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Conformal weldings of random surfaces:
SLE and the quantum gravity zipper

Scott Sheffield

Abstract

We construct a conformal welding of two Liouville quantum gravity
random surfaces and show that the interface between them is a random
fractal curve called the Schramm-Loewner evolution (SLE), thereby
resolving a variant of a conjecture of Peter Jones. We also demonstrate
some surprising symmetries of this construction, which are consistent
with the belief that (path-decorated) random planar maps have (SLE-
decorated) Liouville quantum gravity as a scaling limit. We present
several precise conjectures and open questions.
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1 Introduction

1.1 Overview

Liouville quantum gravity and the Schramm-Loewner evolution (SLE) rank
among the great mathematical physics discoveries of the last few decades.
Liouville quantum gravity, introduced in the physics literature by Polyakov
in 1981 in the context of string theory, is a canonical model of a random two
dimensional Riemannian manifold [Pol81a, Pol81b]. The Schramm-Loewner
evolution, introduced by Schramm in 1999, is a canonical model of a random
path in the plane that doesn’t cross itself [Sch00, RS05]. Each of these
models is the subject of a large and active literature spanning physics and
mathematics.

Our goal here is to connect these two objects to each other in the simplest
possible way. Roughly speaking, we will show that if one glues together
two independent Liouville quantum gravity random surfaces along boundary
segments (in a boundary-length-preserving way) — and then conformally
maps the resulting surface to a planar domain — then the interface between
the two surfaces is an SLE.

Peter Jones conjectured several years ago that SLE could be obtained in a
similar way — specifically, by gluing (what in our language amounts to) one
Liouville quantum gravity random surface and one deterministic Euclidean
disc. Astala, Jones, Kupiainen, and Saksman showed that the construction
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Jones proposed produces a well-defined curve [AJKS11, AJKS10], but Binder
and Smirnov recently announced a proof (involving multifractal exponents)
that this curve is not a form of SLE, and hence the original Jones conjecture
is false [Smi] (see Section 1.5). Our construction shows that a simple variant
of the Jones conjecture is in fact true.

Beyond this, we discover some surprising symmetries. For example, it turns
out that there is one particularly natural random simply connected surface
(called a γ-quantum wedge) that has an infinite-length boundary isometric
to R (almost surely) which contains a distinguished “origin.” Although this
surface is simply connected, it is almost surely highly non-smooth and it has
a random fractal structure. We will explain precisely how it is defined in
Section 1.6. The origin divides the boundary into two infinite-length boundary
arcs. Suppose we glue (in a boundary-length preserving way) the right arc
of one such surface to the left arc of an independent random surface with
the same law, then conformally map the combined surface to the complex
upper half plane H (sending the origin to the origin and ∞ to ∞ — see
figure below), and then erase the boundary interface. The geometric structure
of the combined surface can be pushed forward to give geometric structure
(including an area measure) on H. It is natural to wonder how well one can
guess, from this geometric structure on H, where the now-erased interface
used to be.

We will show that the geometric structure yields no information at all.
That is, the conditional law of the interface is that of an SLE in H indepen-
dently of the underlying geometry (a fact formally stated as part of Theorem
1.8). Another way to put this is that conditioned on the combined surface,
all of the information about the interface is contained in the conformal struc-
ture of the combined surface, which determines the embedding in H (up to
rescaling H via multiplication by a positive constant, which does not affect
the law of the path, since the law of SLE is scale-invariant).

This apparent coincidence is actually quite natural from one point of
view. We recall that one reason (among many) for studying SLE is that it
arises as the fine mesh “scaling limit” of random simple paths on lattices.
Liouville quantum gravity is similarly believed (though not proved) to be the
scaling limit of random discretized surfaces and random planar maps. The
independence mentioned above turns out to be consistent with (indeed, at
least heuristically, a consequence of) certain scaling limit conjectures (and
a related conformal invariance Ansatz) that we will formulate precisely (in
Section 2.2) for the first time here.
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Boundary arcs identified

Combined random surface
conformally mapped

to upper half plane

One random surface
Another random surface

One random surface Another random surface

Polyakov initially proposed Liouville quantum gravity as a model for the
intrinsic Riemannian manifold parameterizing the space-time trajectory of
a string [Pol81a]. From this point of view, the welding/subdivision of such
surfaces is analogous to the concatenation/subdivision of one-dimensional time
intervals (which parameterize point-particle trajectories). It seems natural
to try to understand complicated string trajectories by decomposing them
into simpler pieces (and/or gluing pieces together), which should involve
subdividing and/or welding the corresponding Liouville quantum gravity
surfaces. The purpose of this paper is to study these weldings and subdivisions
mathematically. We will not further explore the physical implications here.

In a recent memoir [Pol08], Polyakov writes that he first became convinced
of the connection between the discrete models and Liouville quantum gravity
in the 1980’s after jointly deriving, with Knizhnik and Zamolodchikov, the so-
called KPZ formula for certain Liouville quantum gravity scaling dimensions
and comparing them with known combinatorial results for the discrete models
[KPZ88]. With Duplantier, the present author recently formulated and
proved the KPZ formula in a mathematical way [DS11a, DS09] (see also
[BS09b, RV11]). This paper is in some sense a sequel to [DS11a], and we
refer the reader there for references and history.
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We will find it instructive to develop Liouville quantum gravity along with
a closely related construction called the AC geometry or imaginary geometry.
Both Liouville quantum gravity and the imaginary geometry are based on a
simple object called the Gaussian free field.

1.2 Random geometries from the Gaussian free field

The two dimensional Gaussian free field (GFF) is a natural higher dimensional
analog of Brownian motion that plays a prominent role in mathematics and
physics. See the survey [She07] and the introductions of [SS09, SS13] for a
detailed account. On a planar domain D, one can define both a zero boundary
GFF and a free boundary GFF (the latter being defined only modulo an
additive constant, which we will sometimes fix arbitrarily). In both cases, an
instance of the GFF is a random sum

h =
∑

i

αifi,

where the αi are i.i.d. mean-zero unit-variance normal random variables, and
the fi are an orthonormal basis for a Hilbert space of real-valued functions
on D (or in the free boundary case, functions modulo additive constants)
endowed with the Dirichlet inner product

(f1, f2)∇ := (2π)−1

∫

D

∇f1(z) · ∇f2(z)dz.

The Hilbert space is the completion of either the space of smooth compactly
supported functions f : D → R (zero boundary) or the space of all smooth
functions f : D → R modulo additive constants with (f, f)∇ < ∞ (free
boundary). In each case, h is understood not as a random function on D but
as a random distribution or generalized function on D. (Mean values of h on
certain sets are also defined, but the value of h at a particular point is not
defined.) One can fix the additive constant for the free boundary GFF in
various ways, e.g., by requiring the mean value of h on some set to be zero.
We will review these definitions in Section 3.

There are two natural ways to produce a “random geometry” from the
Gaussian free field. The first construction is (critical) Liouville quantum
gravity. Here, one replaces the usual Lebesgue measure dz on a smooth
domain D with a random measure µh = eγh(z)dz, where γ ∈ [0, 2) is a fixed
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constant and h is an instance of (for now) the free boundary GFF on D
(with an additive constant somehow fixed — we will actually consider various
ways of fixing the additive constant later in the paper; one way is to require
the mean value of h on some fixed set to be 0). Since h is not defined as a
function on D, one has to use a regularization procedure to be precise:

µ = µh := lim
ε→0

εγ
2/2eγhε(z)dz, (1.1)

where dz is Lebesgue measure on D, hε(z) is the mean value of h on the circle
∂Bε(z) and the limit represents weak convergence (on compact subsets) in
the space of measures on D. (The limit exists almost surely, at least if ε is
restricted to powers of two [DS11a].) We interpret µh as the area measure
of a random surface conformally parameterized by D. When x ∈ ∂D, we let
hε(x) be the mean value of h on D ∩ ∂Bε(x). On a linear segment of ∂D, we
may define a boundary length measure by

ν = νh := lim
ε→0

εγ
2/4eγhε(x)/2dx, (1.2)

where dx is Lebesgue measure on ∂D. (For details see [DS11a], which also
relates the above random measures to the curvature-based action used to
define Liouville quantum gravity in the physics literature.)

We could also parameterize the same surface with a different domain D̃,
and our regularization procedure implies a simple rule for changing coordinates.
Suppose that ψ is a conformal map from a domain D̃ to D and write h̃ for
the distribution on D̃ given by h ◦ ψ +Q log |ψ′| where

Q :=
2

γ
+
γ

2
,

as in Figure 1.1 1. Then µh is almost surely the image under ψ of the measure
µh̃. That is, µh̃(A) = µh(ψ(A)) for A ⊂ D̃. Similarly, νh is almost surely the
image under ψ of the measure νh̃ [DS11a]. In fact, [DS11a] formally defines

1 We use the same distribution composition notation as [DS11a]: i.e., If φ is a conformal
map from D to a domain D̃ and h is a distribution on D, then we define the pullback
h ◦ φ−1 of h to be a distribution on D̃ defined by (h ◦ φ−1, ρ̃) = (h, ρ) whenever ρ ∈ Hs(D)
and ρ̃ = |φ′|−2ρ ◦ φ−1. (Here φ′ is the complex derivative of φ, and (h, ρ) is the value of
the distribution h integrated against ρ.) Note that if h is a continuous function (viewed as
a distribution via the map ρ→

∫
D
ρ(z)h(z)dz), then the distribution h ◦ φ−1 thus defined

is the ordinary composition of h and φ−1 (viewed as a distribution).
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a quantum surface to be an equivalence class of pairs (D, h) under the
equivalence transformations (see Figure 1.1)

(D, h)→ ψ−1(D, h) := (ψ−1(D), h ◦ ψ +Q log |ψ′|) = (D̃, h̃), (1.3)

noting that both area and boundary length are well defined for such surfaces.
The invariance of νh under (1.3) actually yields a definition of the quantum
boundary length measure νh when the boundary of D is not piecewise linear—
i.e., in this case, one simply maps to the upper half plane (or any other
domain with a piecewise linear boundary) and computes the length there.2

ψD̃

D
h̃ = h ◦ ψ +Q log |ψ′| h

Figure 1.1: A quantum surface coordinate change.

The second construction involves “flow lines” of the unit vector field
eih/χ where χ 6= 0 is a fixed constant (see Figure 2.1), or alternatively
flow lines of ei(h/χ+c) for a constant c ∈ [0, 2π). The author has proposed
calling this collection of flow lines the AC geometry3 of h, but a recent
series of joint works with Jason Miller uses the term imaginary geometry
[MS12a, MS12b, MS12c, MS13a]. Makarov once proposed the term “magnetic
gravity” in a lecture, suggesting that in some sense the AC geometry is to

2It remains an open question whether the interior of a quantum surface is canonically
a metric space. A pair (D,h) is a metric space parameterized by D when, for distinct
x, y ∈ D and δ > 0, one defines the distance dδ(x, y) to be the smallest number of Euclidean
balls in D of µh mass δ required to cover some continuous path from x to y in D. We
conjecture but cannot prove that for some constant β the limiting metric

lim
δ→0

δβdδ

exists a.s. and is invariant under the transformations described by (1.3).
3AC stands for “altimeter-compass.” If the graph of h is viewed as a mountainous

terrain, then a hiker holding an analog altimeter—with a needle indicating altitude modulo
2πχ—in one hand and a compass in the other can trace an AC ray by walking at constant
speed (continuously changing direction as necessary) in such a way that the two needles
always point in the same direction.
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Liouville quantum gravity as electromagnetism is to electrostatics. We will
discuss additional interpretations in Section 2 and the appendix.

Although h is a distribution and not a function, one can make sense of
flow lines using the couplings between the Schramm-Loewner evolution (SLE)
and the GFF in [She05, SS13], which were further developed in [Dub09] and
more recently in [MS10, HBB10, IK13]. The paths in these couplings are
generalizations of the GFF contour lines of [SS13].

We define an AC surface to be an equivalence class of pairs under the
following variant of (1.3):

(D, h)→ (ψ−1(D), h ◦ ψ − χ argψ′) = (D̃, h̃), (1.4)

as in Figure 1.2. The reader may observe that (at least when h is smooth)
the flow lines of the LHS of (1.4) are the ψ images of the flow lines of the
RHS. To check this, first consider the simplest case: if ψ−1 is a rotation (i.e.,
multiplication by a modulus-one complex number), then (1.4) ensures that
the unit flow vectors eih/χ (as in Figure 2.1) are rotated by the same amount
that D is rotated. The general claim follows from this, since every conformal
map looks locally like the composition of a dilation and a rotation (see Section
2.1).

ψD̃

D
h̃ = h ◦ ψ − χ argψ′ h

Figure 1.2: An AC surface coordinate change.

Recalling the conformal invariance of the GFF, if the h on the left side
of (1.3) and (1.4) is a centered (expectation zero) Gaussian free field on
D then the distribution on the right hand side is a centered (expectation

zero) GFF on D̃ plus a deterministic function. In other words, changing the
domain of definition is equivalent to recentering the GFF. The deterministic
function is harmonic if D is a planar domain, but it can also be defined (as
a non-harmonic function) when D is a surface with curvature (see [DS11a]).
In what follows, we will often find it convenient to define quantum and AC
surfaces on the complex half plane H using a (free or zero boundary) GFF
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on H, sometimes recentered by the addition of a deterministic function that
we will call h0. We will state our main results in the introduction for fairly
specific choices of h0. We will extend these results to more general underlying
geometries in Section 4 and Section 5.

1.3 Theorem statements: SLE/GFF couplings

We will give explicit relationships between the Gaussian free field and both
“forward” and “reverse” forms of SLE in Theorems 1.1 and 1.2 below. We will
subsequently interpret these theorems as statements about AC geometry and
Liouville quantum gravity, respectively. We will prove Theorem 1.1 in Section
4.1 using a series of calculations. These calculations are not really new to
this paper, although the precise form of the argument we give has not been
published elsewhere 4 Our main reason for proving Theorem 1.1 in Section
4.1 is that we wish to simultaneously prove Theorem 1.2. Theorem 1.2 is
completely new to this paper (and essential to the other results obtained in
this paper), but it is very closely related to Theorem 1.1. Proving the two
results side by side allows us to highlight the similarities and differences.

We will not give a detailed introduction to SLE here, but there are many
excellent surveys on SLE; see, e.g., the introductory references [Wer04, Law09]
for basic SLE background. To set notation, we recall that when η is an instance
of chordal SLEκ in H from 0 to ∞, the conformal maps gt : H \ η([0, t])→ H,
normalized so that limz→∞ |gt(z)− z| = 0, satisfy

dgt(z) =
2

gt(z)−Wt

dt, (1.5)

with Wt =
√
κBt = gt(η(t)), where Bt is a standard Brownian motion. In

fact, this can be taken as the definition of SLEκ. Rohde and Schramm proved

4The argument presented in Section 4.1, together with the relevant calculations, appeared
in lecture slides some time ago [She05], and is by now reasonably well known. Dubédat
presented another short derivation of this statement within a long foundational paper
[Dub09]. More recent variants appear in [HBB10, IK13], and in the series of papers
[MS12a, MS12b, MS12c, MS13a], which studies the couplings in further detail. Prior to
these works, Kenyon and Schramm derived (but never published) a calculation relating
SLE to the GFF in the case κ = 8. One could also have inferred the existence of such
a relationship from the fact — due to Lawler, Schramm, and Werner — that SLE8 is a
continuum scaling limit of uniform spanning tree boundaries [LSW04], and the fact — due
to Kenyon — that the winding number “height functions” of uniform spanning trees have
the GFF as a scaling limit [Ken00, Ken01, Ken08].
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in [RS05] that for each κ and instance of Bt, there is almost surely a unique
continuous curve η in H from 0 to ∞, parameterized by [0,∞), for which
(1.5) holds for all t. When η is parameterized so that (1.5) holds, the quantity
t is called the (half-plane) capacity of γ([0, t]). The curve η is almost surely a
simple curve when κ ∈ [0, 4], a self-intersecting but non-space-filling curve
when κ ∈ (4, 8), and a space-filling curve (ultimately hitting every point in
H) when κ ≥ 8 [RS05].

The maps
ft(z) := gt(z)−Wt

satisfy

dft(z) =
2

ft(z)
dt−√κdBt,

and ft(η(t)) = 0. Throughout this paper, we will use ft rather than gt to
describe the Loewner flow. If ηT = η([0, T ]) is a segment of an SLE trace,
denote by KT the complement of the unbounded component of H \ ηT . In the
statements of Theorem 1.1 and Theorem 1.2 below and throughout the paper,
we will discuss several kinds of random distributions on H. To show that
these objects are well defined as distributions on H, we will make implicit use
of some basic facts about distributions:

1. If h is a distribution on a domain D then its restriction to a subdomain
is a distribution on that subdomain. (This follows by simply restricting
the class of test functions to those supported on the subdomain.)

2. If h a distribution on a domain D and φ is a conformal map from D to
a domain D̃ then h ◦ φ−1 is a distribution on D̃. (Recall Footnote 1.)

3. An instance of the zero boundary GFF on a subdomain of D is also
well defined as a distribution on all of D. (See Section 2.1 of [SS13].)

4. If h is an L1 function on D, then h can be understood as a distribution
on D defined by (h, ρ) =

∫
D
ρ(z)h(z)dz.

In the proof of Theorem 1.1 in Section 4.1, we will show that even though
the function arg f ′t that appears in the theorem statement is a.s. unbounded,
it can also a.s. be understood as a distribution on H (see the discussion after
the theorem statement below).

11



Theorem 1.1. Fix κ ∈ (0, 4] and let ηT be the segment of SLEκ generated by
the Loewner flow

dft(z) =
2

ft(z)
dt−√κdBt, f0(z) = z (1.6)

up to a fixed time T > 0. Write

h0(z) :=
−2√
κ

arg z, χ :=
2√
κ
−
√
κ

2
,

ht(z) := h0(ft(z))− χ arg f ′t(z).

Here arg(ft(z)) (which is a priori defined only up to an additive multiple of
2π) is chosen to belong (0, π) when ft(z) ∈ H; we similarly define arg f ′t(z)
by requiring that (when t is fixed) it is continuous on H \ ηT and tends to 0

at ∞. Let h̃ be an instance of the zero boundary GFF on H, independent of
Bt. Then the following two random distributions on H agree in law:5

h := h0 + h̃.

h ◦ fT − χ arg f ′T = hT + h̃ ◦ fT .

The two distributions above also agree in law when κ ∈ (4, 8) if we replace

h̃ ◦ fT with a GFF on H \ η([0, t]) (which in this case means the sum of an
independent zero boundary GFF on each component of H \ η([0, t])) and take
ht(z) := lims→τ(z)− hs(z) if z is absorbed at time τ(z) ≤ t.

Alternative statement of Theorem 1.1: Using our coordinate change
and AC surface definitions, we may state the theorem when κ < 4 somewhat
more elegantly as follows: the law of the AC surface (H, h) is invariant under
the operation of independently sampling fT using a Brownian motion and
(1.6), transforming the AC surface via the coordinate change f−1

T (going from
right to left in Figure 1.3 6 — see also Figure 2.3) in the manner of (1.4), and
erasing the path ηT (to obtain an AC surface parameterized by H instead of
H \ ηT ). We discuss the geometric intuition behind the alternative statement
in Section 2.1.

5Note that fT maps H \KT to H, so (H, h) and (H \KT , h ◦ fT − χ arg f ′T ) describe
equivalent AC surfaces by (1.4).

6All figures in this paper are sketches, not representative simulations.
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ηT

fT

h

h ◦ fT − χ arg f ′T

Figure 1.3: Forward coupling.

Note that, as a function, hT is not defined on ηT itself. However, we will
see in Section 4.1 that hT is a.s. well defined as a distribution, independently
of how we define it as a function on ηT itself. This will follow from the fact
that, when κ = 4, this hT is almost surely a bounded function off of ηT , and
when κ 6= 4, the restriction of hT to any compact subset of H is almost surely
in Lp for each p <∞ (see Section 4). The fact that h̃ ◦ fT is well defined as a
distribution on H (not just as a distribution on H\ηT ) follows from conformal
invariance of the GFF, and the fact (mentioned above, proved in [SS13])
that a zero boundary GFF instance on a subdomain can be understood as a
distribution on the larger domain.

Another standard approach for generating a segment ηT of an SLE curve
is via the reverse Loewner flow, whose definition is recalled in the statement
of the following theorem. (Note that if T is a fixed constant, then the law of
the ηT generated by reverse Loewner evolution is the same as that generated
by forward Loewner evolution; see Figures 1.3 and 1.4.)

