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Abstract
We present an efficient, modular, and feature-rich framework
for automated generation and validation of complex structures,
suitable for tasks that explore a large space of structured values.
Our framework is capable of exhaustive, incremental, parallel,
and memoized enumeration from not only finite but also infinite
domains, while providing fine-grained control over the process.
Furthermore, the framework efficiently supports the inverse of
enumeration (checking whether a structure can be generated and
fast-forwarding to this structure to continue the enumeration)
and lazy enumeration (achieving exhaustive testing without
generating all structures). The foundation of efficient enumera-
tion lies in both direct access to encoded structures, achieved
with well-known and new pairing functions, and dependent
enumeration, which embeds constraints into the enumeration to
avoid backtracking. Our framework defines an algebra of enu-
merators, with combinators for their composition that preserve
exhaustiveness and efficiency. We have implemented our frame-
work as a domain-specific language in Scala. Our experiments
demonstrate better performance and shorter specifications by up
to a few orders of magnitude compared to existing approaches.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging — testing tools; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features —
frameworks
General Terms Algorithms; Languages; Verification
Keywords Dependent enumeration, data generation, invariant,
pairing function, algebra, exhaustive testing, random testing,
lazy evaluation, program inversion, DSL, SciFe

1. Introduction
Automated data structure generation techniques are useful
in many contexts: software testing [10, 11, 18, 45], synthesis

[30, 32], bounded and unbounded verification [3, 15, 25, 28],
theorem proving [6, 12], and others [4, 9, 22, 24, 31]. The
structures in question are not just the common algorithmic
data structures that are the backbone of common libraries,
but also domain-specific structures, such as abstract models
of programs in compilers, image formats, or DOM trees in
browsers. A complex data structure is often characterized not
only by an inherent structure (for example, being a tree) that
can be defined with typing information, but also by specific
constraints or invariants (for example, that the tree is ordered
or balanced). One of the main challenges in automated structure
generation is meeting these constraints. In practice, many tools
use generate-and-test approaches, which generate all possible
values, testing each one in turn to filter out those that fail to
satisfy the invariant. This quickly becomes unfeasible when
the vast majority of generated instances fail to pass the test.

State of the art structure generation techniques. Over
a decade of research in automated testing has brought a
variety of approaches that differ in the trade-off they make
between expressiveness, efficiency, flexibility and ease of use
[4, 11, 13, 14, 18, 28, 42–44]. Our approach focuses primarily
on providing what has been called bounded-exhaustive testing
(BET), which amounts to generating all structures within a given
bound [45] (in contrast to BET tools, however, it also supports
enumeration from unbounded, infinite domains). In the context
of software testing (the main application of SciFe), this approach
has the advantage of high test coverage. It covers all “corner
cases” within the given bound that might otherwise be difficult
to construct [24]. A similar approach is taken in model-checking
tools such as Alloy [25], where the claim that high proportion
of bugs can be found by exhaustive consideration of all cases
up to some size is referred to as the small scope hypothesis.

BET approaches face a trade-off between the expressiveness
of specifications and the performance of the generation
process. Declarative BET techniques (or filtering as defined
in [18]) allow writing specifications as declarative predicates;
the tool then searches for valid structures that satisfy them
[4, 28, 43]. Constructive (or generating) approaches require
more prescriptive specifications which directly construct valid
structures [10, 11, 42], and thus do not require explicit search.
Later work introduced hybrid techniques, in which both types of
specifications are used in conjunction, aiming to hit a sweetspot
in the tradeoff space [18, 40].
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The design space. Different generation techniques provide
different sets of features. While some techniques rely on a costly
generate-and-test approach [22, 32, 42], efficient techniques
usually avoid explicit enumeration of all possible structures [13,
28, 43]. Most of the prior work employs some form of backtrack-
ing: with a constraint solver [28, 40, 43], using custom search
[4, 40], or non-deterministic execution [18]. Often, the search
problem is offloaded (after some translation) to a search engine,
which means that the generator specifications highly dependent
on the intricate details that affect the search. Although declara-
tive approaches allow expressing constraints in a natural way, the
performance of the generation process becomes highly sensitive
to to the details of how the specification is written, sometimes un-
predictably so [4, 30, 43]—seemingly equivalent specifications
may differ drastically in performance [13], § 8.1. Consequently,
in order to improve the impractical performance of generation,
specifications become too complex and verbose, and may need to
be tweaked, making them more complex and verbose [13, 40]).
The key advantages of declarative specification—namely con-
cise expression of the desired properties and the ability to com-
pose specifications in a modular fashion—may thus be lost.

Moreover, separating search parameters from the generator
specification makes it harder to bound the search and provide
incremental generation [4, 32, 35, 42]. This separation may
significantly hamper the ability to control and reason about the
generation process, which is necessary for performance [13].
Some tools eagerly explore a complete search space within
the given bounds, even for enumeration of a few candidate
instances. Such coarse bounds are undesirable since tools
become very inefficient for larger bounds (and unusable when
the bound is effectively infinity) [22, 32, 42], § 8.1.

In turn, many of the constructive approaches avoid searching
unnecessary search space thus leading to efficient generation
[11, 14, 42, 44]. These approaches take advantage of properties
that are naturally easier to express with constructive definitions
for certain domains. (For instance, it can be easier to construct
a sorted list from a set of elements, or a sequence of random
numbers sampled from a generator with an adequate distribution,
than to express constraints that describe such results). However,
constructive approaches tend to suffer from lack of expressive-
ness and resort to a form of generate-and-test in the presence of
complex structural invariants [11, 14, 42]. For generating data
structures with invariants that cannot be captured within the
expressive power of their constructive definitions, performance
may asymptotically reach that of generate-and-test, even with
optimizations (such as lazy evaluation and memoization) [13].

Motivation. Although achievable in different ways, including
straightforward generate-and-test approaches, the main
challenge in BET comes from the efficiency of generation and
the complexity of generator specifications. The premise of this
work is that there are sweetspots in the tradeoff space yet to
be explored. In particular, it seems that many of the drawbacks
of search-based approaches arise precisely from one of their
appealing aspects: namely a clean separation of the expression

of the constraint from the generation process. While this
separation of concerns does allow use of off-the-shelf solvers,
a major opportunity is lost by decoupling the structure of the
specification from the structure of the generation. This work
aims to explore this opportunity with the opposite strategy, by
using an expressive algebra of enumerators to make generation
compositional over the structure of the constraint to achieve both
expressiveness for a wide range of structures and efficiency in
the generation process. It fills the gap between the specification
and the search process, while providing direct control of the
search process itself, without offloading to external procedures.

Our new framework: dependent enumeration. We present
a new framework, implemented within our tool SciFe1,
for enumeration of complex data structures, with better
performance than previous tools and additional features
besides exhaustive generation, such as the ability to recognize
structures, incremental and lazy enumeration, and non-standard
enumeration orders (for example efficient access to a structure
in the middle of the enumeration series).

The framework is based on enumerator objects and enumera-
tor combinators. The enumerators are defined as computable bi-
jective functions between subsets of the natural numbers and val-
ues of the respective encoded sets of structures. This definition al-
lows efficient querying of an enumerator for elements at particu-
lar positions in the enumeration sequence. Enumerator combina-
tors provide means of both composing and refining enumerators.
Additionally, when enriched with dependent enumerators that
are mappings between values and other enumerators, our frame-
work achieves expressiveness and flexibility for constructing
enumerators that efficiently enumerate complex data structures.

A key aspect of SciFe is that its expressive framework makes
it convenient to write and reason about the generation process by
taking complex invariants into account. Whilst developers write
code that defines structures to be enumerated and ultimately
guides the generation process, SciFe allows them to focus on the
important aspects of constructing a data structure at hand rather
than on the mechanical production of its instances. Instead of
manually constructing a data structure, the developer defines an
enumerator that encodes a whole class of structures that can be
queried to enumerate many valid instances that satisfy specified
structural properties and invariants.

Enumerators in SciFe are specified in a constructive, albeit
functional style, with a domain-specific language (DSL) that
allows concise specifications that can express efficient gener-
ation of a wide range of complex structures. SciFe guarantees
exhaustive enumeration of encoded values along with multiple
useful features: modularity, which allows treating enumerators
as self-contained building blocks, and thus allows debugging,
reusing, composing, refining and optimizing them; memoization,
which allows storing and sharing computed intermediate results,
making enumeration more efficient; random access, which
allows random testing, in addition to exhaustive enumeration,

1 SciFe is an an anagram of initial letters from “Scala Framework for efficient
Enumeration of data structures with Invariants”

38



by choosing data structures to enumerate at random index
in the series; fine-grained control of enumeration, which
allows incremental enumeration, and specialized enumeration
orderings; expressiveness for complex structures with dependent
enumeration, where constraints are associated with enumerators
to avoid unnecessary search; flexibility of combinators, which
allows arbitrary generation and transformation of enumerated
instances; enumeration from infinite domains, for sequences
of structures that are naturally unbounded; performance guar-
antees of arbitrarily complex enumerators, by relying only on
well-defined composition operators with predictable behavior.

Exploring new portions of the design space for data structure
generation opened up opportunities for novel features:

• invertible enumeration effectively runs enumeration
backwards and computes an index of a given structure if
it can be enumerated by an enumerator;
• enumerator as an invariant, as a form of inverse, allows

enumerators to be used both for efficient enumeration and
for structure recognition, thus suitable both for preconditions
and postconditions of method contracts;
• fast-forwarding starts enumerating from the point of a given

structure, in enumerators of potentially large domains;
• parallelization builds upon efficient direct access and allows

distributing work and sharing intermediate results across
parallel worker threads.
• lazy enumeration allows coupling of an enumerator and

code under test to avoid exhaustively enumerating test cases
that are guaranteed to pass the test.

SciFe also allows generation of graph-like structures, whereas
many predecessor tools have been limited to trees.

SciFe is implemented as an embedded DSL in Scala that
expresses the enumerator algebra in a generic and modular way.
SciFe expresses concise generators that outperform prior tools
by orders of magnitude, as shown by experimental comparison
with a wide range of tools for exhaustive generation, on both
existing and new benchmarks. Furthermore, by offering unique
additional operations that go beyond exhaustive generation,
SciFe demonstrates applicability to a variety of new scenarios.

2. Motivating Examples
Consider the problem of writing an operation for key-ordered
(search) trees. Such a tree is given by a recursive type definition,
as well as a set of invariants, including that tree nodes are
ordered (that is, an in-order traversal of the tree would give
a sorted list). In Scala, we can define a simple tree that maps
integer keys using a set of case classes such as the following2:
trait Tree[T]; case object Leaf extends Tree[T]
case class Node[T](l:Tree, k:Int, v:T, r:Tree) extends Tree[T]

We might want to test the preservation of the invariant on
some operations. Consider a method for inserting key x into

2 trait and case object mark abstract and leaf nodes in type hierarchies [37]

the given Tree instance (for brevity, we omit the function body
and the field v because our concern is with the invariant):
def +(x: Int): Tree = { require(isBST); ... } ensuring {
(res: Tree)⇒ res.isBST && res.keys == keys ++ Set(x) &&
res.size == size + 1 || res == this }

The method performs a functional update, returning a new tree
extended with a given integer key. Whereas type declarations
ensure that the result is a tree, they provide no guarantee that
the tree is ordered. To capture the preservation of such an
invariant, we may use standard Scala preconditions (require)
and postconditions (ensuring) to state that + takes and returns
a tree that satisfies the predicate isBST [37]. To test this method,
we can use runtime checking of contracts on each method
invocation (e.g. as a part of a unit test), but still need to come
up with test inputs, namely valid Tree instances, to exercise the
operation. Using SciFe, we can instead provide an enumerator
of trees up to a given size, and use it in both the precondition
and postcondition: in the former to generate well formed trees,
and in the latter (as an alternative to an executable predicate)
to check that the result is well formed.

