(Ef MbT ′ )− 1 1 −1 1 class 6

f1 and f2, which are related to ψ1 and ψ2, respectively. And
denote the state with a 2π flux background and none of the zero
modes being occupied by |0〉. Because T will flip the charge
but keep the flux, under T ,

f
†
1 |0〉 → f1f

†
1 f

†
2 |0〉 = f

†
2 |0〉,

f
†
2 |0〉 → f2f

†
1 f

†
2 |0〉 = −f

†
1 |0〉. (J4)

Notice the above transformations can be modified by an
unimportant phase factor. This means E will be a Kramers
doublet underT . In fact, here the particle-hole-likeT is enough
to protect the Dirac cones, and it is shown this is sufficient to
show that E is a Kramers doublet under T [77]. Under T ′,

f
†
1 |0〉 → f2f

†
1 f

†
2 |0〉 = −f

†
1 |0〉,

f
†
2 |0〉 → −f1f

†
1 f

†
2 |0〉 = −f

†
2 |0〉. (J5)

This means E will be a Kramers singlet under T ′. This is
consistent with that T ′ is not enough to protect the Dirac cones.
Therefore after gauging this state indeed becomes EbT Mf .

From this, EbT ′Mf can be constructed similarly, and
EbT T ′Mf can be obtained by combining EbT Mf and EbT ′Mf .

To obtain Ef T T ′Mb−, let the symmetries be assigned as

T : ψ → σyψ, Z2 : ψ → τxψ. (J6)

One can show that this state becomes Ef T T ′Mb− after gauging
by using state-operator correspondence, but an alternative
point of view can be obtained by considering this state as
a descendant of the corresponding SPT of the SO(3) × T
symmetric Ef 1

2
Mb 1

2
, which has been described in details in

Appendix D. To see it, denote the three generators of SO(3)
by Sx , Sy and Sz, and denote the generator of T by t . Now
break the SO(3) × T to Z2 × T̃ , where the Z2 is generated
by exp (iSxπ ), and T̃ is generated by exp (iSyπ ) · t . It is
straightforward to check that the descendant state is Ef T̃ T̃ ′Mb−

Now we turn to states with Z2 acting as a charge con-
jugation. Let us start with the example corresponding to
(Ef T ZMbZ)−. This state is actually the gauged version of
the free-fermion topological insulator in class CII, which has
been discussed in Ref. [81] (but using a different notation as
here). The time-reversal and charge-conjugation symmetries
are assigned as

T : ψ → σyψ, Z2 : ψ → τyψ
†. (J7)

Now let us first examine the T ′ action on the two states
corresponding to monopoles, whose action on ψ is

T ′ : ψ → σyτyψ
†. (J8)

This is the same T ′ action as in the corresponding SPT of
EbT Mf , so f

†
1 |0〉 and f

†
2 |0〉 correspond to Kramers singlets

under T ′.
Next, let us examine the Z2 action on f

†
1 |0〉 and f

†
2 |0〉.

Notice the 2π flux background is converted into a −2π

flux background, which also has two zero modes. Using the
method in Ref. [81], we argue that for such systems with
two symmetry-protected Dirac cones, the value of charge-
conjugation squared on the neutral monopole is the same as
the value of charge-conjugation squared on the Dirac fermions.
The simplest way to see this is to notice that these states have
θ = 2π . For the state corresponding to a trivial insulator, which
has θ = 0, the monopole has trivial quantum number, that is,
the value of charge-conjugation squared is 1. Then one can
tune θ by 2π to get a state corresponding to the topological
insulator. In intermediate process of tuning θ , the time-reversal
symmetry is generically broken. But the existence of such
nontrivial topological insulator implies at the end the system
will have time-reversal symmetry when θ becomes 2π . On the
other hand, this process will not break the charge-conjugation
symmetry. Then according to the Witten effect, [82] the
original (1,1) dyon now becomes the (0,1) monopole, and this
new monopole has the value of charge-conjugation squared to
be −1.

Reference [81] obtained this result by considering tuning
θ of the U(1) gauge theory. It can actually also be obtained
directly by using state-operator correspondence. Recall it
has been shown in Appendix D that M

†
1 ∼ f

†
2 |0̃〉 and M

†
2 ∼

−f
†
1 |0̃〉, where |0̃〉 is the state with −2π flux background and

neither zero mode being occupied. Under charge conjugation,
both charge and flux will be occupied. So under a convention
of phase factors we can choose |0〉 → f

†
1 f

†
2 |0̃〉 under charge
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conjugation, then the monopole operators transform as

M1 ∼ f
†
1 |0〉 → f̃2f̃

†
1 f̃

†
2 |0̃〉 = −f̃

†
1 |0̃〉 ∼ M

†
2,

M2 ∼ f
†
2 |0〉 → −f̃1f̃

†
1 f̃

†
2 |0̃〉 = −f̃

†
2 |0̃〉 ∼ −M

†
1 . (J9)

Again, unimportant U(1) phase factors have been suppressed.
The above transformation shows that the value of charge-
conjugation squared is indeed −1 on the monopoles. Therefore
after gauging this state becomes (Ef T ZMbZ)−.

Next, we turn to the free-fermion SPT corresponding to
(Ef T MbT ′)−, where the assignments of the time-reversal and
charge-conjugation symmetries are

T : ψ → σyψ, Z2 : ψ → ψ†. (J10)

Now we check the whether these monopoles are Kramers
doublets under T ′, whose action on ψ is

T ′ : ψ → σyψ
†. (J11)

This is the same as the T action in the SPT corresponding
to EbT Mf , so here the monopole must be a Kramers doublet
under T ′.

As for the value of charge-conjugation squared on the
monopole,

f
†
1 |0〉 → f1f̃

†
1 f̃

†
2 |0̃〉 ∼ f̃

†
2 |0̃〉 ∼ M

†
1,

f
†
2 |0〉 → f2f̃

†
1 f̃

†
2 |0̃〉 ∼ −f̃

†
1 |0̃〉 ∼ M

†
2, (J12)

so the value of charge-conjugation squared is 1 for the
monopoles. Therefore after gauging this state becomes
(Ef T MbT ′)−.

Finally, for the free-fermion SPT corresponding to
(Ef ZMbT ′Z)−, the assignments of the time-reversal and
charge-conjugation symmetries are

T : ψ → σyτyψ, Z2 : ψ → τyψ
†. (J13)

This state has the same Z2 action as the one giving rise to
(Ef T ZMbZ)−, and the same T ′ action as the one giving rise to
(Ef T MbT ′)−. In light of the previous discussion, the monopole
should have charge-conjugation squared to be −1 and be a
Kramers doublet under T ′. Therefore after gauging this state
becomes (Ef ZMbT ′Z)−.

By now the constructions of free-fermion SPTs correspond-
ing to states in (J1) are given. Before we finish this subsection,
we make some remarks on free-fermion topological insulators
with time-reversal and a unitary Z2 symmetry, which may or
may not act as a charge conjugation. In all these free-fermion
topological insulators, the surface will always have an even
number of Dirac cones in order to have θ = 0. If it has 4
Dirac cones on the surface, the corresponding U(1) quantum
spin liquid in general has a trivial monopole. In order to get
a U(1) quantum spin liquid with nontrivial monopole, the
corresponding free-fermion SPT should have only 2 surface
Dirac cones. We have actually exhausted all possible free-
fermion topological insulators with two surface Dirac cones,
and they only give the 10 U(1) quantum spin liquids in (J1) that
have nontrivial monopole. On the other hand, if a nontrivial
fermionic topological insulator is equivalent to a bosonic SPT,
the monopole must also be trivial [49,77]. Thus, if a state with
fermionic charge and nontrivial monopole is anomaly-free and
distinct from the above three (such as (Ef MbT ′)−), it implies

the existence of an intrinsically interacting fermionic SPT,
which is a nontrivial fermionic SPT that cannot be realized by
free-fermions and is not equivalent to a bosonic SPT [83,84].
These SPTs are very interesting, but in the discussion below we
will argue that no other spin liquid state with fermionic charge
and nontrivial monopole is anomaly-free, which means no
such intrinsically interacting fermionic SPT can be found with
U(1), time-reversal and Z2 symmetries (even if the fermions
are allowed to transform projectively under these symmetries).

2. Anomaly of (EbT MbT ′ )−

In this section, by using the same logic as before, we will
examine the anomaly of (EbT MbT ′)−. That is, we will consider
the corresponding SPT from the perspective of MbT ′ , and check
whether it is possible to have a consistent surface topological
order. However, unlike in the case of (EbZMbZ)−, where we
can reach the conclusion by quite general arguments, here we
need to examine some rather detailed properties of the surface
states.

