
MIT Open Access Articles

Structural Complexity Quantification for Engineered Complex 
Systems and Implications on System Architecture and Design

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sinha, Kaushik, and Olivier L. de Weck. “Structural Complexity Quantification for 
Engineered Complex Systems and Implications on System Architecture and Design.” Volume 3A: 
39th Design Automation Conference (August 4, 2013).

As Published: http://dx.doi.org/10.1115/DETC2013-12013

Publisher: ASME International

Persistent URL: http://hdl.handle.net/1721.1/116278

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/116278


 1 Copyright © 2013 by ASME 

STRUCTURAL COMPLEXITY QUANTIFICATION FOR ENGINEERED COMPLEX 
SYSTEMS AND IMPLICATIONS ON SYSTEM ARCHITECTURE AND DESIGN 

 
 

Kaushik Sinha 
Massachusetts Institute of Technology 

77 Massachusetts Avenue 
Cambridge, MA 02139 

Olivier L. de Weck 
Massachusetts Institute of Technology 

77 Massachusetts Avenue 
Cambridge, MA 02139 

 
 
 

ABSTRACT 
The complexity of today’s highly engineered products is 

rooted in the interwoven architecture defined by its components 
and their interactions. Such structures can be viewed as the 
adjacency matrix of the associated dependency network 
representing the product architecture. To evaluate a complex 
system or to compare it to other systems, numerical assessment 
of its structural complexity is essential. In this paper, we 
develop a quantitative measure for structural complexity and 
apply the same to real-world engineered systems like gas 
turbine engines. It is observed that low topological complexity 
implies centralized architectures and that higher levels of 
complexity generally indicate highly distributed architectures. 
We posit that the development cost varies non-linearly with 
structural complexity. Empirical evidence of such behavior is 
presented from the literature and preliminary results from 
simple experiments involving assembly of simple structures 
further strengthens our hypothesis. We demonstrate that 
structural complexity and modularity are not necessarily 
negatively correlated using a simple example. We further 
discuss distribution of complexity across the system 
architecture and its strategic implications for system 
development efforts. 

 
Keywords - Structural Complexity, topological complexity, 
gas turbine engine, development effort, metric validation, 
complexity vs. modularity, complexity distribution, design 
encapsulation. 

 
1. INTRODUCTION 
 Today’s large-scale engineered systems are becoming 
increasingly complex due to numerous reasons including 
increasing demands on performance, and improved lifecycle 
properties. As a consequence, large product development 
projects are becoming increasingly challenging and are falling 
behind in terms of schedule and cost performance. For 

example, in 13 aerospace projects reviewed by the US 
Government Accountability Office (GAO) since 2008, large 
development cost growth of about 55% was observed. Such 
large development cost overruns/failures of large-scale system 
development projects can largely be attributed to our current 
inability to characterize, quantify and manage associated 
complexity [DARPA report, 2011]. With increasing complexity 
of engineered systems, typically the associated Life Cycle Cost 
(LCC) also increases [Sheard and Mostashari, 2010]. The 
challenge of quantifying and managing complexity is also 
central to many research areas occupied with engineering. A 
particular concern with the work done in the area of complexity 
estimation is that less than one-fifth of the studies even 
attempted to provide some degree of objective quantification of 
complexity [Tang and Salminen, 2001]. An objective and 
quantifiable measure of structural complexity is imperative for 
systematic search and optimization of system architecture. In 
particular, the consideration of the dependency network attracts 
attention in various scientific works because dependency-based 
system structures affect system characteristics and behavior. A 
system consisting of many components that are linked to each 
other and the interaction between these parts influences the 
system’s behavior [Ulrich 1995, Lindemann et al. 2008]. The 
complexity of technical systems depends on the heterogeneity 
and quantity of different elements and their connectivity 
pattern, and is a measurable system characteristic. This internal 
product architecture can be represented by complex networks, 
which are a graph-theoretic representation of complex systems. 
The nodes, representing components of the systems, are 
connected by links if there exists a direct interaction between 
any pair of components [Sheard and Mostashari, 2010]. The 
product functionality is enabled by the underlying architecture.  
A perpetually occurring theme is the complexity of product 
architecture. It is often perceived that as we stretch the limits of 
efficiency and attempt to design more robust systems, we tend 
to make architectures more complex. In this paper, a rigorous 
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and quantitative structural complexity metric for architecture 
evaluation and optimization, incorporating the fundamental 
underlying characteristics of product architecture, is proposed. 
This lends objectivity to the process of product architecture 
selection and design. Subsequently this measure is applied to a 
pair of jet engine architectures to measure and compare their 
structural complexities. Next, we posit that the development 
cost varies non-linearly with structural complexity. Some 
empirical evidence of such behavior is present in the literature. 
This hypothesis is further buttressed by preliminary results 
from simple experiments involving assembly of simple 
molecular structures. Subsequently, we demonstrate the trade-
off between structural complexity and modularity that shows 
complexity and modularity are not necessarily negatively 
correlated. We introduce the notion of structural complexity 
distribution across the system architecture and how this impacts 
strategic decisions in system development efforts. 

