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Abstract

This dissertation is comprised of three essays. The first analyzes Treasury auctions
when modeled as common-value share auctions. The strategic interaction between
the auction and the surrounding trading in forward contracts is studied. Ample
evidence is found that trading before the auction mitigates problems of information
asymmetry and increases competitiveness in the auction. The effects of “quantity
uncertainty” caused by non-competitive bidding are also analyzed; these bids are
assured fulfillment, leaving an unknown quantity to the competitive bidders. Sur-
prisingly, the expected auction price increases as the quantity uncertainty rises.
This result is in contrast to the reduction in expected price experienced when un-
certainty about underlying value increases — a well-known result from the auction
literature. Policy implications conclude the essay.

The second essay investigates empirically the link between Treasury-bill auc-
tions and the degree to which a specific bill is traded “special” in the repurchase and
reverse market. For auctions with relatively aggressive bidding, a strong positive
link is documented between “specialness” and unexpectedly high auction prices.
In less aggres:z.ve auctions, the opposite result is found. Some additional {ind-
ings relating overall uncertainty about a particular issue to “specialness” are also
presented.

In the third essay, the impact of real options in a firm’s asset mix on its stock-
return characteristics is investigated. The volatility elasticity with respect to price,
v, for assets with option features is studied analytically. Simulations are used to
assess the small-sample properties of 4. The well-known empirical fact that stock
returns display negative v’s, and this finding’s link to leverage, are documented in
the sample. In addition, there is strong empirical evidence that proxies for options,
especially research and development expenditures, help to explain this effect for
profitable companies.
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Chapter 1

Price Formation in the Treasury
Market — Quantity Uncertainty
and Interaction across Markets

1.1 Introduction

Probably no other concept is more at the heart of modern finance theory than
“price formation;” we try to price assets and to establish what the determinants
of equilibrium prices truly are. Despite its fundamental nature — or just because
of it — our understanding of these issues is still far from complete. The market
structure does have an impact on how rational economic agents behave and on
the ways information is compounded into prices. We think important insights can
be made by studying specific markets, and by understanding the strategic and
informational linkage between them. In this respect the Treasury auctions and the
surrounding trading in the forward market in securities to be delivered when issued
(the so-called when-issued market) offer a challenging example; exactly the same
commodity is traded in two very different markets, between which an interesting
strategic interaction safely can be assumed to take place.! In this paper we try to
analyze the impact of the surrounding trading opportunities on the price formation
in the Treasury auction. This being one of the largest and most liquid financial
markets in the world, we think it is of particular importance to understand how

'Empirical evidence of such strategic interaction can be found in Bikhchandani-Edsparr-
Huang (1994) and Simon (1993). See also Chapter 2.
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this market structure affects the auction.

The theoretical auction literature is one of the most successful results of the
game-theoretic approach to economic problems.? Unfortunately, there are several
characteristics of Treasury auctions that do not fit the assumptions of most of the
traditional auction literature. First, most auction models are based on the single-
unit assumption, i.e., there is only one unit for sale (say, a painting or a bottle of
wine), which cannot be divided. Even if multiple units are allowed, each bidder can,
usually, acquire at most one of these units.> As bidders in Treasury auctions are
allowed to submit any number of bids and the over-all quantity restrictions rarely
are binding, the standard assumptions seem inadequate to capture the essence of
Treasury-auction bidding: the trade-off between price and quantity. Second, some
fraction of the securities in Treasury auctions is sold to smaller investors, the Fed,
and foreign central banks through a non-competitive bidding procedure, effectively
reducing the quantity available to the participants in the regular (competitive) bid-
ding. As the quantity being set aside for non-competitive bidders is not known
in advance, the regular bidders are in fact faced with a random quantity rather
than the fixed number that is the customary assumption throughout the auction
literatuie. Third and maybe most important, a Treasury auction is not an iso-
lated event. Trading in surrounding markets may convey information relevant to
the auction and change the strategic behavior of the bidders;! the most clear-cut
example is the when-issued market, in which an identical good is traded. We also
think that the trading in Treasury securities before the secondary market opens is
best captured in a finite-horizon model. Having an infinite horizon is tantamount
to saying that each period of trading is strategically the same.® We think this is a
good description of the stock market, but Treasury auctions and the when-issued
market are different. The auction is a singular event, and once the securities are
delivered, the when-issued market ceases to exist. It thus seems more appropriate
to use a finite-horizon approach with its explicit time dependency. Once the sec-

2For a detailed account of auction theory and its implications for Treasury auctions, see
Bikhchandani-Huang (1993).

30ne exception to this one-unit-per-bidder assumption is the setup in Tenorio (1993). The
only strategies he allows, however, force the bid price per unit to be the same, even if a bidder tries
to acquire many units; in Treasury auctions, a bidder can effectively submit an entire demand
function. He uses a private-values model.

4This is what Bikhchandani-Huang (1989) find when they allow for a resale market after the
auction.

50ne such model can be found in Wang (1994), who analyzes trading volume and stock returns
under asymmetric information and with competitive agents.
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ondary market opens, the market dynamics change radically, and we think that it
makes a reasonable end point of the strategic interaction displayed by the primary
dealers.

We analyze the primary Treasury-securities market within a framework that
maintains the above characteristics. Our approach is based on the concept of
share auctions, as analyzed in the seminal paper Wilson (1979), i.e., auctions of a
perfectly divisible good in which the bidders submit demand schedules rather than
discrete bids. To capture the effect of non-competitive bidding, we also allow for
quantity uncertainty in the auction, and trading can take place before as well as
after the auction.

In Section 1.2 we outline the institutional features pertinent to our setup, and
Section 1.3 presents the model and characterizes the equilibrium strategies. In
Section 1.4, we first analyze the impact of introducing additional trading oppor-
tunities on the bidding (demand) strategies; the effects of quantity uncertainty
are also studied and compared to those of value uncertainty. We then carry this
analysis one step further and determine the impact on price formation. First, we
focus on the quantity uncertainty generated by the non-competitive bidding in
Treasury auctions. Quantity uncertainty is radically different from the far better
understood value uncertainty, and its impact in » .rategic setting with asymmetric
information is to force the bidders to behave more competitively. In this respect
we can think of non-competitive bidding as “noise trading,” and when it becomes
less predictable, the market “liquidity” improves. Its impact is similar to that of
having less risk-averse bidders or having a larger number of bidders, i.e., it tends
to raise the expected auction prices. In a competitive setting, increased quantity
uncertainty has the opposite effect of lowering the expected auction prices. Sec-
ond, we find that pre-auction when-issued trading fosters competitiveness in the
auction and reduces information asymmetries. The former of these effects is accen-
tuated when the bidders enter the auction with, on average, net-short positions.
Furthermore, In Section 1.5 we analyze the policy implications of our results, and
Section 1.6 concludes.

1.2 Institutional Features
In this paper we try to model the pre-delivery trading of Treasury securities, i.e.,

we have one real and very specific market structure in mind. It is not intended
to be as general as possible, but rather to be as close a description of the real

15



Treasury-securities markets as feasible while maintaining tractability. To provide
the necessary background information, we will use this section to outline the struc-
ture of the institutional features. Our model is a uniform-auction model, i.e., all
winning bidders pay the highest losing bid, regardless of their own bids. Currently,
this is the auction format used for 2- and 5-year Treasury notes, whereas the other
maturities are sold using a discriminatory auction. There are also plans to exper-
iment with ascending-price auctions.® Both uniform and ascending-price auctions
are commonly believed to raise higher revenues for the seller than ciscriminatory
auctions.” We believe that our assumption of a uniform-auction format also serves
as an approximation of an ascending-price auction. As our model applies to all
Treasury securities, we try to describe each of the maturities currently being auc-
tioned by the Treasury. Further details of the market structure can be found in
Section 2.2.1 of Chapter 2.

Treasury bills, 3-, 7- and 10-year Treasury notes, and 30-year Treasury bonds
are sold by the Department of Treasury in a discriminatory auction. The 13- and
926-week bills are auctioned every Monday, or, when it is a holiday, the first trading
day thereafter. The 52-week bills are sold every fourth Tuesday, and the 3-, 7-,
and 10-year notes and 30-year bonds are auctioned quarterly. In a discriminatory
auction, the bidders submit sealed bids, and the auctioneer allocates the goods
according to the demand curve generated by the bids. (The highest bidder gets
whatever amount he® requested at that price, the second-highest bidder the amount
he asked for, and so on until the entire quantity has been distributed.) Each bidder
pays the price he submitted. If there is excess demand at the lowest winning rate,
the securities are pro-rated among the bidders at that price.

Once a inonth the Treasury sells 2- and 5-year notes in a uniform auction. In
a uniform auction, the bidders also submit sealed bids that are being met from
the highest bidder down, but the successful bidders pay only the highest losing
bid. The pro-rationing at the lowest winning rate is done as in a discriminatory
auction.

In the Treasury auctions, there is one additional feature: non-competitive bids.

6See the Joint Report on the Government Securities Market (1992).

7This issue is thoroughly discussed in Bikhchandani-Huang (1993). A classic reference in the
single-unit case is Milgrom-Weber (1982). Back-Zender (1993) and Reinhart (1992) address the
related issues of collusive bidding strategies and susceptibility to manipulations.

8The use of the masculine as the default third-person pronoun is merely a choice of conve-
nience, not a description of factual or implied gender; this remark applies to the remainder of
the dissertation as well.
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The auction procedures described above apply only to those submitting competitive
bids, mainly the approved primary dealers and their institutional clients. Bidders
unwilling to specify a price can submit bids that will be fulfilled at the quantity-
weighted average winning price of the competitive bids. In other words, these
bidders cannot condition their allocation on the price, but they are assured fulfill-
ment. In a typical T-bill auction, the amount of non-competitive bids accounts for
15-20% of the total; for notes and bonds, the amount of non-competitive bids tends
to be somewhat less. No one is allowed to submit a non-competitive bid for a quan-
tity larger than five million dollars, except the Fed, which submits non-competitive
bids for its own account as well as for other central banks. The competitive bidders
submit price-quantity® pairs. An over-all limit of 35% of the issue size — auction
bids and the position in the when-issued market before the auction combined —
applies to all competitive bidders. All competitive bids must be submitted by
1:00 p.m., and the outcome of the auction is announced around 2:00 p.m.1® The
securities are usually delivered the following Thursday morning, the issue date, at
which time the secondary market opens.

An integral part of the trading in Treasury securities is the forward market, in
which securities to be delivered when issued are traded. This market is usually
referred to as the “when-issued” market.!! Trading in the when-issued market
begins when the Treasury has announced the quantity of securities to be auctioned
off in the following week, and it continues until the secondary market opens. The
when-issued market is an over-the-counter market, in which principally the primary
dealers and large institutional investors participate. Like all forward markets, the
when-issued market is a zero-net supply market.

Institutional investors with demand larger than the five-million limit for non-
competitive bids, use the when-issued market to ascertain that their demands are
filled. In this market the primary dealers play the role of market makers. Since it
is a zero-net supply market, the primary dealers usually have a net-short position
when they submit their auction bids. If a primary dealer does not succeed in
acquiring enough securities in the auction to cover his short position, he is exposed

9When bidding for bills, the primary dealers actually submit discount rates that are whole ba-
sis points (fractions thereof are not allowed), rather than prices.The auctions for coupon securities
are based on yield.

10Until 1991 the outcome was announced after 3:30 p.m.

UFor an empirical investigation of when-issued rates relative to auction rates, see
Bikhchandani-Edsparr-Huang (1994) for 13- and 26-week bills, and Simon (1993) for coupon
securities.
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to being “short squeezed,” i.e., forced, irrespective of the cost, to cover the position,
either through purchases in the when-issued market or through transactions (loans)
in the repurchase (“repo”) and reverse market. (The latter market, however, is not
part of our model. A detailed description of the repe and reverse market is found
in Section 2.2.2 of Chapter 2.) In this market a holder of a security can borrow
short-term with the security as collateral (“obtain a repo”). The opposite side of
such a transaction (a “reverse repo”) can be taken by someone who needs to cover
a short position in that particular security. Securities acquired in the repo market
can be used as collateral in further transactions or sold in the secondary market;
to sell a security obtained as collateral in a reverse repo is in fact the standard way
of short selling Treasury securities.

1.3 Interaction across Markets: The Model

Our model consists of N primary dealers, or dealers for short, who can trade on
three different occasions before the public trading in the secondary market begins
and all uncertainty is resolved. These three trading dates try to model the trading
in the when-issued market immediately preceding the weekly auction, the auction
itself, and the when-issued trading after the auction but before delivery. All three
trading dates are modeled as Walrasian auctions, out of which we interpret the
middle one as a share auction, as in Wilson (1979). We are interested in the
interaction between these three markets as the prices are formed. Despite their
sequential nature, we are not trying to model a gradual release of information
per se, but rather how the existing private information is compounded into the
price and becomes public. Especially the first two trading dates are thought to
be virtually simultaneous. The last trading date tries to capture the when-issued
trading between the auction and the opening of the secondary market. This setup
also endogenizes the costs of being short squeezed. If a dealer cannot cover his
position in the auction, he has to buy either in the when-issued market or in the
secondary market; these costs will obviously affect the equilibrium auction price.

We let © denote the true value of the security, i.e., the price it will fetch in the
secondary market, and assume that this value is not influenced by the preceding
trading. This assumption corresponds to our belief that the secondary market is
more competitive and less affected by information asymmetries than the when-
issued market and the auction. The larger number of participants and the less
important role played by the primary dealers in the secondary market are factors
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that point in this direction. Clearly, these features are more a question of degree
than of different qualitative natures. We believe, however, that they are strong
enough to justify our approach of studying the preceding trading without explicitly
modeling the secondary market as well. For simplicity, we normalize E[?] to be
zero, and let o2 denote V[3), where E[] and V] are the unconditional expectation
and variance operators. Dealer i receives a signal §; = v + &, where we assume
that ¥ and the &’s are all jointly normal and independent of each other. We let
o2 denote V[¢] for ¢ = 1,2,...,N. This information structure makes the private
signais positively correlated. Most of the private information is likely to come from
the order flow that a primary dealer observes in the course of his usual activities.
We think it is reasonable to assume that this information is positively correlated
across dealers; if one dealer experiences an extraordinarily high demand from his
clients, the other dealers probably do too. Our model is designed to capture that
feature. The trading in period one is modeled as a share auction, in which the
dealers submit linear demand functions:

z}(p) = K1 + (13 — mp. (1.1)

In addition to the N primary dealers, we also have regular investors who want
to ensure a certain quantity of the securities soon to be auctioned off; buying in
the auction is always associated with uncertainty, either about the price (as a non-
competitive bidder) or about the quantity (as a competitive bidder). In this model
we treat their demand, %, as exogenous, distributed normally with variance o? and
mean Z. All winning bidders pay the price that equates supply and aggregate
demand, p!,which is the price that solves:

N

d_zi(p)+2=0, (1.2)
i=1
where we note that this is a market with zero-net supply.
The trading in period two, the “auction,” is modeled in a similar way, but
since the dealers now have additional information from the when-issued market,
the demand schedules take the form:

z(p) = Ko + (28i + 3p' + Moz} — Tap. (1.3)

As the bidders have observed the price in period one, they will use this information
to update their expectation of 9. They have also established a position in the
when-issued market, z!. (Usually this position is negative, which is to say that on
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average the dealers sell short in the when-issued market as part of their market
making.) Once a dealer has established a position, it will affect his attitude toward
additional trades; for example, if he has a short position when submitting bids, a
purchase in the auction will actually reduce his over-all risk (variance). Thus, z}
and p' enter the demand schedule (1.3).

In real life, the quantity to be auctioned off is announced publicly. The amount
of non-competitive bids, however, is stochastic, so the amount available to the
dealers is de facto stochastic. We try to capture this feature by letting the quantity
to be auctioned off, §, be stochastic. We let ¢ be normally distributed with variance
03 and mean g. Everyone pays the price that clears the market, p?, i.e., the price
that solves:

N n
2 i) =4 (1.4)

The trading in the when-issued market after the auction is modeled in the same
way as before the auction. All dealers submit demand schedules of the form:

2} (p) = K3 + (38i + m3p" + m2p’ + M3z} + N3zl — T3P (1.5)

For the same reasons as before, p? and z? will now also enter the demand schedule.
We allow for an exogenous demand w, which is normally distributed with variance
02 and mean w. The trading in the third period allows us to study the impact of
a potential squeeze on the price formation; a dealer who has sold a larger quantity
short in the pre-auction when-issued trading than he has been able to acquire in
the auction will be hard pressed to buy sufficient quantities in the when-issued
trading before delivery has to take place, usually on the following Thursday. As
before, everyone pays the the price, 5, that clears the market:

Y 2} p)+w =0. (1.6)

As in period one, this round of trading has a zero-net supply.

Since z} and z? are functions of §;, p', and p?, it may seem possible to eliminate
the dependence on z! and z? in the demand schedules. To derive an equilibrium
we need, however, for the equilibrium strategy to be optimal in future periods,
even if the bidder happened to deviate in previous periods. (This requirement can
be thought of as a condition necessary to ensure that a bidder is not fooled by his

own price impact when he deviates.) So in equilibrium it is perfectly true that we
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could eliminate the explicit dependence on z! and z?, but when solving for the
equilibrium parameter values, we need the specified form.

All the dealers have constant absolute risk aversion, and they maximize:

E [_e-p((ﬁ-ﬁ‘)z.‘+(f'—ﬁ’)z?+(i—ﬁ")2?)

Tie=1] (1.7)

where the coefficient of absolute risk aversion, p, is equal across dealers, and Z; ;-
is all information available to investor 7 in period one. The three terms in the
exponent are simply the profits originating from positions taken in periods one,
two and three, respectively.

