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A CATEGORICAL APPROACH TO THE STABLE CENTER
CONJECTURE

ROMAN BEZRUKAVNIKOV, DAVID KAZHDAN, AND YAKOV VARSHAVSKY

ABSTRACT. Let G be a connected reductive group over a local non-archimedean
field F. The stable center conjecture provides an intrinsic decomposition of the
set of equivalence classes of smooth irreducible representations of G(F'), which is
only slightly coarser than the conjectural decomposition into L-packets. In this
work we propose a way to verify this conjecture for depth zero representations. As
an illustration of our method, we show that the Bernstein projector to the depth
zero spectrum is stable.

To Gérard Laumon on his 60th birthday
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INTRODUCTION

The stable center conjecture. Let G be a connected reductive group over a local
non-archimedean field F, let R(G) be the category of smooth complex representa-
tions of G(F'), and let Zg be the Bernstein center of G(F'), which is by definition
the center of the category R(G). Then Zg is a commutative algebra over C.

Every z € Zg defines an invariant distribution v, on G(F'), and we denote by
Zg the set of all z € Zg such that the distribution v, is stable. The stable center
conjecture asserts that Z¢& is a unital subalgebra of Zg.

This conjecture is closely related to the local Langlands conjecture. Recall that
the local Langlands conjecture asserts that the set of equivalence classes of smooth
irreducible representations Irr(G) of G(F) decomposes as a disjoint union of so-
called L-packets. By definition, we have a natural homomorphism z — f, from
Z¢ to the algebra of functions Fun(Irr(G), C). A more precise version of the stable
center conjecture asserts that Z¢& consists of all z € Z such that the function f, is
constant on each L-packet.

In other words, the local Langlands conjecture allows a more precise formulation
of the stable center conjecture. Conversely, if Z& C Zg is known to be a subal-
gebra, then we can decompose Irr(G) by characters of Z&, and conjecturally this
decomposition is only slightly coarser than the decomposition by L-packets. Thus,
the stable center conjecture can be thought both as a supporting evidence and as a
step in the proof of the local Langlands conjecture.

As follows from results of Bernstein and Moy—Prasad, the category R(G) de-
composes as a direct sum R(G) = R(G)° & R(G)Y, where R(G)°? (resp. R(G)?)
consists of those representations 7, all of whose irreducible subquotients have depth
zero (resp. positive depth). Therefore the Bernstein center Zg decomposes as a di-
rect sum of centers Zg = Z&® Z5°. In particular, we have an embedding Z2 — Zg,
which identifies the unit element of Z2 with the projector to the depth zero spectrum
20 € Zg. Set 750 = 74N Zg.
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The depth zero stable center conjecture asserts that Zg® C Z% is a unital subal-
gebra. In particular, it predicts the stability of the projector 2° € Zg.

The main goal of this work is to outline an approach to a proof of the depth
zero stable center conjecture. As an illustration of our method, we prove an explicit
formula for the Bernstein projector z°, and deduce its stability. More precisely, we
do it when G is a split semisimple simply connected group, and F' is a local field of
a positive but not very small characteristic.

Our approach. Our strategy is to construct explicitly many elements z of Z2 C Zg,
whose span is a subalgebra, and to prove that these elements are stable and generate
all of Zét 0 Here by ”explicitly”, we mean to describe both the invariant distribution
v, on G(F) and the function f, on Irr(G).

To carry out our strategy, we construct first a categorical analog Z(LG) of
the Bernstein center Z;. Then we observe that a version of the Grothendieck
"sheaf-function correspondence” associates to each Frobenius equivariant object
F € Z(LG) an element of the Bernstein center [F|] € Zg. Thus, to construct
elements of Zg, it suffices to construct Frobenius-equivariant objects of Z(LG).

In order to construct elements of Z(LG), we construct first a categorical analog
Z1+(LG) of ZY and a categorical analog A : Z1+(LG) — Z(LG) of the embedding
Z2 < Zg. Then we apply A to monodromic analogs of Gaitsgory central sheaves.

Roughly speaking, we define A to be the composition of the averaging functor
Avpy, where F1 is the affine flag variety of G, and the functor of ”derived W-skew-
invariants”, where W is the affine Weyl group of G. This construction is motivated
by an analogous finite-dimensional result, proven in [BKV1]. However, in the affine
case one has to overcome many technical difficulties.

Bernstein projector to the depth zero spectrum. To illustrate our method,
we provide a geometric construction of the Bernstein projector 2° € Zg. More
precisely, we construct a class (A) in the Grothendieck group version of Z(LG) and
show that the corresponding element of Zg is z°. Then we show that the restriction
V,0|Grss(ry s locally constant and prove an explicit formula, which we now describe.

Let I be the pro-unipotent radical of the Iwahori subgroup of G(F), let u/" be
the Haar measure on G/(F) normalized by the condition that p/" (I*) = 1, and let
¢.0 € C®(G(F)) be such that v,o|gresry = doop! .

For each v € G"**(F'), we denote by F1, be the corresponding affine Springer fiber.
The affine Weyl group W acts on each homology group H;(Fl,) = H *(Fl,,Dg ),

where Dpy, is the dualizing sheaf. Consider the Tor-groups Tor;W(HZ-(FLY),sgn),
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where by sgn we denote the sign-character of W. Each Tor;W(Hi(Fl,y), sgn) is a finite-

dimensional Q;-vector space, equipped with an action of the Frobenius element. One
of the main results in this paper is the following identity

(0.1) G0(7) = Y (—1)™ Ta(Fr, TorV (Hy(FL,), sgn)).

Z‘?j

Using formula (0.I)) and a group version of a theorem of Yun [Yun], we show that
V,0|grss(py 1s stable. Note that the proof of Yun is global, while all the other argu-
ments are purely local.

Remark. Though oo-categories are not needed for the construction of (A), we need
them in order to prove the formula (0.1I]). Moreover, the structure of formula (0.1)
indicates why the oco-categories appears here. The shape of the formula suggests
a possibility to write the right hand side of (0]) as the trace of Frobenius on the
"derived skew-coinvariants” RI'(FL Dgy )y ... However, the functor of ”derived
skew-coinvariants” is defined as a homotopy colimit, and it can not be defined in the
framework of derived categories. Therefore one has to pass to stable co-categories.

Plan of the paper. In Sections 1 we study derived categories of constructible
sheaves on a certain class of ind-schemes and ind-stacks, which we call admissible.
This class includes some infinite-dimensional ind-stacks, which are not algebraic.
We also construct a certain geometric 2-category, whose oco-version is used later.

In Section 2, we apply the formalism of Section 1 to the case of loop groups LG
and related spaces in order to construct a categorical analog of the Hecke algebra.

Section 3 deals with the stable center conjecture. Namely, we formulate and
discuss the stable center conjecture in subsection 3.1, categorify various objects
from subsection 3.1 in subsections 3.2-3.3, and describe our (conjectural) approach
to the depth zero stable center conjecture in subsections 3.4-3.5.

The results in subsections 3.2-3.3 are given without complete proofs, and details
will appear in the forthcoming paper [BKV2]. To emphasise this fact, we write
"Theorem” instead of Theorem.

In Section 4 we implement the strategy of Section 3 in the case of the unit element.
Namely, in subsections 4.1-4.3, we construct a K-group analog of the projector to the
depth zero spectrum, following the strategy of subsection 3.3. Then, in subsection
4.4, we provide a geometric construction of 2° € Zg, formulate the formula (0.1]) for
V,0|grss(ry and deduce its stability.

Finally, in Section 5 we prove our formula (0.]).



A CATEGORICAL APPROACH TO THE STABLE CENTER CONJECTURE 5

Conventions on categories. (a) Our approach is based on ”categorification”.
Since our constructions involve homotopy limits, the derived categories are not suit-
able for our purposes. Instead, we use the language of stable co-categories (see
[Lur2]). However, to make the exposition accessible to a wider mathematical audi-
ence, we use them as little as possible.

Namely, we use oco-categories only in two places. The first place we need oco-
categories is in subsections 3.2-3.3, where we categorify various objects from subsec-
tion 3.1. On the other hand, since the results in 3.2-3.3 are given without complete
proofs, here we use oo-categories mostly as a ”"black box”.

The second use is in the proof of formula (0.I) in subsections 5.2-5.3. The main
part of the arguments (the exception is the proof of Claim [5.2.9, carried out in
subsection 5.3) uses only very basic properties of co-categories, mainly the notion
of homotopy colimits. But even in our proof of Claim [£5.2.9] we only use the notion
of oo-categories, and avoid the usage of more complicated notions like monoidal
oo-categories, or (0o, 2)-categories.

(b) For every scheme or algebraic stack X of finite type over an algebraically
closed field, we use the existence of a stable co-category D(X), called the derived oo-
category, whose homotopy category is the bounded derived category of constructible
sheaves D(X) = DY X,Q;). We also use the fact that the six functor formalism
exists in this setting (see, for example, |[LZ1) [LZ2]).

(c) We say that two objects of an oo-category are equivalent and write A = B, if
they become isomorphic in the homotopy category. In particular, by writing F = G
for two objects of the oco-category D(X), we indicate that they are isomorphic in
the derived category D(X).

(d) Contrary to the common use, in this work we do not assume that monoidal
categories have units. Moreover, even when the monoidal categories do have units,
we do not assume that the monoidal functors preserve them.

(e) For a category (resp. oo-category) C', we denote its pro-category by Pro C.

(f) A category C' gives rise to an oo-category, which we also denote by C.

Related works. Our work was influenced by a paper of Vogan on the local Lang-
lands conjectures ([Vo|). In the process of writing this paper we have learned that
versions of the stable Bernstein center and the stable center conjecture were also
considered by Haines |[Hal and Scholze-Shin [SS].

Another approach to harmonic analysis on p-adic groups via [-adic sheaves was
proposed in recent papers by Lusztig [Lusd], [Lush]. It is different from ours: for
example, loc. cit. deals with characters of irreducible representations rather than
elements of Bernstein center. However, we expect the two constructions to be re-
lated.
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In the finite-dimensional setting related questions for D-modules were also studied
by Ben-Zvi-Nadler [BN|] and Bezrukavnikov-Finkelberg-Ostrik [BFO].
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1. CONSTRUCTIBLE SHEAVES ON ADMISSIBLE IND-SCHEMES AND IND-STACKS

1.1. Admissible morphisms. Let Sch, be the category of quasi-compact and
quasi-separated schemes over k. We usually write lim instead of projlim and colim
instead of indlim.

Lemma 1.1.1. Let {X;}; be a projective system in Schy, indezxed by a filtered par-
tially ordered set I, such that the transition maps X; — X;,1 > j are affine.

(a) Then there exists a projective limit X = lim; X; in Schy.

(b) Assume that we are given i’ € I, a morphism Yy — Xy and a finitely presented
morphism Zy — Xy in Schy. Set Y; := X; xXx, Yy and Z; == X; Xx, Zy for
1> 1, and also set Y = X Xx, Yy and Z := X xx, Zy. Then the natural map
colim;>y Homy, (Y;, Z;) — Homx (Y, Z) is a bijection.

(c) For every i’ € I and a finite presented morphism Y — Xy in Schy, the map
colim;>y Homy , (X;,Y) — Homyx , (X,Y") is a bijection.

(d) For every finitely presented morphism f :Y — X in Schy, there exists i and a
finitely presented morphism f':Y' — X; such that f is isomorphic to the morphism
' xx, XY xx, X = X, induced by f'.

(e) The morphism ' in (d) is essentially unique, that is, if f" ' Y" — X, is
another morphism such that f is isomorphic to Y" xx, X — X, induced by f", then
there exists v > 14,7 such that f' xx, X, = f" xx, X,.

(f) In the notation of (d) assume that the map f is smooth (resp. closed embed-
ding, resp. affine). Then there exists j > 1 such that Y; xx, X; — X; has the same
property.

Proof. This is standard. Namely, (a) is easy; (b) and (d) are proven in [EGA TV,
Thm. 8.8.2]; (c) and (e) follow immediately from (b). Finally, the assertion (f)
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for smooth morphisms is proven in [EGA IV] Prop. 17.7.8], while the assertion for
closed embeddings and affine morphisms is proven in [EGA IV, Thm. 8.10.5]. O

1.1.2. Unipotent morphisms. (a) Let Vary be a category of separated schemes
of finite type over k. Fix a prime number [, different from the characteristic of
k. Then for every X € Vary one can consider its bounded derived category of
constructible @-sheaves D%(X, Q;), which we denote by D?(X) or simply by D(X).
Every morphism f : X — Y in Var;, induce functors f*, f*, f., fi.

(b) Let k be separably closed. We say that X € Vary is acyclic, if the canonical
map Q, — RI'(X, Q) is an isomorphism. In particular, X = A" is acyclic.

(c) We call a finitely presented morphism f : X — Y in Schy unipotent, if it is
smooth, and all geometric fibers of f are acyclic. Notice that the assertion Lemma
LTIl (f) for smooth morphisms immediately implies the assertion for unipotent ones.

Lemma 1.1.3. Let f : X — Y be a smooth morphism in Vary. Then f is unipotent
if and only if the counit map fif* — Id is an isomorphism and if and only if the
functor f': D(Y) — D(X) is fully faithful. In this case, F € D(X) belongs to the
essential image of f' if and only if F = f'fi.F.

Proof. Since f, is a left adjoint of f', we conclude that f' : D(Y) — D(X) is
fully faithful if and only if the counit map f,f'F — F is an isomorphism for every
F € D(Y). If f is smooth of relative dimension n, then f' = f*[2n](n), hence it
follows from the projection formula that

[FF = L F20)(n) 2 A(fF e fQ) = Fo fifQ

Thus, f'is fully faithful if and only if the counit map f,f'Q, — @Q; is an isomor-
phism. Using isomorphism f' 22 f*[2n](n) once more together with the base change
isomorphism, we see that this happens if and only if for each geometric fiber Xy of
f the counit map RI' (X7, Dy,) — Q, is an isomorphism. Hence, by the Verdier
duality, this happens if and only if each Xy is acyclic, that is, f is unipotent.

Finally, if f' is fully faithful and F = f'G, then f'AF = f'f(f'G) = f/(fif'G) =
f'G = F, while the opposite assertion is obvious. O

1.1.4. Admissible morphisms. (a) We call a morphism f : X — Y in Schy
admissible, if there exists a projective system {X;};c; over Y, indexed by a filtered
partially ordered set I such that each X; — Y is finitely presented, all the transition
maps X; — X, > j are affine unipotent, and X = lim; X;. We call an isomorphism
X =2 lim; X; an admissible presentation of f.

(b) We call a morphism f: X — Y in Schy pro-unipotent, if it has an admissible
presentation X 2 lim; X; such that X; — Y is unipotent for some ¢ (or, equivalently,
for all sufficiently large i). Observe that for an admissible morphism f : X — Y with
an admissible presentation X = lim; X;, each projection X — X, is pro-unipotent.
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(c) We call X € Schy admissible, if the map X — Speck is admissible. In other
words, X is admissible if and only if there exists a projective system {X;};c; in Vary
such that all the transition maps X; — X; are affine unipotent, and X = lim; X;.
In this case we say that X = lim; X; is an admissible presentation of X. We denote
the category of admissible schemes by ASchy.

Lemma 1.1.5. The composition of admissible morphisms is admissible.

Proof. Let f: X — Y and g : Y — Z be two admissible morphisms with admissible
presentations X = lim;e; X; and Y = limjc; Y}, respectively. We are going to
construct an admissible presentation of h = go f : X — Z. To avoid discussion
about ordinals, we only consider the case I = J = N, which is sufficient for this
work.

Since fy : Xg — Y is of finite presentation, there exists ng € N and a morphism
of finite presentation fj : Xj — Y, such that fo = fg xy, Y (by Lemma [LTT(d)).
In particular, Xy = lim;>,, (X} XY, Y;). Next since f; : X7 — Xj is unipotent and
affine, there exists ny > ng and a unipotent affine morphism fj : Xj — Xg xy, Yy,
such that f; = f] xy, Y (by Lemma [T (f) and (c)). Continuing this
process, we construct an increasing sequence {n;}; and a sequence of unipotent
affine morphisms f/ : Xj — X; | Xy, Y.

Denote by h; the composition X/ RN Xi 1 Xy, | Yo, = X;_;. By construction,
h; is unipotent and affine, while the morphism X; — X| — Y,,, — Z is of finite
presentation. So it remains to show that X = lim X/. By assumption, we have
X 2 lim; X; = limy (X XY, Y'). Using isomorphism lim; Y,,, =2 Y, we conclude that
lim; X7 = lim, (X} Xy, V) = X, O

1.2. Constructible sheaves on admissible schemes.

1.2.1. Notation. (a) Every X € Schy defines an under-category X/- := X/ Vary,
whose objects are morphisms X — V in Schy with V' € Var,. To simplify the
notation, we sometimes write V' € X/- instead of (X — V) € X/-.

Notice that since the category Vary has fiber products, the category X/- is co-
filtered, that is, the opposite category (X/-)° is filtered.

(b) Denote by (X/-)*™ C X/- (resp. (X/-)* C X/-) the full subcategory of X/-
consisting of formally smooth (resp. pro-unipotent) morphisms X — V. For every
V € X/-, we denote by (X/-)/V the over-category over V.

1.2.2. Constructible Q;-sheaves. Recall that the assignment V +~ D(V) for
V' € Vary, gives rise to four functors f', f*, fi, fs.
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(a) For every X € Schy, these functors give rise to four versions of ”constructible
Qi-sheaves on X", which we denote by M (X), D(X), M(X) and D(X), respectively.
Namely, we define

e M(X) to be the (homotopy) colimit colim!(X%V)e(X/,)op D(V), taken with respect
to !-pullbacks;

e D(X) to be the colimit colim(x ,iyc(x/)er D(V), taken with respect to *-
pullb;a\cks;

e M (X) to be the limit lim!(X_,V)E(X/,) D(V), taken with respect to !-pushforwards;

) lA)(X) to be the limit lim(y_,/)¢(x/) D(V), taken with respect to x-pushforwards.
(b) Explicitly, the class of objects of M(X) is a union of classes of objects of
D(V), taken over (X — V) € X/-. Next, for every F € Ob D(V) C Ob M(X) and
F'€ ObD(V') € Ob M(X) the set of morphisms Hom s x)(F, F’) is the inductive

limit colimy, 5y Hompr) (h'F, B F'), taken over all diagrams V LU viin X/-.
The description of D(X) is similar.

(c) Likewise, objects of M (X) are collections {Fx_,v, ¢v,y» } compatible with com-
positions, where Fx_, is an object of D(V) for each (X — V) € X/-, and ¢y, is
an isomorphism fiFx_,1 — Fx_y for each morphism f:V — V' in X/-.

(d) We denote by Dx € M(X) and 1x € D(X) the images of the constant sheaf
Q; € D(k) := D(Speck).

(e) Every morphism f : X — Y in Schy induces a functor f. : Y/- — X/-, hence
induce functors f': M(Y) = M(X), f*: DY) = D(X), fi : M(X) = M(Y) and
f.: D(X) = D(Y).

1.2.3. The admissible case. Fix X € ASch, with an admissible presentation
X 2 lim X;.

(a) By Lemma [[.T1] (c), the projections {X — X;}; form a co-cofinal system in
X/, that is, a cofinal system in (X/-)°P. In particular, we have natural equivalences
M(X) 2 colim} D(X;), M(X) = lim} D(X;), and similarly for D(X) and D(X).
Since m; ; : X; = X is unipotent for all ¢ > j, it follows from Lemma [[.T.3] that the
functors m; ; : D(X;) — D(X;) are fully faithful. Thus the functors D(X;) — M(X)
are fully faithful as well.

(b) Since each X — X is pro-unipotent, we conclude from Lemma [LT.] (c) that
the subcategory (X/-)*" C X/- is co-cofinal and co-filtered. As in (a), for every
V e (X/-)*, the induced functor D(V') — M (X) is fully faithful.

(¢) Every morphism f : V' — V in (X/-)*" is unipotent. Indeed, f is formally
smooth, because both X — V' and X — V' — V are formally smooth and sur-
jective. Next, f is smooth, because f is formally smooth of finite type. Finally,
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the functor f': D(V) — D(V") is fully faithful, because both D(V’') — M(X) and
D(V) — D(V') — M(X) are such (by (b)). Thus f is unipotent by Lemma [[L.T.3

(d) We claim that we have a canonical fully faithful functor M (X) — M (X) (and
similarly, D(X) — lA)(X)) Since M(X) = colimy D(V), taken over V € (X/-)*",
it is enough to construct a system of fully faithful embeddings D(V) — M (X),
compatible with !-pullbacks. .

Fix V € (X/-)*". By the remark of (b), we have M(X) = limy,, D(V"), taken over
V' e (X/-)*"/V. Thus it suffices to construct a system of fully faithful embeddings
D(V) — D(V’), compatible with !-pushforwards. To each morphism f : V' — V
in (X/-)"n, we associate the functor f' : D(V) — D(V’), which is fully faithful
by (¢) and Lemma To show the compatibility with !-pushforwards, we have
to show that for every morphism ¢ : V” — V' in (X/-)"*", the natural morphism
a(fog) =agg'f — f'is an isomorphism. But this follows from the fact that g is
unipotent (see (¢) and Lemma [[.T.3)).

(e) By (d) and (e), for every morphism f : X — Y between admissible

schemes, we have a functor fi : M(X) — M\(X) N M\(Y) Moreover, if f is
admissible then, by Lemma [[.2.4] below, f induces a functor f,: M(X) — M(Y).

Lemma 1.2.4. If f : X — Y is an admissible morphism between admissible
schemes, then the image fi(M(X)) C M(Y) lies in M(Y) C M(Y).

Proof. Let X = lim; X; be an admissible presentation of f, and let f; : X; — Y be
the induced morphism. Then M(X) = colim; M (X;), and it suffices to show that

(fin(M(X;)) C M(Y) C M(Y). Thus we may assume that f is finitely presented.
Let Y = lim; Y; be an admissible presentation of Y. Then, by Lemma [[.T.1] (d),
there exists j € J and a morphism f; : X; — Y; in Vary such that f = f; Xy, Y.
For every 1 > j, we set X; := X xy; Y; and f; == f; Xy, YV; : X; = V..
Then X = lim,>; X; is an admissible presentation of X, and it follows from
the smooth base change that for every F € D(X;) C M(X), we have a natural
isomorphism fi(F) = (fi)(F) € D(Y;) C M(Y). O

1.2.5. Remark. Categories D(X), M(X) and J/\/[\(X) are the categorical analogs of
the spaces of locally constant functions, locally constant measures, and all measures,
respectively. This analogy works perfectl;f\ well for admissible schemes, since in this
case we have an embedding M (X) — M(X). Also f* is analog of the pullback

of functions, while fi is an analog of the pushforward of measures (compare [3.4.6]
below).

1.2.6. Morphisms of finite presentation. Let f : X — Y be a morphism in
ASchy of finite presentation. In this case, we have four additional functors f* :
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MY)— M(X), f,: M(X) = M), f': DY) = D(X) and f, : D(X) — D(Y),
constructed as follows.

Since f is of finite presentation, there exist U € (X/)*", V € (Y/-)*" and a
morphism ¢ : U — V in Vary such that f = g xy Y (by Lemma [Tl (d)). For
every V' € (Y/-)""/V we define gj, : D(V') — D(U xy V') to be the *-pullback.
Since all morphisms in (Y/-)*"/V are smooth (see [L2Z3 (c)), functors g;, give rise
to the functor g*: M(Y) = colimlv,/v D(V') — colimlv,/v DU xy V') = M(X).