NOMENCLATURE 
 

αi     =     complexity of ith component 
βij      =     interface complexity between ith and jth component 
n   =   number of components in a system 
m  =   number of pair-wise interactions in a system 
A  =   adjacency matrix of simple graph G with n nodes 
A(k)   =   adjacency matrix of kth vertex-deleted subgraph of G 
Ai   =   adjacency matrix of ith module or subsystem 
E(A)   =   matrix energy of A (i.e., sum of its singular values) 
σi(A)   =   ith singular value of A 
Δ   =   integrative topological complexity 
γ   = normalization factor 
fij   =   interface-type complexity factor (ICF) 
TRL   =   Technology Readiness Level 
θ    =   reconstructability coefficient 
Q   =   modularity index 

2. STRUCTURAL COMPLEXITY QUANTIFICATION 
The structural complexity of technical systems depends on 

the quantity of different elements and their connectivity 
structure and is a measurable system characteristic. This 
representation includes contributions coming from the internal 
complexities of the components of the system; the complexities 
associated to the pair-wise connections among the components 
and a quantity that encapsulates the complexity due to inherent 
arrangement of connections (i.e., structure) amongst the 
components. We propose the following functional form for 
estimating the structural complexity of an engineered complex 
system: 

  Structural Complexity, C = C1 + C2C3   
The first term C1 represents the sum of complexities of 

individual components alone (local effect) and does not involve 
architectural information. The second term has two factors: (i) 
number and complexity of each pair-wise interaction, C2 (local 
effect) and (ii) effect of architecture or the arrangement of the 
interfaces C3 (global effect). Now, given the same number of 

interfaces these can be arranged in a variety of patterns and the 
number of interfaces alone does not dictate how they should be 
arranged among themselves, given there are no additional 
system constraints. Hence in this sense, C2 and C3 are mutually 
independent, therefore the multiplicative model. The effect of 
system architecture captured in C3 represents a global effect 
whose impact is typically first realized at the time of system 
integration. Similar functional forms are found in quantum 
mechanical analysis of molecular systems where the system 
Hamiltonian is the matrix of importance [Gutman et al. 1998, 
Sinha and de Weck 2012]. Let us look in detail at the 
topological complexity quantifier and then get at the structural 
complexity metric in fully expanded form. 

2.1 TOPOLOGICAL COMPLEXITY METRIC 
The topological complexity is defined as the matrix energy 

or graph energy of the adjacency matrix. Topological 
complexity originates from interaction between elements and 
depends on the nature of such connectivity structure. The 
adjacency matrix  A ∈ Mnxn of a network is defined as follows: 

 
1 [( , ) | ( ) and ( , ) ]
0 otherwiseij

i j i j i j
A

∀ ≠ ∈ Λ⎧
= ⎨

⎩  
 
where Λ represents the set of connected nodes and n being the 
number of components in the system. The diagonal elements of 
A are zero. The associated matrix energy of the network is 
defined as the sum of singular values of the adjacency matrix: 
 

E(A) = σ i
i=1

n

∑ , where σ i  represents ith  singular value
 

 
The matrix energy also expresses the minimal effective 

dimension embedded within the connectivity pattern 
represented through the binary adjacency matrix. Notionally, 
this quantity encapsulates the “intricateness” of structural 
dependency among components. Using singular value 
decomposition (SVD), we can express matrix A as: 