Theorem 1.2. Fix κ > 0 and let ηT be the segment of SLEκ generated by a
reverse Loewner flow

dft(z) =
−2

ft(z)
dt−√κdBt, f0(z) = z (1.7)

up to a fixed time T > 0. Write

h0(z) :=
2√
κ

log |z|, Q :=
2√
κ

+

√
κ

2
,

ht(z) := h0(ft(z)) +Q log |f ′t(z)|,

13



and let h̃ be an instance of the free boundary GFF on H, independent of Bt.
Then the following two random distributions (modulo additive constants) on
H agree in law:7

h := h0 + h̃.

h ◦ fT +Q log |f ′T | = hT + h̃ ◦ fT .

ηT

fT
h

h ◦ fT +Q log |f ′T |

Figure 1.4: Reverse coupling.

Alternative statement of Theorem 1.2: A more elegant way to state
the theorem is that the law of (H, h) is invariant under the operation of
independently sampling fT , cutting out KT (equivalent to ηT when κ ≤ 4),
and transforming via the coordinate change f−1

T (going from right to left in
Figure 1.4) in the manner of (1.3).

Both theorems give us an alternate way of sampling a distribution with
the law of h — i.e., by first sampling the Bt process (which determines ηT ),

then sampling a (fixed or free boundary) GFF h̃ and taking

h = hT + h̃ ◦ fT .

This two part sampling procedure produces a coupling of ηT with h. In the
forward SLE setting of Theorem 1.1, it was shown in [Dub09] that in any such
coupling, ηT is almost surely equal to a particular path-valued function of h.
(This was also done in [SS13] in the case κ = 4.) In other words, in such a
coupling, h determines ηT almost surely. This is important for our geometric
interpretations. Even though h is not defined pointwise as a function, we

7Note that fT maps H to H \KT , so (H, h ◦ fT +Q log |f ′T |) and (H \KT , h) describe
equivalent quantum surfaces by (1.3). Indeed, (H, h ◦ fT +Q log |f ′T |) = f−1T (H \KT , h).
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would like to geometrically interpret η as a level set of h (when κ = 4) or a
flow line of eih/χ (when κ < 4), as we stated above and will explain in more
detail in Section 2.1. It is thus conceptually natural that such curves are
uniquely determined by h (as they would be if h were a smooth function, see
Section 2.1).

As mentioned earlier, this paper introduces and proves Theorem 1.2 while
highlighting its similarity to Theorem 1.1. Indeed, it won’t take us much
more work to prove Theorems 1.1 and 1.2 together than it would take to
prove one of the two theorems alone. It turns out that in both Figure 1.3
(which illustrates Theorem 1.1) and Figure 1.4 (which illustrates Theorem
1.2), the field illustrated on the left hand side of the figure (which agrees with
h in law) actually determines ηT and the map fT , at least when κ < 4. In
the former context (Figure 1.3) this a major result due to Dubédat [Dub09]
(see also the exposition on this point in [MS12a]). It says that a certain “flow
line” is a.s. uniquely determined by h. The statement in the latter context
is a major result obtained in this paper, stated in Theorems 1.3 and 1.4.
With some hard work, we will be able to show that the map fT describes
a conformal welding in which boundary arcs of equal quantum boundary
length are “welded together”. Once we have this, the fact that the boundary
measure uniquely characterizes fT will be obtained by applying a general
“removability” result of Jones and Smirnov, as we will explain in Section 1.4.

1.4 Theorem statements: conformal weldings

We will now try to better understand Theorem 1.2 in the special case κ < 4.
Note that a priori the h in Theorem 1.2 is defined only up to additive constant.
We can either choose the constant arbitrarily (e.g., by requiring that the
mean value of h on some set be zero) or avoid specifying the additive constant
and consider the measures µh and νh to be defined only up to a global
multiplicative constant. The choice does not affect the theorem statement
below.

Theorem 1.3. Suppose that κ < 4 and that h and ηT are coupled in the
way described at the end of the previous section, i.e., h is generated by first
sampling the Bt process up to time T in order to generate fT via a reverse
Loewner flow, and then choosing h̃ independently and writing h = hT + h̃ ◦ fT ,
and ηT

(
(0, T ]

)
= H\fTH.8 Given a point z along the path ηT , let z− < 0 < z+

8It is not known whether an analog of Theorem 1.3 can obtained in the case κ = 4.
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denote the two points in R that fT (continuously extended to R) maps to z.
Then almost surely

νh([z−, 0]) = νh([0, z+])

for all z on ηT .

Theorem 1.3 is a relatively difficult theorem, and it will be the last thing
we prove.We next define R = Rh : (−∞, 0] → [0,∞) so that νh([x, 0]) =
νh([0, R(x)]) for all x (recall that ν is a.s. atom free [DS11a]). This R gives a
homeomorphism from [0−, 0] to [0, 0+] that we call a conformal welding of
these two intervals. We stress that the values 0− and 0+ depend on T , but
the overall homeomorphism R between (−∞, 0] and [0,∞) is determined by
the boundary measure νh, whose law does not depend on T (although the
coupling between h, h̃, and ηT described in the theorem statement clearly
depends on T ). Since ηT is simple, it clearly determines the restriction of R
to [0−, 0]. (See Figure 1.5.) It turns out that R also determines ηT :

Theorem 1.4. For κ < 4, in the setting of Theorem 1.3, the homeomorphism
R from [0−, 0] to [0, 0+] uniquely determines the curve ηT . In other words, it
is almost surely the case that if η̃T̃ is any other simple curve in H such that
the homeomorphism induced by its reverse Loewner flow is the same as R on
[0−, 0], then η̃T̃ = ηT . In particular, h determines ηT almost surely.

Proof. The author learned from Smirnov that Theorem 1.4 follows almost
immediately from Theorem 1.3 together with known results in the literature. If
there were a distinct candidate η̃T with a corresponding f̃T , then φ = f̃T ◦f−1

T

— extended from H to R by continuity, and to all of C by Schwarz reflection —
would be a non-trivial homeomorphism of C (with limz→∞ φ(z)−z = 0) which
was conformal on C \ (ηT ∪ η̄T ), where η̄T denotes the complex conjugate of
ηT . Thus, to prove Theorem 1.4, it suffices to show that no such map exists.
In complex analysis terminology, this is equivalent by definition to showing
that the curve ηT ∪ η̄T is removable. Rohde and Schramm showed that the
complement of η([0, T ]) is a.s. a Hölder domain for κ < 4 (see Theorem 5.2 of
[RS05]) and that η is a.s. a simple curve in this setting. In particular, ηT ∪ η̄T
is almost surely the boundary of its complement, and this complement is a

The standard procedure for constructing the boundary measure νh breaks down when
κ = 4, γ = 2, but a scheme was introduced [DRSV12a, DRSV12b] to create a non-trivial
boundary measure νh. The open problems listed in Section 6 also also address a related
question in the κ > 4 setting.
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Hölder domain. (More about Hölder continuity appears in work of Beliaev and
Smirnov [BS09a] and Kang [Kan07] and Lind [Lin08].) Jones and Smirnov
showed generally that boundaries of Hölder domains are removable (Corollary
2 of [JS00]). The same observations are used in [AJKS11].

We remark that the above arguments also show that η ∪ η̄ is removable
when η is the entire SLE path. In the coming sections, we will often interpret
the left and right components of H\η as distinct quantum surfaces, where the
right boundary arc of one surface is welded (along η) to the left boundary arc
of another surface in a quantum-boundary-length-preserving way. When the
law of η is given by SLEκ with κ < 4, removability implies that η is almost
surely determined (up to a constant rescaling of H) by the way that these
boundary arcs are identified. In other words, aside from constant rescalings,
there is no homeomorphism of H, fixing 0 and ∞, whose restriction to H \ η
is conformal.

1.5 Corollary: capacity stationary quantum zipper

This subsection contains some discussion and interpretation of some simple
consequences of Theorems 1.3 and 1.4, in particular Corollary 1.5 below. We
first observe that for κ < 4, Theorem 1.4 implies that R determines ηT almost
surely for any given T > 0. In particular, this means that R determines an
entire reverse Loewner evolution ft = fht for all t ≥ 0, and that this fht is (in
law) a reverse SLEκ flow. Similarly, given a chordal curve η from 0 to ∞
in H, we denote by f ηt the forward Loewner flow corresponding to η. The
following is now an immediate corollary of the domain Markov property for
SLE and Theorems 1.2, 1.3 and 1.4. As usual, transformations f(D, h) are
defined using (1.3).

Corollary 1.5. Fix κ ∈ (0, 4). Let h = h0 + h̃ be as in Theorem 1.2 and let
η be an SLEκ on H chosen independently of h. Let D1 be the left component
of H \ η and hD1 the restriction of h to D1. Let D2 be the right component of
H \ η and hD2 the restriction of h to D2. For t ≥ 0, write

ZCAP
t

(
(D1, h

D1), (D2, h
D2)
)

=
(
fht (D1, h

D1), fht (D2, h
D2)
)
,

ZCAP
−t

(
(D1, h

D1), (D2, h
D2)
)

=
(
f ηt (D1, h

D1), fηt (D2, h
D2)
)
.

Note that both h and η are determined by the pair
(
(D1, h

D1), (D2, h
D2)
)
, and

that fht and f ηt are also a.s. determined by this pair, so that the maps ZCAP
t
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and ZCAP
−t are well defined for almost all pairs

(
(D1, h

D1), (D2, h
D2)
)

chosen
in the manner described above. Then the law of

(
(D1, h

D1), (D2, h
D2)
)

is
invariant under ZCAP

t for all t. Also, for all s and t,

ZCAP
s+t = ZCAP

s ZCAP
t

almost surely.

η

h

Figure 1.5: Sketch of η with marks spaced at intervals of the same νh length
along ∂D1 and ∂D2. Here (−∞, 0] and [0,∞) are the two open strands of
the “zipper” while η is the closed (zipped up) strand. Semicircular dots
on R are “zipped together” by fht . Circular dots on η are “pulled apart”
by f ηt . (Recall that under the reverse Loewner flow fht , the center of a
semicircle on the negative real axis will reach the origin at the same time as
the center of the corresponding semicircle on the positive real axis.) The law
of
(
(D1, h

D1), (D2, h
D2)
)

is invariant under “zipping up” by t capacity units
or “zipping down” by t capacity units.

Because the forward and reverse Loewner evolutions are parameterized
according to half plane capacity, we refer to the group of transformations
ZCAP
t as the capacity quantum zipper, see Figure 1.5. (The term “zipper”

in the Loewner evolution context has been used before; see the “zipper
algorithm” for numerically computing conformal mappings in [MR07] and
the references therein.) When t > 0, applying ZCAP

t is called “zipping up”
the pair of quantum surfaces by t capacity units and applying ZCAP

−t is called
“zipping down” or “unzipping” by t capacity units.

To begin to put this construction in context, we recall that the general
conformal welding problem is usually formulated in terms of identifying unit
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discs D1 and D2 along their boundaries via a given homeomorphism φ from
∂D1 to ∂D2 to create a sphere with a conformal structure. Precisely, one
wants a simple loop η in the complex sphere, dividing the sphere into two
pieces such that if conformal maps ψi from the Di to the two pieces are
extended continuously to their boundaries, then ψ1 ◦ψ−1

2 is φ. In general, not
every homeomorphism φ between disc boundaries is a conformal welding in
this way, and when it is, it does not always come from an η that is (modulo
conformal automorphisms of the sphere) unique; in fact, arbitrarily small
changes to φ can lead to large changes in η and some fairly exotic behavior
(see e.g. [Bis07]).

The theorems of this paper can also be formulated in terms of a sphere
obtained by gluing two discs along their boundaries: in particular, one can
zip up the quantum surfaces of Corollary 1.5 “all the way” (see Figure 5.1
and Section 5.2), which could be viewed as welding two Liouville quantum
surfaces (each of which is topologically homeomorphic to a disc) to obtain an
SLE loop in the sphere, together with an instance of the free boundary GFF
on the sphere.

Note that in the construction described above, the quantum surfaces are
defined only modulo an additive constant for the GFF, and we construct
the two surfaces together in a particular way. In Section 1.6 (Theorem 1.8),
we will describe a related construction in which one takes two independent
quantum surfaces (each with its additive constant well-defined) and welds
them together to obtain SLE.

As mentioned in Section 1.1, Peter Jones conjectured several years ago that
an SLE loop could be obtained by (what in our language amounts to) welding
a quantum surface to a deterministic Euclidean disc. (The author first learned
of this conjecture during a private conversation with Jones in early 2007 [Jon].)
Astala, Jones, Kupiainen, and Saksman recently showed that such a welding
exists and determines a unique loop (up to conformal automorphism of the
sphere) [AJKS11, AJKS10]. Binder and Smirnov recently announced (to the
author, in private communication [Smi]) that they have obtained a proof
that the original conjecture of Jones is false. By computing a multifractal
spectrum, they showed that the loop constructed in [AJKS11, AJKS10] does
not look locally like SLE. However, our construction, together with Theorem
1.8 below, shows that a natural variant of the Jones conjecture — involving
two independent quantum surfaces instead of one quantum surface and one
Euclidean disc — is in fact true.

We also remark that the “natural” d-dimensional measure on (or parame-
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terization of) an SLE curve of Hausdorff dimension d was only constructed
fairly recently [LS11, LZ13, LR12], and it was shown to be uniquely character-
ized by certain symmetries, in particular the requirement that it transforms
like a d-dimensional measure under the maps ft (i.e., if the map locally
stretches space by a factor of r, then it locally increases the measure by a
factor of rd). Our construction here can be viewed as describing, for κ < 4, a
natural “quantum” parameterization of SLEκ, which is similarly characterized
by transformation laws, in particular the requirement that adding C to h

— which scales area by a factor of eγC — scales length by a factor of eγC/2.
These ideas are discussed further in [DS11b].

The relationship between Euclidean and quantum natural fractal measures
and their evolution under capacity invariant quantum zipping is developed in
[DS11b] in a way that makes use of the KPZ formula [KPZ88, DS11a].

1.6 Quantum wedges and quantum length stationarity

This subsection contains ideas and definitions that are important for the proofs
of Theorem 1.3 and 1.4, as well as the statement of another of this paper’s
main results, Theorem 1.8, which we will actually prove before Theorem 1.3.
The reader who prefers to first see proofs of Theorems 1.1 and 1.2 and some
discussion of the consequences may read Sections 3 and 4, as well as much of
Section 5, independently of this subsection.

Theorem 1.8 includes a variant of Corollary 1.5 in which one parameterizes
time by “amount of quantum length zipped up” instead of by capacity. The
“stationary” picture will be described as a particular random quantum surface
S with two marked boundary points and a chordal SLE η connecting the two
marked points. The theorem will state that this η divides S into two quantum
surfaces S1 and S2 that are independent of each other. (One can also reverse
the procedure and first choose the Si — these are the so-called γ-quantum
wedges mentioned earlier — and then weld them together to produce S and
the interface η.) As we have already mentioned, this independence appears
at first glance to be a rather bizarre coincidence. However, as we will see in
Section 2.2, this kind of result is to be expected if SLE-decorated Liouville
quantum gravity is (as conjectured) the scaling limit of path-decorated random
planar maps.

Before we state Theorem 1.8 formally, we will need to spend a few para-
graphs constructing a particular kind of scale invariant random quantum
surface that we will call an “α quantum wedge.” The reader who has never
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encountered quantum wedges before before may wish to first read Section 1.4
of [DMS14a], which contains a more recent and better illustrated discussion
of the quantum wedge construction.

We begin this construction by making a few general remarks. Recall that
given any quantum surface represented by (D̃, h̃) — with two distinguished
boundary points — we can change coordinates via (1.3) and represent it as
the pair (H, h) for some h, where H is the upper half plane, and the two
marked points are taken to be 0 and ∞. We will represent the “quantum
wedges” we construct in this way, and we will focus on constructions in which
there is almost surely a finite amount of µh mass and νh mass in each bounded
neighborhood of 0 and an infinite amount in each neighborhood of ∞. In this
case, the corresponding quantum surface is half-plane-like in the sense that
it has one distinguished boundary point “at infinity” and one distinguished
“origin” — and each neighborhood of “infinity” includes infinite area and an
infinite length portion of the surface boundary, while the complement of such
a neighborhood contains only finite area and a finite-length portion of the
surface boundary. We will let Sh denote the doubly marked quantum surface
described by h in this way.

The h describing Sh is canonical except that we still have one free param-
eter corresponding to constant rescalings of H by (1.3). For each a > 0, such
a rescaling is given by

(H, h)→ (H, h(a·) +Q log |a|). (1.8)

We can fix this parameter by requiring that µh
(
B1(0) ∩ H

)
= 1. We will

let µh be zero on the negative half plane so that we write this slightly
more compactly as µh

(
B1(0)

)
= 1. (Alternatively, one could normalize so

that νh
(
[−1, 1]

)
= 1.) We call the h for which this holds the canonical

description of the doubly marked quantum surface.
Now to construct a “quantum wedge” it will suffice to give the law of

the corresponding h. To this end, we first recall that one can decompose the
Hilbert space for the free boundary GFF into an orthogonal sum of the space of
functions which are radially symmetric about zero and the space of functions
with zero mean about all circles centered at zero [DS11a]. Consequently,
we can write h(·) = h|·|(0) + h†(·), where h†ε(0) = 0 for all ε, and h|z|(0)
is (of course) a continuous and radially symmetric function of z. This is a
decomposition of the GFF h into its projection onto two (·, ·)∇ orthogonal
subspaces, so h|·|(0) and h†(·) are independent of each other [She07]; the
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latter is a scale invariant random distribution and defined without an additive
constant (since its mean is set to be zero on all circles centered at the origin).
Now we define three types of quantum surfaces (the first two being defined
only up an additive constant for h, which corresponds to a constant-factor
rescaling of the surface itself). The third may seem unmotivated; however,
the reader may note that it is similar in the spirit to the second, except that
the third h is actually a well defined random distribution (as opposed to a
random distribution modulo additive constant), so that (H, h) is a well-defined
quantum surface.

1. Definition — unscaled quantum wedge on H: the quantum sur-
face (H, h) where h is an instance of the free boundary GFF (which is
defined up to additive constant, so that the quantum surface is defined
only up to rescaling). In this case, h|·| agrees in law with B− log |·| when

Bt, t ∈ R is
√

2 times a standard Brownian motion defined up to a
global additive constant). We think of Bt as a Brownian motion with
diffusive rate 2, which will be understood throughout the discussion
below. We can write

h = h†(·) +B− log |·|,

where h†(·) and B− log |·| are independent.

2. Definition — α-log-singular free quantum surface on H: the
quantum surface (H, h) where

h = h†(·) + α
(
− log | · |

)
+B− log |·|, (1.9)

with h† and B as above (and h also defined only up to additive constant).

3. Definition — α-quantum wedge: for α < 0, the quantum surface
(H, h) where

h = h†(·) +Q
(
− log | · |

)
+ A− log |·|, (1.10)

and the process At, t ∈ R is defined in a particular way: namely, for
t ≥ 0, At is a Brownian motion with drift α−Q, i.e., At = Bt+(α−Q)t.
Also, for t ≥ 0, the negative-time process A−t is chosen independently
as a Brownian motion with drift −(α − Q) conditioned not to revisit
zero. This involves conditioning on a probability zero event, so let us
state this another way to be clear. Note that B̃t = Bt − (α−Q)t has
positive drift and hence a.s. s0 = sup{s : B̃s = 0} <∞. Then the law
of A−t (for t ≥ 0) is the law of B̃t+s0 , for t ≥ 0.
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To begin to motivate the definition above, note that applying the coordi-
nate transformation (1.8) to the α-quantum wedge defined by (1.10), where
the coordinate change map is a rescaling by a factor of a, amounts to replacing
(1.10) with

h†(a·)+Q
(
− log |a·|

)
+A− log |a·|+Q log |a| = h†(a·)+Q

(
− log |·|

)
+Alog a−log |·|.

Since the law of h† is scaling invariant, we find that the coordinate change
described amounts to a horizontal translation of A by − log a. That is, the
quantum surface obtained by sampling A and then sampling h† independently
agrees in law with the quantum surface obtained by sampling A, translating
the graph of A horizontally by some (possibly random) amount, and then
sampling h† independently.

We think of At as a Brownian process that drifts steadily as a Brownian
motion with drift (α −Q) from −∞, reaches zero at some point, and then
subsequently evolves as a regular Brownian motion with the same drift. Since
translating the graph of At horizontally doesn’t affect the law of the quantum
surface obtained, we choose (for concreteness) the translation for which
inf{t : At = 0} = 0. (We remark that the process At can also be interpreted
as the log of a Bessel process, reparameterized by quadratic variation, noting
that the graph of such a reparameterization is a priori only defined up to a
horizontal translation; this point of view is explained and used extensively in
[DMS14a].)

