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Sparse Sensing for Resource-Constrained Depth Reconstruction

Fangchang Ma, Luca Carlone, Ulas Ayaz, Sertac Karaman

Abstract— We address the following question: is it possible
to reconstruct the geometry of an unknown environment using
sparse and incomplete depth measurements? This problem is rel-
evant for a resource-constrained robot that has to navigate and
map an environment, but does not have enough on-board power
or payload to carry a traditional depth sensor (e.g., a 3D lidar)
and can only acquire few (point-wise) depth measurements. In
general, reconstruction from incomplete data is not possible,
but when the robot operates in man-made environments, the
depth exhibits some regularity (e.g., many planar surfaces with
few edges); we leverage this regularity to infer depth from
incomplete measurements. Our formulation bridges robotic
perception with the compressive sensing literature in signal pro-
cessing. We exploit this connection to provide formal results on
exact depth recovery in 2D and 3D problems. Taking advantage
of our specific sensing modality, we also prove novel and more
powerful results to completely characterize the geometry of the
signals that we can reconstruct. Our results directly translate to
practical algorithms for depth reconstruction; these algorithms
are simple (they reduce to solving a linear program), and robust
to noise. We test our algorithms on real and simulated data,
and show that they enable accurate depth reconstruction from
a handful of measurements, and perform well even when the
assumption of structured environment is violated.

I. INTRODUCTION

In the last two decades, robot perception witnessed dra-
matic advances, leading to many working solutions that are
steadily transitioning to industrial practice. A large body
of research focused on the development of techniques to
perform inference from data produced by “information-rich”
sensors (e.g., high-resolution cameras, 2D and 3D laser
scanners). A variety of approaches has been proposed to
perform geometry reconstruction using these sensors, see [1],
[2], [3] and the references therein. On the other extreme
of the sensor spectrum, applications and theory have been
developed to cope with the case of minimalistic sensing [4],
[5], [6], [7]. In this latter case the sensor data is not metric
(e.g., the sensor cannot measure distances or angles), but
is more often binary in nature (e.g., binary detection of
landmarks), and the goal is to infer the topology of the
(usually planar) environment rather than its geometry.

This work investigates a relatively unexplored region be-
tween these two extremes of the sensor spectrum. Our goal
is to estimate a depth profile (i.e., a laser scan in 2D, or a
depth image in 3D, see Fig. 1) from sparse and incomplete
measurements. Contrarily to the literature on minimalistic
sensing, we provide tools to recover complete geometric
information, while requiring much fewer data compared to
standard high-resolution depth sensors.

Our interest towards depth estimation from incomplete
measurements is motivated by navigation of resource-
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Fig. 1. We show how to reconstruct an unknown depth profile (a) from
a handful of samples (b). Our reconstruction is shown in (c). Our results
also apply to traditional stereo vision and enable accurate reconstruction (f)
from few depth measurements (e) corresponding to the edges in the RBG
image (d). Figures (a) and (d) are obtained from a ZED stereo camera.

constrained robots that do not have enough on-board power
or payload to carry traditional sensors. Our overarching goal
is two-fold. First, we want to establish theoretical conditions
under which depth reconstruction is possible. Second, we
want to develop practical inference algorithms for depth
estimation. The combination of these two results would
enable, for instance, advanced navigation of miniaturized
robots (e.g., the robot bee [8]), among other applications.

The first question to answer is: is it really possible to
reconstruct a depth profile from incomplete information?
In general, the answer is negative, since the depth can be
very adversarial (e.g., 2D laser scan in which each beam
is drawn from a uniform distribution), and we would not
be able to recover the depth from a small set of measure-
ments. Fortunately, when the robot operates in structured
environments (e.g., indoor, urban scenarios) the depth data
exhibits some regularity. Intuitively, man-made scenarios
include many planar surfaces with few edges and corners.
This work shows how to leverage this regularity to recover
a depth profile from a handful of measurements.

Related work. Our study of depth reconstruction from
sparse sensor data is related to the literature on minimalistic
sensing. Suri et al. [4], Derenick et al. [5], and Tovar et al. [7]
use binary measurements of the presence of landmarks, to
infer the topology of the environment. Marinakis et al. [9]
reconstruct the topology of a sensor network from unlabeled
observations. O’Kane et al. [10] and Erickson et al. [11]
investigate localization from contact sensors. Milford [12]
addresses minimality in vision-based place recognition.

Our approach is also motivated by the recent interest in
fast perception and dense 3D reconstruction. The idea of
leveraging priors on the structure of the environment has
been investigated in early work in computer vision for single-
view 3D reconstruction and feature matching [13], [14].
More recently, Pillai et al. [15] propose an approach to



speed-up stereo reconstruction by computing the disparity at
a small set of pixels. Piniés et al. [16] propose an approach
to compute a dense depth map from a sparse point cloud.
The latter work is related to our proposal with three main
differences. First, the work [16] uses an energy minimization
approach which requires parameter tuning (the authors use
Bayesian optimization to learn such parameter); our approach
is parameter free and only assumes bounded noise. Second,
we use a 2nd-order difference operator to promote depth
regularity, while [16] considers alternative costs, including
nonconvex regularizers. Finally, by recognizing connections
with the cosparsity model in compressive sensing, we pro-
vide theoretical foundations for the reconstruction problem.