Again, we will first condense the bound state of two MbT ′ on
the surface, which reduces the surface symmetry to T ′ × Z2.
We would like to point out that there are two possibilities for
the surface at this point: the surface can either be a simple
superfluid, or the surface superfluid has to coexist with another
anomalous topological order. The latter happens if the bulk is
still a nontrivial SPT even if the bulk symmetry is broken down
to T ′ × Z2, in which case there must be another anomalous
surface topological order of an SPT with T ′ × Z2 symmetry,
if this symmetry is to be preserved.

For the case of a simple superfluid surface, we can show
there is inconsistency of the surface topological order. As for
the more complicated case where the surface superfluid has to
coexist with another anomalous topological order, we need the
properties of the surfaces of 3D bosonic SPTs with T ′ × Z2

symmetry, which, to the best of our knowledge, are lacking
in the literature. So we will first discuss the classification
of such SPTs, and then show that there will still be some
inconsistency even for the more complicated case. This leads us
to concluding that there is no such corresponding SPTs that can
become (EbT MbT ′)− after gauging, which means (EbT MbT ′)−
is anomalous.

Before the detailed discussion on this problem, let us first
collect a few useful tools that will be applied repeatedly below.

(1) In a topological order, a particle always has the same
topological spin as its antiparticle. That is, denote a−1 as the
antiparticle of a, then

θa = θa−1 . (J14)

(2) Suppose a and b are two anyons in a topological order.
Suppose c is a possible fusion product of a and b, that is,
a × b = Nc

abc + · · · with Nc
ab the fusion multiplicity. Then

(Rab
c )2 = θc

θaθb
, where (Rab

c )2 is the mutual braiding between a

and b when their fusion product is fixed to be c, and θa is the
topological spin of a. In the case of Abelian topological order,
the mutual braiding between a and b can be simply denoted as
θa,b, and the above formula becomes

θa,b = θc

θaθb

. (J15)
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(3) Braiding and fusion commute in a topological order. For
example, in an Abelian topological order,

θab,c = θa,cθb,c. (J16)

(4) If the time-reversal partner of an anyon a is b, and c = a × b

is the bound state of a and b, then the Kramers parity of c is
determined by

T 2
c = θc. (J17)

a. Simple superfluid

We start our discussion with the case of a simple superfluid
surface. This superfluid has vortices with vorticity quantized in
units of π , and the minimal trivial vortex is the 4π vortex. We
will condense these 4π vortices to restore the full symmetry
of the surface and get a symmetric gapped surface topological
order, where the U(1) charge is quantized in units of 1/2. The
π vortices and the 2π vortices will remain gapped, and we will
denote the π vortex by v and the 2π vortex by EbT .

The vortex condensation above will in general generate a
charge-1/2 boson, which we denote by X. Physically, X is the
2π vortex of the 4π vortices. This X should be an Abelian
boson. To see this, let us go to the energy scale below which
we can consider only the 4π vortices that are to be condensed.
Limiting ourselves below this energy scale should not change
the topological data of X. Although the π and 2π vortices are
nontrivial, below this energy scale they do not play any role.
Then because the 4π vortices are trivial bosons, X, the 2π

vortex of the 4π vortices, is expected to be a simple Abelian
boson.

The bound state of two X’s can be combined with MbT ′

to generate a charge-neutral bosonic excitation, which will be
denoted by N . The bound state of two N ’s have trivial braiding
with all other excitations, so this should be viewed as a local
excitation. Therefore the particle contents of the surface theory
can be written as

{1,X,N,X−1,v,EbT ,v−1} × {1,MbT ′ }. (J18)

The various bound states of these excitations are understood
to be implicitly displaced. Also, X−1 represents the excitation
that can fuse with X into the trivial vacuum, 1, which does
not carry any quantum number, and it should be distinguished
from XM

†
bT ′ .

Below we will determine the braiding, fusion and symmetry
assignments of these excitations. Without loss of generality, we
will always take v to be neutral, because its charge can always
be canceled by binding it with certain amount of X and MbT ′ .

We start with braiding. For self-braiding, the only uncertain
part is about v: it can either be Abelian or non-Abelian. Now
we turn to mutual braiding. The mutual braiding within the
charge sector (built up with X and N ) is always trivial. For the
vortex sector (built up with v and EbT ), the braiding between
v and EbT is trivial because v is neutral and EbT is the remnant
of the 2π vortex, and the braiding between v and v−1 is to be
determined.

The mutual braiding between the charge sector and the
vortex sector can be determined in the following way. Because
condensing X will make the surface back into the simple
superfluid, we can view X as something that is condensed in
the superfluid phase. From the Meissner effect, we know the

vortices come with certain fluxes in the superfluid phase, and
this combined object of vortices and fluxes should be local with
respect to the X condensate. Therefore the mutual braiding
between the vortices themselves with the X condensate is the
conjugate of the charge-flux Aharonov-Bohm phase. This tells
us

θX,v = −i, θX,EbT
= θN,v = −1, θN,EbT

= 1. (J19)

Notice the third relation comes from the identification N =
X2M

†
bZ and that X2 is condensed in the superfluid (N is not

condensed in the superfluid, so we cannot say θv,N = 1 because
N is neutral). The mutual braiding listed here will be used
repeatedly below.

Now we turn to fusion. Most fusion rules can be determined
by the charge and vorticity assignment:

X × X = NMbZ, N × N = 1, EbT × EbT = 1. (J20)

However, there is some flexibility for v. For example,
even if the v is Abelian, we can have either v × v = EbT

or v × v = EbT × N . Of course, when v is non-Abelian,
we must have v × v = EbT + EbT N (with potential fusion
multiplicities suppressed). Because N is a boson that is local
with respect to EbT , N must have trivial braiding with v in
this non-Abelian case, otherwise v and its antiparticle would
have opposite topological spins, which violates (J14) and is
thus disallowed. However, θv,N = −1. This implies v cannot
be non-Abelian. 10 Furthermore, for the same reason, the fusion
rule for v has to be

v × v = EbT . (J21)

Finally, we discuss the symmetry assignment. The U(1)
charges of these excitations are clear: X carries half charge,
MbT ′ carries unit charge, and other excitations are neutral. The
assignment of the T and Z2 symmetries is constrained by some
general rules. First, T should conjugate the topological spins
of the excitations, and Z2 should keep their topological spins.
Second, the behavior of charge and vorticity under various
symmetries is fixed. For example, because the charge flips and
the vorticity does not change under T , T will take v to either
v or vN . Because of the fusion rule, v × v = EbT , v cannot
become v under time reversal. That is, v should go to vN .

Putting all these constraints together, there is actually not
too much freedom for this topological order. One choice is the
Z4 gauge theory listed in Table XVII,11 and the only thing that
one can modify on top of this state is to change the values of
Z2

2 for X and v, and the value of T ′2 for X. Notice in all these
cases, N is a Kramers doublet under T ′.

The above theory is actually inconsistent. To see this, notice
that since the T partner of v is vN and θv,N = −1, v must be a
semion or antisemion, so that T can conjugate the topological
spin of v. This means the bound state of v and its T ′ partner,
v−1N , is a boson, so this bound state should be a Kramers
singlet under T ′ according to (J17). However, as discussed

10In contrast, if the local particle is a fermion, v can still be non-
Abelian.

11To fit into the usual notation of a Z4 gauge theory, one can take
the Z4 charge to be X, and take the Z4 flux to be Xv.
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TABLE XVII. Symmetry assignments of the surface topological
order from the simple superfluid surface of the corresponding SPT of
(EbT MbT ′ )−. The first row lists all nontrivial excitations, from which
the symmetry assignments on all their bound states can be inferred.
The second row lists the charges of these excitations under U(1).
The third row lists the time-reversal partners of these excitations. The
fourth row lists the values of T 2 of these excitations, with empty
entries representing that T 2 is not well-defined. The fifth row lists
the Z2 partners of these excitations. The sixth row lists the values of
Z2

2 of these excitations. The seventh row lists the T ′ partners of these
excitations. And the last row lists the values of T ′2 of these excitations.

X N v EbT

U(1) 1
2 0 0 0

T X−1 N vN EbT

T 2 −1 −1
Z2 X−1 N v−1 EbT

Z2
2 ±1 1 ±1 1

T ′ X N v−1N EbT

T ′2 ±1 −1 ±1

above, this bound state is v × v−1N = N = X2M
†
bT ′ , which is

a Kramers doublet under T ′. This contradiction shows that the
simple superfluid surface is inconsistent.

b. Superfluid coexisting with another anomalous topological order

Now we turn to the case where the surface superfluid has to
exist with another anomalous topological order. As discussed
earlier, this happens if the bulk remains to be a nontrivial
SPT when the bulk symmetry is also reduced to T ′ × Z2. We
will call such SPTs the reduced bulk SPTs. To complete the
discussion, we need the properties of 3D bosonic SPTs with
this symmetry, which will be discussed below.