Now we make another simple claim: the α-quantum wedge is a doubly
marked quantum surface whose law is invariant under the multiplication
of its area by a constant. To explain what this means, let us observe that
when C ∈ R, we can “multiply the surface area by the constant eC” by
replacing h with h+ C/γ, or equivalently, by replacing A with A+ C/γ. Let
t0 = inf{t : Ãt = 0} and write Ãt = At0+t + C/γ. By the definition of t0, we
find that Ãt (like At) is a process that drifts up from −∞, reaches zero for the
first time when t = 0, and then subsequently evolves as a Brownian motion
with drift. Indeed, it is not hard to see that Ãt has the same law as At. To
deduce the claim, we then observe that the distribution of h† is fixed; and
since the radial parts h|·|(0) of the GFF are continuous and independent of µh†
and converge to a limit in law, we may conclude that eγh|·|(0)dµh† converges
in law.

For future reference, we mention that one has a natural notion of “con-
vergence” for quantum surfaces of this type: if h1, h2, . . . are the canonical
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descriptions of a sequence of doubly marked quantum surfaces and h is the
canonical description of Sh, then we say that the sequence Shi converges to
Sh if the corresponding measures µhi converge weakly to µh on all bounded
subsets of H.

One motivation for the definition of a quantum wedge is the following,
which can be deduced from the description of quantum typical points given in
Section 6 of [DS11a]. It says (in a certain special setting; for a stronger result,
see Proposition 5.5) that if one zooms in near a “quantum-boundary-measure-
typical” point, one finds that the quantum surface looks like a γ-quantum
wedge near that point.

Proposition 1.6. Fix γ ∈ [0, 2) and let D be a bounded subdomain of H for

which ∂D ∩ R is a segment of positive length. Let h̃ be an instance of the
GFF with zero boundary conditions on ∂D \ R and free boundary conditions
on ∂D∩R. Let [a, b] be any sub-interval of ∂D∩R and let h0 be a continuous
function on D that extends continuously to the interval (a, b). Let dh be the

D

h

a bx

Figure 1.6: Point x sampled from νh (restricted to [a, b]).

law of h0 + h̃, and let νh[a, b]dh denote the measure whose Radon-Nikodym
derivative w.r.t. dh is νh[a, b]. (Assume that this is a finite measure — i.e.,
the dh expectation of νh[a, b] is finite.) Now suppose we

1. sample h from νh[a, b]dh (normalized to be a probability measure),

2. then sample x uniformly from νh restricted to [a, b] (normalized to be a
probability measure),

3. and then let h∗ be h translated by −x units horizontally (i.e., recentered
so that x becomes the origin).

Then as C → ∞ the random quantum surfaces Sh∗+C/γ converge in law
(w.r.t. the topology of convergence of doubly-marked quantum surfaces) to a
γ-quantum wedge.
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Proof. We first recall that in this setting the description of quantum typical
points in Section 6 of [DS11a] implies a very explicit description of the joint
law of the pair x and h sampled in Proposition 1.6. The marginal law of x
is absolutely continuous with respect to Lebesgue measure, and conditioned
on x the law of h is that of its original law plus a deterministic function
that has the form −γ log |x− ·| plus a deterministic smooth function. In a
small neighborhood of x, this deterministic smooth function is approximately
constant, which means that h∗ looks like (up to additive constant) the h used
to define an α-log-singular free quantum surface in (1.9), with α = γ. If we
write A′t = Bt + (α−Q)t, then we find that h∗ looks like the h used to define
a γ-quantum wedge in (1.10), except with A replaced by A′.

Now replacing h∗ by h∗ + C/γ corresponds to adding C/γ to the process
B from (1.9), and hence also corresponds to adding C/γ to the process A′,
which translates the graph of A′ vertically. Recall from above that translating
the graph of A′ horizontally corresponds to a coordinate change; so we can
translate A′ so that it hits zero for the first time at the origin. It is not hard
to see that as C →∞, the law of A′ thus translated converges to the law of
A. Since the law of h† is scale invariant and can be chosen independently,
this implies the proposition statement.

We will later show (see Proposition 5.5) that the conclusion of the proposi-
tion still holds if (when generating x and h) we condition on particular values
for νh[a, x] and νh[x, b].

The following is an immediate consequence of Proposition 1.6. It tells us
that the γ-quantum wedge is stationary with respect to shifting the origin
by a given amount of quantum length. (When γ = 0, the proposition simply
states that H itself is invariant under horizontal translations. Proposition 1.7
is the general quantum analog of this invariance.)

Proposition 1.7. Fix a constant L > 0. Suppose that (H, h) is a γ-quantum
wedge. Then choose y > 0 so that νh[0, y] = L, and let h∗ be h translated by
−y units horizontally (i.e., recentered so that y becomes the origin). Then
(H, h∗) is a γ-quantum wedge.

Proof. Suppose that x is the point chosen uniformly from the quantum
boundary measure in Proposition 1.6, and x′ is the point translated δL
quantum length units to the right from x, so that νh[x, x

′] = δL. Note that
such an x′ exists with a probability that tends to 1 as δ → 0, and that the
law of x′ converges (in total variation sense) to the law of x as δ → 0. In the
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rescaled surfaces in Proposition 1.6, boundary lengths are scaled by eC/2, so if
we set δ = e−C/2, then the distance between x and x′ is L after the rescaling.
Since this δ tends to zero as C →∞ we conclude that the limiting surface
law is (as desired) invariant under the operation that translates the origin by
L units of quantum boundary length.

The following will be proved in Section 5.

Theorem 1.8. Wedge decomposition: Fix γ ∈ (0, 2), and let S be a
(γ − 2/γ)-quantum wedge with canonical description h. Let η be a chordal
SLEκ in H from 0 to ∞, with κ = γ2, chosen independently of h. Let D1

and D2 be the left and right components of H \ η, and let hD1 and hD2 be the
restrictions of h to these domains. Then the quantum surfaces represented by
(D1, h

D1) and (D2, h
D2) are independent γ-quantum wedges (marked at 0 and

∞), and their quantum boundary lengths along η agree.
Zipper stationarity: Moreover, suppose we define

ZLEN
−t
(
(D1, h

D1), (D2, h
D2)
)

as follows. First find z on η for which the quantum boundary lengths along
D1 and D2 (which are well defined by unzipping) along η between 0 and z are
both equal to t. Let t′ be the time that η hits z (when η is parameterized by
capacity) and define

ZLEN
−t
(
(D1, h

D1), (D2, h
D2)
)

= rescaling of
(
f ηt′(D1, h

D1), fηt′(D2, h
D2)
)
,

where the rescaling is done via (1.8) with the parameter a chosen so that
B1(0) has area one in the transformed quantum measure. Then the following
hold:

1. The inverse ZLEN
t of the operation ZLEN

−t is a.s. uniquely defined (via
conformal welding).

2. ZLEN
s+t = ZLEN

s ZLEN
t almost surely for s, t ∈ R.

3. The law of the pair
(
(D1, h

D1), (D2, h
D2)
)

is invariant under ZLEN
t for

all t ∈ R.

It also follows from Theorem 1.4 and the subsequent discussion that the
two independent γ-quantum wedges uniquely determine h and η almost surely.
We refer to the group of transformations ZLEN

t as the length quantum
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x R(x) 0

fT

=+

∂B1(0)

−δ

Figure 1.7: Choose h as in Theorem 1.2 (normalized by h1(0) = 0) except
with the law of h weighted by νh

(
[−δ, 0]

)
for some fixed δ ∈ (0, 1). Then

conditioned on h, sample x from νh restricted to [−δ, 0] (normalized to be
a probability measure). Take T so that fT is the map zipping up [x, 0]
with [0, R(x)]. Consider the three random surfaces obtained by choosing
a semi-disc of quantum area ε̃ centered at each of x and R(x) (on the left
side) and 0 (on the right side), and multiplying areas by 1/ε̃ (zooming in) so
that all three balls have quantum area 1. In the ε̃ → 0 limit, the left two
quantum surfaces become independent γ-quantum wedges, and the right is
the conformal welding of these two.

zipper. When t > 0, applying ZLEN
t is called “zipping up” the pair of

quantum surfaces by t quantum length units and applying ZLEN
−t is called

“zipping down” or “unzipping” by t quantum length units. When we defined
the operations ZCAP

t , h was defined only up to additive constant, and the
zipping maps ft were independent of that constant. By contrast, ZLEN

t

represents zipping by an actual quantity of quantum length and hence cannot
be defined without the additive constant being fixed.

We will give a detailed proof in Section 5, which is in some sense the
heart of the paper. But for now, let us give a brief overview of the proof
and the relationship to our other results. We will start with the scenario
described in Figure 1.5, with h normalized to have mean zero on ∂B1(0),
except that the measure dh on h is replaced by the probability measure whose
Radon-Nikodym derivative w.r.t. dh is νh(−δ, 0) for some fixed δ (see Figure
1.7).
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Then we will sample x from νh restricted to (−δ, 0) (normalized to be
a probability measure) and “zip up” until x hits the origin (to obtain a
“quantum-length-typical” configuration). We then zoom in near the origin
(multiplying the area by ε̃−1 — and hence the boundary length by ε̃−1/2 —
say). We then use a variant of Proposition 1.6 (namely, Proposition 5.5) to
show that (in the ε̃→ 0 limit) the lower two rescaled surfaces on the lower
left of Figure 1.7 become independent γ-quantum wedges.

The fact that the curve on the right in Figure 1.7 is (in the ε̃ → 0
limit) an SLEκ independent of the canonical description h on the right will
be shown in Section 5 by directly calculating the law of the process that
“zips up” [x, 0] with [0, R(x)]. It could also be seen by showing that we can
construct an equivalent pair of glued surfaces by beginning with Figure 1.5
(with h normalized to have mean zero on ∂B1(0)) and then zipping down by a
random amount (chosen uniformly from an interval) of quantum length, then
zooming in by multiplying lengths by 1/ε̃, and then taking the ε̃→ 0 limiting
law. (In this case, the domain Markov property of the original SLE, and its
independence from the original GFF, would imply that the conditional law of
the still-zipped portion of the curve is an SLEκ, independent of h.)

Similar arguments to those in [DS11a] will show that the procedure in
Figure 1.7 produces a configuration related to the one in Figure 1.4 except
that it is in some sense weighted by the amount of quantum mass near
zero. It will turn out that this weighting effectively adds −γ log | · | to the
h0 of Theorem 1.2 and Corollary 1.5. This is why Theorem 1.8 involves a
(γ − 2/γ)-quantum wedge, instead of a (−2/γ)-quantum wedge, as one might
initially guess based on Theorem 1.2. Once we have all of this structure in
place, the really crucial step will be showing that parameterizing time by
the amount of “left boundary quantum length” zipped up yields the same
stationary picture as parameterizing time the amount of “right boundary
quantum length” zipped up. Given this, we will then use the ergodic theorem
to show that over the long term, the amount of left bounday quantum length
zipped up approximately agrees with the amount of right boundary length
zipped up. Using scale invariance symmetries we will then deduce that this
agreement almost surely holds exactly on all scales.

1.7 Organization

Section 2 provides heuristic justification and motivation for the main results
about AC geometry and Liouville quantum gravity. (An interpretation of AC
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geometry in terms of “imaginary curvature” appears in the appendix.) Section
3 gives a brief overview of the Gaussian free field. Section 4 proves Theorems
1.1 and 1.2, along with a generalization to other underlying geometries.
Section 5 proves Theorems 1.8 and 1.3 (in that order), along with some
additional results about zipping processes and time changes. (Recall that
we have already proved that Theorem 1.4 is a consequence of Theorem 1.3.)
Section 6, finally, presents a list of open problems and conjectures.

2 Geometric interpretation

This section summarizes some of the conjectures and intuition behind our
main results, including some discrete-model-based reasons that one would
expect the coupling and welding theorems to be true. This section may be
skipped by the reader who prefers to proceed directly to the proofs.

2.1 Forward coupling: flow lines of eih/χ

Fix a planar domain D, viewed as a subset of C, a function h : D → R, and
a constant χ > 0. An AC ray of h is a flow line of the complex vector field
eih/χ beginning at a point x ∈ D — i.e., a path η : [0,∞) → C that is a
solution to the ODE:

η′(t) :=
∂

∂t
η(t) = eih(η(t))/χ when t > 0 , η(0) = x, (2.1)

until time T = inf{t > 0 : η(t) 6∈ D}. When h is Lipschitz, the standard
Picard-Lindelöf theorem implies that if x ∈ D, then (2.1) has a unique solution
up until time T (and T is itself uniquely determined). The reader can visually
follow the flow lines in Figure 2.1.

If h is continuous, then the time derivative η′(t) moves continuously around
the unit circle, and h(η(t))− h(η(0)) describes the net amount of winding of
η′ around the circle between times 0 and t.

A major problem (addressed in depth in an imaginary geometry series
[MS12a, MS12b, MS12c, MS13a]) is to make sense of these flow lines when h
is a multiple of the Gaussian free field. We will give here just a short overview
of the way these objects are constructed. Suppose that η is a smooth simple
path in H beginning at the origin, with (forward) Loewner map ft = f ηt . We
may assume that η starts out in the vertical direction, so that the winding
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Figure 2.1: The complex vector flow eih: h(x, y) = y, h(x, y) = x2 + y2.

number is π/2 for small times. Then when η and h are both smooth, the
statement that η is a flow line of eih/χ is equivalent to the statement that for
each x on η

(
(0, t)

)
we have

χ arg f ′t(z)→ −h(x) (2.2)

as z approaches x from the left side of η and

χ arg f ′t(z)→ −h(x) + χπ (2.3)

as z approaches x from the right side of η (as Figure 2.2 illustrates). Recall
that arg f ′t(z) — a priori determined only up to a multiple of 2π — is chosen
to be continuous on H \ η([0, t]) and 0 on R. If χ = 0, then (2.2) and (2.3)
hold if and only if h is identically zero along the path η, i.e., η is a zero-height
contour line of h.

In [SS09, SS13], it is shown that when one takes certain approximations
hε of an instance h of the GFF that are piecewise linear on an ε-edge-length
triangular mesh, then conditioned on a zero chordal contour line of hε there
is in some ε→ 0 limiting sense a constant “height gap” between the expected
heights immediately to one side of the contour line and those heights on the
other. We might similarly expect that if one looked at the expectation of hε,
given a chordal flow line ηε of eih

ε/χ, there would be a constant order limiting
height gap between the two sides, see Figure 2.3.
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ηT

fT

Figure 2.2: Winding number along ηT determines arg f ′T , which is the amount
a small arrow near ηT is rotated by fT .

This suggests the form of ht given in Theorem 1.1, which comes from
taking (2.2) and (2.3) and modifying the height gap between the two sides by
adding a multiple of arg ft. (As in [SS13], the size of the height gap — and
hence the coefficient of arg ft in the definition of ht — is determined by the
requirement that ht(z) be a martingale in t, see Section 4.) Interestingly, the
fact that winding may be ill-defined at a particular point on a fractal curve
turns out to be immaterial. It is the harmonic extension of the boundary
winding values (the arg f ′t) that is needed to define ht, and this is defined
even for non-smooth curves.

ηT

fT

h

h ◦ fT − χ arg f ′T

Figure 2.3: Forward coupling with arrows in eih/χ direction (sketch), illus-
trating the constant angle gap between the two sides of the curve η, constant
angles along the positive and negative real axes, and random angles (not
actually point-wise defined if h is the GFF) in H \ η.

The time-reversal of a flow line of eih
ε/χ is a flow line of ei(h

ε/χ+π), which
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at first glance appears to imply that there should not be a height gap between
the two sides (since if the left side were consistently smaller for the forward
path, then the right side would be consistently smaller for the reverse path).
To counter this intuition, observe that, in the left diagram in Figure 2.1, the
left-going infinite horizontal flow lines (at vertical heights of kπ, k odd) are
“stable” in that the flow line beginning at a generic point slightly off one of
these lines will quickly converge to the line. The right-going horizontal flow
lines (at heights kπ, k even) are unstable. In a stable flow line, h appears
to generally be larger to the right side of the flow line and smaller to the
left side. It is reasonable to expect that a flow line of eih

ε/χ started from
a generic point would be approximately stable in that direction — and in
particular would look qualitatively different from the time reversal of a flow
line of ei(h

ε/χ+π) started from a generic point.

2.2 Reverse coupling: planar maps and scaling limits

In this section, we conjecture a connection between path-decorated pla-
nar maps and SLE-decorated Liouville quantum gravity (in particular, the
quantum-length-invariant decorated quantum wedge of Theorem 1.8). We
will explain the details in just one example based on the uniform spanning
tree. (Variants based on Ising and O(n) and FK models on random planar
maps — or on random planar maps without additional decoration besides
the chordal paths — are also possible. Many rigorous results for percola-
tion and the Ising model have been obtained for deterministic graphs in
[Smi01, Smi05, Smi06, Smi07, CN08, CS12] (and in many other papers we
will not survey here), and one could hope to extend these results to ran-
dom graphs. One could also consider discrete random surfaces decorated by
loops and in the continuum replace SLE decorations with CLE decorations
[She09, SW12].) As mentioned earlier, we will see that the more surprising
elements of Theorem 1.8 are actually quite natural from the discrete random
surface point of view.

Let G be a planar map with exactly n edges (except that each edge on the
outer face is counted as half an edge) and let T be a subgraph consisting of a
single boundary cycle, a chordal path from one boundary vertex a to another
boundary vertex b that otherwise does not hit the boundary cycle, and a
spanning forest rooted at this “figure 8” structure. (See Figure 2.4.) Here T
is like the wired spanning tree (in which the entire boundary is considered
to be one vertex), except that there is also one chord connecting a pair of
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boundary vertices. What happens if we consider the uniform measure on all
pairs (G, T ) of this type? This model is fairly well understood combinatorially
(tree-rooted maps on the sphere are in bijective correspondence with certain
walks in Z2 — see, e.g., [Mul67] as well as [Ber07] and the references therein
— and our model is a simple variant of this) and in particular, it follows from
these bijections that the length of the boundary of the outer face of this
map will be of order

√
n with high probability when n is large. Now, can we

understand the scaling limit of the random pair (G, T ) as n→∞?

a

b

φ

φ(b) = ∞

φ(a) = 0

Figure 2.4: Planar map with a distinguished outer-boundary-plus-one-chord-
rooted spanning tree (solid black edges), with chord joining marked boundary
points a and b, plus image of tree under conformally uniformizing map φ to
H (sketch).

There are various ways to pose this problem. For example, one could
consider G as a metric space and aim for convergence in law w.r.t. the Gromov-
Hausdorff metric on metric spaces. The reader is probably aware that there
is a sizable literature on the realization of a random metric space called the
Brownian map as a Gromov-Hausdorff scaling limit of random planar maps
of various types. However, since this paper is concerned with the conformal
structure of random geometr, we will try to phrase the the problem in a way
that keeps track of that structure.

First, we would like to understand how to conformally map the planar
map to the half plane, as in Figure 2.4. We may consider G as embedded in
a two-dimensional manifold with boundary in various ways, one of which we
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sketch here: first add an interior vertex to each face of G and an edge joining
it to each vertex of that face (as in Figure 2.5). Each interior edge of G is
now part of a quadrilateral (containing one vertex for each interior face of
G and one for each vertex of G) and we will endow that quadrilateral with
the metric of a unit square [0, 1]× [0, 1]. Similarly, the triangle containing an
exterior edge of G is endowed with the metric of half a unit square (split on
its diagonal, with the exterior edge as the hypotenuse). When two squares or
half squares share an edge, the points along that edge are identified with one
another in a length preserving way. We may view the collection of (whole
and half) unit squares, glued together along boundaries, as a manifold (with
isolated conical singularities at vertices whose number of incident squares is
not four) with a uniquely defined conformal structure (note that it is trivial
to define a Brownian motion on the manifold, since it a.s. never hits the
singularities). We may choose a conformal map φ from this manifold to H,
sending a to 0 and b to ∞, as sketched in Figure 2.4.

Figure 2.5: An arbitrary planar map can be used to construct a collection of
stitched-together unit squares and half unit squares. The result is viewed as
a two dimensional manifold with boundary.

This φ is determined only up to scaling, but we can fix the scaling in
many ways. We will do so by considering a number k < n and requiring that
the area of φ−1(B1(0)) be equal to k. Then φ determines a random measure
on H (the image of the area measure on the manifold) in which the measure
of B1(0) is deterministically equal to k; let µn,k denote this random measure
divided by k, so that µn,k(B1(0)) = 1. We expect that if one lets n and k tend
to ∞ in such a way that n/k tends to ∞, then the random measures µn,k will
converge in law with respect to the metric of weak convergence on bounded
subsets of H to the µ = µh corresponding to the canonical description h of the
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(γ − 2/γ)-quantum wedge of Theorem 1.8. (By compactness, the laws of the
µn,k restricted to the closure of B1(0) have at least a subsequential limit.) We

similarly conjecture that νn,k — defined to be 1/
√
k times the image of the

manifold’s boundary measure — will converge in law to the corresponding νh.
(We remark that one could alternatively formulate the conjecture by taking
an infinite volume limit first — i.e., letting n go to infinity while keeping
k constant to define a limiting measure µ∞,k := limn→∞ µn,k. This kind of
infinite volume limit of random planar maps was constructed in [AS03]. One
can subsequently take k →∞ and conjecture that the limit is µh. A similar
conjecture in [DS11a] was formulated in terms of infinite volume limits.)