Finally, our work is related to the literature on compressive
sensing (CS) [17]. CS revolutionized signal processing by
showing that a signal can be reconstructed from a small
set of measurements if it is sparse in some domain. CS
results impacted many research areas, including image pro-
cessing [18]), data compression, and 3D reconstruction [19].
Most CS literature assumes that the signal to recover (e.g.,
z) is sparse: this setup is called the synthesis model. Very
recent work considers the case in which the signal becomes
sparse after a transformation is applied (i.e., given a matrix
D, the vector Dz is sparse). The latter setup is called the
analysis (or cosparsity) model [20], [21].

Contribution. Section III formulates our problem and
presents our first contribution. Here we recognize that the
“regularity” of a depth profile is captured by a specific
function (the `0-norm of the 2nd-order differences of the
depth profile). We also show that by relaxing the `0-norm to
the (convex) `1-norm, our problem falls within the cosparsity
model in CS. Section IV contains the core contribution of
the paper. We provide formal conditions for exact depth
recovery. We also show that when exact recovery is not
possible, we can fully describe the geometry of the depth
profiles produced by our approach. Section V provides prac-
tical algorithms for depth reconstruction. Section VI reports
experimental results on simulated and real data. The exper-
iments confirm our theoretical findings and show that the
proposed approach is extremely resilient to noise and works
well even when the regularity assumptions are violated.
While our main motivation is sparse sensing, we show that
our results have potential to reduce the computational load
associated with processing of data from standard sensors
(e.g., a stereo camera). Section VII discusses future research.
All proofs, together with extra visualizations, are given in the
supplemental material [22]. We use the notation “SM-2.1” to
recall a specific section (Section 2.1 in the example) in [22].

II. PRELIMINARIES AND NOTATION

We use uppercase letters for matrices, e.g., D, and low-
ercase letters for vectors and scalars, e.g, z ∈ Rn. Sets are
denoted with calligraphic fonts, e.g., M. The cardinality of
a set M is denoted with |M|. For a set M, the symbol M̄
denotes its complement. For a vector z ∈ Rn and a set of
indices M, zM is the subvector of z corresponding to the
entries of z with indices in M. In particular, zi is the i-th
entry. The symbols 1 (resp. 0) denote a vector of all ones

(a) (b)
Fig. 2. (a) Example of 2D depth profile. Our goal is to reconstruct the full
signal (black solid line) from sparse samples (red dots); (b) When we do
not sample the corners and the neighboring points, (L1D) admits multiple
minimizers, which obey the conditions of Proposition 14.

(resp. zeros). The support set of a vector is denoted with

supp(z) = {i ∈ {1, . . . , n} : zi 6= 0}.

We denote with ‖z‖2 the Euclidean norm and we also use
the following norms: ‖z‖∞

.
= maxi=1,...,n |zi| (`∞-norm);

‖z‖1
.
=
∑

i=1,...,n|zi| (`1-norm); ‖z‖0
.
= |supp(z)| (`0-norm,

i.e., the number of nonzero elements in z). The sign vector
sign(z) of z ∈ Rn is a vector with entries: sign(z)i = 1 if
zi > 0, sign(z)i = −1 if zi < 0, and zero otherwise.

For a matrix D and an index set M, we denote with
DM the submatrix of D containing only the rows of D with
indices in M. Sometimes, given two sets I and J , we also
use the notation DI,J which is a sub-matrix of D including
only rows I and columns J . The identity matrix is denoted
with I. Given a matrix A ∈ Rp×n, we use the following
matrix operator norm ‖A‖∞→∞

.
= maxi,...,p‖Ai‖1.

In the rest of the paper we use the cosparsity model where
we assume that the application of an analysis operator D
produces a vector with small number of nonzero entries. The
following definitions formalize this concept.
Definition 1 (Cosparsity). A vector z ∈ Rn is said to be
cosparse with respect to a matrix D ∈ Rp×n if ‖Dz‖0� p.
Definition 2 (D-support and D-cosupport). Given a vector
z ∈ Rn and a matrix D ∈ Rp×n, the D-support of z is the
set of indices corresponding to the nonzero entries of Dz,
i.e., I = supp(Dz). The D-cosupport is the complement of
I, i.e., the indices of the zero entries of Dz.

III. PROBLEM FORMULATION:
RESOURCE-CONSTRAINED DEPTH ESTIMATION

We want to reconstruct 2D depth profiles (i.e., a scan
from a 2D laser range finder) and 3D depth profiles (i.e.,
a depth image produced by a kinect or a stereo camera)
from partial and incomplete measurements. We formalize this
problem as follows, by first considering the 2D and the 3D
cases separately and then reconciling them under a unified
framework.

2D Depth Reconstruction. Here we want to recover a
depth profile z� ∈ Rn. One can imagine that the vector z�

includes (unknown) depth measurements at discrete angles;
this is what a standard planar range finder would measure.

In our problem, due to sensing constraints, we do not have
direct access to z�, but we measure

y = Az� + η (1)

where the matrix A ∈ Rm×n with m � n is the mea-
surement matrix, and η represents measurement noise. The
structure of A is formalized in the following definition.