3D bosonic SPTs with T ′ × Z2 symmetry. Notice there
exists local Kramers doublet under T ′, so more precisely, the
symmetry group of the surface superfluid should be denoted
by ZT ′

4 × Z2. From group cohomology, the classification of
such SPTs is Z3

2, and there should still be another SPT whose
surface is ef mf , and this SPT is beyond group cohomology.
So we propose that the complete classifications of such SPTs
is Z4

2. This proposal is further supported by the classification
of 3D bosonic SPTs with ZP

4 × Z2 symmetry, where ZP
4 is

a reflection symmetry that results in a trivial action when
acted four times. SPTs with Z2 × ZT

4 are believed to have the
same classification of SPTs with Z2 × ZP

4 , where the latter are
classified by Z4

2 [69].
What are the surface topological orders of the other three

root states? We show that they can all be Z2 topological orders,
and they are denoted by (eT ′

i mT ′
i )T ′ , eZmZ, and eT ′

i mZ.
Below we explain the properties of these states.

The first state, (eT ′
i mT ′

i )T ′ , is protected by T ′ alone, and in
this state e and m are exchanged under T ′. Furthermore, T ′
acting on e or m four times gives −1 (the meaning of T ′

i ). The
action of Z2 is trivial on both e and m. In fact, this state is
the descendant of (eCmC)T ′ε when e4 is condensed without
breaking time reversal, and (eCmC)T ′ε is a surface state of the
bosonic topological insulator made of Kramers bosons.

TABLE XVIII. Symmetry assignments of the surface topological
order of the corresponding SPT of (Ef T MbT ′ )−. The first row lists all
nontrivial excitations, from which the symmetry assignments on all
their bound states can be inferred. The second row lists the charges
of these excitations under U(1). The third row lists the time-reversal
partners of these excitations. The fourth row lists the values of T 2

of these excitations, with empty entries representing that T 2 is not
well-defined. The fifth row lists the Z2 partners of these excitations.
The sixth row lists the values of Z2

2 of these excitations. The seventh
row lists the T ′ partners of these excitations, and the last row lists the
values of T ′2 of these excitations, with ±i standing for that T ′4 = −1
on the excitation.

e m ε ≡ em†

U(1) 1
2

1
2 0

T m† e† ε

T 2 −1
Z2 e† m† ε

Z2
2 1 1 1

T ′ m e ε

T ′2 ±i ±i 1

To justify that this is a legitimate surface state of an SPT
protected by T ′, we need to show this descendant state is still
a nontrivial SPT. That is, the bosonic topological insulator
made of Kramers bosons is still a nontrivial SPT when double
charge is condensed without breaking time reversal. This can
be seen by checking the time-reversal domain wall of this state.
Consider breaking T ′ in two opposite ways in the two sides of
a 2D domain wall, while keeping a unitary Z2 symmetry intact
through the entire system (this unitary Z2 is just the symmetry
generated by acting the generator of T ′ twice). Notice before
the double charges are condensed, the time-reversal domain
wall of this bosonic topological insulator is the elementary
bosonic integer quantum Hall state [60] because it has σxy =
2e2/h [47]. When the double charge is condensed, this bosonic
integer quantum Hall state becomes the Levin-Gu state [85,86].
That is to say, the time-reversal domain wall of this descendant
state is a Levin-Gu state. But this cannot happen unless the
original T ′ symmetric system is a nontrivial SPT.12

The above discussion establishes that there is a 3D bosonic
SPT protected by T ′, and its surface can be (eT ′

i mT ′
i )T ′ . For

our purposes, it will be useful to think about what state this
SPT becomes if the symmetry is enhanced to the full ((U(1) �

Z2) × T )/Z2 = (O(2) × T )/Z2 symmetry of MbT ′ , which
can be obtained by considering what the surface topological
order becomes when the symmetry is enhanced. Because the
π rotation of the U(1) is locked with acting T ′ twice, e and
m should carry half charge under U(1). The entire symmetry
assignment of this surface state is shown in Table XVIII.

It is straightforward to check that this state can be the surface
topological order of the corresponding SPT of (Ef T MbT ′)−
(viewed from the perspective of MbT ′). This observation

12More precisely, this is because the Levin-Gu state is the root state
of 2D Z2 SPTs, which means there is no 2D Z2 symmetric short-range
entangled bosonic state that becomes the Levin-Gu state when it is
stacked with its time-reversal partner.
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implies that if the reduced bulk SPT is (eT ′
i mT ′

i )T ′ , we can
reduce the surface state into a simple superfluid by coupling
the original SPT to the corresponding SPT of (Ef T MbT ′)−.
Because coupling (EbT MbT ′ )− and (Ef T MbT ′)− should result
in (Ef MbT ′)−, if we can show in the scenario of a simple su-
perfluid surface, no SPT made of MbT ′ can become (Ef MbT ′)−
after gauging, it is sufficient to show no SPT with (eT ′

i mT ′
i )T ′

reduced bulk SPT can become (EbT MbT ′)− after gauging.
Next, we turn to explaining the properties of eZmZ. In

this surface Z2 topological order, the Z2 symmetry acting on
e or m twice gives a −1 phase factor, and T ′ acts trivially
on e and m. Again, we need to show that the bulk with this
surface topological order is a nontrivial SPT with T ′ × Z2

symmetry, or equivalently, that eZmZ is anomalous with T ′ ×
Z2 symmetry.

The way to understand the anomaly of eZmZ is to relate it
to eCmC, the surface state of a nontrivial SPT with T ′ × U(1)
symmetry. Notice this symmetry is not (U(1) � T )/Z2, the
symmetry of charged Kramers bosons. In particular, the π

rotation of the U(1) here is not locked with acting time reversal
twice, as in the latter symmetry. There is a bosonic topological
insulator at θ = 2π with T ′ × U(1) symmetry, and this is
independent of the presence of local bosons that are Kramers
doublets under T ′. The surface state of this bosonic topological
insulator is eCmC, which means a Z2 topological order with
both e and m carrying half charge under U(1), and T ′ acts
trivially on e and m. Again, the time-reversal domain wall of
this bosonic topological insulator will have the character of an
elementary bosonic integer quantum Hall state. Breaking the
U(1) symmetry down to Z2 results in the eZmZ state, and as
before, the time-reversal domain wall of this descendant 3D
state will be a Levin-Gu state, which is disallowed unless the
3D bulk is a nontrivial SPT. This shows that eZmZ is still
anomalous with T ′ × Z2 symmetry, and we also see T ′ plays
a role in protecting this state, even though it appears to act on
e and m trivially.13

Again, it will be useful for us to understand what this
state becomes when the symmetry is enhanced to the full
(O(2) × T )/Z2 symmetry of MbT ′ . Because only the Z2 acts
nontrivially in this state, when the symmetry is enhanced,
U(1) and T ′ should still act trivially. This means there is a
corresponding SPT of (EbMbT ′)− that becomes eZmZ when
the symmetry is broken down to T ′ × Z2. Therefore, when
the reduced bulk SPT is eZmZ, we can always cancel the
anomaly of eZmZ by coupling the original putative SPT to
this corresponding SPT of (EbMbT ′)−.

Lastly, we turn to discuss eT ′
i mZ, which is a Z2 topological

order with e having T ′4 = −1 and m having Z2 squaring to −1.
As argued in Appendix A, in order for e to have T ′4 = −1, T ′
should attach MbT ′ , a local Kramers doublet under T ′, to e.
This surface state is anomalous because when two Z2 fluxes are
inserted in the system, both m and ε will see a nontrivial phase
factor when moving around it. But this is a local process, so this
−1 phase factor must be compensated by something nucleated

13We point out that in order to establish that eZmZ is anomalous,
it is actually important that T ′ acts trivially on both e and m, so that
this eZmZ state can be viewed as the descendant of eCmC after the
U(1) is broken down to Z2.

in the Z2 flux when it is inserted, and this nucleated object
must be e. That is to say, a local process produces an object
with T 4 = −1, which is absent in the system by assumption.
Therefore this state is anomalous.

What does eT ′
i mZ become when the symmetry is enhanced

to the full (O(2) × T )/Z2 symmetry? It turns out the symmetry
cannot be enhanced to the full (O(2) × T )/Z2 symmetry. In
other words, there is no bosonic SPT with (O(2) × T )/Z2

symmetry whose descendant can be eT ′
i mZ. However, we still

know that, because the π rotation of the U(1) is locked with
acting T ′ twice, when the 4π vortices are condensed and the
full symmetry is recovered on the surface, e should carry half
charge of U(1), andm carries integer charge but hasZ2 squaring
to −1.

For completeness, we also mention that if the reduced bulk
SPT is ef mf , when the full symmetry is recovered, none of
e and m get nontrivial action under the symmetry, and its
anomaly can be canceled by just coupling it with another ef mf

state with the full symmetry, which after gauging becomes
(EbMbT ′ )−.

