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Unexpected impact of D waves in low-energy neutral pion photoproduction from the
proton and the extraction of multipoles
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Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
(Received 20 July 2009; published 4 December 2009)

Contributions of D waves to physical observables for neutral pion photoproduction from the proton in the
near-threshold region are studied and means to isolate them are proposed. Various approaches to describe the
multipoles are employed—a phenomenological one, a unitary one, and heavy baryon chiral perturbation theory.
The results of these approaches are compared and found to yield essentially the same answers. D waves are seen
to enter together with S waves in a way that any means which attempt to obtain the E0+ multipole accurately must
rely on knowledge of D waves and that consequently the latter cannot be dismissed in analyses of low-energy
pion photoproduction. It is shown that D waves have a significant impact on double-polarization observables that
can be measured. This importance of D waves is due to the soft nature of the S wave and is a direct consequence
of chiral symmetry and the Nambu-Goldstone nature of the pion. F -wave contributions are shown to be negligible
in the near-threshold region.

DOI: 10.1103/PhysRevC.80.065201 PACS number(s): 12.39.Fe, 13.60.Le, 25.20.Lj

I. INTRODUCTION

Due to the spontaneous breaking of chiral symmetry in
quantum chromodynamics (QCD) the π meson appears as a
pseudoscalar Nambu-Goldstone boson [1]. As a dynamical
consequence, the S-wave amplitude for the γN → π0N

reaction is small in the threshold region, because it vanishes in
the chiral limit, i.e., when the light quark masses are set equal
to zero [2–4]. An additional consequence is that the P -wave
amplitude is large and leads to the � resonance at intermediate
energies [5]. Accordingly, the photoproduction of neutral pions
differs from the general pattern for hadronic reactions where
the S wave dominates close to threshold and then, as the energy
increases, the higher angular momentum waves (P , D, . . .)
start to become important. By contrast, for the γN → π0N

reaction the S- and P -wave contributions are comparable even
very close to threshold [6]. Hence, the accurate extraction of
S and P waves from pion photoproduction data becomes an
important issue in the study of the breaking of chiral symmetry
and QCD.

The partial waves (electromagnetic multipoles) are not
experimental observables but rather are quantities extracted
from data using some kind of approach and/or theoretical
input: heavy baryon chiral perturbation theory (HBCHPT),
for instance.

In the first resonance region (� region) the influence of
higher partial waves was addressed in Ref. [7] employing
the energy-dependent solution of SAID [8]; however, when
it comes to precision physics in the near-threshold region, the
standard approach consists in analyzing data assuming that
the partial waves of interest (S and P waves) are sufficient
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to describe the experimental data so higher partial waves may
be neglected [2–4,6,9,10]. In the literature there are several
phenomenological models of neutral pion photoproduction
based on the standard Born terms [11] that are applied at
energies spanning from threshold to the first resonance region.
These models compute the electromagnetic multipoles and
include higher partial waves in their analysis, although they are
not adequate to address precision physics in the near-threshold
region due to model dependencies (e.g., form factors and
resonances treatment) and large uncertainties in the multipoles.
As an example, the most accurate model calculation in
the near-threshold energy region is the Dubna-Mainz-Taipei
(DMT) dynamical model [12] whose P waves do not provide
a good description of the experimental data for the polarization
asymmetry. Two arguments have motivated this assumption in
previous analyses: (i) The angular dependence of the experi-
mental differential cross section can be described accurately
using Legendre polynomials up only to order 2. Indeed, S and
P waves constitute the minimal set of partial waves needed
to reach that angular dependence. (ii) In the near-threshold
energy region higher partial waves are weak and the early
dominance of the M1+ multipole renders them negligible.

As will be discussed in Sec. II, the first statement is mis-
leading because any coefficient that accompanies a Legendre
polynomial in the expansion depends on all partial waves,
implying that in some circumstances higher partial waves
can make an important contribution to the coefficients that
accompany the lower-order Legendre polynomials, thereby
posing uncertainties in the multipole extraction. This assump-
tion cannot be taken for granted and has to be tested. The
second argument is actually in favor of the possible importance
of higher partial waves and not against it, as is usually
stated. The conclusion disregards that the S wave is also
weak and that important features of the angular dependence
of the observables are dominated by the interference of
different partial waves. In this situation the dominance of a
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certain contribution (such the M1+ in this case) can lead to
an important enhancement of smaller partial waves through
interference, making them relevant. An excellent example of
this situation is the well-known S-wave/D-wave interference
in the beam asymmetry in η photoproduction, where a very
weak D wave turns out to be necessary to explain the
experimental data due to its interference with the dominant
S wave. In this article it is shown that something similar,
although more subtle, happens in the case of pion photopro-
duction, where D waves affect the extraction of the S wave.

The purpose of this article is twofold: (i) to complement and
extend the analysis of what was reported in Ref. [13] where the
impact of D-wave contributions in the near-threshold region
was explored using as starting point HBCHPT and (ii) to study
the impact of the D-wave contribution on the observables and
assess the measurability of this impact.

As will be seen in next sections the understanding of D

waves and their impact on the observables is necessary if one
hopes to extract the S wave accurately and to arrive at conclu-
sions regarding isospin breaking, unitarity, energy dependence
of the multipole, the magnitude of the unitary cusp, or the
extraction of the low-energy constants (LECs) in HBCHPT.

II. GENERAL STRUCTURE OF THE OBSERVABLES IN
TERMS OF THE ELECTROMAGNETIC MULTIPOLES

It has been customary to study pion photoproduction
from the nucleon in the near threshold energy region (up to
approximately 170 MeV) using only the contributions of S

and P waves and there is abundant literature that discusses
the structure of the observables in terms of only these partial
waves [2–4,6,10,14]—namely using E0+, E1+, M1−, and M1+
electromagnetic multipoles. In Ref. [13] it was found that
D waves play an unexpected role in this energy region and that
D waves are required to extract the E0+ multipole accurately.