In the maximization problem each dealer takes into account his own price
impact, or, in other words, he behaves strategically. To capture this, we generalize
the residual-supply-curve technique used by Kyle (1989) to a multi-period setting:

p' = pLi+ma]
p? = P+ izl + izl (1.8)
p* = pii+dal + 3zt 4 i,

where p!,, p%;, and p3; are the (random) components of the price in the three
periods that dealer ¢ has no control over. Expressed in a different way, those are
the prices that would prevail if dealer 7 chose not to make any trades. It is also
worth pointing out that the reason z} enters into the period-two and period-three
prices is the informational content of a trade. A large trade by dealer ¢, in period
one pushes up the price not only in that period, but also in the next one, as the
dealers use the market clearing prices to infer what o is, which in turn will affect
the price in periods two and three.

We solve the model by deriving a set of fifteen characterizing equations, one
for each coefficient in the three symmetric demand schedules. But first we need to
express pL;, p2;, and p3;, as well as the six ¥’s, in terms of the other parameters.
By substituting the conjectured demand schedules (1.1), (1.3), and (1.5) into the
market-clearing conditions (1.2), (1.4), and (1.6), and identifying coefficients, we
find that:
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Our next step is to solve for a symmetric Nash equilibrium through backward
induction. Let us first introduce some notation regarding the information that
the dealers can condition their demand schedules on. We have: I! = {5,p'},

= {5;,p',p%z}}, and I? = {5, p",p% p°; «},z?}. Let U(z},z?,z?) denote the
utxhty function from equation (1.7). In period three, we are solving:

maxE[U;v =2, )| T} (1.11)

IR R

Let #3(z},z?) denote the solution to this optimization problem. To keep the no-
tation simple, we have suppressed the other arguments — the private signal and
previous and present prices — but keep in mind that before period three £? is a
stochastic variable. The optimal demand schedule in period two can now be stated
as the solution to:

maxE[U (z}, 22,83z}, 2))|T3), (1.12)

and we call it #%(z}), which also will be a stochastic variable in period one. Finally,
in period one the optimal demand schedule will be the solution, Z!, to the following
program:

maxE[U(z.‘, 83(z}), 8 (<!, &} (2])))T]]- (1.13)

Although these condltlona.l expectations may seem simple in principle, the ex-
plicit calculations can easily become intractable. To keep the calculations simple,
we introduce some additional notation. In what follows, we let boldface minus-
cules denote vectors, boldface majuscules denote matrices, and “t” indicates the
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transpose of any given matrix. The computationally less interested readers may
want to skip directly to the concluding proposition.

Let us first define:

,¢,1T
¢2T
%7
&7
el
&7

and

El

O = O OO

o= O O OO

-0 0O O oo

{1,5,p%, 20,92, 0}
{lixu!’gisﬁliaﬁz—i’ﬁihﬁ}
{lsxs!vz?’gi,ﬁl—i’ﬁiiaﬁiia o}
{1,355}
{1,2},5,p-,, 0%}
{12,235, 5L 820, 52},

E2____ E3=

O~ OO O OO
[l == = R e i e R e I o

[l == R e I e Y e T e T oo R e
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We can now define F*7, (¢t = 1,2,3), through the equation F!T¢' = E[¢"|T}],
and let ¢ = V[E'T|T!]. Thanks to our assumption of joint normality, 3 is
independent of the realization of I!. We can finally define €’ so that ¢' = F'T ¢ +
E!'Tet. The last equation is simply a decomposition of %' into its conditional
expectation F'T ¢!, given I!, and the remaining uncertainty, E!" ¢!, where € is
distributed normally with zero mean and variance-covariance matrix X*. It is now
easy to verify that we can write:

E(U(s}, #(x7), #7(z;

t,

l'\‘

l

WIT] =

/ / / —e—ci(}) -z .*k”t/)’—%@b"V"/)’-%6”(2‘>"f’de}de;de;, (1.14)
1

E[U(z}, 2z}, 23(z},2})IT?) =
/ /2 —e-cz(z?)z—x?k“¢2"%¢2Tv2¢2‘%62r(22)—lezdcfdeg, (1.15)
3
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where ¢!, c2, c® are scalars, k!, k?,k® are vectors of constants, and V', V2 V? are

symmetric matrices of constants.

By evaluating the integrals in equations (1.14), (1.15), and (1.16), we can dif-
ferentiate and form a set of first-order conditions for the maximization problems
(1.11), (1.12), and (1.13). Since these equations were derived under the assumption
of parameter values according to equations (1.1), (1.3), and (1.5), the derived op-
timal values must be equal to the ones conjectured. Therefore, we can summarize
our results as:

Proposition 1 A linear symmetric Nash equilibrium in our model is characterized
by the following set of fifteen algebraic equations:

bt — (ktTEtﬂ—lEtTkt . 26!)—l(ktTFt _ ktTEtQ-lEtTVtFt), { = 1,2,3’

where
Q = ETVIE!+ (T,
bl = 9 L] b
1+%h{lﬁ ™}

1 .
b? = -l—-l- 2{n2,1;2+7r271 W§7211Q217r;’_7r§}’

1 .
b = ’1‘+_'5{n3,ns+1r371+1r§7§—ﬂ§7§,77§+7r§72 T3¥31 (30 T35 13, ~ T3},

and when there ezxists a solution to these equations, the strategies used by the dealers
are given by equations (1.1), (1.3), and (1.5).

It is also easy to see how the above technique can be used to solve one- and
two-period versions of the full-blown three-period model — something we will do
to assess the impact of opening new markets. The single period in the one-period
model will then correspond to period two of the three-period model. Similarly,
the two-period model refers to the above setup without period three. The demand
schedules, residual supply curves, etc. are adjusted accordingly.

Unfortunately, these algebraic equations cannot be solved analytically, so most
of the following sections will deal with the properties of this equilibrium through
use of numerical techniques.!?

12\We use a discretized Newton-Raphson method; see, e.g., Dahlquist-Bjork (1974).
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1.4 Price Formation: Analysis

Before presenting the simulation results, it is worth spending some time on the
main driving forces in the model. By carefully studying the dealers’ utility function
in equation (1.7), we can note that when z! + z? + 22 = 0, ¥ drops out of the
argument. This is what we refer to as the “market-making” aspect of a dealer’s
business; he wants to buy cheap and sell dear, which in this case typically can be
rephrased as selling dear, in order to buy cheap in the auction, and finally sell some
more after the auction. If market maxing were the sole source of profits and the
dealer could ascertain that the above equality always held, he would not care about
the absolute level of prices, only the spread between the prices at which he buys
and those at which he sells. The dealer’s expectation of & would in this case be
irrelevant. The spread is in this case also a direct measure of profits per unit. It is
not enough that the equality holds in expectation. Even if E[z} +z2+z3] = 0, there
will be with probability one!® a non-zero amount that has to be sold or bought in
the secondary market. It is then clear that ¢ wiil play a role in determining the
equilibrium prices. (Usually, we consider cases in which this equality does not hold
at all, as dealers on average carry positive inventories for resale in the secondary
market. In terms of the model, this corresponds to § > Z + @, i.e., the average
quantity sold in the auction exceeds the average net exogenous demand in the
when-issued trading.)

If there were no private information, all dealers would have identical demand
schedules and they would all end up with an N’th of the aggregate supply (positive
or negative) in each period. Having some private information, however, the dealers
in our model have different conditional expectations of ¥; this is the driving force
behind all strategic interaction in the model. A dealer whose signal is very strong
(positive) will be willing to pay more than one whose signal is weak (negative).
But as he submits a more aggressive demand schedule, he will move prices and
reveal at least some of this information to the other dealers. Being savvy traders,
the dealers take that effect into account. The very essence of strategic interaction
between dealers and across markets is to be found in deliberations like these. A
thorough understanding of what determines a trade’s impact on price, is therefore
a first step toward understanding the price-formation process, and that is the topic
to which we now turn.

13We do not consider degenerate probability distributions.
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1.4.1 Price Impact

The scenario we have in mind in this section includes pre- and post-auction trading
in the when-issued market, as well as the auction itself. For now we need not be
concerned with the levels (averages) of the exogenous demand and the quantity for
sale in the auction, because all coefficients in the demand schedules (see equations
(1.1), (1.3), and (1.5)), except the constants (ki, %3, and £3), are independent of
the levels (g, Z, and @), and those constants do not affect the price impact, as
defined below.!* We will also look at one- and two-period versions of the model.
In the one-period case, the single trading round will be interpreted as a share
auction without any surrounding trading; when there are two periods, we think
of the first period as the pre-auction when-issued market (zero-net supply), and
the second one as the auction itself. In all cases § is the quantity for sale in the
auction, and Z the exogenous demand in the pre-auction when-issued trading.

Let us also define price impact as the 4’s in equations (1.8). For instance, the
price impact of a trade in period two on the period-two price is 72, and on the
period-three price it is 3.

In Figure 1.1 (all figures are found in Section 1.8), we see how the v's change in
response to a change in o,. First, we notice that the price impact is always greater
in the period when the trade occurs than in subsequent trading rounds (v > 73;
v > 43; v3 > 42). This is what we expect, as a trade affects the coincident
price both because of a pure demand effect and because of the signal the trade
sends to the market, whereas only the latter effect is present in its price impact on
subsequent trading. The price impact is also gradually diminished in later trading
rounds, as more information (previous prices) is available and the signal therefore
is relatively less powerful (73 > 73, and 7} > 72 > 73).

We now focus on the effect of changes in o,, the variance of the true value.
This has the over-all effect of making the dealers less sure of the true value of 9,
i.e., the conditional variance of o is increased. It also means that the variance of ¥
“dwarfs” the variance of the noise (the ¢;’s and the exogenous demand/supply, 2,
g, and ), which will increase the weights the dealers put on the signals, private
as well as public.’® This result is quite intuitive; a larger variance of ¥ means
that extreme observations of the signal are more likely to stem from an extreme

14Gee equations (1.10).

5In a one-dimensional problem, E[i|5] = (Cov(#,5]/V(5]) - 5, which means that when the
covariance between the signal and the true value increases faster than the variance of the signal,
one will attribute greater weight to the signal. So even if the conditional variance of the true
value goes up, one will “pay more attention” to the signal.
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realization of ¢ than from the noise. In particular, the dealers will rely more on
the market price as a signal than before. When the dealer observes a high price, he
will then infer that it probably also means a high value. The dealer will reduce his
demand less than if he thought that the high price were not associated with a high
value. Thus, anyone wishing to acquire a certain quantity in the market is forced
to be even more aggressive when the price serves as a good signal — the price
impact is larger of a given trade! Figure 1.1 shows that this effect is pervasive in
all periods. The reason that 4, grows faster than the rest is that in the first period,
the market price is the main source of information about ¥ and thus most exposed
to the argument above; in later periods there is more information available, which
reduces the impact of the effect.

We do not show the analogous graph for changes in o, the variance of the
noise in the private signal, because it looks very much the same as Figure 1.1.
From the above line of reasoning, however, it is tempting to predict that the
effect of changes in o, would be the opposite of changes in o,, as both the private
(the ¢;’s) and the public signals (the prices) become noisier. This is true for the
private signal — the weights are reduced — but not for the prices. It is true
that the price becomes noisier, but much less so than the private signal. The
reason can be seen in equations (1.9); only the “average” noise matters in the
price ((Z;v:l‘#,- €;)/(N — 1), from dealer i’s vantage point), and since the noise is
independent across agents, the variance of the “average” noise is only a fraction
of the individual signals’ noise (1/(N — 1) in this case). Although the price also
becomes noisier, it looks increasingly attractive relative to the dealer’s private
information. In fact, this shift in emphasis from the private signal toward the
market prices is much stronger than the direct impact of the noise itself, and the
net effect on the price impact is positive.

As we have seen, the dynamics differ in the above two cases, but the net effect
on price impact is the same. For this reason, we will sometimes refer to these
cases jointly as “value uncertainty,” since they both are directly related to the
conditional variance of 9.

We finally look at “quantity uncertainty,” which here is defined as the variance
of the quantity for sale to competitive bidders in the auction, o,. Remember
that the non-competitive bids have precedence, making the quantity left for the
competitive bidders stochastic. From our previous discussion, it is easy to see what
an effect a change in o, will have on price impact, as both of the driving forces work
in the same direction. First, the price becomes a noisier signal about true value.
Second, this additional noise does not affect the private signal. Thus, the price is
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a less attractive signal in both an absolute and a relative sense. As the dealers
will infer less about value, they will reduce their demands more when they observe
a high price and the quantity uncertainty is large. The price impact is therefore
smaller when quantity uncertainty is large. We illustrate this phenomenon in
Figure 1.2, where we only show 42 and 43, the price impact in the auction and
in the post-auction when-issued trading (all the other 4’s are virtually unaffected
by changes in o,). It is worth pointing out that this reduction in price impact is
similar to what happens when the number of bidders increases. We can summarize
our findings as:

Observation 1 When value uncertainty, o2 or o, increases, the price impact of a

trade goes up. When quantity uncertainty, 03 , increases, however, the price impact
is reduced.

Let us now turn to the issue of surrounding trading, and see how that affects
the price impact in the auction. To do this we rely on our one- and two-period
versions of the model. In Figure 1.3, we show for our three models the price impact
of demanding one more unit in the auction, as o, changes. In this and the following
two figures, “1” refers to a share auction without any surrounding trading, “2” to
an auction with pre- but not post-auction when-issued trading, and “3” to our
usual model. We are now concerned with their relative positions, rather than
the absolute levels, which we already have discussed. The price impact is largest
when there is no surrounding trading at all; this reflects the relative importance of
the concurrent price as a signal. When the concurrent price is the only available
information besides the private signal, it automatically becomes the best signal
and therefore carries a lot of weight. If there already has been a round of trading,
another market price has already been established, and the concurrent price carries
less weight. The price impact is therefore the largest when there are no surrounding
trading opportunities.

If there are trading opportunities in the future, however, one does not want
to trade too aggressively on one’s private information right away, as that would
move prices more than necessary; a better strategy is to hold back and spread
out the trading over all available periods. In terms of the demand schedules,
this can be interpreted as putting less weight on the private signal ({2) and more
on the public information (the 7’s). If there are no more trading opportunities,
there are no benefits to be made by holding back, and the market price will carry
less weight. For this reason, the price impact is smaller when there are no more
trading opportunities. We can also see in Figure 1.3 that the differences hetween
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the market structures grow as o, increascs nd these informational motives become
more important. In Figure 1.4, we show what happens when o, changes. As an
illustration of the above argument, we see that the introduction of post zuction
when-issued trading has less of an impact when o, is large. As o, increases, the
private information becomes gradually less valuable relative to the public signals,
and the strategic impact of an additional trading opportunity is correspondingly
less important. The same argument applies when the auction price becomes very
noisy and virtually eliminates the concerns about price impact in future trading
periods. This is illustrated in Figure 1.5, where we can see “2” and “3” almost
converge as 0, increascs.

Having established wl.at determines the price impact, we now focus on the
price formation.

1.4.2 “Quantity” and “Value” Uncertainty

The “benchmark” three-period case we have in mind for the following analysis is
a scenario in which the dealers, on average, are short after the pre-auction when-
issued trading (Z > 0). The dealers then cover their positions in the auction
and continue selling in the post-auction when-issued market. We usually also
assume that they, on average, hold a net-long position when delivery occurs and
the secondary market opens (g > z + ).

In our setup the expected auction prices are proportional to the seller’s expected
revenues. This is so because § is not the total amount for sale, but only what
remains for the competitive bidders. Usually, the quantity is negatively correlated
with price, i.e., a high quantity tends to go with a iow price. When that is the
case, the expected revenues are less than the expected quantity times the expected
price. As the price in the competitive bidding also applies to the non-competitive
bids, price is in this model correlated only with the fraction remaining for the
competitive bidders. The total quantity and price are independent, as the total
quantity is known before the auction. The expected revenues are therefore equal
to the expected price in the competitive bidding times the total quantity. All of
the ensuing analysis is done directly in terms of expected prices.

We now turn to the link between prices and the price impact of a trade, the
key feature of the model’s strategic nature. The dealers participate in a game in
which they maximize their utility, assuming that all other participants adhere to
the equilibrium strategies; this is the very definition of a Nash equilibrium. As part
of their maximization they take their own price impact into account, the direct
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impact in the trading round at hand as well as the indirect impact in subsequent
rounds. In equilibrium, the potential gain ir volume by deviating and bidding
more aggressively is exactly offset by the reduced expected profit per unit caused
by the price impact. The greater .he price impact of a trade, the easier it is to
maintain a profitable equilibrium, as the cost of deviating goes up. Ceteris paribus
a larger price impact is translatced into higher equilibrium profits. This is of course
the reason why the equilibrium profits in an oligopoly tend to decrease as the num-
ber of competitors goes up. We simply want to emphasize the similarity between
more competitors and a (relatively) less informative price in their respective im-
pact on competition in strategic models with asymmetric information. Although
these ideas are well established and explored in the game-theoretic literature, we
think they are worth repeating with respect to this particular model, as a lot of
“gut feeling” intuition about capital markets is based upon competitive models.
For instance, in a competitive model with risk-averse participants, increased un-
certainty (defined, e.g., as the conditional variance of the item for sale) translates
into a higher risk premium, which in turn lowers the price. This need not be the
case in a strategic model.

In Figure 1.6, we show the impact of increased uncertainty about the underlying
value, o,, on expected prices.

Observation 2 When the variance of 9, o2, increases, the expected price goes up
in periods when the dealers on average act as net sellers, and down when they on
average are net buyers.