The above discussion implies that, in the scenario where
the surface superfluid has to coexist with another anomalous
topological order, in order to show there is no SPT made
of MbT ′ that can become (EbT MbT ′)− after gauging, it is
sufficient to show the following. (1) In the scenario of a simple
superfluid surface, there is no SPT made of MbT ′ that can
become (Ef MbT ′)−. (2) In the scenario of eT ′

i mZ reduced
bulk SPT, there is no SPT made of MbT ′ that can become
(EbT MbT ′)−. (3) In the scenario of eT ′

i mZ reduced bulk SPT,
there is no SPT made of MbT ′ that can become (Ef MbT ′)−.
Below we will show these three statements in turn.

Simple superfluid surface for (Ef MbT ′)−. We start from the
first statement. The similar argument as before implies that the
surface topological order in this case will be a Z4 topological
order:

{1,X,N,X−1,v,Ef ,v−1} × {1,MbT ′ } (J22)

with the symbols standing for parallel excitations as before,
and a difference is that here Ef is a fermion with no symmetry
fractionalization in terms of T and Z2.

In this case, most of the topological data (braiding and
fusion) will be the same as in the simple superfluid for
(EbT MbT ′)−. The only difference is that, because Ef is a
fermion, the fusion product of two v’s should be Ef N ,
otherwise the antiparticle of v will have a different topological
spin from v. That is,

v × v = Ef N. (J23)

Because Ef N is still a fermion, v has topological spin θv =
exp (i( π

4 + πn
2 )) with n an integer. In order for T to conjugate

θv , the T partner of v has to be vX or vX−1. This then changes
the charge of v, which is not legitimate. This establishes the
first statement: in the scenario of a simple superfluid surface,
there is no SPT made of MbT ′ that can become (Ef MbT ′)−.

eT ′
i mZ reduced bulk SPT for (EbT MbT ′)−. Now we turn

to the second statement, where the surface superfluid has
to coexist with the anomalous topological order, eT ′

i mZ. In
the superfluid phase of the surface, the vortices and anyons
of this anomalous topological order are distinct. One of
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their distinctions is that the vorticies carry (logarithmically)
expensive energy cost, while the anyons have a finite energy
gap. The fusion rules of e and m in the superfluid phase is that

e × e = MbT ′ , m × m = 1. (J24)

These seemingly innocuous fusion rules actually deserve
further clarification. Purely in terms of topological sectors,
there is no difference in MbT ′ and 1 in the right hand sides
of these fusion rules, because they can be turned into each
other by binding an M

†
bT ′ , a local excitation. However, in terms

of symmetry quantum numbers, MbT ′ and 1 are of course
different. It makes sense to talk about fusing two e particles
or two m particles that have the same symmetry quantum
number (with the difference due to attaching an MbZ resolved),
and the above equations should be interpreted as the fusion
rules of fusing two identical e’s or m’s. This distinction is
important when we try to determine the fusion rules of e and m

after the surface gets into the symmetric topologically ordered
phase, where the right-hand sides of these fusion rules can
potentially be modified by multiplying something condensed
in the superfluid phase.

When 4π vortices are condensed and the full symmetry is
restored, e will remain deconfined because it will carry half
charge under U(1) (m will of course also remain deconfined
because it is neutral). Then the surface topological order can
be written as

{1,X,N,X−1,v,EbT ,v−1,e,m} × {1,MbT ′ }, (J25)

where the symbols have parallel meaning as in the case of a
simple superfluid. As before, the various bound states of these
excitations are understood to be implicitly displayed.

Again, X will be an Abelian boson that carries half charge,
and N will be a boson that is a Kramers doublet under
T ′. Because condensing X makes the surface back to the
superfluid coexisting with eT ′

i mZ, the superfluid phase can
again be viewed as a condensate of X. This has two important
consequences.

First, the mutual braiding in (J19) still holds, and {e,m}
will have trivial braiding with {X,N,X−1}. Then N2 is trivial,
and (J20) still holds. However, the mutual braiding between v

and {e,m} is undetermined at this point. We only know, because
θEbT ,m = 1, we should have θv,m = ±1. Second, no condensate
in the superfluid can be multiplied to the right hand sides of
the fusion rules in (J24) without violating charge conservation,
which means that (J24) is also the right fusion rules for e and
m in the topologically ordered phase.

Now let us determine the fusion rule of two v’s. Just from
charge conservation and vorticity conservation, there seem to
be many possible fusion products of two v’s:

EbT , EbT N, EbT m, EbT mN,

EbT eX−1, EbT eX−1N, EbT εX−1, EbT εX−1N. (J26)

However, based on some topological arguments, in the follow-
ing, we can rule out all of them but EbT m and EbT mN .

To see this, first notice that for each Abelian anyon, it has
a unique braiding phase factor with all fusion products of two
v’s. Because of this, some of the above cannot simultaneously
be the fusion products. For example, because EbT and EbT m

have different braiding phase factors with e, they cannot both

be the fusion products of two v’s. Using this, we see the fusion
products can be one of the four possible pairs

{EbT ,EbT N}, {EbT m,EbT mN},
{EbT eX−1,EbT eX−1N}, {EbT εX−1,EbT εX−1N}.

(J27)

However, because N is a boson with θv,N = −1, within each
pair at most one of them can be the fusion product of two v’s,
otherwise the antiparticle of v will have opposite topological
spin of v, and (J14) is violated. This means v has to be Abelian
again, and the entire topological order is Abelian. Together
with θEbT ,v = 1, this also implies EbT N cannot be a fusion
product of two v’s. Furthermore, because θX,v = −i, the last
four excitations cannot be fusion products of two v’s, otherwise
v would have an antiparticle that has a different topological spin
from itself.

In fact, EbT cannot be a fusion product of two v’s, either.
This is because θEbT ,e = −1, which means θv,e = ±i and
θv,e2 = −1, if v × v = EbT . However, e2 is local, so θv,e2 = 1.
This contradiction implies that EbT cannot be the fusion
product of two v’s.

So we are finally left with two possibilities:

v × v = EbT m (J28)

or

v × v = EbT mN. (J29)

In the first possibility, θv,m = 1, while θv,m = −1 in the second
possibility.

Now we discuss the symmetry assignment. Recall that in
the superfluid phase, the topological sectors of e and m are
transformed as

T ′ : e → eMbT ′ , m → m (J30)

under T ′, and

Z2 : e → e, m → m (J31)

or

Z2 : e → eMbT ′ , m → m (J32)

under Z2. Notice that the above expressions only imply the
action on the topological sectors, and in this case there are two
possibilities for the Z2 transformation.

In the symmetric topologically ordered phase, the right-
hand sides of these transformation rules can be multiplied by
something condensed in the superfluid phase. Also, according
to the values of T ′2 of e and m and the fact that the π rotation of
U(1) is locked with acting T ′ twice, e carries half charge and
m carries no charge under U(1) in the topologically ordered
phase. In order for T ′ to maintain the U(1) charge, and for Z2

to flip the U(1) charge, the unique choice for the transformation
rules of e and m in the topologically ordered phase are

e → eN, m → m (J33)

under T ′, and

e → eM
†
bT ′N, m → m (J34)
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or

e → eM
†
bT ′ , m → m (J35)

under Z2, corresponding to the two possible Z2 transforma-
tions in the superfluid phase, respectively.

To further determine the symmetry assignments, it is crucial
to determine the symmetry actions on v. Let us consider the Z2

action on v first, and we will begin with the case where v × v =
EbT m and e → eM

†
bT ′N and m → m under Z2. Notice in this

case θv,m = 1. As the Z2 flips both the charge and the vorticity,
the options for the Z2 partner of v are

v−1, v−1N, v−1m, v−1mN,

v−1eX−1, v−1eX−1N, v−1εX−1, v−1εX−1N. (J36)

All of them except v−1 and v−1m can be ruled out, because
in those cases the Z2 action cannot keep the topological spin
of v invariant. If the Z2 partner of v is v−1, then under the Z2

transformation θe,v becomes

θ
eNM

†
bT ′ ,v−1 = θ

eNM
†
bT ′ ,v3 = θe,v3θN,v3

= θe,vθe,v2θN,vθN,v2 = θe,vθN,v = −θe,v, (J37)

which is disallowed. In the above we have used (J15) and (J16).
The above discussion implies that the Z2 partner of v can only
be v−1m = vEbT .