Exhaustive testing of search trees using SciFe. Binary
search trees can be constructed in an intuitive way by reusing
the inductive property of the structure: we can construct a tree of
size s by combining a value for the root with two smaller trees
with sizes sl and sr, such that sl+sr = s. We may formulate
such strategy for construction as a recursive function that
guarantees construction of trees of a particular size and range of
values. In a functional programming language, we can leverage
a monadic definition of such a construction. Here is a suitable
enumerator, defined using SciFe:
import enum._ // import SciFe’s DSL
val bst_fc = rec[(Int, Range), Tree]({ case (self, (s, r))⇒

if (s == 0) Leaf // enumerate only Leaf
else for (m← r; // choose root value
rl = r.start until m; rr = m+1 to r.end; // define ranges
sl← 0 until s; sr = s−sl; // choose subtree sizes
tl← self(sl, rl); tr← self(sr, rr); // enumerate subtrees

) yield Node(tl, m, tr) })

The enumerator exploits the inductive structure of trees by
combining smaller subtrees, while respecting the orderedness
property. The function rec is part of SciFe’s DSL (see § 7.1) and
is similar to the Y-combinator: its argument self is matched to the
enumerator’s recursive definition. The rest of the definition is
standard Scala code that is transformed into an enumerator (with
implicit conversions; see § 7.1). The argument (s, r) represents
the given size and range of constructed trees. The enumerator
starts by enumerating all values from the range for the root ele-
ment m∈r. Due to orderedness, the chosen m in turn restricts the
possible ranges for the left rl and right rr subtrees. Similarly, it
enumerates all possible sizes for the left subtree sl from the range
[0..s-1] and from that computes the right tree size sr. Using the
computed size and range, self(sl, rl) recursively constructs left
subtrees, which are then enumerated in tl (and similarly for the
right subtrees tr). The last line of the for-comprehension com-
pletes the inductive construction by constructing the final trees.
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Although Scala’s type system invokes implicit conversion
that transforms the given for-comprehension code into an
enumerator, SciFe uses a modular combinator framework
to construct enumerators, control memoization of shared
intermediate results, and optimize enumeration. To enable
efficient enumeration and all features of SciFe, the developers
write the following definition:
val bst = rec[(Int, Range), Tree]({ case ((s, r), self)⇒ {

if (size == 0) Leaf
else { // corresponds to previously given for
((0 until size) ⊗ range) �
(self ↓ { case (ls, m)⇒ (ls, r.start to (m−1)) } ⊗
self ↓ { case (ls, m)⇒ (s − ls − 1, (m+1) to r.end) }) ↑
{ case ((_, root), (lt, rt))⇒ Node(lt, root, rt) }

}}})

This enumerator definition follows the same idea as the for-
comprehension definition given above, but illustrates the more
general DSL provided by SciFe for defining enumerators. (This
enumerator definition is explained in more details, in § 3.1.)

To exhaustively generate test inputs, one might write:
val e = bst_fc(15, 1 to 15) // enumerate all trees of size 15
for (tree← e) test(tree) // feed into test

This constructs trees of size 15 and range [1..15] and feeds
them to some function test. Enumerators also support efficient
indexing of structures, which is suitable for randomized testing:
for(i← 1 to 10) test(e(rnd.nextInt(e.size))) // 10 random trees

Rather than enumerating sequentially, this code randomly
generates 10 integers within the bounds of the enumerator
(given by e.size) and uses them to index into the enumeration
sequence defined by e to obtain random trees.

The enumerator, due to the inductive construction, computes
all subtrees tl and tr only once and reuses them through
memoization when constructing bigger trees. For trees of size
15 and a range of values [1..15], the enumerator enumerates
all binary search trees (of which there are more than 9.6·106),
in just a few seconds. This is orders of magnitude faster than
state-of-the-art tools such as Korat, UDITA, HyTek, and
constraint logic programming; see § 8.1.

Enumerators instead of contracts. SciFe alleviates the need
to write an additional predicate to check the invariant after ex-
ecution, by employing the enumerator as a structure recognizer.
In addition to generating a data structure encoded at a particular
index, the enumerator can play the role of an oracle—given
a data structure, it answers with true or false, whether the
data structure can be generated with the enumerator (and thus
also whether it is correct)3. We can easily turn our enumerator
into an oracle to test insertion without any additional contracts:
for (x← 1 to 15; tree← bst(14, 1 to 15)) {

val newT = tree + x // insertion without contracts
assert(newT == tree || bst(15, 1 to 15).member(newT)) }

Themember operation effectively runs the enumerator definition
bst backwards; it starts from the end, decomposing the tree

3 Moreover, enumerators can return indexes of structures in the enumeration
series and fast-forward to them, § 6

and trying to recognize components using the enumerator’s
inner structure; see § 6.2. In addition to saving developers’
effort, enumerators jointly optimize and reuse memoization
for enumeration and membership. As a result, the fast structure
lookup provided here outperforms naively executing an
ensuring predicate by 4.55x on average for inserting values
x∈(1..15) into trees of size 14; see § 8.3.

Lazy enumeration. The developers can also request lazy
enumeration in our framework, which can provide savings
especially in cases where a large portion of generated structures
does not need to examined by the code at hand. This feature
follows the idea of lazy evaluation, a technique which delays
computation until its results are needed. In the case of lazy
enumeration, the enumerator definition and the testing method
remain the same; the developer simply includes a different set
of implicit definitions when specifying the enumerator:
import enum.lzy._ // import "lazy" enum combinators
val bst = rec(...) // define enumerator as before

The result of this import is that the enumerator is embedded
into the field computation of the structure and is triggered only
when needed. The default enumeration is strict as laziness may
result in unpredictable computations and overheads; this is
because SciFe uses costly Scala lazy values [37]; see § 7. Lazy
enumeration can be performed with a for-comprehension:
for (v← 1 to 15; e = bst(14, 1 to 15); t← e) { // skips trees
e.reset; test(t + v) } // insert v and track accesses

The enumerator still accepts queries for enumeration at a given
index, but the for-loop now achieves exhaustive enumeration
without actually generating all trees. The key insight behind
this feature is that if an operation (for a given input) does not
use a part of a data structure, it will surely not use it if the rest
of the structure remains unchanged. The developers just need to
“signal” tracking for a new input with reset. The enumerator in-
ternally tracks accesses to the structure and uses the information
to skip enumeration of whole sets of structure parts; see § 6.1.
In the running example, lazy enumeration avoids enumeration
of 23.2M, about 62%, of the total number of possible key-tree
pairs and still guarantess exhaustive coverage; see § 8.3.

Parallelizing enumeration. Thanks to the ability to access
elements at a given index, it is straightforward to enumerate
structures in parallel using SciFe. The following import state-
ment constructs an enumerator that permits concurrent access:
import enum.par.lockFree._ // concurrency combinators
val bst = rec(...) // define enumerator as before
val enum = bst(15, 1 to 15) // trees of size 15

Here we import lock-free combinators for memoization, which
perform recomputation rather than waiting. The developers
can choose a favorite concurrency construct, such as Java
concurrent executors, and enumerate with numThr threads:
def runner(e: Enum[Tree], b: Int) = new Runnable {

def run = { for(i← b until e.size by numThr) test(e(i)) } }
val ex = Executors.newFixedThreadPool(nThr)
for (t← 0 until nThr) ex.submit(runner(enum,t)) // start
ex.shutdown // shutdown and wait for termination
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Each worker enumerates a disjoint set of trees by enumerating
a sequence that consists of every numThr-th element starting
from an appropriate index (i.e. the enumeration step is numThr,
instead of 1 as used previously). Having separate workers com-
pute distinct instances of trees while still sharing intermediate
results leads to great potential runtime improvements; see § 8.4.
With 8 cores (and nThr==8), parallel enumeration yields a 4.1x
speedup over execution with a single thread.

Benefits of our framework. The running example shows
a new perspective on practical checking of code correctness.
Efficient exhaustive enumeration and recognition in SciFe
alleviate some limitations of other approaches applicable to such
a scenario, such as random testing, where finding the appropriate
input gets challenging due to generator’s distribution [9, 24],
and (unbounded) verification, which provides strong guarantees,
but might be more restrictive in supported specifications.

The given enumerator demonstrates that encoding the invari-
ant in the process of generation leads not just to more control and
efficiency, but also more concise specifications. Some BET tools
require writing finitization procedures, in addition to invariants,
to control the search. Korat [4], e.g. requires more than 100
lines of specification (of imperative, Java) code, much more
than the given enumerator; see § 8. SciFe’s conciseness stems
from leveraging Scala constructs: once the DSL is imported into
the scope, the enumerator uses only combinators and rec (while
the rest of the code is standard Scala, and the type inference and
implicit conversions trigger the necessary construction, while
for loops perform enumeration). Note that SciFe is implemented
as an embedded DSL within the host language—there is no
need for additional code compilation; see § 7.1.

The binary search tree example illustrates the key insight be-
hind this work: by providing different modes of operation of the
same combinators, the enumerator framework can enhance enu-
merator definitions with optimizations and new features. Note
that while the given for-comprehension enumerator definition
bst_fc demonstrates the idea and is a correct way of constructing
enumerators, it is the direct application of the DSL that enables
all features. The modularity of the given enumerator, where
different enumerators are responsible for enumerating parts
of the data structure, enabled further observations: generation
according to a specification is just one of the two coupled tasks,
alongside invariant checking, which allows the framework to
reverse the behavior of combinators and transform enumerators
into efficient checkers; and, enumerators can observe accesses
to the parts of enumerated structures and use the feedback to
control and optimize the exhaustive enumeration. Moreover, the
running example shows positive impact of combining certain
features, where the performance of both enumeration and
recognition benefit from memoization. Note that these features
do not require the developer to modify the specification; the
enumerator is adapted to the data structure interface, while both
the definition and code under test are treated as black box.

Support for a variety of data structures. The running exam-
ple demonstrates the main idea behind expressive enumeration,

which is also applicable to a variety of more complex data struc-
tures, such as Red-Black trees, B-trees and image formats; see
§ 8. In addition to the given enumerator, SciFe allows enumerat-
ing search trees as pairs of values that encode the tree structures
and key ordering separately. This is similar to composition
of orthogonal specifications in declarative approaches [43]; in
addition, it brings additional performance gains, see § 8.1. Fur-
thermore, constructive definitions in SciFe are geared towards,
but not limited to, inductive and immutable data structures—
SciFe supports enumerating arbitrary mutable data structures,
possibly defined in external libraries, since it does not require
their definitions, but only their constructors to be exposed.

Unlike related tools that focus only on tree-like structures
[14, 42, 43], SciFe supports graph-like structures by leveraging
specialized encoding of inductive algebraic representation of
graphs (similar in spirit to the functional-style inductive graphs
[16]). § 8 presents, among others, results for enumerating
graph-like structures, while § 7.3 describes how graph structures
are enumerated with SciFe.

3. Overview of SciFe
SciFe enumerators provide efficient encoding and enumeration
of sets of elements from particular domains. We next illustrate
the basic constructs of our enumerator DSL and their usage.

3.1 Basic Enumerator Concepts
In the implementation of SciFe, the basic enumerator type that
enumerates a set elements of type T is defined as:
trait Enum[T] extends Function[Int, T] {

def apply(ind: Int): T // enumerate ind-th structure
def hasDefiniteSize: Boolean // whether it is finite
def size: Int }

Enum[T] can be viewed as a function from a subset of natural
numbers to values of type T (we restrict the function to be bijec-
tive; see § 4.1). The apply method defines the indexing function
which returns encoded values—in Scala, this allows us to write
e(i), which returns the i-th element of the set of elements encoded
by e. The size of the encoded set of elements can be retrieved with
e.size. Only values in the range [0..e.size-1] are valid inputs to the
indexing function if hasDefiniteSize==true; otherwise, the enu-
merator is infinite and can be indexed with any positive integer.

SciFe provides the means for transforming standard program-
ming language elements, such as collections and functions, into
enumerators; see § 7. Enumerator objects together with com-
binators form an enumerator algebra; see § 4. Using enumerator
combinators developers can compose and refine existing enu-
merators to build more complex ones. Tables 1 and 2 summarize
combinators in SciFe (the combinators have both unicode and
ASCII variants); we describe them in more detail in § 4.1.