Definition 3 (Sample set and sparse sampling matrix). A
sample setM⊆ {1, . . . , n} is the set of entries of the profile
that are measured. A matrix A ∈ Rm×n is called a (sparse)
sampling matrix (with sample set M), if A = IM.

Recall that IM is the subset of rows of the identity matrix
at indices M. It follows that Az = zM, i.e., the matrix A
selects a subset of entries of z. Since m � n, we have
much fewer measurements than unknowns, hence z� cannot
be recovered from y, without further assumptions.

We assume that the profile is z� sufficiently regular, which
means that it contains few “corners”, e.g., Fig. 2(a). Corners
are produced by changes of slope: considering 3 consecutive
points at coordinates [xi−1, zi−1], [xi, zi], and [xi+1, zi+1],
there is a corner at i if zi+1−zi

xi+1−xi
− zi−zi−1

xi−xi−1
6= 0. In the

following we assume that xi − xi−1 = 1 for all i: this
comes without loss of generality since the full profile is
unknown and we can reconstruct it at arbitrary resolution
(i.e., at arbitrary x). The definition of corner hence becomes:
Definition 4 (Corner set). Given a 2D profile z ∈ Rn, the
corner set C ⊆ {2, . . . , n − 1} is the set of indices i such
that zi−1 − 2zi + zi+1 6= 0.

Intuitively, zi−1 − 2zi + zi+1 is the discrete equivalent of
the 2nd-order derivative at zi. We call zi−1 − 2zi + zi+1

the curvature at sample i: if this quantity is zero, the
neighborhood of i is flat (the three points are collinear); if
it is negative, the curve is locally concave; if it is positive,
it is locally convex. To make notation more compact, we
introduce the 2nd-order difference operator:

D
.
=


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
... 0

. . . . . . . . . 0
0 . . . 0 1 −2 1

 ∈ R(n−2)×n (2)

Then a profile with few corners is one for which Dz�

is sparse. In fact, the `0-norm of Dz� counts exactly the
number of corners of a profile: ‖Dz�‖0= |C|.

When operating in indoor environments, it is reasonable to
assume that z� has few corners. Therefore, we want to exploit
this regularity assumption and the partial measurements y
in (1) to reconstruct z�. Let us start from the case in which
η = 0 in (1). In this case, a reasonable way to reconstruct
the profile z� is to solve the following optimization problem:

min
z
‖Dz‖0 subject to Az = y (L0)

which looks for the profile z that is consistent with the mea-
surements (1) and contains the smallest number of corners.
Unfortunately, problem (L0) is NP-hard. In this work we
study the following relaxation of problem (L0):

min
z
‖Dz‖1 subject to Az = y (L1D)

which can be rephrased as a linear program, and can be
solved efficiently. Sections IV provides conditions under
which (L1D) recovers the solution of (L0). Problem (L1D)
falls in the class of the cosparsity models in CS [21].

In presence of measurement noise (1), and assuming
bounded error ‖η‖∞≤ ε, the `1-minimization becomes:

min
z
‖Dz‖1 subject to ‖Az − y‖∞≤ ε (L1εD)

We assume that the infinity norm of the noise η is bounded,
since this naturally reflects the sensor model in our robotic
application (i.e., bounded error in each laser beam).

3D Depth Reconstruction. Here we want to recover a
3D depth profile Z� ∈ Rr×c (a depth map, as the one
in Fig. 1(a)), using incomplete measurements. As in the 2D
setup, we do not have direct access to Z�, but we can only
take (point-wise) m� r × c measurements in the form:

yi,j = Z�i,j + ηi,j (3)

where ηi,j ∈ R represents measurement noise. Each mea-
surement is a noisy sample of the depth of Z� at pixel (i, j).

We assume that Z� is sufficiently regular, which intuitively
means that the depth profile contains many planar regions
and few “edges”. We define the edges as follows.
Definition 5 (Edge set). Given a 3D profile Z ∈ Rr×c, the
vertical edge set EV ⊆ {2, . . . , r− 1}× {1, . . . , c} is the set
of indices (i, j) such that Zi−1,j − 2Zi,j + Zi+1,j 6= 0. The
horizontal edge set EH ⊆ {1, . . . , r} × {2, . . . , c− 1} is the
set of indices (i, j) such that Zi,j−1 − 2Zi,j + Zi,j+1 6= 0.
The edge set E is the union of the two sets: E .

= EV ∪ EH .
Intuitively, (i, j) is not in the edge set if the 3 × 3 patch

centered at (i, j) is planar, while (i, j) ∈ E otherwise. As in
the 3D case we introduce 2nd-order difference operators to
compute the vertical differences Zi,j−1−2Zi,j +Zi,j+1 and
the horizontal differences Zi−1,j − 2Zi,j + Zi+1,j :

DV Z
� ∈ R(r−2)×c, Z�DT

H ∈ Rr×(c−2) (4)

where the matrices DV and DH are the same as the one
defined (2), but with suitable dimensions; each entry of the
matrix DV Z

� contains the vertical (2nd-order) differences at
a pixel, while Z�DT

H collects the horizontal differences.
Following the same reasoning of the 2D case, we obtain

the following `1-norm minimization

min
Z

‖ vec(DV Z)‖1+‖ vec
(
ZDT

H

)
‖1 (5)

subject to Zi,j = yi,j for each measured pixel (i, j)

where vec(M) denotes the (column-wise) vectorization of a
matrix M , and we assumed noiseless measurements.

