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This paper considers the e↵ects of uncertainty on multidisciplinary analysis estimates

used in conceptual aircraft design. Specifically, the paper presents an analysis of the

stability and control (S&C) characteristics of an illustrative Blended-Wing-Body (BWB)

configuration using uncertain aerodynamic estimates. The S&C properties of a BWB are

highly nonlinear, and as such pose a challenge for low-fidelity analysis techniques. By

propagating bounds on uncertain aerodynamic data them through the analysis, bounds are

derived for the resulting S&C limits. These estimates can then be used to guide future

research and development e↵orts. Results demonstrate that even moderate uncertainty in

estimating aerodynamic lift, drag, and moment coe�cients translates into large uncertainty

in estimating the center of gravity limits, due to the highly nonlinear nature of the S&C

model. The paper identifies directions for ongoing work using a multifidelity approach to

address this issue.

I. Introduction

Quantifying and controlling uncertainty in a conceptual design process is critical for ensuring that the
resulting design choices are appropriate. A design under uncertainty process, such as that shown in Figure 1,
seeks to quantify the e↵ect of the various sources of uncertainty on the performance of a system. In addition
to the traditional design loop closure of the requirements and the performance, additional closure loops
are added to meet tolerable levels of uncertainty and cost. Sensitivities of the performance metrics to the
uncertain model parameters can then be used to determine where research time and cost should be spent
to reduce the input uncertainties. The distributions of the performance metrics can be used to estimate the
risk of not meeting the performance requirements. The design is not closed until the risk is reduced to an
acceptable level. The relationships between the uncertain distributions assigned to the input parameters
and the uncertain distributions induced in the performance metrics and constraints, shown notionally in the
forward path of Figure 1, can be complicated and in general must be estimated by numerical simulation (e.g.,
via stochastic collocation or Monte Carlo simulation). This paper considers the specific case of quantifying
how uncertainty in aerodynamic estimates a↵ects estimates of the stability and control (S&C) characteristics
of a Blended-Wing-Body (BWB) aircraft.

Uncertainty can come from many sources, such as from the calculation of regression fit parameters of
surrogate models, the calibration of low-fidelity models, and the extrapolation of historical data. Add
these modeling uncertainties to those due to attempting to predict future materials, uncertain performance
requirements, and uncertain regulations, and the design space is quickly dominated by uncertainty. If the
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Figure 1: Complex system design under uncertainty with example uncertain parameters and performance
metrics. Adapted from Ref. [1].

uncertainties are not adequately quantified, erroneous design decisions made early in the conceptual phase
can propagate through the design and production, resulting in increased cost at late stages of a development
program.

Prior works analyzed new transport aircraft with uncertain design parameters and have demonstrated
the benefits of adding a rigorous consideration of uncertainty to the design and analysis processes.1–4 Other
works have focused on the propagation of uncertainty and the di↵erent types of uncertainties that are present
in coupled engineering system design.5–11 These works show that consideration of uncertainty expands the
design space and often enriches it, allowing for more robust designs to be obtained.

The Blended-Wing-Body (BWB) configuration is designed to serve the long-haul passenger and cargo
transport markets.12 A key design driver of these configurations is the stability and control (S&C) analysis,
which assesses control e↵ectiveness and computes the operating center of gravity limits. The S&C analysis
relies on accurate estimates of the aircraft’s lift, drag, and pitching moment characteristics.13 While the
low-fidelity models typically used for conceptual design can adequately estimate lift for a BWB over a large
portion of the design space, they usually predict a linear relationship between operating parameters, drag,
the pitching moment. This di↵ers from the nonlinear dependence usually seen in BWB configurations. Due
to the tight coupling among aerodynamics, planform layout, and S&C in a BWB configuration, it is essential
that the S&C constraints be considered early in the conceptual design process while also developing some
understanding of the impact that low-fidelity model uncertainty has on the results.

In this work we present an analysis of the BWB S&C center of gravity limits using low-fidelity aerody-
namic models. We develop uncertainty bounds for the estimated aerodynamic data and other parameters
of the analysis. The uncertain data is then run through the S&C analysis to derive bounds on the perfor-
mance metrics of interest, namely the fore and aft center of gravity limits, using surrogate models based on
Gaussian Process regression. Section II of this paper briefly describes Gaussian Process regression and the
combination of surrogate and model uncertainties. Section III presents the disciplinary models relevant to
the BWB S&C analysis. Section IV presents the results, and finally Section V concludes the paper.