Just from that T flips the charge but keeps the vorticity, the
options for the T partner of v are

v, vN, vm, vmN,

veX−1, veX−1N, vεX−1, vεX−1N. (J38)

The last four can be ruled out due to some topological
reasons. For example, suppose v becomes veX−1 under T .
In order for T to conjugate the topological spin of v, using
the (J19) and θe,v = ±1, the topological spin of v must be
θv = exp (i(±π

4 + nπ )), with n an integer. Then the bound
state of two v’s must be a fermion, contradicting to the fusion
rule v × v = EbT m. This means veX−1 cannot be the T
partner of v. Similar arguments show that veX−1N , vεX−1

and vεX−1N cannot be the T partner of v, either.
If the T partner of v is vm, then v is either a boson or

a fermion, and θvvm = 1. But θvvm should be locked to the
Kramers parity of vvm = EbT , which is −1. This contradiction
implies that vm cannot be the T partner in this case. The time-
reversal partner of v can also not be vNm, because in this case
under time-reversal θv,e becomes

θ
vNm,eM

†
bT ′

= −θv,e �= θ∗
v,e, (J39)

which is disallowed. This is actually another reason why
vm cannot be the time-reversal partner of v, because vm

cannot conjugate θv,e, either. If the time-reversal partner of
v is v, then v has a well defined Kramers parity, but its Z2

partner, v−1m = vEbT , has an opposite Kramers parity. This
is disallowed, otherwise Z2 and time reversal cannot commute
for the spin liquid. To see this, suppose v transforms under time
reversal as

vi → Tij vj (J40)

TABLE XIX. Symmetry assignments of the surface topological
order if the Z2 action on e and m is given by (J34), for both the
case with v × v = EbT m and the case with v × v = EbT mN . The
first row lists all nontrivial excitations, from which the symmetry
assignments on all their bound states can be inferred. The second row
lists the charges of these excitations under U(1). The third row lists
the time-reversal partners of these excitations, and the fourth row lists
the Z2 partners of these excitations.

X N v EbT e m

U(1) 1
2 0 0 0 1

2 0

T X−1 N vN EbT eM
†
bT ′ m

Z2 X−1 N vEbT EbT eNM
†
bT ′ m

and under Z2 as

vi → Cij ṽj . (J41)

Its Z2 partner, ṽ, transforms under time reversal as

ṽi → T̃ij ṽj . (J42)

Because v∗
i Mij vj is a local operator that has no charge or

vorticity, its Kramers parity should be 1 and Z2 should
commute with time reversal on this operator, for any matrix
M . This requires T ∗T = ±1, T̃ ∗T̃ = ±1, and T C = eiφC∗T̃ ,
with φ a phase. Taking all these together, we get

T ∗T = CT̃ ∗T̃ C−1 = T̃ ∗T̃ . (J43)

That is, v and ṽ should have the same Kramers parity. Notice
to claim that for v∗

i Mij vj the Kramers parity is 1 and Z2

commutes with T , it is important that this operator is not only
local, but also carries no charge or vorticity, otherwise by a
gauge transformation its Kramers parity and the commutation
relation can be changed.

So the time-reversal partner can only be vN . Notice in this
case v must be a semion or antisemion, because θv,N = −1
and time-reversal conjugates the topological spin of v. Then
θvvN = 1, which means the Kramers parity of vvN = EbT mN

is 1, so N has to be a Kramers doublet.
The above discussion implies that if v × v = EbT m and

the Z2 action on e and m is given by (J34), the Z2 partner
of v can only be vEbT , and the T partner of v can only be
vN . Using similar arguments, one can actually check that if
v × v = EbT mN and the Z2 action on e and m is given by
(J34), the Z2 partner of v can still only be vEbT , and the T
partner of v can only be vN . In both cases, the entire symmetry
assignments are largely determined, as shown in Table XIX.

This surface state is actually problematic. To see this,
notice under T the topological sector of eX−1v is invariant,
so eX−1v has a well defined Kramers parity. However, under
the Z2 this topological sector becomes eX−1vEbT , which
carries an opposite Kramers parity. As discussed above, this
is disallowed, otherwise T and Z2 cannot commute for the
spin liquid.

The above discussion implies that if the Z2 action on e

and m is given by (J34), the surface state of this SPT is
problematic. Now we are only left with the case where the
Z2 action on e and m is given by (J35). In this case, one can
use a similar method to constrain the rest of the symmetry

195126-38



SYMMETRY ENRICHED U(1) QUANTUM SPIN LIQUIDS PHYSICAL REVIEW B 97, 195126 (2018)

TABLE XX. Symmetry assignments of the surface topological
order if the Z2 action on e and m is given by (J35). The first row lists
all nontrivial excitations, from which the symmetry assignments on
all their bound states can be inferred. The second row lists the charges
of these excitations under U(1). The third row lists the time-reversal
partners of these excitations, and the fourth row lists the Z2 partners
of these excitations.

X N v EbT e m

U(1) 1
2 0 0 0 1

2 0

T X−1 N vm/vmN EbT eM
†
bT ′N m

Z2 X−1 N v−1 EbT eM
†
bT ′ m

assignments, and the resulting symmetry assignment is shown
in Table XX. There is also a problem of this topological order:
the Z2 partner of v is v−1, so it has a well defined value
for charge conjugation squared. However, its T partner has
an opposite value of charge-conjugation squared, because the
values of charge conjugation squared for N and m are 1 and
−1, respectively. This contradicts the fact that Z2 and T should
commute for the spin liquid.

To see this, suppose T acts as

vi → Tij ṽj (J44)

and Z2 acts as

vi → Cijv
∗
j , ṽi → C̃ij ṽ

∗
j , (J45)

where T , C, and C̃ are three unitary matrices (in fact, being
invertible is enough for the following argument).

For an arbitrary matrix M , because v∗
i Mij vj is a neutral

local operator that carries no vorticity, Z2 and time reversal
should commute on it. Demanding the results of acting time
reversal first and Z2 later and the results of acting Z2 first and
time reversal later to be the same gives

(T C̃)†M∗(T C̃) = (C∗T ∗)†M∗C∗T ∗. (J46)

For this equation to be true for arbitrary M , we must have

T C̃ = eiφC∗T ∗ (J47)

with φ a phase. Or equivalently,

C̃ = eiφT −1C∗T ∗. (J48)

Taking the complex conjugation on both sides yields C̃∗ =
e−iφ(T −1)∗CT . So

C̃C̃∗ = T −1C∗T ∗(T −1)∗CT = T −1C∗CT . (J49)

Notice because v∗
i Mij vj is local and neutral, Z2 squares to

1 for it because the system is made of MbZ . Combined with
the discussion in Appendix A, the above equation implies that
C̃C̃∗ = C∗C. That is, v and ṽ should have the same charge
conjugation squared. Taking all these arguments together, the
second statement is established: in the scenario of eT ′

i mZ

reduced bulk SPT, there is no SPT made of MbT ′ that can
become (EbT MbT ′)−.

eT ′
i mZ reduced bulk SPT for (Ef MbT ′ )−. Finally, we turn

to the last statement. Using similar arguments as before, the
surface topological order can be written as

{1,X,N,X−1,v,Ef ,v−1,e,m} × {1,MbT ′ } (J50)

with the similar symbols representing parallel excitations as
before.

As before, in this topological order, the fusion rules for e

and m are still given by (J24). The symmetry assignments for
e and m are such that e carries half charge under U(1), while
m carries no charge, and the other symmetry assignments for
e and m are given by (J33) and (J34), or (J33) and (J35).

In this case, most of the topological data will be the same as
the case with eT ′

i mZ reduced bulk SPT for (EbT MbT ′)−. The
only difference is in the fusion product of two v’s. Modifying
the arguments before while keeping in mind that now Ef is a
fermion, we find two possible fusion rules for two v’s

v × v = Ef m (J51)

or

v × v = Ef Nm. (J52)

In the first possibility, θv,m = −1, while θv,m = 1 in the second
possibility. In both cases the right hand side of the fusion
rules are fermions, so the topological spin of v must be
θv = exp (i( π

4 + nπ
2 )), with n an integer.

In this case, in order for T to keep the vorticity of v and
conjugate the topological spin of v, the T partner of v can be
one of the following:

veX−1, veX−1N, vεX−1, vεX−1N. (J53)

Which one of these can conjugate the topological spin of v

depends on the values of θv = exp (i( π
4 + nπ

2 )), θe,v = ±1 and
θε,v = ±1. However, no matter which one of the above four
excitations is the T partner of v, θv,m becomes −θv,m �= θ∗

v,m.
This means there is no consistent symmetry assignment for this
topological order. This establishes the third statement: in the
scenario of eT ′

i mZ reduced bulk SPT, there is no SPT made of
MbT ′ that can become (Ef MbT ′)−.

Taking all the arguments above together, we have estab-
lished that (EbT M ′

bT )− is anomalous with Z2 × T symmetry.
Notice unlike (EbZMbZ)−, which is anomalous even if there is
only the Z2 symmetry, here both the T and Z2 symmetries are
responsible for the anomaly.