To establish a counterpart of the 2D case in 3D, we
define n

.
= r × c, and the vectorized version of the 3D

depth image: z� .
= vec(Z�) ∈ Rn. Moreover, we stack all

measurements in a vector y ∈ Rm. Using standard properties
of the vectorization operator, we can rewrite problem (5) as:

min
z
‖∆z‖1 subject to Az = y (L1∆)

where the matrix A is the same of Definition 3 (with sample
set M⊆ {1, . . . , n}) and the “regularization” matrix ∆ is a
suitable sparse matrix (full derivation is given in SM-3.1).

In presence of noise, we define an error vector η ∈ Rm

which stacks the noise terms in (3) for each (i, j), and
assume ‖η‖∞≤ ε. The noisy `1-minimization becomes:

min
z
‖∆z‖1 subject to ‖Az − y‖∞≤ ε (L1ε∆)



Comparing (L1D), (L1∆), and (L1ε
D), (L1ε

∆), it is clear that
in 2D and 3D we solve the same optimization problems, and
the only difference lies in the matrices D and ∆.

IV. DEPTH RECOVERY FROM SPARSE SENSING

This section contains the key technical results of this pa-
per. Section IV-A provides sufficient analytic and geometric
conditions for exact recovery of a depth profile. Section IV-B
completely characterizes the solution set of problems (L1D)
and (L1∆), which will guide algorithm design (Section V).

A. Sufficient Conditions for Exact Recovery

Recent results on cosparsity in compressive sensing pro-
vide sufficient conditions for exact recovery of a cosparse
profile z�, from measurements y = Az� (Proposition 6 below
holds for a generic A). After presenting the result we discuss
why this is not the condition a roboticist would like to use.
Proposition 6 (Exact Recovery [20]). Consider a vector
z� ∈ Rn with D-support I and D-cosupport J . Define
m̄

.
= n−m. Let N ∈ Rm̄×n be a matrix whose rows span

the null space of the matrix A. Let (·)† denote the Moore-
Penrose pseudoinverse of a matrix. If the following holds:

Cer
.
= ‖(N(DJ )T)†N(DI)T)‖∞→∞ < 1 (6)

then problem (L1D) recovers z� exactly.
Despite being very general, Proposition 6 provides an alge-

braic condition. In our depth estimation problem, we would
rather like geometric conditions that suggest an optimal
sampling strategy to recover the profile. Our contribution of
this section is to rephrase Proposition 6 in geometric terms.

We provide a first result for the 2D case.
Proposition 7 (Exact Recovery of 2D depth profiles). Let
z� ∈ Rn be a 2D depth signal with corner set C. Assuming
noiseless measurements (1), the following hold:

(i) if the sampling setM is the union of the corner set and
the first and last entries of z�, then Cer = 1;

(ii) if the sampling set M includes the corners and their
neighbors (adjacent entries), then Cer = 0 and prob-
lem (L1D) recovers z� exactly.

Proposition 7 shows that we can recover the original profile
if we measure the neighborhood of each corner. When we
sample only the corners, intuitively, one might still hope to
recover the profile z�, since the condition Cer < 1 is only
sufficient for exact recovery. However, it turns out that in
our problem, one can find counterexamples with Cer = 1 in
which `1-minimization fails to recover z� (SM-2.2).

We derive a similar condition in 3D problems.
Proposition 8 (Exact Recovery of 3D depth profiles). Let
Z� be a 3D depth signal with edge set E . Assume noiseless
measurements. If the sampling setM includes the edges and
theirs (vertical and horizontal) neighbors (adjacent pixels),
then Cer = 0, and (L1∆) recovers vec(Z�) exactly.

In the experiments, we show that these initial results
already unleash interesting applications. For instance, in
stereo vision problems, we could locate the position of
edges from the RGB images and recover the depth in a
neighborhood of the edge pixels. Then, the complete depth
profile can be recovered (at arbitrary resolution) via (L1∆).

B. Algebraic Optimality Conditions

The exact recovery conditions of Proposition 7 and 8 are
quite restrictive if we do not have prior knowledge of the
position of the corners or edges. Now we provide more
powerful results that do not require sampling corners/edges.
Empirically, we observe that without sampling all edges,
the optimization problems (L1D) and (L1∆) admit multiple
solutions, i.e., multiple signals z attain the optimal cost. We
address the following questions in this section: what is the
optimal solution set S? of problems (L1D) and (L1∆)? Is
the ground truth signal z� within this optimal solution set?

In this section, we derive a general algebraic condition
for a 2D signal (resp. 3D) to be in the solution set of (L1D)
(resp. (L1ε∆)). Section IV-C and Section IV-D translate this
algebraic condition into a geometric constraint on the curva-
ture of the signals in the solution set.
Proposition 9 (2D Optimality). Let A be the sampling
matrix and M be the sample set. Given a profile z ∈ Rn

which is feasible for (L1D), z is a minimizer of (L1D) if
and only if there exists a vector u ∈ Rn−2 such that

(DT)M̄ u = 0 and uI = sign(Dz)I and ‖u‖∞≤ 1 (7)

where M̄ is the set of entries of z that we do not sample
(i.e., the complement of M).