It remains to show that the above functor only depends on f rather than ¢g. In
other words, we claim that there exists a natural isomorphism of functors ¢* = ¢"*
for every other morphism ¢’ : U’ — V’ such that f = ¢’ xy» Y. This is clear when
g’ is a base change of g, therefore the assertion follows from the fact that ¢ and ¢’
have isomorphic base changes (by Lemma [[.T.1] (e)).

The construction of the other three functors is similar.

A notion of a Haar measure in the case of profinite groups can be generalized to
profinite sets of the form S = lim S; such that all fibers of all projections S; — 5;
have the same cardinality. Below we define a geometric analog of this notion.

1.2.7. (Generalized) Haar measures. Let X,Y € ASch;. (a) For every V €
(X/-)*™, we denote by XV € M(X) the image of 1y, € D(V) (see[L22(d)). By a
Haar measure of X, we mean any object of M(X) of the form p*~V[2n](n), where
V e (X/-)*" and n € Z. In particular, a Haar measure always exists.

(b) If X is connected, then a Haar measure of X is unique up to a transformation
F — F[2n|(n). Indeed, we claim that for every V,V’' € (X/-)*", we have an
isomorphism pX~"'[2dim V’](dim V') = pX=V[2dim V](dim V). Since X/- is co-
filtered, we can assume that V' € (X/-)/V. Then f: V'’ — V is smooth of relative
dimension dim V' — dim V', and the assertion follows from the isomorphism

f(1y) = 1y[2(dim V' — dim V)] (dim V’ — dim V).

(c¢) If f: X — Y is finitely presented, then for every Haar measure F € M(Y)
its pullback f*(F) is a Haar measure on X. Indeed, f is obtained as a base change
of a certain morphism g : U — V in Var, (by Lemma [LT.1] (d)), so the assertion
follows from the fact that ¢*(1y) = 1y. Moreover, if X and Y are connected, then
it follows from (b) that for every Haar measure F € M(X) there exists a unique
Haar measure 7' € M(Y) such that F = f*(F).

(d) If f: X — Y is formally smooth, then for every Haar measure F € M(Y) on
Y, its pullback f'(F) is a Haar measure on X. Indeed, for every V € (Y/-)*™, we
have V € (X/-)*™ and f'(u¥ ") = X2V,

1.2.8. Tensor Product. Let X,Y € ASch,.
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(a) We have a natural functor ® : D(X) x M(X) — M(X). Namely, for every
V € (X/-)*™ we have a natural functor

@y : D(V) x D(V) = D(V) = M(X) : (A, F) —» A® F.

Moreover, for every V' € (X/-)*/V, the projection f : V' — V is smooth, hence we
have a natural isomorphism f*A® f'F = f'(A®F). Thus the functors {®v }ve(x/)
give rise to the functor ® : D(X) x M(X) — M(X).

(b) Let f: X — Y be a formally smooth morphism. Then for every A € D(Y)
and F € M(Y) we have a natural isomorphism f*A ® f'F = f'(A ® F), which
follows from the corresponding isomorphism for Vary.

(c) Let f : X — Y be of finite presentation, thus functors f* : M(Y) — M(X) and
fi : D(X) — D(Y) are defined. Then we have natural isomorphisms f*(A ® F) =
ffA® f*F and filA® f*F) = fiA® F, which follow from the corresponding
isomorphisms for Vary.

(d) By (a), each F € M(X) defines a functor - ® F : D(X) — M(X). Moreover,
since each functor - ® 1y[2n](n) : D(V) — D(V) is an isomorphism, the functor
- ® F is an isomorphism, if F is a Haar measure.

1.3. The case of ind-schemes.

1.3.1. Admissible ind-schemes. (a) We say that a functor X : Sch;” — Set is
an ind-scheme over k and write X € IndSchy, if there exists an inductive system
{X.}i € Schy such that all the transition maps X; — X are finitely presented closed
embeddings, and X = colim; X;, that is, X (-) = colim; Homgu,, (-, X;). In this case,
we will say that X = colim; X; is a presentation of X.

(b) Let Y € IndSchy and X € Schy. We say that a morphism f : X — Y is
admissible (resp. finitely presented), if there exists a presentation Y = colim; Y; such
that f is induced by an admissible (resp. finitely presented) morphism f: X — Y;.
Notice that this notion is independent of the presentation of Y.

(c) Let Y € IndSchy and X € Schy. We say that X C Y is an fp-closed subscheme,
if the inclusion X — Y is a finitely presented closed embedding. By a closed fp-
neighborhood of y € Y, we mean an fp-closed subscheme X C Y, containing y.

(d) A morphism f : X — Y in IndSchy is called admissible (resp. finitely pre-
sented), if for every fp-closed subscheme Z C X the restriction f|z : Z — Y is
admissible (resp. finitely presented). In particular, we say that X € IndSchy is
admissible and write X € AISchy, if the structure map X — Spec k is admissible.

(e) Notice that X € IndSchy, with presentation X = colim; X; is admissible if and
only if each X; € Schy is admissible. Indeed, the ”only if” assertion follows from
definition. Conversely, if each X; is admissible, then every fp-closed subscheme Y
of X is an fp-closed subscheme of some X;, thus Y is admissible by Lemma
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(f) A morphism between ind-schemes f : X — Y is called schematic (resp. and
formally smooth), if for every fp-closed subscheme Z C Y the pre-image f~1(Z) C X
is a scheme (resp. and the induced morphism f~!(Z) — Z is formally smooth).

1.3.2. Constructible sheaves. Let X € AISchy.

(a) We denote by M(X) (resp. D(X)) the inductive limit colimy M (Y") (resp.
colimy D(Y")), where Y runs over the set of fp-closed subschemes of X, and the
limit is taken with respect to fully faithful functors i, : M(Y) — M(Y”) (resp. i, :
D(Y) — D(Y")), corresponding to fp-closed embeddings i : Y — Y”. In particular,
M(X) = colim; M(X;) for each presentation X = colim; X; (and similarly, for
D(X)).

(b) For every fp-closed subscheme Y C X, we denote by dy € M (X) the extension
by zero of Dy € M(Y') (see (d)). If Y’ C Y is an fp-closed subscheme, then
we have a natural morphism dy» — dy, induced by the counit morphism it — 1d.

(c) We set M(X) := limy M(Y) (resp. D(X) := limy D(Y)), where Y is as in
(a), and the transition maps are *-pullbacks. Arguing as in [L.2.3] (e) and using the
fact that for every fp-closed embedding i : Y — Y of schemes the counit morphism
i*ix — Id is an isomorphism, we conclude that the x-pullbacks induce a fully faithful
embedding M (X) — M(X) (resp. D(X) — D(X)).

This embedding is a categorification of the embedding of the space of smooth mea-
sures (resp. functions) with compact support into the space of all smooth measures
(resp. functions).

(d) For every schematic morphism f : X — Y in AISchy, we have pullback
functors f' : M(Y) — M(X) and f*: D(Y) — D(X), while for every admissible
morphism f : X — Y in AlSchy, we have push-forward functors f, : M(X) — M(Y)
and f, : D(X) — D(Y), whose constructions formally follow from the corresponding
functors for schemes.

(e) For a finitely presented morphism f : X — Y in AlISchy, we also have functors
fi i D(X) — DY) and f*: M(Y) — M(X). If, in addition, f is schematic, we
also have a functor f*: M(Y) — M(X). Finally, for a formally smooth schematic
morphism f : X — Y we have a functor f': M(Y) — M(X).

(f) We denote by 1y € D(X) the projective system {1y }y, where Y is as in (c).

1.3.3. Haar measures. Let X € AlISchy.

(a) Note that we have a natural functor ® : D(X) ® M(X) — M(X), which
sends A = {Ay}y € D(X) and F = {Fy}y € M(X) to {Ay ® Fy}y € M(X).
Moreover, this functor restricts to functors ® : D(X) ® M (X) > M(X) and ® :

D(X) ® M(X) = M(X).



14 ROMAN BEZRUKAVNIKOV, DAVID KAZHDAN, AND YAKOV VARSHAVSKY

(b) By a Haar measure on X, we mean an element F € M(X) € limy M(Y') such
that Fy € M(Y) is a Haar measure for each Y. Note that a Haar measure on X
always exists (by [L21 (c)). Moreover, if X is connected, then a Haar measure on
X is unique up to a change F — F[2n|(n). Also, if F is a Haar measure on X, then
@ Fy : DY) - M(Y) is an equivalence for all Y, thus - ® F : D(X) — M(X) is
an equivalence.

(c) Let X be connected. Then, by [L2.1 (c), for every fp-closed connected sub-

scheme Y C X there exists a unique Haar measure p¥ € M (X), whose x-pullback
toY is ]D)y.

(d) Let F € M(Y) be a Haar measure on Y. If f: X — Y is finitely presented,
then f*F € M(X) is a Haar measure (by [LZ7 (c)). Similarly, if f: X — Y is
schematic and formally smooth, then f'F € M(X) is a Haar measure (by [LZ7 (d)).

1.3.4. Remark. The main reason why we introduced category M (X) and Haar
measures was to find a way to identify the category of ”smooth functions” D(X)
with the category of ”smooth measures” M (X).

1.4. Generalization to (ind-)stacks.

1.4.1. Definitions. (a) Let Sty is the 2-category of stacks over Speck (see [LMBJ,
3.1]), and let Artit C Stg be the full subcategory of consisting of Artin stacks of
finite type over k. Note that the 2-category Sty is stable under all small (2-)limits.

(b) Denote by St C St the full 2-subcategory consisting of X € Sty, which can
be represented by a filtered projective limit X = lim; X;, where X; € Artgt for all 7.
In this subsection we generalize notions and results defined above from Schy, to Sty.

(c) We say that a morphism f : Y — X in St is of finite presentation, if f is
equivalent to a pullback of a morphism f': Y’ — X’ in Artit. In this case, we will
say that f/: Y’ — X' is a presentation of f.

(d) We say that a finitely presented morphism f: X — Y in St} is smooth, resp.
closed embedding, resp. representable, if there is a presentation f': X’ — Y’ of f,
satisfying these properties.

1.4.2. Examples. (a) Rydh [Ry| showed that all quasi-compact and quasi-separated
DM-stacks and many Artin stacks belong to St). In particular, Schy C St) (see
[TT]). Furthermore, in these cases the transition maps can be made affine. More-
over, it follows from Lemma [[.I.] and its extension to stacks (see |Ry, App. B])
that in these cases our definitions are equivalent to the standard ones.

(b) Assume that X € Schy, is equipped with an action of a quasi-compact group
scheme G over k such that X has a G-equivariant presentation X = lim; X;, where
all X; € Vary, and all transition maps are affine. Then the quotient stack X/G
belongs to Sty
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Proof of (b). By assumption, X/G = lim,;(X;/G). Since St} is stable under filtered
limits (see Lemma (a) below), it is enough to show that each X;/G belongs to
St}.. Thus we may assume that X € Vary. By [Pel|, G can be written as a filtered
projective limit G = lim; G; of group schemes of finite type. We claim that there
exists j such that the action of G on X factors through G;. Indeed, the action map
G x X =limj(G; x X) — X factors through G; x X (by Lemma [Tl (c)). Now
the assertion follows from the equivalence X/G = lim;>; X/G;. O

Lemma 1.4.3. Let { X;}ier be a filtered projective system in Sty Then all assertions
(a)-(f) of Lemma LIl hold for Stj.

Proof. To avoid discussion about ordinals, we assume that I = N, which is sufficient
for this work.

Step 1. First we prove assertion (c) in the case when X; € Art]" for all i. Let
Spgt be the category of algebraic spaces of finite type over k. We are going to reduce
the problem to the case when X; € Spit for each 1.

Let A<, be the full subcategory of the simplicial category A with objects [0], [1], [2].
Choose a smooth surjective morphism p; : U; — X; with U; € Var,. Then p; gives
rise to the functor U, : A%, — Spl’ such that U,[0] = U;, U,[1] = U xx, U and
U,[2] = U xx, U x x, U with natural transition maps. Then the ”sheaf condition” on
St means that X; = colimyjcacr U,[j] (compare [LMB, proof of Prop 4.18]), thus
X = lim; colimpyeacr Ul )

Moreover, by induction, we can assume that the p;’s come from a morphism of
projective systems {U;}; = {X;};. Then functors U, : A%, — Sp!’ would also form
a projective system, thus we can form a limit U := lim,; U, : A%, — St} Explicitly,
we have U[j] = lim; U,[j] for each j. -

Since finite colimits commute with filtered limits, we have X = colimyjcaor UlJ].
Therefore we have an isomorphism Homy, (X, Y) = limj;;cpo» Homy,, (U[5], Y), and

similarly for Homx, (X;,Y"). Hence it suffices to show that the natural map
colim; Homx, (U;[j],Y) — Homx, (U[j],Y)

is an equivalence for all j. Since U,[j] € Spit for all i and j, we thus reduce the
problem to the case when each X; € Spit.

[terating this argument (but slightly easier), we reduce the problem first to the
case when the X;’s are schemes, then to the case of quasi-affine schemes, and finally
to the case of affine schemes. In this case, X is an affine scheme, all the transi-
tion maps are affine, and the assertion is shown, for example, in [LMB] Prop 4.15]
(compare also [Ry, Prop. B.1]).
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Step 2. Proof of (a). For each i, choose a projective system {X|;};c;, such that
X; = lim; X/;. Again, we only treat the case when [; = N for all j.

It suffices to construct a projective system of projective systems {{X;;},;}; in
Artit such that X; = lim; X;;, and the map X;;; — X is induced by the projection
{ X415}, = { X}, for each i. Indeed, this implies that X = lim;; X;; = lim; Xj;.

We construct the X;;’s by induction on i. First, we set {Xo;}; := {Xj,};. Next,
arguing by induction and using the particular case of (c¢) proven above, we find an
increasing sequence {r;}; such that the map lim; X, = X; — X, — Xy factors
though Xj, , and the compositions Xj,  — Xj = — Xo;-1) and Xj, — Xo; —
Xo(j—1) are isomorphic for all j > 0. We now set {X1,}; := {Xj, }; and continue by
induction on 4.

Step 3. Now we are ready to deduce the general case of (c¢) from the already
shown particular case. Choose X;; as in the proof of (a). By definition, a finitely
presented morphism Y — X, is a pullback of a morphism Y’ — X' in Artgt. Then
Homy, (X,Y) = Homx/(X,Y"), and Homx,, (X;,Y) = Homx/ (X;,Y”) for i > d".

Since X; = lim; Xy;, the projection X, — X’ factors through some Xy ; (by
the particular case of (¢)). Replacing Y — X’ by its pullback under X;;; — X',
we may assuine that X' = Xi’j" Since X = limizz'/JZj/ ij = limizz'/J/ X“ and
also X; = lim;>; X;; for i > ¢/, both Homx/(X,Y”) and colim Homx/(X;,Y") are
equivalent to colim;>; j Homy/(X;;, Y’) by the particular case of (c).

Step 4. Now (b) and (d) formally follow from (c) and definitions, (e) follows from
(b), while (f) follows from (c),(e), and the observation that all classes of morphisms
are stable under pullbacks. For example, assume that f; : Y; — X, is finitely
presented, and its pullback f : ¥ — X is smooth. Then there exists a smooth
morphism [’ : Y’ — X’ in Artgt, whose pullback to X is f. Using (c) and increasing
7, we may assume that the morphism X — X' factors through X;. Denote by
fi Y] — X, the pullback of f' to X;. Using (e), there exists j > i such that
Jixx, X; = f] xx, X;. Then f; xx, X, is smooth. O
1.4.4. Remark. By Lemma[l.43 (a), the subcategory St), C Sty is stable under all
filtered limits. Since Artit is stable under fiber products, we conclude that St; C Sty
is stable under all small limits.

1.4.5. Admissible (ind)-stacks. (a) Recall that to every X € Art/’ one can
associate its bounded derived category of constructible Q-sheaves D(X) = D?(X)
and bounded from above category D~ (X) = D_ (X).

Every morphism f : X — Y induce functors f*, f' : D*(Y) — D*(X) (where
D7 is either D or D~) and f, : D=(X) — D~ (Y), satisfying all basic properties of
morphisms in Vary including the base change isomorphism (see [LZI, [LZ2]). Fur-
thermore, f induces functor D(X) — D(Y), if, in addition, f is representable.
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(b) Mimicking [[LT.2], we say that a morphism f: X — Y in Artgt is unipotent, if
f is smooth, and all the geometric fibers of f are acyclic. Then Lemma holds
without any changes. Using Lemma [[.4.3] we can now generalize all the notions
defined earlier from Schy by St}, replacing Vary by Artit in all places, but we do
not require that the transition morphisms are affine.

For example, we say that X € St} is an admissible stack over k, if X = lim; X;,
where X; € Artgt for each ¢ and each morphism X; — X;,7 > j is unipotent. We
denote the category of admissible stacks by ASt.

Similarly, we define admissible morphisms, categories M (X), M~ (X) and D(X),
pullback functors f* and f', Haar measures and tensor products. Likewise, to each
admissible morphism f : X — Y in St) we associate the push-forward functor
fii: M= (X)— M~(Y).

(c) Finally, we define the category of admissible ind-stacks AISt; and extend
results from admissible ind-schemes to this setting.

1.4.6. Notation. (a) We call an admissible morphism f : X — Y in ASty strongly
representable, if f has an admissible presentation X == lim; X, such that all maps
X; — Y and X; — Xj,7 > j are representable.

(b) In the situation of (a), we have fi(M (X)) C M(Y) C M~ (Y). Indeed, arguing
as in Lemma [[.2.4] we may assume that f is representable and finitely presented.
Note that in order to check that an object of M~ (Y") belongs to M(Y") we can check
it on geometric fibers. Thus, by the base change, we may assume that Y = Speck,
in which case the assertion is standard.

(c¢) We call an admissible morphism f : X — Y in AISty strongly representable, if
for every pair of fp-closed substacks X’ C X and Y/ C Y such that f|x : X' = Y
factors through Y’, the induced morphism f|x: : X’ — Y” is strongly representable.
In this case, we have fi(M (X)) C M(Y) (by (b)).

(d) We call a morphism f: X — Y in AISt, stacky, if f~'(X’) is a stack (rather
than an ind-stack) for every fp-closed substack X’ C X. In this case, we have a
functor f': M(Y) — M(X).

Lemma 1.4.7. (a) Let G be an affine algebraic group over k, U C G a normal
unipotent subgroup, and H = G/U. Assume that H acts on X € Vary, and that G
acts on X wia the projection G — H. Then the natural morphism of quotient stacks
p: X/G — X/H is unipotent.

(b) In the example[1.7.9 (b) assume that presentation X = lim;e; X; is admissible
and that G' has a presentation G = lim;c; G, where each G is an algebraic group,
and each homomorphism G; — G’ is unipotent (as morphism). Then the quotient
stack X/G is admissible.
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Proof. (a) Since p is smooth, it remains to show that p' : D(X/H) — D(X/Q)
is fully faithful or, equivalently, that the counit map pp' — Id is isomorphism (by
Lemmal[l.T.3]). Property of being an isomorphism can be checked on geometric fibers.
Since each geometric fiber of p is pt /U, we reduce to the case when X = pt = H,
thus G = U. Let ¢ : pt — pt /U be the natural projection. Then p o ¢ = Id, thus
¢'p' = 1d, so it remains to show that ¢' is fully faithful. But ¢ is unipotent, because
its geometric fiber is U, thus the assertion follows from Lemma [[LT.3

(b) Assume that I = J = N. Arguing as in (b) and renumbering indexes if
necessary, we may assume that the action of G on X; factors through G; for each
i. Moreover, by (a), for every i, the composition X;1/G;r1 — X;/Giy1 — X; /Gy is
unipotent. Since X/G 2 lim; X;/G;, this implies that X /G is admissible. O

1.5. The geometric 2-category. Let C' be a 2-category, whose objects are X €
Vary; for every X, Y € Vary, the category of morphisms Homg (X, Y') is the category
D(X x Y); and the composition D(X x Y) x D(Y x Z) — D(X x Z) is the map
(A, B) = (pxz)1(py A®p3 ,B). In this subsection we construct a similar 2-category
with objects X € AISty.

1.5.1. Category of half-measures. For X,Y € AlSt;, we are going to define a
category Mx (X x Y') of "measures along X and functions along Y.

(a) For every morphism fxg: Uy xV; — Uy x V5 in Artgt, we denote by f'x g* the
functor (f xIdy, ) o (Idy, xg)* = (Idy, xg)* o (f xIdy,)" : D(Uy x Vo) — D(Uy x V4).

(b) For each X,Y € ASty, we define Mx(X x Y) to be the inductive limit
colim!(’]*e(X/.)op’Ve(y/.)op D(U x V), with respect to functors f' x ¢g*, defined in (a).

(c) For X, Y € AIStg, we define Mx(X xY) := colimx/y» Mx/(X' x Y’), where
X' € X and Y/ C Y are all fp-closed substacks, and the transition maps are
pushforwards with respect to closed embeddings.

(d) Also, replacing D by D~ in (a)-(c), we define a category My (X x Y).

1.5.2. Functoriality of half-measures. Let X and Y be admissible schemes.

(a) Note that the projection px : X x Y — X give rise to the pullback functor
px  M(X) - Mx(X xY), which maps F € D(V) C M(X) to the image of
F € D(V x Speck). Similarly, py : X XY — Y gives rise to the pushforward
functor (py )1 : Mx(X xY) — D(Y), which maps F € D(U x V) C Mx(X xY) to
(py W F € D(V) C D(Y) for every U € (X/-)"" and V € (Y/-)".

(b) As in[[.2.8], we define a functor ® : Mx(X xY) x My (X xY) - M(X xY),
induced by the tensor product on D(U x V') for every U € (X/-)*" and V € (Y/-)"".

(c) By (a) and (b), each B € My (X x Y) defines a functor M(X) — M(Y),
given by the rule B(F) = (py )i(p%xF @ B). Moreover, this formula defines a functor
My (X X Y) x M(X) = M(Y).
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(d) For every X,Y, Z € ASchy, we have a natural functor
My (X x Y) x My(Y x Z) — My(X x Z),

defined by the rule (A, B) — (pxz)(pxyA ® py,B), where pxy is the projection
X XY xZ — X xY, and similarly pyz and pxz. Here piy A € My (X xY x Z),
Py B € Mz(X xY x Z) (as in (a)), thus py A®@py B € My, z(X xY x Z) (as
in (b)), thus (pxz)h(piy AR py,B) € Mz(X x Z) (as in (a)).

(e) Assertions (c¢)-(d) extend to the ind-schemes almost without changes, but with
extra care. For example, in (c), though p5F ¢ Mx(X x Y), if Y is not a scheme,
we do have pi F @ B € M(X xY).

1.5.3. Extension to pro-categories and ind-stacks. (a) By [[5.2 (c¢)-(e), for
every X,Y, Z € AlSchg, we have functors Pro My (X xY') x Pro M (X) — Pro M(Y)
and Pro My (X x Y) x Pro Mz(Y x Z) — Pro Mz(X x Z).

(b) Note that for each X € AISt; there is a natural (fully faithful) embedding
M~(X) < Pro M(X). Indeed, if X € Art’, then the embedding sends F € D~ (X))
to lim,, (727"F) € Pro D(X), where 727" is the truncation functor. The extension
to ASt, and AISt, is straightforward.

(c) We claim that both functors in (a) exist for X,Y,Z € AISt,. For example,
by definition, we have a functor My (X X Y) x M(X) - M~ (Y) C ProM(Y') (see
(b)), which extends to the functor Pro My (X x Y) x Pro M(X) — Pro M(Y').