We are currently unable to prove these conjectures, but related questions
about Brownian motion on random surfaces have been explored in [GR13],
where it was shown that certain infinite random triangulations and quad-
rangulations (without boundaries) are parabolic (as opposed to hyperbolic)
Riemann surfaces [GR13]. (This is equivalent to showing that a Brownian
motion visits each face infinitely often almost surely; see analogous discrete
results in [AS03].)

Now let us make some more observations. If we take k, n, and n/k to
be large and condition on G, a, and b, then what is the conditional law of
φ(T ), as depicted in Figure 2.4? The conditional law of T itself is uniform
among all valid 8-rooted spanning forest configurations. The physics literature
frequently invokes a kind of “conformal invariance Ansatz” which suggests that
this random path (and many other random sets in critical two dimensional
statistical physics) should be a conformally invariant object.

In this case, we claim that the law of the chordal path should be ap-
proximately that of a chordal SLE2 even after we have conditioned on G, a,
and b, which determine the measure µn,k. The reason for our claim is that
a related SLE2 convergence result is obtained in [LSW04] in the case that
G is a deterministic lattice graph, and this was generalized substantially in
[YY11] where it was shown that if a graph can be embedded in the plane in
such a way that simple random walk approximates Brownian motion, then
the uniform spanning tree paths approximate a form of SLE2. We do not
know whether the hypotheses of [YY11] hold in our setting. Brownian motion
is conformally invariant, but it is not clear whether simple random walk on
our random G approximates Brownian motion on the corresponding quadran-
gulated manifold with high probability. However, it seems very natural to
conjecture that the hypotheses hold. In any case, we stress the following: if
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our scaling limit conjecture holds, then the asymptotic independence of the
chordal path from µn,k would be consistent with the independence of η and h
in Theorem 1.8.

Next let D1 and D2 be the wired-spanning-tree decorated manifolds to the
left and right of the chordal path. Note that once we condition on the length
of the chordal path in (G, T ) and the number of edges on each side of it, the
laws of D1 and D2 are independent of one another. We might guess that the
local behavior of D1 and D2 near a would be approximately independent of
these global numbers. We expect a similar property to hold in the scaling
limit, which would be consistent with the independence of the left and right
quantum surfaces described in Theorem 1.8. (The idea of gluing together
independent discrete surfaces in this manner has been explored in many works
by Duplantier and others, beginning perhaps in [DK88]. The idea of gluing a
whole series of discrete surfaces was used in [Dup98] to heuristically derive
certain “cascade relations” via the KPZ formula.)

Finally, if we condition on the point b and on D1 and D2, then the length
of the path along which D1 and D2 are glued to each other is uniform among
all possibilities (which range between 1 and the minimum M of the boundary
lengths of the two Di’s minus 1). In other words, once D1 and D2 and b are
all fixed, we can randomly decide how far to “zip up” or “unzip” these two
surfaces (moving the vertex a accordingly). If r is the random number of steps
we zip, then r and r +m have approximately the same law (as long as m/M
is small). We expect a similar property to hold in the scaling limit, which
would be consistent with the quantum-length-zipper invariance described in
Theorem 1.8.

3 Gaussian free field overview

We refer the reader to [She07] for a survey of the Gaussian free field (GFF) and
several additional references. For completeness, we include a short overview,
closely following [She07, SS13]. For the reader who is already familiar with
the zero and free boundary GFF, it may be sufficient (to set notation) to read
only the numbered equations in this section and the statement of Proposition
3.1.
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3.1 GFF definitions

3.1.1 Dirichlet inner product

Fix a simply connected planar domain D ⊂ C (with D 6= C). Let Hs(D)
be the space of smooth, compactly supported functions on D, and let H(D)
(sometimes denoted by H1

0(D) or W 1,2(D)) be its Hilbert space closure under
the Dirichlet inner product

(f1, f2)∇ := (2π)−1

∫

D

∇f1(z) · ∇f2(z)dz.

Let ψ be a conformal map from another domain D̃ to D. Then an elementary
change of variables calculation shows that

∫

D̃

∇(f1 ◦ ψ) · ∇(f2 ◦ ψ) dx =

∫

D

(∇f1 · ∇f2) dx.

In other words, the Dirichlet inner product is invariant under conformal
transformations.

We write (f1, f2) =
∫
D
f1(x)f2(x)dx for the L2 inner product on D. We

write ‖f‖ := (f, f)1/2 and ‖f‖∇ := (f, f)
1/2
∇ . If f1, f2 ∈ Hs(D), then integra-

tion by parts gives

(f1, f2)∇ =
1

2π
(f1,−∆f2). (3.1)

3.1.2 Distributions and the Laplacian

It is conventional to use Hs(D) as a space of test functions. This space is
a topological vector space in which the topology is defined so that φk → 0
in Hs(D) if and only if there is a compact set on which all of the φk are
supported and the mth derivative of φk converges uniformly to zero for each
integer m ≥ 1.

A distribution on D is a continuous linear functional on Hs(D). Since
Hs(D) ⊂ L2(D), we may view every h ∈ L2(D) as a distribution ρ 7→
(h, ρ). A modulo-additive-constant distribution onD is a continuous linear
functional on the subspace of Hs(D) consisting of ρ for which

∫
D
ρ(z)dz = 0.

We will frequently abuse notation and use h — or more precisely the map
denoted by ρ → (h, ρ) — to represent a general distribution (which is a
functional of ρ), even though h may not correspond to an element of L2(D).
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(Later, we will further abuse notation and use ρ to represent a non-smooth
function or a measure; in the latter case (h, ρ), when defined, will represent
the integral of h against that measure.)

We define partial derivatives and integrals of distributions in the usual
way (via integration by parts), i.e., for ρ ∈ Hs(D),

( ∂
∂x
h, ρ
)

:= −
(
h,

∂

∂x
ρ
)
.

In particular, if h is a distribution then ∆h is a distribution defined by
(∆h, ρ) := (h,∆ρ). When h is a distribution and ρ ∈ Hs(D), we also write

(h, ρ)∇ :=
1

2π
(−∆h, ρ) =

1

2π
(h,−∆ρ).

When x ∈ D is fixed, we let G̃x(y) be the harmonic extension to y ∈ D of
the function of y on ∂D given by − log |y − x|. Then Green’s function in
the domain D is defined by

G(x, y) = − log |y − x| − G̃x(y).

When x ∈ D is fixed, Green’s function may be viewed as a distributional
solution of ∆G(x, ·) = −2πδx(·) with zero boundary conditions [She07]. It is
non-negative for all x, y ∈ D and G(x, y) = G(y, x).

For any ρ ∈ Hs(D), we write

−∆−1ρ :=
1

2π

∫

D

G(·, y) ρ(y) dy.

This is a C∞ function in D whose Laplacian is −ρ. Indeed, a similar definition
can be made if ρ is any signed measure (with finite positive and finite negative
mass) rather than a smooth function. Recalling (3.1), if f1 = −2π∆−1ρ1

then (h, f1)∇ = (h, ρ1), and similarly if f2 = −2π∆−1ρ2. Now (f1, f2)∇ =
(ρ1,−2π∆−1ρ2) describes a covariance that can (by the definition of −∆−1ρ2

above) be rewritten as

Cov
(
(h, ρ1), (h, ρ2)

)
=

∫

D×D
ρ1(x)G(x, y) ρ2(y) dx dy. (3.2)

If ρ ∈ Hs(D), may define the map (h, ·) by (h, ρ) := (h,−2π∆−1ρ)∇, and
this definition describes a distribution [She07]. (It is not hard to see that
−2π∆−1ρ ∈ H(D), since its Dirichlet energy is given explicitly by (3.2).)
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3.1.3 Zero boundary GFF

An instance of the GFF with zero boundary conditions on D is a random sum
of the form h =

∑∞
j=1 αjfj where the αj are i.i.d. one-dimensional standard

(unit variance, zero mean) real Gaussians and the fj are an orthonormal basis
for H(D). This sum almost surely does not converge within H(D) (since∑∞

j=1 |αj|2 is a.s. infinite). However, it does converge almost surely within the
space of distributions — that is, the limit (

∑∞
j=1 αjfj, ρ) almost surely exists

for all ρ ∈ Hs(D), and the limiting value as a function of ρ is almost surely a
continuous functional on Hs(D) [She07]. We may view h as a sample from
the measure space (Ω,F) where Ω = ΩD is the set of distributions on D and
F is the smallest σ-algebra that makes (h, ρ) measurable for each ρ ∈ Hs(D),
and we sometimes denote by dh the probability measure which is the law of
h. If fj are chosen in Hs(D), then the values αj are clearly F -measurable. In
fact, for any f ∈ H(D) with f =

∑
j βjfj the sum (h, f)∇ :=

∑
j αjβj is a.s.

well defined and is a Gaussian random variable with mean zero and variance
(f, f)∇.

3.2 Green’s functions on C and H: free boundary GFF

The GFF with free boundary conditions is defined the same way as the
GFF with zero boundary conditions except that we replace Hs(D) with
the space of all smooth functions with gradients in L2(D) (i.e., we remove
the requirement that the functions be compactly supported). However, to
make the correspondingly defined H(D) a Hilbert space, we have to consider
functions only modulo additive constants (since all constant functions have
norm zero). On the whole plane C, we may define the Dirichlet inner product
on the Hilbert space closure H(C) of the space of such functions defined
modulo additive constants.

Generally, given a compactly supported ρ (or more generally, a signed
measure), we can write

−∆−1ρ(·) :=
1

2π

∫

C
G(·, y)ρ(y)dy, (3.3)

with G(x, y) = − log |x− y|.
As before, for compactly supported f and g, we have (f, g)∇ = 1

2π
(f,−∆g)

by integration by parts, and moreover (f,−∆−1ρ)∇ = 1
2π

(ρ, f). The same
holds for bounded and not necessarily compactly supported smooth functions
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f and g if the gradient of −∆−1ρ tends to zero at infinity, which in turn
happens if and only if

∫
C ρ(z)dz = 0.

If
∫
C ρ(z)dz 6= 0 then the Dirichlet energy of −∆−1ρ will be infinite and

moreover (h, ρ) will not be independent of the additive constant chosen for h.
(If we view C as a Riemann sphere, then

∫
C ρ(z)dz 6= 0 can also be interpreted

as the statement that the Laplacian of −∆−1ρ has a point mass at∞.) When
h is the free boundary GFF on C, we will thus define the random variables
(h, ρ) only if the integral of ρ over C is zero. If ρ1 and ρ2 each have total
integral zero, we may write

Cov((h, ρ1), (h, ρ2)) =

∫

C×C
ρ1(x)G(x, y)ρ2(y)dxdy. (3.4)

Using z → z̄ to denote complex conjugation, we define, for smooth
functions h ∈ H(C), the pair of projections

hO(z) :=
1√
2

(h(z)− h(z̄)),

hE(z) :=
1√
2

(h(z) + h(z̄)).

If h is an instance of the free boundary GFF on C, we may still define
hO and hE as projections of h onto complementary orthogonal subspaces.
Their restrictions to H are instances of the zero boundary GFF and free
boundary GFF, respectively on H. For ρ supported on H we write (for z ∈ C)
ρ∗(z) := ρ(z). Then we have by definition

(hO, ρ) =
1√
2

(h, ρ− ρ∗)

(hE, ρ) =
1√
2

(h, ρ+ ρ∗).

Note that (hE, ρ) is only defined if the total integral of ρ is zero, while (hO, ρ)
is defined without that restriction (since in any case the total integral of
ρ− ρ∗ will be zero).

For ρ1 and ρ2 supported on H we now compute the following (first integral
taken over C× C, second over H×H):

Cov
(
(hO, ρ1), (hO, ρ2)

)
=

1

2

∫
(ρ1(x)− ρ∗1(x)) log |x− y|(ρ2(y)− ρ∗2(y))dxdy
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=

∫
ρ1(x)GH0(x, y)ρ2(y)dxdy, (3.5)

where GH0(x, y) := log |x− ȳ|− log |x−y|. Similarly (first integral over C×C,
second over H×H),

Cov
(
(hE, ρ1), (hE, ρ2)

)
=

1

2

∫
(ρ1(x) + ρ∗1(x)) log |x− y|(ρ2(y) + ρ∗2(y))dxdy

=

∫
ρ1(x)GHF (x, y)ρ2(y)dxdy, (3.6)

where GHF (x, y) := − log |x− ȳ| − log |x− y|.

3.3 GFF as a continuous functional

Note that we could have used (3.5) and (3.6) to give an alternate and more
direct definition of the zero and free boundary Gaussian free fields on H.
Here (3.5) and (3.6) define inner products on the space of functions ρ on H.
They are well defined when ρ1 and ρ2 are smooth and compactly supported
functions on H (each with total integral zero in the case of (3.6)). By taking
the Hilbert space closure of functions of this type, we get a larger space of ρ,
which correspond to Laplacians of elements of H(H), and which cannot all
be interpreted as functions on H. For example, the ρ for which (h, ρ) is hε(z),
the mean value of h on ∂Bε(z), is not a function, though it can be interpreted
as a measure — a uniform measure on ∂Bε(z) — and the inner products (3.5)
and (3.6) still make sense when ρ1(z)dz and ρ2(z)dz are replaced with more
general measures, as do the definitions of −∆−1ρ1 and −∆−1ρ2.

The (h, ρ) are centered jointly Gaussian random variables, defined for
each ρ in this Hilbert space, with covariances given by the inner products
(3.5) and (3.6) (which can be defined on the entire Hilbert space). For each
particular ρ in this Hilbert space, (h, ρ) is a.s. well defined and finite; however,
ρ→ (h, ρ) is almost surely not a continuous linear functional defined on the
entire Hilbert space, since a.s. h 6∈ H(H).

In addition to the description of h as a distribution above, there are
various ways to construct a space of ρ values — a subset of the complete
Hilbert space — endowed with a topology that makes ρ→ (h, ρ) almost surely
continuous. For example, the map h → hε(z) is an a.s. Hölder continuous
function of ε and z [DS11a]. Also, the zero boundary GFF can be defined as
a random element of (−∆)−εL2(D) for any ε > 0, and is hence a continuous
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linear function on (−∆)εL2(D), if D is bounded. (See [She07] for definitions
and further discussion of fractional powers of the Laplacian in this context.)
Also, as mentioned earlier, both the free and zero boundary GFFs can be
understood as random distributions [She07].

The issues that come up when defining ρ→ (h, ρ) as a continuous function
on some topological space of ρ values are the same ones that come up when
rigorously constructing a Brownian motion Bt: one can give the joint law
of Bt for any finite set of t values explicitly by specifying covariances, and
this determines the law for any fixed countable set of t values, but one needs
to overcome some (mild) technicalities in order to say “Bt is almost surely
a continuous function.” Indeed, if one uses the smallest σ-algebra in which
Bt is measurable for each fixed t, then the event that Bt is continuous is not
even in the σ-algebra.

On the other hand, if we are given a construction that produces a random
continuous function with the right finite dimensional marginals, then it must
be a Brownian motion. A standard fact (proved using characteristic functions
and Fourier transforms) states that a random variable on a finite dimensional
space is a centered Gaussian with a given covariance structure if and only if all
of its one dimensional projections are centered Gaussians with the appropriate
variance. Thus, to establish that Bt is a Brownian motion, it is enough to show
that each finite linear combination of Bt values is a (one-dimensional) centered
Gaussian with the right variance. The following proposition formalizes the
analogous notion in the GFF context. It is a standard and straightforward
result about Gaussian processes (see [She07] for a proof in the zero boundary
case; the free boundary case is identical):

Proposition 3.1. The zero boundary GFF on H is the only random distri-
bution h on H with the property that for each ρ ∈ Hs(H) the random variable
(h, ρ) is a mean-zero Gaussian with variance given by (3.5) (with ρ1 = ρ2 = ρ).
Similarly, the free boundary GFF is the only random modulo-additive-constant
distribution on H with the property that for each ρ ∈ Hs(H) with

∫
H ρ(z)dz = 0

the random variable (h, ρ) is a mean-zero Gaussian with variance given by
(3.6).

In our proofs of Theorem 1.1 and Theorem 1.2 in Section 4, we will first
construct a random distribution in the manner prescribed by the theorem
statement and then check the laws of the one dimensional projections (which
determine the laws of the finite and countably infinite dimensional projections)
to conclude by Proposition 3.1 that it must be the GFF.
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We remark that knowing h as a distribution determines the values of αj in
a basis expansion h =

∑
j αjfj, as long as the −∆fj are sufficiently smooth.

This in turn determines the value of hε(z) almost surely for a countable
dense set of ε and z values, which determines the values for all ε and z by
the almost sure continuity of hε(z) [DS11a]. This is convenient because it
means that h, as a distribution, a.s. determines (z, ε)→ hε(z) as a function,
which in turn determines µh and νh. (We could alternatively have defined
hε(z) — and hence µh and νh — using weighted averages of h defined by
integrating against smooth bump functions on Bε(z) instead of averages on
∂Bε(z). Though we won’t do this here, one can easily construct measures
this way that are almost surely equivalent to µh and νh.)

4 Coupling the GFF with forward and re-

verse SLE

4.1 Proofs of coupling theorems

This section will simultaneously prove Theorem 1.1 and Theorem 1.2. It is
instructive to prove them together, and we will put the relevant calculations
in tables, with those for the forward SLE coupling of Theorem 1.1 on the left
side and those for the reverse SLE coupling of Theorem 1.2 on the right.

Now, using the language of stochastic differential equations and applying
Itô’s formula in the case Wt =

√
κBt, we compute the time derivatives of

the four processes ft(z), log ft(z), f
′
t(z), and log f ′t(z) in both forward and

reverse SLE settings. Here f ′t(z) denotes the spatial derivative ∂
∂z
ft. (Similar

calculations appear in [SS13] in the case κ = 4.)
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FORWARD FLOW SLE REVERSE FLOW SLE

dft(z) = 2
ft(z)

dt−√κdBt dft(z) = −2
ft(z)

dt−√κdBt

d log ft(z) = (4−κ)
2ft(z)2

dt−
√
κ

ft(z)
dBt d log ft(z) = −(4+κ)

2ft(z)2
dt−

√
κ

ft(z)
dBt

df ′t(z) =
−2f ′t(z)
ft(z)2

dt df ′t(z) =
2f ′t(z)
ft(z)2

dt

d log f ′t(z) = −2
ft(z)2

dt d log f ′t(z) = 2
ft(z)2

dt

We next define the martingales ht in both settings and compute their
stochastic derivatives. The purpose of the stochastic calculus below is to show
that the quantities (ht, ρ) are continuous local martingales (the fact that they
are martingales will become apparent later) and to explicitly computing their
quadratic variations, so that they can be understood as Brownian motions
subject to an explicit time change. Ultimately, we will use the properties of
these Brownian motions to establish couplings between SLE and the Gaussian
free field.

Note that while the two columns have differed only in signs until now, the
definitions of ht below will diverge in that one involves the imaginary and one
the real part of h∗t . We will write γ :=

√
min(κ, 16/κ) ∈ [0, 2].

FORWARD FLOW SLE REVERSE FLOW SLE

χ := 2√
κ
−
√
κ

2
Q := 2√

κ
+
√
κ

2
= 2

γ
+ γ

2

h∗t (z) := −2√
κ

log ft(z)− χ log f ′t(z) h∗t (z) := 2√
κ

log ft(z) +Q log f ′t(z)

dh∗t (z) = 2
ft(z)

dBt dh∗t (z) = −2
ft(z)

dBt

ht(z) := Im h∗t (z) ht(z) := Re h∗t (z)

dht(z) = Im 2
ft(z)

dBt dht(z) = Re −2
ft(z)

dBt
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Before continuing with the calculation, we make several remarks.

Remark 4.1. The form of dht(z) in the forward case is significant. At time
t = 0, the function −2Im (ft(z)

−1) is simply −2Im (z−1). This is a positive
harmonic function whose level sets are circles in H that are tangent to R at
the origin. It is a multiple of the so-called Poisson kernel, and it is a derivative

of the Green’s function G(y, z) = GH0(y, z) = log
∣∣∣y−z̄y−z

∣∣∣ in the following sense:

[
∂

∂s
G(is, z)]s=0 =

∂

∂s

∣∣∣∣
z + is

z − is

∣∣∣∣
s=0

= Re
2iz

|z2| = 2Im (z−1).