Enumerator of dates. To demonstrate basic usage of the
DSL, we construct an enumerator that exhaustively generates
valid, standard Java, Date objects. This simple example shows
how developers can use combinators from Table 1 to build
interesting enumerators by composing simple ones.
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name syntax semantics/type

merge x⊕y disjoint union of x and y
(x:Enum[T], y:Enum[T])⇒Enum[T]

product x⊗y Cartesian product of x and y
(x:Enum[T], y:Enum[V])⇒Enum[(T, V)]

map x↑f map elements of xwith f
(x:Enum[T], f:T⇒V)⇒Enum[V]

filter x�p filter elements of xwith p
(x:Enum[T], y:T⇒Boolean)⇒Enum[T]

Table 1: Basic enumerator combinators.

val dates = (1 to 31) ⊗ (1 to 12) ⊗ Stream.from(2015) �
{ isValid(_) } ↑ { case ((d, m), y)⇒ new Date(y, m, d) }

The enumerator encodes all possible dates starting from the
year of 2015. We compose enumerators of date, month, and
year ranges, to enumerate their Cartesian product using the⊗
combinator. Note that there is an infinite number of constructed
tuples because the enumerator for years is infinite (which is
constructed from infinite Scala streams [37]). The� combinator
filters the tuples using the isValid function defined elsewhere
(which determines whether the given values for date, month, and
year represent a valid date, taking into account, for example, leap
years). Valid tuples are then transformed with the ↑ combinator
and the anonymous function that constructs Date objects.

The enumerator can be used in different ways:
dates.hasDefiniteSize // returns false
for (i← 3 to 365 by 7) print(dates(i)) // Sundays in 2015
dates(302) // enumerate start date of OOPSLA 2015
for (d← dates) yield print(d) // prints all dates (diverges)

In addition to enumerating by invoking the indexing function di-
rectly, SciFe allows treating enumerators as standard collections
(through the use of implicit conversions § 7.1), thus we can
perform enumeration using, for example, for-comprehensions,
as shown in the examples so far.

3.2 Dependent Enumerators
In addition to having enumerators as mappings between natural
numbers and values, which we will refer to as first-order, we
extend the framework with dependent enumerators. Dependent
enumerators add the necessary expressiveness to the algebra
to allow efficient enumeration of complex structures, such
as binary search trees (as shown in § 2). In comparison to
first-order enumerators, rather than encoding a single set
of values, a dependent enumerator encodes multiple sets of
values—one per each value in the function’s domain.

Dependent enumerators implement the Depend[I,O] trait:
trait Depend[I, O] extends Function[I, Enum[O]] {

def apply(p: I): Enum[O] } // returns an enumerator

Effectively, a dependent enumerator represents a function I
⇒ Enum[O] from arbitrary values to first-order enumerators,

name syntax description/type

merge x⊕y point-wise disjoint union of x and y
(x:Depend[D,T], y:Depend[D,T])⇒Depend[D,T]

product x⊗y point-wise Cartesian product of x and y
(x:Depend[D,T], y:Depend[D,V])⇒Depend[D,(T,V)]

inmap x↓f map dependent argument of xwith f
(x:Depend[D,T], f:V⇒D)⇒Depend[V,T]

bind z�x enumerate elements of x according to z
(z:Enum[D], x:Depend[D,T])⇒Enum[(D, T)]

Table 2: Dependent combinators.

thus encoding a first-order enumerator for each value p of the
dependent parameter4.

To allow composing and refining dependent enumerators,
the DSL supports the dependent combinators given in Table 2.
As the example in § 2 illustrates, dependent enumeration
adds the necessary expressiveness for defining efficient
enumeration of data structures with complex invariants. By
having enumerators depend on parameter values, they allow
expressing constraint propagation during the generation
process, instead of enumerating a larger space of structures and
filtering undesired elements. This effectively allows capturing
complex invariants by making generation compositional over
the structure of the desired constraint.

Dependent enumerator of binary search trees. The
enumerator definition bst, given in § 2, uses combinators
and enables efficient indexing by using optimizations and
memoization. It defines a dependent enumerator that depends on
a pair of values (s, r), of type (Int, Range), which represent the
tree size and range of values—for a given pair of values (s, r), bst
enumerates all instances ofTree that are valid binary search trees
of size s and for which integer values of field v, for any node
in the tree, belong to range r. We write definitions as (partial)
functions; the rec construct then creates a dependent enumerator
of type Depend[(Int, Range), Tree] from them; see § 7.1. The
construction of trees follows the same case analysis as described
for the enumerator bst_fc, defined with a for-comprehension:
for size 0, we enumerate only the Leaf instance, while for s≥1,
we choose size for the left subtree and a root value and compute
pairs of values for size and range to enumerate both subtrees
recursively. The ↓ combinator transforms enumerators so that
they depend on pairs (ls, m) and can be used to enumerate
subtrees with the recursive call self. The combinator ↑ maps
the resulting tuples and constructs final trees.

As mentioned in the previous section, the difference between
the two definitions, bst and bst_fc, is that for-comprehensions
impose (a monadic) ordering of values through the computation,
while direct combinator application allows: more control over
the enumeration orderings (for reasons similar to the advantages

4 If we view enumerators as a more precise description of types, then dependent
enumerators correspond to dependent-types
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of arrows over monads, see [23]), including enumeration
from infinite domains (see § 5.2); modular composition with
combinators; and optimizations (see § 7.2).

4. Enumerator Framework
This section formalizes the enumerator framework as an algebra
expressible with a simple language and defines the semantics
of enumeration. One appealing property of our enumerators
is that they have very natural mathematical foundations. SciFe’s
DSL implements the core enumerator language and guarantees
exhaustive enumeration, efficiency and composition.

4.1 Enumerator Algebra
The enumerator algebra defines enumerators as mathematical
objects, with combinators as its operations. One of the key
insights behind SciFe is that basing a generator on a small,
well-defined algebra—with only a small number of enumerator
classes and combinators for their composition—is sufficient
to express enumeration of complex structures. Additionally,
all the features and strategies of enumeration are then easily
defined by extending the algebra. All the presented enumerator
features are defined as extensions of the algebra; see § 6.

First-order enumerators. The basic type of an enumerator is
the first-order enumerator. In general, it can encode enumeration
of both finite and countably infinite sets. Formally, it represents
a bijection from a subset of natural numbers.

If p is a function (by which we mean a total function), then
dom(p) denotes its domain. Let N0={0,1,...} denote natural
numbers (non-negative integers), A 1:1−→B denote a bijective
function from A to B, and N0..|S| denote {0,...,|S|−1} if S
is finite and N0 otherwise.

DEFINITION 4.1. A first-order enumerator is a pair (S, p),
where p :N0..|S|

1:1−→S is a bijective function from a subset of
natural numbers to a countable set of “encoded” elements S.

Thus, we restrict the domain of the function to natural numbers
smaller than the cardinality of the set of encoded elements
(dom(p) = N0..|S|). As shown in § 3.1, in SciFe, Enum[T]
designates a first-order enumerator e=(S,p)where all elements
of S are of type T , i.e. ∀x∈S.x :T .

The behavior of the indexing function, and thus the process of
enumeration, is completely determined by the mapping function
p of the respective enumerator object. In turn, mapping functions
are constrained (but not uniquely determined) by the rules of
constructing atomic first-order enumerators (see § 7.1) and their
composition with combinators (as presented subsequently).

Dependent enumerators. Dependent enumerators are simply
functions from some parameter set P to first-order enumerators.
Therefore, applying a dependent enumerator to a parameter
results in a first-order enumerator. Let π1(e)≡S simply project
the set of encoded elements of e=(S,p).

DEFINITION 4.2. A dependent enumerator ed is a tuple
(E, t) where E is a set of first-order enumerators (as

defined in Definition 4.1) and t is a function D → E
that maps values of D to enumerators from E, where
∀i,i′∈D.i 6= i′→π1(t(i))∩π1(t(i′))=∅.
Effectively, dependent enumerators encode, for each value of
the “dependent parameter” d ∈ D, a corresponding (inner)
first-order enumerator. The condition π1(p(i))∩π1(p(i′))=∅
restricts the dependent enumerator to encode inner enumerators
that enumerate disjoint sets for different dependent values
(to preserve bijectivity, as discussed subsequently). In SciFe,
enumerator Depend[I, O] designates ed = (E,t), where t has
the type I→Enum[O] and encodes the inner enumerator t(d) for
a value d: I, such that d ∈D. Note that we do not restrict the
domainD; dependent enumerators can be queried with (i.e. to
depend on) an arbitrary type of values, including tuples of values.

Combinators. Combinators represent operators of the
enumerator algebra. They apply to enumerators and other
values (such as functions). We define combinators as rules that
govern the set of operands to which a combinator can apply
and the result of such application.

DEFINITION 4.3. A combinator @ defines a setC@ of tuples
(e,v,er) where e and er are enumerators, v is an enumerator
or a value, and applying @ to e,v yields er, denoted er=e@v.

We say that er is a composite enumerator composed with @.
This definition serves us to define the semantics of combinator
applications within our language. For example, C⊕ restricts
the application of er = e1⊕e2 to tuples (e1,e2,er) where er
encodes a disjoint union of elements from e1 and e2. We define
the instantiated combinators in more details, in § 4.3.

Remarks on properties of enumerators. Let us examine
some consequences of our definitions for the implementation of
enumerators. As per Definition 4.1, for a first-order enumerator
e=(S,p), the bijectivity of p implies that:

• each enumerated element belongs to the encoded set, i.e.
∀i∈N0..|S|. p(i)∈S
• each encoded element gets (eventually) enumerated, i.e.
∀s∈S.∃i∈N0..|S|. p(i)=s

To have a valid enumeration of a countable set S, the mapping
function p :N0..|S|

1:1−→S must define a deterministic ordering
according to which e (eventually) enumerates all elements from
S. In case of S being infinite, for each element s ∈ S, there
must exist a finite sequence of encoded elements in which s
is enumerated. Effectively, enumerators need to enumerate
increasing subsets of S with increasing finite prefixes of
the enumeration sequence, exhaustively without duplicates.
Since composite enumerators combine encoded sets from
multiple, potentially infinite, enumerators, this imposes intricate
restrictions on the underlying mapping functions; see § 5.

To ensure sanity of the framework, the enumerator algebra
must be closed over the instantiated combinators. The closure
is guaranteed by the inference rules that restrict combinator
applications according to the underlying enumerator types and
specific instantiated combinators, as presented subsequently.
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V (x)=ex ex=(S,p)
r= |S|

V,let x′= |x| in t
−→ (V,y 7→r),let x′=y in t

(R-SIZE)

V (x)=ex ex=(S,p)
V (y)=r p(r)=r′ r∈dom(p)

V,let x′=x[y] in t
−→ (V,z 7→r′),let x′=z in t

(R-IND)

V (x)=ex ex=(Sx,px)
V (y)=v r=ez (ex,v,ez)∈C@

V,let x′=x@y in t
−→ (V,z 7→r),let x′=z in t

(R-COMB)

Figure 1: Reduction rules for enumerators.

P ::= l program
l ::=let x= t in l | x let binding, variable
t ::= l | x[y] | term, indexing function

|x| | x@y size, combinator application

Figure 2: Syntax of the core language and the fragment, where
x,y represent variables.

V ::= ∅ | (V,y 7→r) environment (y /∈dom(V ))
v ::= e | v values
e ::= (S,p) enumerator

Figure 3: Elements of the core language and the fragment.

4.2 Enumerator Language
We formalize the enumerator language that expresses the enu-
merator algebra as a fragment within the host (core) language.
The fragment is sufficiently expressive for defining and compos-
ing enumerators according to the algebra. The minimal restric-
tions imposed by the fragment make the enumerator framework
amenable to implementation in a variety of host languages. Ef-
fectively, the semantics of the enumerator fragment ensures that
an enumerator term is reducible to a value only if the construc-
tion and invoked operations follow the rules of the algebra.

To formalize the enumerator language fragment, we employ
a standard approach based on the operational semantics for a
core language [34]. (We only focus on the fragment, as our goal
is not to fully formalize the core language.)

Core language syntax. Figure 2 shows the core language
syntax. We simplify the core language and restrict our attention
to let-bindings. Alongside the environment, which maps
variables to values, the language includes elements that express
the enumerator algebra. Figure 3 summarizes these elements:
x[i] indexes the enumerator xwith i; |x| returns the enumerator
size; x@y, applies the given (binary) combinator @ to values in
x and y, where @ belongs to the set of instantiated combinators
in the enumerator framework, which defineC@.

Dynamic semantics. We use a small-step operational seman-
tics to formalize the enumerator language fragment. Figure 1
shows reduction rules, written in the form V,t−→ V ′,t′: a rule
defines that, in the environment V , term t is reduced to t′ and
the environment becomes V ′.