II. Modeling for Analysis Under Uncertainty

Section II.A presents an overview of Gaussian Process regression, which is used to build surrogate mod-
els of the analysis disciplines and provides a platform for synthesizing estimates from multiple fidelities.
Section II.B presents the model for representing and combining uncertainties.
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II.A. Gaussian Process Regression

Gaussian Processes have gained prominence in the surrogate modeling and machine learning communities
due to their ability to model complex, multidimensional surfaces while simultaneously providing an explicit
measure of confidence in their predictive outputs.14,15 Given an input space D 2 Rd and an input vector
x 2 D,

x =

2

66664

x1

x2
...

x
d

3

77775
, (1)

we wish to create a surrogate model of the output function f(x). In our setting, this function f represents
quantities of interest that relate to design performance metrics and constraints. A Gaussian Process is a
function

g(x) ⇠ GP(m(x), k(x,x)) (2)

with mean function
m(x) : D ! R (3)

and covariance function
k(x,x0) : D ⇥D ! R. (4)

The mean function describes the trends in the output space while the covariance function kernel k(x,x0)
encodes the relationship between two points, x and x

0, in the input space D.
The posterior prediction of the Gaussian Process can be explicitly derived. Let X denote a matrix of N

training points,

X =

2

64
| | |
x1 x2 · · · x

N

| | |

3

75 , (5)

where each x

i

2 D. Let f = [f1, f2, . . . , fN ]T be the column vector containing the corresponding values of
the quantity of interest computed by the function being approximated (that is, f

i

is f(x
i

), the quantity of
interest evaluated at the point x

i

). The Gaussian Process prediction at a test point x⇤ 2 D is given by

µ
GP

(x⇤) = m(x⇤) + k(x⇤, X)k(X,X)�1
f (6)

�
GP

(x⇤) = k(x⇤,x⇤)� k(x⇤, X)k(X,X)�1k(X,x⇤). (7)

where µ
GP

(x) is the posterior mean and �
GP

(x) is the posterior standard deviation. Note that k(X,x⇤) is
a column vector where each entry corresponds to the kernel evaluated with x

⇤ and x

i

:

k(X,x⇤) =

2

66664

k(x1,x
⇤)

k(x2,x
⇤)

...

k(x
N

,x⇤)

3

77775
. (8)

Similarly, k(x⇤, X) is a row vector, equal to k(X,x⇤)T , and k(X,X) is a square, symmetric matrix:

k(X,X) =

2

666664

k(x1,x1) k(x1,x2) · · · k(x1,xN

)

k(x2,x1)
. . .

...
...

. . .
...

k(x
N

,x1) · · · · · · k(x
N

,x
N

)

3

777775
. (9)

The regression process begins by selecting a prior distribution. The prior encodes our a priori belief in
the form of the function being approximated. For Gaussian Process regression this consists of choosing a
prior mean and covariance function. In this work a zero mean function is used,

m(x) = 0. (10)
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If something is known about the structure of the function being approximated, then the prior mean should
be modified accordingly.

For the present work, the square exponential with automatic relevance determination is utilized for the
covariance function. The square exponential kernel computes the relationship between two points x and x

0

in the input space along each of its dimensions,

k(x,x0) = �2 exp

 
�

dX

i=1

||x
i

� x0
i

||22
2`2

i

!
. (11)

This choice of covariance function allows for each dimension [ ]
i

of the d-dimensional input space to be
weighed relative to the others via the correlation length `

i

. This can be useful if one of the inputs has a
lower or higher impact on the output relative to the others or if the magnitudes of the input dimensions are
distinct from one another. The factor �2 can be interpreted as the maximum covariance of the function.
If the distance between the two vectors x and x

0 is zero (i.e., they are the same point, x = x

0), then the
kernel function returns �2. The variables � and `

i

are called hyperparameters. All of the hyperparameters
are contained in the vector ✓:

✓ =

2

6666664

�

`1
`2
...

`
d

3

7777775
. (12)

The final step of the regression is to choose the hyperparameters. In order to determine the values of the
hyperparameters, we maximize the log marginal likelihood, which is conditioned on the training set X:

ln p(f |X) = �1

2
f

T k(X,X)�1
f �1

2
ln |k(X,X)|� n

2
ln 2⇡. (13)

This leads to the regression problem:
✓⇤ = argmax

✓
ln p(f |X). (14)

The optimization searches for the choice of ✓ that maximizes the probability that the data f came from the
model defined by the hyperparameters ✓, conditioned on the training points X. Bounds are often added to
the hyperparameters to ensure that physically realistic surrogates are constructed.