Intuitively, the value of −2Im (ft(z)
−1) represents the harmonic measure of

the tip of ηt := η([0, t]) as seen from the point z. Roughly speaking, as one
makes observations of the GFF at points near the tip of ηt, the conditional
expectation of h goes up or down by multiples of this function.

Remark 4.2. Also, in the forward case, h0 is the harmonic function on H
with boundary conditions −2π/

√
κ on the negative real axis and 0 on the

positive real axis. We could have (for sake of symmetry) added a constant to
h0 (and general ht) so that h0 is equal to −λ on the negative real axis and λ
on the positive real axis, where λ := π/

√
κ. Observe that when κ = 4, we

have χ = 0 and hence each ht would be the harmonic function on H\ηt with
boundary conditions −λ on the left side of the tip of ηt and λ on the right
side. In this case, the λ = π/2 is the same (up to a

√
2π factor stemming

from a different choice of normalization for the GFF) as the value λ =
√
π/8

obtained in [SS13].

Remark 4.3. In the reverse case, the expression for dht has Re −2
ft(z)

in place

of Im 2
ft(z)

. Intuitively, at time zero, when one observes what ft looks like
for small t, one learns something about the difference between h just to the
left of 0 and h just to the right of 0. (It is this difference that determines
the ratio of the νh densities to the left and to the right of zero, which is
what determines how the zipping-up should behave in the short term.) The
conditional expectation of h thus changes by a small multiple of Re 2

ft(z)
,

which is negative on one side of the imaginary axis and positive on the other
side. Unlike Im 2

ft(z)
, the function Re 2

ft(z)
is non-zero on R.

We use 〈Xt, Yt〉 to denote cross variation between processes Xt and Yt up
to time t, so that 〈Xt, Xt〉 represents the quadratic variation of the process Xt

up to time t. (The cross variation 〈Xt, Yt〉 is also often written as 〈X, Y 〉t.) In
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both forward and reverse flow settings, ht(z) is a continuous local martingale
for each fixed z and is thus a Brownian motion under the quadratic variation
parameterization, which we can give explicitly:

FORWARD FLOW SLE REVERSE FLOW SLE

Ct(z) := log Im ft(z)− Re log f ′t(z) Ct(z) := − log Im ft(z)− Re log f ′t(z)

d〈ht(z), ht(z)〉 = −dCt(z) d〈ht(z), ht(z)〉 = −dCt(z)

If z is a point in a simply connected domain D, and φ conformally maps
the unit disc to D, with φ(0) = z, then we refer to the quantity |φ′(0)| as the
conformal radius of D viewed from z. If, in the above definition of conformal
radius, we replaced the unit disc with H and 0 with i, this would only change
the definition by an additive constant. Thus, in the forward flow case, Ct(z)
is (up to an additive constant) the log of the conformal radius of H \ η([0, t])
viewed from z. In both cases ht(z) is a Brownian motion when parameterized
by the time parameter −Ct(z) (which is increasing as a function of t). The fact
that d〈ht(z), ht(z)〉 = −dCt(z) may be computed directly via Itô’s formula
but it is also easy to see by taking y → z in the formulas for 〈ht(y), ht(z)〉
and −dGt(y, z) that we will give below.

We will now show that weighted averages of ht over multiple points in
H are also continuous local martingales (and hence Brownian motions when
properly parameterized). The calculation will make use of the function G(y, z),
which we take to be the zero-boundary Green’s function GH0(y, z) on H in
the forward case and the free-boundary Green’s function GHF (y, z) in the
reverse case.

Now write Gt(y, z) = G(ft(y), ft(z)) in the reverse case. In the forward
case, write Gt(y, z) = G(ft(y), ft(z)) when y and z are both in the infinite
component of H\ηt — otherwise, let Gt(y, z) be the limiting value of Gs(y, z)
as s approaches the first time at which one of y or z ceases to be in this infinite
component. The reader may check that for fixed y and z, this limit exists
almost surely when 4 < κ < 8: it is equal to zero when y and z are in different
connected components of H\ηt, and when y and z lie in the same component,
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it is simply the Green’s function of y and z on this bounded domain. Now we
let ρ be a smooth compactly supported function on H (which we will assume
has mean zero in the reverse case) and do some more calculations.

FORWARD FLOW SLE REVERSE FLOW SLE

G(y, z) := log |y − z̄| − log |y − z| G(y, z) := − log |y − z| − log |y − z̄|

Gt(y, z) := G(ft(y), ft(z)) Gt(y, z) := G(ft(y), ft(z))

dGt(y, z) = −Im 2
ft(y)

Im 2
ft(z)

dt dGt(y, z) = −Re 2
ft(y)

Re 2
ft(z)

dt

d〈ht(y), ht(z)〉 = −dGt(y, z) d〈ht(y), ht(z)〉 = −dGt(y, z)

Et(ρ) :=
∫
H ρ(y)Gt(y, z)ρ(z)dydz Et(ρ) :=

∫
H ρ(y)Gt(y, z)ρ(z)dydz

d〈(ht, ρ), (ht, ρ)〉 = −dEt(ρ) d〈(ht, ρ), (ht, ρ)〉 = −dEt(ρ)

Each of the equations above comes from a straightforward Itô calculation.
To explain their derivation, we begin by expanding the dGt computation in
the forward case (the reverse case is similar):

dGt(x, y) = −dRe log[ft(x)− ft(y)] + dRe log[ft(x)− ft(y)]

= −2 Re
ft(x)−1 − ft(y)−1

ft(x)− ft(y)
dt+

2 Re
ft(x)−1 − ft(y)−1

ft(x)− ft(y)
dt

= 2 Re
(
ft(x)−1ft(y)−1

)
dt− 2 Re

(
ft(x)−1

(
ft(y)

)−1)
dt

= 2 Re
(
i ft(x)−1 Im [2ft(y)−1]

)
dt

= −Im
2

ft(x)
Im

2

ft(y)
dt .

The fact that d〈ht(y), ht(z)〉 = −dGt(y, z) is then immediate from our calcu-
lation of dht.
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The fact that d〈(ht, ρ), (ht, ρ)〉 = −dEt(ρ) is essentially a Fubini calculation
but it requires some justification. First, we claim that the (ht, ρ) are continuous
martingales. We begin by considering ht(z) for a fixed z in the support of ρ.
We have shown above that the quantity ht(z) is a Brownian motion under a
certain parameterization. In the reverse case, the Loewner evolution gives
that | ∂

∂t
Ct(z)| is uniformly bounded above for z in the support of ρ and for

all times t. (Note that Im ft(z) is strictly increasing in t.) This immediately
implies that ht(z) is a martingale (not merely a local martingale) because
for each z and t, ht(z) represents the value of a Brownian motion stopped
at a random time that is strictly less than a constant times t. The fact that
the expectation of ht(z) — given the filtration up to time s < t — is hs(z) is
then immediate from the optional stopping theorem.

In the forward case, one obtains something similar by noting that the law
of the conformal radius r of z in H \ η([0, t]) has a power law decay as r → 0

— i.e., the probability that −Ct(z) > c decays exponentially in c, and is in
fact bounded by an exponentially decaying function that is independent of z,
for z in the support of ρ. (A precise description of the law of the conformal
radius at time infinity appears as the main construction in [SSW09].) This
implies that ht(z) is a Brownian motion stopped at a time whose law decays
exponentially (uniformly over z in the support of ρ) which is again enough to
apply the optional stopping theorem and conclude that ht(z) is martingale.
In both cases, we obtain that for any t, the probability distribution function
for |ht(z)| decays exponentially fast, uniformly for z in the support of ρ. In
both cases, we also see that (for any fixed t), ht(z) is an L1 function of z and
the probability space, which allows us to use Fubini’s theorem and conclude
that the (ht, ρ) are martingales.

Let Lploc denote the set of ψ for which the integral of |ψ|p over every
compact subset of H is finite. The exponential decay above implies that ht
is almost surely in L1

loc, since the expected integral of |ht| over any compact
set is finite. (Note that we can define ht arbitrarily on the measure zero set
η([0, t]) without affecting the definition of ht as an element of L1

loc(H).) In
fact, since E|ht(z)|p is bounded uniformly for z in a compact set, it follows
that ht is almost surely in Lploc(H) for any p ∈ (1,∞). The fact that ht is
almost surely in L1

loc also implies that it can be understood as a random
distribution on H.

Moreover,
sup
s∈[0,t]

|hs(z)| (4.1)
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also has, by Doob’s inequality, a law that decays exponentially, uniformly in
z. Thus (4.1) also belongs a.s. to Lploc(H) for any p ∈ (1,∞). From this and
the a.s. continuity of SLE it follows that (ht, ρ) is a.s. continuous in t. (This
continuity is obvious in the reverse case; in the forward case, it is also obvious
if one replaces ρ by ρε, which we define to be zero on an ε neighborhood of
η and ρ elsewhere. The fact that (4.1) belongs to Lploc(H) implies that the
(ht, ρε) converge to (ht, ρ) uniformly, for almost all η, and a uniform limit of
continuous functions is continuous.)

Now we can show d〈(ht, ρ), (ht, ρ)〉 = −dEt(ρ), as noted in [SS13], either
via a stochastic Fubini’s theorem (see e.g. [Pro90, §IV.4]) or by using the
following simpler approach proposed in private communication by Jason
Miller.

−E0(ρ) −ET (ρ) 0

(h, ρ)

Figure 4.1: The pair
(
−Et(ρ), (ht, ρ)

)
traces the graph of a Brownian motion

(solid curve) as t ranges from 0 to T . Conditioned on this, the difference
between (h, ρ) and (hT , ρ) is a centered Gaussian of variance ET (ρ). Choosing
(h, ρ) to be (hT , ρ) plus a Gaussian of this variance is equivalent to continuing
the Brownian motion parameterized by −Et(ρ) time (solid curve) all the way
to time zero (dotted curve) and letting (h, ρ) be its value at time zero.

First note that 〈(ht, ρ1), (ht, ρ2)〉 is characterized by the fact that

(ht, ρ1)(ht, ρ2)− 〈(ht, ρ1), (ht, ρ2)〉

is a local martingale. Thus it suffices for us to show that

(ht, ρ1)(ht, ρ2) +

∫
ρ1(x) ρ2(y)Gt(x, y) dx dy (4.2)
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is a martingale. We know from the above calculations that

ht(x)ht(y) +Gt(x, y)

is a martingale for fixed x and y in H. Since Gt(x, y) is non-increasing and the
ht(z) have laws that decay exponentially, uniformly in z, we can use Fubini’s
theorem to conclude that (4.2) is a martingale. Thus we have that (ht, ρ)
is a Brownian motion when parameterized by time −Et(ρ). To complete
the proofs of Theorems 1.1 and 1.2, recall that in the theorem statements
h̃ denotes an instance of the free boundary GFF on H, and note that since
each (hT + h̃ ◦ fT , ρ) is a sum of a standard Brownian motion stopped at time
E0(ρ)− ET (ρ) and a conditionally independent Gaussian of variance ET (ρ),
it has the same law as a Gaussian of variance E0(ρ) and mean (h0, ρ). (See
Figure 4.1.) For future reference, we note that in the reverse flow case one
may integrate the expression for dht(z) above to find (using the stochastic
Fubini’s theorem) that

d(ht, ρ) =
(
−2Re (ft)

−1, ρ
)
dBt. (4.3)

Remark 4.4. The statement of Theorem 1.1 excluded the case κ ≥ 8, since
SLE(κ) is space-filling in that case and ht cannot be defined as a function
almost everywhere. Nonetheless, we may still define (ht, ρ) to be the solution
to the stochastic differential equation d(ht, ρ) =

(
−2Im (ft)

−1, ρ
)
dBt. In this

case, the calculations above again yield that d〈(ht, ρ), (ht, ρ)〉 = −dEt(ρ),
which as before implies that (hT + h̃ ◦ fT , ρ) and (h0 + h̃, ρ) agree in law for
each ρ, just as in the κ < 8 case, which yields a κ ≥ 8 analog of Theorem 1.1.
(Figure 4.1 still makes sense then κ ≥ 8.)

It will be useful for later purposes to note that (at least in the reverse SLE
case) the graph in Figure 4.1 actually uniquely determines (and is uniquely
determined by) the process Wt =

√
κBt almost surely, see Figure 4.2. This

is a special case of a much more general theorem about stochastic processes
(see Chapter IX, Theorem 2.1 of [RY99] — it suffices that (ht, ρ) satisfies an
SDE in Wt with a diffusive coefficient that remains strictly bounded away
from zero and infinity, at least as long as we stop at any time strictly before
t =∞). This means that the evolution of η can be described by the Brownian
motion in Figure 4.1, as well as by the Brownian motion Bt. Context will
determine which description is more convenient to work with.
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−E0(ρ) −ET (ρ) 0 0
t

Bt

T

Figure 4.2: The graph traced by
(
−Et(ρ), (ht, ρ)

)
as t ranges from 0 to T

(left) and the graph traced by (t, Bt) (right), where Wt =
√
κBt. The left

graph uniquely determines the right graph, and vice versa, almost surely.
Each has the law of a standard Brownian motion (up to a stopping time).

4.2 Alternative underlying geometries and SLEκ,ρ

Both Theorems 1.1 and 1.2 can be generalized to other values of h0 using
the so-called SLEκ,ρ processes. (As discussed at the end of Section 1.2,
changing h0 can be interpreted as changing the underlying geometry on which
Liouville quantum gravity is defined.) We generalize the latter here (see
[Dub09] for the former). We take G = GHF in the following. Slightly abusing
notation, we will consider situations where ρ(y)dy represents a general signed
measure (instead of requiring that ρ be a smooth test function). In this case
(F, ρ) =

∫
F (y)ρ(y)dy represents integration of F w.r.t. this measure.

Theorem 4.5. Fix κ > 0 and a signed measure ρ(y)dy on H with finite
positive and finite negative mass supported on some closed C ⊂ H. Write

ĥt(z) = ht(z) +
1

2
√
κ

∫
Gt(y, z)ρ(y)dy, (4.4)

where ht(z) is as in Theorem 1.2, and let h̃ be an instance of the free boundary
GFF on H, independent of Bt. Let ηT be the segment generated by the reverse
Loewner flow

dft(z) =
−2

ft(z)
dt− dWt, (4.5)

where

dWt =
(∫

Re
−1

ft(y)
ρ(y)dy

)
dt+
√
κdBt =

(
−Re (ft)

−1, ρ
)
dt+
√
κdBt, (4.6)
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up to any stopping time T ≥ 0 at or before the smallest t for which 0 ∈ ft(C)
(here ft is extended continuously from H to H). Then the following two random

distributions (modulo additive constants) on H agree in law: h = ĥ0 + h̃ and

ĥT + h̃ ◦ fT .

We will make several observations before we prove Theorem 4.5. First,
if ρ is supported on a set of n points y1, . . . , yn in H, with masses given by
real numbers ρ1, ρ2, . . . , ρn, then the process defined by (4.5) and (4.6) is (the
reverse form of) what is commonly called an SLEκ,ρ process in the literature:
in this case, (4.6) takes the form

dWt =
n∑

i=1

Re
−ρi
ft(yi)

dt+
√
κdBt, (4.7)

which is the same expression one finds in the usual definition of the forward-
flow SLEκ,ρ process, as in [SW05]. (Note that the notation here differs from
[SW05], since here we use ρ to denote the measure, not the vector of mass
values ρi.) In the special case that ρ is supported at a single point x ∈ R,
with mass ρ1 we find that

dft(x) =
−2

ft(x)
dt− dWt =

−2 + ρ1

ft(x)
dt−√κdBt, (4.8)

so that ft(x)/
√
κ is a Bessel process of dimension δ satisfying (δ − 1)/2 =

(ρ1 − 2)/κ, i.e.,

δ = 1 +
2(ρ1 − 2)

κ
. (4.9)

For this and future discussion it will be useful to recall a few standard facts:

1. The Bessel process Xt of dimension δ by definition satisfies dXt =
dBt + δ−1

2
X−1
t dt. Hence d logXt = 1

Xt
dBt + δ−1

2X2
t
dt− 1

2X2
t
dt. The process

logXt, when parameterized by its quadratic variation, is a Brownian
motion with a constant drift of magnitude δ−2

2
.

2. If Xt is a Bessel process of dimension δ started at X0 = x and run until
the first time T that it reaches zero, then the time reversal XT−t has
the law of a Bessel process of dimension δ′, started at zero and run
until the last time that it hits x, where δ′ is the dimension one gets by
changing the sign of the drift in logXt. That is, δ−2

2
= − δ′−2

2
, so that

δ = 4− δ′. (4.10)
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3. In the usual forward flow definition of SLEκ,ρ′1
the function ft(x) is a

Bessel process of dimension

δ′ = 1 +
2(ρ′1 + 2)

κ
. (4.11)

The reason for the difference from (4.9) can be seen by considering the
case ρ1 = ρ′1 = 0. In the reverse process, the Loewner drift is pulling
ft(x) toward the origin, while in the forward process the Loewner drift
is pushing ft(x) away from the origin. In both cases ρ1 (or ρ′1) indicates
a quantity of additional force pushing ft(x) away from the origin.

4. Combining (4.9), (4.10), and (4.11) gives a relationship between ρ1 and

ρ′1. Namely, 1 +
2(ρ′1+2)

κ
= 4− (1 + 2(ρ1−2)

κ
), so that

ρ′1 = κ− ρ1. (4.12)

This means that if we run a reverse SLEκ,ρ′1
until the time T at which

ft(x) hits zero, then fT maps H to H \ ηT where ηT has the law of an
initial segment of a forward SLEκ,ρ1 . In particular, if ρ′1 = κ, then ηT
has the law of an ordinary SLE stopped at a time T (which corresponds
to the last time that a Bessel process hits a certain value). This will be
important later.

Recall from Section 1.2 that changing h0 to ĥ0 can be interpreted as
changing the underlying geometry on which Liouville quantum gravity is
defined. Moreover, ρ is proportional to −∆(ĥ0−h0), and −∆ĥ0 is proportional
to the overall Gaussian curvature density (see the appendix).

We will give a formal proof of Theorem 4.5 below using Itô calculus,
but first let us offer an informal explanation of why the result is true. The
idea behind Theorem 4.5 is to interpret (4.4) as the expectation of h in a
certain weighted measure and (4.6) as the description of the law of Wt in that
measure. This is easiest to understand when we first switch coordinates using
the correspondence shown in Figure 4.2. Suppose first that ρ is such that (3.6)
is finite with ρ1 = ρ2 = ρ and that the total integral of ρ is zero. If dh is the
law of a (centered or not centered) GFF then the standard Gaussian complete-
the-square argument shows that e(h,ρ)dh = e(h,−2π∆−1ρ)∇dh (normalized to be
a probability measure) is the law of the standard GFF plus −2π∆−1ρ. When
we weight the law of the Brownian motion in Figure 4.1 by eα(h,ρ) for some
constant α (note that (h, ρ) is the terminal value that the Brownian motion
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in that figure reaches at time zero) this is equivalent to adding a constant
drift term to the Brownian motion (parameterized by −Et(ρ)) in Figure 4.1.

We take α = 1
2
√
κ

and weight by

e
(h, 1

2
√
κ
ρ)
, (4.13)

which, as explained above, modifies the law in a way that amounts to adding
the drift term of 1

2
√
κ

(
E0(ρ) − Et(ρ)

)
to the Brownian motion in Figure

4.1. Recalling the correspondence shown in Figure 4.2, the fact that the
left figure is a Brownian motion with this constant drift (up to a stopping
time) completely determines the law of Wt up to that stopping time. Indeed,
recalling (4.3), we find that the law of Wt is necessarily the one described by
(4.6).

We have now related the weighted measure to (4.6), but what does this
have to do with (4.4)? Observe that

(ĥt, ρ) = (ht, ρ) +
1

2
√
κ
Et(ρ)

represents the conditional expectation (in the weighted measure) of (h, ρ)
given B· up to time t. In fact, by the standard complete-the-square argument,
the function ĥt in Theorem 4.5 represents the conditional expectation (in the
weighted measure) of h, given B· up to time t, and is thus a martingale in t.
The above construction (and a bit of thought) actually constitutes a proof of
Theorem 4.5 when (3.6) is finite and the total integral of ρ is zero.

The argument above can be adapted to more general ρ. If the total integral
of ρ is not zero, we may modify ρ by adding some mass very far from the
origin, so that the total integral becomes zero but the drift in (4.6) does not
change very much. If (3.6) is infinite, we may be able to modify it to make it
finite: for example, if ρ is a point mass, then we may replace it with a uniform
measure on a tiny ball centered at that point mass, and the harmonicity of
Gt(·, z) in (4.4) and of Re (ft)

−1 in (4.6) show that (outside of this small ball)
neither (4.4) nor (4.6) is affected by this replacement. We will present a more
direct Itô calculation below, which also applies when (3.6) is infinite.