This article expands the work reported in Ref. [13] and the
first step consists in analyzing the structure of the observables
in terms of the reported electromagnetic multipoles when
the D waves are added. All photoproduction observables

can be written in terms of responses of two kinds, time
reversal even (TRE) and time reversal odd (TRE). Both
types of responses are real quantities obtained by taking
either the real or imaginary part of bilinear products of the
complex multipoles, respectively. If the real part is chosen,
the observable is TRE (σT , �, E, F , Cx , Cz, Tx , Tz, Lx ,
and Lz) and if the imaginary part is chosen the observable
is TRO (T , P , G, H , Ox , Oz). See Refs. [15,16] for the
definition of the observables. From this full set of observables,
in this article the focus is placed on those that do not require
one to measure the recoil polarization; in other words, those
that involve polarizing only the beam, the target, both, or
neither, namely the ones that could be accessed experimentally
in the near-threshold region. That leaves four TRE—σT , �,
E, and F—and four TRO—T , P , G, and H—observables,
which will be discussed in more detail in the following. In
Sec. IV a selection of several observables at different energies
and angles is presented, restricting the discussion (and the
tables in Appendix) to the most promising ones involved in
the search for D waves and their interplay with S and P

waves, namely the differential cross section σT , the photon
beam asymmetry �, and the double-polarization asymmetries
E and F (circular photon polarization and polarization of the
target, respectively, along the beam axis and the orthogonal
axis within the scattering plane). For the nomenclature used
(see Table I), the structure of these observables is provided
in Appendix. All these observables have become accessible
experimentally in recent years thanks to the existence of
high-duty-cycle photon facilities such as MAMI (Mainz) and
HIγ S (Duke) and to the development of polarized targets.

Any pion photoproduction response R(s, θ ) depending
on Mandelstam variable s and photon-pion angle θ can be
expanded in terms of Legendre polynomials Pj (θ ) times sin θ

to a specific integer power n:

R(s, θ ) = sinn θ [R0(s) + R1(s)P1(θ ) + · · ·], (1)

where coefficients Rj (s) can be defined on terms of the
electromagnetic multipoles up to a certain partial wave and
the number of Legendre polynomials also depends on up to

TABLE I. Relationships among several notations present in the literature for the asymmetries and responses. In this article we use
the sign conventions of Ref. [16] for the asymmetries. The first line contains different notations for the differential cross section and the
associated response. The second line stands for the photon beam asymmetry, measured as the difference between the differential cross section
for perpendicular and parallel polarized photons. The third line contains several conventions for the beam-target asymmetry obtained by
measuring the difference of the cross sections for the two circular polarizations of the photon with a target polarized along the beam direction.
The fourth line contains several conventions for the beam-target asymmetry obtained by measuring the difference of the cross sections for
the two circular polarizations of the photon, but now with target polarized in the sideways direction. In the second column, �γ stands for
linear polarization of the photon while γc stands for circular polarization of the photon. The z stands for longitudinal polarization of the target
(along the photon direction) and the x for sideways polarization of the target (transverse and in the scattering plane). In the third column,
0 in WT (0) and WT T (0) stands for unpolarized target. The s in WT ′

(s) stands for target polarized in the sideways direction (in any other place
in this paper s stands for the Mandelstam variable) and the l in WT ′

(l) for target polarized in the beam direction.

This article Ref. [10] Ref. [14] Ref. [15]

σT ≡ qπWT /kγ ; Eq. (A1) σT ≡ qπR00
T /kγ qπWT (0)/kγ dσ/d�

� ≡ −WS/WT ; Eq. (A2) A( �γ ) ≡ −R00
T T /R00

T −WT T (0)/WT (0) �

E ≡ WE/WT ; Eq. (A3) A(γc, z) ≡ −R0z
T T ′/R

00
T −WT ′

(l)/WT (0) E

F ≡ WF /WT ; Eq. (A4) −A(γc, x) ≡ −R0x
T T ′/R

00
T WT ′

(s)/WT (0) −F
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which partial wave the observable is expanded. One has n = 0
for WT and WE , n = 1 for WF and n = 2 for WS .

For example, the differential cross section can be written
including up to D waves as:

σT (s, θ ) = qπ

kγ

[T0(s) + T1(s)P1(θ ) + T2(s)P2(θ )

+ T3(s)P3(θ ) + T4(s)P4(θ )], (2)

where qπ and kγ are the pion and photon momenta in the center
of mass, respectively, and the Ti depend on the photon energy.

The full calculation of the responses up to D waves can be
found in Ref. [17], although here we have preferred to proceed
using the developments in Ref. [14] and to present the results
using tables instead of lengthly equations (see Appendix). The
reason for using tables will become apparent later when it will
be seen that they make it easier to extract the interplay of the
interferences between partial waves.

The first place where effects of D waves in low-energy
pion photoproduction were found [13] was the part of the
differential cross section that is associated with the Legendre
polynomial P1(θ ), namely T1 in Eq. (2). This is used here as a
working example of how to employ the tables. From Eq. (A9)
this piece of the response can be written:

T1(s) =
∑
ij

Re
{
M∗

i (s) T
ij

1 Mj (s)
}
, (3)

where Mj (s) = E0+, E1+, E2+, E2−, M1+, M1−, M2+, M2−,
and the coefficients T

ij

1 can be read from Table VII in
Appendix, obtaining

T1 = 2 Re[P ∗
1 E0+] + δT1, (4)

where P1 ≡ 3E1+ + M1+ − M1− and δT1 stands for the
D-wave/P -wave interference contribution

δT1 = 2 Re
[

27
5 M∗

1+M2+ + (M∗
1+ − M∗

1−)E2−

+E∗
1+

(
72
5 E2+ − 3

5E2− + 9
5M2+ − 9

5M2−
)

+(
3
5M∗

1+ + 3M∗
1−

)
M2−

]
. (5)

Proceeding in a similar way, the other observables and
multipolar expansions can be worked out. For instance, one
can analyze the structure of the differential cross section in
order to discover in which observables D waves may show up.
If one takes into account only S and P waves, then only T0, T1,
and T2 coefficients contribute to Eq. (2). If we add D waves,
two more quantities appear, T3 and T4. So the first place to
look for D waves consists of checking to see if there is room
for the appearance of these new terms. The currently available
experimental data [9] can be described quite well using only T0,
T1, and T2, and no T3 or T4 contribution appears to be required
at present in the near-threshold region. Hence, any contribution
of D waves to σT (s, θ ) should appear only as a modification
of T0, T1, or T2. On the other hand, T0 and T2 are dominated
by diagonal terms involving the multipoles (which can be
immediately read from Tables VI and VIII), namely |M1+|2,
|M1−|2, and |E0+|2, and thus any interference with D waves

would be negligible compared with the leading-order terms.
On the other hand, T1 is entirely due to multipole interferences
(all the coefficients in Table VII are off-diagonal), and so
any D-wave interference with the dominant M1+ multipole is
a candidate for a non-negligible D-wave contribution to the
observable. This affects any multipolar extraction from data
using only S and P partial waves as was shown in Ref. [13].

