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Abstract

We present a semi-parametric generative model for predicting anatomy of a patient in subsequent 

scans following a single baseline image. Such predictive modeling promises to facilitate novel 

analyses in both voxel-level studies and longitudinal biomarker evaluation. We capture anatomical 

change through a combination of population-wide regression and a non-parametric model of the 

subject’s health based on individual genetic and clinical indicators. In contrast to classical 

correlation and longitudinal analysis, we focus on predicting new observations from a single 

subject observation. We demonstrate prediction of follow-up anatomical scans in the ADNI 

cohort, and illustrate a novel analysis approach that compares a patient’s scans to the predicted 

subject-specific healthy anatomical trajectory.

1 Introduction

We present a method for predicting anatomy based on external information, including 

genetic and clinical indicators. Specifically, given only a single baseline scan of a new 

subject in a longitudinal study, our model predicts anatomical changes and generates a 

subsequent image by leveraging subject-specific genetic and clinical information. Such 

voxel-wise prediction opens up several new areas of analysis, enabling novel investigations 

both at the voxel level and at the level of derivative biomarker measures. For example, voxel 

level differences between the true progression of a patient with dementia and their predicted 

healthy anatomy highlight spatial patterns of disease. We validate our method by comparing 

measurements of volumes of anatomical structures based on predicted images to those 

extracted from the acquired scans.

Our model describes the change from a single (or baseline) medical scan in terms of 

population trends and subject-specific external information. We model how anatomical 

appearance changes with age on average in a population, as well as deviations from the 

population average using a person’s health profile. We characterize such profiles non-

parametrically based on the genotype, clinical information, and the baseline image. Subject-

specific change is constructed from the similarity of health profiles in the cohort, using a 

Gaussian process parametrized by a population health covariance. Given the predicted 

change, we synthesize new images through an appearance model.

*A listing of ADNI investigators is available at http://tinyurl.com/ADNI-main. Data used via AD DREAM Challenge: https://
www.synapse.org/#!Synapse:syn2290704
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Statistical population analysis is one of the central topics in medical image computing. The 

classical correlation-based analysis has yielded important characterization of relationships 

within imaging data and with independent clinical variables [2,11,12,14]. Regression models 

of object appearance have been previously used for atlas construction and population 

analysis [2,14]. These methods characterize population trends with respect to external 

variables, such as age or gender, and construct clinically relevant population averages. 

Longitudinal analyses also characterize subject-specific temporal effects, usually in terms of 

changes in the biomarkers of interest. Longitudinal cohorts and studies promise to provide 

crucial insights into aging and disease [11,12]. Mixed effects models have been shown to 

improve estimation of subject-specific longitudinal trends by using inter-population 

similarity [3,15]. While these approaches offer a powerful basis for analysis of biomarkers 

or images in a population, they require multiple observations for any subject, and do not aim 

to provide subject-specific predictions given a single observation. The parameters of the 

models are examined for potential scientific insight, but they are not tested for predictive 

power. In contrast, we define the problem of population analysis as predicting anatomical 

changes for individual subjects. Our generative model incorporates a population trend and 

uses subject-specific genetic and clinical information, along with the baseline image, to 

generate subsequent anatomical images. This prediction-oriented approach provides avenues 

for novel analysis, as illustrated by our experimental results.

2 Prediction Model

Given a dataset of patients with longitudinal data, and a single baseline image for a new 

patient, we predict follow-up anatomical states for the patient. We model anatomy as a 

phenotype y that captures the underlying structure of interest. For example, y can be a low-

dimensional descriptor of the anatomy at each voxel. We assume we only have a 

measurement of our phenotype at baseline yb for a new subject. Our goal is to predict the 

phenotype yt at a later time t. We let xt be the subject age at time t, and define Δxt = xt − xb 

and Δyt = yt − yb. We model the change in phenotype yt using linear regression:

(1)

where β is the subject-specific regression coefficient, and noise ε ~ (0, σ2) is sampled 

from zero-mean Gaussian distribution with variance σ2.

2.1 Subject-Specific Longitudinal Change

To model subject-specific effects, we define β = β̄ + H(g, c, fb), where β̄ is a global 

regression coefficient shared by the entire population, and H captures a deviation from this 

coefficient based on the subject’s genetic variants g, clinical information c, and baseline 

image features fb.

We assume that patients’ genetic variants and clinical indicators affect their anatomical 

appearance, and that subjects with similar health profiles exhibit similar patterns of 

anatomical change. We let hG(·), hC(·), hI(·) be functions that capture genetic, clinical and 

imaging effects on the regression coefficients:
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(2)

Combining with (1), we arrive at the full model

(3)

which captures the population trend β̄, as well as the subject-specific deviations [hG(·), hC(·), 

hI(·)].