Proof of Theorem 4.5. We will follow the calculations of Theorem 1.2
and check where differences appear. First, we find the following:
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REVERSE FLOW SLE

dft(z) = −2
ft(z)

dt+
(∫

Re 1
ft(y)

ρ(y)dy
)
dt−√κdBt

d log ft(z) = −(4+κ)
2ft(z)2

dt+ ft(z)−1
(∫

Re 1
ft(y)

ρ(y)dy
)
dt−

√
κ

ft(z)
dBt

df ′t(z) =
2f ′t(z)
ft(z)2

dt

d log f ′t(z) = 2
ft(z)2

dt

Also, as before, we compute

dGt(y, z) = −Re
2

ft(y)
Re

2

ft(z)
dt,

and recall that

ĥt(z) :=
2√
κ

log |ft(z)|+Q log |f ′t(z)|+ 1

2
√
κ

∫
Gt(y, z)ρ(y)dy.

We then find that when computing dĥt(z) the extra term in d 2√
κ
Re log ft(z)

cancels the term d 1
2
√
κ

∫
Gt(y, z)ρ(y)dy so that dĥt(z) = Re −2

ft(z)
dBt, just as

in the proof of Theorem 1.2. The remaining calculations are the same as in
the proof of Theorem 1.2.

We next remark, in the context of Theorem 4.5, that if (H, ĥT + h̃ ◦ fT ) is
a quantum surface, then

fT (H, ĥT + h̃ ◦ fT ) = fT (H, hT +
1

2
√
κ

∫
GT (y, ·)ρ(y)dy + h̃ ◦ fT ), (4.14)

and this can be written

(H \KT , h0 +
1

2
√
κ

∫
G(fT (y), ·)ρ(y)dy + h̃). (4.15)

When κ < 4, this suggests the following interpretation of Theorem 4.5. We
start with ĥ0 + h̃, which is actually only defined up to additive constant, so
it determines a quantum surface up to a multiplicative constant. We zip up
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this (modulo multiplicative constant) quantum surface until a stopping time
T , and condition on the zipper map fT . Then the conditional law of the new
zipped-up quantum surface (which is also defined only up to a multiplicative
constant) is the same as the original law except that ρ is replaced by the fT
image of ρ. We have not fully established that this interpretation is correct,
because we have not yet shown that ĥ0 + h̃ uniquely determines fT . As in
Theorem 1.2, we have only shown that sampling h from ĥ0 + h̃ is equivalent
to first zipping up according to a given law, then sampling the field from a
putative conditional law in the zipped up picture, and then unzipping.

5 Quantum zippers and conformal welding

5.1 Overview of zipper proofs

The goal of this section is to prove the statements in Section 1 that we have
not yet proved: namely, Theorem 1.3 (which, by the a.s. removability of the
SLE paths, implies Theorem 1.4 and Corollary 1.5, as explained in Section 1)
and Theorem 1.8. Both proofs will be completed in Section 5.4.

Given what we know now, Theorem 1.3 may not seem surprising. In light
of Theorem 1.2, we know that, given the independent pair (h, η) described
there, the quantum boundary lengths along the left and right sides of η are
both a.s. well defined. Indeed, recall that to measure the νh length along
the left side of η([0, t]), we may “unzip” via f ηt — and the transformation
rule (1.3) — so that η([0, t]) maps to an interval of R, and then measure the
quantum length of that interval. We only need to show that the quantum
boundary measure of η measured from the left agrees with the quantum
boundary measure of η measured from the right.

We already have some information about how these measures depend on
h. For example, it is immediate from the definition of νh that if we change h

— by adding a smooth function to h that is equal to a constant C in a region
A ⊂ H — then this has the effect of multiplying the length of η([0, t]) ∩ A
(as measured from both left and right sides) by eCγ/2. More generally, if νh
is the measure from one of the two sides (viewed as a measure on H, which
happens to be supported along η ∪ R) and φ : H→ R is smooth, then

νh+φ = e
γ
2
φνh, (5.1)

(i.e., the measure whose Radon-Nikodym derivative w.r.t. νh is e
γ
2
φ). This
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implies that the left and right measures depend on h in a similar way, but it
does not show that they agree.

One possible way to prove agreement might be to suppose otherwise for
contradiction. Then if we cover η with a lot of small balls of comparable
quantum size, we will find that in some of the balls the quantum length of
η is greater measured from the left side and in some greater from the right
side. Still, we would expect some long range near-independence and a law of
large numbers to show that all of these differences average out when the balls
are small enough; taking limits as the balls get smaller should show that the
lengths on the two sides are in fact equal. (A related argument based was
used in [SS09] to prove the so-called height gap lemma for discrete Gaussian
free fields.)

An alternative approach to proving Theorem 1.3 would be to try to show
that both the left and right boundary measures give “quantum length” mea-
sures of the curve that correspond to the quantum analog (as in [DS11b]) of
the natural time parameterization constructed via the Doob-Meyer decompo-
sition in [LS11, LZ13]. The uniqueness arguments introduced in [LS11] could
then be used to show that these two measures must agree.

While both of the above approaches appear viable, we will actually prove
Theorem 1.3 with a third approach, which we feel is instructive. Namely,
we will first construct the invariant measure described by Theorem 1.8, in
the manner outlined in Figure 1.7, and then use symmetries and the ergodic
theorem to deduce that the quantum measures on the two sides of the path
are almost surely equal. Before doing this, we establish some results of
independent interest. Section 5.2 describes a T =∞ analog of Theorem 1.2
and Section 5.3 describes an interesting space-time symmetry: by changing
the underlying geometry of the space used to define Liouville quantum gravity,
one may construct a quantum zipper that is invariant with respect to a
modified notion of capacity time.

5.2 Zipping up “all the way” and capacity stationarity

Let Γ0 be the law of the pair (h, η) in which h is 2√
κ

log |z| + h̃ (with h̃ a

free boundary GFF on H, defined modulo additive constant) and η is an
independent SLEκ. This is the measure that appears in Theorem 1.2 and
Corollary 1.5. Note that the space of

(
(D1, h

D1), (D2, h
D2)
)

configurations is
in one to one correspondence with the space of pairs (h, η) on a full Γ0 measure

57



set, so we can view the ZCAP
t of Corollary 1.5 as acting on the pair (h, η) and

we will denote the thus transformed pair by ZCAP
t (h, η). By Theorem 1.2,

the ZCAP
t of Corollary 1.5 with t < 0 (the “unzipping” direction) are measure

preserving transformations of Γ0.
Using Theorem 1.2 alone, we do not yet have a definition of ZCAP

t for
t > 0 (the “zipping up” direction). However, we can construct a stationary
process (ht, ηt), defined for all t, such that whenever t < 0 and s ∈ R we have

(hs+t, ηs+t) = ZCAP
t (hs, ηs). (5.2)

To construct this process, note that once we choose (hT , ηT ) for some large
fixed constant T from Γ0, the evolution rule (5.2) determines (ht, ηt) for all
t < T . (The fact that the unzipping maps preserve Γ0 implies that for each
fixed t < T , the pair (ht, ηt) also has the law of Γ0.) Taking a limit as
T → +∞ (using Kolmogorov’s consistency theorem), we obtain a process
defined for all t ∈ R. Denote by Γ the law of this process. We frequently
write h = h0 and η = η0.

For the remainder of Section 5, we will use ft to denote “zipping down”
maps when t < 0 and “zipping up” maps when t > 0. Once Corollary 1.5 is
established, this will amount to defining ft for all t ∈ R (using the notation
of Corollary 1.5) as

ft =

{
fht t ≥ 0

f η−t t ≤ 0
. (5.3)

(We stress that this contrasts with earlier notation, where we defined ft only
for t > 0 and — to highlight similarities — used ft to describe both forward
Loewner evolution in the AC-geometry context and reverse Loewner evolution
in the Liouville quantum gravity context.) However, using Theorem 1.2 alone,
it is not a priori clear that h determines the map fht in (5.3). Even so, it is
clear that these maps are determined by the process (ht, ηt) with the law Γ
constructed above, so for now we will define ft to be the maps determined by
process (ht, ηt).

Now compare (1.6) and (1.7) and note that the Brownian motion cor-
responding to the forward Loewner evolution of an SLE segment ηT (the
restriction of a Brownian motion to an interval of time) is (up to additive con-
stant) the time reversal of the Brownian motion corresponding to the reverse

Loewner evolution ft for the same curve. Indeed, if we write B̃t = BT−t and
f̃t = fT−t, then (1.7) holds for a general pair Bt and ft (indexed by t ∈ [0, T ])
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precisely when (1.6) holds for B̃t and f̃t. The ft map is driven by a Brownian
motion in the t < 0 “unzipping” direction (since the curve that it unzips is
an SLE curve) and from the definition of ft for general times (which involved
starting at stationarity for some large T and unzipping from there to get ft
for t < T , taking the limit as T →∞) we see that we may define a standard
Brownian motion Bt for all times t so that B0 = 0 and ft satisfies (1.7) for
all time. (This is also to be expected from (5.3), since once we show that fht
is determined by h, we will expect that the forward flow f ηt and reverse flow
fht are driven by Brownian motions, for t ≥ 0, that are independent of one
another.)

We have shown above how to construct the ft corresponding to Γ from a
single Brownian motion (indexed by all of R). We will now give an alternate
description of the law Γ by coupling this ft with h using Theorem 1.2 applied
with T = +∞. Informally, this amounts to “zipping up all the way” and then
sampling a GFF on the fully zipped up surface. (This description comprises
the remainder of Section 5.2. It will not be used in subsequent sections and
may be skipped on a first read. See [DMS14a] for an analysis of what happens
when two sides of a general quantum wedge are zipped together.) To explain
what this means, recall that we showed in the proof of Theorem 1.2 that for
each fixed ρ with total integral zero, the process (ht, ρ) is a Brownian motion
parameterized by −Et(ρ); in particular, this implies that limt→+∞(ht, ρ) exists
almost surely and has variance at most E0(ρ).

We will be interested in ht modulo additive constant. Let us focus on the
function ht(z)− ht(y) for some fixed point y ∈ H. By harmonicity, ht(z) is
equivalent to its mean value on a ball centered at z, and hence ht(z)− ht(y)
can be written as (ht, ρ) for a smooth, compactly supported ρ with mean zero.
Thus ht(z)− ht(y) is a Brownian motion when parameterized by −Et(ρ), and
the total amount of quadratic variation time elapsed as t→ +∞ is at most
E0(ρ) almost surely. When z is restricted to a bounded domain D with closure
in H, we can define such a ρ for each z so that the quantity E0(ρ) is bounded
uniformly in z. By Doob’s inequality, this implies that supt |ht(z) − ht(y)|
has a finite second moment, uniformly bounded for z in D, and hence

E
∫

D

sup
t
|ht(z)− ht(y)|2dz <∞.

In fact, since ht(z)−ht(y) converges almost surely for each z, the above shows
that ht(·)− ht(y) restricted to D is almost surely Cauchy in the space L2(D);
since the ht are harmonic on D, this implies that ht almost surely converges
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uniformly (on each compact subset of H, modulo additive constant) to a
harmonic limit h∞ as t→ +∞.

On the other hand, the maps ft clearly do not converge to a finite limit;
the Loewner evolution shows that when z ∈ H is fixed, ft(z) cannot converge
to any value except for ∞ as t → +∞. However, let us define f̂t to be
atft + bt where complex constants at and bt are chosen for each t so that
f̂t(i − 1) = (i − 1) and f̂t(i + 1) = i + 1. If fT is as in Figure 1.4, then f̂T
would be as in Figure 5.1.

Proposition 5.1. The limit

f̂∞(z) := lim
t→∞

f̂t(z) (5.4)

exists almost surely as an analytic map from H to C. It conformally maps H
to the complement, in C, of a certain random path from some finite starting
point in C to ∞. (One may then translate the surface so that this starting
point is the origin.)

f̂T

Figure 5.1: The map f̂T is first normalized so that f̂T (i− 1) = (i− 1) and
f̂T (i + 1) = i + 1. (Here i ± 1 are shown as dots; a curve η and its image
under f̂T is also shown.) The limit f̂∞(z) := limt→∞ f̂t(z) a.s. exists as a
conformal map from H to the complement in C of a semi-infinite path from
some starting point to ∞.
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Proof. To establish the existence of this limit, we argue that each of the two
terms on the RHS of

ht(z) = h0(ft(z)) +Q log |f ′t(z)| (5.5)

converges almost surely (modulo additive constant) to a limit. By (5.4)
the LHS has a limit, so it will suffice to show that h0(ft(z)) − h0(ft(y))
a.s. converges uniformly to zero (for y, z ∈ D). For contradiction, suppose
otherwise. Then, for some fixed C, let Tk be the first time after time 2k for
which there exist y and z in D such that

∣∣∣log |fT (z)| − log |fT (y)|
∣∣∣ ≥ C. (5.6)

By assumption, we may choose C so that with positive probability each of
the Tk is finite. In each case, we may assume |fT (z)| ≥ |fT (y)| so that (5.6)
implies |fT (z)|/|fT (y)| > 1 + C.

Now, conditioned on ft up to such a time T = Tk, there is at least a
constant C1 probability that ht(z)−ht(y) will change by at least some constant
C2 during the next min{|fT (y)|2, |fT (z)|2} units of capacity time after time
T . By scaling, it is enough to observe that this is true when |fT (y)| < |fT (z)|
and |fT (y)| = 1, which follows from the claim in the caption to Figure 5.2.

fT (y)

fT (z)

∂B1(0)

Figure 5.2: Assume that |fT (y)| = 1 and |fT (z)| > 1 + C and consider the
reverse Loewner flow driven by Wt =

√
κBt). Claim: for some C1, C2 > 0

(depending only on C) there is at least a C1 probability that ht(z) − ht(y)
changes by at least C2 after time T .

To prove this claim, recall (5.5) (and the definition of h0 in Theorem 1.2):

ht(z)− ht(y) =
2√
κ

(
log |ft(z)| − log |ft(y)|

)
+Q

(
log |f ′t(z)| − log |f ′t(y)|

)
.

(5.7)
To deal with the first difference on the RHS of (5.7), note that

log |fT (z)− a| − log |fT (y)− a|
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cannot, as a function of a, be constant on the interval [−1/2, 0] or constant
on the interval [0, 1/2]. Indeed (if |fT (z)| > 1 + C) the amount by which this
function varies over each interval is at least some c > 0. Thus if Wt goes
up or down by 1/2 during t∆ units of time after time T (and t∆ is small
enough), then the Loewner flow (1.7) shows that ft(z)−fT (z) is approximately
WT −Wt during this time, so that the first difference on the LHS of (5.7)
changes by at least c√

κ
. If we choose t∆ small enough, we can also ensure

that the second difference on the RHS of (5.7) changes by less than c
2
√
κ

(recall d log f ′t = (2/f 2
t )dt). Thus, (5.7) changes by at least C2 := c

2
√
κ
. The

probability of this depends only on t∆, which depends only on C.
It follows from the above that on the event that the Tk are all finite, the

quantity (5.7) a.s. changes by C2 after Tk for infinitely many choices of k,
contradicting the fact (which we have already shown) that ht(z)− ht(y) a.s.
converges uniformly to a limit for y, z ∈ D. We conclude that there is almost
surely a last time for which log |fT (z)| − log |fT (y)| ≥ C for some y and z in
D, and since this holds for any C, the RHS of (5.5) a.s. converges uniformly
to zero for y, z ∈ D. Since log |f ′t(z)| (the second term on the RHS of (5.5))
then converges almost surely uniformly (modulo additive constant) to a limit,
it follows (adding i times the harmonic conjugate) that log f ′t(z) converges
almost surely uniformly on D (modulo additive constant), which implies the
uniform convergence of f ′t (modulo multiplicative constant) and hence the
the convergence of f̂t to a limit. Since the limiting map is analytic, it follows
that the path (as in Figure 5.1) converges to a limiting continuous path as
well.

Theorem 1.2 can now be stated for T = +∞. The statement is the same
except that we replace

h ◦ fT +Q log |f ′T | = h0 ◦ fT + h̃ ◦ fT +Q log |f ′T |

with
h̃ ◦ f̂∞ +Q log |f̂ ′∞|,

considered modulo additive constant. (Recall that the h0(ft(z)) term on the
RHS of (5.5) a.s. tends to zero modulo additive constant as t→ +∞.)

Note that in this case, after “zipping up all the way to +∞” the image
f̂∞(H) is a (dense) subset of C, rather than H, and thus h̃ is defined as a
free boundary GFF on C rather than just on H. Given this change, there is
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nothing in the proof of Theorem 1.2 in Section 4, where the law of (h, ρ) was
checked one test function ρ at a time, that fails to hold if we take T = +∞.

To summarize:

Proposition 5.2. We may produce a sample from Γ explicitly as follows:
first sample a standard Brownian motion Bt for t ∈ R, which determines ft
(and hence ηt) for all time (positive and negative) by solving (1.7). Then
define (modulo additive constant) h∞ := limt→+∞ ht and f̂∞ := limt→+∞ f̂t
and write

h = h0 = h̃ ◦ f̂∞ + h∞

where h̃ is a free boundary GFF on C. Define ht for all other finite t as the
quantum surface transformation of h0 under ft. That is, ht = h0 ◦ f−1

t +
Q log |(f−1

t )′|.
The entire process (ht, ηt) is thus determined by h̃ and the process Bt.

Note that for each t, the curve ηt is a random path. The forward Loewner
evolution of this path — parameterized by its capacity time s — is given
by ft−s, with s ranging from 0 to +∞. Its Loewner driving function is (as
a function of s)

√
κBt−s. Note that ZCAP

t has the effect of translating the
process B· by t units to the left (and adding a constant to maintain B0 = 0).

5.3 Re-parameterizing time: general observations

Now we make a general observation about the GFF. Suppose we write dh
for the law of a (not necessarily centered) free boundary GFF h, and that
f belongs to the Hilbert space on which h is defined, so that Var(h, f)∇ =
(f, f)∇. As mentioned in Section 4.2, the standard Gaussian complete-the-
square calculation shows that e(h,f)∇dh (multiplied by a constant to make it
a probability measure) is the law of the original GFF plus f . In other words,
weighting the law of h by e(h,f)∇ is equivalent to deterministically adding
f to h. Thus weighting the law of h by e(h,ρ) (we assume that ρ has total
integral zero) is equivalent to adding −2π∆−1ρ to h. Here ∆−1 is defined in
the Neumann sense, i.e., by taking by (3.3) with G(x, y) = GHF (x, y). Note
also the following:

Proposition 5.3. Let (ht, ηt) be the process with law Γ (as in Section 5.2),
let ρ be a signed measure with total integral zero (for which (h0, ρ) is a.s.
finite), and write

sρ(t) :=

∫ t

0

e(hs,ρ)ds.
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Then the weighted measure e(h0,ρ)Γ (normalized to be a probability measure)
is stationary w.r.t. sρ time.

Proof. First observe that the constant EΓe
(h0,ρ) is finite, and by Fubini’s

theorem EΓ

∫ T
0
e(ht,ρ)dt is T times that constant. The ergodic theorem implies

that as T → ∞ along integers the random variables sρ(T )/T converge to
a (possibly random) value c almost surely and in L1. To see that c is a.s.
constant, we would need to check that the pair (h·, η·) is ergodic. We do not
really need ergodicity for the proof of this proposition but we mention as an
aside that it is not hard to prove (the Brownian motion generating ηt is ergodic;
and if t1 and t2 are distinct times, one can use to GFF properties to show
that the restrictions of h to tiny neighborhoods of η(t1) and η(t2) are nearly
independent; letting the neighborhoods get small, and using scale invariance,
one can establish a long-range mixing property that implies ergodicity). The
reason that ergodicity is not necessary for the proof of the proposition is that
if (h·, η·) had multiple ergodic components but each component were invariant
under the operation of translation by a fixed amount of sρ time, then the
entire process would be invariant under this operation as well; so it is enough
to focus on a single ergodic component.

Now, suppose that πT denotes uniform measure on [0, T ] and we sample s
from πT . Then consider the measure Γ× πT . Once we have a sample from
this measure, we may use it to generate a pair (h̄t, η̄t) = (ht+s, ηt+s). That
is, (h̄·, η̄·) is the original process (h·, η·) translated by the random quantity s,
which was chosen uniformly from [0, T ]. The stationarity of Γ implies that
(h̄·, η̄·) also has the law Γ. Now suppose that we instead sample from the
weighted measure Γ̃ = e(hs,ρ)Γ× πT (normalized to be a probability measure).
Since e(hs,ρ) = e(h̄0,ρ), the induced measure on (h̄·, η̄·) has the law e(h0,ρ)Γ.