According to the grammar shown in Figure 2, expressions
are always reduced in the context of a let-binding. Rule R-SIZE
shows that querying enumerator size must reduce the argument

to an enumerator value before returning the cardinality of the
encoded set of elements. R-INDEX shows reduction of the
indexing operation: it restricts the argument values to belong to
the domain of the enumerator’s mapping, while the result is de-
fined by the indexing function. Indexing with values outside the
domain results in a stuck term (and the implementation should
not allow it—SciFe throws an exception § 7). R-COMBINE
shows that combinator application is reduced by reducing values
of the operands, y and an enumerator εx, and then constructing
the resulting enumerator εy according to a valid tuple (ex,v,ez)
defined by the combinator rule C@. The applied combinator
rule is determined by the specific instance of the combinator.

4.3 Combinators in SciFe
SciFe instantiates eight combinators over the two main
classes of enumerator objects in the framework. We show
inference rules that define semantics of combinators in terms
of underlying formal enumerator objects, as well as their
types (that correspond to types in the implementation). They
define rulesC@ that determine the semantics of the combinator
application in the enumerator fragment of the language.

First-order combinators. First-order combinators (shown
in Figure 1) correspond to standard operations on sets, lifted to
the corresponding bijections. The notation _ :A 1:1−→B denotes
an unnamed bijection fromA toB, with different occurrences
denoting possibly different bijections. If we view the effect of
operations on the range of the bijection, then we obtain natural
set-theoretic operations of disjoint union for ⊕, Cartesian
product for⊗, intersection with a set defined by the predicate
for�, and the function image operation for ↑.

Inference rules for these combinators are given in Figure 4:
⊕ (defined by the MERGE rule) yields an enumerator that
enumerates a disjoint union of sets of elements of the underlying
enumerators (note that the type of enumerated elements U is
the most specific ancestor of T and V in the type hierarchy,
mgu(T,V) ); ⊗ (PRODUCT) enumerates Cartesian product of
the underlying sets of elements, of the product type (T,V ); ↑
(MAP) applies the given function f to the set of elements at the
time of the enumeration (f determines the type of enumerated
elements); � (FILTER), accepts a predicate function f and
enumerates only elements that satisfy the predicate.

Dependent combinators. Inference rules for dependent com-
binators (from Figure 2) are given in Figure 5. Conceptually,
dependent⊕ and⊗ apply the first-order⊕ and⊗, respectively,
pointwise to inner enumerators, for each parameter value. Specif-
ically, dependent merge (⊕, defined by the rule MERGE) takes
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MERGE

e1=(S1,_ :N0..|S1|
1:1−→S1) e1 :Enum[T]

e2=(S2,_ :N0..|S2|
1:1−→S2) e2 :Enum[V]

S1∩S2=∅ e=e1⊕e2
e=(S1]S2,_ :N0..|S1|+|S2|

1:1−→S1]S2)
e :Enum[U] mgu(T,V )=U

PRODUCT

e1=(S1,_ :N0..|S1|
1:1−→S1) e1 :Enum[T]

e2=(S2,_ :N0..|S2|
1:1−→S2) e2 :Enum[V]

e=e1⊗e2
e=(S1×S2,_ :N0..|S1|·|S2|

1:1−→S1×S2) e :Enum[(T,V)]

MAP

e=(S,_ :N0..|S|
1:1−→S) e :Enum[T]

f :S
1:1−→S′ f :T⇒V

e′=e↑f

e′=(S′,_ :N0..|S|
1:1−→S′) e

′ :Enum[V]
FILTER

e=(S,_ :N0..|S|
1:1−→S) e :Enum[T]

S′={s∈S |f(s)} f :T⇒Boolean

e′=e�f

e′=(S′,_ :N0..|S′|
1:1−→S′) e

′ :Enum[T]

Figure 4: Inference rules constraining first-order combinators.

MERGE

e1=(E1,p1) p1 :D1→E1 e1: Depend[I, T]
e2=(E2,p2) p2 :D2→E2 e2: Depend[I, V]

∀i∈D1∩D2.p1(i)∩p2(i)=∅ e=e1⊕e2
e=(E,p) p :D→E D=D1∩D2

∀i∈D.p(i)=p1(i)⊕p2(i)
e: Depend[I, U] mgu(T,V )=U

PRODUCT

e1=(E1,p1) p1 :D1→E1 e1: Depend[I, T]
e2=(E2,p2) p2 :D2→E2 e2: Depend[I, V]

e=e1⊗e2
e=(E,p) p :D→E D=D1∩D2

∀i∈D.p(i)=p1(i)⊗p2(i)
e: Depend[I, (T, V)]

INMAP

e=(E,p) p :D→E e: Depend[I, T]
f :D′

1:1−→D f: I’⇒I
e′=e↓f

e′=(E,p′) p′ :D′→E
∀i∈D′.p′(i)=p(f(i)) e’: Depend[I’, T]

BIND

e1=(S,_ :N0..|S|
1:1−→S) e1: Enum[T]

e2=(E,p) p :D→E e2: Depend[T, V]
e=e1�e2

S′={(i,t)|i∈S∩D,t∈π1(p(i))}
e=(S′,_ :N0..|S′|

1:1−→S′) e: Enum[(T, V)]

Figure 5: Inference rules constraining dependent combinators.

two dependent enumerators e1 and e2, and yields a dependent
enumerator that, for a dependent parameter i, applies first-order
merge to inner enumerators returned from indexing e1 and e2
with i. Analogously, PRODUCT defines⊗. The type of inner enu-
merators in the resulting dependent enumerators is determined
by the inner application of first-order combinators. Note that the
domain of the dependent parameter becomes an intersection of
domains of the underlying enumerators. Inmap (↓, INMAP) is
a function composition that changes the type of the dependent
parameter of the given enumerator. It applies f to the parameter
value before indexing and thus, effectively, adapts the dependent
enumerator to the domain of f . (In § 3, left and right subtrees
are enumerated in pairs with such an adaption). Bind (�, BIND)
generalizes a dual function composition and changes the type of
the enumerated value in the resulting bijection. It provides a way
for composing first-order e1 with dependent enumerator e2 and
enumerating elements from inner enumerators of e2, according
to dependent parameter values enumerated from e1. The result is
a first-order enumerator that enumerates a union of elements S′

encoded by inner enumerators of e2, paired with corresponding
dependent values. (This combinator is similar to the monadic
bind operation in functional languages and flatMap in Scala).
SciFe applies different enumeration algorithms to enumerate S′

depending on the underlying enumerators e1 and e2; see § 5.2.
This combinator is essential in our benchmarks, as it allows enu-

merating sets of structures that depend on different values (e.g.
different sizes and ranges, as in enumerating subtrees in § 2).

Bijectivity. The enumerator algebra assumes that each atomic
enumerator enumerates with a bijective mapping and ensures
all combinators preserve bijectivity during composition. This in
turn ensures that every enumerator in the algebra is bijective. The
supplied function f for map and inmap is restricted to be bijec-
tive since otherwise, f might map to a smaller setS′. The chosen
semantics of filter can only shrink the set of encoded elements
and thus preserves bijectivity. However, SciFe’s implementation
does not restrict enumerator construction and function argu-
ments to combinators that might break bijectivity; see § 7. Note
that all our benchmarks construct bijective enumerators; see § 8.

Expressiveness of enumeration. The class of structures that
can be enumerated is limited solely by the rules for combinator
composition, which do not restrict the enumeration ordering
and allow different implementations. Therefore, C@ allows
picking different implementations for combinator applications,
according to the context (e.g. of parallel enumeration); see § 7.1.
The algebra guarantees a valid resulting enumerator, according
the semantics (while optimizations in SciFe preserve the se-
mantics; see § 7.2). Moreover, the algebra does not impose any
restrictions on the expressiveness of encoded values, since de-
pendent enumeration and map combinators can be instantiated
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with arbitrary functions (and for this reason, inverse indexing
requires developers to provide additional function inverses; see
§ 6.2). However, the enumerator algebra is designed for efficient
enumeration of data structures with invariants that can be ex-
pressed in terms of dependent enumeration, where the inductive
property allows sharing of intermediate structures between enu-
merated elements (and thus enabling performance gains with
memoization). With the exception of filter—which in order must
use sequential testing in the general case—the instantiated com-
binators provide efficiently computable indexing functions. Our
benchmarks show enumeration of a variety of data structures,
where efficiency comes from both memoization and dependent
enumeration alone (by avoiding backtracking); see § 8.

5. Enumeration Algorithms
Properties of the enumerator algebra necessitate an exhaustive
and efficient indexing function over all elements encoded by enu-
merators. To satisfy these properties, the enumerator framework
needs to incorporate mapping functions for each of its combi-
nators, according to the types of enumerators they apply to and
different desired enumeration orderings, including enumerations
from both finite and infinite domains. SciFe leverages several
mapping functions from combinatorics for different enumera-
tion strategies, most notably Cantor’s and Szudzik’s pairing for
infinite domains [39, 46]. We introduce a new mapping function
that is used for parallel enumeration. To the best of our knowl-
edge, this is the first work that applies these pairing functions
for enumeration in general-purpose structure generation.

5.1 Indexing Function Requirements
The indexing function retrieves an element from the encoded
set at a given index as long as it is within the domain of the
enumerator’s mapping. Thus, mapping functions for first-order
enumerators form the backbone of the enumeration. (Since
every enumerator expression reduces to a first-order enumerator
before enumerating elements, as shown in § 4.2). Bijective map-
ping for first-order enumerators is achieved with two functions:

• decompose, pd :N→(N,...,N), which decomposes a given
number into n component numbers
• compose, pc : (N,...,N)→N, which composes n component

numbers into a single number

where, if i ∈ dom(pd) and j ∈ dom(pc), where j is a tuple,
then pd(i)=j and pc(j)= i, and n depends on the type of the
enumerator. (E.g. for application of⊗n=2, and for mapn=1, i.e.
pd and pc are identity functions). Together, decompose and com-
pose represent a pairing function that realizes the mapping for an
enumerator. To achieve exhaustive and efficient enumeration, the
pairing function must be bijective and efficiently computable.

Decompose function pd is used when indexing a composite
enumerator e@x = (S,p) with i, which computes pd(i) = j
and uses j to index underlying enumerators (and compute
the result according to the given combinator @). Compose
function pc is used when inverting an enumerator; see § 6.2. In

general, any functions pd and pc that achieve bijective mapping
are applicable as long as the number of components and their
respective domains (and ranges) correspond to the combinator
semantics. Note that combinator semantics allows various
orderings, and thus customization of enumeration strategies,
by leveraging different pairing functions.

5.2 Pairing Functions for Enumeration
Combinators that compose first-order enumerators, namely
merge (⊕), product (⊗), and bind (�), require mapping to
multiple component numbers. SciFe utilizes different pairing
functions for these combinators according to different types of
underlying enumerators, that guarantee properties of the algebra.

Enumeration from finite domains. In the case of finite
enumerators, efficient pairing functions are constructed in an
intuitive way. We assume e1 and e2 are finite, and the desired
mapping is between the value i and components j=(x,y) (i.e.
n=2). Let e= (S,p), e1 = (S1,p1), e2 = (S2,p2), represent
different enumerators for each presented pairing function.

For e=e1⊕e2 the mapping p is defined by:

pd(i)=

{
(0,i) if i< |S1|
(1,i−|S1|) otherwise

pc(x,y)=x·|S1|+y

The value of the first component, x= 0 or x= 1, designates
whether e1 or e2, respectively, gets indexed with y. We denote
such mapping by linear2 since it performs a simple linear pass
to exhaust one enumerator before indexing into another. Note
that the domain of p is then naturally dom(p)= |S1|+|S2|.

For e=e1⊗e2 the mapping p is defined by:

pd(i)=(i mod |S1|,bi/|S1|c) pc(x,y)=y ·|S1|+x

We denote this mapping by div-mod2, since it corresponds to
combining all elements from one of the two enumerators (here,
e1 specifically) with each element of the other enumerator,
to exhaust all possible pairs of elements (much like the
“round-robin” ordering). Here, dom(p)= |S1|·|S2|.