The proof is based on the subdifferential of the `1-
minimization problem. An analogous result holds in 3D.
Corollary 10 (3D optimality). A given profile Z is in the
set of minimizers of (L1∆) if and only if the conditions
of Proposition 9 hold, using ∆ instead of D in (7).

C. Geometric Conditions for Optimality in 2D

In this section we derive necessary and sufficient geomet-
ric conditions for z� to be in the solution set of (L1D). Using
these findings we obtain two practical results: (i) we can
bound how far any solution z? of (L1D) is from the ground
truth signal z�; (ii) we can design a general algorithm that
recovers z� also when the conditions of Proposition 7 fail.

To introduce our results, we need the following definition.
Definition 11 (2D Sign Consistency). Let sk = sign(zk−1−
2zk + zk+1) (sign of the curvature at k). A 2D depth signal
z is sign consistent if, for any two consecutive samples i <
j ∈M, one of the two conditions holds:

(i) no sign change: for any two integers k, h, with i ≤
k, h ≤ j, if sk 6= 0 and sh 6= 0, then sk = sh;

(ii) sign change only at the boundary: for any integer k,
with i < k < j, sk = 0;

While the definition is quite technical, it has a clear
geometric interpretation. A signal z is sign consistent, if its
curvature does not change sign (i.e., it is either convex or
concave) within each interval between consecutive samples
(see SM-2.3 for an example).

It turns out that picking pairs of consecutive samples
makes it easier to recover the depth profile and to analyze
the recovery performance (Theorem 13 below). Therefore we
define the notion of “twin samples”.
Definition 12 (Twin samples). A twin sample is a pair of
consecutive samples, e.g. (i, i+ 1) with i ∈ {1, . . . , n− 1}.



Theorem 13 (2D Sign Consistency ≡ Optimality). Let z be
a 2D signal which is feasible for problem (L1D). Assume that
the sample set includes only twin samples and we sample the
“boundary” of the signal, i.e., z1, and zn. Then, z is optimal
for (L1D) if and only if it is sign consistent.

Theorem 13 provides a tight geometric condition for a
signal to be in the optimal solution set, i.e., when our ground
truth signal is among the minimizers of (L1D).
Proposition 14 (z� and 2D Optimal Solution Set). Let z�

be the ground truth generating noiseless measurements (1).
Assume that we sample the boundary of z� and the sample set
includes a twin sample in each linear segment in z�. Then,
z� is in the set of minimizers of (L1D). Moreover, denote
with z̃ the naive solution obtained by connecting consecutive
samples with a straight line (linear interpolation). Then, any
optimal solution z? lies between z� and z̃, i.e., for any index
i ∈ {1, . . . , n}, it holds that if z�i ≤ z̃i then z�i ≤ z?i ≤ z̃i,
and if z̃i ≤ z�i then z̃i ≤ z?i ≤ z�i .

With regard to Fig. 2(b), Proposition 14 states that any
optimal solution z? (e.g., the dotted green line in figure)
should lie between the true depth z� (solid black line) and
the naive solution z̃ (dashed blue line). Moreover, the sign
of the curvature of z? cannot change between consecutive
samples. Now that we have a complete understanding of the
solution set of (L1D), we can get two desirable results. First,
we obtain error bounds that tell us how far is any z? from
z�. We provide this bound in SM-6.5. Second, and more
interestingly, we devise an algorithm based on (L1D) which
exactly recovers a 2D profile also when we are not able to
sample the corners. This algorithm is given in Section V.

D. Geometric Conditions for Optimality in 3D

Here we provide a sufficient condition for a 3D signal to
be in the solution set of (L1∆). We start by introducing a
specific sampling strategy (the analogous of the twin samples
in the 2D case) which allows us to discuss optimality.
Definition 15 (Grid samples and Patches). Given a 3D signal
Z ∈ Rr×c, a grid sample set includes pairs of consecutive
rows and consecutive columns of Z, and the boundary (first
and last two rows, first and last two columns) of Z. This
sampling strategy divides the image in rectangular patches,
i.e., the set of non-sampled pixels surrounded by a pair of
sampled rows and columns.

If we have K patches, and we denote with M̄i the pixels
in patch i, then the union M ∪ {M̄i}Ki=1 includes all the
pixels in the image. We can now extend the notion of sign
consistency to the 3D case.
Definition 16 (3D Sign Consistency). Let Z ∈ Rr×c be a
3D signal. Let M be a grid sampling set and {M̄i}Ki=1

be the corresponding patches. Let Z[M̄i] be restriction
of Z to its entries in M̄i. Then, Z is called 3D sign
consistent if for all i = {1, . . . ,K}, the nonzero entries
of sign(vec(DZ[M̄i])) are all +1 or −1, and the nonzero
entries of sign(vec(Z[M̄i]D

T)) are all +1 or −1, where D
is 2nd-order difference operator (2) of suitable dimension.