II.B. Modeling Uncertainty

Let a given quantity of interest f be modeled by an approximate function f̃(x):

f̃(x) : Rd ! R. (15)

The function f̃(x) represents the disciplinary model used to estimate a given quantity of interest. For
example, for estimating lift, the function f̃(x) might represent a low-fidelity vortex lattice model or a higher-
fidelity computational fluid dynamic model. We distinguish between f and f̃ because we will explicitly
account for the uncertainty associated with our imperfect engineering models. We consider a separate model
for each output of a given discipline. Thus, in this work each quantity of interest is treated as a scalar.

In order to account for our confidence in the model f̃ we define a fidelity function:

�
f̃

(x) : Rd ! R. (16)

The fidelity function quantifies a standard deviation of the predictions of model from the true value of f(x).
Note that the probability density function from which �

f̃

(x) is computed is usually unknown and in practice
is either assumed or inferred.

For each quantity f̃(x), we construct a Gaussian Process regression model g(x). The output of the
Gaussian Process surrogate is a prediction µ

GP

(x) of the model f̃(x). This prediction has an associated
standard deviation �

GP

(x), which we refer to as the Gaussian Process standard deviation.
In our representation we thus have two sources of uncertainty: the uncertainty associated with the fidelity

of the model, quantified by �
f̃

(x), and the uncertainty arising from the surrogate modeling process, quantified
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by �
GP

(x). The total standard deviation of the estimate of f(x), is denoted by �
t

(x). The corresponding
total variance is computed by summing the fidelity and Gaussian Process variances:

�2
t

(x) = �2
GP

(x) + �2
f̃

(x). (17)

Note that the Gaussian Process standard deviation is zero at the training points. However, the total variance
of the estimate of f̃(x) cannot be lower than the fidelity variance. If the surrogate is perfectly trained (i.e.,
the Gaussian Process standard deviation is zero), the total standard deviation will be equal to the fidelity
standard deviation. This prevents a given surrogate from being treated as too reliable simply because it is
better trained. Likewise, including the Gaussian Process standard deviation in the total standard deviation
prevents badly trained surrogates, or points far outside of the training set, from being treated as too reliable.

II.C. Uncertainty Propagation

For this study we only consider the impact of the bounds of the uncertain parameters on the performance
metrics. Once the distributions on the input variables have been determined, the minimum and maximum
values of the inputs are run through the model to determine the combined impact of the best and worst case
inputs. The outputs of this analysis are then the values of the quantity of interest under the best and worst
case scenarios.

III. Blended Wing Body Example Problem

Unlike conventional aircraft configurations, the planform of the BWB is primarily driven by the arrange-
ment of the passenger and cargo compartments and the stability and control (S&C) characteristics of the
vehicle.13,16 The S&C criteria are highly non-linear due to the three-dimensional nature of the aerodynamic
flow and the fact that most of the S&C criteria involve stall. Many aerodynamic analysis methods are
insu�cient to model such flow behaviors, often due to their linear formulation or missing physics. This
necessitates the use of more expensive high-fidelity analysis to better evaluate S&C constraints of a BWB
configuration. This section presents an overview of the geometry, aerodynamic, propulsion, and S&C models
used to analyze an illustrative BWB example configuration. These models are representative of an academic
analysis on a baseline design derived from publicly-available data, and do not necessarily reflect current
Boeing BWB design or analysis techniques.

A Note on Axis Systems

Several reference frames are used in general aircraft analysis for di↵erent engineering disciplines. The aero-
dynamic forces and moments are computed in the stability axes, also called the aerodynamic axes, denoted
(x, y, z)

aero

. The aerodynamic axes are aligned with the free-stream velocity vector ~V1. The S&C analysis
in this work is done in the body axes (x, y, z)

body

, which are aligned with the mean chord line of the vehicle.
The angle between the body frame x

body

and the aerodynamic frame x
aero

is the angle of attack, denoted
by ↵. The angle between the ground frame x

ground

and x
body

is the inclination angle ✓. The angle between
the freestream velocity and the chord line is denoted by �. Additionally, all three angles are related:

✓ = ↵+ � (18)

Figure 2 shows these angles and the three axis systems.

z

body

x

body

˛

VŒ

z

stability

x

stability

x

ground

z

ground

◊

“

–

Figure 2: Axis systems used for aircraft analysis. All three systems are right-handed and have the y axis in
common.
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III.A. Geometry

In this example problem, the geometry engine providing configuration information for analysis is Engineering
SketchPad (ESP).17 ESP links computer aided design (CAD) geometry representations with scripts for
generating analysis geometry input files for a variety of programs. The geometry is defined via a set of
primitives which are either blended using a cubic spline or ruled using linear interpolation to form surfaces.
In this case a BWB configuration is modeled with NACA airfoil primitives.