However, sampling from Γ̃ can also be done by first choosing the process
(h·, η·) from its marginal law, which is the measure Γ weighted by

∫ T
0
e(ht,ρ)dt

(which converges in law to cΓ — normalized to be a probability measure —
in the total variation sense as T →∞, by the L1 ergodic theorem) and then
sampling s from e(ht,ρ)πT (normalized to be a probability measure), which
amounts to choosing a uniform sρ time from the long interval. Since, as noted
above, the process centered at this random time has the law e(h0,ρ)Γ, we find,
by letting T tend to infinity, that e(h0,ρ)Γ must be stationary with respect to
sρ time.

Recall from Section 1.2 that adding−2π∆−1ρ to h is equivalent to changing
the underlying geometry w.r.t. which Liouville quantum gravity is defined.
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Thus, Proposition 5.3 says that a Liouville quantum gravity measure on an
alternative underlying geometry (h still taken modulo additive constant) is
stationary under zipping/unzipping in a modified version of capacity time.

This symmetry between space and time is intriguing for its own sake. It
is related to but should not be confused with Theorem 4.5. Both theorems
involve modifying the function h0. However, Theorem 4.5 does not describe a
new stationary process; instead, it gives a modified law for the zipping up
map ft and does not involve changing the time parameter. On the other
hand, one can use Theorem 4.5 to describe how the process of Proposition
5.3 evolves in capacity time. The following is an immediate consequence of
Theorem 4.5.

Proposition 5.4. Given a signed measure ρ on H with (−∆−1ρ, ρ) <∞, let
Γρ denote the measure whose Radon-Nikodym derivative with respect to Γ is
proportional to e(h0,ρ) (normalized to be a probability measure). Then the Γρ
law of the zipping up map ft, for t ≥ 0, is the law of the modified SLE process
in Theorem 4.5. Moreover, given ft for some time t ≥ 0, the Γρ conditional

law of h0 is that of h̃ ◦ ft + ĥt, as defined in the statement of Theorem 4.5.

5.4 Conclusion of zipper proofs

Proposition 5.5. The conclusion of Proposition 1.6 (see Figure 1.6) remains
true even if, when we choose h and x, we condition on a particular pair of
values L1 = νh[a, x] and L2 = νh[x, b].

Proof. We use the setup and notation of Proposition 1.6. Recall the explicit
form of the weighted measure νh[a, b]dh given in [DS11a], as described earlier.
Once we condition on x, the conditional law of h is simply that of a zero
boundary GFF (except with free boundary conditions along R) plus a random
harmonic function plus −γ log |x − ·|. Roughly speaking, the proposition
follows from the fact that the restriction of h to an extremely small neighbor-
hood of x (which tells us what the quantum surface looks like when we zoom
in near x) is almost independent of the pair (L1, L2).

To express this point more carefully, consider smooth functions φ1 and
φ2 on ∂D that are supported on disjoint neighborhoods U1 ⊂ D and U2 ⊂ D
with U1 ∩ R ⊂ (a, x) and U2 ∩ R ⊂ (x, b). We assume (for i ∈ {1, 2}) that
each φi is equal to one on some interval of Ui ∩ R and φi(z) ∈ [0, 1] for all
z ∈ D, and also that x 6∈ U1 ∪ U2.
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Now, by the definition of the GFF we can write h = α1φ1 + α2φ2 + h0

where α1 and α2 are centered Gaussian random variables and h0 is projection
of h onto the orthogonal complement of the span of φ1 and φ2, so that
(h0, φ1)∇ = (h0, φ2)∇ = 0 almost surely. In this construction, α1, α2 and h0

are independent of each other. Recalling (5.1), we have, for i ∈ {1, 2}, that
the restriction of νh to ∂Ui is given by

νh = e
γ
2
αiφiνh0 .

In particular, this implies that once we condition on h0, each νh(∂Ui ∩ R)
is a.s. given by an increasing smooth function of αi. Here the smoothness can
be verified by differentiating with respect to α and noting that no matter how
many times one differentiates one obtains a compactly supported test function
integrated against νh0 . This in particular implies that, once we condition on
h0, the quantity νh(∂Ui ∩ R) has a law which is absolutely continuous with
respect to Lebesgue measure on (a,∞) (for some a that depends on h0) and
has a smooth density function. Let ψ1 and ψ2 be the density functions for
these laws. If we fix h0 outside of some small Bε̄(x) disjoint from U1 ∪U2 but
rerandomize the restriction h′0 of h0 to Bε̄(x) — conditioned on (L1, L2) —
then this is the same as rerandomizing h′0 without conditioning on (L1, L2),
except that we weight the law by (a quantity proportional to) the product
below (viewed as a function of h′0)

ψ1

(
L1 − νh

(
[a, x] \ ∂U1

))
ψ2

(
L2 − νh

(
[x, b] \ ∂U2

))
.

As ε̄ tends to zero, the amount by which resampling h′0 changes either νh[a, x]
or νh[x, b] is a quantity that tends to zero in probability. We conclude that
weighting the law of h′0 by the big expression above (which is a smooth
bounded function of νh[a, x] and νh[b, x]) affects this law by an amount that
(in total variation sense) tends to zero as ε→ 0.

In order to prove Theorem 1.8, we will follow the argument sketched in
Figure 1.7 in Section 1.6. We begin with a lemma:

Lemma 5.6. Suppose we first sample (ht, ηt) from νh[−δ, 0]Γ (normalized
to be a probability measure; here we write h = h0) and then sample x from
νh[−δ, 0]. Consider the joint law of the x and the (ht, ηt) process chosen in
this way. Then given x, the conditional law of the zipping up process ft is that
of the modified SLE process in Theorem 4.5, with the ρ measure given by γ2
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times a Dirac distribution at x minus γ2 times a unit of uniformly distributed
mass on the unit circle. Moreover (as in Proposition 5.4), given ft for some

time t ≥ 0, the conditional law of h0 is that of h̃ ◦ ft + ĥt, as defined in the
statement of Theorem 4.5.

Proof. Recall (1.2) and define

νεh := εγ
2/4eγhε(x)/2dx. (5.8)

Suppose that for some positive δ′ < δ and ε < δ′ we weight by νεh[−δ,−δ′]
instead of νh[−δ, 0] — and then, given h, we choose x from νεh restricted to
[−δ,−δ′] and normalized to be a probability measure. Then we know that
this is the same as sampling from

eγ[hε(x)−h1(0)]/2dxdh (5.9)

(times a normalizing constant) where x is Lebesgue on [−δ, δ′] and dh is the Γ
law of h. (We have hε(x)−h1(0) instead of hε(x) in the exponent because the
former is defined independently of the additive constant for h, and is what
we obtain if we choose the additive constant so that h1(0) = 0.) Thus, given
x, the conditional law of h is eγ(hε(x)−h1(0))/2dh, and Proposition 5.4 exactly
determines the law of ft (where the relevant ρ measure is a uniform measure
on ∂Bε(x) minus a uniform measure on ∂B1(0)).

The above gives an explicit way to construct a sample from νεh[−δ,−δ′]
and the corresponding ft. To establish the lemma, we need to argue that an
analogous result holds when νεh is replaced by νh. One way to deduce the νh
result from the νεh result is as follows. Let U be the ε neighborhood of [−δ,−δ′]
in H, as in Figure 5.3. Decompose the free boundary GFF Hilbert space into
the space SuppU (the closure of the space of smooth functions supported on
U that vanish on ∂U \ R, with free boundary conditions on ∂U ∩ R) and
the space HarmU (the orthogonal complement of SuppU , which consists of
functions that are harmonic on U with Neumann boundary conditions along
R [SS13]). Let hHARM be the projection of h onto HarmU and hSUPP the
projection of h onto SuppU , so that

h = hHARM + hSUPP. (5.10)

Roughly speaking, hHARM represents the conditional expectation of h given
all of the values of h outside of U . Note that hSUPP, which is independent of
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−δ −δ′x 0

U

Figure 5.3: U ⊂ H is an ε neighborhood of [−δ,−δ′].

hHARM, has the law of a GFF on U with zero boundary conditions on ∂U \R
and free boundary conditions on ∂U ∩ R.

If we take any ε′ < ε then the measure eγhε′ (x)/2dh (normalized to be a
probability measure) induces a law for hHARM that does not depend on ε′.
We claim that the Γ law of ft (up until the first time TU that a point in
ft(U) reaches the origin) is independent of the projection of h = h0 onto
SuppU . This follows from Theorem 1.2 and the way we constructed Γ: we
may sample h and fTU by first sampling fTU , then sampling hTU from the

law of h̃+ h0, and then using a coordinate transformation via f−1
TU

to recover
h0. The decomposition (5.10) can be made using fTU (U) instead of U before
we apply this coordinate transformation. It then follows from the conformal
invariance of the zero boundary GFF (with free boundary conditions along
R) that the h = h0 we obtain after the coordinate transformation has a
projection to SuppU that is independent of fTU .

Thus, the conditional law of fTU given h depends only on the projection
of h onto HarmU . Since weighting Γ by νε

′

h [−δ,−δ′] and by νh[−δ,−δ′] affects
the law of the projection of h to HarmU in an identical way, the law of this
projection, and hence the law of ft (up until TU ), is the same in each weighted
measure. Since this holds for any interval [−δ,−δ′] we conclude that the joint
law of x and ft (up until TU ) does not change if we replace νεh with νh. To be
explicit now about what we get from Proposition 5.4, recall from (4.6) and
the subsequent discussion that we have dft(z) = −2

ft(z)
dt− dWt, where

dWt =
(
−Re (ft)

−1, ρ
)
dt+

√
κdBt,

in the case that we weight by e
(h, 1

2
√
κ
ρ)

, the weight from (4.13). In our case,
we take ρ to be such that

(h,
1

2
√
κ
ρ) =

γ

2
(hε(x)− h1(0)),

which implies
(h, ρ) = γ2(hε(x)− h1(0)),
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and the lemma follows by taking ε to zero.

Proof of Theorem 1.8. We begin by analyzing the construction described
in Lemma 5.6 in more detail. By Lemma 5.6, we find that if h and x are taken
from the measure (5.9), then given x, the law of the zipping up procedure in
Figure 1.7 (up until ft(x+ ε) reaches zero) is determined by

dWt =
(
− γ2

ft(x)
+ Re

∫ π

0

γ2

ft(eiθ)

dθ

π

)
dt+

√
κdBt. (5.11)

As explained in the proof of Lemma 5.6, this law is independent of ε and also
holds when νεh is replaced by νh in the construction of x and h above.

Now if the second term in the expression for the dt piece of (5.11) were
not there, then (5.11) would correspond to the one-force-point SLEκ,ρ1 with
ρ1 = γ2 = κ, and the corresponding ft(x) would evolve precisely as a Bessel
process of (recall (4.9)) dimension

1 +
2(γ2 − 2)

κ
= 3− 4

γ2
< 2, (5.12)

which would imply that ft(x) eventually reaches zero almost surely [RY99].
Moreover, by (4.12), the zipped up curve obtained, at the time x hit zero,
would look like ordinary SLE up to some time with a size of order δ2. For
the next point in the proof it is (slightly) easier if we replace the mean value
on ∂B1(0) ∩H (in Figure 1.7 and in (5.11)) with the mean value on an arc
of ∂B1(0) ∩ H that is bounded away from R. (The statement and proof of
Lemma 5.6 do not change if we replace ∂B1(0)∩H with such an arc.) In this
case, since Re ft(z) is increasing in t for each z ∈ H, the magnitude of the
second term in the dt piece of (5.11) is a.s. bounded by a constant for all t.
Thus when we zoom in (as in Figure 1.7), the effective drift from this term in
the zoomed-in process tends uniformly to zero.

We now claim that the limit sketched on the right in Figure 1.7 is a
(γ − 2/γ)-quantum wedge with an independent SLEκ curve. Lemma 5.6
implies that the limiting curve is an SLEκ independent of the field. To see
that the field corresponds to a quantum wedge, note that before rescaling
it looks like a GFF with a (γ − 2/γ)(− log | · |) singularity at the origin.
(Recall that the −2γ corresponds to the log singularity present in the capacity
invariant model, and the γ comes from the extra force point that has just
collided with the origin.) The fact that the limit is then a quantum wedge

69



follows from the argument in Proposition 1.6 (which shows generally that if
h looks like a free boundary GFF plus a log singularity at some point, then
one obtains a quantum wedge when one zooms in near that point). We also
claim that in this limiting object (the (γ − 2/γ)-quantum wedge decorated
by an independent SLEκ curve) the two quantum surfaces divided by the
curve each have the law of a γ-quantum wedge. This follows for the left
side from Proposition 1.6 and for the right side by symmetry. (Note that a
(γ− 2γ)-quantum wedge decorated by an independent SLEκ is an object with
left-right symmetry.)

At this point, we need to show that the quantum length measures along
the two sides of η almost surely agree. Since x was sampled uniformly from
quantum measure (before we zipped up and zoomed in) the SLEκ decorated
(γ− 2/γ) quantum wedge must be invariant under the operation of unzipping
by a fixed quantity of quantum boundary length as measured along the left
of the two γ quantum wedges. (This is similar to the argument used to show
Proposition 1.7.) Thus the pair

(
(D1, h1), (D2, h2)

)
is invariant under zipping

and unzipping by the boundary length measure.
Let F (s) denote the quantum length (as measured from the right side) of

the curve segment η([0, t]), where t is chosen so that the quantum length (as
measured from the left side) of η([0, t]) is s. The ergodic theorem implies that
lims→∞ F (s)/s exists almost surely; denote this (possibly random) limit by
c. Since the law of the (γ − 2/γ)-quantum wedge is scale invariant, the fact
that F (s) ≈ cs holds for large scales (by the ergodic theorem) implies that
the same holds on all scales, and indeed we must have identically F (s) = cs.
Since c is determined by the restriction of η and h to arbitrarily small balls
centered at zero. In other words, if Fδ denotes the σ algebra generated by
the restiction of h to Bδ(0) and the curve η stopped when it first exits Bδ(0),
then c is measurable w.r.t. the intersection ∩δ>0Fδ. However, it is easy to
see that events in ∩δ>0Fδ have probability zero or one, so that c must be a.s.
constant. (This is proved explicitly in Lemma 8.2 of [DMS14a] in a setting
that includes the field but not the path η. The statement including the path η
then follows from the well known fact that if Gδ is generated by the restriction
of Brownian motion to [0, δ] then events in ∩δ>0Gδ have probability zero or
one.) By the left-right symmetry of the law of SLEκ and the quantum wedge,
we have c = 1 almost surely.

Now that we know that the length measures on the two sides agree, we next
claim that each of the two sides in the limit sketched on the right in Figure
1.7 are independent γ-quantum wedges. We will deduce this by applying
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Proposition 5.5 to Figure 1.7. More precisely, we consider the setting of the
upper image in Figure 1.7 and we condition on the restriction of the GFF to
the complement of B1 := Bε(x) and B2 := Bε(R(x)), and we also condition
on the quantum lengths νh(B1 ∩ R) and νh(B2 ∩ R). We may choose δ small
enough so that with high probability R(x) ∈ B1(0), and we will focus our
attention on the event that this is the case. If ε are small then with high
probability these balls do not contain the origin and are contained in B1(0).

If we re-sample the restriction of h to B1 ∩H — conditioned on νh(B
1 ∩

[x,∞)) and νh(B1 ∩ (−∞, x]) and the restriction of h to the complement of
B1 — then Proposition 5.5 implies that even with this conditioning it is a.s.
the case that the zoomed-in figures (as in lower left in Figure 1.7) converges
in law to a γ-quantum wedge as ε→ 0. The conditional law of h (just given
its values outside of B1) is that of a random harmonic function plus a GFF
on B1 ∩H with free boundary conditions on R and zero boundary conditions
on ∂B1 ∩H [She07].

The same applies when we zoom in near R(x). Now if we condition on
the GFF values on ∂B1(0) together with the values on the line iR, together
with the lengths of [−1, x] and [x, 0] and [0, R(x)] and [R(x), 1], then the
conditional law of the restrictions of h to the two halfs of B1(0) ∩ H are
independent by the standard GFF Markov property. A similar analysis to
the above shows that even with this conditioning, one still obtains the laws of
quantum wedges, near each of x and R(x), upon zooming in near those points.
We conclude that in the ε→ 0 limit the γ-quantum wedges are independent
of each other. This completes the proof of the items in the first paragraph of
the theorem statement. Along the way we have also established the invariance
of the law of the pair

(
(h1, D1), (h2D2)

)
under zipping up or down by a

unit of quantum length zipper stationarity, and the ZLEN
t properties are now

immediate from this.

Deriving Theorem 1.3 as a consequence of Theorem 1.8 is now fairly
straightforward. Essentially one uses absolute continuity of the corresponding
fields (at least when restricted to certain compact sets, away from the origin)
to say that that if the left and right boundary lengths a.s. agree in the setting
of Theorem 1.8 then they almost surely agree in the setting of Theorem 1.3
as well.

Proof of Theorem 1.3. The above proof shows that if one draws an
independent SLEκ on a (γ − 2/γ)-quantum wedge, the quantum lengths
measured along the left and right sides of the curve agree almost surely. The
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setting of Theorem 1.3 is different because the law of h is different. On the
other hand, we would like to argue that it is not so different — i.e., that the
laws of the two random fields (restricted to a compact set, bounded away
from the boundary) are absolutely continuous w.r.t. each other, so that a
statement that is a.s. true for one is a.s. for the other.

That is, we would like to say that the h of Theorem 1.3 “looks like” the
canonical description h of a (γ − 2/γ)-quantum wedge, at least in the sense
of absolute continuity of the restriction to compact subsets of H. This is
most immediate for compact sets that lie outside of B1(0). If we consider a
canonical description h of a quantum wedge, then we know that by definition
µh(B1(0)) = 1. However, once we condition on the restriction of h to B1(0),
the conditional law of h restricted to H \B1(0) is that of a GFF (with zero
boundary conditions on ∂B1(0), free elsewhere) plus a certain random smooth
function on H\B1(0). (Note that if h is a canonical description, it will remain
a canonical description even after we resample its values outside of B1(0) in
this way.) In particular, the restriction of h to some compact D ⊂ H \B1(0))
is absolutely continuous with respect to the restriction to D of the h of
Theorem 1.3, defined up to additive constant. (This is immediate from the
absolutely continuity results in Section 3.1 of [SS13].) We thus find that in
the setting of Theorem 1.3 the left and right quantum lengths along η are
almost surely equal, at least outside of B1(0). The object in Theorem 1.3
is scale invariant; hence, if the left and right quantum boundary lengths a.s.
agree outside of a unit ball of radius 1, then they a.s. agree outside of a unit
ball of any radius, which means that they a.s. agree everywhere along the
SLEκ curve.

Remark 5.7. The above argument also holds if we add any smooth function
to h — which affects the restriction of h to each compact subset of H in
an absolutely continuous way (see [She07, SS13]) — and then independently
draw any path whose law is absolutely continuous w.r.t. that of SLE. That is,
even in this setting one can use absolute continuity results about the GFF
to prove that the quantum lengths along the two sides of the path agree
almost surely. In particular, Theorems 1.3 and 1.4 still apply in the setting
of Theorem 4.5.
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6 Twenty questions

Update: Since the first version of this paper was posted to the arXiv in 2010,
there has been progress on several of the questions listed below. The current
version leaves the questions as they were in 2010 but includes brief updates
on work completed since.

Many of the most fundamental questions about quantum gravity are open.
Before formulating some of these questions, we present some definitions that
will appear in the questions.

We have already seen that quantum wedges are natural random quantum
surfaces of infinite area and infinite boundary length. We now describe some
natural random quantum surfaces of unit area or unit boundary length, in
terms of limits. We will say more about the sense in which the limits exist
below, and more detailed constructions appear in [DMS14a].

1. Fix a smooth bounded domain D. Let h be a GFF with free boundary
conditions on a linear segment L of ∂D and zero boundary conditions on
∂D \L. Fix C > 0 and condition on µh(D) = C. Let ĥ = h− (logC)/γ,
so that µĥ(D) = 1. We claim that as C →∞, the law of (D, ĥ) (viewed
as a quantum surface) tends to a limit that does not depend on D or L.
Call this the unit area quantum disc.

2. The unit boundary length quantum disc is defined the same way
except that we condition on νh(L) =

√
C and the normalization gives

νĥ(L) = 1.

3. The unit area quantum sphere is defined the same way as the
unit area quantum disc except that we take D to have zero boundary
conditions on all of D.