1.5.4. The geometric 2-category. Let X,Y, Z € AlSch,,.

(a) By [LE3 every B € Pro My (X x Y) defines a functor M(X) — Pro M(Y).
We denote by Homgepn, (X, Y') the full subcategory of Pro My (X x Y'), spanned by
objects B such that B(F) € M(Y) C Pro M (Y') for every F € M(X). By definition,
each B € Homg,,(X,Y) induces a functor M(X) — M(Y).

(b) Note that the second functor of [L5.3] (a) induces a functorial associate com-
position morphism o : Homgepm (Y, Z) x Homgeon (X, Y) = Homgeom (X, Z).

(c) We claim that for every X € AISt; there exists By, € Homgeom (X, X) to-
gether with natural isomorphisms Byq, (F) = F for every F € M(X), Bla, o B= B
for every B € Homgeon (Y, X), and B’ o By, = B’ for every B’ € Homeom (X, Y).

Proof. Assume first that X € ASt;. Then for every V € (X/ Art]")*", the diagonal
morphism Ay : V. — V x V is representable, so we can form an object By, =
Ayi(ly) € D(V x V) C Mx(X x X). Moreover, it is not difficult to see that
the By, ’s form a filtered projective system, so we can define an object B, :=
limy Bia, € Pro Mx (X x X).

The extension of this construction to X € AISt; and the proof that Big, satisfies
all the required properties is standard. U
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(d) By (b) and (c), there exists a 2-category Myeom, whose objects are X € AISty,
the category of morphisms is Homyy,,,,, (X,Y") := Homge,m(X,Y'), the composition
is the map from (b), and the unit in Homyy,,,,, (X, X) is B,

1.5.5. The 2-category of admissible correspondences.
(a) Let X,Y € AlISt,. By an admissible correspondence (g, f) : X --+ Y we mean

a diagram X <& Z EN Y, where g is stacky and formally smooth, and f is admissible
and strongly representable (see [L4.6]). For every two admissible correspondences
X+Z—Y and Y« Z'—=T, we can form their composition X<+ 7 xy Z'—=T, which
is an admissible correspondence X --+ T.

We denote by Corry, the 2-category, whose objects are X € AISty, for every XY €
AlISty, the category Morcey, (X,Y) is the category of admissible correspondences
X --+ Y, and the composition is as above.

(b) Every admissible correspondence (g, f) : X --» Y gives rise to the functor
fiog': M(X) — M(Z) — M(Y) (see A0), and similarly to the functor

.
! . X
frogh: ProMx(T x X) = Pro Mz(T x Z) = Pro My (T x Y)

for each T € AISt;,.

(c) We claim that for every B € Homgeom (T, X) C ProMx(T x X) and every
F € M(T), we have an equality (fig'B)(F) = fig"(B(F)) € M(Y) C ProM(Y),
thus fig'B € Homyeon (T,Y).

It is enough to consider two cases: f = Idy, and g = Idy. In the first case, the
assertion follows from the identity ¢'(p%F ® B) = ¢*p’F ® g'B, which holds because
g is formally smooth. In the second case, the assertion follows from the projection
formula fi(f*pixF @ B) = pkF @ fi5.

(d) By (c), to every admissible correspondence (g, f) : X --+ Y one can associate
an object B, ; := fig'(Biay) € Homgyeom(X,Y). Moreover, the assignment X — X,
(g, f) — By s can be upgraded to a functor of 2-categories Corry — Mgeom.

2. CATEGORIFICATION OF THE HECKE ALGEBRA
2.1. Loop spaces.

2.1.1. Notation. Set K := k((t)), O := E[[t]]], and fix n € Z>.

For an affine scheme of finite type X over K (resp. O), we denote by LX (resp.
L*tX, resp. LFX ) the functor Alg, — Set from k-algebras to sets, defined by
the rule LX(R) := Homg (Spec R((t)), X) (resp. LT X(R) := Homp(Spec R[[t]], X),
resp. L X (R) := Homp(Spec R[t]/(t"11), X)).

It is well known that LX (resp. LTX, resp. L}X) is represented by an ind-
scheme (resp. scheme) over k. Indeed, when X = A™ the assertion is easy, while
the general case follows from the fact that if X < A™ is a closed embedding over
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K (resp. O), then LX < LA™ (resp. LTX — LTA™ resp. LTX — LTA™)is a
closed embedding.

We call LX (resp. LX) the loop ind-scheme (resp. scheme) of X. Note that the
natural homomorphism k[[t]]] — k[t]/(t"") induces a projection p, : LT X — LT X.

Lemma 2.1.2. Let f : X — Y be a pro-unipotent morphism of affine schemes over
k, and let X' C X be an fp-closed subscheme. Then for every x € X'(k) there exist
fp-closed neighborhoods X" C X' of x and Y" C Y of f(x) such that f induces a
pro-unipotent morphism X" — Y.

Proof. Choose an admissible presentation X 22 lim; X; of f such that X; — Y is
unipotent for all i. Then there exists ¢ and an fp-closed subscheme X! C X; such
that X’ C X is the preimage of X] C X; (by Lemma [Tl (f)). Let x; € X] be the
image of z. It is enough to find fp-closed neighborhoods X! C X/ of z; and Y” C Y
of f(z) such that f; : X — Y induces a unipotent morphism X! — Y. Indeed, in
this case the preimage X” C X' of X/ C X] is an fp-closed neighbourhood of x and
the induced map X” — X!” — Y” is pro-unipotent. Replacing f by X; — Y, we
can thus assume that f is unipotent.

Since X’ < X and f : X — Y are finitely presented morphisms between affine
schemes over k, there exist a unipotent morphism f, : X, — Y, of affine schemes
of finite type over k, a closed embedding X! — X, and a morphism 7 : Y — Y,
such that X’ — X — Y is a pullback of X! — X, — Y, under 7. Let z, € X, be
the image of x, let X” C X’ be the preimage of {z,} C X/, and let Y C Y be the
preimage of {f.(7,)} C Y,. Then f induces an isomorphism X” = Y” thus X”
and Y are the required fp-closed neighbourhoods. O

Lemma 2.1.3. Let f : X — Y be a morphism of affine varieties over K, let
Lf:LX — LY be the induced morphism of loop ind-schemes, and let U' C LX be
an fp-closed neighbourhood of x € X (K) = LX (k).

(a) If f is étale at x, then for every sufficiently small fp-closed neighborhood
U, C LX of x the restriction Lf|y, : Uy — LY is an fp-closed embedding, thus U,
can be viewed as an fp-closed neighborhood of f(x) € LY.

(b) If f is smooth at x, then there exist fp-closed neighborhoods U, C U C LX
of x and Vi C LY of f(x) such that Lf|y, defines a pro-unipotent morphism
Um — Vf(m).

Proof. (a) It is enough to show that there exists an fp-closed neighborhood U, C LX
of x such that Lf|y, : U, — LY is a finitely presented closed embedding, because
in this case this will be true for every smaller neighborhood.

Assume first that X = Y = A" Changing coordinates, we may assume that
r = f(x) =0 = (0,...,0). Composing f with the linear map (df|5)~", we can
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assume that the differential df|y; = Id. Now the assertion is simply a version of the
formal inverse function theorem.
To reduce the general case to the particular case, shown above, we argue as follows.
If f is an open embedding, the assertion is easy (or it can be shown by the same ar-
guments as below). Therefore we can replace X and Y by open affine neighborhoods
of x and f(z), respectively, thus assuming that X is a closed subscheme of Y x A",

given by equations g; = ... = g, = 0 for certain regular functions g; € K[Y x A"].
Choose a closed embedding ¥ < A™ and a lift g; € K[A™ x A"] of each g;.
Consider the closed subscheme X C A™ x A", given by equations g; = ... =g, = 0.

Then the projection prym : X — A is étale at x € X C X.
Consider morphism f = (praym; g1, ..., gn) : A X A — A" x A™. Then f is étale

at r € X C A™ x A" and the restriction of f to Y x {0} is f. Thus the assertion

for f follows from that for f, and the proof is complete.

(b) Using (a), we can replace X by a Zariski open neighbourhood of z. Thus
we can assume that f : X — Y lifts to an étale morphism g : X — Y x A" such
that g(x) = (f(z),0). Using (a) again, we can assume that X = Y x A" f is
the projection ¥ x A™ — Y, and z = (y,0). Choose any fp-closed neighbourhood
V C LY of y, and set U :=V x LTA"™. Then U is an fp-closed neighborhood of z,
and f induces a pro-unipotent morphism pr : U — V. Replacing U’ by U' N U, we
can assume that U’ C U. Now the assertion follows from Lemma applied to
pr:U —V. U

2.2. The categorical Hecke algebra.

2.2.1. Notation. (a) Let G be a connected semisimple and simply connected group
over k, and let LG := L(Gk) be the loop group ind-scheme of G (see Z1.T]).

(b) We fix a Borel subgroup B C G and a maximal torus 7' C B. Let I C LG
be the Iwahori subgroup scheme corresponding to B, that is, I is the preimage of
B C G under the projection py : LTG — LiG = G (see 21.1)).

(c) Let F1 be the affine flag variety LG/, and let W be the affine Weyl group of G.

For every w € W, we denote by FI=* C FI the closure of the I-orbit Y,, := Iw C FI,
and we denote by LG=* C LG the preimage of FI=*.

(d) By a standard parahoric subgroup scheme we mean an fp-closed subgroup
scheme P C LG, containing I. Denote by Par the category, corresponding to the
partially ordered set of standard parahoric subgroup schemes of LG.

(e) For each P € Par, we let PT C P be the pro-unipotent radical of P. Explicitly,
we have I = py'(U) € LG, where U is the unipotent radical of B, and P* C P
is the largest normal subgroup scheme, contained in I". We also let Lp := P/P™
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be the ”"Levi subgroup of P”, let Wp C W be the corresponding parabolic Weyl
subgroup, and set tk P := rk(Lp)%" and Flp := LG /P.

(f) For each P € Par and n € N, we denote by P;; C P* the n-th congruence
subgroup scheme of P*. In particular, we have P& = P*. Explicitly, for n > 0,
we denote by V C LfU C L}G the kernel of the projection LTU — L' U, set
I7 .= p (V) C LTG, and let P be the largest normal subgroup scheme of P,
contained in I} .

2.2.2. The categorical Hecke algebra. (a) For each w € W,P € Parand n € N,
the quotient LG=* /P is a quasi-projective scheme. Namely, it is an I/P; -torsor
over the projective scheme FI1=*.

Moreover, for each m > n, the projection LG=¥ /P — LG=V/P} is a P /P -
torsor, thus an unipotent morphism. Since LG=* & lim,, (LG="/P}), we conclude
that LG=Y is an admissible scheme, and { LG=*/P;},, is an admissible presentation
of LG=v. -

(b) For every w’ > w in W, the inclusion LG=* < LG="" is a pullback of
a closed embedding FI=¥ — FISY" in Varg, thus it is finitely presented. Hence
LG = colim,, LG=" is an admissible ind-scheme, thus the construction of [.3.2]
provides us with categories M (LG) and D(LG).

Category D(LG) is a categorical counterpart of smooth functions with compact
support on G(F'), while M(LG) is a categorical counterpart of the Hecke algebra.

2.2.3. Basis of fp-closed neighborhoods. For every v € LG(k), the set {711},
form a basis of fp-closed neighborhoods of 4. Indeed, since vI} C LG is a preimage
of the closed point [y] € LG/}, we get that vI7 C LG is an fp-closed neighborhood
of 7. Conversely, let Y C LG is an fp-closed neighborhood of . Using isomorphism
LG = lim,(LG/I}), we conclude that Y is a preimage of some closed subscheme
Y C LG/I} (by Lemma [LT1l (f)). Since y € Y, we get [y] € Y, thus 717 C Y.

2.2.4. The convolution. (a) The multiplication map G x G — G induces a
multiplication map m : LG x LG — LG. Moreover, m can be written as a com-
position of an isomorphism (LG)?> — (LG)?* : (z,y) — (z,xy) and the projection
p:(LG)? — LG : (z,y) > y. Since LG is admissible, we conclude that p and hence
also m is admissible. Therefore m defines the functor m, : M((LG)?) — M(LG),
and we denote by * the convolution A * B := m(A K B). Since multiplication
m is associative, the convolution % equips M(LG) with a structure of a monoidal
category (without unit).

(b) Arguing as in (a), we see that the standard action (g, h)(x) := gzh™! of G*
on G induces the action of the group ind-scheme (LG)? on LG, and thus induces an
action of the monoidal category M ((LG)?) on M(LG).



24 ROMAN BEZRUKAVNIKOV, DAVID KAZHDAN, AND YAKOV VARSHAVSKY

(c) For P € Par and n € N, let 0p+ € M(LG) be the corresponding J-measure (see
L32(b)), and let pr : LG — LG /P be the projection. Then for every A € M(LG)
we have a natural isomorphism A * dp+ = pr' pr, A.

Indeed, consider the Cartesian diagram

LGxPr % LG

g |
¢ 2 LG/P,
where p is the projection. Since all morphisms are formally smooth, we have a
canonical isomorphism A * dp+ = mip' A = pr' pr, A.
(d) Note that dpy = pr'dy, where &, € M(LG/Py}) is the d-measure at [1]. Since
P, is pro-unipotent, we conclude from (c) that dp+ *dp+ = pr' pr, opt = pr' o, = Opit-

2.2.5. The equivariant case. (a) Each P € Par acts on LG by the adjoint action,
so we can form the quotient stack LITG. We claim that IiTG is an admissible ind-stack,
hence we can form a category M(£%).

Indeed, note that P = lim,, P/P;", and all the transition maps are unipotent. We
say that w € W is P-maximal, if w € W be the longest element in the double coset
WpwWhp. For every P-maximal w, the scheme LG=¥ C LG is P x P-invariant, hence
AdP-invariant. Since LG=* 2 lim,(LG=*/P}) is an admissible P-equivariant

presentation of LG=¥, the quotient 2=~ is an admissible stack by Lemma [.4.7]

P
. . . LG - . . c . LGSw
(b). Finally, since the quotient 55 is the inductive limit of the =5

P-maximal w’s, the assertion follows.

(b) Note that the multiplication map m : LG x LG — LG induces a diagram
% X LITG < % SN %. In particular, m gives rise to the convolution * on
M(££), defined by the rule A« B :=myr'(AXB). The convolution * equips M (££)
with a structure of a monoidal category. Moreover, for every P C Q in Par, the

I-pullbacks M(%) — M(£8) and M(£¢) — M(LG) are monoidal.

’s, taken over

2.2.6. Bi-invariant measures.

(a) By 224 (c¢) and Lemma [LT.3 for every P € Par and n € N the essential
image of the embedding D(LG/P;) — M(LG) consists of all A € M(LG) such that
Axdp:r = A. Similarly, the essential image of the embedding D(P}\LG) < M(LG)
consists of all A € M(LG) such that dps x A = A.

(b) Since LG = lim,(LG/P;) and LG = lim,(P;}\LG) are admissible pre-
sentations of LG, we have M(LG) = colim, D(LG/P;) = colim, D(P;\LG).
We conclude from (a) that for every A € M(LG) there exists n € N such that
Ax0pr = A= 6pt A, or, equivalently, dpr * A * dp+ = A
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(c) Since dp+y2 € M((LG)?) satisfies p+)2(A) = dp+ * A% dp+, we conclude from
(b) that for every A € M(LG) there exists n € N such that §p+.(A) = A.

(d) Set Mp+(LG) = M(PJ\LG/P}). Arguing as in (a), the essential image
of the embedding Mp+(LG) — M(LG) consists of all A € M(LG) which satisfy
opt * A*dp+ = A. In particular, Mp+ (LG) C M(LG) is the monoidal subcategory
with unit dp+. It now follows from (b) that M(LG) = colim,, Mp+(LG), which is a
categorical analog of the fact that the Hecke algebra is idempotent.

(e) Using the description of Mp+(LG) C M(LG) in (d), one sees that the
monoidal action of M ((LG)?) on M(LG) (see22Z4 (b)) induces the monoidal action
of M(Pi)z((LG)z) on Mp+(LG).

2.3. Averaging functors.

2.3.1. Notation. (a) Consider the map a : (LG)> — LG given by the formula
a(z,y) = zyx~'. As in 224 (a), the map a is admissible, and we denote by
a; : M((LG)?) — M(LG) the corresponding functor. Every X € M(LG) gives rise
to the functor Ad" : M(LG) — M(LG), defined by the rule F s a(X X F).

(b) More generally, every morphism f : X — LG of ind-schemes gives rise to the
morphism a; : X X LG — LG : (z,y) — f(x)yf(x)~'. Arguing as in 224 (a), we
conclude that for each admissible X, the functor ay is admissible. Hence for each
X € M(X), morphism f induces a functor M(LG) — M(LG), given by the rule
F = (ap) (X R F), which we denote by Ad*** or Ad/**, depending on the context.

(c) For P € Par, we denote by LG x¥ LG the quotient of LG x LG by P, acting
by the action g(z,y) := (xg~', gyg™!). Consider diagram

Flp x% & LG P LG % LG,
where pr is the projection [z,y] — ([z],[y]), and @ is the map [z, y] —~ zyx—".

Note that @ is finitely presented, because it can be written as the composition of
the isomorphism LG x¥ LG — Flp xLG : [z,y] = ([z], zyz™"), and the projection
Flp x LG — LG. Therefore every X € D(Flp) = M(Flp) gives rise to functors

LG

Adgy - M( 5 ) = M(LG) : F + @pr' (X X F) and

Adg D(%) — D(LG) : F = a@pr (X X F).

(d) For every Q € Par, the diagram of (c) descends to the diagram
LG

(@Q\Fle) x 57— (QULG) <P LG — .
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Therefore for every X € M(Q\ Flp) the formula as in (c) gives rise to the functor
Adp.q : M(5E) — M(E5). ~

By the smooth base change, if X € M(Flp) is the l-pullback of X and = is the
projection LG — %, then 7' o Adg;Q is naturally isomorphic to Adg.

Lemma 2.3.2. (a) Let f : X — LG be a morphism in AlSchy such that the
composition g : X ENY FeRur Flp is admissible. Then for every X € M(X), the maps
M%) = M(LG) AT M(LG) and AdS™ M(%) — M(LG) are isomorphic.

(b) Let p € M(%5) be a Haar measure, X an object of D(Flp) = M(Flp) and
F e D(%). Then we have a natural isomorphism

Adg™(F) @ m(p) = A (F @ ).
Proof. (a) Consider diagram

X x LG -1 LG xP LG — LG

Id le Prl

X x ko Pl LG
where fis the map (z,y) — [f(z),y]. Since the square is Cartesian, while 7 and pr
are formally smooth, we have the base change isomorphism fi(Id x7)" = pr'(g x Id),.
Since @o f = ay, we get the desired isomorphism (a;), (X X7'(-)) 2 @ pr'(g(X)X-).
(b) Since @ is finitely presented, we get an isomorphism
Adp”™(F) @ m'(n) = @ pr* (X RF) @ (1) = ay(pr (X R F) @ @' (),
(see (¢)), while since pr is formally smooth, we have a natural isomorphism

Adp (F @ p) = apr' (X RF) @ (Ipyp 8 p)) = @(pr' (X B F) @ pr'(1py, X p))
(see (b)). Thus it remains to show that pr'(1py, X pu) 2@ 7' (u).

Note that both sides of the last isomorphism are Haar measures (see (d)),
and the morphism i : LG — LG x¥ LG : g — (1,g) is finitely-presented. Using
27 (c), it is enough to show an isomorphism i* pr'(1p, X p) = i*@*7'(u). The
right hand side is 7'(x), because @ o i = Id. To see that the left hand is 7'(u), we
use the definition of ¢* and the fact that the diagram

LG —— LG xP LG

ﬂl prl

LG

[1] x L& ——  Flp x££

P
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is Cartesian. O

2.3.3. Particular case. (a) Every locally closed subscheme Y C Flp gives rise
to the constant Q-sheaf 1y € D(Y) C D(Flp) = M(Flp). We denote the functor
Ady : M(58) — M(LG) from 2301 (c) by AvY and call it the averaging functor.

(b) Assume now that Y is Q-invariant. Then there exists a unique Haar measure
ly € M(Q\Y) ¢ M(Q\Flp), whose !-inverse image to D(Y) is 1ly. We denote
by Avg the functor Ad%}*:Q : M(KE) — M(%) from 2311 (d). By 2311 (d), the
composition of Avg and the !-pullback M(%) — M(LG) is AvY.

(c) For every P € Par, the subscheme P /I C F1 is P-invariant, thus the construc-
tion of (b) gives rise to the functor AVIIZ/I P M(EE) — M(%).

(d) For every morphism f : X — LG, where X € Vary, we denote by Av™ the
functor Ad*"* : M(LG) — M(LG) from 2311 (b).

3. THE STABLE CENTER CONJECTURE
3.1. Classical theory.

3.1.1. Notation. (a) Let F' be a local non-archimedean field with residue field I,
let Wr be the Weil group of F', and let W} be the Weil-Deligne group.

(b) Let G be a connected reductive group over F', which we for simplicity assume
to be split, and let G be the connected Langlands dual group over C.

(c) Let R(G) be the category of smooth complex representations of G(F'), and let
Irr(G) be the set of equivalence classes of irreducible objects in R(G).

3.1.2. The Bernstein center. (a) Let Zg = Z(R(G)) be the Bernstein center
of G(F), that is, the algebra of endomorphisms of the identity functor Idg) (see
[Ber]). By definition, Zg is a commutative algebra over C.

(b) Each z € Zg defines an endomorphism z|, € End 7 for every 7 € R(G). In
particular, by the Schur lemma, each z € Zg defines a function f, : Irr(G) — C
such that z|, = f.(m)Id, for all # € Irr(G). Moreover, the map z — f, is an algebra
homomorphism Zg — Fun(Irr(G), C), which is known to be injective.

(c) Each z € Z; defines an endomorphism 24 of the Hecke algebra H(G(F)),
commuting with left and right convolutions. For every (7,V) € R(G), v € V and
h € H(G(F')), we have an equality z(h(v)) = (z4(h))(v).

(d) The action of G(F)? on G(F), defined by the formula (g, h)(x) := gzh™" gives
to H(G(F)) a structure of an H(G(F)?)-module. Moreover, the map z +— 23, defines
an algebra isomorphism Zg = Endy g (ry2)(H(G(F))).

3.1.3. The stable Bernstein center. (a) Each z € Z; defines an endomorphism
Zreg Of the regular representation C2°(G(F)) of G(F') x G(F'). Hence z € Zg gives
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rise to an invariant distribution v, € Dist®®)(G(F)) such that I/Z(gb) = Zreg(L*(9)) (1)
for all p € C°(G(F)), where ¢ : G(F) — G(F) is the map g — ¢g~!

(b) For each z € Zg the invariant distribution v, € Dist® ) (G (F )) can be char-
acterized by the condition that v, x h = z4(h) for every h € H(G(F)). Moreover,
the map z — v, identifies Zg with the set of all v € Dist® ) (G(F)) such that
v+ h € H(G(F)) for every h € H(G(F)).

(c) We define the stable center of G(F) to be the linear subspace Z& C Zg
consisting of all of z € Zg such that the invariant distribution v, on G(F) is stable.

3.1.4. The stable center conjecture. (a) The subspace Z& C Z is a subalgebra.
(b) There exists a bijection x + A, between characters Hom(Z, C) and the set of
G-conjugacy classes of Frobenius seml—sunple continuous homomorphisms Wr — G.

3.1.5. Remark. The Lie algebra analogue of conjecture B.I.4l (a) follows from a
theorem of Waldspurger [Wa] which says that the space of stable distribution on the
Lie algebra G of G is invariant under the Fourier transform.

Namely, let H(G(F')) be the space of smooth measures with compact support.
Define the Bernstein center Zg of G(F') to be the space of invariant distributions
v € Dist“")(G(F)) such that vxh € H(G(F)) for all h € H(G(F)), and let Z& C Zg
be the subspace of stable distributions.