For a longitudinal cohort of N subjects, we group all Ti observations for subject i to form Δyi 

= [yi1, yi2, …yiTi]. We then form the global vector Δy = [Δy1, Δy2, …, ΔyN]. We similarly 

form vectors Δx, hG, hC, hI, g, c, fb and ε, to build the full regression model:

(4)

where ⊙ is the Hadamard, or element-wise product. This formulation is mathematically 

equivalent to a General Linear Model (GLM) [9] in terms of the health profile predictors 

[hG, hC, hI].

We employ Gaussian process priors to model the health functions:

(5)

where covariance kernel function  captures the similarity between subjects i 

and j using feature vectors zi and zj for D ∈ {G, C, I}. We discuss the particular form of K(·, 

·) used in the experiments later in the paper.

2.2 Learning

The Bayesian formulation in (4) and (5) can be interpreted as a linear mixed effects model 

(LMM) [10] or a least squares kernel machine (LSKM) regression model [5,8]. We use the 

LMM interpretation to learn the parameters of our model, and the LSKM interpretation to 

perform final phenotype predictions.

Specifically, we treat β̄ as the coefficient vector of fixed effects and hG, hC, and hI as 

independent random effects. We seek the maximum likelihood estimates of parameters β̄ 

and  by adapting standard procedures for LMMs [5,8]. As standard LMM 

solutions become computationally expensive for thousands of observations, we take 

advantage of the fact that while the entire genetic and the image phenotype data is large, the 

use of kernels on baseline data reduces the model size substantially. We obtain intuitive 

iterative updates that project the residuals at each step onto the expected rate of change in 

likelihood, and update β̄ using the best linear unbiased predictor.

2.3 Prediction

Under the LSKM interpretation, the terms h(·) are estimated by minimizing a penalized 

squared-error loss function, which leads to the following solution [5,7,8,16]:
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(6)

for some vector α. Combining with the definitions of the LMM, we estimate coefficients 

vectors αG, αC and αI from a linear system of equations that involves our estimates of β̂ and 

θ. We can then re-write (4) as

(7)

and predict a phenotype at time t for a new subject i:

(8)

3 Model Instantiation for Anatomical Predictions

The full model (3) can be used with many reasonable phenotype definitions. Here, we 

describe the phenotype model we use for anatomical predictions and specify the similarity 

kernels of the health profile.

3.1 Anatomical Phenotype

We define a voxel-wise phenotype that enables us to predict entire anatomical images. Let Ω 

be the set of all spatial locations υ (voxels) in an image, and Ib = {Ib(υ)}υ∈Ω be the acquired 

baseline image. We similarly define A = {A(υ)}υ∈Ω, to be the population atlas template. We 

assume each image I is generated through a deformation field  parametrized by the 

corresponding displacements {u(υ)}υ∈Ω from the common atlas to the subject-specific 

coordinate frame [14], such that I(υ) = A(υ + u(υ)). We further define a follow-up image It 

as a deformation ΦBt from the baseline image Ib, which can be composed to yield an overall 

deformation from the atlas to the follow-up scan via :

(9)

Using displacements u′(υ) as the phenotype of interest in (1) captures the necessary 

information for predicting new images, but leads to very high dimensional descriptors. To 

regularize the transformation and to improve efficiency, we define a low-dimensional 

embedding of u′(υ). Specifically, we assume that the atlas provides a parcellation of the 

space into L anatomical labels . We build a low-dimensional embedding of the 

transformation vectors u(υ) within each label using PCA. We define the relevant phenotypes 

{yl,c} as the coefficients associated with the first C principal components of the model that 

capture 95% of the variance in each label, for l = 1 … L.
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We predict the phenotypes using (8). To construct a follow-up image It given phenotype yt, 

we first form a deformation field  by reconstruction from the estimated phenotype yt, 

and use Φ̂At assuming an invertible transformation. Using the baseline image, we predict a 

subsequent image via . Note that we do not directly model changes in image 

intensity. While population models necessitate capturing such changes, we predict changes 

from a baseline image. We also assume that affine transformations are not part of the 

deformations of interest, and thus all images are affinely registered to the atlas.

3.2 Health Similarities

To fully define the health similarity term H(·, ·, ·), we need to specify the forms of the kernel 

functions KG(·, ·), KC(·, ·), and KI(·, ·).

For genetic data, we employ the identical by state (IBS) kernel often used in genetic analysis 

[13]. Given a vector of genetic variants g of length S, each genetic locus is encoded as g(s) ∈ 

{0, 1, 2}, and

(10)

To capture similarity of clinical indicators c, we form the kernel function

(11)

where diagonal weight matrix W captures the effect size of each clinical indicator on the 

phenotype, and  is the variance of the clinical factors.