The BWB analyzed in this paper is inspired by the ERA-0009H1 planform.18 The centerbody airfoils are
slightly reflexed (inverted NACA 4-series) while the wing airfoils are all symmetric NACA 4-series airfoils.
For simplicity, only the wing and centerbody are modeled for the purposes of computing the aerodynamics.
A surface rendering of the BWB is shown in Figure 3.

The planform, shown in Figure 4, consists of four elements: a centerbody section, a fairing between the
centerbody and panel one of the wing, a two-panel wing, and a winglet. There are thirteen control surfaces
cut into the centerbody and wing. The inner three are called the inboard (IB) control surfaces. The control
surfaces on the wing are the outboard (OB) control surfaces.

Figure 3: ESP representation of the BWB geometry.

IB1IB2L

OB1LOB2L

OB3L

OB4L

OB5L IB2R

OB1R OB2R

OB3R

OB4R

OB5R

Figure 4: Top view of the BWB planform with the inboard (IB) and outboard (OB) control surfaces denoted.

III.B. Aerodynamics

In this paper a vortex lattice model is used to evaluate the aerodynamic performance of the BWB configu-
ration. It computes the lift coe�cient, C

L

, drag coe�cient, C
D

, and pitching moment coe�cient about the
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reference point, C
m

ref

. The aerodynamic outputs are functions of the Mach number M , the angle of attack
↵, and the deflections of 7 control surfaces �1 (IB1), �2 (IB2), �3 (OB1), �4 (OB2), �5 (OB3), �6 (OB4), and
�7 (OB5). Together these inputs make up the vector x

aero

.

x

aero

=
h
M ↵ �1 �2 �3 �4 �5 �6 �7

i
T

(19)

In this example problem, only longitudinal S&C characteristics are analyzed. Therefore, the left and right
control surfaces are combined. Thus, a deflection of �1 is equivalent to deflecting both OB1

L

and OB1
R

in
Figure 4. After this simplification, the analysis has n

�

= 7 control surfaces.

Vortex Lattice Aerodynamic Model

The vortex lattice model represents aerodynamic surfaces as a collection of bound vortices. The strengths of
the vortices are determined by solving a linear system of equations. As a result, the solutions produced by
vortex lattice methods are linear. Vortex lattice is useful for determining the lift distribution and induced
drag of a configuration. It is an inviscid method, which necessitates the addition of drag corrections to
account for viscous e↵ects.

The vortex lattice code used for the present work is Athena Vortex Lattice (AVL).19 Although vortex
lattice codes do not in general model compressibility e↵ects, AVL implements a Prandtl-Glauert length
scaling factor to approximate compressibility e↵ects. The AVL representation of the BWB is shown in
Figure 5a. An example solution is shown in Figure 5b. To account for the missing compressibility and
viscous e↵ects, a drag coe�cient o↵set is assumed (or calculated through other methods).

(a) Bound vortex representation of the BWB in AVL. (b) Spanwise delta coe�cient of pressure slices.

Figure 5: AVL half planform and solution.

Aerodynamic Fidelity Functions

As no truth model is available for the modeled aerodynamic quantities, the fidelity functions, denoted as
�
f[ ]

, reflect expert opinion both about the quality of predictive capability of AVL with respect to a BWB
configuration. In this case, the fidelity functions are chosen such that for a baseline operating point the
prediction of the model is some percentage of the baseline value of the quantity of interest.

The fidelity functions for each quantity compute the baseline uncertainty, i.e., the minimum fidelity
uncertainty, as a percentage of the value of the quantity at the baseline point. These percentages are given
in Table 1. Each percentage is equated to the ±3�

f

confidence bound. These confidence bounds have not
been proven, but are used here for illustrative purposes.
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Quantity Confidence Bound Percentage of Baseline Value

C
L

±5%

C
D

±15%

C
m

ref

±10%

Table 1: Example fidelity confidence bounds on ±3�
f

for each aerodynamic coe�cient assigned to AVL at
the baseline point.