3. Anomaly of EbT T ′ Mb−

In this section, we show the anomaly of EbT T ′Mb−, by
showing that no SPT made of Mb− will become EbT T ′Mb−
after gauging. As a reminder, in this case Z2 does not act as a
charge conjugation, and it anticommutes with T on Mb−. As
before, we will first condense double charge on the surface to
get a surface superfluid, whose minimal trivial vortex is the
4π vortex. We will then proliferate these 4π vortices to restore
the full symmetry and get a surface topological order. Again,
there are two scenarios for the surface superfluid: it can either
be a simple superfluid, or this superfluid has to coexist with
another anomalous topological order. We will discuss these
cases in turn.

a. Simple superfluid

We begin with the case of a simple superfluid. Using similar
argument as before, we see the symmetric surface topological
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TABLE XXI. Symmetry assignments of the surface topological
order from the simple superfluid surface of the corresponding SPT of
EbT T ′Mb−. The first row lists all nontrivial excitations, from which
the symmetry assignments on all their bound states can be inferred.
The second row lists the charges of these excitations under U(1). The
third row lists the T partners of these excitations. The fourth row lists
the Z2 partners of these excitations. The fifth row lists the T ′ partners
of these excitations.

X N v EbT T ′

U(1) 1
2 0 0 0

T X−1 N vN EbT T ′

Z2 X N v EbT T ′

T ′ X−1 N vN EbT T ′

order obtained by condensing 4π vortices can be written as

{1,X,N,X−1,v,EbT T ′ ,v−1} × {1,Mb−}. (J54)

The symbols stand for parallel meanings as before, while now
the 2π vortex is EbT T ′ , a Kramers doublet under both T and
T ′.

Similar arguments as before show that the braiding and
fusion are similar to the surface state obtained from the simple
superfluid for the corresponding SPT of (EbT MbT ′)−, and the
symmetry assignment is shown in Table XXI. In particular, in
order for EbT T ′ = v × v to be a Kramers doublet under both
T and T ′, both of the T and T ′ partners of v should be vN .
Notice Xv will become XvM

†
b− under T , and it is invariant

under Z2. Below we show this is disallowed.
For notational simplicity, denote Xv and XvM

†
b− by x and

y, respectively. Suppose the T action is

T : xi → Tij yj , yi → T̃ij xj (J55)

and the Z2 action is

Z2 : xi → Zijxj , yi → Z̃ij yj (J56)

with T , T̃ , Z, and Z̃ four invertible matrices.
Because, for any matrix M , x∗

i Mijxj is local and neutral, Z2

and T should commute on this operator. This gives a condition

T Z̃ = eiφ1Z∗T . (J57)

Because, for any matrix M , x∗
i Mijyj is local and carries

charge-1, Z2 and T should anticommute on this operator,
because the system is made of Mb−. This, together with the
above condition, yields

T̃ Z = eiφ2 Z̃∗T̃ (J58)

with ei(φ1−φ2) = −1.
Combining these two equations, we get

Z = eiφ1T ∗Z̃∗T ∗−1 = eiφ2 T̃ −1Z̃∗T̃ . (J59)

Using that ei(φ1−φ2) = −1, the above equation yields

Z̃∗ = −T̃ T ∗Z̃∗T ∗−1T̃ −1, (J60)

Now notice y∗
i Mijyj should have Kramers parity 1 for any

matrixM , this implies that T̃ ∗T = eiφ3 , or T̃ T ∗ = e−iφ3 , where
φ3 is another phase. Plugging this into the above equation yields

Z̃∗ = −Z̃∗ (J61)

so Z̃ = 0. This is disallowed. The above argument shows that
in the scenario of a simple superfluid, there is no SPT made of
Mb− that can become EbT T ′Mb− after gauging.

b. Superfluid coexisting with another anomalous topological order

Next, we turn to the more complicated case where the
superfluid has to coexist with another anomalous topological
order. Again, this happens when the bulk remains as a nontrivial
SPT when the bulk symmetry is also reduced. For this purpose,
let us first clarify what the reduced symmetry is. The reduced
symmetry group has a ZT

2 subgroup, with an antiunitary
generator t that satisfies t2 = 1. It also has a Z2 subgroup, with
a unitary generator g that satisfies g2 = 1. However, gt + tg =
0. Denote t ′ = gt , then t ′2 = gtgt = −1, so t ′ generates a
ZT ′

4 symmetry. Notice t ′ gets inverted when conjugated with
both t and g, that is, gt ′g = ggtg = tg = −gt = −t ′ and
t t ′t = tgtt = tg = −gt = −t ′. So we will denote this group
by DT

4 ≡ ZT ′
4 � Z2 = ZT ′

4 � ZT
2 . Now it is also easy to get the

full symmetry, which also has U(1) charge conservation. In the
gauge where t2 and g2 are fixed to be identity, because each
charge-1 boson has Z2 and T anticommuting, the π rotation
of the U(1) is locked with t ′2, and the full symmetry group can
be written as (U(1) × DT

4 )/Z2.
3D bosonic SPTs with DT

4 symmetry. Now let us discuss
3D bosonic SPTs with DT

4 symmetry. By group cohomology,
these SPTs are classified by Z3

2. There should be another root
state, ef mf , which is beyond group cohomology. So the full
classification of these SPTs is expected to be Z4

2. Among the
other root states, eT mT should be one of them. The U(1)
symmetry can be added to ef mf and eT mT with a trivial
action, so reduced bulk SPTs with such anomalies can be
easily canceled, and we will ignore these two states from now
on. We propose two other root states: (eT T ′

i mT ′
i )ZT ′εT T ′ and

(eT ′
i mT ′

i )ZT ′ .
The root state (eT T ′

i mT ′
i )ZT ′εT T ′ is actually the descen-

dant of the corresponding SPT of Ef T T ′Mb− (viewed from the
perspective of Mb−), when the U(1) symmetry is broken to its
Z2 subgroup generated by its π rotation. The surface state of
this corresponding SPT of Ef T T ′Mb− can be a Z2 topological
order, with symmetries assigned as in Table XXII. These
symmetry assignments can be derived from the corresponding
SPT of Ef T T ′Mb− viewed from the perspective of Ef T T ′ ,
which is described in Appendix J 1. Notice the fusion rules
are e × e = m × m = Mb−.

When the U(1) symmetry is reduced to its Z2 subgroup
generated by its π rotation, the symmetry becomes DT

4 .
The resulting state is still anomalous, which can be seen by
checking its ZT ′

4 domain wall. Consider breaking the ZT ′
4

symmetry in two different ways on the two sides of a 2D
domain wall, while keeping a Z2 subgroup generated by t ′2
intact across the entire system. Then this domain wall has a
Z2 × Z2 symmetry, and by relating it to the corresponding
SPT of Ef T T ′Mb−, we see this time-reversal domain wall is
a Levin-Gu state (protected by the Z2 generated by t ′2). The
existence of this decorated domain wall shows the descendant
state is still a nontrivial SPT with the DT

4 symmetry.
Next, we turn to (eT ′

i mT ′
i )ZT ′ , whose symmetry assign-

ments are shown in Table XXIII. Or more precisely, the
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TABLE XXII. Symmetry assignments of the Z2 surface topologi-
cal order of the bosonic SPT made of Mb− that will become Ef T T ′Mb−
after gauging. The first row lists all nontrivial excitations, from which
the symmetry assignments on all their bound states can be inferred.
The second row lists the charges of these excitations under U(1).
The third row lists the time-reversal partners of these excitations. The
fourth row lists the values of T 2 of these excitations, with empty
entries representing that T 2 is not well-defined. The fifth row lists
the Z2 partners of these excitations. The sixth row lists the values of
Z2

2 of these excitations. The seventh row lists the T ′ partners of these
excitations. And the last row lists the values of T ′2 of these excitations,
with ±i standing for that T ′4 = −1.

e m ε = em†

U(1) 1
2

1
2 0

T e† m† ε

T 2 −1 1 −1
Z2 m e ε

Z2
2 1

T ′ m† e† ε

T ′2 ±i ±i −1

symmetry assignments are

T : e → ie, m → m, Z2 : e → m, m → e. (J62)

Notice the fusion rules are e × e = m × m = Mb−.
To show that this state is anomalous, consider breaking the

DT
4 symmetry to Z2 × ZT

2 , where the first Z2 is generated by
t ′2, and the ZT

2 is generated by t . Notice in this case the Z2

generated by g is broken. This can be done, for example, by
considering that T acts on the local boson as

M1 → M2, M2 → M1 (J63)

and Z2 acts on the local boson as

M1 → M1, M2 → −M2. (J64)

Giving M1M2 a nonzero expectation value will break the DT
4

to Z2 × ZT
2 in the above way.

