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The mean curvature flow is a nonlinear geometric evolution equation where a
submanifold evolves over time to minimize its volume. In the evolution, each point
moves in the inward normal direction with speed given by the mean curvature. Thus
convex points move inwards, concave points move outwards, and the submanifold
moves faster where the curvature is larger. The submanifold is static—or constant
in time—if the mean curvature vanishes, i.e., if it is minimal submanifold.

Mean curvature flow originated in the materials science literature, starting in the
1920s, with the current formulation being given by Mullins in the 1950s [M]. It has
been studied extensively in applied mathematics, image processing, and other areas
of science and engineering. Of particular interest here, mean curvature flow arises
in the study of the asymptotic behavior as ε → 0 of solutions of the Allen–Cahn
equation

ε
∂uε

∂t
= εΔuε −

1

2ε
uε(u

2
ε − 1)(1)

used to model phase transitions. In pure mathematics, a discrete version of the
flow, known as Birkhoff’s curve shortening process, was used by Birkhoff in the
1910s to prove that every closed Riemannian surface contains a closed geodesic.
The continuous flow has been studied systematically starting with the pioneering
book of Brakke in 1978 [B].

Mean curvature flow has been studied for submanifolds of any codimension in
Riemannian manifolds of any dimension. We will restrict discussion to the evolution
of hypersurfaces in Euclidean space.

The simplest example of mean curvature flow is the evolution of round n-spheres,
where the symmetry is preserved and, thus, it reduces to an ODE for the radius
R(t)

R′(t) = − n

R(t)
.

Integrating this ODE gives R(t) =
√
R0 − 2nt where R0 is the radius at time t = 0.

Observe that the radius always goes to zero in finite time and then the solution
disappears. This is known as finite time extinction. It is a singularity of the flow—
the spheres are varying smoothly as hypersurfaces but then just disappear at the
extinction time.

The parabolic maximum principle leads to an avoidance principle for the flow: if
two smooth compact flows are initially disjoint, then they remain disjoint. It follows
that the flow starting from any smooth closed hypersurface must become singular
before a sphere enclosing it becomes extinct. Thus, singularities are unavoidable. A
major focus of research in mean curvature flow is to understand these singularities:
What do they look like? How many are there? Can the flow be continued past
them? Which ones can be perturbed away?
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When the submanifold is a curve, the flow is known as the curve shortening
flow. A remarkable result of Grayson from 1987 (using earlier work of Gage and
Hamilton) shows that any simple closed curve in the plane remains smooth under
the flow until it disappears in finite time in a point. Right before it disappears, the
curve will be an almost round circle. More precisely, if we take a sequence of times
going to the exinction time and rescale the curves at each of these times to contain
area π, then the sequence of rescaled curves will converge (smoothly) to the round
unit circle. Thus, each flow has only one singularity in all of space and time and
this singularity looks just like the shrinking circles.

In higher dimensions, Huisken showed in 1984 that closed convex hypersurfaces
remain convex and flow smoothly up until they become extinct at a point and,
moreover, they are almost round just before extinction. However, unlike the case
of curves, there are many new types of singularities when the initial hypersurface
is not convex. The main tool for analyzing these singularities is a blow-up method,
similar to tangent cone analysis for minimal varieties, that relies on a monotonic-
ity formula of Huisken from 1990 [H], [W]. The flow once again has a self-similar
structure near the singularities, but there are infinite families of different possible
self-similar structures. Recent years have seen a great deal of activity studying this,
constructing examples, classifying the possibilities in certain cases, and understand-
ing which types of singularities are generic; see the survey [CMP] and references
therein.

There are several different ways to approach mean curvature flow, each with its
own advantages and disadvantages. Perhaps the most natural is to write the evolv-
ing hypersurface as the image of an evolving map from a fixed submanifold (e.g.,
the initial hypersurface). This is useful for many problems, but one major draw-
back is that it is only meaningful before the first singular time. Brakke’s geometric
measure theory approach studies the evolution of weak, measure-theoretic objects
known as varifolds; these deal well with singularities, but other issues become more
complicated. The level set method views the hypersurface as a level set of an evolv-
ing function, allowing for singularities when the level set contains a critical point.
This has been done with great success numerically by Osher and Sethian [OS], with
theoretical existence and uniqueness established by Evans and Spruck and Chen,
Giga, and Goto in the early 1990s; see the book [G]. There are a number of other
approaches, including time discretization, set-theoretic weak solutions, and others.

This book by Bellettini takes a different approach to the flows. The evolving
surface is viewed as the boundary ∂f(t) of an evolving solid subset f(t). The mean
curvature flow equation is then expressed as a differential equation for the signed
distance function d(x, t) to ∂f(t). To explain this, recall that the signed distance
is given by

d(x, t) = dist(x, f(t))− dist(x,Rn \ f(t)) ,

so that d(x, t) is positive outside of f(t), zero on ∂f(t), and negative inside of f(t).
The gradient of d is a unit vector (away from cut points). The Hessian of d at
points on ∂f(t) is just the second fundamental form of the boundary ∂f(t) and,
thus, the mean curvature is the Laplacian Δd. Using this, the mean curvature flow
equation can be expressed as

∂d

∂t
= Δd along ∂f(t) .(2)



BOOK REVIEWS 531

For example, when f(t) is the solid n-ball of radius R(t) =
√
R0 − 2nt in Rn+1,

then

d(x, t) = |x| −R(t) .

Since Δ|x| = n
|x| in Rn+1 and R′(t) = − n

R(t) , we see that d(x, t) = |x| − R(t)

satisfies (2).
The equation (2) can be used to prove many of the properties of the flow, such

as the avoidance principle, but for many other things it is more useful to have
an equation not just where d vanishes. This equation can be modified to extend
to a tubular neighborhood of the evolving boundary, though the right-hand side
becomes nonlinear in the Hessian Hessd of d

∂d

∂t
= Trace

(
Hessd (δij − dHessd)

−1
)
,(3)

where δij is the identity matrix. When d = 0, the right-hand side becomes the trace
of the Hessian, which is just the Laplacian, and we recover the previous equation.

This formulation of the mean curvature flow is well suited for a theory of weak
solutions since level sets of functions need not be smooth. The one developed here
is the theory of barriers. A barrier is a one-parameter family of sets that serves as a
supersolution of mean curvature flow. Roughly, this means that it does not violate
the maximum principle when compared to any smooth mean curvature flow. This
originates in a series of papers by De Giorgi in the early 1990s and the presentation
here follows developments by Bellettini and collaborators over the last 20 years.
The intersection of two barriers is shown to also be a (smaller) barrier and the
weak solution is then given by the minimal barrier. This is shown to coincide with
the smooth solution (when it exists) and to satisfy the same avoidance principle
as smooth solutions: two initially disjoint minimal barriers remain disjoint and, in
fact, the distance between them grows.1

The last three chapters of the book are devoted to the asymptotics of the Allen–
Cahn equation (1), including its variational formulation, the formal asymptotics in
ε, and its relationship to mean curvature flow. The main result is that the level
sets of solutions to the Allen–Cahn equation converge, under mild hypotheses, to
solutions of mean curvature flow. This remains a very active and rapidly developing
area in both pure and applied mathematics, and many open questions remain.
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