To see that Z§ C Zg is a subalgebra, recall that the Fourier transform converts a
convolution of measures into a product of functions. Therefore v € Dist?F)(G(F))
belongs to Zg if and only if its Fourier transform F(v) is locally constant. By
the theorem of Waldspurger, v € Zg is stable if and only if F(v) is constant on
every stable orbit in G(F')"**. Now the assertion follows the obvious remark that the
product of constant functions is constant.

3.1.6. Relation to the local Langlands conjecture.

(a) Recall that the local Langlands conjecture asserts the existence of a decompo-
sition Irr(G) = L,ITy, where X runs over the set of Langlands parameters W, — G,
and II, is a finite set, called the L-packet, corresponding to \.

(b) Assume that the decomposition Irr(G) = U,II, from (a) is known. Then
conjecture .14 (a) has a more explicit form, saying that Z& C Zg consists of all
z € Zg such that the function f, : Irr(G) — C is constant on each L-packet.

(c) Moreover, the bijection of B.I.4] (b) is supposed to be compatible with the
decomposition of (a), that is, for each A : Wi — G, 7 € II, and xy € Hom(Zg, C)
such that A, = Ay, we have an equality x(z) = f.(r) for each z € Zg.

3.1.7. The decomposition of R(G).

(a) Let R(G)" C R(G) (resp. R(G)”° C R(G)) be the full subcategory con-
sisting of representations m € R(G), all of whose irreducible subquotients have
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depth zero (resp. positive depth) (see [MPI, [MP2]). Set Z2 := Z(R(G)°) and
750 = Z(R(G)>Y).

(b) It follows from results of Bernstein [Ber] and Moy-Prasad [MP1l, [MP2] that
the category R(G) decomposes as a direct sum R(G) = R(G)°® R(G)>°. Therefore
the Bernstein center Zg decomposes as a direct sum Zg = Z2 & Zgo. Similarly, the
set Irr(G) decomposes as a disjoint union Irr(G) = Irr(G)° U Irr(G)>°.

(c) Explicitly, Z% C Zg consists of all z € Zg such that z|, = 0 for all 7 €
R(G)>". Hence the unit 2° € Z2 C Zg is the projector to the depth zero spectrum.
In particular, z° can be characterized by the condition that f.o(mw) = 1 for all
7 € Trr(G)° and foo(n) = 0 for all 7 € Trr(G)>°. We also set Z5° := Z2 N Zg.

3.1.8. Depth zero representations. (a) It follows from results of Bernstein [Ber],
Moy-Prasad [MP1], MP2] and Deligne-Lusztig [DL] that the category R(G)° further
decomposes as a direct sum R(G)? = @pR(G)?, indexed by the set of conjugacy
classes of semisimple elements 6 € G such that 67 is conjugate to 6.

(b) The decomposition of (a) implies a decomposition Z% = @42 of the Bernstein
center. Each Z is a unital subalgebra, and we set Z: .= Z¢ N Z!.

(c) The decomposition from (a) induces a decomposition Irr(G)° = U, Irr(G)°.
In particular, to every 7 € Irr(G)° one can associate a semisimple conjugacy class
() € G such that ()7 is conjugate to O(r) and 7 € Irr(G)?).

3.1.9. The depth zero local Langlands correspondence. (a) One expects that
the local Langlands correspondence preserves depth. In particular, a representation
7w € Irr(G) is of depth zero if and only if the corresponding Langlands parameter
AW — G is tamely ramified, that is, trivial on the wild inertia subgroup of Wig.

(b) We choose a lift Fr € Wy of the Frobenius element. This choice defines a
bijection between the set of tamely ramified Langlands parameters A : W — G and
the set of conjugacy classes of pairs (s,u) € G such that s € G is semisimple and
sus™! = ud.

(c) To summarize, the depth zero local Langlands correspondence predicts that
Irr(G)° has a decomposition Irr(G)° = UyIl(,,), parameterized by pairs (s, u) as in
(b). In particular, to every 7 € Irr(G)°, one can associate a pair (s, u) = (s(m), u(r))
(defined up to conjugacy) such that = € Il ,y. Moreover, the semisimple conjugacy
class 0(m) from B.I.8 (c) is supposed to coincide with the semisimple part of u(7).

3.1.10. Known cases. In the case when the group G is adjoint, Lusztig [Lusl]
Lus3] parameterized the set Irr(G)!, (that is, Irr(G)? with § = 1) of irreducible
unipotent representations, thus verifying a (more refined version of) the Langlands
conjecture in this case. In particular, for every m € Irr(G)?, Lusztig associated a
semisimple conjugacy class s(m) € G.
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Taking into account recent works of Lusztig and others, it looks like the decom-
position (c) is within reach. Therefore we assume from now on that the pair
(s(m),0(m)) € G is defined for every 7 € Irr(G)°.

Now we can restate the stable center conjecture for depth zero representations in
a more precise form.

3.1.11. The depth zero stable center conjecture.

(a) The subspace Z(S;t 0 Z2 is a unital subalgebra. In particular, the projector
2 € Zq to the depth zero spectrum is stable.

(b) An element z € Z% belongs to Z5° if and only if f.(7') = f.(7") for all
7' 7" € Irr(G)° such that s(7’) = s(7”) and 6(7") = 0(=").

(c) There exists a unique bijection (s, #) = X(s) between the set of G-conjugacy
classes of pairs of semisimple elements (s, 0) € G such that s6s~! = 07 and characters
Hom(Z5", C) such that for every 7 € Irr(G)? and z € Z5° we have an equality

J2(7) = X(s(m),00m)) (2)-

3.2. Categorification of the Bernstein center. In this subsection we are go-
ing to construct the categorification of the Bernstein center, the complete details
of which will appear in the forthcoming work [BKV2]. As a first step, we need
to upgrade all constructions from previous sections from derived categories to the
corresponding oo-categories.

3.2.1. Derived oo-categories of constructible sheaves.

(a) Recall that to every X € Vary or, more generally, X € Artit one can associate
the oo-category D(X), whose homotopy category is D(X). Moreover, to every
morphism f : X — Y in Artit, one can associate functors f*, f., f', fi between
D(-)’s, lifting the corresponding functors between D(-)’s (see [LZ1) [LZ2]).

Notice that functor f': D(Y) — D(X) (resp. f*) is fully faithful if and only if
the corresponding functor D(Y) — D(X) is fully faithful. Indeed, both conditions
are equivalent to the fact that the counit map fif'F — F is an isomorphism in
D(X) for all F € D(X).

(b) For every X € ASchy or, more generally, X € ASt;, we define M(X) to the
(homotopy) colimit colim!( xovye(x/yer P(V), and similarly for D(X).

As in [L2Z3] (b), we can take the colimit over (X — V) € (X/-)*". In this
case, all the transition functors D(V) — D(V') are fully faithful, thus functors
D(V) — D(V') are fully faithful as well (by (a)). It follows that the homotopy
category of M(X) (resp. D(X)) is M(X) (resp. D(X)), and that each functor
D(V) - M(X) (resp. D(V) — D(X)) is fully faithful.

(c) Recall that for every fp-closed embedding i : X — Y in ASchy or ASt, the
induced map i, : M(X) — M(Y) (resp. i, : D(X) — D(Y)) is fully faithful.
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Thus we can mimic and form an oo-category M(X) (resp. D(X)) for each
X € AlSchy, or X € AISty, whose homotopy category is M (X) (resp. D(X)).

3.2.2. Naive definition of the categorical Bernstein center.

(a) Recall that LG is an admissible ind-scheme. Therefore, by B2, we can
associate to it an oo-category M(LG). Moreover, upgrading the construction of
224 we get that M(LG) has a structure a module oo-category over a monoidal
oo-category M((LG)?).

(b) Naively, we would like to define Z(LG) to be co-category End v ((1g)2) M(LG)
of endomorphisms of M(LG), viewed as a module category over M((LG)?). How-
ever, in the (-adic setting we are working in, this definition seems to be wrong, at
least a priori. Namely, we would like to consider not abstract endomorphisms of
oo-categories, but only those, ”coming from geometry” (see remark below).
More formally, instead of using the (0o, 2)-category of stable co-categories, we have
to use an oo-version of the geometric 2-category, constructed in [.5.4]

(¢) To make our exposition both conceptual and elementary, we are going to define
first the construction of Z(LG) using the framework of monoidal (oo, 2)-categories,
which in currently not well-documented in the literature, and then to write down
an explicit formula, which uses only the framework of co-categories.

3.2.3. General framework.

(a) Let € be an (00, 2)-category. Then to every object X of € one can associate
the monoidal co-category End¢(X) = Home(X, X).

(b) Assume now that € is monoidal. In particular, for every two objects X, Y of €
we can consider their tensor product X ® Y. Let S € € be a semigroup object in &,
that is, we are given a product map S®S — S together with various compatibilities
between maps S®* — S. Let X € € be an S-module, that is, we are given an action
map S®X — X together with various compatibilities between maps S®"®@ X — X.

(¢) To the data of (b) one can associate the monoidal co-category Endg(X) of
endomorphisms of X, viewed as an S-module. As an oo-category, Endg (X) is the
(homotopy) limit of the following semi-simplicial diagram

_)
(3.1) Home (X, X) = Home(S ® X, X) = Ende(S®? ® X, X) ...

(d) Note that for every object X of €, there is an equivalence s : X®@ X — X ® X,
which interchange the factors. In particular, for every semigroup object S, we can
form another semigroup object S°, which equals to S as an object but the product
SP g SP — S differs from S® .S — S by s. Then S ® S° has a natural structure
of a semigroup object of €, while S has a natural structure of an S ® S°’-module.

The construction of (c) allows us to define the categorical center of S as the
monoidal (0o, 1)-category Z¢(S) := End;®*"(S).
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3.2.4. The geometric (oo, 2)-category. We claim that one can upgrade the con-
structions from subsection to the oo-setting.

(a) First, mimicking [[L5.1] and arguing as in B.2.1] to every X,Y € AISt; one can
associate the oco-category My (X x Y'), whose homotopy category is My (X x Y).
Next, we define Homgeom (X, Y') to be the full co-subcategory of Pro My (X x Y),
whose objects are B € Pro My (X x Y') such that B(F) € M(Y) C Pro M(Y) for
all 7 € M(X). Finally, we denote by M eom the (00, 2)-category, whose objects
are admissible ind-stacks X € AISty, and for every X,Y € AlISty, the oo-category
Hom,,,,, (X,Y) is Homgeom(X,Y).

(b) As in [[L.5.5] we have a functor of (0o, 2)-categories from the 2-category of cor-
respondences Corry, to M geom. Notice that the Cartesian product on AISt; makes
the categories Corry, M geonm and the functor Corry, — Mg, monoidal. In particu-
lar, if S is a semigroup object in Corry, then S is also a semigroup object in M geom,
hence we can consider the monoidal oo-category Z,.,.,,(S) (see (d)).

3.2.5. The categorical Bernstein center.

(a) Note that LG is a semigroup object in Corry, with respect to the product map.
Hence by 3.2.4] (b) we can consider the monoidal co-category Zu,.,,, (LG). It is a
categorical counterpart of the Bernstein center Z5. As an oo-category, Z(LG) is a
(homotopy) limit of the diagram
(3.2)

Homyeom(LG, LG) = Homgeom((LG)?X LG, LG) = Homgeom((LG)* X LG, LG) .. .
(b) We have a natural forgetful functor Z(LG) — Homgeom (LG, LG) — End M(LG).

3.2.6. Remarks. (a) We have a natural functor from the categorical center Z(LG)
to the naive categorical center End g2y M(LG), but we don’t know whether
this functor is an equivalence. On the other hand, as it was shown by Ben-Zvi and
Nadler in [BN], an analogous finite-dimensional result for D-modules is true.

(b) In principle, we could carry out the construction of the center using the 2-
category Meom instead of its infinity version. Namely, we could define the monoidal
category Z(LG) := Endg\ggGei(LG). Then we have a natural monoidal functor
Ho Z(LG) — Z(LG), where Ho Z(LG) denotes the homotopy category of Z(LG),
which at least a priori is not an equivalence. Moreover, it is even unclear whether
Z(LQ) is a triangulated category.

The definition of the categorical Bernstein center is the first place in this work,
where the framework of stable co-categories is essential.

3.2.7. A categorification of a space of invariant distributions.
(a) For each P € Par, we can form the monoidal co-category M(£%) (compare
2.25) and the pro-category Pro M(£$), which is also monoidal. Moreover, for every
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P C Q in Par, the l-pullback induces a monoidal functor M(%) — M(LE), hence
a monoidal functor Pro/\/l(%) — Pro M (£5).

(b) We define a monoidal oo-category ProM(£%) to be the homotopy limit
limp Pro M(%) It can be thought as a categorical analog of the space of invariant
distributions Dist®®)(G(F)). Notice that we had to pass to pro-categories before
forming a limit over P, because there are no non-zero smooth invariant distribution

with compact support.

(¢) The !-pullbacks M(£%) — M(LG) for all P € Par give rise to a forgetful
functor w : ProM(£&) — ProM(LG), which is categorification of the inclusion
Dist“)(G(F)) < Dist(G(F)). In particular, for every B € ProM(£5) and F €
Pro M(LG) we can form the convolution B x F := w(B) x F € Pro M(LG).

(d) Denote by Pro M(£5)/™ C Pro M(%5) the full co-subcategory with objects

B € Pro M(£%) such that B« F € M(LG) C Pro M(LG) for each F € M(LG).

3.2.8. Remark. Note that though monoidal co-categories M(LG) and M(%) are
non-unital, the pro-categories Pro M(LG), Pro M(%4£) and Pro M(£%) are unital.

3.2.9. The evaluation functor. (a) By Theorem [3.3.0] (a) below, for each P € Par
and n € N, the evaluation functor evs . : Z(LG) — M(LG) : B — B(dpy) has a
natural lift ev?}Pi : Z(LG) — M(%5).
(b) By the naturality of the lift in (a), the functors {evy }, form a projective
Pn
system, so we can form a limit ev? := lim, ev} : Z(LG) — Pro M(£5).
Pn

(c) The evaluation functors {evF }pepa, from (b) are compatible with the !-pullbacks
Pro/\/l(%) — Pro M(£%). Hence we can define a functor

LG)
LG™
The following result is a categorical analog of B.1.3] (b).

”Theorem” 3.2.10. The evaluation functor ev from induces an equivalence
of monoidal co-categories Z(LG) = Pro M(£4)fin.

3.2.11. Remark. Here and later we write ”Theorem” instead of Theorem to in-
dicate that the result appears without a complete proof, and that the details will
appear in [BKV?2].

Brief sketch of the proof. Observe that for every B € Z(LG) and F € M(LG)
we have ev(B) « F = B(F) € M(LG) C Pro M(LG), thus ev induces a functor
Z(LG) — ProM(£&)Fn Conversely, every X € Pro M(%%)/™ defines an endo-
morphism B of M(LG), given by the formula B(F) := X x F for each F € M(LG).

ev = {ev'}p : Z(LG) — Pro M(
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Now the fact that B can be upgraded to an object of Z(LG) follows from the fact
that X' is Ad P-equivariant for all P € Par (compare the proof of Theorem (a)
below). O

3.3. Categorification of the embedding 72 < Z.. In this subsection we con-
struct a categorical analog of the projection Zg — Z2 and the embedding Z2 — Zg
(see [BKV2] for details).

3.3.1. The categorical analog of depth n center. Fix P € Par and n € N.
(a) The multiplication map (LG)?* — LG induces an admissible correspondence

(PY\LG/PY) x (PI\LG/P) «— (PI\LG) x (LG/P;) = PI\LG/P},
(see [LE.5]), which gives to the admissible ind-stack P}\LG/P; a structure of a
semigroup object in Corry. As in B.24 (b), the construction of 2.3 defines the
monoidal oo-category Zp+(LG) == Zum,,,,, (PA\LG/PY).

(b) As an co-category, Zp+(L(G) is a homotopy limit of a diagram similar to (3.2)),
where LG is replaced by P\ LG /P at all places.

(¢) By definition, we have a forgetful functor Zp+(LG) — End Mp+(LG), hence
we have an evaluation functor evp: : Zpt (LG) — M(LG) : B+ B(0p+).

3.3.2. Remark. Note that M p:.((LG)?) = M((PF\LG/P})?) is a monoidal oo-
category, acting on the oo-category Mp+(LG) = M(P;\LG/P}) (compare
(e)). Then Zpi(LG) can be thought as the co-category of ”geometric” endomor-
phisms of Mp+(LG), viewed as a module category over M(sz((LG)Z). Again,
”geometric” means ”defined using the geometric (0o, 2)-category Meom” -

3.3.3. Restriction functors.

(a) Recall that M+ (LG) is a full co-subcategory of M(LG), spanned by objects
F € M(LG) such that g+ (F) = F (compare (c),(d)).

Since O(r+y2 € Mp+)2((LG)?) for each P € Par, every B € Zp+(LG) induces an
endomorphism of My+(LG). Furthermore, the restriction map

B — B|MI+(LG) : ZP+ (LG) — End M1+(LG)

naturally upgrades to a monoidal functor Rp : Zp+(LG) — Z1+(LG).
(b) Similarly, the restriction map B + Blu,, (c) : Z(LG) — End My+(LG)
naturally upgrades to a monoidal functor R : Z(LG) — Z1+(LG).

”?Theorem” 3.3.4. (a) For every P € Par, the functor Rp : Z1+(LG) — Zp+(LG)
s an equivalence of monoidal co-categories.

(b) The restriction functor R : Z(LG) — Z1+(LG) has a right adjoint A. More-
over, the functor A is monoidal and fully faithful.
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3.3.5. Remark. "Theorem” 3.3.4] (a) implies that each Zp+(LG) can be thought as
a categorical analog of the depth zero Bernstein center Z2,. Moreover, the restriction
R is a categorical analog of the projection Zg — Z2, while its adjoint A is a
categorical analog of the embedding Z2 — Zg.

Now we explain the construction of the inverse functor Ap of Rp.

”Theorem” 3.3.6. (a) For every P € Par and n € N, the evaluation functor evs_

n

from (331 (¢) has a natural lift to a monoidal functor ev};P+ : Zp+ (LG) = M(52).
(b) For every P € Par, the composition

LG LG
AVE/I oeV(I;pL D 2+ (LG) — M(T) — M(?)

s naturally equipped with an action of the finite Weyl group Wp C w.

3.3.7. Remark. The Wp-action in ”Theorem” B.3.6 (b) is induced from the Wp-
action on the Springer sheaf S € D(Lp), which we normalize so that the sheaf of
skew-invariants SWP=en is the §-sheaf §; € D(Lp) at the identity.

3.3.8. Notation. For P € Par, we denote by
LG

Ap = (Avg/I oeV(ISﬁ)WPng“ : Z1+(LG) — M(?)

the composition of Avg/ o ev(ISI+ with the functor of skew-invariants.

”Theorem” 3.3.9. There exists a natural functor Ap : 21+ (LG) — Zp+ (LG) such
that ev(;PP+ oAp = Ap. Moreover, Ap is the inverse of Rp.

Our next goal is to provide an explicit construction of the right adjoint A of R.
By " Theorem” B.2.10, it suffices to construct a functor A’ : Zg+(LG) — Pro M(£5)

and to show that its image lies in Pro M (£&)/™,

3.3.10. Notation. (a) Let T be a category associated to the partially ordered set
of non-empty closed I-invariant subschemes Y C F1. For every Y € T we denote by
Y C LG the preimage of Y.

(b) For P € Par and Y € T, we set YP := YP/I C Fl and Yp := YP/P C Flp.

3.3.11. Construction of A’.

(a) Fix Q € Par. Recall that if Y € T is Q-invariant, then we have an averaging
functor Avgy : M(52) — M(%) (see (b)). Moreover, functors {Avg}y form
a projective system, so we can form a projective limit

Avg = li}r/nAVg : M(?) — Pro M(%)
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(b) Functors {Avg}erar are contravariant in Q, thus they give rise to the functor

LG LG
; ) — Pro./\/l(LG)

(¢c) Fix P € Par, and assume that ¥ € Y from (a) is such that Y = YP C LG.
Then Avg decomposes as

Avig = {AvQ}aepar - M(—

LG LG LG
T) M) = M)
In particular, the composition Avé oev(ISI+ : Z1+(LG) — M(%) is equipped with
an action of Wp (by ”Theorem” B.3.6 (b)).

(d) By (c), the limit

Avg = Avg o Avp/T s M(

LG
Q'

is equipped with an action of Wp. Moreover, the Wp-actions are compatible with
the !-pullbacks ProM(LG) — Pro M(Lg) for Q C Q' in Par.

Taking the limit over the Q’s, we get an action of Wp on the functor

=)
LG

Moreover, by the naturality assertion in ”Theorem” B33.6 (b), for each P C P’, the

We- and Wes-actions on Avhy, o eV(I; are compatible.

(e) Note that W is the ” homotopy colimit” of {Wp}pepar, that is, the classifying
space B(W) is the homotopy colimit of classifying spaces { B(Wp)} pepar. Therefore

Avg o ev(I$I+ = lixgn(Avé o eV(I;H) : 21+ (LG) — Pro M(

AVLGoeV5 : 21+ (LG) — Pro M(

the compatible system of Wp-actions on Aviy, o er151+ define the action of W.

(f) We define functor A’ := (AvhL, o ev(I; )W’Sgn to be the composition

LG

G) — ProM(LG

LG

of Aviy, o evy . with the functor of skew-invariants.

A 21 (LG) — ProM( )

3.3.12. Restriction to the regular semisimple locus. (a) For v € LG and
n € N, let i, be the inclusion yI' < LG. Then i, , is finitely presented, and we
denote by 4!, the pullback functor 4%, : M(LG) — M(yI}).

(b) We say that the restriction of F € Pro M(LG) (resp. F' € ProM(L )) to
LG™* is smooth, if for every v € LG™ there exists n € N such that i ( ) €
M(yLy) (resp. 3, (wo F') € M(yl,) (compare B2 (c)).
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”Theorem” 3.3.13. For each B € Z(LG), the object A'(B) € Pro M(%5) belongs
to Pro M(£6)/" and the restriction of A'(B) to LG™* is smooth.

By " Theorems” B.2.10 and B.3.13], functor A’ gives rise to a functor A : Zy+(LG) —
Z(LG).

?Theorem” 3.3.14. The functor A : Z1+(LG) — Z(LG) is right adjoint to R.
Moreover, A is fully faithful and monoidal.

3.3.15. Strategy of the proof of ” Theorem” B.3.13. (a) Since W is the ”homo-

topy colimit” of {Wp} pepar (compare 311 (e)), the functor A’ = (Aviy o evy . )W sen

is naturally equivalent to a limit limpepa, (Avhe, o ev(I$I+ YWe.sen,

(b) By (a) and arguments of B3.11] there exists a functor of co-categories
A% Par® x TP x Zp+ (LG) — M(LG)
such that the restriction of A% to (P,Y) € Par xT is
Ab = (AV'F oev(ISﬁ)WP’Sgn : 21+ (LG) - M(LG),

and
wo A" lim lim A} : Zy+ (LG) — Pro M(LG).

PecPar YeY

(c) Changing the order of limits, we conclude that w o A’ = limy ¢y limpepa, Ab.

(d) Since the co-category M(LG) has finite limits, each AY := limpepa, Ap is
a functor Zp+(LG) — M(LG). Hence the limit A* := limpepa Ap is a functor
TP x Zy+ (LG) — M(LG), while by (c), we get wo A’ = limycy AY.