Remember that each dealer receives a signal §; = ¥ + é;, where ¥ is the “true”
underlying value that will be revealed once the secondary market opens and ¢;
is the “noise” in the signal, which is assumed to be independent of ¥ and across
dealers. In periods with positive exogenous demand, the expected prices will be
positive as the dealers act as net sellers. In the auction, where they act as buyers,
the expected price is negative. In Figure 1.1, we saw what happened to the price
impact in the different periods when o, rises: the price impact gets larger. From
the above discussion, we also saw that a higher price impact facilitates a more
profitable equilibrium; in periods where the dealers act as net buyers (sellers), this
means lower (higher) prices. In Figure 1.6, we see this illustrated. The main reason
the change in the period-three price is so much smaller than in the other prices, is
that the average quantity traded (w) is smaller than in the other periods. When
the average traded quantity increases, so does the average quantity each dealer
will sell or buy. But that means that the price hit from his price impact if he
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deviates becomes increasingly costly, as he must take the hit on all units he sells in
equilibrium. The price impact and average quantity traded in a period therefore
affect the expected price in a multiplicative fashion (see equations (1.9)). When
the quantity is lower, it also causes changes in price impact (due to, say, changes
in 0,) to have a smaller eifect on the expected price. Figure 1.7 shows the effects
of changes in o, on expected prices.

Observation 3 When the variance of the é;’s, 02, increases, the expected price
goes up in periods when the dealers on average act as net sellers, and down when
they on average are net buyers. In short, the effects of changes in o? are very

similar to those of changes in o2.

Given our discussion about the price impact when the noise in the private signals
changes, the net effects on expected prices from changes in o, are very similar to
those caused by changes in o,. The results in the one- and two-period models are
more or less identical and therefore not included.

We will now focus our attention on the effects of changing variance in §, the
stochastic quantity offered for sale to the competitive bidders in the auction. The
quantity uncertainty stems from the presencr of non-competitive bids, which are
guaranteed fulfillment at the quantity-weighted price of the competitive bids. A
more volatile flow of non-competitive bids from small investors (or the Treasury
itself), would increase o,. Figure 1.8 shows the impact of increasing quantity
uncertainty on expected prices.

Observation 4 When quantity uncertainty, o,, increases, so does the erpected
auction price (and the Treasury’s revenues).

The auction price rises in line with the decreasing price impact (see Figure 1.2).
We can also note that market-making spreads, p! — p? and p® — p?, go down, i.e.,
the per-unit profit from market making is also reduced by the increased quan-
tity uncertainty. In short, the market becomes more competitive when quantity
uncertainty rises.

The above result may seem counterintuitive, as increased uncertainty usually
reduces the seller’s expected revenues (“the winner’s curse”). To more fully under-
stand the driving forces behind this effect, we will spend some time in a one-period
setting. In Figure 1.9, the same result is shown for the one-period version of our
general model. Let us now consider what happens in a competitive setting, i.e.,
when the dealers do not take their own price impact into account. All other as-
sumptions remain the same. When this is the case, a noisier price simply means
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that the uncertainty about 9 increases. As all dealers behave competitively, the
increased uncertainty is translated into a higher risk premium, i.e., a lower price.
Figure 1.10 shows that the expected auction price indeed is reduced when o, in-
creases in this competitive setting. We could also have shown what happens if
the agents act strategically and the information structure is symmetric (say, all
dealers receive the same signal, §; = ¥ + €), but in this case, the variance of § does
not even enter the problem. It is thus clear that the quantity-uncertainty results
hinge upon the dual assumption of asymmetric information and strategic behav-
ior. These results are also supported by the theoretical findings in Edsparr (1993),
who studies quantity uncertainty in one-period share auctions with different in-
formation structures.!® One particular finding is that with perfect information,
the equilibrium in Wilson (1979) where the sale price is one half of the true value
breaks down, if quantity uncertainty is introduced. In this s. :se, quantity uncer-
tainty restores the results from the single-unit case, for which the equilibrium sale
price must equal the true value; this is an example of how quantity uncertainty
forces the bidders to act perfectly competitively.

Thus, we want to stress the qualitative difference between value and quantity
uncertainty. We have provided ample evidence for the increase in competitiveness
in a share auction when the uncertainty about the quantity rises. We next look at
the importance of trading in surrounding markets.

1.4.3 Interaction across Markets

Let us first think about the effects of trading before the auction, the pre-auction
when-issued market. The first effect is the very existence of a market and an
accompanying market-clearing price, which can serve as a (noisy) signal about ¥
in future trading and thereby reduces the uncertainty dealers face. The second
effect arises when the exogenous demand is non-zero (zZ # 0). If this is the case,
the dealers, on average, enter the subsequent trading with a long or short position.
As we think of noise traders primarily as investors who want to ascertain a quantity
above the limit for non-competitive bids, we focus on the case when the average
dealer position is negative (Z > 0). The dealers have then already committed
to deliver on the issue date, and if they cannot cover their positions, they will
have to buy the missing securities in the secondary market regardless of price. In
the auction, there is therefore an additional hedging motive, as the dealers already

16Gee also Miiller (1990), who has related results for a model of a discriminatory private-values
auction.
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have established a position and a purchase in the auction will reduce that exposure.
In Figure 1.11, the impact of this hedging motive on the expected prices in later
periods, p? and p3, is shown.

Observation 5 The greater the average short position a dealer holds when the
bidding in the auction starts, the higher the expected auction price.

The fact that p' rises, too, is exactly what we would expect, as the dealers are
risk averse and the expected profit has to rise to make them take on additional
positions; in addition, they exploit the noise traders, whose demand is not sensitive
to price.

The assumption of price insensitivity is clearly one to ensure tractability rather
than realism. Note that the price paid in period one has no impact per se on
future prices. Only the net position enters into the maximization problem in
future periods (see the utility function (1.7)), not the cost of establishing the
position. A graph showing the price impact of increased noise-trader demand in
the post-auction when-issued trading (@) would look very similar, but the driving
economic forces are quite different. The increased (price-insensitive) demand in
the last period drives up the expected price in that period for the same reasons
as before, but now it is that very price that drives up the the expected prices
in preceding periods, as it is mainly the expected “spreads” that determine the
market-making profits, not the price levels themselves.!” Since we are somewhat
sceptical of this extreme form of “noise trading,” we believe this effect would be
much smaller if we had modeled the exogenous demand in a more realistic way.
To support the claim of a significant hedging motive as a driving force in the price
formation, we show in Figure 1.12 how the price “spreads,” p? — p! and p° — p?,
change when the dealers’ risk aversion, p, goes up. (The levels offer no surprise: p!
and p? go up, and p? goes down; the results in the one and two-period versions of
the model are the same.) We can see here how p? — p! decreases much faster than
p® — p?, as the auction is much more exposed to the hedging motive than the post-
auction when-issued trading, in which most of the previous trades have canceled
each other out. Since we are looking at differences, most of the adjustment in price
levels for higher risk aversion has been eliminated, and in addition to the hedging

7As pointed out in the section on price impact, no coefficients in the demand schedules,
except the constants (k, k2, and k3), change when any of 7, §, and w changes. The means of the
exogenous supply/demand simply determine the level of prices (and profits), but the strategic
interaction between private and public information is left unaffected.
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motive only the changes due to the successive improvement of the information
available are picked up.

In what follows, we will analyze the introduction of trading opportunities, be-
fore as well as after the auction. To eliminate the impact on expected auction
prices from non-dealer demand, we let Z and w be zero, i.e., the noise traders are
as likely to be net buyers as net sellers and the market making is on average zero.
This allows us to focus on the information-disseminating aspect of trading, and
the question we have in mind is: do increased trading opportunities help reduce
the dispersion of the bidders’ valuations and thereby raise the expected auction
price?

The base case is now the one-period model (denoted “1” in the figures). The
two-period model with Z = 0 in period one tries to capture the effect of pre-auction
trading, but no trading between the auction and the secondary market (denoted
“2"). Finally, the full three-period model allows pre- as well as post-auction trading
(denoted “3”). In Figures 1.13 and 1.14, the expected auction price is shown for
the three models as we change o, and o,, respectively.'®

Observation 6 The expected price is always lowest in the isolated auction and
highest when there is pre-auction trading but no trading after the auction.

This result corresponds to the amount of information that has been revealed
through the trades preceding the auction. When there is an additional trading
opportunity after the auction, the dealers bid less aggressively, as the private in-
formation still has some value; if there is no such opportunity, there is no reason
to hold back. All these results carry over from our previous analysis of the price
impact.

In Figure 1.14 we see that the difference in expected price between the different
market structures is reduced as o, increases, whereas the opposite happens in
Figure 1.13 when o, grows. Once again we see the difference between quantity
and value uncertainty. The former fosters competition, whereas the latter not
only reduces the expected price so as to compensate the bidders for the well-
known winner’s curse, but amplifies the value of pre-auction trading. If we vary
o., instead of o, the corresponding results are similar.

18T6 make the models comparable, we use exactly the same parameter values in corresponding
periods, i.e., the one-period model corresponds to period two in the other two models. Given
that and our assumption of zero average exogenous demand, the only remaining parameters are
0. and oy, but, as noted before, quantity uncertainty has only a very limited impact on the price
formation in other periods. In all our simulations, the absolute levels may change slightly, but
all the qualitative results seem robust.
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In an attempt to summarize our findings, we emphasize the benefits of pre-
auction trading. When the average exogenous demand is zero, the very presence
of this market increases the expected auction price, thanks to better dissemination
of private information to the market as a whole. If this non-dealer demand is
positive, the increase in the expected auction price is even higher. Post-auction
trading, on the other hand, reduces the expected auction price, as it introduces an
additional trading opportunity in which the private information has some value;
the dealers simply bid less aggressively on their information when it still can be
used. '

1.5 Policy Implications

In the previous section, we have dealt with a variety of comparative statics, many of
which are beyond the control of the Department of Treasury, and therefore without
direct policy implications. Quantity uncertainty, however, is different. Since the
Treasury submits non-competitive bids on behalf of itself as well as foreign central
banks, it is at the Treasury’s discretion whether to convey that information before
the auction. (So is, of course, the exact issue size, which could be given as a range
rather than an exact number or not at all.) Throughout this paper we have found
a dramatic difference between quantity and value uncertainty. A difference that
has largely been ignored or simply not studied in the traditional auction literature.
What also shows that “intuition” based on results for value uncertainty would be
very misleading when applied to uncertainty about quantity. Our finding of a
reduction in the expected price in the auction (p?) when the quantity uncertainty
is reduced (o,) therefore leads to :

Claim 1 The Treasury may be able to increase the expected revenues from its se-
curities auctions by reducing the information about the amount of non-competitive
bids it reveals before the auction.

We have also found that pre-auction trading reduces value uncertainty, which is
translated into higher expected auction prices. This is the case when the average
noise-trader demand is zero, but if it is positive, the increase is amplified. The
reason for this additional price increase in the auction is not the unsophisticated
behavior displayed by the noise traders in this model and the elevated price level
thereby created in the pre-auction when-issued trading. The increase is rather due
to the increased competitiveness in the auction, which is caused by the, on average,
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short positions established by the dealers in the pre-auction trading. Entering the
auction with such a short position increases the cost of an unexpectedly small allo-
cation in the auction, as the dealer then has to cover his position in the secondary
market, where the prices are higher. The dealers, therefore, bid more aggressively.
A higher level of non-deaier demand in the post-auction when-issued trading also
raises expected auction prices, but we think that effect is largely driven by the
aforementioned price insensitivity of the noise traders. The purely informational
impact of post-auction when-issued trading lowers the expected auction price, as
it creates an additional trading opportunity that makes the bidding in the auction
less aggressive. To summarize these results, we state:

Claim 2 The Treasury has good reason to encourage a liquid pre-auction when-
issued market that attracts buyers of Treasury securities that otherwise would buy
in the secondary market, as it fosters competitiveness in the auction as well as
reduces information asymmetries.

Given that the informational and the demand-driven effects of post-auction
trading work in opposite directions, we think its net impact (whether positive or
negative) on auction prices is very small. There is no way to assess the value of
liquidity within this framework, but it is another factor that would increase the
value of post-auction when-issued trading.

We finally think that our results show the need for Treasury-securities research
that is based on the entire market structure (as opposed to just the auction in
splendid isolation), and that policy advice based solely on results from the pure
auction literature is inadequate. We do not claim to have “the” answer to these
questions, but we do hope that we have highlighted some possible fallacies and
added to our understanding of these important markets.

1.6 Concluding Remarks

This paper has tried to address the issue of price formation in the Treasury market,
and especially the interaction across markets. The impact of additional trading
opportunities on the price formation in the auction has been our main focus. We
think that our results have helped shed some light on these complex but fascinat-
ing issues. We have also shown the pervasive effects of the quantity uncertainty
generated by non-competitive bidding; its effects have been contrasted to those of
the far better understood value uncertainty. The present work has not addressed
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the classic question of choosing an optimal auction format: uniform or discrimina-
tory (first- or second-price)? Analyzing the issues in this paper for discriminatory
share auctions is an interesting issue for future research.

In Bikhchandani-Edsparr-Huang (1994), we have studied some related empir-
ical issues regarding the strategic interaction between Treasury-bill auctions and
the when-issued market. The link between the primary market and the repurchase
and reverse market is investigated empirically in Chapter 2. We also hope that
some of the implications of the results in this paper can be tested empirically. For
instance, the average open interest in the when-issued market before the auction
should have a positive effect on expected auction prices, and auctions with less
variable non-competitive bidding should experience lower prices than those with
more.'® As always for over-the-counter trading, data are hard to come by, but if
the practical problems can be overcome, we hope to pursue at least some of these
issues in future research.
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Figure 1.2: Price Impact Versus Variance of §

02=3;02=202=1,02=05;p=1;N =4

Price Impact

1lr
.
0.8¢
]
0.6}
.
.
]
0.4}F o ° .
.
.
* .
[ . L4 . [ [ . [ ° ° . 922
LI .
0.2} .
® o o ® o o o ] . . . . . g32
0 A A e e
1 p 3 4 Vial

41



Figure 1.3: Price Impact for Different Market Structures Versus Variance of &
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Figure 1.4: Price Impact for Different Market Structures Versus Variance of the
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Figure 1.5: Price Impact for Different Market Structures Versus Variance of §
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Figure 1.6: Expected Prices Versus Variance of
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Figure 1.7: Expected Prices Versus Variance of the ¢'s
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Figure 1.8: Expected Prices Versus Variance of §
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Figure 1.9: Expected Price Versus Variance of § in Isolated Auction
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Figure 1.10: Expected Price Versus Variance of § with Competitive Agents
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Figure 1.11: Expected Prices Versus Expectation of 2
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Figure 1.13: Expected Prices for Different Market Structures Versus Variance of &

(“1” — Isolated Auction; “2” — Auction with When-Issued Trading Before;
“3” — Auction with Surrounding When-Issued Trading)
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Figure 1.14: Expected Prices for Different Market Structures Versus Variance of §

(“1” — Isolated Auction; “2” — Auction with When-Issued Trading Before;
“3” — Auction with Surrounding When-Issued Trading)
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Chapter 2

Treasury-Bill Auctions and the
Repurchase and Reverse Market

2.1 Introduction

What is usually referred to as the market for U.S. Treasury securities is in reality a
plethora of interrconnected markets, in which you can buy, sell, lend, and borrow
individual issues. These markets are normally very liquid and often serve as bench-
marks for other risky securities. Despite the markets’ size, they are susceptible to
manipulation attempts, as the revelation of infractions by Salomon Brothers! il-
lustrates. A few key players dominate these markets, and there is evidence that
they use the market structure to play strategically. Given their importance, we
believe these markets provide a unique opportunity to study market interaction.
So far, the research has been limited in this area.

The relationship between the primary and secondary markets is the focus in
empirical work by Cammack (1991) and Spindt-Stolz (1991), who study the prices
attained in 13-week T-bill auctions and their closest substitutes in the secondary
market. They both find systematic underpricing in the auction relative to the
seasoned securities. Bikhchandani-Edsparr-Huang (1994) confirm these findings
for both 13- and 26-week bills. In addition, they explore the informational link
between T-bill auctions and the forward market in issues not yet delivered, the
so-called when-issued market. The innovation in the auction is defined as the

!This event is explicitly studied in Jegadeesh (1992). It also prompted a regulatory review;
see the Joint Report on the Government Securities Market (1992) and Mullins (1993).
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residual from a linear forecasting rule, given the information available before the
auction in the when-issued and secondary markets. Their most striking finding is
that a large portion of the innovation in the auction is reflected in the when-issued
market before the auction results are announced. Simon (1993) reports somewhat
similar results for Treasury coupon auctions. In Chapter 1 we have analyzed the
impact of surrounding trading opportunities on price formation in the auction.
The practical case in point for the model is the primary market for U.S. Treasury
securities.

In this paper, we attempt to extend the analysis of Bikhchandani et al. to
the repurchase and reverse market, usually referred to as the “repo market.” In
this market specific issues can be borrowed short term. Conversely, holders of a
security can borrow money using it as collateral. In most transactions, it does
not matter exactly which Treasury security is used as collateral, as they all are
safe and have approximately the same liquidity. Sometimes, however, there is an
excess demand for a certain issue. This excess demand is mainly driven by short-
sellers in the when-issued market who did not acquire a sufficient amount of it in
the auction, and who need it to make delivery. (This situation is called a short
squeeze.) Holders of such an issue can then bcrrow money much more inexpensively
using the sought-after security as collateral; i.e., the interest rate charged is lower
than that for “general” collateral. In such a case, that issue is said to be traded
“special.” The corresponding interest rates are generally referred to as general and
special repo rates. Most on-the-run issues tend to be traded special.

One of the reasons for the sparse academic interest most of these markets
have received is the lack of publicly available data. We have been able to obtain
proprietary repo-market data for on-the-run 13- and 26-week Treasury bills during
the period 1986-88. In fact, we have two data sets: one which quotes the rates
transaction by transaction, the other recording a single quote. The two data sets
originate from two different firms.