With this reduced symmetry, this state becomes eZmZ,
where the symbol Z stands for half charge under the Z2

TABLE XXIII. Symmetry assignments of the Z2 surface topo-
logical order (eT ′

i mT ′
i Z)T T ′εT Z. The first row lists all nontrivial

excitations, from which the symmetry assignments on all their bound
states can be inferred. The second row lists the T partners of these
excitations. The third row lists the values of T 2 of these excitations.
The fourth row lists the Z2 partners of these excitations. The fifth row
lists the values of Z2

2 of these excitations. The sixth row lists the T ′

partners of these excitations. And the last row lists the values of T ′2

of these excitations, with ±i standing for that T ′4 = −1.

e m ε = em†

T e m ε

T 2 1 1 1
Z2 m e ε

Z2
2 1

T ′ m e ε

T ′2 ±i ±i 1

(generated by t ′2). This reduced state is anomalous. To see
this, define t̃ = t ′2 · t , which generates another antiunitary
symmetry, T̃ . The state eZmZ can then be relabelled as eT̃ mT̃ ,
so it is anomalous. Enhancing the symmetry back to DT

4 will
not add Kramers doublet boson under T̃ to the system, so it will
not remove this anomaly. This also shows that (eT ′

i mT ′
i )ZT ′ is

distinct from the previous (eT T ′
i mT ′

i )ZT ′εT T ′, because when
the symmetry is reduced to Z2 × T in the above way, the latter
becomes eZT mZ, which is a distinct anomalous state.

For later purpose, let us now consider the U(1) charge of
e and m when the 4π vortices are condensed and the full
symmetry is restored. Again, because the π rotation of the
U(1) is locked with t ′2, e, and m should carry half charge in
the topological order.

The above discussion implies that, in the scenario where
the surface superfluid has to coexist with another anomalous
topological order, in order to show there is no SPT made of
Mb− that can become EbT T ′Mb− after gauging, it is sufficient
to show the following.

(1) In the scenario of a simple superfluid surface, there is
no SPT made of Mb− that can become Ef Mb−. (2) In the
scenario of (eT ′

i mT ′
i )ZT ′ reduced bulk SPT, there is no SPT

made of Mb− that can become EbT T ′Mb−. (3) In the scenario
of (eT ′

i mT ′
i )ZT ′ reduced bulk SPT, there is no SPT made of

Mb− that can become Ef Mb−. Below we will show these three
statements in turn.

Simple superfluid surface for Ef Mb−. We start with the
first statement. Using similar arguments as before, the surface
topological order in this case can be written as

{1,X,N,X−1,v,Ef ,v−1} × {1,Mb−}. (J65)

The symbols stand for parallel meanings as in the previous
cases, and now the 2π vortex, Ef , is a fermion and is a Kramers
singlet under both T and T ′.

In this case, most of the topological data will be the same as
in the case with a simple superfluid surface for EbT T ′Mb−. The
only difference is in the fusion rule of v. Similar arguments as
before imply that the fusion rule of two v’s in this case is

v × v = Ef N, (J66)

otherwise the antiparticle of v will have an opposite topological
spin as itself. Because the right-hand side is a fermion, the
topological spin of v will be θv = exp (i( π

4 + nπ
2 )), with n an

integer.
Now let us consider theT partner of v. AsT should keep the

vorticity and flip the charge, there are two possible T partners
of v: v and vN . Because θv = exp (i( π

4 + nπ
2 )) and θv,N = −1,

neither of these options will conjugate θv under T . So this is
inconsistent. This establishes the first statement: in the scenario
of a simple superfluid surface, there is no SPT made of Mb−
that can become Ef Mb−.

(eT ′
i mT ′

i )ZT ′ reduced bulk SPT for EbT T ′Mb−. Next, we
turn to the second statement. In this case, similar arguments as
before show the surface topological order can be written as

{1,X,N,X−1,v,EbT T ′ ,v−1,e,m} × {1,Mb−} (J67)

with the symbols standing for parallel meanings as before.
Recall that both e and m will carry half charge under U(1).

By charge conservation and vorticity conservation, the possible
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fusion products of two v’s are

EbT T ′ , EbT T ′N, EbT T ′ε, EbT T ′εN,

×EbT T ′eX−1, EbT T ′eX−1N,

×EbT T ′mX−1, EbT T ′mX−1N. (J68)

Similar arguments as before imply that there are two possible
fusion rules for v:

v × v = EbT T ′ε (J69)

or

v × v = EbT T ′εN. (J70)

In both cases, the bound state of two v’s is fermionic, so the
topological spin of v should be θv = exp (i( π

4 + nπ
2 )), with n

an integer. In order for T to conjugate θv , the T partner of v

should be one of

veX−1, veX−1N, vmX−1, vmX−1N. (J71)

From the symmetry actions on e and m in the superfluid
phase, by multiplying something condensed in the superfluid
to be consistent with charge conservation, we get the symmetry
actions on e and m in the topologically ordered phase:

T : e → eM
†
b−N, m → mM

†
b−N ;

Z2 : e → m, m → e. (J72)

Combining this with that θv,N = −1, we see no matter which
one of the four excitations is the T partner of v, θε,v cannot
be conjugated by T , which is disallowed. This establishes the
second statement: in the scenario of (eT ′

i mT ′
i )ZT ′ reduced bulk

SPT, there is no SPT made of Mb− that can become EbT T ′Mb−.
(eT ′

i mT ′
i )ZT ′ reduced bulk SPT for Ef Mb−. Finally, we

come to the last statement. Similar arguments as before imply
the topological order can be written as

{1,X,N,X−1,v,Ef ,v−1,e,m} × {1,Mb−} (J73)

with symbols standing for parallel meanings as before. Notice
the 2π vortex, Ef , is a fermion, and it is a Kramers singlet
under both T and T ′.

Most of the topological data can be easily determined using
similar arguments as before:

θX,v = −i, θX,EbT T ′ = −1, θv,e = ±1, θv,m = ±1,

X × X = NMb−, N × N = 1, EbT T ′ × EbT T ′ = 1. (J74)

There are two possible fusion rules for v:

v × v = Ef ε (J75)

or

v × v = Ef εN. (J76)

In both cases, the bound state of two v’s is a boson, so v is a
boson, fermion, semion, or antisemion.

Knowing thatT should flip the charge and keep the vorticity,
the T partner of v can be one of

v, vN, vε, vεN,

veX−1, veX−1N, vmX−1, vmX−1N. (J77)

Because v is a boson, fermion, semion, or antisemion, and
θX,v = −i, θv,e = ±1 and θv,m = ±1, the last four options can
be ruled out, because in those cases T will not conjugate θv .
Because the T partner of e is eM

†
b−N , in order to conjugate

θe,v , the T partner of v cannot be v or vN . That is, the T partner
of v is either vε or vεN .

If v × v = Ef ε and the T partner of v is vε, then v × vε =
Ef . Because v and vε are T partners and Ef is a fermion,
Ef must be a Kramers doublet under T , which contradicts
the original assumption. The same reasoning rules out the
possibility that v × v = Ef εN and the T partner of v is vεN .

If v × v = Ef ε and the T partner of v is vεN , then
v × vεN = Ef N . This means N is a Kramers doublet under
T . On the other hand, the T partner of e is eM

†
b−N , so N

can be viewed as the bound state of e and its T partner. This
implies that N is a Kramers singlet under T , which leads to a
contradiction. The same reasoning also rules out the possibility
that v × v = Ef εN and the T partner of v is vε.

Putting all these analysis together, we have established the
last statement: in the scenario of (eT ′

i mT ′
i )ZT ′ reduced bulk

SPT, there is no SPT made of Mb− that can become Ef Mb−.
Therefore we have shown that no SPT made of Mb− can
become EbT T ′Mb− after gauging, which means EbT T ′Mb−
is anomalous with Z2 × T symmetry. As discussed before,
we have already shown all states in Table XIV and Table X
are anomalous.

APPENDIX K: Z2 × T SYMMETRIC U(1) QUANTUM SPIN
LIQUIDS WITH θ = π AND Z2 NOT ACTING AS A

CHARGE CONJUGATION

In this appendix, we discuss Z2 × T symmetric U(1)
quantum spin liquids with θ = π and Z2 not acting as a
charge conjugation. As discussed in Sec. VII A, in this case,
the quantum numbers of the ( 1

2 ,1) dyon determine the phase.
Since there is no nontrivial projective representation of the
Z2 × T symmetry on the ( 1

2 ,1) dyon, we expect only one
state: (Ef T T ′Mf )θ . In this state, the electric charge must be
a Kramers doublet under both T and T ′, and M [the (0,2)
dyon in this context] has Z2 and T commuting with each
other. One may wonder whether it is possible to have Z2 and
T anticommuting with each other in this case. Below we show
this is not possible.