It is very important to realize that without a so-called
complete experiment—which at this point is not feasible
in the near-threshold region—the multipole extraction from
experimental data depends on the approach employed. For this
reason we explore three prescriptions for the multipoles, with
different phenomenological and theoretical content. The first
one is a pure phenomenological approach where the energy
dependence is prescribed for the multipoles (embedded in
Sec. III A). The second consists in applying HBCHPT, which
is the theoretically soundest approach to computing the S- and
P -wave multipoles (Sec. III B). The last one uses HBCHPT to
compute the P waves, but a unitary prescription is employed
for E0+ (Sec. III C); the reasons for this choice will be detailed
in the corresponding section.

For all three approaches the D waves are computed using
the customary Born terms (equivalent to the Born contribution
to HBCHPT) and vector-meson exchange (ω and ρ) [18].
For the ω and ρ parameters we have used those given by
the dispersion analysis of the form factors in Ref. [19] that
agrees with the latest analysis in Ref. [20]. The vector-meson
correction is very small and the inclusion of D waves in this
way is almost equivalent to the zeroth order in HBCHPT.
For all approaches we perform fits using either solely S and
P waves (SP fits) or S, P , and D waves (SPD fits). The
inclusion of the vector mesons in this fashion poses a model
uncertainty in the calculation; however, this uncertainty is very
small and the conclusions on the effect of D waves in the
observables and the extraction of the multipoles is effectively
model independent.

Within this framework we have performed fits to the latest
experimental data from MAMI [9] (171 differential cross
sections and 7 photon asymmetries, spanning the energy range
from threshold up to 166 MeV). As a fitting procedure we
have used a hybrid optimization code based on a genetic
algorithm (GA) combined with the E04FCF routine from the
NAG library [21]. In recent years, increased credit is being
given in nuclear and particle physics to modern optimization
procedures [22,23] and the error analysis for the parameters
resulting from the fits. Modern and sophisticated optimization
techniques such as GAs [24] have been developed over the
past 20 years and have been applied to problems that were
impossible to face with conventional tools. Although GAs
are computationally more expensive than other algorithms,
in a minimization problem they are much less likely to get
stuck in local minima than are other approaches such as
gradient-based minimization methods, and they allow one
to explore a large parameter space more efficiently. Thus,
in a multiparameter minimization as the one we face here,
GAs probably provide the best possibility in searching for the
minimum. Moreover, they provide additional information on
the local minima structure. The details of the fitting procedure,
its technicalities and advantages, can be found in Ref. [23].
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III. THE ELECTROMAGNETIC MULTIPOLES

A. Unitarity and the general form of the multipoles

From general principles such as time reversal invariance
and unitarity the S wave can be written as the combination of
a smooth part and a cusp part [25,26]

E0+ = eiδ0 [A0 + iβq+/mπ+ ]; W > Wthr(π
+n)

(6)
E0+ = eiδ0 [A0 − β|q+|/mπ+]; W < Wthr(π

+n),

where δ0 is the π0p phase shift (which is very small), W is the
invariant mass, Wthr(π+n) the invariant mass at the π+n thresh-
old, q+ is the π+ center-of-mass momentum, A0 is E0+ in the
absence of the charge exchange rescattering (smooth part),
and β parameterizes the magnitude of the unitary cusp and
can be calculated [25] on the basis of unitarity. Equations (6)
provide a generalization of the Fermi-Watson theorem [27]
by removing the requirement of isospin conservation; they
have been derived using a three-coupled-channel S-matrix
approach in which unitarity and time reversal invariance are
satisfied [25,26]. These calculations take the static isospin
breaking (mass differences) as well as πN scattering to all
orders into account. In the electromagnetic sector they have
been carried out to first order in the fine structure constant α.
The resulting equation for β is

β = E0+(γp → π+n) × a(π+n → π0p), (7)

where a(π+n → π0p) is the πN S-wave charge exchange
scattering length. The value of β will be discussed in Sec. IV A.

The smooth part of E0+ can be approximated by using a
Taylor expansion, and hence the entire S-wave multipole can
be written:

E0+ = E
(0)
0+ + E

(1)
0+

kL
γ − kT

γ

mπ0
+ iβ

qπ+

mπ+
, (8)

where E
(0)
0+ and E

(1)
0+ are free parameters, kL

γ is the photon
energy in laboratory frame, and kT

γ = 144.681 MeV is the
photon energy at threshold in the laboratory frame. The π+
center-of-mass momentum, qπ+ , is real above and imaginary
below the π+ threshold; this is a unitary cusp. HBCHPT
matches this expansion for the S wave.

Another expression for the E0+ multipole is [3,4,28]

E0+ = a + b

√
1 − E2

γ

/
E2

c , (9)

where a and b are fitted to data, Eγ is the center-of-mass
photon energy, and Ec the center-of-mass photon energy at
the π+ production threshold. Equation (9) is nearly equal to
Eq. (8) at the 3.5% level or better if b = β and E

(1)
0+ = 0. Due

to this latter restriction we do not use Eq. (9) in this work.
The P waves can also be studied expanding in a Taylor

series and assuming the multipoles are real we only need the
lowest two orders:

Pi

qπ/mπ0
= P

(0)
i + P

(1)
i

kL
γ − kT

γ

mπ0
; i = 1, 2, 3, (10)

where qπ is the outgoing pion momentum and P
(0)
i and P

(1)
i

are the coefficients of the expansion (free parameters). This
expansion matches the energy dependence of HBCHPT for

the real part of the multipoles. The Pi waves are related to the
standard electromagnetic multipoles through

E1+ = (P1 + P2)/6 (11)

M1+ = (P1 − P2)/6 + P3/3 (12)

M1− = (P3 + P2 − P1)/3. (13)

Another choice for the P waves is the one made in Schmidt
et al. [9], where the prescription Pi = P eff

i kγ qπ/m2
π0 was

employed where P eff
i is a constant fitted to data. We do not

use such a prescription because it does not match the energy
dependence of HBCHPT near threshold [3] and it is not truly
the lowest-order Taylor expansion. The P -wave expansion
is divided by qπ due to the angular momentum barrier. The
D-wave expansion, to first order, is

Di = D
(0)
i q2

π

/
m2

π0 , (14)

where Di = E2+, E2−,M2+,M2− and q2
π accounts for the

correct angular momentum barrier. In this study the D waves
are computed using Born terms and vector mesons that closely
approximate this behavior.