A = σ i
i=1

n

∑ uivi
T

Ei

� = σ i
i=1

n

∑ Ei

 
where Ei represents simple, building block matrices of unit 
matrix energy and unit norm. Using this view, we observe that 
matrix energy or graph energy express the sum of weights 
associated with the building block matrices required to 
represent or reconstruct the adjacency matrix A. This naturally 
leads us to the graph reconstructability viewpoint [Liu et al. 
2010, Mieghem 2011] and matrix energy can be shown to have 
a dual behavior with respect to the network reconstructability 
coefficient θ [Liu et al. 2010]. We can view the ability to easily 
construct system structure as the dual of topological 
complexity. Minimum topological complexity mandates 
maximization of re-constructability (see fig. 1). This behavior 
will be further explored in the future.  
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Figure 1.  Observed Dualism between topological complexity metric (i.e., 
matrix energy) and reconstructabality [12] on Fabrikant networks [2] with 
varying α. The two quantities are normalized in [0,1] (for matrix energy) and [-
1,0] (for reconstructability coefficient) respectively for visualization. 

Matrix energy is used as a measure of topological 
complexity of the system architecture and is invariant to 
isomorphic transformations of the matrix [Horn and Johnson 
1994, Gutman et al. 1998, Nikiforov 2007, Mieghem 2011]. To 
check conceptual validity of the proposed topological 
complexity metric, we benchmarked this against the set of 
minimal required properties prescribed as Weyuker’s criteria 
[Weyuker 1988] and also compared against some other 
complexity metrics that have been proposed in the existing 
literature (see table 1) [Lindemann et al. 2008]. As we can 
observe, the proposed topological complexity metric is fully 
compliant with Weyuker’s criteria [Weyuker 1988]. 

Table 1:  Benchmarking of matrix energy or graph energy against Weyuker’s 
criteria (i.e., a set of nine criterion [Weyuker 1988]) and comparison with other 
proposed metrics of complexity. 
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A more distributed system cannot be condensed/reduced 
significantly and such a system indicates higher structural 
complexity but it might also help achieve higher performance 
levels with high robustness and reliability. Topological 
complexity increases from centralized towards more distributed 
architectures (see fig. 2). Topological complexity helps 
distinguish structural complexity of two very different 
connectivity structures with same number of components and 
interactions (see fig. 3). For example, if we were to only 
consider the number of components and number of interactions 
as measure of complexity without considering the underlying 

architecture, we would have thought that both the star 
architecture and the hierarchical tree architecture have the same 
structural complexity. This is an inherent problem with all 
simple counting based measures of complexity since they are 
incomplete when it comes to capturing global effects like 
system structure. 
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���
	�������
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Figure 2.  Evolution of topological complexity based on their internal 
structure: (a) ‘centralized’ or bus architecture; (b) hierarchical architecture and 
(c) ‘distributed’ architecture.  

        
E(A1) < E(A2) 

Figure 3.  Two architectures having the same number of nodes and 
connections but are differentiated based on their internal structure with E(A1) = 
4.9 and E(A2) = 6.83. 

The topological complexity term captures the challenges 
associated with system integration [Sinha and de Weck 2012]. 

2.2 STRUCTURAL COMPLEXITY METRIC 
The proposed structural complexity metric is defined 

below: 
 

C =  C1 + C2C3

    = α i
i=1

n

∑ + βij Aij
j=1

n

∑
i=1

n

∑
⎡

⎣
⎢

⎤

⎦
⎥γ E(A)

 
 

The implication of the different terms in the structural 
complexity metric can be found in [Sinha and de Weck 2012]. 
The individual component complexities can vary across the 
system (e.g., a low-pressure turbine is much more complex than 
the exhaust nozzle in a jet engine) and designated by α’s, the 
Component Complexity Estimate (CCE). This measure could 
be based on the widely used notion of component TRL (i.e., 
Technology Readiness Level) or other similarly motivated 
measures as a surrogate for component complexity. We propose 
a component complexity scale of [0, 5] and computed from 
component TRL [Sadin et al., 1988] level as: 
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α = 5
TRLmax −TRL
TRLmax −TRLmin

⎛
⎝⎜

⎞
⎠⎟  

 
We describe here a multiplicative model for representing 

interface complexity βij. Each interface complexity depends on 
the complexities of the pair-wise interfacing components (αi 
and αj) and a coefficient characteristic of the interface type (fij): 

  
βij = fijα iα j  where α i ,α j ≠ 0

 

If there are multiple types of connections between two 
components (say, load-transfer, material flow and control 
action flow), the interface will have a high β value since it will 
be more 'complex' to achieve/design this connection compared 
to a simpler load-transfer connection. For large, engineered 
complex systems, it appears that β in [0,1] is a good initial 
estimate for the chosen component complexity range of [0, 5]. 
We are in the process of developing further guidelines for 
generating good estimates for fij for different interface types. 