(e) By (d), for every B € Z1+(LG) and X € M(LG), we obtain a functor of
oo-categories A*(B) * X : TP — M(LG) with A'(B) * X = limy AY (B) x X. In
particular, we get a projective system {AY (B) x X'}y cr in the homotopy category
M(LG).

(f) Similarly, for B € Z1+(LG), v € LG and n € N, we get a functor of oo-
categories 7%, (A*(B)) : Y? — M(~IL}) such that i , (wo A'(B)) = limy ¢, (A" (B)).
In particular, we get a projective system {7, (A" (B))}yer in M(7I}).

(g) By (e) and (f), ”Theorem” follows from the following more precise
assertion.

”Theorem” 3.3.16. (a) For every B € Z1+(LG) and X € M(LG), the projective
system {AY (B) * X}y in M(LG) stabilizes.

(b) For every v € LG"*, there exists n € N such that the projective system
{it JAY(B)}y in M(yI]) stabilizes.
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3.4. Application to the classical (stable) Bernstein center.

3.4.1. Grothendieck groups. (a) For every triangulated category C, we denote
by Ky(C) the Grothendieck group of C, tensored over @, and call it the K-group
of C. In particular, to each X € C, we associate its class (X) € K,(C). Notice that
if C'is a monoidal category, then Ky(C) is a Q-algebra.

(b) Every triangulated functor ¢ : C' — C” induced a map of K-groups (¢) :
Ko(C) = Ko(C"). Furthermore, (¢) is injective, if there exists a triangulated functor
¢' . C" — C such that ¢ o ¢ = 1d.

(c¢) For X € ASty, we denote by Ko(M (X)) (resp. Ko(D(X))) the K-group of
M(X) (resp. D(X)). Using (b) and Lemma [[.T.3] we see that if X € ASt; has an
admissible presentation X = lim; X, then Ko(M (X)) = colim; Ko(M(X;)) (resp.
Ko(D(X)) = colim; Ko(D(X;))), and all the transition maps are injective.

Similarly, if X € AISt; has a presentation X = colim; X;, then we have isomor-
phisms Ko(M (X)) = colim; Ko(M(X;)) (resp. Ko(D(X)) = colim; Ko(D(X;))),
and all the transition maps are injective.

3.4.2. Grothendieck group version of the center.

(a) Recall that M((LG)?) is a monoidal category acting on M(LG) (see Z2.4).
Therefore Ko(M((LG)?)) is a Q-algebra, acting on Ko(M(LG)). We denote by
3(LG) the algebra of endomorphisms of Ko(M(LG)), viewed as a Ko(M((LG)?))-
module.

(b) Notice that every B € Z(LG) defines a unique element (B) € 3(LG) such that
(B)((F)) = (B(F)) for every F € M(LG). Indeed, the functor F +— B(F) preserves
finite limits in M(LG), hence it preserves distinguished triangles in M (LG). Thus,
B induces an endomorphism (B) € Endg; Ko(M(LG)) : (F) = (B(F)). Finally,
using the fact that B € Z(LG), we have an isomorphism B(X (F)) = X (B(F)) for
every X € M((LG)?), which implies that (B) € 3(LG).

The map B — (B) defines an algebra homomorphism Ky(Z(LG)) — 3(LG),
which at least a priori is not an isomorphism.

3.4.3. Set-up. (a) Assume now that k is an algebraic closure of the finite field I,
and that G has an [ -structure. Then all the geometric objects defined above have
FF,-structures, and we denote by D™ (LG), M (LG), Z¥(LG) etc. the correspond-
ing categories of Weil (Frobenius equivariant) objects.

(b) We set F' := F,((t)), and choose a field isomorphism Q; = C. For every
P € Par and n € N, we set P := P(F,) C G(F) and P :=P}(F,) C G(F).

3.4.4. The ”sheaf-function correspondence” for loop groups.
(a) Let X € Vary be defined over F,. Then the classical sheaf-function correspon-
dence associates to every F € D™(X) a function [F] := " Tr(Fr, F)” : X(F,) — F,.
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Moreover, the correspondence F +— [F]| defines a surjective homomorphism of vector
spaces Ko(D™ (X)) — Fun(X (F,), Q).

(b) Note that correspondence F +— [F] from (a) commutes with s-pullbacks
and !-pushforwards. Therefore it extends to a similar correspondence for every
X € AISchy, defined over F,.

(c) Consider the case X := LG. Then X (F,) = G(F), and we claim that for every
F € D(LG), we have [F] € C*(G(F)). Indeed, every F € D™ (LG) comes from
an object of some D™ (LG= /L), thus the corresponding function [F] is supported
on G(F)=* and is I -invariant from the right. Moreover, the map F + [F] induces
a surjective map Ko(D™(LG)) — C>°(G(F)), which follows from the corresponding
assertion in (a).

3.4.5. Notation. For every open compact subset S C G(F), we denote by u” the
Haar measure on G(F) normalized by the condition that [, u® = 1.

3.4.6. The ”sheaf-function correspondence” for measures.

(a) For every F € D™(LG) and X € M™(LG), we can form the tensor product
F®X € M™(LG), the l-pushforward [, ,(F ® X) € D™(k), and the corresponding
clement [, (F ® X)] € Q.

(b) We claim that for every X € M™(LG), there exists a unique [X] € H(G(F))
such that [X]([F]) = [[,,(F ® X)] for every F € D™ (LG).

Proof. The uniqueness follow from the fact that the map Ko(D™(LG)) — C*(G(F))
is surjective (see B.4.4 (c)).

To show the existence, we choose w &€ W and n € N such that X come from an
object of DP(LG=/I}). Let [X] be the corresponding function G(F)=* /I — @,
and consider element [X],, ,, := [X] " € H(G(F)) (see BAH).

We claim that [X], .,([F]) = [[;,(F ® X)] for every F € D™ (LG). Indeed, note
that [X],, ., is independent of n and w. Thus we can increase w and n, if necessary,
thus assuming that F comes from an object of D™(LG=*/I}), and let [F] be the
corresponding function G(F)<¥/It — Q.

Then both [X],.,([F]) and [[,,(F ® X)] are equal to [;p<u /s ([F] - [X]), im-
plying the assertion. U

(c) Note that the map X ~ [X] defines an algebra homomorphism Ko(MY™(LG)) —
H(G(F)). In particular, for every X,Y € M™(LG), we have [X x Y] = [X] = [V].
Moreover, as in [B.4.4] (¢), this homomorphism is surjective.

(d) Similarly, every element X € M™(LG) defines a smooth measure [X] on
G(F). Note that for every fp-closed subscheme Y C LG, defined over F,, the Haar
measure ;¥ (see (c)) is Frobenius-equivariant, and the corresponding measure

[11Y] on G(F) is ¥ Fo) (see BAT).
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3.4.7. The ”sheaf-function correspondence” for the center.

(a) Set 3™(LG) := Endg, o2y Ko(M™(LG)). As in (b), there ex-
ists an algebra homomorphism Ko(Z™(LG)) — 3™(LG) : B ~ (B) such that
(B)({F)) = (B(F)) for all F € M™(LG).

(b) We claim that for each (B) € 3™ (LG) there exists a unique element [B] € Zg
such that [B]([F]) = [(B)({F))] for every F € M™(LG).

Proof. First we claim that there exists a unique linear endomorphism of H(G(F))
given by the rule [F] — [(B)((F))]. The uniqueness follows from the fact that the
map Ko(M™(LG)) — H(G(F)) from B8 (c) is surjective.

To show the existence and linearity, it suffices to show that for every tuple
Fi,..., Fp € M™(LG) and ay,...,a, € Q such that > ailFi] = 0, we have
>, ail{B) (F))] = 0.

Choose n € N such that F; = oy + F; = (0 BF;) () for all i (see 228 (b),(c)).
Then

(B)((F3)) = (B)({(0r WF3) (01 ))) = (0 WF3) ((B) ((Ipx))) = (O ) * (B) (O )) * (Fo),

hence 7, a;[(B) ((F3))] = [og:] * [(B) ({0 )] + (32, ail Fil) = 0.
Finally, since the homomorphism Ky(M™((LG)?)) — H(G(F)?) is surjective and
B € 3™ (LG), the map [F] — [(B)((F))] belongs to Zg. O

(c) Note that the map (B) — [B] from (b) defines an algebra homomorphism
3"(LG) — Zg. Composing it with the algebra homomorphism from (a), we get an
algebra homomorphism Ky(Z™(LG)) — Zg : B — [B].

(d) Note that the functor A from " Theorem” 3.3.4]is Frobenius-equivariant, hence
it upgrades to a monoidal functor A™ : ZI¥(LG) — Z¥(LG). By (c), the functor
A define an algebra homomorphism [A] = [A™] : Ko(Z{I(LG)) — Zg. We
will show in Theorem EAT] that [A]((Id)) = z°. Therefore [A] induces an algebra
homomorphism [A] : Ko(Z{I(LG)) — Z2.

Conjecture 3.4.8. The homomorphism [A] : Ko(Z{f(LG)) — Z& from [37.7 (d)

18 surjective.

3.4.9. Locally constant function on G™°(F). It follows from ” Theorem” [3.3.13
that for each B € Z{I(LG), the invariant distribution VIA(B)) grss () O1 G™*(F) is

locally constant, thus VIAB)) grss (1) = QS[A(B)WH for some ¢y € C*(G™*(F)).
Our next goal is to describe function ¢p4() explicitly.

3.4.10. Notation. (a) For every v € G™*(F), we denote by pr, : FI — L& the
map [g] — [g7'vg]. In particular, pr, defines functor pr? : DF(£E) — DM (FI).
Let evy @ Z{{(LG) — M (L&) be the evaluation functor from ” Theorem”
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(a),fmd let (®u%)_1 : MP(LE) = D (LE) be the inverse of the equivalence
Qu't : D (LG 2 M (LE) (see 33 (b))
(b) We denote by p? the composition
I 1+
ev L — L r*
2ZP(LG) -5 MFr(TG) @1 1DFf(TG) 5, pF(E),

(¢) It can be deduced from ” Theorem” (b) that for each B € Z[T(LG), each
homology group H;(Fl, pB) has a natural W-action (see B3.1T (e)).

Conjecture 3.4.11. Let B € Z{T(LG) and v € G™*(F). Then
(a) each Q;[W]-module H;(F1,p:B) is finitely generated;
(b) we have an equality (see[34.13 (a) below)

(3.3) (1) = > (—1)™ Te(Fr, Torl¥ (H,(FL p3B), sgn)),

2%
where sgn is the sign character of w.

3.4.12. Remark. (a) Note that for every finitely generated Q;[A]-module V, its
homology group H,(A,V) is finite-dimensional. Hence, by Conjecture B. 411 (a),

each Qp-vector space Tor)’ (H;(F1,p3B),sgn) = H;(A, H;(FL, p3B))w sgn is finite di-
mensional. Therefore the right hand side of (83) is defined.

(b) We believe that once Conjecture B.411] (a) is established, Conjecture B.4.11]
(b) can be proven by the same argument as Theorem [1.4.8] below.

3.5. Monodromic case.

3.5.1. Monodromic sheaves. Let ¢ be a tame rank one local system on 7.

(a) We denote by Myy(LG) C Miy+(LG) the full co-subcategory, whose objects
are T-monodromic with respect to the left and the right actions with generalized
eigenvalues 0. Then Mjo(LG) C Mi+(LG) is a monoidal category without unit.

(b) Note that the action of the monoidal co-category M +y2((LG)?) on My+(LG)
restricts to the action of M2 2)((LG)?) C Ma+)2((LG)?) on Myg(LG). We define
Z19(LG) to be the co-category of ”geometric” endomorphisms of My ¢(LG), viewed
as a module category over M gz g2y((LG)?) (compare B3 and B:3.2).

3.5.2. W-conjugacy. (a) We say that two tame local systems 6 and 6" are W-
conjugate, if there exists w € W such that w*(f#) = ¢'. In this case, w induces
equivalences My g(LG) = My o) (LG) and hence Z14(LG) = Z1409)(LG).

(b) Notice that if w*(d) = 0, then w* : Mye(LG) = Miy(LG) belongs to
Z19(L@G), thus the induced equivalence w* : Z1o(LG) = Zi(LG) is naturally
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equivalent to the identity. Therefore if 6 and 6" are W-conjugate, then Zj,(LG)
and Zy ¢ (LG) are canonically identified.

(c) For every W-conjugacy class [0] of tame local systems on T', we define Zy jg)(LG)
to be Z19(LG) for some 6 € [f]. This is well-defined by (b).

3.5.3. The case of finite fields. (a) Assume now that we are in the situation of
subsection 3.4 and that the W-conjugacy class [f] of # is Frobenius-invariant. Then
the oo-category Zyg(LG) is equipped with a natural action of Frobenius, thus we
can talk about the co-category of Frobenius equivariant objects ZIFIG](LG).

(b) Notice that every 6 as in (a) defines a semi-simple conjugacy class in G such
that #7 ~ 6. In particular, 6 defines a subset Irr(G)? C Irr(G)° and a subalgebra

7% C 72 (see BI1Y).

Conjecture 3.5.4. In the situation of [3.5.3, there is a natural surjective algebra
homomorphism [Ay] : KO(ZIFTG](LG)) — Z%, whose construction is similar to the

homomorphism [A] from[34.7 (d) (compare Conjecture[3.7.8).

3.5.5. Gaitsgory’s central sheaves. (a) For each W-conjugacy class of tame local
system 6 on T, a generalization of Gaitsgory’s construction [Ga] gives a monoidal
functor Wy : Rep G — Zpg)(LG) (see [Bez, 3.5)).

(b) Assume from now on that we are in the situation of Then ¥, lifts to
a monoidal functor to W§" : Rep G — Z{1y(LG). Therefore by Conjecture .54} ¢
defines an algebra homomorphism [®y] := [A] o [¥}] : Ko(Rep G) — Z5.

(¢) For each 6 as in (b) and V € Rep G, we set 2, := [®g)(V) € Z5,.

Conjecture 3.5.6. (a) For every 0 as in[35.3, V € RepG and 7 € Irr(G)?, we
have an equality f.o (7) = Tr(s(m), V).
(b) For every 0 as in[35.3, the image of [®g] : Ko(Rep G) — Z& lies in Z&".
(¢) The induced homomorphism [®1] : Ko(Rep G) — Z&" is an isomorphism.

3.5.7. Remark. Note that Conjecture [3.5.6] implies the depth zero stable center
conjecture for unipotent representations.

4. GEOMETRIC CONSTRUCTION AND STABILITY OF THE BERNSTEIN PROJECTOR

4.1. Construction. In this subsection we carry out the strategy outlined in sub-
section 3.3 and construct a K-group analog (A) € 3(LG) of 2° (see Theorem ELZT]).
Notice that evs , (Id) = dr+ € M(LG) has a natural lift 65+ € M (L), showing an

I

analog of " Theorem” B.3.0] (a) in this case. The following assertion is a homotopy
analog of " Theorem” B.3.6 (b).
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Lemma 4.1.1. For every P € Par, the element Avg/l(éi) € M(L8) is equipped
I

with an action of the finite Weyl group Wp C w. Moreover, the sheaf of skew-
coinvariants AVE/ Y62 )Wesen is naturally isomorphic to dp+ .
I P

Proof. Consider the Borel subgroup B := I/P* of L := Lp and the unipotent radical
U :=1I%/P* of B. Then we have a diagram

(4.1) L/B& LxBUu %L,
where a is the map [g,u] — gug™' (compare 23] (c)). Then the classical Springer
theory asserts that the Springer sheaf a; pr'(1,, /) € D(L) is equipped with an action
of the Weyl group W := Wp, and that the sheaf of skew-coinvariants (a pr'(1r,5))"s"
is naturally isomorphic to d; € D(L), the d-sheaf at 1.

Note that the diagram (4.1]) is L-equivariant with respect to the left multiplication

on the first two factors and the adjoint action on the third one. Moreover, the

. pr a
diagram + < U l) %,

5 5 where [a] is induced by the embedding U — B — L,
is obtained by the quotient of (@) by L. Let 1,5 € D(5) be the unique Haar
measure whose !-pullback to L/B is 1;,5. Then [a],pr'(1,/5) € D(%) is equipped
with an action of the Weyl group W, and ([a],pr'(11/5))""*#" is naturally isomorphic
to (5% S D(%)

From this the assertion follows. By definition, Avllz/ 1(5% ) € M(%) C M(£%) is

simply [Eﬂ!ﬁ'r!(lp/l), obtained from the diagram % & % ﬂ) %, where 1p/1 € M(%)

is the unique Haar measure whose !-pullback to P /T is 1p ;.
Then 1p;; € M(3) is the !-pullback of 1,5 € D(5), hence Avg/l(éi) is the
I

I-pullback of [a];pT'(1/5) € D(%). Therefore Avg/l(di) is equipped with a W-
I

action, and its sheaf of skew-invariants is the !-pullback of 01 € D(%), which is
dp+. O

P
4.1.2. Notation. Note that for every P € Par and every locally closed subscheme
Y C Flthe image Yp C Flp is locally closed. Hence we can form A} := Av'®?(§p+ ) €

P
M(LG) (compare2.3.3). In particular, for Y € T (seeB.3.10), we have A, = AL(Id)
(see (b)).

By Lemma [£.T.T] the following assertion a homotopy analog of the particular case
of B331H (b), which is crucial for the whole argument.

Lemma 4.1.3. There exists a natural functor Af : Par® x T°? — M(LG), whose
value at (P,Y) is A}.
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Proof. We have to show that A} = Av'®(dp+) is contravariant in P € Par and

P
Y € Y. Since the functoriality with respect to Y is clear, it remains to construct
a natural morphism Av'@(§q+) — Av'®(6p+ ) for each P C Q in Par and to show
qQ S

the compatibility with compositions.
Since QT is normalised by Q, thus by P, we can consider element § Qr € D(%).

Since P C Q, we have Qt C PT. Thus we have a natural morphism dq+ — 0p+
P P
(see 3.2 (b)), hence a morphism Av'® (§q+ ) — Av'®(dp+ ). It remains to construct
b P
a morphism Av'@ (gt ) — AV (5q+).
Q P

Consider commutative diagram

Flp x40 + " LG xP LG .16

prcia | wa| H

Flg x6 «” LG xQ LG —2 IG.

Q
By definition, Av'?(dq+ ) = a!Qp!z(lyQ Xdqr ), while Av®(5q+ ) = aP ph (1y, Mg+ ).
Q Q P Q
Since af = aa;’?, we have to construct a morphism

p!2(]‘YQ X 6%) - a’!P7Qp!1(1YP X 5%)

Since the left inner square is Cartesian and the p;’s are formally smooth, we have
an isomorphism of functors ph(pr,XId) = pl(prXId), = ¢ !, so it remains to
construct a morphism 1y, — pr lyg.

Since pr : Yp — Yq is proper, we define 1y, — pr, 1y, = pr, 1y, = pr, pr* 1y, to
be the counit map. The compatibility with compositions is standard.

4.1.4. Notation. (a) For every Y € T, we set
(AV) = Y (~1)ROF(AR) € Ko(M(LG)).
PcPar
(b) Denote by End” Ko(M(LG)) the algebra of endomorphisms of Ky(M(LG)),
viewed as a right Ko(M (LG))-module.

The part (a) of following result is a K-group analog of ” Theorem” 3316 (a) for
the unit element. We will prove Theorem [4.1.5]in subsection (4.2

Theorem 4.1.5. (a) For every X € M(LG), the system {{AY)*(X)}yex stabilizes.
(b) For every P € Par and Y € T, we have an equality (AY) * (6p+) = (dp+).
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Corollary 4.1.6. (a) There exists a unique element (A) € End" Ko(M(LG)) such
that (AY((X)) = (AY) % (X) for each X € M(LG) and each sufficiently large Y € Y.
(b) For every P € Par, we have (A)({0p+)) = (0p+).

Proof. (a) It follows from Theorem (a) that for every X € M(LG) we can form
an element (A)(X) := limy ((AY) x (X)) € Ko(M(LG)).

We claim that the map X — (A)(X) defines a group endomorphism of Ko(M (LG)).
We have to show that for every distinguished triangle X; — & — A3 — in
M(LG), we have an equality (A)(X2) = (A)(X1) + (A)(A5). By the definition
of (A)(X;), there exists Y € T such that (A)(X;) = (AY) x (X;) for i = 1,2, 3. Since
(AY) =S p(—1)REkPAYY it is enough to show an equality

(Ap) * (Xa) = (Ap) * (X1) + (Ap) * (X3)
for all Y and P. But this follows from the fact that X) x A} — Xox A}, — X+ AL —
is a distinguished triangle.

Finally, since (A)({(X)) = (AY) x (X) for sufficiently large Y € T, the endomor-

phism (A) commutes with the right multiplication.
(b) follows immediately from Theorem (b). O

The following result is a K-group analog of ”"Theorem” B.3.10 (b) for the unit
element. It is a geometric analog of the fact that the restriction of the distribution
via) € Dist(G(F')) to G™*(F) is locally constant.

Theorem 4.1.7. For every v € LG™* there exists n € N such that the restriction
{i2 (A" ) }yer € Ko(M(4I}))) stabilizes.

Proof. The proof is based on the following lemma, whose proof will be carried out
in subsection (4.2l

Lemma 4.1.8. For every v € LG"* there exists n € N such that the restriction
zfm(Ag) € M(~IL}) is constant for every P € Par and every locally closed I-invariant
subscheme Y C Fl.

Choose n as in Lemma ET8 Then the restriction % ,(Ap) is isomorphic to
i, (Ap)xops =i (Ap*dp: ) for every Y and P, hence @2, ((AY)) = i% ,, ((AY) % (0p+))
for all Y. Thus it suffices to show that system {(A) % (6;+)}y stabilizes, but this
follows from Theorem (a). O

Part (a) of following result can be thought as a particular case of ”Theorem”
[3.2.10, while part (b) can be thought as a particular case of the fact that the functor
A Z1+(LG) — Z(LG) is monoidal. It will be proven in subsection .3l

Theorem 4.1.9. (a) Element (A) € End"” Ko(M(LG)) belongs to 3(LG).
(b) Element (A) € 3(LG) is an idempotent.
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Corollary 4.1.10. For every X € M(LG) and F € M(LG) we have an equality
(A)((AdY(F)) = (AdT)((A) ((F)))-

4.2. Proof of Theorem [4.1.5] and Lemma [4.1.8l Since G is a direct product of
simple groups, we may assume that G is simple.

4.2.1. Notation. (a) We denote by ® and A the set of affine roots of G and the
set of simple affine roots of GG, respectively. We also set r :=rk G = |£| -1

(b) For every subset J C A, we denote by P, € Par the parahoric subgroup such
that J is the set of simple roots of Lp.

(c) For w € W, we denote by .J,, the set of & € A such that w(a) > 0, that is,
w(«) is a positive affine root. Note that J,, # A for every w # 1.

(d) For o € ®, we denote by U, C LG the corresponding root subgroup. We say
that « € P, if U, C P}

(e) For each P € Par and n > 0, let S(P;) C W be the union of {1} and the set of
all w € W such that w(a) ¢ P} for every a € A. We set YV(P) := Uwes®i) F1=v.

(f) Let N C G be the normalizer of T. For each w € W = N(K)/T(O) we fix a
representative w € N(K) C LG.

Lemma 4.2.2. (a) For every P € Par and n > 0, the set S(P}") is finite.
(b) For every P € Par, we have S(P*) = {1}.

Proof. (a) For every 8 € ® such that 8— (n+1) > 0, we have 3 € I7., C P}. Thus

for every w € S(P}) and o € A we have w(a) — (n + 1) < 0. On the other hand,
there exist positive integers {n,}, .x such thzﬂ: the linear function ) _x nqor is 1.
Thus 3° cx new(a) is 1. Hence for each v € A, the set {w(a)},cgpy) is bounded,
which implies that S(P;) is finite.