Even fixing the D waves, these simple phenomenological
prescriptions for the partial waves have too many parameters
describing the energy dependence to perform a unique fit of the
data. The reason is that the � (polarized photon asymmetry)
measurement has been published only at one energy. However,
a more extensive asymmetry data set has been obtained in
experiments recently performed at MAMI and the data analysis
is in progress [29]. Therefore, at this time a phenomenological
analysis is not possible and one has to rely on theoretical
approaches such as the ones we employ in the rest of the article.

B. Heavy baryon chiral perturbation theory

At present, the best available theoretical framework for
studying pion photoproduction in the near-threshold region is
HBCHPT. Because this approach is the one that was employed
in Ref. [13] and the results presented here are the same as in that
reference, we restrict ourselves to summarizing the approach
and refer the reader to Ref. [13] for a discussion of the impact
of D waves in the extraction of the E0+ multipole, of the
assessment of the LECs, as well as of the stability of P waves
against the inclusion of D waves. In this section we summarize
the HBCHPT approach and leave the discussion of the impact
of D waves in physical observables to Sec. IV.

The explicit formulas for the S and P multipoles to one
loop and up to O(q4

π ) can be found in Refs. [3,4] and constitute
the starting point of our analysis. Due to the order-by-order
renormalization process six LECs appear, and five have been
fitted to pion photoproduction data: a1 and a2 associated
with the E0+ counterterm and bp associated with the P3

multipole together with ξ1 and ξ2 associated with P1 and
P2, respectively. The c4 LEC associated with P1, P2, and
P3 has been taken from Ref. [30], where it was determined
from pion-nucleon scattering inside the Mandelstam triangle.
Some other parameters appear in the calculation, but these
are fixed. The full list is the pion-nucleon coupling constant
gπN = 13.1; the weak pion decay constant fπ = 92.42 MeV,
together with the anomalous magnetic moments of the proton

065201-4
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TABLE II. Summary results for the unitary and HBCHPT approaches. Units of E0+ in 10−3/mπ+ and Pi/qπ in
10−3 GeV−1/mπ+ .

HBCHPT (SP) HBCHPT (SPD) Unitary (SP) Unitary (SPD)

[ReE0+]π
0thr −1.099 −1.090 −1.195 −1.196

[ReE0+]π
+thr −0.478 −0.393 −0.420 −0.336

[P1/qπ ]π
0thr 73.88 73.99 72.99 73.03

[P2/qπ ]π
0thr −71.84 −72.42 −71.07 −71.48

[P3/qπ ]π
0thr 76.71 76.77 75.98 76.36

χ 2/DOF (minimum) 1.23 1.25 1.24 1.23
χ 2/DOF (70% C.L.) 1.27 1.28 1.27 1.26
χ 2/DOF (90% C.L.) 1.29 1.30 1.29 1.28

and neutron; the nucleon axial charge gA (which we fix using
the Goldberger-Trieman relation gA = gπNfπ/Mp); and the
masses of the particles. D waves are included as discussed in
the previous section.

In summary, using this approach, in Ref. [13] it was
found that, contrary to what is customarily claimed in the
literature, the SP approximation is not sufficient to obtain
a complete description of the differential cross section in
the near-threshold region and to extract the electromagnetic
multipoles reliably. The inclusion of D waves does not affect
the extraction of the P -wave multipoles but makes a significant
difference where the E0+ extraction is concerned, especially
at and above the unitary cusp. The absence of D waves in
the analysis affects both the E0+ multipole extraction and the
determination of the associated LECs.

C. Unitary fit

The unitary fit is a hybrid approach that employs HBCHPT
to compute the P waves and E0+ using Eq. (8) fitting the
parameters E

(0)
0+ and E

(1)
0+ to the experimental data. These

parameters have straightforward relationships to the LECs a1

and a2 or, more precisely, to their combinations a+ = a1 + a2

and a− = a1 − a2. E
(0)
0+ fixes the value of the multipole at

threshold and so does a+ in HBCHPT [13]. In the same
way, E

(1)
0+ is connected to the combination a+ − a− = 2a2,

and thus one has a one-to-one relationship between both sets
of parameters.

The HBCHPT approach has several shortcomings regarding
the E0+ multipole. The first is its slow convergence and the
second the lack of unitarity of the amplitude. In HBCHPT up to
one loop andO(q4

π ) the value of β = 2.71 × 10−3/mπ+ is fixed
by the imaginary part of E0+—which is parameter-free—and
is not close to the unitary value of β that can be obtained from
πN scattering and whose value will be discussed in Sec. IV A.
The unitarity violation in HBCHPT is due to the truncation at
the one loop (single rescattering) level. It is well known that
E0+ does not converge very well [1,2]; however, as will be
shown in Sec. IV, the values for ReE0+ are very close for the
HBCHPT and unitary fits.

The number of parameters is exactly the same as for the
HBCHPT approach—five, namely, E

(0)
0+ and E

(1)
0+ for the S

wave and bp, ξ1, and ξ2 for the P waves, which are the same
as those defined in Sec. III B. The D waves are included in

the same way as in Sec. III B. Under this approach we have
performed two fits, one with D waves and another without
them. The results are presented and discussed in Sec. IV.

IV. RESULTS

A. Multipole extraction from the experimental data

In Table II we summarize some results for the unitary and
HBCHPT approaches. All of the χ2/DOF are about the same
and are compatible within a 70% confidence level. In Fig. 1
the high quality of the SP [4,10] and SPD fits for HBCHPT
can be seen. The unitary fits yield almost identical results. The
P waves are quite alike from one fit to another with differences
that lie below the 1.5% level at threshold. Moreover, the
greatest differences are actually at threshold and when the
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FIG. 1. Differential cross section for a fixed energy of Eγ =
159.9 MeV (upper figure) and a fixed angle of θ = 90◦ (lower figure).
Curve conventions: solid: HBCHPT, SPD fit; dashed: HBCHPT, SP
fit. Both curves almost completely overlap.
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energy increases the differences lie systematically below the
1% level, confirming the stability of P waves against the
inclusion of D waves in the two approaches. In Table II we
also provide the values at threshold and at the unitary cusp for
the real part of E0+. In the next paragraph and with the aid of
Figs. 2 and 3 we discuss these values.