The topological complexity term scales with the challenges 
associated with system integration. Higher topological 
complexity will likely lengthen system integration efforts 
significantly and it is a global property that is not visible locally 
(i.e., during component or interface development). The 
implication of different terms of the structural complexity 
measure is described in the following diagram: 

 
Figure 4.  Constituents of different parts of the overall structural complexity 
metric and their implications in the context of system development. DSM 
stands for Design Structure Matrix [Ulrich and Eppinger, 1995]. 

We demonstrate operationalization of the proposed 
methodology using a simple example in the following sub-
section and also briefly explain a larger jet engine example 
where this methodology has been applied and reported in an 
earlier article [Sinha and de Weck 2012]. This formulation can 
be used to show that structural complexity and modularity 
measure different aspects of the system architecture and need 
not necessarily be negatively correlated as often implied in the 
existing literature (more complexity does not automatically lead 
to less modularity and vice-versa). Consideration of system 
components and the underlying architecture also opens up an 
area where component-level and architecture-level complexities 

can be traded against each other (i.e., simple components with 
complex architecture vs. complex components with simpler 
architecture).  

2.3 ILLUSTRATIVE EXAMPLES 
We first present a small example of a hypothetical system 

for demonstrating the mechanics of the method.  Let us start 
with the example of a hypothetical system representing fluid 
flow as shown in fig. 5. 

 

      

Figure 5.   (a) Sample system: it shows different connection types amongst 
components - physical/mechanical connection (black); material/fluid flow 
(red); energy flow (green) and information/control signal flow (blue); (b) 
aggregated adjacency matrix. The labeling of components is as follows: 

Controller (1), Pump (2), Valve (3), Filter (40 and Motor (5). 

The graph energy of this system is E(A) = 5.6. If we simply 
assume unit complexities for all components and connections, 
we have C1 = 5 and C2 = 10. If we use γ = 1/n = 1/5, the 
structural complexity is C = (5+11.2) = 16.2. Now let us 
differentiate among components and let the component 
complexity vector be {(controller=5); (pump=2);(valve=1); 
(filter=1);(motor=3)}. The sum of component complexities is 
12. Let us use the following connection complexities: βmech = 
0.5,  βflow/energy = 0.5 and βinfo = 1.0. Now the sum of connection 
complexities is C2 = 12. The new structural complexity is thus 
25.44. Here, the system components are more complex than the 
connection complexities and it has the effect of increasing the 
contribution of component complexities in the overall structural 
complexity metric. In practice, assignment of component and 
connection complexities could be uncertain during the 
conceptual design stage or even after the product architecture is 
finalized. In such cases, the resulting structural complexity will 
not be a single number but a distribution, depending upon the 
distribution of individual component and connection 
complexities.  

The same method was applied to two different jet engine 
architectures, namely a dual spool direct-drive turbofan (e.g., 
older architecture) and a geared turbofan engine (e.g., new 
architecture). The specific details can be found in [Sinha and de 
Weck 2012]. The component complexities were assessed by 
experts using a scale of [0,5], while all connections were 
assumed to be of the same complexity due to lack of available 
data. The experts in this study were engineers involved in the 
development of the aircraft engines. 

 
Table 2:  Comparison of dual spool direct-drive turbofan (i.e., older 
architecture) and geared turbofan (i.e., new architecture) architectures and their 
structural complexities. 
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Architectural attribute Older Architecture New Architecture Change 
Components 69 73 6% 
Components + Connections 69 + 269 = 338 73 + 361 = 434 28% 
Topological Complexity 104.4 123.3 18% 
Structural Complexity 548 767 40% 

 
It was found that the structural complexity increase is 

grossly underestimated by considering only the number of 
connections and pair-wise interfaces by 43% (e.g., a 40 % 
increase in complexity vs. a 28% increase predicted by 
considering only components and pair-wise interfaces). This 
example manifests the importance of system architecture and 
its influence on the structural complexity. This comparison is of 
interest because of the potential benefits of the geared turbofan 
architecture in terms of various performance measures (i.e., fuel 
burn, noise). The development cost of the geared turbofan is 
much higher than the previous generation engine and we 
believe increased structural complexity is one of the primary 
contributors for this behavior [Denman et al. 2011, Sinha and 
de Weck 2012].  