In words, 3D sign consistency requires the profile not to
change the sign of its curvature (along the horizontal and

Algorithm 1: Exact recovery of 2D depth profiles.
input : Measurements y, and sample set M, including boundary and

twin samples
output: Original signal z�

/* solve `1-minimization */
1 create matrices A (Definition 3) and D (eq. (2)) ;
2 solve (f?, z?) = minz ‖Dz‖1 subject to Az = y ;

/* populate a vector of signs s ∈ {−1, 0,+1}n */
3 for consecutive twin samples (i− 1, i), (j, j + 1) do
4 foreach k ∈ {i+ 1, . . . , j − 1} do
5 set sk = sign((z?j+1 − z?j )− (z?i − z?i−1))

/* recover z� within the solution set */
6 z� = argminz sTz subject to Az = y, ‖Dz‖1≤ f? ;
7 return z�.

vertical directions) within each patch. We can now present a
sufficient condition for Z� to be in the solution set of (L1∆).
Proposition 17 (3D Sign Consistency ⇒ Optimality). Let
Z ∈ Rr×c be a 3D signal, feasible for problem (L1∆).
Assume the sample set M is a grid sample set. Then Z is
in the set of minimizers of (L1∆) if it is 3D sign consistent.

Roughly speaking, if our grid sampling is “fine” enough
to capture all changes in the sign in the curvature, then Z�

is among the solutions of (L1∆).

V. ALGORITHMS

The formulations discussed so far, namely (L1D),
(L1ε

D), (L1∆), (L1ε∆), directly translate into algorithms: each
optimization problem can be solved using standard linear
programming routines and returns a depth estimate.

In this section we describe other two algorithms. The
first algorithm, given in Section V-A, solves 2D problems
and is inspired by Proposition 14. The second one, given
in Section V-B, solves 3D problems and is a variant of (L1∆).

A. Enhanced Recovery in 2D problems

Proposition 14 tells us that any optimal solution of (L1D)
lies between the naive solution and the ground truth profile
z� (recall Fig. 2(b)). Algorithm 1 is based on a simple idea.
If the true profile is concave between two samples (cf. with
the first corner in Fig. 2(b)), then we should look for a profile
within the optimal set of (L1D) that has depth as large as
possible within that interval (i.e., as close as possible to z�).
If the shape is convex (second corner in Fig. 2(b)) we look
for a solution having small depth, as this is close to z�.

Algorithm 1 first solves problem (L1D) and computes an
optimal solution z? and the corresponding optimal cost f?

(lines 1-2). Let us skip lines 3-5 for the moment and take a
look at line 6: the constraints in this optimization problem
include the same constraint of line 2 (Az = y) plus an
additional constraint that restricts z to be optimal for the
problem in line 2 (‖Dz‖1≤ f?). Therefore, we only remain
to design an objective function that “searches” a solution
close to z� within this optimal set. We use a simple linear
objective sTz, where s ∈ {0,±1}n is a vector of signs that
rewards the entries of the signal z to be as small as possible
when sk = +1, or as large as possible when sk = −1. The
last outstanding question is how to set these signs. This is
done in lines 3-5. For any consecutive twin samples (i−1, i),
(j, j+1) the algorithm looks at the slope difference between
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Fig. 3. (a) Recovery errors for A1, L1, and naive. A twin sample is
acquired in each linear segment and measurements are noiseless. (b) Re-
covery errors from uniformly sampled noisy measurements, with increasing
number of samples. (c) Recovery errors from uniformly sampled noisy
measurements (5% of the depth data points) and increasing noise level.
(d) Example of ground truth profile (green) and recovered profiles.

the last two samples (i.e., z?j+1−z?j ) and the first two samples
(z?i −z?i−1). If this difference is negative, then the function z?

is expected to be concave between the samples. In this case
the sign sk for any point k between the samples is set to −1;
otherwise the signs are set to +1. We prove the following.
Corollary 18 (Exact 2D Reconstruction in Algorithm 1). Un-
der the assumptions of Proposition 14, Algorithm 1 recovers
the 2D depth profile z� exactly.

While Algorithm 1 is designed for noiseless samples, in
the experiment we also test a noisy variant by substituting
the constraints in lines 2 and 6 with ‖Az − y‖∞≤ ε.

B. Enhanced Recovery in 3D problems

In the formulations (L1∆) and (L1ε∆) we used the matrix
∆ to encourage “flatness” or regularity of the depth profiles.
In this section we propose a slightly different regularization
matrix that performs even better in practice. The idea is the
following: while the matrix ∆ only penalizes changes in
curvature along the horizontal direction (Zi,j−1 − 2Zi,j +
Zi,j+1) and vertical direction (Zi−1,j − 2Zi,j + Zi+1,j), we
can also penalize changes along the diagonal. More formally,
for each pixel (i, j), we also penalize the following term:

1

4
(Zi+1,j+1 − Zi+1,j−1 − Zi−1,j+1 + Zi−1,j−1) (8)

which is the commonly used discrete version of the cross
partial derivative [23, eq. 2.47]. Adding this penalty term
for each pixel (i, j) only adds extra rows to the matrix ∆,
without altering problems (L1∆) and (L1ε

∆) otherwise.