The main difference between the unitary and the HBCHPT
approaches stems from the associated value of the unitary
parameter β—see Eq. (7)—and how this affects the S-wave
extraction. Note that the sign of β is observable, not just its
magnitude, and agrees with what is expected. The best exper-
imental value of a(π−p → π0n) = −(0.122 ± 0.002)/mπ+ ,
obtained from the observed width in the 1s state of pionic
hydrogen [31], was used. This is in excellent agreement
with HBCHPT predictions of −(0.130 ± 0.006)/mπ+ [32].
Assuming isospin is a good symmetry, a(π+n → π0p) =
−a(π−p → π0n). The latest measurement for E0+(γp →
π+n) = (28.06 ± 0.27 ± 0.45) × 10−3/mπ+ [33] (where the
first uncertainty is statistical and the second is systematic)
is in good agreement with the HBCHPT prediction of
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FIG. 3. ImE0+ multipole. Curve conventions: solid: HBCHPT
(SP and SPD fits); dashed: unitary (SP and SPD fits).

(28.2 ± 0.6) × 10−3/mπ+ [34]. These experimental values
and the relationship given above lead to a value of β =
(3.43 ± 0.08) × 10−3/mπ+ .1

The results obtained in Ref. [13] using HBCHPT regarding
the impact of D waves in the extraction of the E0+ multipole
are confirmed using the unitary approach in Sec. III C. D

waves affect the extraction of the E0+ multipole and if they
are not included a reliable extraction cannot be achieved.
When comparing the E0+ extraction using HBCHPT and the
unitary approach it is better to split the analysis above and
below the π+ threshold. Regarding ReE0+, from Fig. 2 it is
evident that above and at the π+ threshold the extractions
are very similar if the same number of partial waves is used,
with only small differences that lie within the uncertainties.
However, if one focuses on the region between the π0 and π+
thresholds the situation is the opposite. As expected, due to the
q2

π dependence—Eq. (14)—D waves have a negligible impact
at π0 threshold, as was shown in Ref. [13] for HBCHPT.
As shown in Fig. 3, there is a sizable difference between the
two approaches regarding the imaginary part of E0+, with
the unitary approach prediction being larger than that for the
HBCHPT approach due to the larger value of β. The piece of
E0+ that contributes to the imaginary part above the unitary
cusp contributes to the real part below it. This means that this
contribution in the real part of E0+ near threshold is larger
for the unitary approach than for HBCHPT (this is the effect
that we find at threshold) and makes the value of [ReE0+]π

0thr

in Table II larger in absolute value for the unitary approach
than for HBCHPT. Hence, an accurate determination of the
actual value of E0+ at threshold would help one to constrain
the imaginary part of the multipole and vice versa.

In Fig. 4 we focus on the effect of D waves, comparing the
SP and the SPD fits for both HBCHPT and unitary approach
by computing the ratio for the real part of E0+. The impact of

1Actually, it is energy dependent, although, for the current exper-
imental accuracy, it is a very good approximation to assume it is a
constant.
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FIG. 5. T asymmetry for a fixed energy of Eγ = 159.5 MeV
(upper figure) and a fixed angle of θ = 90◦ (lower figure). Curve
conventions: solid: HBCHPT, SPD fit; dashed: unitary, SPD fit.

D waves is astonishing, changing the value of the multipole
by almost 20% at the unitary cusp and reaching a 35% change
at 165 MeV.

In Ref. [28] the E0+ multipole [employing the phenomeno-
logical formula in Eq. (9)] was obtained fitting the subtraction
constants to the dispersion analysis of Ref. [35] to compute the
Fubini-Furlan-Rossetti (FFR) sum rule [36]. This approach has
the shortcoming that it relies on the extraction made through
a dispersion analysis that is model dependent because it relies
on MAID03 [37] to obtain the A1 amplitude that enters in the
FFR sum rule. It does have the advantages that HBCHPT has
better convergence inside the Mandelstam triangle and that all
partial waves are incorporated in the dispersion analysis.

B. Impact of D waves in observables

If the physical observables (differential cross section and
asymmetries) are computed using either HBCHPT or the
unitary approaches, we do not find meaningful differences
except for the case of TRO observables (T , P , G, and H ;
see Figs. 5 and 6) and, among them, the only one that is
measurable in the near-threshold region is the T asymmetry2

defined as the difference between the cross sections for a target
polarized up and down along the axis perpendicular to the
scattering plane. In Fig. 5 we compare the results obtained for

2Do not confuse the asymmetry symbol T with the Ti which occur
in the partial wave expansion of the differential cross section. The
latter has a subscript.

T using the unitary and the HBCHPT approaches including D

waves. These differences make the T asymmetry an excellent
observable to test unitarity and to extract the imaginary part of
E0+, because the latter is largely responsible of the difference.
At present there are proposals to measure this asymmetry both
at HIγ S [10] and MAMI [38]. Henceforth we will focus the
discussion on the effects of D waves on observables using the
HBCHPT calculation. This particular choice does not affect
either the discussion or the conclusions.

In Fig. 6 we present the comparison between the HBCHPT
and unitary approaches, both SP and SPD fits, for the TRO
observables: recoil nucleon polarization asymmetry P and
double beam target polarized asymmetries G and H all as
functions of the photon energy and for a fixed angle of 90◦ for
HBCHPT and the unitary approach. The results are similar
at other angles. The definition can be found in Ref. [15] or
in Ref. [10]; in this article we follow the sign conventions of
Ref. [16].

The effect of D waves in the G asymmetry is striking but
unmeasurable at present, because it is so small. The same can
be said about P and H : the necessary accuracy to measure
the effect is at present beyond the current state of the art.
Differences between the unitary and HBCHPT approaches are
also unmeasurable at present. The most promising observables
are the E and F asymmetries and in Fig. 7 we present them
in terms of their energy dependence, which highlights the
D-wave effect for three different pion production angles: 45◦,
90◦, and 135◦. When the SP and SPD fits yield different results,
the predictions obtained using the HBCHPT and unitary
approaches are found to be significantly closer together than
these differences. Therefore, in the remainder of the article we
restrict the discussion to the HBCHPT fits.

The combined measurement of the E and F asymmetries
provides a good candidate for determining the D waves. The
reason is that both are sizable and behave in opposite ways for
the D-wave inclusion: for those angles where D waves do not
affect the E asymmetry they do impact the F asymmetry and
vice versa (see Fig. 7). More explicitly, at 90◦ the F asymmetry
yields sizable differences for the SP and SPD predictions,
while not at 45◦ and 135◦. The E asymmetry happens to be
just the opposite. Hence, an analysis of both asymmetries using
the SP and SPD approximations should be better at showing
up the effects of D waves.