(b) We have to show that for every w # 1 and P € Par there exists a € A such
that w(a) € PT. We may assume that P is maximal, that is, P = Pz_, for some
B € A. We have to show that there exists o € A such that w(a) € PE\B, that is,
the coefficient of § in w(a) is positive. Since ) xnow(a) =1= ) xn.a, we

acA
conclude that the coefficient of 5 in > _x nqw(c) is ng > 0. Thus the coefficient

of 5 in some w(«) is positive as well. O

The following result is the main step in the proof of Theorem [£. 1.5l

Lemma 4.2.3. Let w € /If[?, a € &, Q € Par, n € Nand J C J, ~ a be such
that w(a) € QF and J # A~ a. Then the morphism 0py —— dp+ from[L.32 (b)

induces an isomorphism Ag“;w * 0t — A?”] * Ot -
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Proof. We set J' := J U a. First we show the equality
+ _ p+t + -1+
(4.2) P; =P - (P;Nuw Q).

For this it suffices to show that for every g € ® such that Up is contained in
P \ P, we have Uy C w™'Qw or, equivalently, U, s = wUsw™" is contained
in Q. In other words, we have to show that for each 5 € P} \ P¥, we have
w(B) € Q. B

Notice that g € ® belongs to PJJr if and only if § = Zaieﬁ n;a; such that n; > 0
for all a;, and n; > 0 for some a; ¢ J. Thus any § € P¥ ~\ P, has the form
> a,esMi + na such that n; > 0 for all i and n > 0. But w(a) € Qi (by
assumption) and w(a;) > 0 for every a; € J (because J C J,,). This implies that
w(B) € Q;F, which finishes the proof of equality (£.2).

Let 81, ..., Biw) € ® be all 8> 0 such that w(f) <0, and set I, :=[[, Ug, C I".
Consider the closed subscheme I,w C LG and the corresponding averaging functor
AV o M(LG) — M(LG) (see 233 (d)). We claim that we have a natural
isomorphism

(4.3) Apy * 0qp = AV (0ps %0, 1q40);

and similarly for J’. Since J C J,, the projection LG — Flp, induces an iso-
morphism I,w = (Y, )p,. Thus the composition 7 : L,w < LG — Flp, satisfies
T(11,w) = 1(v,)p,- Hence, by Lemma 232 (a), A?; = Av(Ywle, (5P§/PJ) is isomor-
phic to AVI“@(cSP;) = AVI”(éwpiw,l). Thus the left hand side of (4.3)) is isomorphic

to Ayl (5ijw,1) * 5Qf{

On the other hand, the right hand side of the expression (43) is isomorphic to
AVIw(de}*w—l * 0q+ ). Thus it remains to show that for every F € M(LG) we have
a natural isomorphism Av™ (F) x ogr & AV (F % dq+)- But this follows from the
fact that I,, C I C Q and that Q normalizes Q;'.

Now we are ready to show the assertion of the lemma. By (A3]), it remains to
show that the natural morphism 5le — Op+ induces an isomorphism

5Pj, *0y-1Qiw 6Pj *0y-1Qf

Note that the multiplication map m : (LG)?> — LG induces a pro-unipotent
morphism P¥ x (w'Qfw) — PT - (w 'Q}w). Hence it induces an isomorphism
Op+ * 0y1qiuw = Op+.(w-1Qfw): and similarly for J'. Thus it remains to show the
equality P¥ - (w™'Qfw) = P, - (w'Q;fw), but this follows from (Z2). O
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For each Q € Par and n > 0 the set S(Q;}) is finite (by Lemma [£.2.2), hence
Y (Q;) € Y. The following result is a more precise version of Theorem (a) for
X =0dq+.

Qn

Proposition 4.2.4. Let Q € Par, n >0, andY € T.
(a) IfY DY (QF), then we have an equality (AY) x (dqr) = (AY@QD)Y (0q)-
(b) We have an equality (AY) * (6q+) = (dq+)-

Proof. (a) By the induction on the number of orbit I-orbits in ¥ \ Y(Q), it is
enough to show that for every Y € T and w € W~ S(Q;) such that Y, C Y is
open, we have an equality (AY)  (dq+) = (A1) * (dqr). Set Y :=Y \ Y.

Consider element (AY) := ZJCJw(—l)’"_M(A?”]) € Ko(M(LG)). We claim that
(AY) = (AY") 4+ (A®). Indeed, let J C A be a proper subset. Since Y,, C Y is open,
we have Yp, N\ Yp = (Yu)p,, if J C Jy, and Yp, = Y , otherwise. This implies
the equality (AY) = (AY") + (A%) in Ko(M(LG)). Therefore it is enough to show
that (A") x (0q+) = 0 for every w € W~ S(Qh).

By the definition of S(Q), for each w € W~ S(Q:) there exists a € A such that
w(a) € QF. In particular, a € J,,. Hence, by Lemma 23 for every J C J, \ «
we have an equality <A§“; *0qr) = <A§“}Ua * 0q+). Since (A%) * (0g+) equals

Y COVIAR, * agp) — (AR % 0g)),
JCTuna
we conclude that (A") * (6q+) = 0.

(b) By Lemma (b), we have S(QF) = {1}, thus Y/(QT) = Yi. Then, by
(a), we have an equality (AY) x (6q+) = (A") x (6q+). Choose a@ € A such that
a € QF. It now follows from Lemma for w = 1 and n = 0 that for every
subset J C A N\ «, we have an equality <A§J * 0Q+) = (A?]Ua % 0q+). Using
equality (AY1) = <A§1£\Q) + ngg\a(—l)’"_“”((A?,) — <A§1]Ua)), we deduce that
(A1) % (0g+) = (A?E\a * 0q+). Note that A;lg\a = 0p+ and that Pg\a C QT,

ANa

because o € QT. Therefore A?A * 0+ = Optr * 0q+ = Oq+, implying the
Na AN

assertion. O
Now we are ready to prove Theorem [4.1.5]

Proof of Theorem[{.1.5 By[2.2.6l (b), for each X € M(LG) there exists n € N such
that o1 * X = X. Hence it is enough to show that the system {(AY) x (d;+)}y
stabilizes for each n. Thus the assertion follows from Proposition £.2.4. O

The following result will be used in the next subsection.
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Corollary 4.2.5. For every X € M((LG)?) the sequence {(X)((AY))}y stabilizes.
Proof. Choose n such that X' * dy+). = X. Then (X)({AY)) equals

(X) (O o) ((A))) = () (o) * (AT) * (0g)).-

Thus the assertion follows from the fact that the sequence {(A")*(d+) }y stabilizes.
U

We finish this subsection with the proof of Lemma 1.8

4.2.6. Proof of Lemma[f.1.8 Let uP* € M(LG) be as in 33 (c), and denote
by Ap € D(LG) the unique element such that Ap @ puP* = AY (see L33 (b)).
Then i, (Ap) = Z:H(Zﬁ) ® i;n(ulﬁ) (see [L2.8 (¢)), thus it remains to show that

zfyn(zg) € D(~I}) is constant.
Consider the loop group LG, C LG, corresponding to the centralizer G, C G,

and set LGQSS = LG, N LG™ C LG. First we claim that there exists m € N such

that X,, := LG, N~I is contained in LGI**, and the restriction X? x,, 1s constant.

Let Sprp C Flp x LG be the closed ind-subscheme consisting of (y, g) € Flp x LG
such that ygy~' € P*, and set Sprp := (Yp x LG) N Sprp. By Lemma 232 (b), we
have Zﬁ = Ad;y’*(lﬂ), thus Zﬁ = (pl"2)!(1spr1§) € D(LG).

It remains to show that there exists m such that the restriction of Sprp to
Flp xX,, is constant, that is, there exists m € N such that we have an equality
of affine Springer fibers Flp ., = Flp ./ (see (a)) for every 7' € X,,. In the case
of Lie algebras the corresponding assertion was shown in [KL], reducing to the case
when G is split. In the group case, the proof is similar.

Next, we consider the morphism a : G x GI** = G : (v,y) — ryz~' and the
induced morphism La : LGX LG ** — LG. Since a is smooth, it follows from Lemma
(b) that there exist fp-closed neighbourhoods X’ of (1,7) € LG'x LGZ** and X"
of v € LG such that La restricts to a pro-unipotent morphism b : X' — X" C LG.
Moreover, by Lemma 2 T.2] we can further assume that X’ C I x X,,. Furthermore,
since {7I'}, form a basis of fp-closed neighbourhoods of « (by 2Z23]), we have

X" D ALt for some n. We claim that for such an n, each me(ﬁg) € D(vIF) is

constant. Ly
Consider the restriction of (La)*(Ap) € D(LG x LGZ*) to I x X,,. Since Y is I-

invariant, we get that Zﬁ is Ad I-equivariant, thus (La)*(Zﬁ)hX x,, is I-equivariant.

By our choice of m, we conclude that (La)*(z;)\{l}x X, = Zﬁ\ x,, is constant, hence

the restriction (La)*(Zﬁ)\IX x,, 1s constant.
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Next, since X’ C I x X,,, we conclude that (La)*(ﬁgﬂxz =0 (ZQXH) is constant.

But b is pro-unipotent, thus b* is fully faithful, which implies that Z§| x 18 constant.
Now the assertion follows from the inclusion 4I7 C X”. O

4.3. Proof of Theorem and Corollary E.1.10L

Lemma 4.3.1. Let a,3 : LG x (LG x P x LG) — (LG)? be the maps defined
by formulas o(z,a,b,c) = (a,zb,c) and B(x,a,b,c) := (a,bx,c), and let w be the
projection LG x (LG x P x LG) = %&£ x (LG x P x LG).

Then two compositions aym', B!+ M(5E x (LG x P x LG)) — M((LG)?) are
1somorphic.

Proof. Consider the isomorphism 7 : LG X (LG X P x LG) — LG x (LG x P x LG)
defined by the formula ~y(z,a,b,c) = (bxb™!,a,b,c). Then v satisfies 7 oy = 7 and
a oy = f. Therefore A" = ayyy'n' = ayrr'. O

Lemma 4.3.2. Let w,w’ € W and o € A be such that w = sqw', where s, € W is
the simple reflection corresponding to «, and w' < w. Then the map of K-groups

my : Ko(M(LG x Py x LGS x LG)) = Ko(M(LG x LG=* x LG)),
induced by the multiplication map m : P, x LG=Y" — LG=" is surjective.

Proof. Note that for every X € Varg, closed embedding ¢ : ¥ — X and an
open embedding j : U := X \Y < X, the functors 4, : D(Y) — D(X) and
Ji : D(U) — D(X) induce embeddings of K-groups Ko(D(Y)) — Ko(D(X)) and
Ko(D(U)) — Ko(D(X)). Moreover, for every F € D(X) we have a distinguished
triangle j,j*F — F — 4i*F —, which implies that Ky(D(X)) is generated by (the
images of) Ko(D(Y)) and Ko(D(U)). More generally, if U; is a finite stratification of
X (by locally closed subschemes), then Ky(D(X)) is generated by the Ko(D(U;))’s.

Recall that LG=" has a finite stratification {I"ul}, 7 u<p- Thus, by the obser-
vations made above, it is enough to show that each Ko(M (LG x ITul x LG)) lies in
the image of m,. Note that for each u < w we have either u < w’ or u = s,u’ and
uw < w' (see [Hu, Prop. 5.9]). Thus it remains to show the assertion in two cases
u=wand u=w.

In the first case, m induces a pro-unipotent map

m: LG x ITs, IT x ITw'I x LG — LG x T"wl x LG.

Thus for every F € M(LG x ITwl x LG), we have F = mym'(F), hence F lies
in the essential image of m,. In the second case, m induces a pro-unipotent map
m: LG x IT x ITw'I x LG — LG x ITw'I x LG, and we conclude similarly. O
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Lemma 4.3.3. Let o, 3 : LG x (LG)> — LG be the maps a(x,a,b,c) := axbc
and [(x,a,b,c) := abxe, respectively, and let oy and By be the induced functors
M(LG x (LG)?) — M(LG). Then for all X € M((LG)?) and all sufficiently large
Y € T, we have an equality

(4.4) a((A") B (X)) = A((A") B (X)).

Proof. Since M((LG)?) is a colimit of the M (LG x LG=* x LG)’s, we have to show

that the equality (£4) holds for every w € W and X € M (LG x LG=* x LG).

We prove the assertion by induction on I(w). Assume that [(w) < 1. Then LG=Y
is a parahoric Q. It follows from Corollary that both sides of (4.4]) stabilize
when Y is sufficiently large. Thus we may assume that Y is Q-invariant. In this
case, we claim that we have an equality

(4.5) a({(Ap) B (X)) = Bi((Ap) B (X))
for each P € Par. Indeed, since Yp C Flp is Q-invariant, A}, = Av'®(6p+ ) lifts to

an object of M(%) (by (b)). Thus AY X X has a natural lift to an object
of M(% x (LG x Q x LG)), hence equality (&3F) follows from Lemma B3I This
implies equality (£4]) in this case.

Assume now that [(w) > 1. Choose a € A and w' € W such that w = sy’
and w’ < w. By Lemma [£.3.2] we can assume that X = my(Xx”) for some element
X' € M(LG x Py x LG=*" x L@).

Consider maps «a, gﬁ : LG x (LG)* — LG defined by a(z,a, V', 0", c) := axb't’c,
g(:)s,a, b, 0" c) == ab't’xc and (x,a,V/,b" c) := ablxb’c. Then we have equalities
A ((A) R (A7) = a((AY) B (X)) and Bi((AY) B (X)) = B((AY) B (X)). Thus to
show the equality (4.4)) it is enough to show the equalities
(4.6) A ((AY) B(XT) = FH((AY) B (X)) = B((A) R (X)),

Both these equalities follow from the induction hypothesis. Namely, consider maps
m/,m"” : (LG)* — (LG)?® defined by m/(a,b,c,d) = (ab,c,d) and m”(a,b,c,d) =
(a,b,cd). Then the first equality of (4.6]) follows from the equality (4.4) applied to
m(X') € M(LG x LG=%> x LG), while the second equality of (&6) follows from
the equality (@) applied to mj(X’) € M(LG x LG="" x LG). O

Now we are ready to prove Theorem [4.1.9] and Corollary 4.1.10L

Proof of Theorem[{.1.9 (a). We have to show that for every F € M(LG) and X €
M((LG)?) we have an equality (A)((X(F))) = (X)({A)((F))). By the definition of
(A), we have to show that for each sufficiently large Y € T, we have an equality

(4.7) (AY) = (X(F)) = (X)((A) = (F)).
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Let v : (LG)? x LG — LG be the map (a,b, z) — axb, m : (LG)*> — LG be the
map (a,b) — ab, and m’ : (LG)* x LG — (LG)? be the map (a,b, z) — (a,xb™1).
Consider element X’ := m{(X W F). Then equation (A1) can be rewritten as
(AY) % (m (X)) = n((X') K (AY)). When Y € T is sufficiently large, both sides of
the last equality stabilize (by Theorem and Corollary L.2.5]).

Thus there exists n such that (dg+) * (AY) * (mi(X")) = (AY) x (my(X”)) and
(Opr) * (X)) B (AY)) = n((X") W (AY)) for all Y € T sufficiently large. Hence it
remains to show the equality

(Og) * (A) * (mu(X)) = (ogp) = n((X) B (AT)).
In the notation of Lemma [4.3.3] the last equality can be written in the form
o ((AY) B (B B &) = B((AY) B (6, B X)),
thus the assertion follows from equality (4.4]). U

Proof of Corollary[f.1.10, Let b : LG x (LG)*> — (LG)? be the map defined by
b(g,z,y) := (gz,gy), and let b be the induced map M (LG x (LG)?*) — M((LG)?).
Then for every X € M(LG) and B € M((LG)?), we have a natural isomorphism
AdY(B(+)) =2 b(X R B)(-) of functors M(LG) — M(LG).

Choose n such that dry.(F) = F and (dgry2) ((A)((F))) = (A)((F)) (see
(c)), and set ¥ := by(X K dy+y2) € M((LG)?).

Then we have an isomorphism Ad¥ (F) = Adx(é(m)z (F)) = Y(F), and, similarly,
an equality (Ad¥)((A)((F))) = (V) ((A)((F))). Thus our assertion follows from the
equality (AY((V(F))) = (V) ((A)((F))), shown in Theorem (a). O

Proof of Theorem[{.1.9 (b). We have to show that (A)o(A) = (A), that is, for every
F € M(LG) we have (A)((A)((F))) = (A)((F)). By the definition of (A), we have
to show that (A)((AY) x (F)) = (AY) x (F) for each sufficiently large Y. Using the
equality (A)((AY) x (F)) = (A)({AY)) * (F) (see Corollary (a)), it is enough
to show that (A)((AY)) = (AY) for all Y.

Recall that (AY) = > 5 p. (—1)™ CGKP(AYY and that Ay = Av'®(p+). Thus

P
it remains to show that for every locally closed I-invariant subscheme Y C Flp we
have an equality

(4.8) (A (A" (dp2))) = (AVY (s ).

By additivity, we can assume that Y is one I-orbit (Y, )p = IwP /P and, moreover,
that w is the longest element of the coset wWp. Then the projection pr: LG — Flp
induces an isomorphism between Y, I := ITwI* /I C LG/I* and (Y,,)p C Flp.
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Set Xy, = 1y+ € D(LG/I*) C M(LG). Then pr(Xy) = 1(y,)p, so it follows from
Lemma (a) that AvY)P (55, ) =2 Ad™ (p+). Thus the left hand side of [{@S)
P

is equals to (A)((Ad™ (6p+))) = (Ad™™)((A)((0p+))) (by Corollary EELI0), thus to
(Ad™) ((6p+)) = (AvY®)P (5p1)) by Corollary EI6 (b). O

4.4. Application to the classical Bernstein projector. Assume that we are in
the situation of subsection B4l Note that the element (A) € 3(LG) from Theorem
119, constructed in Corollary L T.6] is Frobenius equivariant. Therefore it defines
an element [A] := [(A)] € Zs of the Bernstein center (see B.4.7). By construction,
for every X € M¥(LG), we have an equality [A]([X]) = [(A)((X))] € H(G(F)).

Theorem 4.4.1. The element [A] € Zg equals the projector 2° € Z2 C Zg.

Proof. By the definition of 2° (see BT (c)), we have to show that fi4(7) = 1 for
each m € Irr(G)? and fpaj(m) = 0 for each m € Irr(G)~°.

Assume first that (7, V) € Irr(G)°. By definition, there exists P € Par such that
VP £ 0. We have to show that [A](v) = v for all v € VF". By Corollary EL0l (b),
we conclude that

[AJ0p+) = [A]([0p+]) = [(A)((0p+))] = [(op+)] = dp+.

Note that for each v € V" we have dp+ (v) = v. Therefore by the observation of

(c), we conclude that
[A](v) = [Al(0p+(v)) = ([A](0p+))(v) = dp+(v) = .

Assume now that (7w, V) € Irr(G) is of depth » > 0. Then, by the theory of
Moy-Prasad [MP1, IMP2], there exists a congruence subgroup P,, C G(F) and a
non-degenerate character £ : P,.,./P, .+ — Q; such that the ¢-isotypical component
Ve := Homp,, (£, V) is non-zero. It remains to show that [A](v) = 0 for every v € V,.
Observe that ¢ defines a smooth measure he 1= £ dp, . € H(G(F)), supported on
P, ,. Then h¢(v) = v for every v € Vg, hence arguing as in the depth zero case, it is
enough to show that [A](he) = 0.

By the definition of (A) (see Corollary 1.6l (a)), [A](he) equals [AY] x he for each
sufficiently large Y € T, and also [AY] = Y p p,. (—1) ™ *P[AL].

It suffices to show that [AL] * he = 0 for every Y € T and P € Par. Since
A = AV (5 Pt ), it suffices to check that for every g € G(F) the restriction of £ to

P,,.NgPTg™! is non-trivial.

Since the latter assertion is implicit in the argument of Moy—Prasad (see [MP1],
7.2, Case 2|), we outline the proof, using the notation of [MP1].

Set r; := r and choose a number r;;; > 7; and a point y of the Bruhat—Tits
building of G(F) such that P, = P,,+ and P = P,,. Thus gP g™ = Pyyo+.

Z,ri+1
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Let & corresponds to the coset X + G* C G, _,,, which does not contain

x,—ri-1
nilpotent elements, because £ is non-degenerate. Assume that the restriction of ¢ to
Py N Py 0+ is trivial. Then X € G7 . +Gr o, thus (X +G7 . )NGr o # 0.
Since r; = r > 0, this contradicts to [MP1l, Prop. 6.4]. O

Our next goal is to write down an explicit formula for the restriction v,0|grss(p)
and to deduce its stability.

4.4.2. Homology of the affine Springer fibers.

(a) For each v € G™*(F’), we denote by FL, C FI the corresponding affine Springer
fiber, and by H,;(FL,) = H;(Fl,,Q;) its i-th homology group. More precisely, for
each Y € T, we set FIX = FL,NY, HZ(FIX) = H‘i(Flz,DFlwy), and we define
H;(Fl,) := colimy H;(F1)).

(b) As it was observed by Lusztig ([Lus2]), each H;(Fl,) is equipped with an
action of the affine Weyl group W of G (compare [BV]).

(c) The natural action of the loop ind-group LG on Fl induces an action of
the centralizer LG., on the affine Springer fiber F1,, hence on its homology groups
H;(F1,). Moreover, the actions of W and LG, on H;(FL,) commute.

(d) Set F™ :=T,((t)), and let T be the Galois group Gal(F/F"™). Then I acts
on the group of cocharacters X, (G,) of G, so we can form the group of coinvariants
A, = X,.(G,)r. Using Kottwitz lemma [Ko, Lem 2.2], we have a natural isomor-
phism A, = 7y(LG,). Therefore there exists a canonical surjective homomorphism
LG, — A, such that the action of LG, on H;(FL,) factors through A.,.

(e) By (b)-(d), the homology groups H;(FL,) are equipped with commuting actions

of W and A,.

4.4.3. The canonical map. (a) Set A := X, (T), and recall that W is the semidi-
rect product W = A x W.
(b)_Since G, C G is a maximal torus, we have a natural isomorphism ¢ : T = G,
over I, defined up to W-conjugacy. Any such ¢ induces a homomorphism
T, A= X, (T) > X.(G,) = A,
hence an algebra homomorphism
my t QA — Q[A] =5 QA
Notice that since ¢ is defined uniquely up to a W-conjugacy, the homomorphism
T, is unique up to a W- conjugacy, therefore 7, is independent of .
(c) Note that Spec Qi[A] is canonically the dual torus T of T, Spec Q[A,] is (G)T,
and Spec Q;[A]"Y = T'/W is the Chevalley space ¢z of G. Then ., corresponds to
the canonical morphism 7, : (G,)' = G, = cg.
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The following result asserts that the actions of W and A, from are ”com-
patible”. Assume that char(k) > 2h, where h is Coxeter number (see [Yun, 1.11}).

Theorem 4.4.4. There exists a finite W x A, -equivariant filtration {F7H;(FL,)};
of Hi(FL,) such that the action of Q[A]" C Q;[A] on each graded piece gr! H;(Fl,)
is induced from the action of Qi[A.] via homomorphism ..

Sketch of a proof. The main ingredient of the proof is an analogous result of Yun
([Yun, Thm 1.3]) for Lie algebras.

The argument of Yun is very involved. First he treats the case when the reduction
T € Liel/Liel" of z € Liel N (Lie G)™*5(F) is regular. In this case, the affine
Springer fiber Fl, is discrete, and Lusztig’s action of W on H;(Fl,) comes from an
action of W on Fl,. Moreover, the restriction of this action to A C W coincides
with the geometric action of A, = A.