Linearn and div-modn mappings can be extended to greater
cardinalities of components, i.e. n>2. For a list of enumerators
e = 〈(S1,p1),(S2,p2), ... ,(Sn,pn)〉, we can use an iterative
process to calculate the list of components pd(i)=fn(i):

fk(i)=〈g(i),fk−1(h(i))〉, if k>0

where we assume f0 ends the process and g(i), h(i) are:

• {(1,i) if i< |Sk| and (0,0) otherwise}, i-|Sk| for linearn,
where the j-th component (1, x) designates that j-th
enumerator gets indexed with x
• i mod |Sk|, bi/|Sk|c for div-modn

These generalized decompose functions have inverse compose
functions which are computable with a reversed iterative
process. It is straightforward to see that these functions achieve
a bijective mapping, and how they straightforwardly map to
an implementation. SciFe instantiates these higher-cardinality
mappings when rewriting enumerator expressions that reduce
to multiple applications of the same combinator; see § 7.2.
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Figure 6: Cantor and Szudzik pairing functions

Enumeration from infinite domains. Pairing functions
used in the case of infinite enumerators encode all natural
numbers with pairs of natural numbers [39, 46].

Cantor’s mapping is a classical example of a primitive
recursive bijection that counts infinite sets. It lends itself
perfectly for composing infinite enumerators:

pd(i)=(i−w
2+w

2
,
w2+3w

2
−i),w=

⌊√
8i+1−1

2

⌋
pc(x,y)=

1

2
(x+y)(x+y+1)+x

For a pair of any two natural numbers x and y, this pairing
function associates a unique natural number i with that pair.
It assigns consecutive numbers to points along diagonals in the
enumeration space (quadrant I of the plane, in Figure 6, left).

Cantor’s mapping can generalize decomposition into tuples
of greater arity (n> 2), but the decomposition becomes inef-
ficient to compute [47]. On the other hand, Szudzik’s mapping is
a bijective function amenable for efficient generalization [46]:

pd(i)=

(w,
⌊√

i
⌋
) ifw<

⌊√
i
⌋

(
⌊√

i
⌋
,w−
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i
⌋
) otherwise

,w= i−
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i
⌋2

pc(x,y)=

{
y2+x if y>x
x2+x+y otherwise

This pairing function assigns consecutive numbers to points
along the edges of increasingly large squares (Figure 6, right).

Pairing for infinite domains in SciFe. For an enumerator
composed of infinite enumerators e1,...,en, SciFe uses:

• div-modn pairing (defined previously) for merge (⊕): for
index i, i mod n chooses the enumerator to index with i/n
• Szudzik’s pairing for product (⊗)

Then, div-modn enumerates from each of the underlying enu-
merators at the same pace, while Szudzik’s pairing enumerates
unique combinations of elements from underlying enumerators.
SciFe rewrites multiple chained applications of⊕ and⊗, so that
the mapping uses these generalized pairing functions; see § 7.2.

Pairing for the bind combinator. To achieve exhaustive
enumeration of corresponding inner enumerators of d=(E,t)
in e�d, where e=(S,p), the mapping uses pd(i)= (x,y) to
enumerate π2(t(p(x)))(y), where π2(E,t) = t. The pairing

Figure 7: Linear and disperse pairing on a sample enumeration space

function for bind reduces to enumerating from a list of
k= |S∩D| inner enumerators (§ 4.3). SciFe, for bind, uses:

• lineark, if all inner enumerators of d are finite, while emay
be infinite, and disperse (defined below), only if e is finite,
for parallel enumeration (Figure 7)
• div-modk, if all inner enumerators of d are infinite, but e

is finite (enumerating inner enumerators with “round robin”)
• Cantor’s mapping (of cardinality n = 2), if all inner

enumerators of d are infinite and e is infinite (chosen over
Szudzik’s mapping, for performance reasons)

Disperse pairing. We introduce a new pairing function dis-
perse that assigns numbers to points from multiple finite groups
(“columns” in Figure 7), similarly to linearn (Figure 7, left), but
in an order that disperses a sequence of assigned points over dif-
ferent groups (Figure 7, right). The idea is to assign points from
all groups fairly, with respect to the potential variety in their sizes.
The decompose function of disperse is given in Algorithm 1.

Algorithm 1 disperse pairing algorithm

Require: S, i; ∀(x,s)∈ S.s>0, 0≤i<sum({s|(x,s)∈ S})
1: 〈(sj ,Xj)〉j = group (x,s) ∈ S by s, sort ascending by s,

whereXj=[xj1,...,xjcj ], xj1<...<xjcj , (xji,sj)∈S
2: j= 1, rest= |S|, y0= 0, lo= hi= 0
3: loop . iterate through partitions
4: lo= hi; hi += rest · (sj - y0) . set partition bounds
5: if i < hi then . if in the right partition
6: iw = i− lo . index within partition
7: x’ =Xj[iw mod rest]; y’ = y0 +biw/restc
8: return (x’, y’) . div-modrest pairing within partition
9: else

10: rest -= cj, y0 += sj . note cj= |Xj|
11: j += 1 .move to next partition

The input is a list of integer pairs S and an index value i.
In the enumeration space, the value s in (x,s)∈S determines
the height of the x-th column; i.e. points (z,y) where z = x
(Figure 7). The algorithm groups pairs with the same height in
the list 〈(sj ,Xj)〉, sorted in the ascending order, whereXj rep-
resents all columns of height sj . Groups determine “partitions”
that form successive rectangles in the enumeration space. The
algorithm assigns points partition-by-partition. It maintains the
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bounds for the current partition j in lo and hi. The index i be-
longs to the current partition if lo≤ i<hi. If i belongs to the j-th
partition (sj ,Xj), then the partition has hi−lo= rest·(sj−y0)
points. Thus, sj−y0 points can be assigned from each of the re-
maining rest columns; effectively forming a rectangle. (Initially,
for the first partition, s1 points are assigned from each column
in S). Within the found partition, points are assigned with
div-modrest. The algorithm keeps track of discarded partitions
(i.e. exhausted columns) and remaining points with y0 and rest
to correctly compute offsets for the resulting coordinates (x’, y’).

SciFe uses disperse for parallel enumeration of bind applied
to finite enumerators (where columns become inner enumerators,
possibly of various sizes). It can be applied to other combinators
as well, e.g. merge. Disperse assigns sequential indexes, and
thus workers, to distinct (inner) enumerators to start with and
proceeds in “lock-step”, rather than exhausting enumerators
one-by-one (which lowers contention overheads; see § 8.4).

6. Features of Enumerators
The enumerator algebra supports extensions of the behavior
of the existing operations and defining new ones that go beyond
generation of structures. A key property of the algebra is that it
allows introducing new behaviors of enumerators as extensions,
while preserving existing behaviors and their compositions.

6.1 Lazy Enumeration
Lazy evaluation, which delays computation until its results are
needed, is a commonly used technique for avoiding unnecessary
computation and many BET approaches use some forms of it to
prune the search space [4, 18, 42]. Lazy enumeration in SciFe
allows controlling the process of enumeration according to
the usage of enumerated values—it allows enumeration to skip
certain elements, while preserving the effect of exhaustive enu-
meration. SciFe allows enabling lazy enumeration selectively
for existing enumerator definitions, as shown in § 2.

Enumerators can utilize the feedback information from the
operation under test. Instead of just enumerating structures
and passing them to the code that uses them, the enumerator
gets bound to a field of the enumerated structure for which
it enumerates values for. Effectively, an enumerator tracks
accesses to fields of enumerated data structures and the
trace is used to determine how many structures to skip in the
enumeration. (Implementation of the tracking is described in
§ 7.3). Enumerators for lazy enumeration are designated with:
trait LazyEnum[T] extends Enum[T] {

def skip(ind: Int): Int // computes an index value
def reset; def isTouched: Boolean }

An enumerator is touched when its bound field in the structure is
accessed. Method skip is called before an element is enumerated
and it computes a new index in the enumeration that might skip
structures, according to the trace. It takes an index value i and
computes the first next index i′, such that e(i′) enumerates a
structure with new values only for the previously accessed fields
(which may exhibit new behavior of the underlying code), under

the assumption accesses were tracked for the structure at e(i).
Skipping applies to combinators that combine elements of mul-
tiple enumerators, where some combinations might be skipped.

Algorithm 2 Lazy exhaustive enumeration

Require: e:LazyEnum[T], e=(S,p), i∈{0..|S|−1}, C=∅
1: procedure SKIP(e, i) . returns next index for tracked e(i)
2: switch (e,p) do . case analysis on the enumerator
3: case (f�d) . d is dependent
4: find j, k, t s.t. d(t)(k) = e(i) and t = f(j)
5: if d(t) is touched then return [d(t)] + SKIP(d(t), k)
6: if j = f.size-1 then return |S| . skip to end
7: else return [d(f(j+1))] . skip to next inner enum.
8: case (e1⊗e2,(pd,pc)) . e1 and e2 are finite
9: if e1,e2 are touched then return i+1

10: else if e1,e2 are not touched then return |S|
11: else if e2 is touched then (i/|S1|+1)|S1|
12: else C = C ∪ {imod |S1|} . skip current column
13: for j = i; y∈C, where (x,y)←pd(j); j=j+1 do
14: return j . next non-skippable element
15: case e@f , @ is ↑ or�
16: return SKIP(e) . skip in underlying enumerator
17: case (S,p) . atomic enumerator
18: return i+1 . nothing to skip
19: procedure RESET(e) . shows only for� and⊗
20: e.touched← false . reset the flag
21: switch e do
22: case (e1�d,p) . recursively call reset
23: for all i∈{0..|S1|−1}, e′=d(i). RESET(e′)
24: case (e1⊗e2,p) . setsC=∅ in e2 if needed
25: RESET(e1); RESET(e2)

Lazy enumeration is described in Algorithm 2. The algorithm
traverses and matches on the enumerator tree expression (which
has combinator applications as nodes) and performs a case anal-
ysis at its nodes. With [e] we denote the index value that enumer-
ates the first element of the inner enumerator e. For first-order
enumerators, the algorithm just increments i (since they have to
be exhaustively enumerated). In the case of bind, the algorithm
finds the inner enumerator d(t) that enumerates e(i), by maintain-
ing pointers, and values of d(t) and [d(t)], from the last call to skip
(for efficiency). If d(t) is not touched, the algorithm returns an
index that starts at the next inner enumerator (thus skipping the
rest of elements in d(t)), or |S| to mark the end of enumeration, if
d(t) was the last inner enumerator in d. Otherwise, the next index
is in d(t), which is queried recursively to skip elements within
d(t). In the case of product, the algorithm relies on finite pairing
to determine which elements to skip in the enumeration space. It
currently considers only div-mod2 pairing: if both e1 and e2 are
touched, no element can be skipped; if both are untouched, all
elements in e can be skipped; in the interesting case, when only
e2 is touched, the algorithm skips the rest of the current “row”
of elements (jumps to the next row); if only e1 is touched, the
algorithm tracks which “columns” can be skipped in the variable
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C and loops to find the first next element that cannot be skipped.
The RESET procedure traverses the enumerator expression and
resets the field access indicator. In addition, it resetsC to ∅ in e2,
only if e1 enumerated a new element (needed to avoid invalidC).

Skipping works only for combinator mappings for finite
enumerators (such as div-mod2 for⊗) to be able to compute the
number of elements to skip. We omitted merge (⊕), which can be
used by propagating skipping to the right underlying enumerator.

6.2 Inversion of Enumeration
Efficient bijective mapping allows not just efficient indexing
function but also efficient inverse indexing. Inverse indexing
represents an inverse of the indexing function: for a given
value it computes an index with which the value is enumerated.
Inverse indexing can be achieved with the compose function
of the mapping, as long as it is bijective and the enumerator
does not contain applications of� (otherwise, returning a single
valid inverse index might not be efficiently computable).

Inverse indexing allows querying an enumerator e=(S,p),
with a given element x for its index, so that if the element is
encoded by e, i.e. x∈S, the resulting value i satisfies p(i)=x.
SciFe declares inverse enumerators with the following trait:
trait Reversible[T] extends Enum[T] { def inverse(x: T): Int }

More specifically, given a reversible enumerator er=(S,p) and
an element x, er.inverse(x) == i only if p(i)=x.