In Fig. 8 we display the angular dependence of E and F for
an intermediate energy of Eγ = 159.5 MeV.3 The differences
between results for the SP and SPD fits are not very apparent
but become more so when the observable is integrated over
some convenient angular range (θi, θf ); for instance, for the E

asymmetry one might use

〈E〉 =
∫ θf

θi
WE (s, θ ) sin θdθ

∫ θf

θi
WT (s, θ ) sin θdθ

, (15)

where WT and WE are defined by Eqs. (A5) and (A7). This
allows one to take advantage of cancellations in the asymmetry,
thereby enhancing the features in which we are interested, and

3We have chosen this energy both because it is intermediate and
because it is the only one for which there are available � data.
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FIG. 6. TRO observables P , G, and H

at outgoing pion angle θcm = 90◦ for SP and
SPD fits using HBCHPT and the unitary
approaches. Curve conventions: solid: SPD
fit; dashed: SP fit. Data are from Ref. [9]. In
(b) both curves almost completely overlap.

allows one to optimize the value of the figure of merit (FOM)—
for the E asymmetry the FOM = σT 〈E〉2—and hence mini-
mize the statistical uncertainties. The observable 〈F 〉 can be
defined in a similar way for the F asymmetry by replacing WE

in Eq. (15) with WF from Eq. (A8). In Figs. 9 and 10 we provide
〈E〉 and 〈F 〉 integrated over the appropriate angular ranges for
the Crystal Ball at MAMI that maximize their FOMs [38].

The main contribution to the differences between the SP
and SPD fits in 〈E〉 are due, first, to the differences in the
E0+ multipole and, second, to the interference of the M1+
multipole with E2−. Again, the interference of D waves with
M1+ constitutes the leading D-wave correction. However, the
fact that the biggest deviation is due to the modification of the
E0+ multipole proves that D waves are effectively entangled
with the S wave and that the extraction of any of them must
rely on the knowledge of the others.

These asymmetries are large and actually would allow one
to find a trace of D waves. However, we believe that the
combined measurement of both would improve the analysis
beyond doubt. Nevertheless, the angular distribution is also of
great interest in order to obtain the coefficients Fi and Ei in
Eqs. (A8) and (A7). There are plans to measure F at HIγ S [10]
and MAMI [38].

At first thought, the photon beam asymmetry � seems to
be a promising observable to pin down D waves if enough
accuracy is achieved. If we consider only S and P waves, this
asymmetry can be written:

−WT � = S0 sin2 θ, (16)

where S0 can be read from Table III. The inclusion of D

waves modifies S0 and adds two new terms S1P1(θ ) sin2 θ

and S2P2(θ ) sin2 θ to the right-hand side of Eq. (16). The
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FIG. 7. E and F asymmetries for
SP and SPD fits using HBCHPT. Curve
conventions: solid: HBCHPT, SPD fit;
dashed: HBCHPT, SP fit.

leading term would be S1; however, this term seems to be
very small and difficult to isolate, as we show in Fig. 11
where we compare the SP and SPD fits with experimental
data [9]. Moreover, the D-wave contribution could be easily
hidden by the fitting, embedding the D waves in the effective
parameters of the multipoles. In order to avoid this situation,
some other observables should be measured in order to find
inconsistencies in the SP fits that can only be solved by adding
new terms (D waves).

For this reason, one should also consider some other
convenient observables. For instance, if the E asymmetry
is measured together with the differential cross section and
enough angular points are acquired, it is possible to extract
the values of Ti and Ei at a certain energy. If we compare the
tables for T1 and E1 (Tables VII and XII) we notice that both
have the same coefficients for the S-P interference, and hence
any difference between them is due to higher partial waves

(D waves). Moreover, if we assume E1+ 	 0 (which is actually
a sensible assumption), it is straightforward to obtain

B ≡ T1 − E1

	 18
5 Re{M∗

1+[4(M2+ − E2+) + M2− + E2−]}, (17)

whose measurement provides a perfect test of the contribution
of D waves because the P wave M1+ is large and well known.

Both pieces of information can be measured and one
can obtain an unmistakable trace of D waves in low-energy
pion photoproduction due to the fact that under the SP
approximation this difference is exactly zero. Hence, any
deviation from zero will be due to the interference of P and
D waves. Moreover, as long as M1+ is the dominant P -wave
contribution (and well known) and E1+ is negligible, the
D-wave combination 4(M2+ − E2+) + M2− + E2− can be
isolated, providing a test of its presence or absence. In Fig. 12
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FIG. 8. Angular dependence for the E and F asymmetries at
Eγ = 159.5 MeV. Curve conventions: solid: HBCHPT, SPD fit;
dashed: HBCHPT, SP fit.

we show our prediction for B, whose magnitude is possibly
measurable with the current state-of-the-art facilities. This
would also provide insight on the D waves, testing how
accurate is the Born + vector-meson approach employed in
this article.

It is worth noticing an important difference between this
observable and the measurement of E and F in the search of
D waves. This combination is truly a measurement of D waves,
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FIG. 9. E asymmetry depending on energy and integrated in the
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confidence level.
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SPD fit; dashed: HBCHPT, SP fit. Errors are computed at the 70%
confidence level.

while in E and F what is involved is the impact of D waves on
the extraction of the S wave. Actually, the main contribution to
the difference between the SP and SPD fits is not the addition of
D waves, it is the modification of the S wave due to the addition
of D waves and the subsequent impact of this difference on the
observables. Figure 13 illustrates this statement. We display
the results from three calculations for the E1 observable. The
solid line is the HBCHPT SPD fit and the dotted one the
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FIG. 11. � asymmetry for a fixed energy of Eγ = 159.5 MeV
(upper figure) and a fixed angle of θ = 90◦ (lower figure). Curve
conventions: solid HBCHPT, SPD fit; dashed: HBCHPT, SP fit.
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for comparison purposes.

HBCHPT SP one. The difference between the two is apparent.
The third curve is the HBCHPT SPD fit without the D waves.
As long as P waves are almost equal for the two calculations,
the difference between the dotted and dashed curves is due to
the difference between the S waves, and the difference between
the solid and the dotted curves is the true contribution of the
D waves, mainly through their interference with P waves.