We say that the bidding in an auction is aggressive when the ask rate in the
when-issued market is higher than the lowest winning rate. We present evidence
that the difference between the special and general repo rates, the specialness, can
be linked to the innovation in the auction. For auctions with aggressive bidding,
the specialness tends tc increase when the auction prices are unexpectedly high.
Our results are robust across both data sets and maturities. These findings support
the idea that short squeezes tend to originate when the rates are unexpectedly low
in the auction and persist after the delivery date when the repo market opens. We
cannot, however, distinguish between random occurrences and collusive attempts
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to artificially create a shortage of a particular issue. The impact on specialness
of uncertainty in general, as measured by the dispersion of winning bids in the
auction and the bid-ask spread in the when-issued market, is also studied. We find
evidence of a positive link between the auction dispersion and specialness for the
first set of repo data, but not for the second.

In Section 2.2, we present an overview of the T-bill auctions, the when-issued
market, and the ensuing trade in the repo market. We also discuss previous empir-
ical results. Section 2.3 discusses the data and provides some descriptive statistics.
In Section 2.4, we investigate empirically the link between aggresssive auction bid-
ding and issues traded special in the repo market. In particular, we find that for
aggressively bid auctions, specialness in the repo market tends to increase when
the rates in the preceding auction are unexpectedly low. The opposite result holds
for auctions not so aggressively bid. Section 2.5 analyzes the relationship between
specialness and overall uncertainty, as measured by the dispersion of accepted bids
in the auction and the bid-ask spread in the when-issued market. We find some
evidence that the dispersion of winning bids in the auction is positively related to
specialness in the repo market. Some concluding remarks are found in Section 2.6.

2.2 The Market for Treasury Bills

In this section we will outline the institutional structure of the primary market for
Treasury bills and the repurchase and reverse market, a market for collateralized
short-term lending and borrowing. A fairly detailed understanding of this structure
is needed for the empirical investigation in subsequent sections. Here, we are only
dealing with 13- and 26-week bills. In Section 1.2 of Chapter 2, a description of
the primary market for other maturities is found.

2.2.1 The Primary Market

The Department of Treasury holds weekly auctions in which 13- and 26-week bills
are sold. These auctions are held every Monday, unless Monday is a holiday, in
which case they take place on the first trading day thereafter. The deadline for
submitting bids is 1:00 pm. There are two types of bids that can be submitted
in the auction: competitive and non-competitive. All bids are sealed. A non-
competitive bid only specifies a quantity, and the price is set as the quantity-
weighted average of the winning competitive bids. There is a cap of $5 million
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per bidder through the non-competitive procedure, but any quantity below that
limit is assured fulfillment. Usually, the non-competitive bids account for 15-20%
of the total amount sold in a given T-bill auction. The non-competitive bidders
are primarily individual investors and the Federal Reserve, which submits non-
competitive bids for its own account and for foreign central banks. The Federal
Reserve is not bound by the $5 million limit.

The competitive bidding is dominated by the primary dealers, currently 38 in
number. These are designated by the Federal Reserve. In implementing its open
market operations, the Federal Reserve is only trading with dealers having this
status. The key criteria to be designated primary dealer are a substantial volume
of trading in Treasury securities (at least one percent of the total activity), and
sufficient capital reserves. Primary dealers are expected to bid in every Treasury
auction for at least three percent of the issue and to be active participants in the
secondary market. A firm that wishes to become a primary dealer must provide
information about its trading volume and capital reserves to the Federal Reserve.
If this information is satisfactory, the firm will be granted reporting-dealer status.
When the Federal Reserve is convinced that the firm will maintain the required
level of activity, it can be designated a primary dealer.

A competitive bid specifies one or more discount rate-quantity pairs, indicat-
ing what quantity the bidder is willing to buy at a given price.? The bidders can
only submit discount rates which are whole basis points; a basis point is one hun-
dredth of one percent. Although primary dealers may submit as many discount
rate-quantity bids as they wish, they usually submit only one or two. The pri-
mary dealers buy Treasury bills for their institutional clients and for resale on the
secondary market. Although anybody may bid competitively, the competitive bid-
ding is dominated by the primary dealers, who have easy access to the information
necessary for effective bidding. There is also a financial motive for placing bids
through a primary dealer, as dealers without primary-dealer status have to pay
up front to guarantee their bids; a requirement that does not apply to primary
dealers. The Treasury stipulates that the sum of the amount of the bills won in
the auction and the long position in the when-issued market cannot exceed 35%
of the total amount auctioned. In addition, nobody can submit bids in an auction
larger in quantity than the total amount auctioned. When the non-competitive
bids have been filled, competitive bidders compete for the remainder in a discrimi-

2For a 13-week bill with a face value of $1,000, a discount rate of, say, 5.98% translates into
a price of $1000/(1 + 5.98%(91/360)) = $984.88.
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natory auction.® That is, the demands of the bidders, starting with the lowest-rate
bidder, are met until all the bills are allocated. The winning competitive bidders
pay the unit prices implied by the discount rates they submitted.

After the auction, the Department of Treasury announces summary statistics
about the bids submitted. These include tctal tender amount received, total tender
amount accepted, lowest winning rate (highest winning price), highest winning
rate (lowest winning price), proportion of bids accepted at the highest winning
rate (lowest winning price),* quantity-weighted average of winning rates, and the
split between competitive and non-competitive bids. Treasury bills are delivered
to the winning bidders on the following Thursday.® Once delivery has taken place,
the trading in the secondary market begins. The most recently issued bills of each
maturity are said to be on the run. On-the-run bills are usually the most actively
traded. They also tend to be traded at prices slightly higher than other comparable
issues, which usually is ascribed to this superior liquidity.® Another explanation
may be that on-the-run issues tend to be traded “special” in the repurchase and
reverse market, as described below, providing cheap financing; see Duffie (1993).

There is also a forward market for Treasury bills. Every Tuesday, the Treasury
announces the amount of bills to be auctioned the following Monday. The primary
dealers begin trading, for themselves and for their institutional clients, forward
contracts on the bills to be auctioned.” The maturity date of these contracts is the
Thursday of the auction week, the same day the newly auctioned Treasury bills
are delivered. As the bills are to be delivered “wken issued,” this forward market
is usually referred to as the “when-issued markst.” After the auction, trading
continues in the when-issued market until the when-issued contracts mature, after
which the bills are traded in the secondary market. Like all forward markets, the
when-issued market has a zero net supply. The absolute value of the total short
(or long) positions is called the open interest. In the when-issued market, the open
interest varies from a small amount to several times the amount auctioned.

Thus there are two different markets for acquiring Treasury bills around auction

3For a review of the implications of auction theory for the Treasury securities markets, see
Bikhchandani-Huang (1993).

4That is, amount of bids accepted at the highest winning rate divided by the amount of bids
received at this rate.

5The Treasury bills are not physically delivered to the winning bidders. Instead, they are
registered to the winning bidders in the Federal Reserve’s computerized records, the so-called
book-entry form; see Fabozzi (1991) and Stigum (1989).

6See Amihud-Mendelson (1991).

7A standard forward contract is for a principal amount of $ 5 million.
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time — the Treasury auction and the when-issued market. Accordingly, a primary
dealer can acquire Treasury bills in three different ways: buy in the when-issued
market before the auction, submit bids in the auction, or buy in the when-issued
market or in the secondary market after the auction. If a primary dealer buys in
the when-issued market or the secondary market, he is sure to acquire the bills,
whereas he faces the uncertainty of losing in the auction.

However, there is an advantage to buying in the auction. A primary dealer who
has a large demand for the bills to be auctioned risks revealing this information
if he buys before the auction in the when-issued market. This will increase the
when-issued ask price and encourage aggressive bidding in the auction. If, on the
other hand, he bids in the auction, this private information may be revealed only
after the auction. Bikhchandani et al. find empirical support for this kind of game
playing between the auction and the when-issued market. In about 80% of the
auctions there are bids submitted at rates lower than the coincident ask rate in
the when-issued market — i.e., a bidder is willing to pass up a trade in the hope
of winning in the auction at a higher price. This behavior is explained by the
informational costs of trading in the when-issued market. It is also shown that

this phenomenon is economically significant and not just due to occasional errors
by the bidders.

Bikhchandani et al. define the innovation in the auction results as the residual
from a linear prediction of the auction rate, given the information in the when-
issued and secondary markets at the deadline for submitting auction bids. They
find that a large fraction of the innovation in the auction results is reflected in
the when-issued market before these results are announced. This is also consistent
with the hypothesis that informed market participants hold back in the when-issued
market until the deadline for submitting bids has passed, and then start trading
on their information in the when-issued market. As a bidder cannot go short in
the cuction, this also explains why the link is stronger when rates go down than
when they increase. Having established these patterns consistent with strategic
behavior, Bikhchandani et al. also perform some indirect tests for collusion but
find no evidence of it. In contrast, Simon (1993) argues that a similar stronger
link in aggressively bid coupon auctions is indirect evidence of collusion.

Besides partially aggregating the participants’ information, the when-issued
market serves as a forward market. Many primary dealers are short in the when-
issued market before the auction, as they will have sold these contracts to those
institutional clients who want to be certain of obtaining the bills to be auctioned.
Of course, some institutional clients may also be short in the when-issued market.
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A short squeeze occurs when many of the short-sellers fail to acquire bills in the
auction. In this event, they have two alternatives. They can buy back in the
when-issued market after the auction or they can “borrow” the newly auctioned
bills. This borrowing can take place in two different ways: either against some
other collateral plus a fee in the securities lending market, or as a reverse in the
repurchase and reverse market, also known as repo and reverse market.

2.2.2 The Repurchase and Reverse Market

The repo and reverse market is a large over-the-counter market for short-term
borrowing and lending that is collateralized by securities.®. These transactions,
however, are structured as sales and subsequent repurchases of securities, rather
than as loans in the traditional sense. If, for instance, an individual who possesses
securities needs to borrow funds overnight, he can “sell” the securities to a counter
party and at the same time sign an agreement to repurchase them the next day
at a predetermined price. This price may be equal to the selling price paid on the
previous day by the counterparty. In this case, the counter party is also paid an
explicit repo rate as interest on the money invested. Alternatively, the purchase
price is set to be different from the selling price so as to incorporate the interest.
In either case, the return earned by the counter party is called the “repo rate” for
the securities used as collateral. The counterparty in a repo agreement is said to
be engaged in a “reverse” — borrowing securities while lending funds.

Most of the transactions in the repo market are overnight, but 1-, 3-, and 6-
month transactions also take place on a regular basis. All repo agreements that are
longer than overnight are called “term repos.” In addition, there are open repos
without a definite term. In an open repo, the agreement is renewed on a daily
basis, but it can be terminated at any time by either party.

Securities dealers and money-market banks tend to be the largest net borrowers
in the repo market. Corporations, smaller banks with excess deposits, and munic-
ipal bodies are the major suppliers of funds. The repurchase and reverse market
also serves as a way of conducting open-market operations by the Federal Reserve.®
In fact, it is the primary vehicle for short-term adjustments of bank reserves.

8For a detailed account of current market practices, see Stigum (1989) and also Sundaresan
(1992), who provides a wide range of descriptive statistics for Treasury auctions and repo and
reverse markets.

®Because of regulatory restrictions, the Federal Reserve cannot do regular reverses. Instead,
the it uses “matched/sale purchases” (MSP’s), which in essence correspond to reverses.
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In the spirit of a collateralized loan, there is usually a margin requirement, or
haircut, to protect the lender from changes in the market value of the collateral.
That is, the borrower is not allowed to borrow 100% of the inarket value of the
collateral. Today the margin requirement for Treasury bills is usually 1/4 of a
basis point per month of the time to maturity. The Federal Reserve takes a larger
margin. In term repos, the lender can call for additional margin if the market
value changes.

When there is a short squeeze, say in the when-issued market for 26-week
Treasury bills, the repo rate using the newly auctioned 26-week Treasury bills as
collateral might decrease dramatically and could even become negative. This is
because these bills become scarce commodities and one can borrow money cheaply
using them as collateral. The bills are said to be traded “special,”!® and the rate on
loans with that particular security as collateral is called the special or specific repo
rate. The repo rate charged for loans collateralized by issues not traded special is
called the general repo rate, or equivalently the repo rate for stock collateral. In
addition to banks, savings and loan associations, some municipalities, and a few
corporations are large suppliers of collateral in the market for special issues.

The main use of the repo and reverse market in specific collateral is to cover
short positions in the cash market. The overnight general repo rate is normally
somewhat below the Federal-funds rate, the rate charg: d for loans of excess funds
in the reserve account at the Federal Reserve. This is what one would expect, as
the overnight repo market and the Federal funds market are very close substitutes.
The main difference is that the borrowing of excess Federal funds is an unsecured
loan, whereas a repo is effectively a collateralized loan. The special repo rate,
however, is driven by the scarcity of a certain security, and is not directly related
to any other money-market rates. Shortages or short squeezes in a particular on-
the-run security stem primarily from uncovered short positions in the when-issued
market. Most of this paper is focused on the interaction between the auction and
the special repo and reverse market. We refer to the difference between the general
and special repo rates as the specialness of a particular issue.

1%For an example of an apparent anomaly in the pricing of a 30-year Treasury bond in the
secondary market as well as in the repo market, see Cornell and Shapiro (1989).
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2.3 The Data

The data used are for the period from October 6, 1986 to November 28, 1988. We

have for this period:

1.

99 observations of the bid and ask (discount) rates for 13- and 26-week when-
issued contracts at 1:00 pm on auction days.!

Summary statistics of the 99 auctions that correspond to the when-issued
rates at 1:00 pm on auction days in our data set. These statistics include
quantity-weighted average winning rate, lowest and highest winning rates,
and the total amount tendered and accepted.

The overnight repurchase rate for general collateral for transactions on the
first trading day the secondary market is open after the auction, normally

Thursday.

The special overnight repo rates, transaction by transaction, for on-the-run
13- and 26-week bills on the first trading day the secondary market is open
after the auction, taken from one dealer in the repo market. These data also
include the number of contracts traded at each rate, but not the time for the
transaction.

The overnight repo rate for the on-the-run 13- and 26-week bills on the first
trading day the secondary market is open atter the auction taken from a
second dealer. These quotes represent a somewhat subjective daily average
as recorded by the traders at the end of the day.

The when-issued rates at 1:00 pm on auction days are not publicly available. These
data were collected by calling a dealer at Shearson Lehman at 1:00 pm on auction
days, who in turn got them from Fundamental Brokers Inc. (FBI).!? The summary
statistics of the weekly auction are announced by the Department of Treasury
and published in The Wall Street Journal. The 1:00 pm when-issued data will

11'The when-issued contract is quoted by its discount rate. The bid rate is the discount rate at
which one sells and the ask rate is the discount rate at which one buys.

12This market is extremely efficient, and the quotes hardly ever vary across the different bro-
kers. These data are a subset of the sample used in Bikhchandani et al.; approximately thirty
observations in the beginning of 1986, for which we lack observations from the repo market, are
excluded in this paper.
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primarily be used in this paper to calculate the average of the bid and the ask
rate, which we denote BAnn, nn=13 and 26, and the spread between the bid
and ask rates, WISPRDnn. The summary auction statistics are used to form the
difference between highest and lowest winning rates, DISPnn, and the ratio of the
total amount tendered to the amount accepted, COVERnn, nn=13 and 26. We
also use the quantity-weighted average winning rate, ARnn, nn=13 and 26.

From the two repo samples, we construct three different variables to measure
the degree of specialness in a particular issue. The first is a quantity-weighted aver-
age difference between the special and general repo rates. This variuble is denoted
1SPAVnn, nn=13 and 26, for the 13- and 26-week bills, respectively. Similarly, we
use the maximum difference between the special and general repo rates among all
trausactions in a given day, and denote it 1SPMnn. Finally, a simple difference is
calculated between the special and general repo rates from the second firm. This
variable is called 25SPnn, nn=13 and 26. In addition, we use a measure of disper-
sion in the special repo rates used in a given day. It is calculated as the maximum
difference between all special repo rates at which transactions have taken place
through the first dealer. We denote this variable SPSPRDnn.

There are about 15 missing observations in the first repo sample and 29 in the
second, but only rarely is an observation missing in both, so no bias should be
introduced. Only dates for which we have when-issued data are included. During
our sample period, approximately ten auction days are missing from the sample.
This is because the person providing the data was out of the office on the days in
question. As he was not a trader in this market, we do not believe any selection
bias resulted.

Table 2.1 lists definitions of the variables used. To facilitate comparison be-
tween 13- and 26-week bills, we represent the data in (discount) rates rather than
prices. Sample statistics are presented in Table 2.2 (this and the following tables
are found in Section 2.8), and the correlation coefficients for the different measures
of specialness are found in Table 2.3.

First wee look at the repo data from the first dealer, the transactions data.
We can see that, on average, the on-the-run 13-week bill is traded in the repo
market at a rate of 70 basis points below that for general collateral, and the
variability from one week to the other is very high, a standard deviation of about
74 basis points. Similarly, the on-the-run 26-week bill has an average repo rate of
76 basis points below the general rate, and a standard deviation of 84 basis points.
The differences between special and general repo rates for the second sample are
somewhat higher, 109 and 105 basis points, respectively. We can also see that
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ARnn:

BAnn:

WISPRDnn:

DISPnn:

COVERnn

1SPAVnn:

1SPMnn:

2SPnn:

SPSPRDnn:

Dnn:

Table 2.1: List of Variables

The quantity-weighted average winning rate in the auction for nn week
bills, nn=13 or 26.

The average of the ask and bid rates in the when-issued market at 1:00
pm on auction days for nn week bills, nn=13 or 26.

The difference between the bid and ask rates for nn week bills, nn=13
or 26, quoted on the when-issued market at 1:00 pm on auction days.

The difference between the highest and lowest winning rate in the
auction for nn week bills, nn=13 or 26.

The ratio of the total amount tendered and the amount accepted in
the auction for nn week bills, nn=13 or 26.

The quantity-weighted average difference between the special repo
rates and the rate for general collateral for all transactions in the
first repo sample for the on-the-run nn week bill, nn=13 or 26.