Inverse enumeration algorithm. For a composite enu-
merator, inverse indexing needs to: 1) transform the given
element into components and their indexes in the underlying
enumerators; 2) use the compose function with the indexes
from the underlying enumerators to compute the index in the
composite enumerator. Being bijective is itself not enough for
inverse indexing; the algorithm therefore imposes additional
constraints on enumerators and their combinators. For every
atomic enumerator, the algorithm needs to find the right index
value for the given element, and for every application of the
map combinator, the algorithm needs to know how to invert
the resulting output into the right input. Note that SciFe has
the information to invert each atomic enumerator automatically,
according to how it is constructed, the developers need only
to provide an inverse function f−1 for each map combinator
when the enumerator is constructed; see § 7.1. Since the
implementation does not enforce bijectivity, as discussed in
§ 4.3, it only guarantees that inversion returns one valid result.

Inverse indexing, given in Algorithm 3, takes an enumerator
with a bijective mapping and an element t and assumes existence
of i such that e(i)==t. (In the implementation, if such i does not
exist, some enumerator fails the inverse and throws an excep-
tion.) Note that if the inversion is invoked on a bind, the given
element is a pair t=(tx,ty): the value tx is initially provided as a
dependent parameter when invoking inversion (as shown in § 2,
developers provide 15, 1 to 15 in bst(15, 1 to 15).member(...)).
Similarly to SKIP (Algorithm 2), INV traverses the enumerator
expression and performs a case analysis. For each considered
case, it analyzes the current subexpression, recursively com-

Algorithm 3 Inverse enumeration

Require: e: Reversible[T], element t:T, or t:(I, T) if
e=e′�d, and d:Depend[I,T], such that ∃i. e(i) = t

1: procedure INV(e, t) . e.inverse(t), in code
2: switch (e,p) do . case analysis on the enumerator
3: case (e′ ↑f,(pd,pc)) .map combinator
4: return INV(e′,f−1(t)) . f−1 is provided
5: case (e′�d,(pd,pc)) . d is dependent
6: (tx,ty)← t . t is a tuple, where ty is in d(tx)
7: x = INV(e′,tx); y = INV(d(tx), ty)
8: return pc(x,y) . apply compose function
9: case (e1@e2,(pd,pc)) . binary combinator (⊕ or⊗)

10: (tx,ty)← t
11: x = INV(e1,tx); y = INV(e2,ty)
12: return pc(x,y)
13: case (S,p) . atomic enumerator
14: assert(t∈S) . value must be encoded
15: return i, where p(i)= t . knows i by construction

putes values of inverted components and uses the appropriate
compose function (as defined in § 5) to compute the result.
The matched enumerator can either be a first-order atomic
enumerator or a combinator application (§ 4.2). With (pd,pc)
we denote matching on the decompose and compose function
of the enumerator mapping. For the map combinator, the
algorithm uses the externally provided inverse function f−1,
which computes a value that is then recursively inverted. For
bind and other combinators (matched with @), the algorithm
recursively inverts values in the pair (tx,ty) and composes them
into the result. In the case of bind, ty is enumerated from the
inner enumerator d(tx). As mentioned, each atomic enumerator
is capable of performing the inverse operation directly.

6.3 Membership Checking
Membership checking allows querying an enumerator e=(S,p),
with an arbitrary element t, to ask whether t is encoded by e, i.e.
x∈S. It returns true only if ∃i.e(i)= t. This operation uses an
algorithm similar to Algorithm 3 but merely checks whether the
given value can be recognized (it does not compute the index).
Membership, which is demonstrated in § 2, is defined in:
trait Member[T] extends Enum[T] {

def member(x: T): Boolean } // if x can be enumerated

For practical purposes it usually suffices to have an efficient
structure recognition in order to check whether a structure
satisfies properties of elements encoded by an enumerator (such
as the search tree invariant in § 2). This operation sacrifices the
information of the precise index with which the element is enu-
merated to achieve better performance—namely, the algorithm
does not incur the overhead of the decompose computation
(which may be significant for pairings such as linearn).

6.4 Fast-Forwarding
In some scenarios, instead of enumerating in the ascending
order of indexes, starting from the first element, it might be
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useful to fast-forward an enumerator to a given element. The
given element, if encoded by the enumerator, then becomes the
first element in the current enumeration and the enumeration
can proceed by enumerating all subsequent elements, without
considering all elements that came before. For enumerators that
enumerate values in the order of their increasing complexity (as
would e.g. bst from § 2, if chained with an enumerator of increas-
ing sizes and ranges), this procedure effectively allows “jumping”
to an arbitrarily complex element and proceeding from there.

Fast-forwarding an enumerator e=(S,p), given an element
t∈S such that p(k)= t, returns a new enumerator ef =(Sf ,pf ),
where Sf ⊆ S and ∀i ∈ [0,...,l].∃j ∈ [k,...,|S|].pf (i) = p(j)
(where l = |S|−k− 1 if e is finite, otherwise l =∞). Then
ef starts sequentially enumerating from t, thus effectively
“fast-forwarding” k elements. Note that the order of enumeration
from ef might differ from the order defined by e, to allow
flexibility in supporting different mappings. As when comparing
membership and inversion, sequential enumeration after
fast-forwarding is much more efficient than calculating the
index of the element (with inverse) and then enumerating with
indexes, in the general case (due to the fact that certain compose
functions require more complex computations, such as linearn).

Fast-forwarding constructs a sequential enumerator that
does not support efficient indexing in the general case:
trait Forwardable[A] { def fforward(a: A): SeqEnum[A] }

The resulting enumerator supports efficient sequential
enumeration, by enumerating next or previous element from
the current, while the indexing function may still be used, albeit
potentially being much less efficient.

Fast-forward uses a similar algorithm to INVERSE (Algo-
rithm 3). It recursively fast-forwards enumerators to the appro-
priate position k, according to the given element, and transforms
them into SeqEnum. The algorithm relies on mappings that can
sequentially advance enumerators to enumerate Sf ⊆S without
unnecessarily enumerating the prefix (of encoded elements
up to k). Note that efficiently invertible mappings allow such
transformations to be trivial: sequential traversal just increments
the inverted index. Additionally, sequential enumeration is not
restricted to the forward direction. With appropriate mappings,
the resulting enumerator can enumerate elements of the prefix
of elements S\Sf , by sequentially enumerating backwards.

7. Implementation
SciFe provides a DSL for writing short and concise specifica-
tions of enumerators by implementing the enumerator algebra
and language presented in § 4. It follows the algebra rules, en-
sures its semantics, and implements extensions to support the
described features. In addition, SciFe employs techniques for im-
proving performance of enumerators, through enumerator spe-
cialization and optimizations. SciFe is implemented in Scala and
relies on its object-oriented and functional features such as class
and trait hierarchies, partial functions, Scala collections, gener-
ics, implicit types and inference, to achieve concise and type-safe
enumerator specifications [37]. We only present a short overview

of the implemented facilities in the framework. For more infor-
mation on the implementation details, the reader can visit the of-
ficial website of the tool and its open source code repository [1].

7.1 DSL Interface
SciFe is implemented as a library that provides the enumera-
tor (embedded) DSL. It is built solely from existing language
constructs and does not require any compilation passes. The
developers need merely to import SciFe’s appropriate DSL def-
initions to construct enumerators and use their operations. Two
main components of the enumerator DSL are: combinator meth-
ods in basic enumerator traits Enum and Depend (which can be
used with an infix notation), and implicit enumerator conver-
sions that create, transform, and optimize enumerators according
to the specific context. Contexts are designated by importing
specialized DSL constructs (e.g. enum.lzy for lazy enumeration).

Atomic enumerators. Atomic enumerators are basic building
blocks in the framework and are indivisible. Other enumerators
are composed with combinators. SciFe builds atomic enumera-
tors with wrappers around standard constructs in Scala, such as
collections and functions. The underlying construct determines
indexing and inversion functions. (E.g. for indexed collections,
SciFe uses the collection directly for indexing, but also computes
a reverse mapping from elements to indexes for inversion.)

Recursive enumerators. For cases when an enumerator
needs to refer to itself in its definition, the DSL provides a
factory method rec (which is a convenience construct, due to the
eager evaluation in Scala [37]). It takes a high-order function
that constructs a dependent enumerator and takes a parameter
that is bound to the enumerator being constructed. This allows
recursive enumerator definitions by using the enumerator that
is being constructed within its definition (as used in § 2).

Combinators. Combinators are themselves instances of enu-
merators. They are implemented as infix operators and have con-
cise unicode identifiers, as presented before. Each combinator
application invokes a factory method that constructs a composite
enumerator with the appropriate mapping and features, based
on the arguments and context. (E.g. for inversion, ↑ takes two
functions, one used for inverting enumerated elements.)

Bijectivity. As a consequence of directly using host language
constructs (and allowing more flexible and efficient implementa-
tion), SciFe does not prevent enumerator definitions that break bi-
jectivity: ↑ and ↓ can map arbitrary (and possibly non-injective)
functions, while enumerators can be constructed from arbitrary
collections and functions (that might enumerate equal elements).
(E.g. atomic enumerator constructed from Scala arrays, provides
efficient indexing but is not checked for duplicates).

Implicit conversions. SciFe’s DSL provides a wide range of
implicit conversions between Scala constructs and enumerators.
This allows their interchangeable use, e.g. needed for use with
for-comprehensions, and more concise enumerator expressions.
Note that implicit conversions might cause expensive transfor-
mations (to collections that store their elements, e.g. List[T] for
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finite enumerators by default) and thus negate efficient opera-
tions otherwise provided by combinators (as mentioned in § 3).

7.2 Optimizations
Enumerators can use various optimizations that are enabled
explicitly (e.g. memoization) or implicitly (e.g. transforming
enumerators during enumeration). We will describe a few of
the categories of optimization techniques used in SciFe.

Memoization. SciFe allows enabling memoization for both
first-order and dependent enumerators, which stores elements
enumerated for a given indexes and first-order enumerators for
given dependent parameters, respectively. It provides several
traits that use standard Scala collections (e.g. hash maps) and can
be mixed into enumerators to enable memoization, while allow-
ing other memoization methods to be easily added. For example,
memoization traits for parallel enumeration handle concurrent
accesses (with or without blocking) and try to minimize lock
contention (e.g. with disperse mapping, once the memoization
store is constructed, it is changed to a lock-free structure).

Specialized enumerator types. SciFe encodes different enu-
merator classes (e.g. according to finiteness and supported fea-
tures) with separate traits. This distinction is made on the level of
first-order enumerators, as well as dependent ones. Enumerators
use generic types to designate the type of enumerated elements.
This allows choosing efficient implementations, specialized
for the given given enumerator classes and the context, during
enumerator construction and dynamic optimizations at runtime
(as e.g. the right mapping for�, depending on the arguments).

Rewriting. SciFe defines rewrites as factory methods that
construct specialized enumerators based on the specific types
of underlying enumerators and combinators. Rewrite rules
include generalizing pairing functions to multiple underlying
enumerators (as defined in § 5), optimizing (e.g. binary search
implements linearn for larger n), preventing construction of
empty composite enumerators, and evaluating sub-expressions
eagerly (e.g. product applied to a singleton enumerator or
functions of multiple chained map combinators).

7.3 Implementing Enumeration
By allowing transformation of enumerated values with arbitrary
functions, together with efficient indexing SciFe offers great
flexibility in encoding various classes of data structures and
achieving different enumeration strategies.

Enumeration strategies with indexing. SciFe implements
various enumeration strategies solely by choosing appropriate
integer values to apply to the indexing function, including lazy,
parallel and random enumeration (§ 2, § 6).

Note that the encoded element at a given index, i.e. the
enumeration ordering, is completely determined by the mapping
used by the given enumerator and applied combinators. This
allows not only strategies that do not rely on the knowledge
of the mapping, like straightforward enumeration of disjunc-
tive subsets of encoded elements (with disjunctive integer

values), but also ones that do. In the latter case, changing the
enumerator’s mapping, by changing a combinator variant due
to the context or optimizing, might thus break the existing
strategy. SciFe enables usage of abstractions that hide the
underlying use of specific index values and operations, such
as for-comprehensions (for exhaustive and lazy enumeration,
which incorporates calls to skip) and operations like member.

Lazy enumeration. The proxy interface for data structures
that allow tracking field accessed (used in § 6.1) is defined as:
trait StructureField[F, D] {

def setTrack(e: Touchable[D])
def getValue: F } // invokes enumeration

Accesses to the fields of such structures invoke indexing in
the enumerator that enumerates the field values. By using this
proxy, the existing data structure interface remains the same
and the enumerator gets embedded into the field evaluation.
SciFe implements such data structures with Scala lazy values
where field evaluation represents a function closure that invokes
indexing in the appropriate enumerator (which may incur great
overheads, both in time and memory) [37].