Another good candidate for extracting the E0+ multipole is

D ≡ T0 + 2E0 = 3|E0+|2 + 3|M1−|2 + 12|E1+|2
+ 12Re{E∗

1+M1+} + δD, (18)

where δD stands for the D-wave content, namely D waves
interfering with D waves, which guarantees a very small
contribution to the observable. As long as the P waves are
well known from HBCHPT and E1+ is very small, we can
extract the value of |E0+|2 if we know the P -wave M1−. If we
approximate D 	 3|E0+|2 + 3|M1−|2, the error is less than a
6%. Combined with other measurements, D would help to pin
down the E0+ multipole.
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FIG. 13. E1 for fits HBCHPT SPD (solid), HBCHPT SP (dashed),
and HBCHPT SPD (dotted) with the D waves removed.

Actually, the particular choice D can be exploited in a
different way. Experimentally, asymmetries can be measured
more accurately than cross sections, and the quantities E0, E1,
F0, and F1 can be measured with relatively small systematic
errors. Moreover, we can define

WT = T0[1 + T̃1P1(θ ) + T̃2P2(θ ) + · · ·] (19)

with T̃1 ≡ T1/T0 and T̃2 ≡ T2/T0 that can both also be
measured very accurately. Hence, the key quantity to improve
is T0, which is the total cross section up to a kinematical factor

σ (s) = 2π
qπ

kγ

T0. (20)

From accurate measurements of the asymmetries (T , F ,
and E) it is possible to extract the multipoles and use this
knowledge to isolate T0 in Eq. (18), providing a procedure to
determine the cross section more accurately. These are a few
of the analyses that a deep knowledge of the structure of the
observables in terms of the multipoles allows one to undertake
using the tables in Appendix.

C. Contribution of higher partial waves to the observables

At this point a fair question to ask is why should we stop
at D waves and not include F waves in the analysis. Within
the current experimental accuracy (and probably for years to
come) the answer is that F waves do not play a role and
can be dismissed. The reason to make this statement relies
on the structure of the observables presented in Appendix.
Looking at the expansions in Eqs. (A5), (A6), (A7), and (A8),
coefficients such as T3, T4, S2, E3, E4, F2, and F3 are negligible
experimentally. Coefficients such as T0, T2, S0, E0, and F1 are
|M1+|2 and |M1−|2 dominated, and so if F waves would have
impact the only observables that remain are those where D

waves already make an impact, namely T1, S1, E1, and F0.
At this point we remind the reader that the enhancement of
D waves is due to their interference with the large P -wave
multipoles, M1+ (primarily) and M1−, and therefore any non-
negligible F wave contribution should be related to the same
kind of interference. Due to symmetry reasons, in T1, E1, and
F0 F waves interfere only with D and G waves. The argument
is as follows: first, for T1, E1, and F0 only partial waves with
opposite parity can interfere (see Tables VII, XII, and XVI);
second, these partial waves can differ only by one unit of
angular momentum. S1 is the only coefficient where F waves
interfere with P waves, but we have found that D-wave/P -
wave interferences for this observable are small and hence we
expect F -wave/P -wave interferences to be even smaller. So
F waves are highly suppressed in the observables and can
be safely neglected in the near-threshold region within the
current experimental state of the art. Clearly our expectation
is that G waves and higher play an even more minor role in
the near-threshold region.

V. SUMMARY AND CONCLUSIONS

In Ref. [13] neutral pion photoproduction from the proton
was studied in the region from threshold up to 167 MeV using
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HBCHPT. The E0+ multipole and D waves are entangled
in such a way that the accurate determination of the former
(including the extracted values of the LECs a1 and a2)
relies on the proper inclusion of D waves. In this article we
complement the analysis in Ref. [13] by employing a phe-
nomenological approach that needs more experimental input
to draw reliable conclusions and a unitary approach that uses
HBCHPT for P waves and a unitary prescription for the E0+
multipole.

We have found no impact of D waves at π0 threshold
on the S wave, although a noticeable difference is found
between the unitary and HBCHPT approaches due to the
difference in the value of β. We have also considered partial
waves higher than L = 2 and have found that they are not
important and can be neglected. We have found that P

waves are stable at the 1% level against the inclusion of
D waves or the use of a different prescription for the E0+
multipole.

The major difference between the SP and SPD calculations
of the observables does not rely on the direct contribution
of D waves but on the modification of the E0+ multipole,
which is misleadingly extracted from data if only S and P

waves are included. Although D waves are typically weak,
the modification of the S wave is sufficiently large to alter
the prediction for the double-polarization observables E and
F enough to to be able to distinguish between approaches
with and without D waves, leading to measurable effects
that will allow one to pin down D waves experimentally.
In the next generation of photo-pion experiments [10,29,38]
these could be measured at MAMI and HIγ S. Specifically,
it has been demonstrated that the statistical accuracy of the
recently proposed polarization experiment to determine F

at MAMI will be sufficient to unveil the importance of the
D-wave contribution. In this article we have gone further and
shown also that the E observable is sensitive to the D-wave
contribution and that the combination T1 − E1 will provide a
direct quantitative measure of the D-wave effect (Fig. 12). We
thus expect in the next few years a direct experimental test of
the ideas put forward in this article.

We also explored the influence of D waves in πN scattering
and found no sizable impact on the partial-wave extraction.
In addition, the treatment of the Coulomb interaction poses
uncertainties that are larger than the estimated D-wave
effects.

In conclusion, D waves cannot be dismissed in the analysis
of low-energy neutral pion photoproduction from the proton
due to the soft nature of the S wave that direct consequence
of chiral symmetry and the Nambu-Goldstone nature of the
pion.

ACKNOWLEDGMENTS

This research was supported in part (CF-R) by “Programa
Nacional de Movilidad de Recursos Humanos del Plan
Nacional I + D + I 2008-2011” of Ministerio de Ciencia e
Innovación (Spain). This work was also supported in part
(AMB and TWD) by the US Department of Energy under
Contract No. DE-FG02-94ER40818.