Due to the low-fidelity nature of AVL, we expect that the error between the model and the true values of
the aerodynamic coe�cients will grow away from the baseline point. We model the uncertainty as growing
linearly with the magnitude of the quantity of interest away from the baseline while keeping the same level of
confidence in the prediction. This choice models the decreasing validity of the underlying linear aerodynamics
away from the baseline point. This results in the following fidelity functions:

�
f

C

L

(x
aero

) =
0.05 (|C

L

(x
aero

)� C
L

base

|+ C
L

base

)

3
(20)

�
f

C

D

(x
aero

) =
0.15 (|C

D

(x
aero

)� C
D

base

|+ C
D

base

)

3
(21)

�
f

C

m

ref

(x
aero

) =
0.1
�
|C

m

ref

(x
aero

) + C
m

base

|+ C
m

base

�

3
(22)

Here C[ ]
base

are the baseline values of C
L

, C
D

and C
m

ref

which are used as the centers of the fidelity functions.
The 1/3 factor accounts for the size of the confidence interval being 3 times the fidelity standard deviation
on either side of the mean. Note that these fidelity functions are constructed for the purpose of the present
example problem only, and other choices are possible. While these functions could provide a basis for further
uncertainty quantification activities, they should be rigorously refined for future applications.

Aerodynamic Force Calculation

The aerodynamic coe�cients are computed in the stability reference frame. The side force, yawing moment,
and rolling moment are ignored since all of the S&C cases involve only longitudinal motion. The forces and
moments are converted into the body frame using the following equations:

F
X

aero

= (C
L

sin↵� C
D

cos↵)S
ref

q̄ (23)

F
Z

aero

= � (C
L

cos↵+ C
D

sin↵)S
ref

q̄ (24)

C
m

CG

= C
m

ref

+
F
Z

aero

(x
CG

� x
ref

)� F
X

aero

(z
CG

� z
ref

)

S
ref

c
ref

q̄
(25)

M
Y

aero

= C
m

CG

S
ref

c
ref

q̄ (26)

Here S
ref

is the planform area, c
ref

is the mean aerodynamic chord, q̄ is the dynamic pressure, and (x, y, z)
ref

is the location at which the pitching moment C
m

ref

was computed by the aerodynamic code. The forces in the
body frame due to the aerodynamics are denoted by F

X

aero

and F
Z

aero

in the x and z directions, respectively.
To compute the pitching moment, the moment coe�cient about the reference point C

m

ref

is transferred to
the center of gravity (x, y, z)

CG

. The resulting pitching moment coe�cient about the center of gravity is
denoted by C

m

CG

. This coe�cient is then used to compute the moment about the center of gravity due to
the aerodynamic forces M

Y

aero

.

III.C. Propulsion

The propulsion model utilized in this work is taken from TASOPT.20 It is a thermodynamic model of a gas
turbofan engine. The model first sizes the engine based on thrust and combustor stagnation temperature
requirements at the beginning of cruise. For this work it is assumed that cruise starts at the maximum
takeo↵ weight, at 41000 feet of altitude, and at a Mach number of 0.85. This is a conservative assumption
that ensures the resulting engine has a safety margin of thrust.

The model computes o↵-design conditions by iterating on the thermodynamic governing equations using a
Newton scheme. The propulsion model computes the total thrust F

N

tot

in the engine body frame. To compute
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the force of engine in the aircraft body frame, the total thrust is rotated by the engine installation angles.
The engines are assumed to be placed symmetrically about the xz plane to cancel out their contributions to
roll or yaw moments, or to side force. This leaves the longitudinal and vertical forces in the aircraft frame,
denoted by F

X

thrust

and F
Z

thrust

, respectively, and the pitching moment due to the thrust M
Y

thrust

. The total
thrust is summed over the number of engines n

eng

:

F
N

tot

=

n

engX

i=1

F
N,i

(27)

F
X

thrust

= F
N

tot

cos (28)

F
Z

thrust

= �F
N

tot

sin (29)

M
Y

thrust

= F
Z

thrust

(x
CG

� x
eng

)� F
X

thrust

(z
CG

� z
eng

) (30)

Here  denotes the installation incidence angle of the engine, which is the angle between the engine centerline
and the mean chordline of the aircraft. The thrust vector is defined to originate at (x, y, z)

eng

.

III.D. Stability and Control

The goal of the S&C analysis is to compute the flight center of gravity limits and to characterize the
controllability of the aircraft. In this work only the longitudinal stability criteria are analyzed. These
criteria compute the forward and aft center of gravity limits for the BWB as well as the location of the main
landing gear along the longitudinal axis of the vehicle.