Graph enumeration. SciFe enumerates graph-like structures
by implementing techniques for inductive algebraic represen-
tation of graphs and its conversion to other (possibly mutable)
representations. The basic representation of graphs is the follow-
ing inductive definition (which based on the one defined in [16]):
type Node = Int; type Adj[Lab] = List[(Lab, Node)]
type Context[T, Lab] = (Adj[Lab], Node, T, Adj[Lab])
case object Empty extends Graph // inductive graph
case class &:(ctx: Context, g: Graph) extends Graph

This definition is then instantiated with particular types for
T and Lab that represent values associated with nodes and
edges, respectively. Bidirectional edges are represented by
encoding incoming and outgoing edges at each node. The
definition allows SciFe to encode and reuse subgraphs simply by
modifying integer values at each node with the map combinator.
Moreover, this allows conversion to mutable graph definitions
that only expose methods for addition of nodes to avoid more
costly conversions of complete enumerated graphs.

8. Experimental Evaluation
We evaluated SciFe’s exhaustive enumeration, features and
optimizations with the goal of assessing its performance,
scalability, and usability in practical (testing) scenarios.

Besides exhaustive enumeration (for test input generation),
we evaluated SciFe in the context of different enumeration
strategies (useful for parallel and random testing), as well
as structure recognition (for bounded verification). Our
performance evaluation aims to exhaustively cover related work,
either by measuring related techniques directly or measuring
techniques that reportedly subsume them. We developed a
suite of benchmarks for SciFe and extended the existing BET
benchmarks with new scenarios. In the interest of space, we
omitted some results from this presentation. All benchmarks
and full evaluation are publicly available [1].
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Size
Binary search trees Red-black trees Heap arrays B-trees RIFF Images

SciFe/e CLP Korat SciFe CLP Korat HyTek Udita InSynth sChk CLP/o SciFe CLP Korat SciFe CLP SciFe CLP

1 0/0 0 0.12 0 0 0.14 0 <1 0.01 0.15 0 0 0 0.1 0/0 0/0 0 0
2 0/0 0 0.12 0 0 0.15 0 <1 0.01 0.16 0 0 0 0.1 0/0 0/0 0 0
3 0/0 0 0.12 0 0 0.15 0.37 <1 0.02 0.18 0 0 0 0.1 0/0 0/0 0 0
4 0/0 0 0.14 0.01 0 0.19 0.38 <1 0.33 0.2 0 0 0 0.11 0/0 0/0.02 0.01 0
5 0/0 0 0.18 0.02 0 0.23 0.42 <1 2.17 0.17 0 0 0 0.16 0/0.01 0/0.13 0.01 0
6 0/0 0 0.23 0.03 0 0.28 0.52 1 /t/o 32.9 0 0 0 0.34 0.01/0.01 0/0.76 0.03 0.02
7 0/0 0 0.42 0.07 0 0.38 0.83 2 /t/o /t/o 0 0.01 0.01 0.45 0.01/0.04 0/2.49 0.06 0.08
8 0/0 0.01 1.6 0.11 0.01 0.62 1.86 6 /t/o /t/o 0 0.06 0.08 1.31 0.01/0.06 0.01/7.59 0.1 0.53
9 0/0 0.03 11.8 0.17 0.04 1.8 5.61 28 /t/o /t/o 0 0.52 0.81 12.19 0.01/0.12 0.04/20.79 0.15 4.43

10 0.01/0 0.12 94.91 0.25 0.14 8 14.46 130 /t/o /t/o 0 5.86 8.59 140.53 0.02/0.22 0.19/55.5 0.24 24.84
11 0.03/0.01 0.47 /t/o 0.35 0.51 42.62 23.73 /t/o /t/o /t/o 0.01 28.21 110.25 /t/o 0.02/0.43 1.12/147.21 0.88 187.57
12 0.06/0.03 1.84 /t/o 0.48 1.94 /t/o 37.41 /t/o /t/o /t/o 0.02 - - - 0.02/0.7 2.79//t/o 1.17 /t/o
13 0.21/0.11 7.31 /t/o 0.65 7.26 /t/o 104.46 /t/o /t/o /t/o 0.05 - - - 0.04/1.58 8//t/o 4.88 /t/o
14 0.82/0.44 29.42 /t/o 0.85 27.42 /t/o /t/o /t/o /t/o /t/o 0.1 - - - 0.04/3.43 20.93//t/o 6.21 /t/o
15 2.57/1.44 109.11 /t/o 1.46 /t/o /t/o /t/o /t/o /t/o /t/o 0.22 - - - 0.05/8.26 56.17//t/o 39.77 /t/o

# 9694845 (9.7M) 16k 10.4k 5.4k 586 586 1.2k 14 20 10.4k 111M 111M 10.3M 659k/9.3M 659k/1.73M 127.6M 331k

loc 29/46 20 100 25 32 209 >2M 250 34 24 34 27 19 53 91 85 36 80

Table 3: Performance comparison for exhaustive generation of data structures. Execution times are given in seconds (timeouts with t/o). Last
two rows denote the largest number of generated structures and specification length, respectively. Unfeasible experiments are marked with -.

Methodology. The evaluation used per-tool specific bench-
marks whenever provided (alongside their respective timers).
SciFe benchmarks use a framework that spawns and warms new
virtual machines before each measurement. The experiment
configuration consisted of: CPU with 3.5Ghz clock, 15MB
(L3) cache; 1600Mhz DDR3 memory; 64b linux, JVM 1.7,
and Scala 2.11; with imposed limits: 24GB for memory and
200s for running time (for more details see [1]). For parallel
benchmarks, to enable utilizing more CPU cores, we used a
configuration with a 10-core, 2.6Ghz clock, 25MB (shared L3)
cache CPU, and other parameters same as above. All results
represent the mean of at least 3 measurements with standard
error within 10% of the mean.

8.1 Exhaustive Generation of Data Structures
The goal of this evaluation was to cover a broad set of existing
techniques, as well as generated data structures, with different
structural properties and use cases. Here, we report results only
for representative data structures; full benchmark report is avail-
able at [1]. Our benchmarks cover data structures from different
categories: prototypical trees, sorted (from § 2) and red-black
trees; heap arrays (to examine upper bounds on enumerating very
large sets of structures); B-Trees (which do not have a priori fixed
structure); and image representations (based on the RIFF format
which stores “data chunks” in a complex recursive structure).

Table 3 reports times for exhaustive generation of data struc-
tures with, in order: SciFe, the constraint logic programming
(CLP) approach [43], Korat [4], HyTek [40] (which subsumes
TestEra [28] and Alloy [25], that are not included), Udita [18],
InSynth [22], and SmallCheck [42]. The table tabulates the
running time needed for generating all valid data structures, per
particular size. For ordered data structures, given ranges for the
structure keys were determined by the size. Row # reports the
number of generated structures for the largest size that succeeded
within the timeout (where large values are rounded down). For

brevity, we did not evaluate all tools on all benchmarks; instead
we give an overview of the state-of-the-art tools on the prototypi-
cal example and focus on comparison with the fastest respective
techniques on others. Performance of SciFe is reported in the
SciFe column; in all measurements we enabled memoization (up
to the given memory limit). CLP does not support arbitrary data
structures, thus it generates only their encodings—to that end, to
examine potential impact where only encodings are generated,
SciFe/enc represents encoding trees with lists, similarly as in
CLP. CLP/opt stands for highly (manually) optimized version of
red black tree specification which carefully avoids backtracking
(given in [43]). InSynth and SmallCheck only support generation
within a search depth bound and may generate bigger structures
before exhausting structures of the given size; thus, the table re-
ports shortest executions that exhaustively generated a given size.
Note that, unlike Korat, HyTek and CLP, which generate struc-
tures of exactly the given size, SciFe implicitly generates (and
memoizes) all structures up to the size; thus subsequent enumer-
ations should perform much faster. (These were not measured.)

In all experiments, SciFe outperformed all evaluated tools,
up to by a few orders of magnitude. SciFe scaled better both in
terms of structure size and their number; up to more than 127 mil-
lion enumerated structures in less than a minute. Generators in
SciFe are much shorter than those for imperative-backtracking
tools (like Korat, UDITA) while comparable and/or shorter than
property-based (SmallCheck) and logical (CLP) specifications.

InSynth uses fast type-directed generation but only generate-
and-test for complex structures, thus serving as a naive im-
plementation “baseline”. Together with SmallCheck, which
leverages lazy evaluation, they showed limits in scalability of
generation with coarse grain depth bounds. While Korat and
UDITA use similar backtracking mechanism, UDITA’s non-
determinism based on JPF scaled worse. Although CLP’s solver
engine brings it on top of the other tools, it clearly suffers from ex-
tensive backtracking, especially in the Image benchmark (where,
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unlike data structures with fixed structure, the invariant con-
straints both metadata and sizes of substructures [1]). Aggressive
optimizations in the specification (and smaller constant over-
head compared to JVM) made CLP faster than SciFe for sizes up
to 15 (column CLP/o in the table). Interestingly, for sizes 16 to
18 (not shown in the table), running times for SciFe and CLP/o
were: 1.96, 1.81; 2.49, 3.93; 3.22, 7.78 (respectively, in s). These
results suggest that highly optimized specifications in CLP have
advantage only for smaller sizes and do not exhibit better scala-
bility in general. Moreover, SciFe/e demonstrates an interesting
property of enumerating structures as encodings: a further per-
formance gain may be obtained by splitting the invariant into
parts, enumerate values individually, and then compose the parts.

Additionally, the results show that SciFe was not bound by
the processing power. On most of the benchmarks the bottle-
neck was the working memory (due to memoization, which
effectively trades space for runtime performance). This suggest
that increasing the working memory might enable exhaustive
enumerations of larger sizes. Note that in case of heap arrays
of size above 10 (and sorted lists [1]), run times include garbage
collection overheads5. In those benchmarks we selectively
turned off memoization for bigger data structure sizes (by
providing an alternative memoization trait to an existing enu-
merator). Heap arrays of size >11 were unfeasible to measure
since the number of structures exceeds the range of 32b integers.

8.2 Generation of Graphs
Table 4 tabulates the running time needed to generate valid
graphs of given sizes. SciFe enumerated benchmarks for all
shown sizes representable with 32b integers. (SciFe/d used a
larger timeout and frequent garbage collection for size 6, and
enumerated more than 109.) Directed and undirected graphs are
denoted with /d and /u, respectively, and have only structural
constraints. SciFe enumerated graphs using inductive represen-
tations, as described in § 7, while Korat/u used a simple encod-
ing with boolean arrays instead of node pointers, to measure
its performance without backtracking. For undirected graphs,
SciFe scaled worse but comparingly to Korat that employed
no backtracking (and just enumerated combinations of boolean
values). Enumerating DAGs, shows that SciFe performs much
better when one additional constraint for acyclicity is added (to
digraphs). The last column represents Java class hierarchies,
where t types can be either classes or interfaces and m methods
may be overloaded and sealed. SciFe did not use memoization in
this benchmark. The results suggest that, in the presence of com-
plex constraints, the dependent enumeration alone can achieve
favorable performance, by avoiding unnecessary search space.

8.3 Feature Breakdown
One of the goals of our evaluation was to characterize the
impact of different features of enumerators on generation and
testing activities in general. We present only the case of sorted

5 there are more than 108 heaps of size 10, storing just pointers to their roots
can thus take more than 4GB of memory

Size
Simple graphs DAGs Bounds Class Hierarchy

SciFe/u Korat/u SciFe/d SciFe Korat (t, m) SciFe Korat

1 0 0.13 0 0 0.11 1,1 0 0.18
2 0 0.13 0 0 0.11 1,2 0 0.19
3 0 0.13 0 0 0.11 2,1 0.02 0.22
4 0 0.14 0.34 0 0.12 2,2 0.03 0.49
5 0 0.16 0.84 0 0.17 3,1 0.07 0.82
6 0.02 0.23 444.49 0.01 0.3 3,2 0.78 10.45
7 1.01 1.16 - 0.91 8.33 4,1 1.99 165.46
8 189.04 145.2 - 126.69 t/o 4,2 48.48 t/o
9 - - - - - 5,1 86.35 t/o

loc 268.4M 1.07B 268.4M 2.09M 900.3k 21320

Table 4: Performance of generating graph structures. Times
are given in seconds; notation is as in Table 3.

tree data structure given in § 2; the given specifications are
reused in different contexts in the following benchmarks.