To show the result in general, Yun uses global method, extending some of the
results of Bao Chau Ngo ([Ngo|). To deduce the assertion for groups, we use quasi-
logarithms and the topological Jordan decomposition (see [BV]). O

Corollary 4.4.5. For each v € G™(F) and i € Z, the homology group H;(FL,) is
a finitely generated Q;[W]-module.

Proof. First we claim that H;(FL,) is a finitely generated @;[A.,]-module. Indeed, set
A, := X.(G,)'. Then we have a natural embedding A, < LG.,, the group A, acts
on Fl, discretely, and the quotient A\ FL, is a projective scheme (by [KL]). This
implies that H;(FL,) is a finitely generated Q;[A,]-module, thus a finitely generated
Q[A,]-module (see [BV] for details).

Now the assertion follows from Theorem FEZ4l. Indeed, since Q;[A.] is Noetherian,
each graded piece gr’ H;(FL,) is a finitely generated @;[A,]-module, hence a finitely
generated @;[A]"-module (by Theorem 4.4). Thus H;(FL,) is a finitely generated
Q/[A]"-module, hence a finitely generated Q;[IW]-module. O

4.4.6. Remark. This statement appears also as Conjecture 3.6 in [Lusd]. It is also
mentioned in [oc. cit. that the statement should follow from the result of [Yun].

4.4.7. Observations. (a) It follows from Theorems 1.7 and [£4.1] that the re-
striction of v,0 = v to G™*(F) has the form d.op’" for some g0 € C®(Gr5(F)),
where p/" was defined in B

(b) Using Corollary [4.4.5] and arguing as in [3.4.12] we see that TorJW(H,-(FlV), sgn)
is a finite-dimensional Q;-vector space, equipped with an action of Gal(F,/F,). In

particular, we can consider trace Tr(Fr, Tor!" (H;(Fl,),sgn)) € Q.
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Taking into account Theorem ELZAT] the following result is Conjecture B.Z.11] (b)
for the unit element. Its proof will occupy Section

Theorem 4.4.8. For each topologically unipotent v € G™*(F'), we have an equality

(4.9) ¢0(7) = Y (=1 Te(Fr, Tor} (H;(FL,), sgn)).
0,
The following result is a particular case of Conjecture (b).

Theorem 4.4.9. The restriction v,o|grss(r) is stable.

Proof. We have to show that ¢.o(y) = ¢.0(7') for every pair of stably conjugate
elements v, € G™*(F) = LG™*(F,).

First we claim that v, = 4 is supported on topologically unipotent elements.
Indeed, this follows from the fact that [AY] = Y pcp,, (—1)™ ™ P[AL] and that
A} = Av'®(§p+ ) is supported on elements, conjugate to P*. Therefore ¢,0(7) and
¢.0(7) are varllpish, unless v and 7/ are topologically unipotent.

Assume now that + and ' are topologically unipotent. Then, by Theorem [£.4.8]
it suffices to show that for each 7, 7 we have an equality

Tr(Fr, Tor’V (H;(FL,), sgn)) = Tr(Fr, Tor” (H,(FL,), sgn)).

Since 7,7 € LG™(F,) = G"**(F) are stably conjugate and H'(F"",G,) = 1, there
exists ¢ € LG(F,) = G(F™) such that gyg~' = +'. Then h := g~'"g belongs to
LG, and element ¢ induces an isomorphism F1, = Fl,,, hence an isomorphism
Tor!" (H;(FL,),sgn)) = Torl (H;(FL,),sgn)). Using the identity g~ oFrog = ho¥Fr,
we conclude that

Te(Fr, Tor' (H;(Fly), sgn)) = Tr(h o Fr, Tor’ (H;(FL,), sgn))
(see [BV] for more details). Hence it suffices to show an equality

Tr(h o Fr, Toer(H,-(FlV), sgn)) = Tr(Fr, TorJW(Hi(FlV), sgn)).

It is therefore enough to show that there exists a (Fr) x LG, -equivariant filtra-
tion on Tor;-}V(Hi(Flw),sgn) = H;(A, H;(FL,))wgen such that my(LG,) = A, acts
trivially on each graded piece. It suffices to show that each element of A, acts
on H;(A, H;(FL,)) unipotently. Geometrically this means that the coherent sheaf
F on (G,)', corresponding to the Q;[A,]-module H;(A, H;(FL,)) (see EZ3 (c)), is
supported at 1 € (G

By definition, the group A acts trivially on H;(A, H;(Fl,)). Geometrically this
means that the coherent sheaf 7/ on T, corresponding to H,(A, H;(FL,)), is a direct
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sum of d-sheaves at the identity. The restriction of H;(A, H;(FL,)) to Q[A]Y corre-
sponds to the pushforward pr, F’, where pr is the projection 7' — T/ W =cg In
particular, pr, F’ is supported at [ | € ce.

Since the actions of Q;[A]" and A, of H;(Fl,) are compatible (Theorem {44, the
induced actions on H,;(A, H;(Fl,)) are compatible as well. Geometrically this means
that F and 7 (pr, F') have filtrations with isomorphic graded pieces. In particular,
the support of F equals the support of 77 (pr, F'), which is 7" ([1]) = {1}. O

Remark 4.4.10. We believe that using an extension of a theorem of Harish-
Chandra, the stability of 1,0 formally follows from the stability of v,0|grss(r)

5. PROOF OF THEOREM [1.4.8|

5.1. Reformulation of the problem. In this subsection we will reduce Theorem
148 to a certain equality in a K-group (see Corollary 5.1.9). First we need to
introduce several constructions. As before, we can assume that G is simple.

5.1.1. Springer theory revisited. ~
(a) For P € Par, we set np := dimI"/P* and dp+ := 1p+ [2np](np) € D(E).

5

Every embedding n : P < Q in Par induces a map [n] : & — % and a closed

embedding 7 : % — %. Note that [n]*0q+ = 1Q+ 2ng](ng) € D(%), thus we have

natural isomorphisms ([n]*0g+)|q+ = _'(5p+|p+) and ([n]*0q+)|e+ =7 (5p+|p+)
P P

hence a bijection
Homp, ) ([0]"0q+, 0p+) = Hom , vt (7 (9p+| 22 ), Op+ | 2t )-
P D(%s) P v
In particular, we have a natural morphism [n]*5Q+ — 0p+, corresponding to the

counit map ¢ : 7' — Id.
(b) For every n : P < Q in Par as in (a), we have isomorphisms

RHomD(g)([U]*SQﬂgP+) = RHomD(%)(ﬁ!ﬁ!(Sw|%),5p+|%) =
= RHom (g)(ﬁ!(gp+‘p+) _!(SP+|p+)) = RHom +)(1Q+ 1q+).
Note that the projection p : —> — is pro-unipotent (use Lemma [[L4.7] (a)), thus

the functor p* is fully falthful (by Lemma [L1.3), hence we have an isomorphism.
RHomD(g)([n] 5Q+,5P+) = RHomD(ﬁ)(lﬁ’lﬁ)'

In particular, we have dimg Hom([n]*dq+,dp+) = dimg; Hom(lLL, 1%) =1 and
. — _ . P P
Ext™([n]"0q+, op+) = EXt_J(I%, 1.1)=0forallj>0.
P

LP
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(c) Let n be the embedding I < P. Then classical Springer theory implies that
[n].01+ € D(3) is equipped with Wp-action, and ([n].d1+)"P=8" 2 §p+ (see the proof
of Lemma BT.T)). Moreover, since Hom(dp+, [7].0r+) = Hom([n]*ép+, d1+) is one-
dimensional (by (b)), we can normalize the isomorphism dp+ 2 ([1].d1+)"®*8" such
that the composition dp+ —+ ([1].05+)"VP8" — [n].01+ corresponds by adjointness to
the morphism [n]*0p+ — 01+, defined in (a).

5.1.2. Application to the affine Springer fibers. Let v € G™*(F) = LG"**(F,)
be a topologically unipotent element.

(a) For P € Par, we let F1, p C Flp be the ind-scheme of 7-fixed points. Denote
by pr,p : Fl,p — & the map [g] — [g7'7g], and set op+ = pr’ p(0p+) € D(Fl,p).
Notice that since ~ is topologically unipotent, and g+ = 1 r, we have SI+ = 1p p-

For each Y € T, we set Fl = FL,pNYp C Flp. We denote the *-restriction of
op+ to F1Y ~.p simply by op+.

(b) We clalm that there exists a natural functor C}(y) : T x Par — D(k), which
sends pair (Y,P) to CY(v) := RF(FL}Y/,P,D(SVPQ) = D(RF(FI};P,gpQ), where D
denotes the Verdier duality.

Indeed, for every Y C Y’ in T, we have a closed embedding Fl}y/,P — FL}Y/,,P.
We define the map O} (y) — Cg (v) to be the Verdier dual of the restriction map
RT(Fp, dp+) — RO(FI p, 0p+).

Next, every inclusion n : P — Q in Par induces a projection 77 : F 1’YP — F I’YQ’

which gives rise to a map 7 5Q+ — 0p+, induced by the map n]*6q+ — dp+ from
B.1.01 (a). Therefore 7 induces a map

RU(FIY g, 0q+) —+ RU(FIY p,77°0q+ ) — RU(FIY p,0p+),

which by duality induces a map C (v) = C& (7). Finally, we notice that the above
maps are compatible with compositions.

(c) Consider the inductive limit Cy(y) := indlimyey CY (y) : Par — D(k). It
sends P to Cp(7) = RI(FL, p,D(dp+)). In particular, Cy(y) = RT(FL,, Dg,.).

(d) We claim that for every P € Par element Ci(vy) € D(k) is equipped with the
action of Wp, and the morphism Cr(v) — Cp(7) from (c) induces an isomorphism
CI(’Y)WP,sgn ; CP(’Y) »

By the Verdier duality, it suffices to show that RI'(Fl,,dr+) is equipped with
the action of Wp, and the morphism RI’ (FI»YP,(SP+) — RI'(F ly,gﬁ) induces an
isomorphism RI'(FL, p, op+) RI'(F1,, op+)VPsen Note that the following diagram
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is Cartesian

Fl, — 1
ﬁl [n}l
Fl,p —%5 B

thus the assertion follows from the Springer theory (5.1.1] (c)) and the base change
isomorphism.

5.1.3. A morphism. Let v € LG"**(F,) be as in[5.1.2l For every Y C Y in T and
P ¢ Par, we set Fl};;;y : FIYP N Fl

For every P C Q in Par, the pl"OJeCtIOIl n: Fl}y/,/P — FL}//IQ is proper and satisfies
?)(FIXP) C Fl}y/,Q. Thus we have an open embedding ﬁ_l(Fl}y/,g) — Fl}y/,lléy, which
together with a map ﬁ*gQ+ — 0p+ from (b) induces a morphism

(5.1) RU(FIYS 0q+) -5 RU(7(FIVY),70q+) — RU(FIY dpe).

5.1.4. Cochain complexes. Let Sh(k) be the abelian category of étale Q;-sheaves
on Speck, let Ch*(Sh(k)) be the category of cochain complexes over Sh(k), let
Sh.(k) C Sh(k) be the subcategory of constructible, that is finite-dimensional,
Q-modules, and let Ch**(Sh(k)) € Ch*(Sh(k)) be a subcategory of bounded com-
plexes with constructible cohomologies.

Fix ¢ € Z, and let h; : Ch*(Sh(k)) — Sh(k) be the (—i)-th cohomology functor.

(a) Consider functor Cf,(v) := h; o C;(v) : T x Par — Sh(k), where C}(v) was
constructed in (b). This functor sends P € Par and Y € T to
Chp(y) = H‘i(Flip,D(épﬁ) = H(FIXP,5P+) By functoriality, we have mor-
phisms fp q : Cip(7) = Clq(y) for all P C Q in Par and Y € 7.

(b) We choose a bijection between A and [r] :=={0,...,7}. Forevery J C A = [r]
and m € [r] \ J, we define sgn(.J,m) := (—1)7€rJi<ml,

(c) Consider functor C¥(y) : T — Ch*(Sh(k)), which associates to each Y € T a

cochain complex

CY (1) = (0= CF 7 (3) = ... > CF°(7) = 0),

)

where C}"7/ () = @)X sj=r_;Cip, (7) and the differentials CYr(y) = ¢V ()

are the direct sums of maps sgn(.J, m) f}/ Jumy © G

’p,(7) = C)p, . (7), taken over

subsets J C A with |J| =7 — j and m € [r] ~ J. Notice that our choice of signs in
(b) implies that each CY (v) is indeed a complex.
(d) Consider functor Cj,(v) := indlimyey CY,(y) = h; 0 Ci(y) : Par — Sh(k).
1

Explicitly, C;p(y) = H;i(Fl,,0p+), in particular, Ci1(y) = H;(Fl,). By (d),
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each C;1(7) is equipped with a Wp-action, and the morphism C;1(y) — C;p(7)
induces an isomorphism C; 1(7)wp sen = Cip(7).
(e) Set C;(7) := indlimyey CF(y) € Ch*(Sh(k)). Explicitly, C;(vy) is a complex
Ci(7) = (0= C7"(y) = ... = C(7) = 0),

where C; 7 (7) := D i |sj=r;Cip, (7), and the differentials are defined as in (c).

Lemma 5.1.5. We have a natural isomorphism TorJW(Hi(FlV), sgn) = H=(Ci(v))
for each i, j. Therefore Ci(vy) € Chi*(Sh(k)) for all i.

Proof. For every J C A and m € [r] ~ J, we define the map

gp,m - @[W/WPJ] - @[W/WPJU{WL}]
to be sgn(J,m) times the natural projection.

Consider the cochain complex D, of Q;[W]-modules 0 — D" — ... — D° — 0,
where D77 = @P,rkP:r—j@[W/ Wp]|, and the differentials are the direct sum of the
gpm’s.

Note that D, is a resolution of the trivial module Q;. Indeed, this follows from the
fact that D, is the simplicial chain complex of the affine space A ®7 R, triangulated

by alcoves. Moreover, each @[W/ Wp| = @[W]WP is a direct summand of the free
@[W]—module @[W], thus D, is a projective resolution of Q.

By the definition of homology, for every @[W]-module V', we have an isomorphism
H; (W, V) = H;(D, ) V). Since @[W/Wp] gV = Ve, the tensor product
D, ®@[W] V' is simply the complex with terms ©p jkp=r—; Vivp-

We claim that if V' = H;(Fl,) @ sgn, then the complex D, @ V is iso-
morphic to C;(). Indeed, for each P € Par, we have a natural isomorphism
Vive = Hi(FL))wp sen = (Cit)wp sen = Cip(7y) (see B4l (d)), and for every P C Q
the induced map Viy, — Viyg, is the map fp q from 514l (a). This implies the first
assertion. The second assertion follows from the first one and 4.7 (b). O

5.1.6. Notation. (a) We denote by Sh'™(k), D™ (k) etc. the categories of Weil
(Frobenius equivariant) objects. Using the sheaf-function correspondence, to every
(A) € Ko(D¥(k)) = Ko(Sh™(k)) we can associate [A] := Tr(Fr, (A)) € Q.

(b) Notice that since v € G(F), all objects, defined in[B.T.2land .. 4 are Frobenius
equivariant. Using Lemma B.L5, we have Ci(v),CY (y) € Ch**(Sh™(k)) for all i
and Y € T. In particular, we can form (C} (7)) € Ko(D™(k)) and

T

(Ci(7) = D _(=1)(hy(Ci(m))) € Ko(D* (k).

J=0
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5.1.7. Remark. For every P € Par and every locally closed subscheme Y C FlI,
defined over F,, let A%, € D™(LG) be the unique object such that A% @ & = AY
(see m and let AY( ) € DFr(k:) be the «-pullback of AY to {7}. Arguing as in
| and using the equality uP" = p! [2np](np) of Haar measures, we get that
AY( ) RT(FLp,0p+) = D(CE (7).

Lemma 5.1.8. (a) For every i € Z, we have an equality

[Ci(1)] = S (1) Tu(Fr, Torl¥ (H;(FL, ), sgn)).

J
(b) For everyY € Y sufficiently large, we have an equality ¢.o(v) = >,(—=1)' [CY (7)].

Proof. (a) follows immediately from Lemma

(b) For every Y € T and P € Par, let ;g(v) € D¥ (k) be as in 5.1.7 and let
[A%(7)] be the corresponding element of Q. By construction and Theorem B4 for
each sufficiently large Y € T, we have an equality ¢.0(y) = S p(=1)""" P [A%(7)].

On the other hand, each [C} (V)] equals ZP(—l)”_rkP[HZ(FIXP,gp+)]. There-
fore it remains to show that [;g(v)] = Zi(—l)i[Hi(Fl}Y/’P, gp+)]. Using B.1.7], we get
/Ag('y) = RF(FI};P, Sp+), hence the assertion follows from the fact that Hi(Fl};P, gp+)
is the dual of H'(F1Yp,dp+), thus [H;(FL! p,0p+)] = [H(F1¥ p, dp+)]. O
Corollary 5.1.9. In order to prove Theorem [{.4.8, it is enough to show that for
every sufficiently large Y € Y we have an equality in Ko(D™ (k))

52) S DGO = Y1 )
Proof. The equation (5.2)) would imply the equality
S 1G] = 31 ()
in Q;, whose right hand side equals ¢.0(7) (by Lemma (b)), and left hand side
equals Y, .(—=1)" Tr(Fr, Tor} (H;(Fl,),sgn)) (by Lemma TR (a)). O

5.2. Proof of the theorem. In this subsection we prove Theorem .48, assuming
Claim Abusing the notation, we omit superscript Fr, so we will simply write
Sh(k), D(k),D(k) etc. instead of Sh*™(k), D™ (k), D™ (k), respectively.
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5.2.1. Observation. Let [1] be the partially ordered set {0 < 1}, let [1]™ be its
n’th power, let T € [1]" be the maximal element, and set ([1]")" := [1]* — {1}. Then

M=oy <y L @@y,
(fopx([)-1y)

Let D be a stable oo-category, and F : ([1]")" — D a functor of oco-categories.
Then we have an equivalence

(COlimge([l]n)/ F(f)) = F(O, T) |_| Colimfe{l}x([l}nfl)/ F(f)

cohmfe{o} < ([1)n—1y/ F(z)

Lemma 5.2.2. Let D be a stable co-category, and let I : ([
of oo-categories such that F(0,1) = 0, and for every Te (1
F(0,7) = F(1,7) is an equivalence. Then colimze iy F(T)

1]") — D be a functor
"Y' the induced map
0.

~

Proof. Using and the assumption F(0,1) = 0, we have to show that the map
colimge(in-1y F(0,T) — colimge(n-1y F(1,7) is an equivalence. It is enough to
show that the map F(0,-) = F(1,-) in DA™Y is an equivalence. But this follows
from the assumption that F'(0,7) — F(1,7) is an equivalence for all 7. O

5.2.3. Notation. Let A be an abelian category, let Ch*(A) be the category of
cochain complexes in A, and let D(A) be the corresponding derived oo-category.
Then we have a natural functor of co-categories Ch*(A) — D(A), which is a bijection
on objects. In particular, every functor F' : J — Ch*(A) of ordinary categories gives
rise to a functor F': J — D(A) of oo-categories.

(a) Note that if .J is filtered, then the inductive limit indlim; F' € Ch*(A) repre-
sents the (homotopy) colimit colim; F' € D(A).

(b) For every T = (x1,...,x,) € [1]", set [T| = >, x;. For every i = 1,...,n,
let e; € [1]" be the element (d14,...0,;). For T and ¢ such that x; = 0, we set
sgn(T, i) = (—1)l<e=0,

(c) Let F: ([1]")) — Ch*(A) be a functor. Consider the cochain complex F' in
Ch*(A), defined as follow. As a graded module, ' = ®zc(un )F( )[n -1 -7/,
where [] is the cohomological shift. Define the differential dz : F — F[1] to be the
direct sum of differentials of the F(Z)[n — 1 — |Z|]’s and the sum of

SgN(T, 1) Fyzye, - F(T)In—1—|Z|]] = F(T+e;)ln— 1 —|7]],
taken over all ¥ and 7 such that z; = 0.

Lemma 5.2.4. In the notation of .23 (¢), the cochain complez F € Ch*(A) rep-
resents the (homotopy) colimit colimny F' € D(A).
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Proof. Recall that a (homotopy) pushout BylLis B of the diagram By JELIRY LN By

is equivalent to the pushout of the diagram 0 +— A (_Ml) By & By, thus it is
represented by the cone of (—fy, f1) : A — By@® Bj. In other words, it is represented
by a complex By @ By ® A[l] with differential dg, + dp, + dap) — fo[1] + fi[1].
From this the assertion follows from observation by induction on n. Indeed,
for i = 0,1, let F|;: ([1]""') — Ch*(Sh(k)) be the functor F|;(T) = F(i,7). Then,
by the induction hypothesis and [5.3.5, we have to show that the homotopy pushout
F(0,1) Ug F |1 is represented by F. But this follows from the observation in the
beginning of the proof. O

5.2.5. Truncations. (a) For every —oo < n < m < oo we denote by D™ (A) ¢
D(A) the full co-subcategory, whose objects are all F in the homotopy category
D(A) such that h*(F) = 0 for all i > m and i < n, where h’ denotes the i’s
cohomology. We also set DI%(A) := DIOO(A) C D(A).

(b) For i € Z we have truncation functors 7=¢ : D(A) — D=(A) := DE(A)
and 727 : D(A) — DZ'(A) := D) (A) (see [Lur2, 1.2.1.7] but note that we use here
a cohomological notation rather than homological). Moreover, we have a natural
equivalence 727 o 7U[i] & 727 o 75U[i] : D(A) — DI(A) (see [Lur2, Prop 1.2.1.10]),
and we denote the resulting functor by h'.

(c) Let C C D(A) be a full co-subcategory, stable under translations, cofibers and
truncation functors 7<% and 7=°. Then C is a stable oco-category (see |[Lur2, Lem
1.1.3.3]). Consider full oo-subcategories CI*™ := C N DP™(A) C C and C :=
CNDIO(A) c C. Then 75,727 and h' defines functors 7= : C — C=, 72" : C — C=*
and h' : C — ClOL,

(d) Basic example. Let A = Sh(k) and C = D(k) = D(Sh(k)) C D(Sh(k)).
Then C satisfies all the assumptions of (c).

Lemma 5.2.6. Let L be an ordinary category, n < m be integers, and let C C D(A)
be a full co-subcategory satisfying assumptions of (.24 (c).

Let F : L — C™™ be a functor of co-categories such that for each i € 7 the
composition h' o F : L — CI% C C has a colimit colimy,(h' o F) € C. Then there
ezists a colimit colimy F' € C, and we have an equality in Ky(C)

(5.3) (colimy, F)) =) ~(—1)*(colim, (b o F')).
Proof. The proof goes by induction on m —n. If m —n = 0, then n = m, hence
F = (h" o F)[—n], thus colimj F' = (colimy(h" o F'))[—n], and the assertion is clear.

Assume now that m > n. Then, by the induction hypothesis, we can assume

that the lemma holds for 7= ' o F' : L — CI»™~1 In other words, there exists
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colimz (7™t o F') € C, which satisfies
m—1
(5.4) {colimy (75" 1 o F)) = Z(—l)i(colimL(hi o F)).
Since 7™ o F' = (h™ o F')[—m], we have a fiber sequence
S lo P — F — (W™ o F)[—m)]
in C¥ (see [Lur2, Rem. 1.2.1.8]). Thus F is a cofiber of (h™oF)[—m—1] — 7™ 1o F,
hence colimy F' € C is a cofiber of colimy(h™ o F)[—m — 1] — colimy (7™ ! o F)

(compare [Lur2, Prop. 1.1.4.1]). Since C is stable, we conclude that colim; F' € C
exists and satisfies

(colimy, F) = (colimz (7™ ! o F)) + (—1)™{colim(h™ o F)).
Thus equality (5.3) follows from (5.4]). O

5.2.7. Discrete oo-categories. (a) We call an co-category X discrete, if for every
two objects z,y € Ob X the mapping space map y (x, y) satisfies 7;(map y(z,y)) =0
for every 7 > 0. Note that X is discrete if and only if the natural functor X — Ho X
from X to its homotopy category is an equivalence of co-categories.