2.4 SENSITIVITY ANALYSIS 
Sensitivity analysis with respect to individual component 

complexities is relatively straightforward as it follows the 
parametric sensitivity analysis procedure since the underlying 
system architecture remains unchanged. Here we look at the 
sensitivity of component deletion on the structural complexity 
metric. This has a combinatorial effect as the underlying system 
architecture is changed.  
Let us consider a system architecture be represented as a simple 
graph G with n components and m interactions and whose 
binary adjacency matrix is A. Now the kth component (i.e., kth 
node of graph G) is removed from the system and this results in 
deletion of all interactions associated to this component. For 
simplicity, assume that such deletions do not render the overall 
system totally dysfunctional (but performance might partially 
degrade) [Agte et al., 2012]. In case of component removal 
leading to structural disintegration of the system (i.e., system 
fragments into multiple disconnected fragments), the sensitivity 
for that component is set to a very large number, indicative of 
this behavior. We can also employ the same strategy for 
absolutely necessary components of the system (i.e., 
components that cannot be removed else the system becomes 
dysfunctional) from system functionality stand point.  

We also assume that component deletion does not result in 
any re-distribution of component and interface complexities 
while maintaining at least limited functionality. Please note that 
we are not imposing the multiplicative model for estimating 
interface complexity here. Imposing the multiplicative model 
would result in a slightly different mathematical expression, but 
essential characteristics remain the same. 

Under these assumptions, we can express the difference in 
structural complexity due to removal of kth system component 
as below:  

 

ΔC = (C1 −C1
(k ) ) +C2C3 1 − C2

(k )C3
(k )

C2C3

⎡

⎣
⎢

⎤

⎦
⎥

= α i
i=1

n

∑ − α i
i=1

n−1

∑⎛
⎝⎜

⎞
⎠⎟

effect of individual
component

� ��� ���

+ βij
j=1

n

∑
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
E(A)

n
1 − 1 −

βi,k + βk,i
i=1

n

∑
i=1

n

∑
βij

j=1

n

∑
i=1

n

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

effect of deleted interfaces
� ���� ����

n

n −1
⎛
⎝⎜

⎞
⎠⎟
E(A(k ) )

E(A)

⎛
⎝⎜

⎞
⎠⎟

topological effect
� �� ��

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= α k + βij
j=1

n

∑
i=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
E(A)

n
1 − 1 −

βi,k + βk,i
i=1

n

∑
i=1

n

∑
βij

j=1

n

∑
i=1

n

∑

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

effect of deleted interfaces
� ���� ����

n

n −1
⎛
⎝⎜

⎞
⎠⎟
E(A(k ) )

E(A)

⎛
⎝⎜

⎞
⎠⎟

topological effect
� �� ��

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
Looking at the different terms of the above expression, we 

observe that for any component, sensitivity to its deletion on 
structural complexity consists of three sources: (i) complexity 
of the deleted component itself, (ii) complexities of the deleted 
interactions that were associated with the removed component, 
and (iii) re-structuring of the underlying system architecture 
due to removal of the kth component. The only impact that 
organization of system elements has on the sensitivity 
expression is through the changes in topological complexity 
term after removal of any system component. If removal of any 
component makes the system structure less distributed than 
before, then the ratio of topological complexities in the above 
expression becomes much larger than unity. This methodology 
was applied to different components of the jet engine example 
presented in the previous section. 

The detailed sensitivity analysis, reveals that primary 
functionality generators (e.g., those generating thrust) are 
significant contributors to component complexity while 
supporting systems (e.g., lubrication systems, accessory 
gearbox, engine control systems) are the primary contributors 
to topological complexity and have significant impact on 
system integration efforts [Denman et al. 2011, Sinha and de 
Weck 2012]. This also showed a very interesting scenario 
where an Air Buffer Cooler, a very simple component, could 
have a more significant system level effect compared to the HP 
Turbine Rotor, a complex component, due to its overarching 
effect on the overall system architecture. 

3. VALIDATION OF STRUCTURAL COMPLEXITY 
METRIC  

In order to establish the proposed metric as a valid measure 
of structural complexity, a series of both empirical and 
experimental validations is necessary. A positive outcome from 
a detailed validation procedure gives credence to the proposed 
metric and positions the metric for dissemination and 
application in engineered complex system development efforts. 
The first obstacle for validation is the inability to directly 
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measure complexity. Therefore we have to depend on indirect 
measures or well-accepted manifestation of complexity in terms 
of other system observables.  The most visible of these system 
level observables is the system development cost.  