The maximum difference between the special repo rates and the rate
for general collateral among all transactions in the first repo sample
for the on-the-run nn week bill, nn=13 or 26.

The difference between the special repo rate from the second dealer
and the rate for general collateral for the on-the-run nn week bill,
nn=13 or 26.

The maximum difference among the special repo rates for all transac-
tions in the first repo sample for the on-the-run nn week bill, nn=13
or 26.

A dummy variable whose value is one if the when-issued ask rate for
the nn week bill, nn=13 or 26, is greater than the lowest winning rate
in the concurrent auction, and zero otherwise.
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the rates vary considerably from one transaction to the next within the same day:
SPSPRD13 has a mean of 38 basis points and SPSPRD26 of about 58 basis points.
By looking carefully at Table 2.3, we also see that the special repo rates in
the two samples have correlation coefficients of less than 0.6. As the special repo
rates can fluctuate considerably within a single day, we think the low correlation
coefficient reflects that the dealers’ transactions take place at different times.

2.4 Auction Bidding and Issues Traded Special

In this section, we investigate the link between bidding in the auction and the
subsequent repo market in specific issues. It seems plausible that the allocation
generated by the auction is the driving force behind specialness in the repo market.
If a large fraction of the short positions in the when-issued market remain uncov-
ered after the auction, the dealers are forced to either buy the missing securities
or borrow them. If, in addition, the issue is perceived to be overpriced in the post-
auction when-issued market, the solution is to engage in a reverse transaction until
the price in the cash market goes down. Even if the special repo rate is substan-
tially below that for stock collateral, it may be a small price to pay compared to
buying the sought-after security at a temporarily inflated price. Naturally, those
borrowing the missing securities hope that prices in the secondary market will come
down eventually. The empirical results in Simon (1993) and Bikhchandani et al.
indicate that auctions in which the bidding is aggressive are qualitatively different
from other auctions. This might be because of collusive attempts to squeeze the
market, or simply because there is no way of short selling in the auction. In either
case, they require special attention.

Our first step toward finding such a connection is to assess the surprise in the
auction results. We use a linear specification to forecast the average rate of the
winning bids in the auction:

ARnn' = 6°ONST 4 93 BA13' + 0% . BA26' + €, (2.1)

where € is an error term, and BA13 and BA26 are the when-issued rates at 1:00 pm
for 13- and 26-week bills, respectively. The 6’s are constants. The results presented
in Bikhchandani et al. show that there is no additional information contained in
the secondary-market prices beyond what is already incorporated in the when-
issued market. Therefore, only the when-issued rates are used to forecast the
average winning auction rate. We define the innovation, or surprise, in the auction
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results as the residuals from this regression. These residuals are denoted RES13
and RES26, respectively. As all the variables are expressed in discount rates rather
than prices, the larger the residuals, the lower the prices in the auction relative to
the forecast.

The forecasting regressions are found in Table 2.4. The adjusted R?’s in these
regressions show that there are rarely any big surprises in the auction results,
given the information in the when-issued market. All coefficients in this paper
are estimated using the ordinary-least-squares procedure, and standard errors are
calculated allowing for heteroskedasticity by using White’s (1980) procedure.

We now ask:

1. Is specialness in the repo market related to the innovation in auction
results?

To answer this question, we regress the residuals, RES13 and RES26, on the
different variables for specialness. As we believe that auctions with aggressive
bidding are qualitatively different, we also use a specification with dummies for
aggressive bidding (nn=13 and 26):

RESnn' = k + (5P . 1SPAVnn' 4+ (4% . Dnn - 1SPAVnn' + €. (2.2)

Analogous specifications are used for 1SPMnn and 2SPnn. The (’s and & are
constants. These dummies, D13 and D26, take the value one if the lowest rate in
the auction is lower than the ask rate in the when-issued market at 1:00 pm, and
zero otherwise. This dummy is intended to control for at least one bidder being
willing to pass up an opportunity to buy in the when-issued market at a lower
price than he is prepared to pay in the auction. It may seem possible that this
is just a mistake by some bidders. Bikhchandani et al., however, show that this
variable is economically significant. We use it as an analytically appealing way of
defining aggressive bidding relative to the when-issued market.

The regressions for 13-week bills are presented in Table 2.5, and those for 26-
week bills in Table 2.6. Without the dummy for aggressiveness in the auction, the
adjusted R?’s are roughly zero. The coefficients are —0.004, —0.004, and 0.001 for
the different specialness variables in the case of 13-week bills, and 0.003, 0.003, and
—0.002 in the case of 26-week bills. None of the coefficients is significantly different
from zero, indicating that there is no significant link for the sample as a whole.
When the dummy is introduced, a very clear pattern emerges in all the regressions
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regardless of maturity and variable used to measure specialness: the coefficient on
the dummy variable is negative, the one on the specialness variable without the
dummy is positive, and the sum of the two is negative. The adjusted R?’s are
around 0.25 for the 13-week bill, and slightly less than 0.10 for the 26-week bill.
For the 13-week bill, the coefficients on the variables for specialness without the
dummy are around 0.015 with ¢-statistics of roughly 2.0, and the dummy variables
have coefficients between —0.018 and —0.029 with ¢-statistics around —4.0. The
results for the 26-week bill are very similar: the coefficients on the specialness
variables are all in the range 0.009-0.025 with ¢-statistics between 1.7 and 2.4; the
dummy variables have coefficients between —0.014 and —0.025 with t-statistics
around 2.5.

The negative sum of the two coefficients indicates that a surprisingly low rate
in the auction (i.e., high price) goes with a high degree of specialness when the
bidding is aggressive relative to the pre-auction when-issued market. The intuition
is straightforward. A surprisingly low rate in the auction is likely to leave many
of the short-sellers in the when-issued market with a les: than sufficient allocation
to cover their short positions. This short squeeze is then translated into a larger
than usual demand for that issue in the repo market, which in turn pushes down
the repo rate. It is interesting to see that this line of reasoning applies only when
someone is willing to submit bids at prices higher than those at which one could
have bought in the when-issued market at the time of the deadline for submitting
bids in the auction.

We believe that the results can be explained by two different effects working in
opposite directions. The first effect, outlined above, is significant only when there
is a true surprise in the auction, i.e., most of the bidders do not anticipate the low
rate, which leaves them vulnerable to one or a few bidders who deliberately con-
ceal their intentions in the when-issued market. (This reading does not, however,
differentiate between attempts to short squeeze the market and strategic trading
on private information.)

The second effect stems from the perceived price level in the when-issued mar-
ket. We suggest that when no one is bidding at prices above the coincident level
in the when-issned market, the residuals from the auction prediction primarily
measure the perceived under- or overpricing in the when-issued market at the time
of the auction. It is also reasonable to believe that the dealers’ short positions
grow with the degree of perceived overpricing in the when-issued market, as that
would justify a greater risk exposure in their short positions. If this is the case, the
positive coefficients when the dummy is zero, would correspond to the increased
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risk of being short squeezed as the open interest rises. In other words, a particular
T-bill’s specialness in the repo market depends on the surprises in the auction as
well as the overall level of short positions in the when-issued market.

The dummy variable is intended to dichotomize the sample according to the
level of surprise in the auction. When there is little surprise in the auction itself,
the latter effect dominates. If there is a surprise, as here indicated by someone’s
willingness to abstain from trading in the when-issued market in order to conceal
the information until the auction, the former dominates. These results seem robust,
as they hold for all the different measures of specialness. We have also verified that
the results are not driven by outliers.

Next, we want to know whether overall demand in the auction is related to
specialness in the repo market. Attempts to surprise or deliberately squeeze the
market may, for example, be more successful if the total amount of bidding is
relatively small. We therefore ask:

2. Is specialness in the repo market related to the overall demand in
the auction?

To test this, we use COVERnn, nn=13 or 26, to measure the aggregate de-
mand in the auction. Remember that COVERnn is the ratio of total amount
tendered to the amount accepted in an auction. We regress the different variables
for specialness on COVERnn:

1SPAVnan' = k + (°°VER .COVERnn' + €, (2.3)

and similarly for ISPMnn and 2SPnn. The results in Table 2.7 show that the null
hyothesis that no such link exists cannot be rejected in four of the six cases. In
the two regressions with significant coefficients at the 10% level, the coefficient
on COVERI13 is approximately —0.25, indicating that a lot of bids in the auction
is negatively related to specialness. All the other coefficients on COVERnn are
positive, making it impossible to discern any consistent pattern. We have also
used dummies to see whether there is an effect in the aggressively bid auctions but
not in the rest, or vice versa. Since these additional regressions show no such link,
they are not included.

The first set of repo data provides an opportunity to see what determines
the intra-day variability in repo rates, transaction by transaction. The variable
SPSPRDnn, nn=13 or 26, measures the maximum difference between the special
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repo rates at which transactions took place through the dealer. We think this is a
better measure than some kind of variance estimator, as the number of transactions
is relatively small and no time is recorded. If there were a time recorded for
each transaction, we could trace the rate changes through the day. Given the
limitations of the available data, we find it more useful to see within what bounds
the transactions take place.

As we found above, the level of special repo rates is related to the surprise in
the auction results. Thus, it seems logical to ask:

3. Is the maximum difference between the special repo rates related vo
the the surprise in the auction?

To test this, we mimic the procedure above, regressing the residuals from Ta-
ble 2.4 on SPSPRDnn, with and without the dummy variable Dnn; i.e., with the
dummy:

RESnn' = k + ¢SPR. SPSPRDnn' 4+ (466 . Dnn - 1SPSPRDnn' + &. (2.4)

Table 2.8 presents the results. Without the dummies, we can reject the null hy-
pothesis of no significant relationship at the 10%-level for the 13-week bills, but
not for the 26-week bills. This tells us that for the 13-week bills, it is more likely
to obse:ve a big difference from one special repo transaction to the next when
the rates are unexpectedly low in the auction. When we introduce the dummies,
D13 and D26, we see that a similar pattern is present for both maturities for the
aggressively bid auctions. The coefficent on the dummy variable is —0.029 for the
13-week bills and —0.023 for the 26-week bills, and both are significantly different
from zero at the 1% level. For the-not-so aggressively bid auctions, the coefficient
is positive for both maturities (0.014 and 0.019, respectively), but significant (at
the 10% level) only for the 26-week bills.

We think this fits the pattern established above, in which two different effects
are at work simultaneously. A low rate in the when-issued market leads to larger
short positions, which leads to a positive relationship between the innovation in
the anction and both the degree and variability of specialness in the ensuing repo
market. When there is no surprise in the auction, this effect dominates. When
there is a surprise, as measured by Dnn, the surprise itself creates a short squeeze,
increasing both the specialness and its variability.

Having established a close link between the auction and both the degree and
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variability of specialness in the repo market, we now focus on the role played by
uncertainty in general in explaining issues traded special.

2.5 Uncertainty and the Repo Market

In this section, we will investigate whether specialness can be related to overall
uncertainty in the market. Volatile market conditions are usually conducive to
speculation by the best informed participants. It is not a question of arbitrage in
the academic sense of the word, but of risky positions that earn superior returns. If
we assume that a particular T-bill issue is trad~ special primarily because short-
sellers in the when-issued market have failed to cover their positions in the auction,
it is plausible to think that specialness in the repo market is linked to the amount
of speculative activity. From the theory of market microstructure, one measure of
divergence of beliefs is the bid-ask spread.!® In the auction context, the difference
between highest and lowest winning bids is a measure similar in spirit. This is
what is used by Bikhchandani et al., and Cammack (1991) uses the closely related
difference between the lowest and average winning rate.
We then ask:

4. Is specialness in the repo market related to the overall uncertainty
in the market?

To test this hypothesis, we regress the variables for specialness on the bid-ask
spread in the when-issued market immediately preceding the auction, WISPRDnn,
and the difference between highest and lowest winning rate in the aucticn, DISPnn,
where nn=13 and 26:

1SPAVnn' = &k + (PSP . DISPun' + (WISP . WISPRDnn' + &, (2.5)

and analogously for ISPMnn and 2SPnn. The results are found in Table 2.9. The
coefficient for DISPnn is significant in half of the regressions, for two of three
variables for specialness in the case of the 13-week bill, and for one of the three for
the 26-week bill. All the specialness variables formed by the data from the first
firm are positive and rather large. Those from the second firm are roughly zero.
For the 13-week bill, the significant coefficients on DISP13 are around 8.0, telling

13Gee, e.g., Copeland-Galai (1983) and Glosten-Milgrom (1985).
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us that one basis point in the dispersion of winning auction bids on average causes
the specialness to increase by eight basis points. In the regressions of 1SPAV26
and 1SPM26 on DISP26, the coefficients are somewhat smaller: 5.79 and 4.54,
respectively. Only the former is significant (at the 10% level). We regard this
as weak evidence in support of overall uncertainty being related to specialness.
It is clear, however, that the spread in the when-issued market is not related to
specialness, regardless of the variable used.

Finally, we want to see if the fluctuations in special repo rates from one trans-
action to the other are related to market uncertainty, so we ask:

5. Is the maximum difference in special repo rates related to the overall
uncertainty in the market?

To answer this question, we regress SPSPRDnn, on DISPnn and WISPRDnn,
nn=13 and 26:

SPSPRDnn' = k + (PSP . DISPnn’ + (W'SP . WISPRDnn' + €.  (2.6)

As we can see from the results in Table 2.10, the coefficients on DISPnn and
WISPRDnn are 0.68 and —0.26 for the 13-week bill, and —4.74 and —2.15 for the
26-week bill. None of the coefficients is significant, and thus we cannot reject the
null hypothesis that no such relationship exists for both maturities.

In short, we have found some evidence in favor of overall uncertainty at the
time of the auction being related to the degree of specialness in the repo market.
No link between SPSPRDnn and market uncertainty has been found.

2.6 Concluding Remarks

We have tried in this paper to link the repo market to the preceding Treasury-
bill auctions. The evidence seems very strong that such a link exists, and that
there are two distinct effects working in opposite directions. In aggressively bid
auctions, unexpectedly low rates in the auction tend to go with a high degree
of specialness. For auctions in which the bidding is less aggressive, we also find
a strong link between the innovation in the auction and the special repo rates,
but in the opposite direction. We have suggested a possible explanation for this
phenomenon.
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The results presented in this paper as well as those in Bihchandani et al. seem to
contradict the widespread notion that the Treasury market is perfectly competitive,
and suggest that there is a close link between the institutional structure of the
market and the price formation. At the very least, the results highlight the need
for further research that explicitly takes market structure into account. An obvious
next step would be to enlarge the sample, and preferably include transactions from
several dealers. We also think that time-stamped data could provide valuable
insights into the intra-day dynamics of the repo market.
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2.8

Tables

Table 2.2: Sample Statistics!

AR13 BA13 | WISPRD13 | COVERI13 | DISP13
Sample Size 99 99 99 99 99
Max 8.05 8.035 0.04 635 0.15
Min 5.08 5.065 0.00 298 0.00
Mean 5.99 5.98 0.0101 398 0.045
Std. Dev. 0.63 0.63 0.006 62 0.029
1SPAV13 | 1SPM13 2SP13 SPSPRD13
Sample Size 82 82 72 82
Max 3.57 3.90 5.00 2.94
Min -0.25 -0.10 0.00 0.00
Mean 0.70 0.84 1.09 0.38
Std. Dev. 0.74 0.78 1.26 0.49
AR26 BA26 | WISPRD26 | COVER26 | DISP26
Sample Size 99 99 99 99 99
Max 8.13 8.13 0.08 532 0.15
Min 5.13 5.14 0.00 279 0.00
Mean 6.20 6.20 0.012 372 0.037
Std. Dev. 0.67 0.67 0.010 44 0.024
1SPAV26 | 1SPM26 25P26 SPSPRD26
Sample Size 86 86 72 86
Max 5.26 5.65 4.75 5.12
Min -0.28 —0.20 —0.08 2.98
Mean 0.78 1.07 1.05 0.58
Std. Dev. 0.84 1.14 1.30 0.90

t The rates are in percent. For example, 2.50 means 2.5%.



Table 2.3: Sample Correlation Coefficients for Measures of “Specialness”

ISPAV13 1SPM13 2SP13 1SPAV26 ISPM26 25P26
1SPAV13 1.00 0.95 0.48 0.28 0.18 0.27
1SPM13 1.00 0.40 0.20 0.08 0.22
25P13 1.00 0.37 0.33 0.27
1SPAV26 1.00 0.91 0.57
1SPM26 1.00 0.55
2SP26 1.00
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Table 2.4: Regression of Auction Rates on When-Issued Rates

Independent [[ Dependent Variables

Variables | ARI3 AR26
Constant —0.0394* | 0.0293
(—1.98) (1.17)
BA13 0.9096*** | —0.0018
(47.65) | (—0.04)
BA26 0.0960*** | 0.9976***
(5.10) | (23.76)
Sample Size 99 99
Adjisted R? 0.9978 0.9965

t The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Table 2.5: Regression of Residuals from the Regressions of Table 2.4 on Measures
of “Specialness”?