In the case of the discs (the first and second objects described above),
one way to formulate the convergence is to fix a point x ∈ D \ L and then
to choose x1 and x2 on L at random from νĥ. We change coordinates via
(1.3) to H so that x1, x2, and x map respectively to 0, 1, and ∞ (see the left
side of Figure 6.1). We then obtain a random measure on H, and these unit
random measures should converge in law with respect to the topology of weak
convergence of measures on H.

In the case of the sphere, one can choose two points x1 and x2 from µĥ and
conformally map D to an origin-centered disc in such a way that one point
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Figure 6.1: Constructing unit area/length quantum disc (left) or unit area
quantum sphere (right). When C is large, we expect x1 and x2 to be close
with high probability, and for most quantum area to be near those points.

goes to to 0 and one to 1. (This determines the radius of the disc; see the
right side of Figure 6.1.) We then obtain a random measure on C (which is
incidentally supported on a disc of finite radius; the radius of this supporting
disc tends to ∞ as C →∞), and these random measures should converge in
law with respect to the topology of weak convergence of measures on C.

We now present some conjectures and questions. Some are very concrete
and specific, and some are more speculative and open-ended. Some of the
physics questions have of course been extensively discussed in the physics
literature already, but this literature is far too broad for us to survey here
(though we can at least mention Polyakov’s reflections, with references, on
the history of the subject in [Pol08], as well as the extensive reference list in
[DS11a]).

Conjectures relevant to discrete model scaling limits

1. Discrete random planar map models have Liouville quantum gravity
as a scaling limit in the metric of weak convergence of area measures.
To be more specific, in addition to the conjectures in Section 2 and in
[DS11a], we conjecture the following:

(a) The uniform quadrangulation of a sphere with n quadrilaterals
scales to the unit area quantum sphere with γ =

√
8/3. One way

to formulate this is that if we choose three points uniformly on the
quadrangulation and conformally map the quadrangulated surface
to C with these three points going to 0, 1, and ∞, then the image
of the area measure in C (normalized to the total area is one)
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converges in law (w.r.t. the topology of the local weak convergence)
to the unit area quantum sphere measure described above.

(b) The random quadrangulation of a disc with boundary length n,
where the probability of a quadrangulation is proportional to a
(critical) constant to the number of quadrilaterals, scales to the
unit boundary length quantum disc with γ =

√
8/3.

(c) The random quadrangulation of a disc with n quadrilaterals, where
the probability of a quadrangulation is proportional to a (critical)
constant to the boundary length, scales to the unit area quantum
disc with γ =

√
8/3.

(d) Similar statements hold for random quadrangulations weighted by
the partition functions of Ising configurations, O(n) configurations,
uniform spanning trees, etc., with γ =

√
κ for the appropriate κ.

In each case, the cluster boundary loops (of the statistical model on
the random surface) scale to a CLEκ independent of the measure.
(Question: what happens if, for some d, we make the probability
of a quadrangulation proportional to the partition function of the
d-dimensional discrete Gaussian free field on the corresponding
graph?)

Update: The problem as stated remains open. However, convergence
of FK-decorated random planar maps to CLE-decorated LQG has been
established in the so-called peanosphere topology and in the so-called
loop structure topology, in both infinite and finite volume settings
[She11, DMS14b, MS15b, GMS15, GS15a, GM15, GS15b], see also
related results in [BLR15, MSZ14, Che15, SW15]. The construction
of finite volume LQG spheres and disks (briefly considered above) is
discussed in more detail in [DMS14b, DKRV14, MS15b, AHS15]. Par-
tial results in the direction of understanding the conformal structure
of the discrete models appear in [Cur14]. Roman Boikii and Stanislav
Smirnov have also described progress in private communication.

2. A quantum surface is a coordinate-change-invariant random metric space
in the sense of the footnote in Section 1.2. In the special case γ =

√
8/3

this is equivalent to the Brownian map (see e.g. [LG07, LGP08, Mie08]),
which is a term given to the random metric space scaling limit of uniform
quadrangulations on the sphere. Update: The metric space structure
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of LQG has now been constructed in the pure quantum gravity case
γ =

√
8/3 in recent work (some in progress) showing that

√
8/3-LQG

is equivalent to the Brownian map [MS13b, MS15a, MS15c, MS15d].
No such construction is currently available for other values of γ ∈ (0, 2).

3. Assuming that 2 holds, the scaling limits in 1 also hold in the topology
of Gromov-Hausdorff convergence of metric spaces. Update: In light of
the equivalence of

√
8/3-LQG and the Brownian map [MS13b, MS15a,

MS15c, MS15d], and the Gromov-Hausdorff convergence of discrete
random planar maps to the Brownian map [LG13, LG14, Mie13], this
conjecture has now been established in the pure quantum gravity case
γ =

√
8/3. It remains open for all other γ ∈ (0, 2).

Related but more modest requests:

4. Show that simple random walk on a random quadrangulated surface is a
good approximation for Brownian motion on that surface. Update: This
problem remains open. However, works by Gill and Rohde, by Gurel-
Gurevich and Nachmias, and by Benjamini and Curien have derived
some fundamental properties for random walks and Brownian motion
on infinite volume versions of these surfaces [GR13, GGN13, BC13].

5. Prove any SLE convergence result at all for random planar maps. Update:
As mentioned above, there are now a number of convergence results
involving the peanosphere and loop structure topologies.

6. Show that the following toy model has a scaling limit which is a metric
space. Begin with a unit square S. After an exponentially random
amount of time, divide S into new four squares of equal size. Each time
a new square is created, give it a new exponential clock (independent
of the others) and so that it too will divide into four new squares after
an exponentially random amount of time. (Each time a clock at an
existing box rings, the total number of boxes increases by 3. Thus if
N(t) is the number of boxes at time t, then e−3tN(t) is a martingale.)
After time t, consider two squares to be adjacent if they have part
of an edge in common. Show that for some β > 0, the graph metric
on the set of squares times e−βt converges almost surely to a random
metric space parameterized by S. Update: This toy problem remains
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completely unsolved. However, we remark that another interesting model
for producing random squarings appears in [AL14].

Structural questions about Liouville quantum gravity and
AC geometry:

7. If a quantum surface is well defined as a metric space, what does the
boundary of a unit ball look like? Is it a form of SLE (some collection
of SLE loops) or something completely different? How about a shortest
(geodesic) path between two points z1 and z2? How about the boundary
of the set of points closer to z1 than to z2? What is the continuum
analog of the breadth first search tree (the tree that appears in the
Schaeffer bijection [Sch97])? Can one even formulate a conjecture?
Update: As mentioned above, much has been now been established in
the case γ =

√
8/3, where the ball boundaries are constructed using

the quantum Loewner evolution [MS13b, MS15a, MS15c, MS15d], and
a canonical embedding of the Brownian map in the sphere has been
constructed. The problem remains completely open for other γ ∈ (0, 2).

8. If κ ∈ (4, 8) then the complement of SLEκ, run to time T , is not a single
simply connected domain; it consists of infinitely many components.
The set of components that lie to the left side of η comes with a tree-like
hierarchical structure (where a component A1 is “above” a component
A2 if η traces ∂A1 after it has started tracing, but before it has finished
tracing, ∂A2). The set of components on the right side comes with a
similar structure. This suggest that when we “unzip” along η (as in
Theorem 1.2) we obtain not merely a quantum surface parameterized
by H but a quantum surface parameterized by H together with a tree-
like structure of quantum-surface “beads” hanging off of its boundary.
Does an analog of Theorem 1.3 hold in this setting if one properly
defines the boundary length of the tree-like structure? How about an
analog of Theorem 1.4? Proving the latter would likely require first
showing that SLEκ is removable when κ ∈ (4, 8). Is this the case?
Can a κ ∈ (4, 8) version of the quantum zipper be used to prove the
time reversal symmetry of SLE for κ ∈ (4, 8)? Update: The time-
reversal symmetry results were established in the imaginary geometry
papers [MS12a, MS12b, MS12c, MS13a], and the questions about the
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κ ∈ (4, 8) analogs of Theorems 1.3 and 1.4 were answered affirmatively
in [DMS14b]. Interestingly, the zipping up” results in [DMS14b] were
established without a proof that SLEκ is removable when κ ∈ (4, 8). It
remains an open question whether these SLEκ processes are removable.
A new result on the inversion symmetry of the quantum zipper welding
(for the κ < 4 case) appears in [RZ13].

9. What is the Hausdorff dimension of a quantum surface (assuming it
is defined as metric space) for general γ? Can one at least handle the
special case γ =

√
8/3 (where the answer should be 4, by analogy

to discrete random triangulations; see e.g. [AS03])? Update: This
question is settled in the case γ =

√
8/3, in light of the above-mentioned

equivalence between the
√

8/3-LQG sphere and the Brownian map. In
that case, the Hausdorff dimension is indeed 4. For general γ, there is
a Hausdorff dimension conjecture due to Watabiki [Wat93], which has
found some support in recent simulations [AB14]. This conjecture is
further explained and discussed in [MS13b].

10. Let hε be projections of h onto the space of functions that are piecewise
linear on an ε-edge-length triangular lattice (or alternatively, mollifica-
tions of h obtained by convolving with a bump function supported on
a disc of radius ε). Do the flow lines of eih

ε/χ converge in law to SLE
curves (AC geometry flow lines) as ε→ 0? If so, this would extend the
main result of [SS09] to κ 6= 4. Do the other results of [SS09, SS13] for
κ = 4 extend to κ 6= 4?

11. If hε are smooth mollifications or piecewise linear projections (as above)
of the free boundary GFF of Theorem 1.2, do the curves obtained by
zipping up part of the boundary via conformal welding (using the iden-
tification map R as in Section 1.4, except that we use the approximate
measures eγh

ε(x)/2dx instead of νh to define R) converge in law to SLE?

12. What happens when γ = 2 (so κ = 4, Q = 2)? The definition of a
quantum surface as an equivalence class — as given in Section 1.2 —
makes sense for γ = 2, and as mentioned in the introduction. Is the
“zipping up” map in the coupling of Theorem 1.2 determined by h, as
in the γ < 2 case? Is it the limit of the curves one obtains by using
the same GFF h̃ but with different values of γ, and letting γ approach
2? Is SLE4 almost surely removable, like SLEκ for κ < 4? Update: this
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question remains open. However, recent results enable one to construct
a quantum length measure νh (as well as a quantum area measure µh)
in the γ = 2 case[DRSV12a, DRSV12b]. It is natural to conjecture that
zipping up gives a welding that respects this measure, and also that SLE4

is removable. We note that a closely related result has been established
by Tecu in [Tec12], which builds on the work of [AJKS11].

13. Can the continuum limit of simple random walk on a random quadrangu-
lation (or of Brownian motion on the corresponding Riemannian surface)
be somehow understood directly, in terms of the Schaeffer or Mullin
bijections, as a random process on an identified pair of continuum trees?
Update: The results in [DMS14b] and [MS13b, MS15a, MS15c, MS15d]
allow one to define a conformal structure (and hence a Brownian mo-
tion, with a time change defined using the “Liouville Brownian motion”
theory developed in [GRV14, Ber15]) on these mated pairs of continuum
trees. The reader may decide whether these (SLE/LQG/QLE-based)
constructions ought to be considered “direct.”

14. What is the most natural formulation of a higher genus quantum surface,
where the conformal modulus is allowed to be random? What is the
right conjectural scaling limit of a random quadrangulation of a torus
(or higher genus surface) with n faces, as n→∞? How about a surface
with n holes (weighting by the combined length of the hole boundaries
in a critical way)? One way to construct a quantum surface with holes
is to put an independent conformal loop ensemble on top of a quantum
surface and then cut out the regions surrounded by some of the loops.
(Here one would have to give a rule for specifying which loops to cut out
— for example, one might try to cut out the k loops with the longest
quantum boundary lengths.) Is it possible to weld together surfaces
constructed this way and produce higher genus surfaces that answer the
questions above? Update: See [DRV15] for some recent work on LQG
tori by David, Rhodes and Vargas, which cites many earlier works from
the physics literature on higher genus LQG constructions. It remains an
open problem to implement the ideas mentioned above (i.e., to construct
canonical higher-genus LQG random surfaces via weldings) and to show
that these approaches are equivalent to those discussed in [DRV15].

15. One way to combine Liouville quantum gravity and AC geometry is to
let h be a complex valued free field. The real part of h encodes Liouville
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quantum gravity and the imaginary part an AC geometry, which could
be coupled with a conformal loop ensemble on the quantum surface
[She09]. In this context, what new meaning, if any, comes out of the
extra symmetries of the complex Gaussian free field (e.g., its invariance
w.r.t. replacing h with a modulus-one complex constant times h)?

16. Can one fully construct all rays in the AC geometry of an instance
of the GFF (starting from all points in D) and determine which rays
intersect each other and themselves, etc.? Does the list of properties
shown to hold for smooth h in the appendix (Proposition A.1) hold in
the GFF setting as well? Update: This question has been affirmatively
answered in [MS12a, MS12b, MS12c, MS13a].

Returning to the original physics motivation. . .

17. Can one construct a variant of Liouville quantum gravity with some of
the additional complexities of a physical string theory (and figure out
what the following things mean in this context mathematically)?

(a) Minkowski space time.

(b) Complex weights (in place of a probability measure).

(c) Supersymmetry.

(d) Gauge theories.

(e) Embeddings in Calabi-Yau manifolds.

(f) Quantum surfaces of non-deterministic genus.

18. When introducing Liouville quantum gravity, Polyakov wrote in 1981
that it was necessary to develop a theory of random surfaces “because
today gauge invariance plays the central role in physics. Elementary
excitations in gauge theories are formed by the flux lines (closed in the
absence of charges) and the time development of these lines forms the
world surfaces. All transition amplitude[s] are given by the sums over
all possible surfaces with fixed boundary.” [Pol81a] Can one formulate
any version of this gauge/string duality as a theorem or conjecture
relating gauge theory flux lines to Liouville quantum gravity? Update:
We mention one recent rigorous formulation of Yang-Mills gauge-string
duality on a lattice due to Chatterjee (not obviously related to Liouville
quantum gravity) [Cha15].
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19. Can any Liouville quantum gravity insights be used to study higher
dimensional random metrics? What are the most natural models?
Update: We remark that certain higher dimensional analogs are easy to
describe. If h is an instance of the log-correlated Gaussian field (LGF)
as defined e.g. in the surveys [DRSV14, LSSW14], then eγh(z)dz is easy
to define as a random measure when γ is in the right range, see e.g.
the survey [RV14]. Furthermore, the restriction of a higher dimensional
LGF to a (two-dimensional) plane yields a GFF on the plane, so that the
higher dimensional LGF can be interpreted as a coupling of planar GFFs,
one for each planar subspace; it remains unclear whether the imaginary
geometry or level set structures corresponding to the individual slices
can be unified in a coherent way [LSSW14].

20. Are there any natural three or four dimensional versions of AC geometry?
For example, is it possible to interpret paths in the three dimensional
uniform spanning tree scaling limit [Koz07] as geodesics of a random
affine connection? Update: This remains open. We mention one attempt
to describe a three-dimensional analog of SLE6 (at least on the discrete
level) via so-called tricolor percolation [SY14], which also references
relevant field theoretic constructions from the physics literature.

A AC geometry: real vs. imaginary Gaussian

curvature

This section gives a formal definition/interpretation/explanation of the AC
geometry (and its relationship to Liouville quantum gravity) when h : D → R
is smooth. Denote by F(h,D) the collection of curves that are flow lines of
ei(h/χ+c) (beginning at a point in D), for some c ∈ [0, 2π). For each x ∈ D,
there is a one-parameter family of “rays” in F(h,D) (indexed by c) that begin
at x and ultimately hit the boundary of D. We refer to c as the angle of
the ray. Two rays of D are parallel if they have the same angle. When h is
constant, these are the rays of Euclidean geometry. In general, the collection
of rays is quite interesting and satisfies some of the axioms describing rays in
Euclidean geometry. For example, the reader may verify the following:

Proposition A.1. If h is a Lipschitz function on a simply connected domain
D ⊂ C, then the following hold:
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1. Each ray beginning at x ∈ D is a differentiable simple path (i.e., it
doesn’t intersect itself).

2. Two parallel rays in F(h,D) are disjoint unless one is a subset of the
other.

3. Two non-parallel rays in F(h,D) intersect at most once in D.

4. If x ∈ D lies on a ray beginning at y ∈ D, then y lies on a ray of
opposite direction beginning at x.

5. The sum of the angles of a “triangle”—whose edges are segments of
rays in F(h,D)—is always π.

When h is the GFF, the “flow line” described by the coupling in Theorem
1.1 begins at a special location on the boundary of D, but in principle one
would like to make sense of the entire set F(h,D) when h is an instance of
the Gaussian free field and χ is a positive constant. Even when h is smooth,
the AC geometry is not a Euclidean or non-Euclidean geometry in the usual
sense; in particular, it does not come with a notion of length or distance.
We will interpret the AC rays of a smooth h as the geodesics of a random
torsion-free (defined below) affine connection that is naturally dual to the
Levi-Civita connection of a Liouville quantum surface.

Recall that an affine connection determines, for any smooth path segment
P in D, an orthogonal map on the two-dimensional tangent space, which we
may represent as multiplication by a complex number α(P ). Intuitively, it
describes the way a small object transforms under parallel transport (“sliding
without rotating”) along the path P . The Levi-Civita connection for a
Riemannian metric is (by definition) the unique metric-preserving and torsion-
free affine connection. For a two dimensional metric conformally parameterized
by a subset of D with area measure eγh(z)dz, metric preservation implies that

log |α(P )| = γ

2
h(z1)− γ

2
h(z2), (A.1)

where z1 and z2 are the first and last endpoints of P . In particular, this
quantity is independent of the trajectory P takes between z1 and z2.

We recall the following standard fact [DS11a] (see also keywords “isother-
mal coordinates” and “Gaussian curvature” in any text on Riemannian
surfaces): write λ = γh and note that given a measurable subset A of D,
the integral

∫
A
eλ(z)dz (where dz denotes Lebesgue measure on D) is the
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area of the portion of M parameterized by A. The function K = −e−λ∆λ
(where ∆λ := λxx + λyy is the Laplacian operator) is called the Gaussian
curvature of M. If A is a measurable subset of the (x, y) parameter space,
then the integral of the Gaussian curvature with respect to the portion of M
parameterized by A can be written

∫
A
eλ(z)K(z)dz =

∫
A
−∆λ(z)dz where dz

denotes Lebesgue measure on D. In other words, −∆λ gives the density of
Gaussian curvature in the isothermal coordinate space. In particular, M is
flat if and only if h is harmonic.

We may define A(z, v) for each z ∈ D and v ∈ C so that if P is parame-
terized by t ∈ [0, 1] we have

logα(P ) =

∫ 1

0

A
(
P (t),

∂

∂t
P (t)

)
dt.

We may identify C with R2 so that ∇h is a vector-valued function of R2;
given v ∈ C, let [∇h · v] denote the dot product of this vector with the vector
v (viewed as an element of R2), which is a real number.

In the case of the Levi-Civita connection, we have ReA(z, v) = −γ
2

[∇h · v].
Given this, ImA(z, v) is determined by the requirement that the connection
is torsion-free. Using this notation, the statement that the connection is
torsion-free means that A(z, iv) = −iA(z, v) for all z and v, which implies

A(z, v) =
−γ
2

[∇h · v] + i
−γ
2

[∇h · iv].

If P is the boundary of a smooth region R ⊂ D, then Green’s theorem implies
that

logα(P ) = i

∫

R

−−γ
2

∆h(z)dz. (A.2)

The RHS of (A.2) is (up to a constant imaginary multiplicative factor) the
integral of the Gaussian curvature over the region of the surface parameterized
by R. In fact, one may even define Gaussian curvature to be the function for
which this the case.

The AC rays are the geodesics of a connection satisfying an analog of
(A.1):

argα(P ) = h(z2)/χ− h(z1)/χ, (A.3)

and if we require that this connection also be torsion-free we obtain

A(z, v) = i[∇h · v]/χ− [∇h · iv]/χ,
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and hence, if P is the boundary of a smooth region R, then

logα(P ) =

∫

R

(−∆h(z)/χ)dz ∈ R.

Intuitively, this means that a small object sliding around the path P will
undergo no net rotation, but will change in size (the opposite of what happens
in a Levi-Civita connection of a Riemannian surface). The definition of
Gaussian curvature density suggested above, in terms of (A.2), suggests an
imaginary Gaussian curvature proportional to the real curvature obtained in
Liouville quantum gravity.

We remark that the Laplacian of the GFF has a natural interpretation as
the charge density of a two dimensional Coulomb gas (see the discussion and
references in the introduction to [SS09]). Thus, Liouville quantum gravity
can be interpreted as imposing a Gaussian curvature density equal to a real
constant times this charge density. AC geometry is the same, except that the
constant is required to be imaginary.
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