We posit that the system development cost correlates 
super-linearly with Structural Complexity, as shown in fig. 6, 
and present two examples of empirical evidence from the 
literature [Wertz and Larson 1996, Wood et al. 2001, DARPA 
Report 2011]. They represent simple systems (e.g., hair-dryer 
family) at one end and highly complex satellite systems at the 
other end. 
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Figure 6.  Predicted super-linear growth in development cost with increasing 
structural complexity and some empirical evidence from the literature [Wertz 

and Larson 1996, Wood et al. 2001, DARPA report 2011]. 

In both cases shown in fig. 6 above, if we were to fit a 
power law as per our hypothesis [Garvey 2000], we obtain R2 = 
0.99 and b = 1.16 and 1.3 respectively. But please bear in mind 
that these numbers are based on just 3 data points and therefore 
not statistically significant. They only support the trend 
consistent with our hypothesis but are not enough for a 
statistically significant confirmation.  

Apart from such empirical evidence, we concentrated on 
conducting experiments with human subjects to see if we 
observe a similar behavior. These experiments were conducted 
as “natural” experiments as nearly as possible with a group of 
nearly homogeneous subjects, using simple ball and stick 
models (see fig. 7). They were asked to assemble molecular 
structures based on 2D pictures. Their assembly times, 
including any rework due to mistakes, were recorded. The 
sequence in which different subjects were given the molecular 
structures was randomized. In all cases, we assumed 
α = 0 for all atoms, β = 1 for all links and γ = 1/n where n is the 
number of atoms in a given molecule. This is because all atoms 
are used as is and there is no perceptible difference in 
assembling using different bond types (i.e., curved vs. straight 
bonds). Note that, in this particular experiment, sources of 
structural complexities are embedded within the connectivity 

structure and at the interfaces and not at the level of 
components (which are supplied as is). We are interested at 
validating the functional relationship between structural 
complexity and the development effort and not how individual 
components of structural complexity metric contribute to this 
relationship. 

Initial results of our experimental investigations shows a 
similar relationship between structural complexity and 
molecule assembly time (see fig. 7) as that shown in fig. 6. 
Also note that variation in assembly time increases as the 
structural complexity level increases, validating our initial 
hypothesis. The most interesting preliminary result is the 
exponent of the power law relation, b = 1.51. This suggests that 
effort increases super-linearly but is not quite quadratic with 
increasing structural complexity. It would be instructive to 
investigate if parameter b increases with significantly higher 
structural complexity levels/regimes. This study will be 
expanded to include a larger sample size (i.e., number of test 
subjects). 
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Figure 7.  Some representative molecular structures that subjects were asked to 
assemble using a molecular kit and initial results based on a set of 5 structures 

with varying structural complexities. Here, number of subjects,  N = 8. 

Preliminary studies suggest that the parameters {a, b} are 
related to the organizational efficiency of the decision unit (i.e, 
the design and development team) or an actor, and the 
complicatedness function of the decision unit/actor 
respectively. The complicatedness function is the decision 
unit’s perception of the associated complexity. It depends on 
other factors including modularity, cognitive bandwidth of the 
decision unit and its actors, system novelty, in addition to 
system complexity. The complicatedness function for human 
decision units / actor is an intermediate conduit through which 
structural complexity is manifested in terms of system 
development cost, which is a system observable. Modularity or 
design encapsulation is an effective way of good system 
organization and may reduce the system complicatedness. 
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Design encapsulation (notice that it also leads to information 
hiding) helps focus attention on a subset of the system at a time. 
This is similar to ‘‘chunking’’ of information to circumvent the 
human cognitive span limitation [Hirschi N.W, and Frey D.D., 
2002]. A well-architected system may hide inherent complexity 
in an effective fashion such that it appears less complicated. 
This is the same as the idea of design encapsulation in the case 
of software systems. For example, a well-organized GUI 
(graphical user interface) might help reduce complicatedness of 
the system from a user’s perspective, regardless of the 
underlying true system complexity. Inherent system complexity 
can be well organized and hidden from the observer, making 
the system appear less complicated.   