Independent || Dependent Variable I
Variables RES13 |
Constant 0.004 0.006* 0.005 0.007* -0.003 -0.003
(L1g) | (7s) | (126) | (1.88) |(—0.69) | (—0.61)
1SPAV13 —0.004 | 0.015* — — — —
(-1.03) | (2.01)
D13-1SPAV13 — —-0.029*** — — — —
(=3.97)
1SPM13 — — —0.004 0.014" — —
(—=1.18) | (1.98)
D13-1SPM13 — - e —0.028** e —
(~3.94)
25P13 — - — — 0.001 0.012*
. (0.46) | (2.59)
D13-25P13 — — — — — —0.018"*
(=3.84)
Sample Size 82 82 82 82 72 72
Adjusted R? 0.00 0.23 0.00 0.26 —0.01 0.17

! RES13 is the residual from the regression of Table 2.4. It represents the innovation from the
prediction of AR13 given the 1:00 pm quotes in the when-issued market. The numbers in the
parentheses are the test statistics under the null hypothesis that the coefficii nt is zero. These
statistics follow a standard normal distribution asymptotically (see, for example, Fuller (1976)),
and *, **, and *** denote statistical significance at 10%, 5%, and 1% levels according to the
asymptotic distribution.
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Table 2.6: Regression of Residuals from the Regressions of Table 2.4 on Measures
of “Specialness”t

Independent || Dependent Variable
Variables RES26
[| Constant ’. —0.002 | -0.004 | 0.003 | —0.003 | —0.002 0.003
(—0.43) | (=0.62) |(1.33) | (~0.56) | (~0.68) | (0.45)
1SPAV26 0.003 0.025** — — — —
(1.15) (2.40)
D26-1SPAV26 — —0.025*** — — .- —
(~2.69)
1SPM26 — — 0.003 | 0.018° — —
(L.33) | (1.97)
D26-1SPM26 — — — | —0.019* — —
(—2.28)
2S5P26 — — — e —0.002 0.009
(—0.68) | (1.66)
D26-25P26 — — — - — -0.014**
(—2.73)
Sample Size 86 86 86 86 72 72
Adjusted R? -0.01 0.07 0.00 0.09 —0.01 0.02

! RES26 is the residual from the regression of Table 2.4. It represents the innovation from the
prediction of AR26 given the 1:00 pm quotes in the when-issued market. The numbers in the
parentﬂe’ée& are the test statistics under the null hypothesis that the coefficient is zero. These
statistics follow a standard normal distribution asymptotically (see, for example, Fuller (1976)),
and *, **, and *** denote statistical significance at 10%, 5%, and 1% levels according to the
asymptotic distribution.
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Table 2.7: Regression of Measures of “Specialness” on the Ratic of Tendered to
Accepted Bids in the Auction!

" Independent Dependent Variables
Variables 1SPAV13 | 1ISPM13 | 25P13 | 1SPAV26 | 1ISPM26 | 2SP26
Constant 1.66*** 1.92*= | 0.10 0.06 —-0.30 —0.93
(2.73) (3.14) | (0.09) | (0.09) (—0.30) | (—0.49)
COVERI13 —0.24~ -0.27* | 0.25 — — —
(—1.69) | (-1.91) | (0.93)
COVER26 — — — 0.19 0.37 0.54
(1.01) (1.36) (1.04)
Sample Size 82 82 72 86 86 72
Adjusted R? 0.03 0.04 0.00 0.00 0.01 0.01

t The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distributicn.
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Table 2.8: Regression of Residuals from the Regressions of Table 2.4 on Maximum
Difference of in Special Repo Rates!

Independent || Dependent Variables

Variables f RES13 RES26

Constant 0.005 0.005 -0.001 [ —0.001
(121) | (1.20) |(-0.16)| (~0.12)

SPSPRD13 -0.009" 0.014 — —
(-1.78) | (1.32)

D13-SPSPRD13 — —0.029** — —

(—2.73)
SPSPRD26 — — 0.002 0.019*
0.64) | (1.71)
D26-SPSPRD26 — — — —0.023**"
(—2.10)
Sample Size 82 82 86 86
Adjusted R? 0.01 0.07 -0.01 0.05 I

! RES13 and RES26 are the residuals from the regression of Table 2.4. They represent the
innovation from the prediction of AR13 or AR26 given the 1:00 pm quotes in the when-issued
market. The numbers in the parentheses are the test statistics under the null hypothesis that
the coefficient is zero. These statistics follow a standard normal distribution asymptotically (see,
for example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Table 2.9: Regression of Measures of “Specialness” on Proxies for Uncertainty in

the Market!
[ Independent || Dependent Variable
ll Variables [| 1ISPAV13 | 1SPM13 | 2SP13 | 1SPAV26 | 1SPM26 | 25P26
Constant 0.36* 0.47* | 0.83*** | 0.60**" 0.98* | 1.04**
242) | (292) | @77 | (440) | (447) | (3.70)
DISP13 7.95* 8.38*" —1.41 — — e
(2.46) | (2.64) | (-0.29)
DISP26 — — — 5.79* 4.54 —0.06
(1.80) | (1.18) | (=o0.01)
WISPRD13 —1.47 —0.06 28.89 — - —
(=0.16) | (=0.01) | (1.40)
WISPRD26 — — — -3.61 —6.83 1.18
(—0.62) | (—0.96) | (0.08)
Sample Size 82 82 72 86 86 72
Adjusted R? 0.08 0.08 -0.01 0.00 -0.01 -0.03

! The numbers in the parentheses are the test statistics under the nuil hypothesis that the

coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Table 2.10: Regression of Maximum Difference in Special Repo Rates on Proxies
for Uncertainty in the Market!

Independent Dependent Variable
Variables SPSPRD13 | SPSPRD26
Constant 0.35** 0.78*
( (4.29) (3.66)
DISP13 0.68 —
(0.46) "
DISP26 — —4.74
(-1.27)
WISPRD13 ~0.26 —
(—0.41)
WISPRD26 — -2.15
(—0.45)
Sample Size 82 86
il Adjusted R? -0.02 0.00

! The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Chapter 3

Stock Returns and Real Options:
An Exploratory Study

3.1 Introduction

The statistical properties of stock returns constitute one of the classic research ar-
eas in capital markets theory. Since Bachelier’s work at the turn of the century,! the
random-walk hypothesis and its continuous-time counterpart, Brownian motion,
have been the theoretical benchmarks against which empirical findings are mea-
sured and analyzed. The failures of the analytically appealing Brownian-motion
model is crucial to many areas in financial economics, e.g., optimal portfolio se-
lection, hedging strategies, and asset pricing. For example, it has been well estab-
lished that individual stock returns display “fat *ails” (a leptokurtic distribution)
and that the returns for stock indices are serially correlated. Most of this literature
is descriptive, and relatively few attempts have been made to explain the statistical
properties from the underlying economics.

In this paper, we will focus on the driving forces behind another such finding,
first documented by Black (1976): The volatility of stock returns tends to decline
when the price goes up. This effect has been studied in numerous papers, e.g.,
Beckers (1980), French-Schwert-Stambaugh (1987), and MacBeth-Merville (1980),
and it seems to persist throughout a wide variety of samples and statistical speci-
fications. Most of the work, however, has been done on stock indices rather than
at the level of individual stocks.

1Gee Bachelier (1900).
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Two possible explanations have been advanced in the literature: leverage and
“volatility feedback,” both of which were originally suggested by Black (1976). The
first explanation relies on the assumption that the volatility of the returns on the
firm’s total assets is constant (or changes only slowly), so that, in the presence of
debt, positive earnings make the equity less volatile as the debt-equity ratio falls
(approaching the asset volatility as the debt-equity ratio goes to zero). Although
leverage explains some of the effect, empirical evidence suggests that it is not large
enough to be its sole origin; see Christie (1982) and Schwert (1989).

The second explanation links expected returns to expected volatility. When
the market anticipates higher volatility, the stock price falls immediately to pro-
vide expected future returns commensurate with the new level of risk. Because
the change in expected volatility sometime in the future causes the stock prices
to fall now, and not vice versa, this effect is usually called volatility feedback.?
Pindyck (1984) has stressed this explanation. Volatility feedback, however, seems
important only during periods of extreme volatility, such as October 1987; see
Campbell-Hentschel (1992). Poterba-Summers (1986) also argue that volatility
feedback could not explain this effect, because changes in volatility do not last
long enough to have any substantial impact on stock prices. Furthermore, if we
believe that only non-diversifiable risk is prized in market, this explanation makes
more sense for the market as a whole, than for individual stocks. Changes in the
idiosyncratic component of a stock’s volatility should have no impact on its price.
Thus volatility feedback is a statement about future changes in systematic risk,
not about volatility per se.

In this paper, we suggest a third explanation that focuses directly on the asset
mix of the company: growth opportunities and real options, especially those related
to research and development. We know that returns on options have different
statistical properties than returns of the underlying asset. In many cases, options
can be used to achieve the same objectives as a levered position in the underlying
assets. It thus seems plausible that the stocks of companies whose main assets are
options on future growth opportunities will have statistical characteristics different
from those of a manufacturing firm in a mature industry.

An extreme example would be an upstart biotech company whose only asset
was an ‘dea for a new drug. Under the best possible scenario, this drug could be
on the market in five years. The company has the option to proceed with each
new phase of development, testing, production and marketing of the new product.

2Black (1976) used the term “reverse causation effect.”
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In the early stages of this venture the ultimate outcome is likely to be completely
unpredictable. The assets in such a company can be likened to a portfolio of
options.

Myers-Shyam-Sunder (1991) and Shyam-Sunder (1991) find supporting evi-
dence in the U.S. pharmaceutical industry, where research and development ex-
penditures and CAPM p’s are positively correlated. This is what we would expect
if the market treats research and development projects as call options, because
B is larger for an option than for the asset on which it is written. This effect is
driven by the option feature of future investments, and not by the high variance
of the research project itself as that is almost exclusively idiosyncratic. Myers and
Shyam-Sunder use the analogy of a lottery ticket on a call option, where the lottery
corresponds to success in the research project and the call option to the ensuing
decision on commercial introduction.

We use a sample of 600-700 firms per year for the period 1988-92 — i.e., all
companies in COMPUSTAT and CRSP for which both the necessary accounting
data and the daily stock returns are available. For firms that are profitable, we find
a significant relationship between the magnitude of volatility decline in response to
positive stock returns and some proxies for real options and growth opportunities;
research and development expenditures, in particular, prove to be a significant
explanatory variable. To control for leverage, a return series is constructed to
approximate the returns on a firm'’s total assets. The “option” effect is even more
pervasive for these leverage-adjusted returns. Our results show that real options
in a firm’s asset mix are reflected in the behavior of its stock price. They also
illustrate that stock returns are not merely statistical objects but closely tied to
the underlying economic structure.

The remainder of the paper is organized as follows. In Section 3.2, we analyze
the statistical properties of option returns, to acquire a better understanding of
what to expect empirically. A continuous-time formulation is used to derive a
closed-form expression for volatility conditional on past returns. We denote this
volatility elasticity with respect to price . Simulations for a discrete “binomial-
tree” model are performed to assess the small-sample properties of the v estimates.
Section 3.3 discusses the data and presents some descriptive statistics. Qu~ empir-
ical results are presented in Section 3.4, where we report a significant relationship
between v and proxies for real options, as well as leverage. The sample is also
divided into groups according to their level of research and development expen-
ditures. A statistical analysis performed group by group yields similar results.
Finally, we adjust the returns for leverage and perform the equivalent analysis for
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the new return series. The proxies for real options remain statistically significant.
Section 3.5 concludes.

3.2 Options and Conditional Volatilities

In this section we explore the statistical properties cf option returns, to better
assess how assets with option features affect stock returns. When dealing with real
options, it can be difficult to specify the underlying asset, since it is usually un-
observable; this is in sharp contrast to options on assets traded in liquid markets,
where we can observe the prices directly. Here, we simply seek to capture quali-
tatively what can be expected when a firm’s assets are of an option nature. Our
ultimate objective is to investigate empirically whether these statistical patterns
can be linked to real options in a firm’s asset mix.

We will work with the volatility elasticity of stock returns with respect to price,
4. Our empirical specification is:

lno{_H—lna:_l=5i+7i-rf+€i, (3.1)

where o} and r{ are the volatility and return, respectively, of firm i in period ¢,
and k' is a constant. The 4* captures how sensitive the company’s stock volatility
is to changes in the price of its stock. Everything else that might affect the stock
volatility is modeled as a random variable, é'.

Changes in macroeconomic conditions such as interest rates, consumer expec-
tations, and political factors, as well as turmoil in currency and raw-materials
markets, might all give rise to changes in volatility that are unrelated to the past
performance of the company. These are all captured by €. Firm-specific uncer-
tainty that is unrelated to past performance per se, such as labor and environmental
problems, is also captured by ¢'. Market inefficiencies could also show up in the
error term. It is possible that some of these other factors might be correlated
across time or across firms. As we are not concerned with the significance level of
an individual firm’s estimated v, the exact covariance matrix does not matter. If
we wanted to calculate standard errors of the 4 estimates, we would be concerned
with the covariance matrix of the error term as it could affect the efficiency of these
standard errors. For our pupose, it suffices to know that the ordinary-least-squares
procedure yields unbiased estimates regardless of the true covariance structure.
Measurement errors in the returns, however, would bias the absolute value of the
estimates downwards. Particular types of market inefficiencies could also bias the
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estimates. For instance, if volatility reflected new information instantaneously but

returns displayed negative serial correlation, we would underestimate the true 7’s.
We use the difference of logged volatility, as it approximates the fractional

change in the variable. This can be illustrated by a first-order Taylor expansion:

1 l
Ot41 — 01

(3.2)

Ino;,, —Ino,_, = (0: 1:03_1) .
Equation (3.1) (or some slight variation of it) is the one most commonly used in
earlier literature, e.g., Black (1976). In our empirical work, and in the simulations,
we have to estimate the volatility, since it cannot be observed directly. The mea-
surement errors introduced thereby do not bias the estimates, as they will also be
part of the error term é. They do, however, reduce the explanatory power.

To see how v behaves when the firm’s assets are options, we now turn to the
standard option-pricing model. We assume that the underlying asset’s price (or,
more correctly in this setting, value) on the time interval [0,T], S(t), follows a
geometric Brownian motion:

dS(t) = pS(t)dt + aS(t)dw(t), (3.3)

where w(t) is a standard Brownian motion, and g and o are the instantaneous
expected rate of return and standard deviation, respectively. It is worth stressing
that this price process has a constant volatility of the returns, i.e., the v of equation
(3.1) is zero. The asset does not pay any dividends, and there is a risk-free security
that yields an instantaneous rate of return of r. Using [t6’s lemma, we can calculate
the standard deviation of tle rate of return of a call option, with an exercise price
of X, written on the asset:

oC%(S(t),1)S(t)
C(5(1),1)

oc(S(8),t) = , (3.4)
where C(S(t),t) is the price of the call option at time ¢ with an underlying asset
price of S(#). Straightforward calculations show that:

doc(S(1),t) _ 8 (cg(S(t),t)S(t)) C(S(1),t) dS(1)
C(S(t),t) ) Cs(S(t)t) S(¢)°

oc(S(t),t) ~ aS

(3.5)

from which we can identify the parameter v from equation (3.1). As C(S(t),t) can
be expressed in closed form (the Black-Scholes formula; see Black-Scholes (1973)),

89



we can explicitly calculate v as a function of S(t), t, and the parameters o, r, and

X:

0 (CHSW,HSWY SIS0

ORI 1 o koo (-0
Nd) _ _ SWN()

Yt N@eyT =t TS0’ (3.7)

where N(-) is the cumulative distribution function (CDF) of a standard Gaussian
distribution, and:

C(S(t),t) = S({)N(dy) — Xe"T-IN(d,), (3.8)
_ In(S(t)/X)+r(T —t)+ 10¥T —t) )
dy = gy e , (3.9)
d, = dy—oVT —t. (3.10)

Finally, we define the option’s time to expiration as 7 =T — .

The above result provides a convenient way of exploring the characteristics of
~ as a function of the asset price as well as the other underlying parameters. By
using L’Hospital’s rule, we find that:

— i Yy — ¢
;ergo ¥(S) = ‘g_l_r}’(l)‘)‘(..)) = 0. (3.11)
The first part is intuitive. As a call option gets deeper in the money, it behaves
increasingly like the underlying asset, and 7 is zero for this asset by construction.
To show what happens in between these extremes, we have plotted v(.5) for some
different values of o, the velatility, in Figure 3.1. (All figures and tables are found
in Section 3.7.) In the part of the graph with a positive slope, which corresponds
to the option’s being at or in the money, the option returns behave like a levered
position in the underlying asset— something we will return to below. As we will
estimate the magnitude of v rather than its slope, it does not matter for our
purpose in which part of the graph we really are. It is interesting to see that the
slope around the exercise price gets steeper as the volatility goes down, and that
the curves never cross. We also note that vy can take on values less than minus
one. In other words, the fractional change in volatility is larger when the overall
volatility is lower.

In Figure 3.2, we show the analogous graph for different expiration dates. The
effect becomes more pronounced the closer to the expiration date we are. The
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overall shape in both these graphs can be understood intuitively by looking at
the usual pay-off function of a call option (as a function of the asset price). In
Figure 3.3, the pay-off on the maturity date is shown along with option values for
different volatility levels. As the volatility goes down, the option price displays
more and more of the typical kink in the pay-off function at maturity. The same
effect could be illustrated by a graph showing how the option-price function changes
as the time to maturity approaches zero. We see that the trough in Figures 3.1 and
3.2 becomes increasingly deep as the option-price function approaches this kinked
shape. This is intuitive, since an option differs most radically from the underlying
asset when it is soon to expire and it is at the money: at that point a small change,
up or down, has a relatively small effect on the value of the underlying asset, but
a large one on the option. When the expiration date lies farther in the future, the
difference is much less striking. Similarly, a change in the underlying asset’s price
has a larger effect on the option price when the volatility is low and the change can
be expected to be more persistent. Changes in the risk-free rate, r, have virtually
no effect on +.