We assume that the aircraft is symmetric about the xz plane, quasi-rigid, and fixed mass. Under these
assumptions, and with the additional assumption that the criteria are quasi-steady, the equations of motion
in the body axes simplify to the following:

m(U̇ + g sin ✓) = F
X

aero

+ F
X

thrust

+ F
X

gear

(31)

m(Ẇ � g cos ✓) = F
Z

aero

+ F
Z

thrust

+ F
Z

gear

(32)

Q̇I
yy

= M
Y

aero

+M
Y

thrust

+M
Y

gear

(33)

Here m denotes the mass of the vehicle, U̇ is the acceleration along the x
body

axis, Ẇ is the acceleration
along the z

body

axis, g is the acceleration due to gravity, ✓ is the angle between the ground and the chord
line, Q̇ is the rotational acceleration about the y axis, and I

yy

is the moment of inertia about the y axis.
The external forces and moments, F

X

aero

, F
Z

aero

, M
Y

aero

, F
X

thrust

, F
Z

thrust

, and M
Y

thrust

are computed using
Equations 23, 24, 26, 28, 29, and 30, respectively. The landing gear forces and pitching moment are given
by F

X

gear

, F
Z

gear

, and M
Y

gear

. When the aircraft is in the air the gear forces and moment are set to zero.
For the ground-based criteria we model the landing gear as a nose gear and two main gear. A diagram

of the axis systems is shown in Figure 6. The main gear are modeled as symmetric about the xz plane at
a distance �X

mg

along x
body

and �Z
mg

along z
body

from the center of gravity. Similarly, the nose gear is a
distance �X

ng

along the x
body

axis and �Z
ng

along the z
body

axis from the center of gravity.

z

body

x

body

z

stability

x

stability

˛

VŒ

x
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The longitudinal S&C criteria originate from the United States Federal Aviation Regulations (FAR) Part
25. There are four criteria, two for the forward center of gravity limit, one for the aft limit, and one to set
the main gear location along the longitudinal axis of the vehicle. We now briefly describe each criterion.

Fly-To-Stall

The fly-to-stall criterion requires that the control system be able to achieve stall. It is evaluated by trimming
the aircraft at 1.13 and 1.3 times the stall speed and then flying it to stall with the control devices. The
objective of the criterion is to find the furthest forward center of gravity limit such that the aircraft can be
controlled to stall. The speed that produces the furthest aft limit is used as the critical speed.

Stall Recovery

After the aircraft flies to stall it must be able to recover at a specified rotation rate. The FAR requires
“prompt” recovery, which has been interpreted to mean a recovery rotation rate of at least -5 deg/s2.21 The
objective of this criterion is to find the furthest aft center of gravity limit where this rotation requirement is
met. The criterion is evaluated at both 1.13 and 1.3 times the stall speed, and with no thrust, idle thrust,
and full thrust in order to determine which case is the most critical.

Nose Wheel Steering

The nose wheel steering criterion sets the longitudinal location of the main gear. Using Ref. [22], the main
gear are placed such that at a minimum 6% of the aircraft’s weight is on the nose gear at maximum takeo↵
weight. For this criterion, the center of gravity is placed at the aft limit as determined by the free flight
cases. The computed main gear location is then propagated through the rest of the ground based analyses.
This is done to create the widest possible center of gravity travel range.

Nose Wheel Lifto↵

The nose wheel lifto↵ criterion specifies the pitch-up rotation rate of the aircraft during takeo↵. From Ref.
[23], a minimum rotation rate of 3 deg/s2 is required when the pitch control surfaces are fully deflected to
give an upward rotation. The computed center of gravity is a forward limit and may be further aft than the
fly-to-stall limit.

IV. Results

The BWB example problem includes the disciplines listed above, as well as weight and mass properties
analyses that compute the component weights, weight-based centers of gravity, and moments of inertia.
These disciplines and their models reflect an academic analysis of the BWB configuration. Gaussian Process
surrogates are built for the aerodynamic analysis. The surrogates take in the vector x

aero

(Eq. 19) as input
and estimate the output quantities C

L

(lift coe�cient), C
D

(drag coe�cient), and C
m

ref

(pitching moment
coe�cient about the reference point). One surrogate model is built for each output quantity of interest.
Latin hypercube sampling is used to select 900 sample points for surrogate training. These samples are
generated using the input variable bounds listed in Table 2.

Surrogate models of the AVL estimates for the lift, drag, and pitching moment coe�cient without control
surface deflections are shown in Figure 7. The uncertainty bounds in the plots are ±3�

t

. The uncertainty
away from the baseline point is dominated by the fidelity standard deviation computed in Equations 20, 21,
and 22.