4. IMPACT ON SYSTEM ARCHITECTURE 
In this section, we look at the factors affecting distribution 

of complexity and structural modularity. It is shown that 
modularity and complexity are not necessarily negatively 
correlated, and we can have architectural configurations where 
both complexity and modularity increase at the same time. Let 
us explore the distribution of structural complexity among the 
system components using this simple model and investigate its 
implications on system development effort.  

4.1 TOPOLOGICAL COMPLEXITY AND MODULARITY 
Let us consider the following example of a system 

structure consisting of two modules or subsystems as shown 
below. 

 
Figure 8.  A hypothetical system divided into two modules or subsystems A1 

and A2 and inter-module links characterized by rectangular matrix K. 

The above system can be represented using a partitioned 
version of the adjacency matrix A and the associated 
topological complexity has an additional inter-module 
integrative topological complexity term, in addition to the intra-
module topological complexities as shown below: 

 
Using the defined nomenclature, we arrive at the following 

expression for structural complexity of the system: 
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From the above expression, we can write, Structural 

Complexity = sum of module structural complexities + 
integrative structural complexity. 

Let us apply the above result to a modular system structure 
with two modules in a slightly different way. We will define 
the intra-module topological complexities and also the 
integrative topological complexity as fraction of total 
topological complexity using three parameters {x1, x2, x3}. 
Similarly express the intra-module and inter-module 
interactions as fraction of total interaction count using four 
parameters {y1, y2, y3, y4}. The detailed expressions are shown 
below.  
 

E(A1) = x1E(A);  E(A2 ) = x2E(A);  Δ = x3E(A)
Now, E(A1) + E(A2 ) + Δ = E(A)
⇒ x1 + x2 + x3 = 1
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Assuming all interactions to be unity, 

m = βi , j
A1

j

n1

∑
i

n1

∑ + βi , j
A2

j

n2

∑
i

n2

∑ + βi , j
K1

j

n2

∑
i

n1

∑ + βi , j
K2

j

n1

∑
i

n2

∑
=> y1 + y2 + y3 + y4 = 1
The aggregated component complexity is, 
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Using the earlier derivation of structural complexity for 

two sub-system example, we can write the structural 
complexity in this case as: 
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C = Ω + γ mE( A)[x1y1 + x2 y2 + x1y2 + x2 y1 + x3 + (x1 + x2 )( y3 + y4 )]
=1

� ���������� ����������
 

Hence, there are seven parameters and only two 
constraints:  x1 + x2 + x3 = 1and  y1 + y2 + y3 + y4 = 1.  They 
shape how the overall complexity is distributed within and 
across the modules and the associated structural modularity. 
Modularity index, Q is defined as the fraction of edges that fall 
within module 1 or 2, minus the expected number of edges 
within module 1 and 2 for a random graph with same node 
degree distribution as the given graph. Expanding this basic 
definition and after unpacking different components, we arrive 
at the final form of the modularity index for this two module 
system as: 

Q = (eii
c=1

2

∑ − ai
2 ) 

 
where  eii  is the fraction of edges with both end vertices in the 

same module  i  and  ai is the fraction of edges with at least one 
end vertex inside module  i . In this case, given the modules a 
priori and using the two constraint relations on the seven 
parameters, we arrive at the modularity index: 

Q = (y1 + y2 ) − (y1 + y3)2 + (y2 + y4 )2⎡⎣ ⎤⎦
= (y1 + y2 ) + 2(y2 + y4 ) − 2(y2 + y4 )2 −1 

There is conventional wisdom that complexity and 
modularity are negatively correlated and increased modularity 
brings down the structural complexity [Baldwin and Clark, 
2000; Lindemann et al., 2008]. This is not a causal relation and 
what we have is a set of seven fractions - {x1, x2, x3} and {y1, 
y2, y3, y4} that determine how the overall topological 
complexity and modularity are related. This argument also 
holds for structural complexity, which is in a sense, an affine 
transformation of topological complexity for given component 
and interface complexities. We can very well have increases in 
complexity alongside an increase in modularity as shown below 
(see fig. 9). 

���������
���������

	
�����
����� 	
�����
�����

 
Figure 9.  Increasing modularity does not necessarily reduce topological 
complexity. For a 2 module example here, it depends on 7 parameters that 

shape structural complexity vs. modularity space. Newman’s modularity metric 
Q was used to compute modularity. 

The seven parameters described above shape how the 
overall complexity is distributed within and across the modules 
and the associated degree of modularity. 