VI. EXPERIMENTS

This section supports our theoretical derivation using real
and synthetic data. Empirical evidence shows that our recov-
ery techniques perform very well in practice, in both noisy
and noiseless scenarios. For our tests, we use cvx/MOSEK
as parse/solver for optimization. The average recovery error
for an estimate z? is defined as 1

n‖z
?− z�‖1 (average depth

error, in meters). Results are averaged over 50 runs unless
specified otherwise. When possible we compare our results
with a standard interpolation scheme (Matlab’s command
intep1). The results obtained with linear interpolation
are denoted with “naive”, according to the terminology
of Proposition 14. The results produced by (L1D) and (L1∆)
are denoted with L1 (the distinction between 2D and 3D will
be clear from the context). Finally, the estimate produced
by the noisy problems (L1ε

D) and (L1ε
∆) are denoted with

L1(ε = ·), where in parenthesis we specify the noise level.

A. Simulated depth profiles

Exact and stable recovery of 2D profiles. For this
simulated experiment we create random piecewise linear
depth profiles of size n=2000, with given number of corners.

Fig. 3(a) compares naive, L1, and the estimate of Al-
gorithm 1 (label: A1). These results consider noiseless mea-
surements and sample set including a twin sample in each
linear region (these are the assumptions of Proposition 14);
reconstruction errors are shown for profiles with increasing
number of corners. As predicted by Corollary 18, A1 recovers
the original signal exactly (zero error). naive has large
errors, while the L1 estimate falls between the two.

Fig. 3(b) considers a more realistic situation: since in
practice we do not know where the corners are, in this case
we uniformly sample depth measurements and we consider
noisy measurements with ε = 0.1m. As this percentage goes
to 1 (100%), we sample all entries of the depth profile. We
consider profiles with 3 corners in this test. The figure shows
that for increasing number of samples, our approach largely
outperforms the naive approach. A1 improves over L1
even in presence of noise, while the improvement is not as
substantial as in the noiseless case of Fig. 3(a). Fig. 3(b) also
shows that the error committed by naive does not improve
when adding more samples. This can be understood from
Fig. 3(d), which shows an example of 2D profile (in green)
and the reconstructions produced by naive, L1, and A1.
naive linearly interpolates the samples, hence even when
measuring all depth data, it still produces a jagged line. It
is easy to show that when measurement noise is uniformly
distributed in [−ε,+ε] (as in our tests), the error converges
to ε/2 for increasing number of samples. On the other hand,
L1 and A1 correctly smooths the noise out.

Fig. 3(c) considers a fix amount of samples (5%) and tests
the three approaches for increasing measurement noise ε. Our
techniques (L1, A1), are very resilient to noise and degrade
gracefully even in presence of large noise (e.g., ε = 1m).

The CPU times required by L1 and A1 are around 0.2 and
0.4 second (see SM-2.4 for extra timing results).

Stable recovery of 3D profiles. For the tests in this section
we create random piecewise planar 3D depth profiles of size
n = 100 × 100. Besides the naive and L1 approaches,
we also test the variant described in Section V-B, which
we denote with L1diag. Fig. 4(a) shows the reconstruc-
tion error for increasing percentage of measurements. We
also include the neighbors of each samples (as suggested
in Proposition 8), since we found that this improves our
reconstruction. The interested reader can find the results
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Fig. 4. (a) Recovery errors from uniformly sampled noisy measurements,
with increasing number of samples. (b) Errors from uniformly sampled
noisy measurements (5% of the depth data points) and increasing noise. (c)
Gazebo: errors for increasing number of samples. (d) Error with samples
collected over a receding horizon, for increasing horizon length.

without including neighboring pixels in SM-3.3. As in the
2D case, the proposed approaches are able to filter out noise.
Similar comments apply to Fig. 4(b), which tests reconstruc-
tion with fixed number of samples (5%) and increasing noise.

For a 100×100 image, the CPU times required by L1 and
L1diag are around 3.5 and 8 seconds, respectively (see SM-
3.5 for more timing results). While the CPU time is relatively
large in our Matlab implementation, we leave computational
aspects (e.g., use a dedicated linear solver) to future work.

B. Real Data and Applications
2D mapping from sparse measurements. We use the

Stage simulator to simulate a robot equipped with a laser
scanner with only 10 beams, moving in a 2D scenario.
The robot is in charge of mapping the scenario; we assume
the trajectory to be given. Our approach works as follows:
we feed the 10 samples measured by our “sparse laser” to
algorithm A1; A1 returns a full scan (covering 180 degrees
with 180 scans in our tests), which we feed to a standard
mapping routine (we use gmapping [24] in our tests).
Fig. 5 compares the occupancy grid map produced by a
standard mapping algorithm based on a conventional laser
scan, against the occupancy grid map reconstructed from our
10-beam laser. Fig. 5(c) shows that we are able to do a fairly
accurate reconstruction from very partial information. As a
technical remark, we note that, before feeding the 10 laser
measurements to A1, we express the corresponding points
in Cartesian coordinates: the original data given by the laser
is in polar coordinates and piecewise linear signals do not
remain piecewise linear in polar coordinates (see SM-2.1).

Sparse 3D depth reconstruction. We consider two sets
of profiles (these are the ground truth profiles that we want to
reconstruct). These profiles are produced by rendering 20 full
depth image in Gazebo and by collecting 1000 full disparity
images using a ZED stereo camera. Representative images
are given in Fig. 1, Fig. 6, and SM-4-SM-5.