We define the image feature vectors fb as the set of all PCA coefficients defined above for 

the baseline image. We define the image kernel matrix as

(12)

where  is the variance of the image features.

4 Experiments

We illustrate our approach by predicting image-based phenotypes based on genetic, clinical 

and imaging data in the ADNI longitudinal study [6] that includes two to ten follow-up 

scans acquired 0.5 – 7 years after the baseline scan. We use affine registration to align all 

subjects to a template constructed from 145 randomly chosen subjects, and compute non-

linear registration warps ΦAI for each image using ANTs [1]. We utilize a list of 21 genetic 

loci associated with Alzheimer’s disease (AD) as the genetic vector g, and the standard 

clinical factors including age, gender, marital status, education, disease diagnostic, and 
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cognitive tests, as the clinical indicator vector c. We learn the model parameters from 341 

randomly chosen subjects and predict follow-up volumes on a separate set of 100 subjects. 

To evaluate the advantages of the proposed predictive model, we compare its performance 

to a population-wide linear regression model that ignores the subject-specific health profiles 

(i.e., H = 0).

4.1 Volumetric Predictions

In the first simplified experiment, we define phenotype y to be a vector of several scalar 

volume measurements obtained using FreeSurfer [4]. In addition to the population-wide 

linear regression model, we include a simple approach of using the baseline volume 

measurements as a predictor of the phenotype trajectory, effectively assuming no volume 

change with time. Since in many subjects, the volume differences are small, all three 

methods perform comparably when evaluated on the whole test set. To evaluate the 

differences between the methods, we focus on the subset of subjects with substantial volume 

changes, reported in Fig. 1. Our method consistently achieves smaller relative errors than the 

two baseline approaches.

4.2 Anatomical Prediction

We also evaluate the model for full anatomical scan prediction. To quantify prediction 

accuracy, we propagate segmentation labels of relevant anatomical structures from the 

baseline scan to the predicted scan using the predicted warps. We compare the predicted 

segmentation label maps with the actual segmentations of the follow-up scans. The warps 

computed based on the actual follow-up scans through the atlas provide an indication of the 

best accuracy the predictive model could achieve when using warps to represent images. 

Similar to the volumetric predictions, the full model offers modest improvements when 

evaluated on the entire test set, and substantial improvements in segmentation accuracy 

when evaluated in the subjects who exhibit large volume changes between the baseline scan 

and the follow-up scan, as reported in Fig. 2. In both experiments, all components hg, hc and 

hI contributed significantly to the improved predictions.

Our experimental results suggest that the anatomical model depends on registration 

accuracy. In particular, we observe that directly registering the follow-up scan to the 

baseline scan leads to better alignment of segmentation labels than when transferring the 

labels through a composition of the transformations from the scans to the atlas space. This 

suggests that a different choice of appearance model may improve prediction accuracy, a 

promising direction for future work.

To demonstrate the potential of the anatomical prediction, we predict the follow-up scan of a 

patient diagnosed with dementia as if the patient were healthy. Specifically, we train our 

model using healthy subjects, and predict follow-up scans for AD patients. In Fig. 2 we 

illustrate an example result, comparing the areas of brain anatomy that differ from the 

observed follow-up in the predicted healthy brain of this AD patient. Our prediction 

indicates that ventricle expansion would be different if this patient had a healthy trajectory.
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5 Conclusions

We present a model to predict the anatomy in patient follow-up images given just a baseline 

image using population trends and subject-specific genetic and clinical information. We 

validate our prediction method on scalar volumes and anatomical images, and show that it 

can be used as a powerful tool to illustrate how a subject-specific brain might differ if it 

were healthy. Through this and other new applications, our prediction method presents a 

novel opportunity for the study of disease and anatomical development.
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Fig. 1. 
Relative error (lower is better) of volume prediction for seven structures for subjects in the 

top decile of volume change. We report relative change between the baseline and the follow-

up measurement (red), relative error in prediction using a population model (green), and the 

complete model (blue).
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Fig. 2. 
Prediction results. Left: Dice scores of labels propagated through three methods for several 

structures implicated in AD in subjects with the most volume change for each structure. We 

report the prediction based on the registration of the actual follow-up scan to the atlas as an 

upper bound for warp-based prediction accuracy (red), predictions based on the population-

wide linear regression model (green), and the full model (blue). Right: A predicted 

anatomical image for a patient diagnosed with AD using a healthy model. The color overlay 

shows the squared magnitude of the difference in predicted versus observed deformations, 

indicating a significantly different expansion trajectory of the ventricles.
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