Strategies of enumeration. The first part of Table 5 summa-
rizes results of different ways of using enumerator of binary
search trees: enum/pl (plain) serves as the baseline, sequential,
exhaustive enumeration without memoization; enum/m is same
as the previous, with memoization turned on; enum/en enumer-
ates encodings of trees as lists of values, with memoization (as
in Table 3); enum/rn performs random, non-exhaustive, enumer-
ation where indexing is done with randomly generated index,
e.size times; enum/mrn is same as the previous, with memoiza-
tion. Results show drastic improvements when memoization
is used—the inductive tree structure entails many intermediate
subtrees being shared and their recomputation is avoided. There-
fore, memoization is an important factor for both performance
and scalability to large structures, in addition to avoiding search
space with dependent enumeration. (With higher time limit of
10m, plain enumeration succeeded only up to size 13.) Random-
ized indexing demonstrates similar performance as plain enu-
meration, as it is expected since both strategies enumerate similar
structures same number of times. However, when memoization
is turned on, random indexing incurs performance penalties re-
sulting in being up to 1.75x slower than sequential enumeration;
this suggests that randomly accessing structures might miss po-
tential opportunities for substructure sharing and demonstrates
that memoization can lead to favorable caching patterns (this
effect is magnified in parallel enumeration, as shown below).

Membership checking. In the second part, Table 5 shows the
performance of membership checking when used after insertions
into search trees, as shown in § 2: inv/ex runs ensuring clause
after insertion, while inv/m invokes the enumerator’s member
method. For size s, results show run time averages for inserting
all s elements into trees of size s−1 (to measure the impact of
member feature alone, only correctness checking was measured).
Results show that even for simple structures like sorted trees,
speedups of efficient matching of memoized substructures are
substantial even for smaller sizes and scale with the size of the
structure, reaching more than 4x for size 15. Note that this tech-
nique depends solely on structure matching and its performance
is not worse for more complex invariants that involve expensive
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size 8 9 10 11 12 13 14 15

en/pl 2.6k 16.1k 97.6k t/o t/o t/o t/o t/o
en/m 2.69 4.97 13.88 27.09 61.49 205.27 819.21 2574.7
en/en 1.12 2.07 3.25 9.41 30.23 109.42 436.11 1437.93
en/rn 2.8k 16.8k 101.9k t/o t/o t/o t/o t/o

en/mrn 17.92 36.69 39.21 60.2 122.61 341.65 1196.68 4513.64

inv/ex 0.16 0.54 1.82 6.66 25.03 95.7 368.07 1416.54
inv/m 0.06 0.15 0.5 2.32 7.47 26.25 91.08 311.33

x 2.6 3.53 3.63 2.87 3.35 3.65 4.04 4.55

en/inv 3k 11.44k 43.76k 167.96k 646.65k 2.5M 9.66M 37.44M
en/lzy 1.33k 4.87k 18.05k 67.7k 255.92k 973.21k 3.72M 14.26M

% 55.67 57.47 58.75 59.69 60.42 61.01 61.5 61.9

Table 5: Different features in generation and testing for sorted
trees. Times are given in seconds; notation is as in Table 3.

computations (it can only be improved). This opens opportuni-
ties for even better performance, e.g. with hash-consing [20].

Pruning search space with lazy enumeration. The third
part of Table 5 shows how many data structures were avoided by
utilizing lazy enumeration in a manner as shown in § 2: en/inv
exhaustively enumerated s keys (in the range [0..s-1]) and per-
formed the insertion on all enumerated trees of size s−1, while
en/lzy used lazy enumeration in the same scenario. Both rows
report the number of key-tree pairs that were enumerated, while
% gives the percentage of all possible pairs that were avoided
during lazy enumeration. Results show that nearly 62% of all
possible key-tree pairs were discarded for inserting all of 15
keys into trees of size 14, which means that lazy enumeration
executed only 38% of all insertions. This adheres to the fact that
starting from avoiding only small fractions of the search space
for small sizes (for size 3, 12 out of 15 trees are enumerated), the
technique proceeds to prune exponentially larger amounts of the
search space. Although the current implementation of the tech-
nique incurs significant overheads, great potential lies in testing
scenarios where demanding computations might be avoided.

8.4 Parallel Enumeration
The results of evaluating parallel enumeration are shown in
Figure 8. We performed evaluation on two benchmarks: 1)
binary search trees (with the definition shown in § 2), to examine
performance benefits when enumerating simple structures
(which scales well when executed on a single thread; see Ta-
ble 3); and 2) RIFF images, enumerating structures based on the
widely-used Resource Interchange File Format, to demonstrate
scaling of parallel enumeration in the case of complex data
structures, which can distribute more computation to individual
worker threads. The graph plots running times for exhaustive
enumeration of structures of size 15, for different number of
worker threads (i.e., utilized cores). Run times of benchmarks
are shown scaled to their maximum running times: 227.76s for
the case of RIFF Image and 2.94s for the search tree benchmark.

The results confirm our hypothesis that enumeration, based
on the indexing function, is immediately amenable to paral-
lelization, modulo high deviation for smaller sizes (where the
JVM executor initialization incurs relatively big overhead). Both
benchmark scaled well: for 8 cores, average speedup was 4.03x
(719ms/2.9s) in case of search trees and 9.75x (20.82s/203.07s)
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Figure 8: The chart plots scaled execution time of parallel
enumeration for different number of threads (i.e. CPU cores).

in case of RIFF images. Interestingly, results for RIFF enu-
meration suggest that due to higher complexity of enumerated
structures, benefits of constructive sharing alleviate the amount
of work when divided. Parallel enumeration, with disperse map-
ping (which tries to balance accesses over multiple inner enumer-
ators), achieves positive effects on cache locality due to access
patterns in which different threads access and use the same inter-
mediate results as part of their working sets. (Note that the results
differ from ones given in § 8.1 for numThr==1, since a different
benchmarking configuration, slower per single core, was used.)

9. Related Work
This work is partly inspired by (and improves upon) bounded-
exhaustive enumeration applied for generation of well-typed
terms in the domain of program synthesis [22, 30, 32, 49, 50].
A comparison and analysis of insufficiency of previously
employed techniques can be found in [32]. We presented the
main ideas for bounded-exhaustive enumeration and SciFe as a
proof of concept in [33]. This work enriches and completes the
combinator framework, generalizes the application of pairing
functions for different enumeration strategies, and introduces
features that go beyond exhaustive enumeration.

Enumerators in SciFe follow the common approach for de-
signing a framework with combinators often adopted not just in
testing tools [10], but also in tools for tasks such as term gener-
ation [17, 49, 50], and serialization [34]. Overviews of various
techniques for generation of test inputs, particularly those for
bounded exhaustive testing, can be found in [19, 44, 45, 48]. (We
discussed and evaluated several such related techniques in § 1
and § 8). SciFe aims at unifying features that are supported in iso-
lation in other tools for generation of test inputs, such as exhaus-
tive generation [42], memoization [14], and lazy evaluation [18].

Constructive generators. SciFe is similar in spirit to other
tools that follow the constructive approach for test input
generation [7, 11, 14, 18, 42]. These tools aim at providing
simple generators of values together with means for their
composition, either through tool-specific interfaces [11], higher-
order functional (and random access) combinators [14, 42], or
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low-level non-deterministic primitives [7, 18]. However, these
tools lack general facilities that avoid generate-and-test. SciFe
is expressive for efficient constructive generation of complex
structures, together with fine-grained control [11, 14], direct
access [14], and laziness [42] of constructive approaches.

Declarative generators. We extensively related SciFe
to many successful declarative approaches for BET
[4, 13, 18, 40, 43]. Declarative techniques tend to be very
efficient but highly sensitive to the relation between the gen-
erator specification, and the search process and its performance.
Instead, SciFe provides expressive generation, without sacri-
ficing conciseness and modularity of definition, (deterministic)
control over the generation process, and efficiency (by avoiding
unnecessary search). By solely relying on structure constructors,
SciFe’s enumerators do not require structure definitions, and
support mutable and graph structures. For a class of structures,
SciFe is capable of composing enumerators of values with
orthogonal constraints, much like the high-level composition of
constraints in declarative approaches. In contrast to performing
search, enumerators can efficiently count the number of encoded
structures without actually enumerating them.

Property-based and random testing. The idea of generation
according to data types was popularized by QuickCheck [10]
and has been replicated in a number of languages and systems
[6, 12]. For complex structure generation, defining an adequate
distribution and avoiding generate-and-test for such, may be
challenging [24]. Some automated random testing tools use
specific techniques, such as feedback-directed testing [38] or
adaptive random testing [9], to control the distribution and
increase coverage [8]. SciFe pursues exhaustive generation for
expressive constraints, sidestepping problems of simple random
generators, while enabling high-coverage random testing and
parallelization thanks to efficient random access support.

Program inversion. The idea of inverting programs has been
explored in the general context [2, 36, 41] and applied to specific
format transformations [5, 26, 27]. Relation-driven program-
ming [5, 27] focuses on bidirectional transformations between
different structures given with textual representation. While
SciFe can invert enumeration, unlike [26, 27, 36], it focuses on
avoiding unnecessary search with expressiveness of dependent
enumeration. Moreover, its combinators impose a structure
that is leveraged to invert a given value deterministically (to
a unique index), without backtracking (as in [36]). Ambiguity
in SciFe is only allowed explicitly, rather than with ambiguous
grammars [5, 27]: a dependent enumerator can be parametrized
to encode, and thus recognize, different sets of structures.

Goal-directed programming. The idea of bringing non-
determinism into programming languages has appeared in
works that focus on goal-directed programming [21], functional
and logic programming [7, 29] and recently, specifically testing
[18]. These approaches introduced additional facilities into the
existing programming model to allow operations analogous
to enumeration in SciFe, such as querying for multiple results

[18, 21] and fair enumeration of composite results [7, 29].
Instead of relying on non-determinism, SciFe lacks the gen-
erality of such approaches and offers specialized enumerators
for exhaustive fine-grained controlled generation that avoids
backtracking, for both simple and complex constraints.

Common knowledge in data structure generation. Our
work explores the hypothesis that an approach to generating
structures based on constructive definitions can be not only more
efficient than approaches based on external solvers, but can also
support an equally expressive and concise form of specification
[13]. It suggests that search-based approaches might not always
be adequate from a performance perspective, because their
specifications frequently force unnecessary searching during
generation. This work shows that an expressive constructive
framework is achievable: it avoids the non-determinism and
performance intricacies of search procedures, and allows
compositional and modular definitions of robust generators
that have more predictable and favorable performance.

10. Conclusions
We have presented a new framework for defining enumerations
of values, which supports not only efficient sequential
generation, but also random access to an element in the
encoded sequence, testing whether an element belongs to
the enumerable set, as well as lazy and parallel enumeration.
We have demonstrated these features and overall advantage
of the framework on an example development scenario. The
framework is equipped with expressive combinators that enable
enumerator composition and achieve efficient generation
of complex structures that avoids unnecessary search space,
and recomputation with memoization. We have shown that
generation in our framework can be achieved with concise
specifications, while exhibiting performance and scalability
that exceed those in existing frameworks, as well as various
features that might aid in practical testing scenarios.

The key insight of this work lies in the enumerator algebra
that, with dependent enumeration, supports the idea of decom-
posing data structure invariants and propagating the appropriate
constraints to corresponding enumerators to avoid enumerating
superfluous values. Such an algebra can be expressed with a
simple language that constructs enumerators in modular fashion
and enables attractive properties and features that go beyond
capabilities of existing approaches. Giving a precise semantics
of the enumerator algebra and its language makes the approach
amenable to various implementations, while making the algebra
open for extensions, new features and optimizations. Due to a
variety of supported features, the enumerator framework demon-
strated superior performance and scalability in enumeration,
with limitations governed by the amount of available memory.
We believe the overall framework might have significant prac-
tical value since its modularity allows composable and reusable
definitions that are easier to reason about and allow fine-tuning
of the enumeration process. Although we showed that efficient
generation (and recognition) can be concisely expressed in
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a constructive manner, there remains the question about the
relation, and potential (automatic) transformations, between
enumerators and purely declarative, high-level specifications.
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