(b) Assume that X is a full co-subcategory of a stable co-category Y. Then

mj(mapx (,y)) = mo(mapy (z[j], y)) = Extygy (2,y)
(see [Lur2, remark after 1.1.2.8, and 1.1.2.17]). Therefore X is discrete, if and only if
Extﬁgy(:c, y) = 0 forevery z,y € Ob X and j > 0. In particular, the full subcategory
DII(A) € D(A) is discrete, thus the natural functor D%(A) — HoDPI(A) = A is

an equivalence.

5.2.8. A geometric lift. (a) Let C(y) : T x Par — D(k) be the functor,
constructed in (b). By a lift of C}(y), we mean a functor of oco-categories
Ci(y) : T x Par — D(k) such that the induced functor on homotopy categories is
Ci(v)-

(b) Let C*(y) be any lift of C*(v). For Y € T, we denote by CY (v) : Par — D(k)
the restriction of C;(v) to Y € T. For every Y C Y’ in T, we have a morphism
CY(vy) — CY'(7), defined uniquely up to an equivalence.

(c) Let CY"Y(y) € D(k)"™ be the cofiber of CY'(y) — CY'(y). Then CY'¥(y)
defines a functor CY?Y(y) : Par — D(k) of usual categories. In particular, for
every P C Q in Par, we have a well-defined morphism C’g/5y(7) — C’gl;y(fy) in the
homotopy category D(k).

(d) Since Cp (7) = ]D(RF(FI}Y/’P, op+)), and Cg,;y(v) is a cofiber of Cj (7) — Cb (7),
we have a natural isomorphism Cg/;y(v) = D(RPC(Flz;,}i,Y, op+)) (see BL3).



A CATEGORICAL APPROACH TO THE STABLE CENTER CONJECTURE 65

(e) We call a lift C:(y) of Cf () geometric, if for every Y C Y/ in T and every
P C Q in Par, the isomorphism of (d) identifies the morphism C’g,5y(7) — C’gl;y(fy)
constructed in (c¢) with the Verdier dual of the morphism (5.1]) from 5.1.3l

(f) For each Y € T, we set C¥ () := colimpepa; C) (7) € D(k). The the morphism
from (b) induces the morphism C¥ () — C¥'(7), defined up to an equivalence.

The following claim will be proven in the next subsection.
Claim 5.2.9. There exists a geometric lift C:(vy) of CF (7).
5.2.10. Remark. We do not know whether a geometric lift in our sense is unique.

Proposition 5.2.11. Let Ci(v) be a geometric lift of CF (7). Then for every suffi-
ciently large Y € T and every Y’ DY in Y, the map C¥ () — C¥' () (see
(f)) is an equivalence.

Proof. Choose n € Z~¢ as in LemmaL.T.§. We claim that for every Y’ DY D Y(I})
in T (see notation EZ1] (e)), the map C¥(y) — CY'(v) is an equivalence. By the
induction on the number of I-orbits in Y'\ Y, we can assume that Y'\Y =Y, = Tw,

and w ¢ S(I}). Let C¥'V () be the cofiber of C¥ (y) — C¥' (7). We want to show
that C¥'Y (y) = 0.

Let CYY () € D(k)" be the cofiber of CY' (7) — CY' (). Since cofibers commute
with colimits, we have C¥'?¥ () & colimpepar Cpr ¥(~). Thus it remains to show that
colimpepar C%,//;Y(v) =~ (.

Since w ¢ S(I}), there exists a € A such that w(a) € I'. Fix a bijection
A 5 {1,...,r+1}, which maps o to 7+1, and the induced bijection Par = ([1]"1)".
It remans to show that the functor ([1]"+')" — D(k), corresponding to C)"*¥ (v),
satisfies the assumptions of Lemma In other words, we have to show that

Cg;: (v) 220, and that for every J C A\ a the map

@

(5.5) Co(y) = Cp Y ()

Pjua
is an equivalence.
For every J' € J,,, we have Y;;J, =Yp ,, hence Fl}y/,fi’);/ = (), thus ngly(y) =0 (see
(d)). This implies that Cl};gy (7) = 0 (because A\ a € J,) and that the map

(5.30)) is an equivalence when J € J, \ . Assume now that J C J,, \ a.
Since a lift C}(7) is geometric, the map (5.5]) is the Verdier dual of the map

(5.6) RU(FU 5 0ps ) = RU(FL 5, dps),

7P jua’

constructed in .13l It remains to show that the map (5.6)) is an equivalence.
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Since J C J, ~ «, the projection 7j : FI''p — Fl};’,PJUa from [B.I.3 satisfies

77PJ
ﬁ_l(Fl};gUa) = FI}Y/,IQYJ, and the pullback map
7 RU(FL S 0t ) — RUG(FL 77 0p )

is an equivalence. Hence it remains to show that the morphism
Y'Y ~T¢ Yy ¢
(5.7) RT(FLp .7 51’%&) — RIU(FL 5, 513;)’
induced by the morphism 51’% — 5Pj from [[.3.2] (b), is an equivalence.
. . - Yu ~ % Yuw

As in the proof of Theorem EL.I.7, we get equivalences %, (Ap" * dp+) =i (Ap")
and z'fy’n(Ag‘;Ua) = i:m(A?;uQ * 0pr ). Therefore, by Lemma m the morphism
Op+ = Opy from .32 (b) induces an equivalence ifm(Agf’]Ua) — z'i‘y’n(A?“;), hence

an equivalence zzg’jw (y) = AV?; (7) (see BIT).

Finally, using equality F I:IP); =F 1}2%,], and arguing as in[5.1.7], the last equivalence

coincides with (5.7). O

5.2.12. Proof of Theorem[].7.8. By Corollary 5.1.9, we have to show equality (5.2).

Let C;(vy) be a geometric lift of C}(y). Since the dimension of F1, is finite, the
dimensions of {F Ey/,P}Y,P are bounded. Thus there exist n < m such that the image
of C*(7) lies in DI™™ (k). We are going to apply Lemma [5.2.6]

By construction, the equivalence DI (k) — Sh,(k) from[E.2.7 (b) identifies functor
h™ o Ci(y) : T x Par — DU(k) with C},(7) : T x Par — Sh(k). Therefore it
follows from Lemma 524 that C#(v) : T — Ch**(Sh(k)) € Ch*(Sh(k)) represents
colimpepa (W 0 Ch()) : T — D(k).

Next, by Lemma [5.1.5, the inductive limit C;(v) = indlimy C} (v) € Ch*(Sh(k))
belongs Ch:*(Sh(k)). Since Y is filtered, we conclude from (a) that C;(v)
represents colimy CY () = colimy colimp(h=" o C} (7)) € D(k).

Thus, by Lemmal[5.2.6] there exists a colimit C(7y) := colimy colimp C} () € D(k),
and we have an equality in Ko(D(k))

(5.8) (C(v) =D (=D{C:().
Similarly, applying the same argument to the functor CY(vy) : Par — D»™(k) we
conclude from Lemma that for every Y € T we have an equality

(5.9) (€ () =D _(=1)(CY (7).
Recall that C(v) = colimycy CY (7), the transition maps C¥(y) — CY¥'(y) are
equivalences for each sufficiently large Y (by Proposition B.2.11]), and T is filtered.
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Therefore the map CY (y) — C(v) is an equivalence for each sufficiently large Y € T.
Hence (CY (7)) = (C(7)), thus equality (5.2)) follows from (5.8) and (5.9). O

5.3. Construction of a geometric lift. In this subsection we construct a geomet-
ric lift C; () of Cf(y). As in subsection 5.2, we omit Fr from the notation.

5.3.1. Decomposition of functor C}(v). First we decompose C}(7) as a compo-
sition of four simpler functors.

(a) Let ASt; be the category of admissible stacks over k (see [L4.5)). Denote by
D(ASty, %) category over ASt;”, whose objects are pairs (X € ASt;, A € D(X)), and
for every (X, A), (X', A') € Ob D(ASty, *), the set of morphisms (X, A) — (X', A")
is the disjoint union Usepom(x’,x) Hompx (f*A, A’). We also denote by D(Vary, *)
the full subcategory of D(ASty, *), whose objects are pairs (X, .4) with X € Vary.

(b) Let AStE] be the category of morphisms in ASty, thus AStE] X ast, D(ASty, *)°P
(resp. Vary Xast, AStEj} X ast, D(AStg, %)) is the category of pairs (f,.A), where
f: X — Y is a morphism in ASt (resp. with X € Vary) and A € D(Y).

We have a natural functor ASt,[:] X ast, D(AStg, %) — D(ASty, *)°, which maps
apair (f: X =Y, A) to (X, f*A). This functor restricts to a functor

(510) Vark X ASty, AStL” XAStkD(AStIm *)op — D(Vark, *)op‘

(c) Denote by RI' the functor D(Varg,*) — D(k), which sends a pair (X,.A) to
RI'(X, A) and sends a morphism f: X' — X, ¢: f*A — A’ to the composition

RT(X, A) L5 RO(X', f*A) -2 RD(X', A)).
(d) Consider a functor Par — D(ASty, %), which maps P to the pair (5, 0p+),

and maps an embedding 1 : P < Q to the pair ([n] : § — %, N]*dq+ — dp+),
defined in [5.1.7] (a). This functor induces the functor
(511) T x Par — Vark X ASty AStLl] XAStkD(AStk, *)op’

which maps (Y, P) to the pair (pr,p : FI' p — 5, 0p+).
(e) Finally, let D : D(k)? — D(k) be the Verdier duality functor F — DJF. Then
functor C} () decomposes as a composition

TxPar — Vark X ASty, AStLl] XAStkD(AStIm *)op — D(Vark, *)op }E)‘ D(k’)Op E) D(k’)

5.3.2. Main construction. Let Cat., be the co-category of (small) co-categories
(see, for example, [Lurll 3.1]). We claim that there exists a "natural” functor
of co-categories F' : ASt;” — Caty, such that F(X) = D(X) for all X € ASt,
and F(f) = f* for all f : X — Y. Though this fact seems to be well-known
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to specialists, we sketch this construction for the convenience of the reader. The
construction consists of two main parts.

Part 1. Let L/Q, be a finite extension, m C Oy, be the maximal ideal, and n € N.
We claim that there exists a natural functor of co-categories Fy ,, : Var” — Caty,
such that F} (X) = DY(X,Op/m™) for all X € Varg, and F (f) = f* for all
f: X—=>Y.

By [Lurl, 3.2], to define a functor Fj , one needs to construct a coCartesian
fibration D%(Vary, Op/m") — Var{’. For each X € Vary, let Chi*(X,Or/m")
be the category of bounded cochain complexes of O /m"-modules over X with
constructible cohomologies. Recall that D°(X, O /m") is by definition is the oo-
category, obtained by the co-localization of the oo-category Ch*(X, O /m™) by
quasi-isomorphisms.

To construct DY(Varg, O /m™), we first consider category C' := Ch**(Vary, Or /m")
over Vary’, defined in the same way as D(Varg, ) (see 5.3 (a)), where the derived
category D(X) is replaced by Ch**(X,Op/m™). Next, we denote by W be the set
of morphisms (f : X' — X, ¢ : f*A — A’) in C, such that f is an isomorphism,
and ¢ is a quasi-isomorphism. We denote by D?(Vary, Or/m™) the oo-category, ob-
tained by the oo-localization of C' by W. For example, in the model of complete
Segal spaces, this localization is simply the fibrant replacement of the Rezk nerve
N(C, W) (see [Rel).

Part 2. The rest of the construction is a formal consequence of the fact that the
oo-category Cat,, has all small limits and colimits. We divide it in five steps.

(I) We claim that Fj , naturally extends to the functor F, : (Art/")P — Caty,

(see LAR), and Fp,(X) = DX, O /m") for each X € Art!". Explicitly,

Fr . (X) = li F .
£.n(X) (V—>X)len\HIark/X rn(V) € Catos

Formally, F},,, is the right Kan extension of FJ .

(II) Functors {FL,}, form a projective system, therefore we can form a limit
Fo, :=lim, F, : (Art!")? — Cat.. In particular, Fp, (X) = DY(X, Oy) for each
X € Artgt.

(IIT) Functor Fp, naturally defines a functor Fy, := Fp, [}] : (Art/")” — Catq,
such that F(X) = D%(X, L). Namely, the multiplication by [ induces an endomor-
phism of Fo,, so we can set Fy, := colim(Fp, N Fo, e ).

(IV) Functors {F1}1 form an inductive system, so we can form a colimit

F = colimy, Fp, : (Artgt)"p — Caty .

In particular, we have F(X) = D(X) for each X € Art]!.
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(V) Finally, functor F (Art/")r — Cat, extends to a functor F' : ASt? — Cato,
such that F(X) = D(X) := colim D(V). Explicitly, F' is the left

Kan extension of F.

(V—X)e(X/ Art])or

5.3.3. Remark. To construct functor F' : ASt; — Cat.,, we used a classical way of
defining derived categories of constructible Q;-sheaves. Alternatively, we could use
a recent approach of Bhatt—Scholze [BS], which would make the process shorter.

To prove Claim (.20, we are first going to construct a lift C;(y) of C(v) (see
(.34) and then to show that this lift is geometric (see Claim [(.3.0]).

5.3.4. Construction of a lift. To construct of a lift C;(v) of C}(v), we are going
to lift all categories and functors defined in 53] to co-categories.

(a) Let D(ASty, *) — ASt;” be the coCartesian fibration, corresponding to the
functor ASt;” — Catn, constructed in[5.3.21 By construction, objects of D(ASty, *)
are pairs (X € ASt;, A € D(X)), and for every (X, A), (X', A") € Ob D(ASty, %),
the mapping space mapp gy, . (X, A), (X', A)) is Ug.xrx mappyn (f*A, A'). In
particular, the homotopy category of D(ASty, x) is D(ASty, ).

(b) We claim that there exists a functor

(5.12) ASH X agt, D(ASty, %) — D(ASty, %),
which maps (f : X = Y, A) to (X, f*A) and lifts the functor from (5.3.1] (b).
Let & be the oo-category of spaces (see, for example, [KV]). By the Yoneda
lemma, it is enough to construct a functor
(5.13) (AStY) X sge, D(ASts, %)) x D(ASty, %) — &,
which sends a pair (f : X — Y, A), (Z, B) to Ug.z,x mapp 4 (9” f*A, B). Note that

Homasy, (7, X) = Hom, g (Idz, f), thus

wwD(ASt) ((f5A), (Idz, B)),

Ug: z—x Mappz) (9" f"A,B) = mMapaseery
k

X ASt
so we can define the map (5I3) to be the composition of the diagonal embedding
D(ASty, %) — (ASEP)M x yguor D(ASty, %) : (Z, B) = (Idg, B)

and the evaluation map
map(-,-) : ((ASt?)! X astor D(ASty, ¥))” x ((AStyP)l X astor D(ASty, ¥)) — 6.

(c) Let D(Vary, x) C D(ASty, *) be the full subcategory, whose homotopy cat-
egory is D(Varg,*) C D(AStg,*). Then the functor (5.12)) induces a functor of
oo-categories

F1 : Vark XAStk AStLﬂ XAStkD(AStk, *)Op — D(Vark, *)Op.
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(d) We claim that there is a functor of oco-categories RI' : D(Varg,x) — D(k),
which maps a pair (X, A) to R['(X, .A) and lifts the functor from [5.3.1] (¢). By the
Yoneda lemma, we have to construct a functor

(5.14) D(k)? x D(Vary, ¥) — &,

which maps a pair (F, (X,.A)) to mapp ) (F, RI'(X, A)). Let p: X — Speck be
the projection. Then by adjointness we have natural equivalences

mapD(k) (‘F> RP(Xa A)) = mapD(X) (p*f> A) = mapD(Vark,*)((SpeC k> f)? (Xa A))a

thus we can define (5.14]) to be a composition of the embedding
D(k)? — D(Vary, *)? : F — (Speck, F)

and the evaluation map D(Varg, x)? x D(Varg, x) — &. B

(e) Consider the full co-subcategory A C D(ASty, *) with objects {(%, 0p+) }pepar-
By B.I.11 (b), we know that Ext™7([n]*dq+,dp+) = 0 for every j > 0 and every em-
bedding 7 : P < Q in Par. Thus A is discrete by B.2.7 (b), hence the natural
morphism A — Ho A is an equivalence by 5.2 (a). Therefore the functor of cate-

gories Par — (Ho A)? C D(AStg, %) from [5.3.1] (d) naturally lifts to a functor of
oo-categories Par — A% C D(ASty, *)°. In particular, it gives rise to a functor

Fy: T x Par — Varg X agt, AStH x age, D(ASty, %),

lifting 5311 (d).
(f) Let D : D(k)? — D(k) be the Verdier duality functor, and take C;(y) to be
the composition Do RI" o F} o F,. By construction, it is a lift of C} (7).

5.3.5. Observations. (a) Recall that in [5.3.4] (d) we constructed a functor of oco-
categories RI' : D(Vary) — D(k) : (X, A) — RI'(X,A). By the same arguments,
for every Y € Varg, one can construct a functor of co-categories

(py)« : D(Vary) Xyger (Vary, /Y)? = DY) : (f: X = Y, A) = fuA
such that the composition
D(Vary,)” Xvar, (Varg /Y) — D(Var,)® 25 D(k)”

naturally decomposes as RI'(Y,-) o (py)..

(b) Let X € Varg, i : Z — X be a closed embedding, and j : U — X be an
open embedding such that j(U) = X \i(Z). We claim that the natural composition
Ji7* = Idp(x) — i.i* is a fiber sequence in D(X)PH),

This formally follows from the easy fact that for every F € D(X) and a geometric
point T of X the induced sequence (jij*F)z — Fr — (i.4*F)z is a fiber sequence.
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Namely, let A be the fiber of the unit map Idpx) — i.i* in D(X)PX). Then
A(F) is the fiber of F — i.0*F for every F € D(X), hence A(F); is the fiber of
Fz — (1,3*F )z for every geometric point T of X.

Since the composition jj* — Idpx) — 4" is the zero morphism, it induces a
canonical morphism v : jij* — A, and it remains to show that v is an equivalence.

Note that v induces a morphism v(F)z : (j1j*F)z — A(F)z for all F and T. As
both (jij*F)z — Fz — (1" F )z and A(F)z — Fz — (13" F)z are fiber sequences,
we conclude that v(F)z is an equivalence for all 7 and T. Hence v(F) : j1j*F —
A(F) is an equivalence for all F, thus v is an equivalence.

Claim 5.3.6. The lift C;(vy), constructed in[5.3.4), is geometric.

Proof. We divide the proof into steps.

Step 1. First, we reformulate the assertion in more concrete terms. In the
notation of £.3.4] consider the functor C;(y) := RI'o Fy o I : T x Par — D(k)?. In
other words, C*(7) = D o C:(v), thus C5(7) = RF(FIKP,gpQ for each Y € T and
P € Par.

We fix Y C Y'in T and P C Q in Par as in .28 (e), set Yy := Y’ Y} =Y,
Py := Q, P, := P, and consider functor € : [1] x [1] = T? x Par” : (i, j) — (Y;, P;).

Let € : [1] x [1] = D(k) be the composition C*(7) o ¢, and let £ be the corre-
sponding functor [1] — D(k)! : i — [j — £(i,5)]. Then & is a morphism in the
oo-category D(k)M| thus we can consider its fiber Fib&’ € D(k)M.

Thus Fib £ is a morphism in the oco-category D(k), and, by definition, the asser-
tion that C;(y) is geometric means that the induced morphism [Fib&’] in D(k) is
naturally isomorphic to the morphism (5.1I) from 5.1.3l

Step 2. Next, we rewrite the morphism (5.0]) in a more convenient form. In the
notation of B.1.3] we consider a commutative diagram

=11

;,‘;i_l(FlYo;Y1> J 1Y0;Y1 J1 F].}Y/?Pl

'\/7P0 77P1
| | 1|
Y0;Y; Yo; Y3 Jo Y

Fl’y?Pol p— F]"\/?Pol —> FIV?PO 9

and set j' := j; 07" : ﬁ_l(Flﬁ,?) — Flffpl. Consider the composition
.7 L .o~ T BC . ~ %7 ~ xS cC o~ . 47

(5.15)  Joujgdpy — JoujoOpy — Jolld" Ops = i Opy — NujrijiOp
in D(Flffpo), where ¢ is induced by the morphism ¢ : gpg — ﬁ*gpf, adjoint to the
map ﬁ*gpg — gpf from .12 (b), BC stands for the base change isomorphism, and

NN L e VRN VN IE I

c is induced by the counit map j/3™ = juz'7" 51 = juji-
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Then the morphism (5.1]) from [B.1.3 is naturally isomorphic to the morphism
RU(FD %, joides ) — RU(F g, iijujt3p: ), induced by (5.15).

Step 3. Now, we reduce the problem to a question about an isomorphism of
morphisms in D(FIEY/?PO). Note that the composition

FyoFyoe:[1] x [1] = D(Var) : (i, ) = (FLp , 0p+)

naturally lifts to a functor Fj : [1] x [1] = D(Vary) Xyuor (Vark/Fl}Y/?PO)Op. Then,
by £33 (a), functor £ from Step 1 decomposes as a composition of

E = )« 0 Fy 1 [1] x [1] = D(FL%,)

Pr¥o
PG,

and RI(F10

v,Po ~po) = D(k). N

As in Step 1, & gives rise to the morphism £’ in the oco-category D(Flg?PO)m such
that & = RF(FI};?PO, ) o &' Hence, since functor RF(FIX?PO, -) commutes with all
limits, we have Fib&" = RI’ (FIX?PO, -) o Fib &'. Therefore, by Step 2, it suffices to
li?Po

) D(F1X®

show that the induced morphism [Fib&'] in the homotopy category D(FI'%, ) is
naturally isomorphic to the map (E.15]).
Step 4. Consider commutative diagram

FlVp —" 7 '(FIp,) —— FIY

'\/7P0 PY’Pl
! ! gl
Y1 Y1 10 Yo
F177P0 p— FI,Y’PO % Fl'Y,PO7

I
PY’P1
By construction, the functor £ : [1] x [1] — D(FIX?PO) is represented by a commu-

and set 7y ;=i 04" : F — Fl}y/opl.

tative square in D(F IX?PO), corresponding to the exterior square of the diagram

L

5P(J)F g ﬁ*épi e ?i*(SPiF e 77*5P1+

519 | ‘| iy ay

%S L . .*~’5 BC  ~ . .k u/ i ite
L0xo0pf 7 LN 0pr T 10,0 0pr —— 111401 0p

where u stands for the unit map, BC and ¢ have the same meaning as in (5.15), and
v’ is induced by the unit map @, "™ — i7" = 11,37.
Therefore, morphism £ in D(F lzy/?PO)m can be viewed as a morphism from the top

row in (5.I0) to the bottom one.
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Step 5. Note that the left inner square of (5.16]) is commutative by functoriality,
while the remaining inner squares are commutative by a straightforward diagram
chase. Hence, by (b), the fiber [Fib&’] is naturally isomorphic to the map
(518). By Step 3, this completes the proof of the claim. O
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