A remark is now in order. Each pixel in a depth image
identifies a direction and the corresponding entry is the

(a) full scan (b) naive (c) A1
Fig. 5. (a) Mapping using a conventional laser scanner, (b-c) Mapping
using scans reconstructed from 10 measurements by naive and A1.

(a) 3D depth (b) 2% samples (c) reconstruction

(d) RGB image (e) RGB edges (f) reconstruction
Fig. 6. Gazebo: (a) full depth profile, (b) uniformly drawn sparse samples,
and (c) reconstruction using L1diag. (d) RBG image, (e) edges in the
RBG image, (f) L1diag reconstruction from the depth at the RBG edges.

depth of a 3D point observed along that direction. This
can be understood as a spherical parametrization of the
observed 3D points. Ideally, as in the 2D case, we should
express each point in Cartesian coordinates before applying
our algorithms, since this spherical parametrization distorts
planes into curved patches (see SM-3.2 for an example). In
practice we observed that our algorithm works well directly
over the original depth images, hence in this paper we
skip the conversion to Cartesian coordinates altogether. The
interested reader can find the results obtained by working
in Cartesian coordinates in the SM-3.2-SM-3.4 (with some
discussion on orthogonal and perspective projection).

Fig. 4(c) reports the error for increasing number of sam-
ples, averaged over all ZED images. Contrarily to the noisy
test of Fig. 4(a), here we do not add extra noise (the original
depth image that we sample is already noisy as it is the result
of stereo reconstruction). For this reason naive, L1, and
L1diag all converge to zero error, while in the regime with
small samples L1diag still provides the best reconstruction.
Example of profiles reconstructed from %2 of the samples
are shown in the first row of Fig. 1 and Fig. 6.

Sparse Stereo. While so far we discussed reconstruction
of depth profiles from few sparse samples, our results also
have useful applications for conventional sensors, as stereo
cameras. Standard stereo vision algorithms compute the
disparity at each pixel and this is computationally expensive.
On the other hand, Proposition 8 proves that we only need
to measure the depth in the neighborhood of the edges to
recover the full depth. This suggests the following sparse
stereo approach: we compute the pixel location of the edges
via edge detection on the RGB image; under the assumption
that changes of depth cause changes in appearance, the
RBG edges are a good proxy for the edges in the depth
profile. Then, we compute the disparity only at those edges



(usually < 10% of the image), and we reconstruct the entire
depth using `1 minimization. A similar insight is proposed
in [15], where the authors use an interpolation approach to
reconstruct an approximate depth profile. Table I shows the
reconstruction errors (mean and standard deviation) when
the profile is reconstructed from the RBG edges. Again,
L1diag largely outperforms naive interpolation. Average
reconstruction time is 1.2s for L1, and 1.8s for L1diag.

Gazebo ZED
naive 0.102 (0.034) 0.165 (0.180)

error (mean & std) [m] L1 0.072 (0.027) 0.144 (0.150)
L1diag 0.056 (0.022) 0.111 (0.111)

TABLE I
SPARSE STEREO RESULTS

VII. CONCLUSION AND FUTURE WORK

We discussed theoretical conditions and practical algo-
rithms to recover 2D and 3D depth profiles from sparse and
incomplete samples. Our formulation leads to constrained
`1-minimization problems: we provide sufficient conditions
under which this minimization recovers the original signal
and we provide a complete algebraic and geometric char-
acterization of the set of minimizers. Our algorithms are
very effective in practice: the capability of properly modeling
measurement noise enables a performance boost with respect
to interpolation-based naive approaches; they are also easy to
implement since they require only solving a linear program.
We provide many application examples, including 2D and
3D mapping, and sparse stereo reconstruction.

This work opens many new research avenues. On the
algorithmic side, we are currently investigating a temporal
smoothing formulation: rather than using only the samples
acquired at time t to perform depth reconstruction, we also
use past samples acquired at times t−h, t−h+ 1, . . . , t−1
(h is a given time horizon) after roto-translating them to
the current frame. Since the roto-translation between past
and current frames is estimated from noisy odometry, past
samples are less accurate than the current ones, and we
can correctly model this behavior by assigning a different
ε to each measurement in (L1ε

∆). Preliminary results from
this receding horizon strategy are shown in Fig. 4(d) for
increasing length of the horizon. We obtain the figure by
simulating a robot observing a depth profile and moving
towards it at 0.5m per frame. The intra-frame odometry
noise is assumed bounded by 0.1m. naive is not able
to model measurement noise and the reconstruction gets
worse when including past noisy samples. On the other side,
temporal smoothing improves the performance of L1 and
L1diag (for large horizons the error stops improving as
past measurements become too noisy to be useful).

On the implementation side, we plan to test the use of
more efficient linear solvers, possibly exploiting the structure
of our minimization problems. We also plan to extend
the range of applications of our algorithms. For instance,
from Fig. 4(a) it is clear that our approach is very effective for
point cloud denoising. Moreover, it can be useful to increase
the resolution of existing sensors and possibly compensate
for partial sensor failures. One last outstanding questions is:

can we use the insight of this paper to design motion policies
that can actively improve depth reconstruction?
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