One previously proposed explanation for negative v’s is leverage (see, e.g.,
Black (1976) and Christie (1982)), although it does not seem sufficiently large to
be the sole reason. To show how leverage could generate negative v’s, we assume
that the rate of return on the firm’s total assets has a constant standard deviation
(volatility), o4, and D is the fixed amount of debt the firm has outstanding. For
simplicity, we treat D as if it were risk free. Let I denote the value of the firm’s
equity and og(£) the standard deviation of the equity returns. We then have:

54 D
oe(E) =UAE+ , (3.12)
E
and: dog(E D dE
op(£) D d&E (3.13)

o£(E) E+DE’

which shows that for constant asset volatility and a fixed amount of debt, D:

_b_
E+D
As a function of leverage (D/(E + D)), v is obviously just a straight line, and in

Figure 3.4 we show v(FE) for a few different values of D. It is also immediately
apparent that:

v(E) = (3.14)

1 ) = U I ~ = —
dim y(E) = 6; Lim 4(5) L. (3.15)
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Our main conclusion so far is that the elasticity of the volatility with respect
to returns, v, behaves very similarly for an at-the-money call option and a levered
position of an asset with constant volatility. In addition, option returns do not
display any lower bound of minus one for v, as a pure leverage effect would indicate.

Before turning to our empirical analysis, we want to establish a sense of the
statistical problems involved in estimating v for option returns with the ordinary-
least-squares procedure. The specification is the one in equation (3.1), where
we make the additional assumption that v is a constant. As we know from the
analysis above, this is not strictly true. However, as long as the sampling period
is short relative to the expiration date and the price movements are fairly small,
it should be a reasonable approximation. We model the underlying asset’s price
movements with a binomial tree and price the options using the implied risk-neutral
probabilities.>

We believe that most of a firm’s growth opportunities lie at least a couple of
years in the future, whereas we are forced to work with daily data to get a sufficient
number of observations. In our simulations, the daily returns are sampled over a
two-month period, and the volatility estimate and summed returns, &, and r,, are
subsequently calculated for each ten-day period. Every two-month period gives
us four observations of 4, and r;, from which we can construct two observations
consisting of (Iné,;; — Iné,_;) and r,. This procedure is then repeated until the
desired sample size is achieved. The 4 is calculated by regressing (In 6,4y —Ind,_y)
on r,. Because the sample period is kept so short, we believe that the assumption
of a constant « is appropriate. To estimate the standard deviation of our estimate
4, the above procedure is repeated many times (usually 1,000). The standard
deviation of the estimate is then calculated as the sample standard deviation of 4.

Tables 3.1 and 3.2 present these results for different sample sizes as well as
different levels of the underlying asset price, S, i.e., different parts of the (S5)
function as shown in Figures 3.1 and 3.2. In the first set of simulations the step
sizes (u and d) are chosen to illustrate clearly the characteristic shape. The second
set of simulations is performed with parameter values as realistic as possible, i.e.,
standard deviation =~ 22%, risk-free rate ~ 5%, and risk premium =~ 8.5% in
annual terms. In this case, the trough is somewhat less pronounced but still quite
distinct.

These sirnulations illustrate a few important points. First, we can see that
the overall shape of v, as a function of S, corresponds to the one established in

3For an extensive treatment of this technique, see Cox-Rubinstein (1985), and Cox-Ross-
Rubinstein (1979).
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the continuous-time framework above.* Second, the estimation errors tend to be
worse for higher values of S. Most importantly, all estimation errors are large in
small samples. With a sample size of 25, the standard deviation of the estimates is
roughly the same size as the coefficient, v, itself. This means that the estimated v
for an individual company would almost never be significantly different from zero
in a statistical test. Not even with a sample size of 1,000 are all 4’s more than
two standard deviations from zero. These simulations illustrate the properties of
a single call option. This would correspond to the extreme case of a firm’s assets
being a single option. For the vast majority of companies, the assets consist of
both options and “regular” assets without option features. The firm’s v is then a
function of the 74’s of the different pieces. Obviously, the size of v will depend on
both the properties of its real options and the amount of other assets. Thus the
simulations underestimate the problems in estimating 4’s for real firms.

From a practical point of view, there is not very much that can be done to
correct this. We are dealing with a limited number of observations (roughly 250
per year), and the sample period cannot be too long if v is assumed to be constant.
(If we calculate the ,’s over ten-day periods and use a one-year sample period,
we have sample sizes of approximately 25.) It does mean, however, that we have
to work with as large a cross-section of firms as possible, since an individual firm’s
estimated v, ¥4, will contain large measurement errors. Alternatively, the v’s can
be estimated for groups of firms that are formed according to a priori presumed
size of 4. Under the null hypothesis that all firms in a group have roughly the same
7, the estimation errors in 4’s will be much smaller thanks to the larger sample
size.

Our objective is to empirically link the observed ¥’s to the presence of assets
of option type, in particular research and development activities, and this is the
topic to which we now turn.

3.3 The Data

To estimate equation (3.1), we use the daily return data from CRSP. We try to
capture the presence of “options” in a firm’s assets bv using a number of prox-

*We have in fact tried this simulation procedure for a wide variety of parameter values, all
generating results analogous to the ones presented in Figures 3.1 and 3.2; as the continuous-time
results are untainted by estimation errors and contain all the theoretical insights, these additional
simulation results are not included in this paper.
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ies which are constructed with data from COMPUSTAT, including all firms in a
given year for which both the CRSP and COMPUSTAT data are available. The
study is based on the five-year period 1988-1992. This procedure leaves us with
approximately 600-700 firms per year. The annual Treasury-bill and long-term
corporate-bond rates are from the 1993 Ibbotson yearbook.

As we outlined above, options can arise in many different ways. A company
may simply be in an industry that is rapidly expanding, providing immense op-
portunities if the right product or service is found and the market develops in a
favorable way. In this case, the option stems from possible future growth and not
necessarily from specific projects initiated by the firm. Examples might be cellular
phones and portable computers today, or video rentals ten years ago. Another
example is the option intrinsic to any major research and development (R&D)
project. When the R&D project is launched, its ultimate outcome and economic
significance are rarely known. If it is successful, it can be the first step in a long
chain of investments and follow-on projects. Few observers could have anticipated
the avalanche of products and services made possible by the discovery of plastic
or the semiconductor. Even when the success is less conspicuous, there will be
important sequential decisions regarding p.oduction, marketing, and refinement
of the product or service. On the other hand, the project may lead nowhere and
be discontinued shortly after its inception. A project with these characteristics is
most appropriately modeled as an option.

We hope to capture the pure R&D options by using a firm’s R&D expenses,
normalized by its sales. This proxy is denoted RD. The distiriction between R&D
and other investments may he somewhat ambiguous. To allow for this possibility,
capital expenditures (normalized by sales), CAPX, is also used as a proxy for real
options. The objective is to find a proxy for the present value of the options created
by a firm’s R&D activities, both now and in the past. Aslong as R&D expenditures
are at steady-state level, this proxy works fairly well. If the R&D expenditures are
very high relative to past levels, the proxy would tend to overestimate the value
of all options created by R&D. Similarly, RD will underestimate the total option
value if R&D expenditures has been recently cut. To reduce this problem, we use
an average of the last two years’ R&D expenditures. We have found that proxies
of R&D and of capital expenditures normalized by total assets, rather than sales,
yield virtually identical results; thus these results are not included in the paper.

Options that are not created by R&D are much harder to link to specific ac-
counting numbers. Instead, we use the firm’s price-earnings and market-to-book
ratios as they measure the difference between the earning power and asset value
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today and the market’s assessment for the future. Both these proxies are widely
used in the academic literature as well as by practitioners; see, e.g., Fama-French
(1992) and Standard & Poor’s Stock Guide (1993). These are denoted PE and
MB, respectively. In the same spirit, we use the text-book valuation of the present
value of future growth opportunities (PVGO):

PVGO =P - EPS, (3.16)

r

where P is the stock price, EPS is the present earnings per share, and r is the
appropriate expected rate of return for the firm’s risk characteristics. In other
words, this measures the difference between the present value of the present level
of earnings in perpetuity and the stock price. If this difference is large, the market
expects the firm’s earnings to grow substantially in the future. The discount rate,
r, is calculated from the CAPM, where we use the 3’s from COMPUSTAT,% the
risk-free rate from the Ibbotson yearbook (the T-bill rate), and an expected risk
premium of 8.5% (a long-term historical average). Finally, we normalize it by
dividing by the stock prize and subtracting one. This proxy is denoted PVGO.

All these proxies have scvere flaws. If present earnings are temporarily inflated,
PE and PVGO will tend to underestimate the growth options. The opposite is true
if a firm has a particularly bad year. As PE and PVGO are clearly inappropriate
when a firm is losing money, we will use these proxies only for profitable companies.
This subsample is simply referred to as “profitable companies.” MB is directly tied
to accounting issues. (What can be treated as an expense, and what is considered
investments that have to be depreciated over many years? Is the difference between
historical ~ost and replacement value small or large?) As accounting rules affect
industries and individual companies differently, MB can at best serve as a rough
approximation of future growth opportunities. To mitigate some of these problems,
we use the average of the values at the beginning and the end of the year.

We will also use leverage as an independent variable, so we introduce LEV to
denote the ratio of debt to debt-plus-equity. Equity is valued at the market price,
whereas the book values are used for debt. Because we are interested in the average
leverage during a given year, LEV is also calculated as the average of the value at
the beginning and the end of the year.

The «’s are estimated using the specification of equation (3.1) and the ordinary-
least-squares procedure, with estimation periods of ten and twenty days. These

5These B’s are calculated for monthly data over the most recent five-year period. The S&P
500 stock index is used as proxy for the market.
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estimates are denoted 4'° and 4%°, respectively. All variables are listed and defined
in Table 3.3. Tables 3.4 and 3.5 present some sample statistics for the full sample,
as well as for profitable companies. Worth noting is the large variability in the
estimates of 7, and a few extreme price-earnings and R&D-to-sales ratios. Table 3.6
gives a year-by-year listing of 4’s for the full sample. Most of the average §'s are
negative, but the variation from year to year is considerable. This is partly driven
by a few extreme outliers. We also believe that it illustrates the measurement
errors analyzed in Section 3.2.

It may seem plausible that some of these option proxies are highly correlated.
The sample correlation coefficients are presented in Tables 3.7 and 3.8. It is note-
worthy that the pairwise correlation coefficients between PE, MB, and PVGO,
respectively, are only in the 0.12-0.21 range, despite the fact that they all try to
capture a similar concept. We think this illustrates the measurement problems
associated with the proxies discussed above. The signs of the coefficients, however,
are all what one might expect. That less profitable (or unprofitable) firms tend to
have higher leverage is a well-established empirical fact, which would explain the
negative correlation between LEV on one hand, and MB, PE, and PVGO on the
other. It is also a plausible rationale for the negative correlation between LEV and
RD, since less profitable companies are likely to reduce their R&D expenditures.
Finally, it is possible that companies with high R&D expenditures choose to op-
erate with less debt because of higher costs of financial distress. These costs are
usually thought to be more of a problem for firms with largely intangible assets.
Similar arguments apply to the correlation between LEV and CAPX.

Let us now proceed to a cross-sectional analysis of the parameter 7, the elas-
ticity of stock return volatility with respect to the stock price.

3.4 Cross-Sectional Analysis of the Elasticity v

Our objective is to explain a firm’s v in terms of its underlying assets. As shown
in Section 3.2, call options have negative v’s even if the underlying asset does
not. The presence of debt also causes stock returns to display negative ¥'s. If
the option proxies described above really capture the amount of real options in a
company’s assets, we would expect a negative relation between the 4’s and these
proxies. Similarly, leverage ought to be negatively related to 4.

We saw in Section 3.2 that a firm’s 4 will not be constant over time. As the
stock price changes, so wiil the 4. The v is also affected whenever the value or
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the options changes or new debt is raised. We are therefore faced with a trade-off
between sample size and the assumption that v is constant. We believe that one
year is a reasonable compromise.® A plausible explanation is that the true 4’s
move around enough over five years to make the 4’s meaningless.

To ensure robustness, we approach this problem in several ways. First, we
regress the 4’s estimated from stock returns on leverage and the option proxies.
This is done both for the full sample and for the profitable firms alone. Second,
we divide the firms into groups based on their R&D expenditures. The «4’s are
then estimated group by group. We expect these groupwise 4’s to decrease with
growing R&D. Third, a leverage-adjusted return series is constructed for each
company. These returns correspond to the returns on the company’s total assets.
If leverage were the sole reason for the observed negative 4’s in stock returns, this
procedure would generate a return series with a zero 7.

3.4.1 Equity Returns for Individual Firms

The first step is to estimate the 7’s for each firm year by year. In doing this we
use estimation periods for the volatility of ten and twenty days. These 4’s are then
regressed on leverage, market-to-book value, R&D, and capital expenditures; i.e.,
for firm:, :=1,..., N, in a given year, we assume that:

3 = gOONST L gLEV . LEV' 167D . RD 4 9°APX .CAPX +0MB. M B + &, (3.17)

where the 0’s are constants and é' is a stochastic variable uncorrelated across firms
and different years. It has zero mean. We treat each ¥ as a separate observation,
i.e.,, most firms will appear five times in the sample, once for each year. It seems
most likely that a firm’s 4 will be correlated from one year to the other. This does
not pose any problem, however, as our econometric specification states only that
the measurement errors are not correlated across time, an assumption we find quite
plausible. The coefficients are estimated using the ordinary-least-squares (OLS)
procedure, and the standard errors of the estimated coefficients are caiculated
allowing for heteroscedasticity by using White’s procedure.” Regardless of the
true covariance structure of &, the estimates will be unbiased. The standard
errors, however, could be misleading. Thus we will pay attention to the absolute

5In fact, we also used five-year periods but without much success.These results are not included
in the paper.
See, e.g., White (1980).
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size of the estimates and not just to the ¢-statistics, although we do not see any
reason for the covariance matrix not to be diagonal.

For each of the independent variables there are some outliers in the upper end
of the distribution. To reduce the risk of having the results driven by a few extreme
observations, quite possibly tainted by human errors in the reporting process, an
observation is eliminated from the sample whenever any of the right-hand side
variables belong to the top 1% of the sample. (No observation is deleted because
of the left-hand side variable, since this could cause biased estimates and inflated
t-statistics.) All regressions are run for both 4° and 4%.

Table 3.9 shows the estimates and the corresponding t-statistics. A negative
coefficient means that an increase in that variable tends to make 4 smaller, i.e., on
average more negative. All the option proxies are defined so that a larger value is
assumed to correspond to a larger fraction of options among the company’s assets.
The coefficients on LEV for the two different estimation periods are —0.535 and
—0.320 with corresponding t-statistics of —2.67 and —1.72. The coeflicients are
thus significantly different from zero at the 1% and 10% levels, respectively. As
expected, this shows that more highly levered firms tend to have more negative «’s.
The RD coefficients are —0.711 and —0.848 with t-statistics of —1.38 and —1.74,
respectively. They have the expected sign, but only the coefficient for the 20-day
estimation period is significant at the 10% level. The absolute magnitudes of the
RD coeflicients are larger than the ones on LEV, suggesting that a one-percent
change in R&D expenditures has a larger impact on v than a change of equal size
in leverage. The coeflicients for the remaining option proxies, CAPX and MB, are
both insignificant.

In using the earnings-based option proxies, only the subsample of profitable
firms is considered. The above specification is augmented in the obvious way and
estimated:

;7:' — 000NST+0LEV . LEV' +0RD . RD: +00APX . CAP‘Y' +
OMB . MB' + 6PF . PE' + 6PVC0 . PVGO' + €. (3.18)

In Table 3.10, the regression results show that the coefficients on LEV are —0.793
and —0.455 with t-statistics of —2.58 and —1.63. Thus only the coefficient for
the 10-day sampling period is significant (at the 1% level). The coefficients are of
roughly the same size as in the regressions for the full sample. From the theoretical
treatment in Section 3.2, we expected a coefficient around minus one. Given that
leverage is known to be measured with some error, a problem which tends to bias
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the absolute size of the coefficients downwards, the coeflicients seem very close to
values suggested by the theory.

The RD coefficients are now significant at the 5% level in both regressions.
Their absolute sizes, —2.495 and —2.482, are also distinctly larger than those
for the full sample. PVGO enters with the expected sign, —5.078 and —1.066,
respectively. It is only significant for the 10-day estimation period. The other
proxies are all insignificant, except CAPX which is significant at the 10% level
for the 20-day estimation period. It has a positive sign, and the most plausible
explanation would seem to be that it captures expenditures with no option features,
thus tending to increase v. As profitable firms generally have lower leverage, it is
not surprising that leverage might play somewhat less of a role in this subsample.
We also believe that RD might be a better proxy for the option content in the asset
mix when a company is profitable, as companies making losses tend to cut back on
(at the very least) new R&D projects. Such behavior would make the present R&D
expenditures less revealing about the total value of options embedded in present
and past R&D projects. Because of this, we focus on profitable firms for the next
test.

3.4.2 Equity Returns for Groups of Firms

To increase the sample size in our v estimates, the firms are separated into five
groups according to their R&D expenditures. One group consists of firms with no
R&D, and the rest are divided into four groups of equal size, out of which the first
quartile represents the group with the least (non-zero) R&D. Even though all four
non-zero quartile groups have the same number of firms, the number of missing
stock returns is not identical. Therefore, the sample size varies somewhat across
subsamples. For the 10-day estimation period, the sample size is approximately
10,000 per group, and for the 20-day estimates, around 5,000.

The results in Table 3.11 display a clear pattern: |¥| tends to increase with
R&D except, notably, in the zero-R&D group. For the 10-day estimation period,
the coefficients are —0.385, —0.202, —0.282, —0.308, and —0.386 in order of growing
R&D expenditures. The corresponding numbers for the 20-day estimation period
are —0.580, —0.306, —0.450, —0.378, and —0.456. All the 4’s are significantly
different from zero; all but one are at the 1% level. The 4’s for the zero-R&D firms
are of a size roughly equivalent that of the 4th quartile, i.e., the group with the
highest R&D expenditures. Except for the zero-R&D firms, these results confirm
the findings in our first test, i.e., that R&D and v are negatively related. As the
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zero-R&D firms seem different from other companies, we redid the tests in the
previous section without them. The regression coefficients and t-statistics were
virtually identical, so they are not included in the paper.