APPENDIX: PHYSICAL OBSERVABLES IN TERMS OF
THE ELECTROMAGNETIC RESPONSES: MULTIPOLAR

TABLES UP TO D WAVES

The differential cross section and asymmetries can be
written in terms of electromagnetic responses

σT (s, θ ) ≡ qπ

kγ

WT (s, θ ) (A1)

�(s, θ ) ≡ − WS(s, θ )

WT (s, θ )
(A2)

E(s, θ ) ≡ WE(s, θ )

WT (s, θ )
(A3)

F (s, θ ) ≡ WF (s, θ )

WT (s, θ )
. (A4)

The responses WT , WS , WE , and WF are defined in term of the
electromagnetic multipoles up to D waves:

WT = T0(s) + T1(s)P1(θ ) + T2(s)P2(θ )
+ T3(s)P3(θ ) + T4(s)P4(θ ) (A5)

WS(s, θ ) = [S0(s) + S1(s)P1(θ ) + S2(s)P2(θ )] sin2 θ (A6)
WE = E0(s) + E1(s)P1(θ ) + E2(s)P2(θ )

+E3(s)P3(θ ) + E4(s)P4(θ ) (A7)
WF (s, θ ) = [F0(s) + F1(s)P1(θ )

+F2(s)P2(θ ) +F3(s)P3(θ ) ] sin θ, (A8)

where Pj (θ ) are the Legendre polynomials in terms of cos θ

and

Tn(s) =
∑
ij

Re
{
M∗

i (s) T ij
n Mj (s)

}
(A9)

Sn(s) =
∑
ij

Re
{
M∗

i (s) Sij
n Mj (s)

}
(A10)

En(s) =
∑
ij

Re
{
M∗

i (s) Eij
n Mj (s)

}
(A11)

Fn(s) =
∑
ij

Re
{
M∗

i (s) F ij
n Mj (s)

}
(A12)

where Mj (s) = E0+, E1+, E2+, E2−, M1+, M1−, M2+, M2−.
The coefficients S

ij
n are provided in Tables VIII, IX,

and X; T
ij
n in Tables III, IV, V, VI, and VII; E

ij
n in

Tables XI, XII, XIII, XIV, and XV; and F
ij
n in

Tables XVI, XVII, XVIII, and XIX. The equations necessary to
compute the tables can be found in Ref. [14]. For a complete list
of polarization observables we refer the reader to Refs. [15,16].

TABLE III. S
ij

0 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 3/2 3/2 −3/2 3/2
E1+ −9/2 3/2 −3/2
E2+ 3/2 −24 6 6 −6
E2− 3/2 6 −3/2 −3/2 3/2
M1+ 3/2 3/2 3/2
M1− −3/2 3/2
M2+ −3/2 6 3/2 12 21/2
M2− 3/2 −6 3/2 21/2 9/2
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TABLE IV. S
ij

1 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+ −27/2 9
E2+ −27/2 15/2 −15/2
E2− 9
M1+ 15/2 6 9
M1− −15/2 15/2
M2+ 6 15/2
M2− 9

TABLE V. S
ij

2 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+
E2+ −30 45/2 15/2 −15/2
E2− 45/2
M1+
M1−
M2+ 15/2 15 30
M2− −15/2 30

TABLE VI. T
ij

0 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 1
E1+ 6
E2+ 18
E2− 2
M1+ 2
M1− 1
M2+ 9
M2− 6

TABLE VII. T
ij

1 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 3 1 −1
E1+ 3 72/5 −3/5 9/5 −9/5
E2+ 72/5
E2− −3/5 1 −1
M1+ 1 1 27/5 3/5
M1− −1 −1 3
M2+ 9/5 27/5
M2− −9/5 3/5 3

TABLE VIII. T
ij

2 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 6 1 3 −3
E1+ 3 3 −3
E2+ 6 108/7 −12/7 36/7 −36/7
E2− 1 −12/7 −1 3 −3
M1+ 3 −1 −1
M1− −3 −1
M2+ 3 36/7 3 36/7 9/7
M2− −3 −36/7 −3 9/7 3

TABLE IX. T
ij

3 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+ 18/5 18/5 36/5 −36/5
E2+ 18/5 6 −6
E2− 18/5
M1+ 6 −12/5 −18/5
M1− −6 −3
M2+ 36/5 −12/5 −3
M2− −36/5 −18/5

TABLE X. T
ij

4 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+
E2+ 18/7 54/7 90/7 −90/7
E2− 54/7
M1+
M1−
M2+ 90/7 −36/7 −72/7
M2− −90/7 −72/7

TABLE XI. E
ij

0 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 1
E1+ 3 3
E2+ 6 12
E2− −1 −3
M1+ 3 −1
M1− 1
M2+ 12 −3
M2− −3 3
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TABLE XII. E
ij

1 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 3 1 −1
E1+ 3 36/5 6/5 9
E2+ 36/5 36/5
E2− 6/5 −4/5 −1
M1+ 1 36/5 −4/5 −9/5 −6/5
M1− −1 −1 3
M2+ 9 −9/5
M2− −6/5 3

TABLE XIII. E
ij

2 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ 6 1 3 −3
E1+ 6 −3
E2+ 6 12 24/7 60/7
E2− 1 24/7 2 −15/7
M1+ 2 −1
M1− −3 −1
M2+ 3 60/7 −15/7 12/7 −27/7
M2− −3 −27/7 6

TABLE XIV. E
ij

3 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+ 54/5 9/5 −9
E2+ 54/5 −6/5 −6
E2− 9/5 9/5
M1+ −6/5 9/5 24/5 −9/5
M1− −6 −3
M2+ 24/5 −3
M2− −9 −9/5

TABLE XV. E
ij

4 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+
E2+ 18 18/7 −18/7 −18
E2− 18/7 36/7
M1+
M1−
M2+ −18/7 36/7 72/7 −36/7
M2− −18 −36/7

TABLE XVI. F
ij

0 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ −3/2 3/2
E1+ −3/2 −15/2 15/2
E2+ −15/2 −5/2 1
E2− −3/2
M1+ 3/2 −5/2 5/2
M1− 1 −3/2 −1 −3/2
M2+ 15/2 5/2 −1
M2− −3/2

TABLE XVII. F
ij

1 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+ −6 3/2 6 3/2
E1+ −9 3 3/2
E2+ −6 −36 −3/2 9 9/2
E2− 3/2 −3/2 3 3/2 −3
M1+ 3 3 −3/2
M1− 3/2 −3/2
M2+ 6 9 3/2 18 −9/2
M2− 3/2 9/2 −3 −9/2 −9

TABLE XVIII. F
ij

2 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+ −39/2 3 6 9
E2+ −39/2 11/2 5
E2− 3 3
M1+ 11/2 3 8 −3
M1− 5 −5
M2+ 6 8 −5
M2− 9 −3

TABLE XIX. F
ij

3 .

E∗
0+ E∗

1+ E∗
2+ E∗

2− M∗
1+ M∗

1− M∗
2+ M∗

2−

E0+
E1+
E2+ −36 9/2 9 45/2
E2− 9/2 9
M1+
M1−
M2+ 9 9 18 −9
M2− 45/2 −9
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