To visualize the center of gravity design space, the pitching moment about the center of gravity is
computed versus the angle of attack for three positions of the center of gravity. These plots are shown in
Figure 8. The center of gravity locations are given as percentages of the mean aerodynamic chord MAC.
The total e↵ect of the uncertainty in the aerodynamic estimates is clearly seen, noting that the calculation
of C

m

CG

about the center of gravity involves all three aerodynamic coe�cients, as shown in Equation 25.
Evaluating each S&C criterion consists of solving an optimization problem to find the furthest forward

feasible center of gravity location for the forward limits and the furthest aft location for the aft limits.
Feasibility is contingent upon the equations of motion being satisfied as well as any other criterion specific
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Input Bounds Units

Mach [0, 0.4] None

↵ [0, 25] degrees

�1 [�45, 45] degrees

�2 [�45, 45] degrees

�3 [�45, 45] degrees

�4 [�45, 45] degrees

�5 [�45, 45] degrees

�6 [�45, 45] degrees

�7 [�45, 45] degrees

Table 2: Input variable bounds for the aerodynamic surrogates.
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Figure 7: AVL aerodynamic coe�cient estimates at Mach 0.3 with ±3�
t

confidence bounds with no control
surface deflections.

constraints. This results in a non-linear system of equations. Our studies have shown that these equations
often have multiple solutions and can be numerically ill-conditioned. In some cases, we observe high sensitivi-
ties to parameter values. These challenges further highlight the di�culty of modeling the S&C characteristics
of the BWB.

We first give the deterministic results of the analysis. The S&C criteria are evaluated using control
surfaces IB1, IB2, OB1, and OB2 as the trim surfaces for the free-flight criteria, and by using all of the
surfaces except the two outboard most, OB4 and OB5, for takeo↵. The stall lift coe�cient was chosen to
be C

L

max

= 1.0. The resulting center of gravity limits are summarized in Table 3. The center of gravity

Case Type CG Location Gear Location

Fly-to-Stall forward 62.5 feet N/A

Stall Recovery aft 66.6 feet N/A

Nose Wheel Steering aft 66.6 feet 71.0 feet

Nose Wheel Lifto↵ forward 62.3 feet 71.0 feet

Table 3: Center of gravity limits computed by each S&C criterion.

travel range computed by the analysis is 4.1 feet. The critical criteria are fly-to-stall and stall recovery. This
center of gravity travel range may be su�cient for closing the aircraft, yet it is possible a better one could
be derived by changing the sizes of the control surfaces, the stall point, or the control allocation.
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Figure 8: Estimates of the pitching moment about the center of gravity computed using Eq. 25 and the
aerodynamic coe�cints in Figure 7. The shaded areas represent the ±3�

t

confidence bounds.

We next examine the impact of uncertainty in the aerodynamic coe�cient predictions on the S&C center
of gravity limits. To do this, best and worst case combinations of the aerodynamic data are considered.
Numerical simulations indicate that the largest center of gravity travel range is obtained, in this case, when:

C+
L

= C
L

+ n�
t

C

L

(34)

C+
D

= C
D

� n�
t

C

D

(35)

C+
m

ref

= C
m

ref

+ n�
t

C

m

ref

(36)

Thus, C+
L

, C+
D

, and C+
m

ref

represent the positive limits of the lift, drag, and pitching moment coe�cients,

respectively. Similarly, the negative limits for the lift C�
L

, drag C�
D

, and pitching moment C�
m

ref

coe�cients
are chosen to narrow the center of gravity travel range:

C�
L

= C
L

� n�
t

C

L

(37)

C�
D

= C
D

+ n�
t

C

D

(38)

C�
m

ref

= C
m

ref

� n�
t

C

m

ref

(39)

The parameter n is an input to the model and represents the level of confidence that we have in the
aerodynamic data. The lower the value of n the higher the degree of confidence that we have in the estimate
of the data.

Table 4 shows the range of changes in the center of gravity limits as a result of uncertainty in the
aerodynamic coe�cients. To obtain these results, we first set n = 1 and evaluate the aerodynamic coe�cients
at their positive limits (C+

L

, C+
D

, C+
m

ref

) and their negative limits (C�
L

, C�
D

, C�
m

ref

). The S&C analysis is then
carried out using each set of aerodynamic coe�cients. We repeat the analysis for n = 2 and n = 3. For each
case in Table 4, the first number represents the center of gravity limit computed using the positive limits
for the aerodynamic coe�cients, while the second number represents the center of gravity limit computed
using the negative limits. Thus, these numbers represent changes in the size of the S&C uncertainty bounds
due to the aerodynamic uncertainty bounds. These data should not be interpreted as confidence intervals,
since no probability distributions have been used to define the inputs, nor do they represent hard limits
on the uncertainty bounds. Rather, these should be interpreted only as possible changes in the size of
the uncertainty bounds as the aerodynamic data become more uncertain. For this analysis, the stall lift
coe�cient was again set at C

L

max

= 1.0 and the same control allocation was used as before.
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Case Type n = 1 n = 2 n = 3