But why do the zero-R&D firms have such negative v’s? We have carefully ex-
amined the zero-R&D group and found only one truly distinguishing characteristic:
industry. By looking at the SIC codes,® we found that most of these companies
were in retail trade or in finance, insurance, and real estate. (In fact, the vast
majority of all the firms in these categories reported no R&D expenditures.) It
is hardly surprising that most restaurant chains and insurance companies have no
R&D expenses, and by definition R&D does not contain any information pertain-
ing to options among the assets for such firms. It is striking, however, that these
industries have a stock-price behavior similar to that of the firms with the highest
R&D levels.

We can think of two possible explanations. First, these industries may simply
happen to have plenty of other assets with option features. Attempts to explain
the 4’s within this group using the other proxies do not provide answers, largely
because of the limited sample size. It also seems likely that some of the proxies may
be especially poor for these industries. Second, companies in these industries may
be more highly levered. This is true (average leverage of the zero-R&D firms is 0.28
compared to 0.23 for the full sample of profitable firms), although the estimated
impact of leverage, as shown in Table 3.10, seems to indicate that differences in
leverage can explain only part of the difference, not its full magnitude. In short,
we believe that these industries both have a lot of assets with option features
and are somewhat more levered, and that these two reasons combined explain the
full effect. Unfortunately, the limited sample size does not allow any conclusive
answers.

3.4.3 Returns on Total Assets for Individual Firms

Although our main interest in this paper is R&D, the above results show the
need to more carefully disentangle leverage from the option effect. To adjust for
leverage, we construct “asset returns.” The returns on a firm'’s assets, r4, can be
expressed as:

8Standard Industrial Classification codes; see the Standard Industrial Classification Manual
(1987).
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where rp and rg are returns on debt and equity, respectively. Every day, the
leverage is recalculated based on the previous day’s stock returns. If the v’s were
driven solely by leverage, the resulting asset returns would have constant volatil-
ity. Ideally, we would like to obtain the daily returns on the firm’s outstanding
debt. Since this is impossible, we treat rp as deterministic, and use the long-term
corporate-bond rates from the Ibbotson series. As long as the firm’s leverage is
not too high, this approximation seems reasonable, as most of the volatility in that
case stems from the stock returns and changes in leverage.

When the leverage is high, however, the argument is no longer valid. First,
since most of the weight is on the debt, its volatility will have a large impact
on asset returns, even if it is much smaller than the stock’s volatility. Second,
when leverage goes up, so does the riskiness of the debt. This approximation will
therefore overcompensate for highly levered firms. With this in mind, we can turn
to the main question: Will the v’s for these leverage-corrected asset returns be
explained by the option proxies?

First, we re-estimate the 74's in equation (3.1) using the new series of asset
returns. These estimates are denoted 4° and 4% for 10- and 20-day estimation
periods, respectively. Having eliminated the observations with right-hand side
variables in the top 1%, we run the regressions analogous to equation (3.17) for
the full sample of firms:

TE, (3.19)

¥y = gCONST L LEV . LRV 4 9RD. RD 4 0CAPX .CAPX' +0MB .M B +&. (3.20)

The results from these regressions are reported in Table 3.12. As expected, the
9-EVs are now significantly positive: 1.143 and 0.925 with corresponding t-statistics
of 2.05 and 1.92. The overcompensation in the construction of asset returns is thus
significant. According to the argument above, this is of major importance only to
companies with high leverage. To verify that, we re-estimate the coefficients af-
ter eliminating the top 5%, rather than the usual 1%. These regressions are also
found in Table 3.12. We do find that the LEV coefficient is no longer significantly
different from zero. As for equity returns in the full sample, the coefficients on
RD are not significant (though they do have the right sign). They are also of
approximately the same magnitude as those for equity returns, i.e., about —0.8.
None of the other variables is significant. '
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Next, we focus on the profitable firms and run the regressions analogous to
equation (3.18), but this time for asset returns:

;«Y:A — oCONST_'_oLEV.LEvi+0RD.RDi+oCAPX.CAPXt‘_i__
OMB . MB' + 6P . PE' 4+ 9FVCO0 . PVGO' + €. (3.21)

Table 3.13 presents these regressions. As we can see, there is no need in this case
to eliminate more than 1% of highly levered firms; this is not surprising, since some
of the very highly levered companies are taken out of the sample anyway because
they are unprofitable. Having performed this specification test, we re-estimate the
coefficients excluding LEV, as leverage is already adjusted for in the estimation
of y4. These regressions are also found in Table 3.13. Below, we focus on the
regressions that do not include LEV.

The RD coefficients are —3.165 and —3.789 with ¢-statistics of —2.14 and —2.66
corresponding to a significance level of 5% and 1%, respectively. Clearly, the option
effect of R&D persists after the leverage correction. In fact, the absolute magnitude
of these coefficients is larger than that for the raw equity returns. For both equity
and asset returns, the RD coefficients are in the range of (—2.4) to (—3.8). We
remember the theoretical lower bound of minus one for v’s exclusively driven by
leverage. From our empirical results, we can say that the option effect from R&D is
at least twice as large, in the sense that a one-percent change in R&D expenditures
has twice the effect on v as a similar change in leverage.

In addition to §RP, 9PVCO is significant at the 10% level for the 10-day esti-
mation period. The magnitude of the coefficient is large, —7.624, but so is the
standard error. The other variables all have insignificant regression coeflicients.
These results indicate that option-like assets do have a pervasive impact on stock
returns that is quite distinct from that of leverage. R&D seems to be the best
proxy for these options, and PVGO also seems to have some explanatory power.

It is noteworthy that PE and MB do not seem to capture options embedded
among the assets. CAPX was included, as we thought the boundary between R&D
and capital expenditures was somewhat arbitrary. The empirical results, however,
do not seem to link capital expenditures to the magnitude of 4 in any robust
way. In short, R&D seems to be the main source of real options for a company.
Naturally, there may be other proxies that capture non-R&D related options much
better than the ones investigated here. That is an issue remaining to be explored.
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3.5 Concluding Remarks

We have made an attempt to explore the link between stock-return characteristics
and firm-specific factors such as leverage and asset base, in order to better ex-
plain stock returns cross-sectionally. Our main focus has been the presence of real
options in a firm’s asset mix. The effect of these real options on the volatility elas-
ticity with respect to stock price, v, has been explored. A closed-form expression
has been derived for v of a call option in a continuous-time setting. We have used
simulations to assess the estimation properties of v in small samples. Our empiri-
cal results provide evidence that options do matter when explaining observed ~4’s.
The results seem robust across several specifications and they are not driven by
leverage alone. In fact, the results seem even stronger when we first adjust for
leverage.

Obviously, there may be other properties of returns that could also be better
explained by looking at real options, and we hope that this paper may serve as
motivation for further work in this area. One example is the skewness of the return
distribution. Quite possibly skewness could be linked to the amount of assets with
option characteristics. It would also be interesting to see whether an individual
firm’s returns change as the firm evolves, e.g., as an upstart biotech firm matures
into a full-scale pharmaceutical company.

We believe that our results highlight the need to integrate corporate-finance
issues with traditional capital markets theory, in order to gain a deeper under-
standing of the underlying forces that govern capital markets and the securities
traded there.
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3.7 Figures and Tables

Figure 3.1: The Elasticity of Volatility with Respect to Returns, v, as a Function

of the Underlying Asset Price for Some Selected Volatilities
“1” — 0=0.5; “2" — 0=04; “3" — ¢=0.3; “4” — 0=0.2; “5” — 0=0.1;
X=40; r=0.01; r=1.0
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Figure 3.2: The Elasticity of Volatility with Respect to Returns, ~, as a Function
of the Underlying Asset Price for Some Selected Expiration Dates
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Figure 3.3: Option Price as a Function of Underlying Asset Price for Different
Volatility Levels and at Maturity
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Figure 3.4: The Elasticity of Volatility with Respect to Returns, v, as a Function
of the Stock Price for Some Selected Debt Levels
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Table 3.1: Simulation 1; Standard Deviation of the v Estimates, ¥, for Different
Sample Sizes!

Sample Size
S v 25 100 | 1,000 | 10,000
20 | —0.016 || 0.046 | 0.025 | 0.0081 | 0.0027

40 | —0.045 ]| 0.073 | 0.040 | 0.013 | 0.0041
60 { —0.11 {{ 0.11 | 0.060 [ 0.020 | 0.0059
80 | —0.23 || 0.18 | 0.087 | 0.030 | 0.0097
100 | —0.40 || 0.26 | 0.15 | 0.046 | 0.014
120 | —0.53 )| 0.40 | 0.21 | 0.070 | 0.020
140 | —0.57 || 0.56 | 0.27 | 0.091 | 0.027
200 | —0.45 || 0.86 | 0.48 | 0.16 | 0.047
300 —0.31 || 1.24 | 0.64 | 0.23 | 0.068

t These simulations are based on options priced using a binomial tree with 500 periods, approx-
imately equivalent to two years, each period being one trading day. The parameters used are:
u =101, d = 0.9912, r = 0.0002, and X = 100. In annual terms, they correspond to a risk
premium of 8.5%, a standard deviation of 2.5%, and a risk-free rate of 5%.
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Table 3.2: Simulation 2; Standard Deviation of the v Estimates, 4, for Different
Sample Sizes!

Sample Size
S ¥ 25 100 | 1,000 | 10,000
10 | —0.051 || 0.076 | 0.040 | 0.013 | 0.0045

40 | —0.13 }f 0.13 | 0.069 { 0.022 | 0.0072
70 | —0.19 || 0.16 | 0.088 | 0.030 | 0.0087
100 | —0.23 |[ 0.20 | 0.098 ( 0.034 | 0.011
140 | —0.26 {{ 0.23 | 0.13 | 0.041 | 0.013
200 | —0.27 f| 0.29 | 0.15 | 0.051 | 0.015
300 | —0.24 {| 0.37 | 0.18 | 0.060 | 0.018
400 | —0.20 |} 0.38 | 0.21 | 0.071 | 0.021

! These simulations are based on options priced using a binomial tree with 500 periods, approx-
imately equivalent to two years, each period being one trading day. The parameters used are:
u = 1.031, d = 0.971, r = 0.0002, and X = 100. In annual terms, they correspond to a risk
premium of 8.5%, a standard deviation of 22%, and a risk-free rate of 5%.
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RD:
CAPX:
PVGO:

MB:
PE:
LEV:

Table 3.3: List of Variables

Research and development expenditures over sales.
Capital expenditures over sales.

Present value of growth opportunities, defined as stock price minus
a perpetual stream of earnings at the present level, all normalized
by dividing with the current stock price and then subtracting one.
The discount rate is calculated from the CAPM.

The ratio of the firm’s market value of equity to the book value.
The price-earnings ratio.

The ratio of debt to debt plus equity. The equity is valued at the
market price, and the debt at the book value.

All the above variables are calculated as the average of their values
at the beginning and the end of the year.
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Table 3.4: Sample Statistics

:),IU ,S,'R) RD
Sample Size | 3,287 3,287 3,514
Max 18.75 16.10 | 276.98
Min —-20.37 | —-11.97 | 0.00
Mean —-0.294 | —0.418 | 0.144
Std. Dev. 2.30 2.17 4.69
CAPX MB LEV
Sample Size | 3,514 3,526 3,526
Max 60.43 | 126.92 0.98
Min 0.00 0.034 0.00
Mean 0.080 2.43 0.273
Std. Dev. 1.02 4.16 0.22

Table 3.5: Sample Statistics for Profitable Firms

.10

v 20

¥ ¥ RD CAPX

Sample Size | 2,367 2,334 2,528 2,528
Max 12.29 16.10 0.66 0.73
Min -20.37 | —11.97 0.00 0.00
Mean —-0.241 | -0.375 | 0.028 0.057
Std. Dev. 2.45 2.31 0.045 0.057
MB LEV PVGO PE

Sample Size | 2,528 2,528 2,528 2,518

Max 45.82 0.98 | —0.0008 | 2487.5
Min 0.04 0.00 —1.56 0.58
Mean 2.305 0.234 | —-0.067 | 33.08
Std. Dev. 2.14 0.197 0.056 93.57
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Table 3.6: Estimates of v Year by Year

10 1988 1989 1990 1991 1692
Sample Size 578 606 667 686 750
Max 12.29 18.75 9.35 9.83 8.54
Min -20.37 | —11.19 | —10.76 | —8.85 | —10.37
Mean 0.05 0.30 -1061 | —-0.19 | —0.49
Std. Dev. 2.55 2.69 1.93 1.92 2.19
770, 1988 1989 1990 1991 1992
Sample Size 964 601 658 682 740
Max 9.70 11.43 13.09 | 16.10 8.45
Min —-1197 | -9.88 | -10.28 | —7.95 | —9.49
Mean -0.33 0.01 -0.88 | -0.33 | —-0.50
Std. Dev. 2.19 2.71 1.95 1.90 2.00
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Table 3.7: Sample Correlation Coefficientst

RD CAPX MB LEV |
RD (100 019 030 -0.24

CAPX 1.00 0.11 -0.09
MB 1.00 -0.27
LEV 1.00

Table 3.8: Sample Correlation Coefficients for Profitable Firms'?

[RD CAPX MB LEV PVGO PE |
RD [1.00 025 023 —024 014 0.07
CAPX 1.00 014 —010 013 0.0l
MB 100 —-0.29 021 0.2
LEV 100 —0.23 —0.01
PVGO 1.00  0.18
PE 1.00

t These calculations were based on 3,459 observations. One extreme outlier, MB>100, was
eliminated.

tt These calculations were based on 2,514 observations. One extreme outlier, PE>2000, was
eliminated.
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Table 3.9: Regression of Estimated 4’s on Leverage and Proxies for Asset Type!

Independent || Dependent Variables
Variables 410 420
Constant -0.164 | —0.379***
(—1.49) (—3.78) ||
LEV —0.535*** | -0.320"
(-2.67) | (-1.72)
RD -0.711 —-0.848"
(-1.38) (~1.74)
CAPX -0.344 0.915
(-0.42) (1.18)
MB 0.03 0.02
(0.98) (0.66)
Sample Size 3,188 3,150

! The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Table 3.10: Regression of Estimated 4’s on Leverage and Proxies for Asset Type
for Profitable Firms!

“ Independent || Dependent Variables

Variables 410 420
Constant —0.396 —0.364
(-1.49) | (-1.55)
LEV —0.793*** | —-0.455
(-2.58) | (~1.63)
RD —2.495** | —2.482**
(-2.11) | (-2.18)
CAPX 0.573 1.742*
(0.54) (1.68)
MB 0.022 -0.008
(0.56) (—0.24)
PE 0.000 0.001
(0.00) | (~0.41)
PVGO -5.078" —1.066
(-1.77) | (-0.51)
Sample Size 2,275 2,242

t The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%

levels according to the asymptotic distribution.
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Table 3.11: Estimated 4’s for Different Subsamples Ranked According to R&D
Expenditures!

R&D Sample Sample

Expenditures 410 Size 420 Size

None —0.385*** | 13,432 | —0.580*** | 5,840
(~5.54) (=9.76)

1st quartile —0.202** | 10,226 | —0.306*** | 4,444
(~2.16) (~3.86)

2nd quartile —0.282*** | 10,159 | —0.450**" | 4,408
(~3.12) (=5.39)

3rd quartile —0.308*** | 10,105 | —0.378*** | 4,388
(-2.93) (~5.35)

4th quartile —0.386*** | 9,927 | —0.456*** | 4,300
(=5.27) (=7.28)

t The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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Table 3.12: Regression of Estimated Asset Return 7’s on Leverage and Proxies for

Asset Type!

Independent Dependent Variables
Variables oy 4%0 410, -5% | 4%, -5%
Constant —-0.349* | —0.468*** | —0.083 | —0.409***
(-1.78) | (-2.93) | (-0.44) | (-2.91)
LEV 1.143** 0.925** 0.043 0.590
(2.05) | (1.92) (0.09) (1.41)
RD -0.536 -0.789 —0.862 —0.836
(-0.80) | (-1.19) | (-1.32) | (-1.39)
CAPX —0.753 -0.522 -0.415 —0.298
(-0.55) | (-0.34) | (-0.32) | (-0.22)
MB 0.051 0.043 0.024 0.041
(1.33) (1.38) (0.65) (1.36)
Sample Size 3,188 3,150 3,057 3,019

t The “—5%” remark indicates that the top 5% of firms with the highest leverage have been
eliminated from the sample.
The numbers in the parentheses are the test statistics under the null hypothesis that the

coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%

levels according to the asymptotic distribution.
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Table 3.13: Regression of Estimated Asset Return 4’s on Leverage and Proxies for

Asset Type for Profitable Firms'

[ Independent Dependent Variables
Variables 10 oy 420 420
Constant —0.603 —-0.489 —-0.433 -0.301
(-1.40) | (-1.31) | (-1.24) | (-0.94)
LEV 0.513 — 0.589 —
(0.64) — (0.86) —
RD -2.770* | -3.165** | —3.336*" | —3.789***
(-1.75) | (-2.14) | (-2.32) | (-2.66)
CAPX 0.776 0.902 1.030 1.176
(0.50) (0.59) (0.62) (0.71)
MB 0.031 0.016 0.018 0.000
(0.59) (0.32) (0.42) (0.00)
PE 0.0002 0.0004 | —-0.0009 | —0.0007
(0.10) (0.18) (-0.45) | (-0.34)
PVGO —7.069* | —7.624* | —1.996 -2.616
(-1.69) | (-1.73) | (-0.57) | (-0.73)
Sample Size 2,275 2,275 2,242 2,242

! The numbers in the parentheses are the test statistics under the null hypothesis that the
coefficient is zero. These statistics follow a standard normal distribution asymptotically (see, for
example, Fuller (1976)), and *, **, and *** denote statistical significance at 10%, 5%, and 1%
levels according to the asymptotic distribution.
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