Denote the ( 1
2 ,1) dyon by D(+), and its time-reversal partner,

the ( 1
2 , − 1) dyon, by D(−). Notice M is a bound state of D(+)

and D(−)†. Suppose the Z2 action on D(+) and D(−) is

Z2 : D
(+)
i → ZijD

(+)
j , D

(−)
i → Z̃ijD

(−)
j (K1)

and the T action on D(+) and D(−) is

T : D
(+)
i → TijD

(−)
j , D

(−)
i → T̃ijD

(+)
j . (K2)

For any matrix M , the operator D
(+)†
i MijD

(+)
j is local, so

the actions of Z2 and T should commute on it. This gives the
condition

(Z∗T )†M∗(Z∗T ) = (T Z̃)†M∗(T Z̃). (K3)

In order for this equation to be satisfied by any matrix M , we
need to have

Z∗T = eiφ1T Z̃ (K4)
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or, equivalently,

Z = e−iφ1T ∗Z̃∗(T ∗)−1. (K5)

Consider the local operator D
(−)†
i MijD

(−)
j in a similar way,

we get the condition

Z̃∗T̃ = eiφ2 T̃ Z (K6)

or, equivalently,

Z = e−iφ2 T̃ −1Z̃∗T̃ . (K7)

On the other hand, acting time reversal twice on the local
operator D

(+)∗
i MijD

(+)
j should results in a trivial action, which

implies that

T ∗T̃ = eiφ3 (K8)

or, equivalently,

T̃ = eiφ3 (T ∗)−1. (K9)

Combining this equation and (K7) yields

Z = e−iφ2T ∗Z̃∗(T ∗)−1. (K10)

Comparing this equation and (K5) yields

eiφ1 = eiφ2 . (K11)

Now consider the (0,2) dyon, which is represented as
D

(+)
i MijD

(−)†
j . Acting on this operator by Z2 and T with

different orders using (K1) and (K2), and using the constraints
(K5), (K7), and (K11), we see that the Z2 and T commute
on D

(+)
i MijD

(−)†
j , which proves the assertion stated at the

beginning of this appendix.
The above argument can also be applied to O(2) × T

symmetric U(1) quantum spin liquids discussed in Sec. L 1. If
such a spin liquid has θ = π and the improper Z2 component
not acting as a charge conjugation, then on M the actions of
Z2 and T should commute.

APPENDIX L: U(1) QUANTUM SPIN LIQUIDS WITH
SOME OTHER SYMMETRIES

In this appendix, we briefly discuss U(1) quantum spin
liquids with some other symmetries. The classifications of
these symmetry enriched U(1) quantum spin liquids are quite
complicated, which we leave for future work. In this appendix
we only lay out the principle of enumerating the putative states
and make some comments, but we will not attempt to finish
the procedure of examining the anomalies.

1. O(2) × T symmetry

First, we consider the case where the SO(3) × T symmetry
is broken down to O(2) × T ∼= (U(1) � Z2) × T . Physically,
here U(1) can represent spin rotations around one axis, while
the Z2 transformation is a π spin rotation around another axis
perpendicular to this one. This case is rather complicated, and
we do not attempt to complete the anomaly detection and
determine the final classification. Instead, we will just give
a way to systematically list all putative (possibly anomalous)
states and make some comments.

The structure of projective representations of O(2) × T is
rich. On the electric charge, it is classified by Z3

2, and the
three root projective representations physically correspond to
having half charge under the U(1) subgroup, being a Kramers
doublet under T and being a Kramers doublet under T ′ (the
antiunitary symmetry whose generator is the product of the

generators of Z2 and T ). If θ = 0, then on the magnetic
monopole the projective representations are classified by Z2

2,
which physically correspond to having half charge under the
U(1) subgroup and having the discrete Z2 anticommuting with
T . So at θ = 0, if the discrete Z2 symmetry does not act as a
charge conjugation, there are 3 × 23 × 22 = 96 putative states.
We will not write down the long list of all these states, since it is
straightforward and not particularly illuminating. Notice some
of these are descendant states of an SO(3) × T symmetric state.
Because the anomaly argument for the SO(3) × T symmetric
states should also apply to these O(2) × T symmetric states,
their anomalies can be determined immediately.

At θ = π , there are only two putative states, (Ef T T ′Mf )θ
and (Ef T T ′Mf )θ 1

2
, which are the descendants of (Ef T Mf )θ

and (Ef T Mf )θ 1
2

with SO(3) × T symmetry, respectively. In

the former state the ( 1
2 ,1) dyon carries integer U(1) charge,

while in the latter it carries half charge. As discussed in Sec. III,
the former state is anomaly-free, while the latter is anomalous
even with O(2) symmetry. Here the actions of Z2 and T
commute on M (the (0,2) dyon in this context), and it is shown
in Appendix K that, in this case, it is impossible to have the
actions of Z2 and T anticommuting on M .

In the case where the discrete Z2 symmetry acts as a charge
conjugation, the possible fractional quantum numbers on the
electric charge have a structure ofZ3

2: having half charge under
the U(1) subgroup, being a Kramers doublet under T , and
having charge-conjugation squaring to −1. If θ = 0, the pos-
sible fractional quantum numbers on the magnetic monopole
also have a structure of Z2

2: being a Kramers doublet under
T ′, and having charge-conjugation squaring to −1. So there
are 3 × 23 × 22 = 96 such putative states. At θ = π , there are
two putative states: (Ef T Mf T ′ )θ− and (Ef T Mf T ′)θ−Z . In the
former, the ( 1

2 ,1) dyon carries a linear representation of the
symmetry, while this dyon has charge-conjugation squaring to
−1 for the latter. This former state is anomaly-free, and it can
be obtained by equipping its Z2 × T symmetric cousin with a
further U(1) symmetry. The latter is anomalous, because even
if the symmetry is broken to Z2 × T it is still anomalous.

We finish this subsection by briefly commenting on a
few models that realize O(2) × T symmetric U(1) quantum
spin liquids. References [15–17] studied a couple of different
lattice models that realize three dimensional U(1) quantum
spin liquid phases with O(2) × T symmetry, and the particular
phase realized in these works is (EbMb 1

2
)−. Reference [70]

constructed two models of O(2) × T symmetric U(1) quantum
spin liquids, where one of them has a bosonic monopole and the
other has a fermionic monopole. These two states are (EbMb)−
and (EbMf )−, respectively.

2. Z2 × Z2 × T symmetry

Now consider the case where the SO(3) × T symmetry
is broken down to Z2 × Z2 × T , where these two Z2’s can
represent π spin rotations around two perpendicular axes. It
is known that the projective representations (on the electric
charge) of Z2 × Z2 × T symmetry are classified by Z4

2,
where two of the four Z2’s are descendants of the projective
representations of SO(3) × T , and the other two Z2’s come
from the nontrivial interplay between Z2 × Z2 and time
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reversal. More precisely, each of the two Z2’s together with
time reversal can form a new antiunitary symmetry, and the
other two root nontrivial projective representations can be
viewed as having Kramers doublets under such new antiunitary
symmetries. If θ = 0, on the magnetic monopole the projective
representations are classified by Z3

2, and the nontrivial root
projective representations physically correspond to the two
Z2’s and T anticommuting.

If θ = π , the phase is determined by the ( 1
2 , ± 1) dyons,

which has one nontrivial projective representation that corre-
sponds to that the two Z2 symmetries anticommute. The state
with the two Z2 symmetries commuting is a descendant of the
SO(3) × T symmetric (Ef T Mf )θ , so it is still anomaly-free.
The state with the two Z2 symmetries anticommuting is a
descendant of the SO(3) × T symmetric (Ef T Mf )θ 1

2
, which

we conjecture is still anomalous with Z2 × Z2 × T symmetry.
The descendants of the 15 nonanomalous spin liquid states

with SO(3) × T still remain nonanomalous and distinct, and
we conjecture all the anomalous states remain anomalous
even if the symmetry is broken to Z2 × Z2 × T . This is,

of course, just a partial classification, because, on the one
hand, states labeled by the other projective representations
of Z2 × Z2 × T should be taken into account, and on the
other hand, states where Z2 × Z2 can act as charge conju-
gation should also be considered. This is not attempted in
this paper.

3. Z2 × Z2 symmetry

Parallel considerations as in Sec. VIII B can be applied
to the case with Z2 × Z2 symmetry. Here the projective
representations are only classified by Z2, and the nontrivial
projective representation is the descendant of the projective
representation of SO(3). Therefore the descendants of EbMb

and Eb 1
2
Mb will remain distinct and nonanomalous when the

symmetry is broken from SO(3) to Z2 × Z2. We conjecture
that the descendant of Eb 1

2
Mb 1

2
remains anomalous. Again, to

have a complete classification, states where Z2 × Z2 permutes
fractional excitations should be taken into account. We do not
attempt it here.
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