Fly-To-Stall forward [59.2, 65.8] [56.0, 69.3] [53.0, 73.0]

Stall Recovery aft [63.3, 70.0] [60.1, 73.5] [57.0, 77.1]

Nose Wheel Steering main gear location [67.4, 74.6] [64.0, 78.4] [60.6, 82.3]

Nose Wheel Lifto↵ forward [53.2, 71.7] [44.2, 80.7] [35.1, 89.3]

CG Travel Range [4.1, -1.7] [4.1, -7.2] [4.0, -12.2]

Table 4: Changes in the center of gravity limit locations corresponding to each S&C criterion for di↵erent
levels of uncertainty in the aerodynamic coe�cient estimates.

The results in this study show that the uncertainty in the aerodynamic coe�cient estimates have a large
impact on the predicted center of gravity limits. For each level of uncertainty, there are many instances of a
closed design, but taking the worst-case uncertainty levels for the aerodynamic coe�cients produces negative
center of gravity travel ranges. This indicates that our low-fidelity model introduces enough uncertainty that
it is di�cult to state with high confidence that the aircraft design is closed, even if the deterministic results are
satisfactory. There is still significant uncertainty that needs to be reduced through higher fidelity analysis,
since it is known that BWB vehicles have been designed with feasible CG ranges that were successfully
demonstrated in flight tests.24 This is particularly important for a BWB because the center of gravity travel
range is used to set the size of the control surfaces, place the landing gear, and develop strategies for the
loading of cargo and fuel. Additionally, work should be done on refining the low-fidelity confidence bounds
on the AVL estimates of the aerodynamic coe�cients.

It is critical to note that in practice the S&C analysis is only one part of the larger system analysis. For
example, the results in Table 4 show that the Nose Wheel Lifto↵ case is the most critical using the worst case
aerodynamic data and in fact is the only reason the resulting center of gravity travel ranges are negative.
In practice the Nose Wheel Lifto↵ criterion can be relaxed by allowing the aircraft to slightly over-speed
on takeo↵. This could allow the S&C analysis to close even though the Nose Wheel Lifto↵ criterion is not
strictly met, as long as the level of uncertainty in the Nose Wheel Lifto↵ limit is able to be overcome through
over-speeding on takeo↵. However, allowing the aircraft to over-speed impacts the field length constraint
analysis, as over-speeding increases the landing and takeo↵ field lengths. This in turn impacts braking,
weight, and other performance requirements. Thus, a balance must be struck between allowing for some
uncertainty in the analysis of Nose Wheel Lifto↵ and the design of the rest of the system.

This coupling between the di↵erent disciplines highlights the need to define uncertainty requirements for
each part of the analysis. For example, a low-speed condition where the aircraft is well behaved over a large
portion of the operating space may be allowed to carry more margin, i.e., more uncertainty, than a cruise
condition, where small perturbations to the aircraft’s attitude, speed, or weight can have large impacts on
its ability to perform the mission for which it is intended. Therefore, acceptable levels of uncertainty should
be assigned to each quantity in each part of the overall system analysis and quantified with respect to any
uncertain data or parameters that are present. This brings the uncertainty into the design space where it
can be traded against the other design variables, just like any other design parameter such as wing span or
cruise Mach number.

V. Conclusion

This paper highlights the impact of aerodynamic uncertainty on S&C estimates for an example BWB
vehicle. This is due to the high degree of nonlinearity in the S&C model. When relying on highly uncertain
aerodynamic data from low-fidelity models, the resulting S&C uncertainty may be su�ciently large to con-
found conclusions about whether a given vehicle is feasible or infeasible—clearly a level of uncertainty that
is unacceptable for making important early stage design decisions.

These results highlight the critical need for bringing higher-fidelity aerodynamic data into the design
process to reduce the uncertainty. It is not clear what, if any, level of CFD simulation will be su�cient
for accurately capturing the important nonlinear behaviors present in this problem. To do so will require
multifidelity and surrogate-based strategies to address computational costs. Multifidelity analysis aims to
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combine the speed of low-fidelity analysis with the confidence of high-fidelity models to e�ciently and
e↵ectively explore complex, non-linear design spaces. An e↵ective multifidelity methodology requires that
the uncertainty associated with each analysis model be quantified, either relative to other model estimates or
relative to some truth model (or truth data). This then permits a principled approach to combining estimates
from multiple models, while taking into account their relative predictive abilities and relative costs. The
Gaussian process surrogate models and uncertainty models used in this paper provide a natural setting in
which to introduce multiple fidelity analyses, using the framework of Ref. [25].
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