4.2 DISTRIBUTION OF STRUCTURAL COMPLEXITY 
AND ITS IMPLICATIONS ON SYSTEM DEVELOPMENT 
EFFORTS 

Distribution of structural complexity across the system 
elements play a very significant role in achieving a set of 
system properties and often to programmatic success of the 
system development project. Knowledge of overall system 
architecture is absolutely critical to be able to quantify and 
track the complexity during the system development activity. 
There may be subsystems that are significantly more complex 
and respective development teams should be able to handle 
such high complexity in order to be successful.  

We might view the system from a more abstract 
perspective / viewpoint where the modules or subsystems are 
treated as super-components. Each super-component has an 
internal complexity (that represents the complexity of the 
super-component) and this fact should not be overlooked. The 
total structural complexity is now distributed within and across 
the subsystems. This aspect can be best explained with a simple 
example as shown in fig. 10 below. 
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Figure 10.  Increasingly detailed view of the system and evolution of structural 
complexity if we assume components at each level to be of similar category. 

At top level, each component actually represents a 
subsystem or module and their lower level details are shown in 
fig. 10. Complexity estimates are performed at each level of 
detail without considering the fact that at the top level, we do 
not have component, but we have subsystems and we cannot 
treat them as simple components. Doing that one might get the 
impression that structural complexity is only CA while in 
reality, it is C*. This leads to a gross underestimation of 
structural complexity of the system. 

In order to extract information on complexity distribution 
we do need complete information about the internal structure of 
subsystems.  This information is crucial for tracking and 
management of large, engineered system development efforts. 
Implication of the complexity distribution on system 
development effort and associated decision-making can be best 
explored using case studies and development of Boeing 787 
(e.g., the Dreamliner) is a good example [Heimsch 2011, 
Cohan 2011]. The Boeing Company announced in 2004 that it 
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was embarking on an ambitious commercial airplane 
development project in order to bring the 787 Dreamliner to 
market. Recognizing the need for speed to market for the 787, 
along with increased quality standards and reduced production 
costs, Boeing focused on an innovation strategy and decided to 
outsource 70% of the design and manufacturing for this plane 
[Heimsch 2011, Cohan 2011]. Boeing felt that the 787 
Dreamliner represented groundbreaking innovation, with 
benefits that would resonate with customers and enable Boeing 
to regain its leadership position and the 787’s composite 
material design, aerodynamics, fuel efficiency and propulsion 
systems has redefined how commercial aircraft are designed 
and manufactured, and will impact the broader aviation 
industry [Heimsch 2011, Cohan 2008]. Considered the largest 
industrial program in the world, Boeing chose to partner with 
17 companies in 10 different countries and the outsourcing of 
the design and production amounts to 70% of the aircraft. 
Historically, Boeing has outsourced much of its manufacturing, 
considering it non-core to its operations. But Boeing has 
focused on owning its core design work, viewing it as its 
competitive advantage. However, with the 787, Boeing opted to 
also outsource much of the development work. Arguably, the 
decision to outsource so much of the design and production of 
the 787 might have played a significant role in the project not 
meeting its ambitious goals in terms of reduced production cost 
and speed to market. The development project posed a big 
management challenge and led to a three-year delay in 
launching the first aircraft for operation and resulted in 
significant financial loss for Boeing. By outsourcing both the 
design and the manufacturing, Boeing temporarily lost control 
of the development process. This is to say that Boeing had a 
clear view only at the level of primary modules, but not 
beyond. This view obscures what is inside the subsystems and 
made it difficult for Boeing to judge the total structural 
complexity of the system as it evolved. If a subsystem or 
module started to become too complex, it is possible that the 
outsourcing partner did not have the adequate capability for 
handling that level of complexity and this may have 
jeopardized the overall system development effort [Cohan 
2011]. At the top level, there is a tendency to assign a lower 
complexity to subsystems as all details may not be available 
early on. This inability to track and manage such complexity 
growth actively at both subsystem and system level, may lead 
to suboptimal results and sometimes programmatic failure. In 
case of evolving system architectures, one should keep track of 
the overall evolving architecture to make sure subsystem 
complexities are contained within sustainable limits. If not, 
there might be a need to re-structure the subsystem 
development team to address the evolving reality of asymmetry 
in complexity distribution among various subsystems. It is 
imperative that every large-scale system development effort 
does active complexity distribution and management. 

In this light, we argue that the importance of complete 
knowledge of the overall system architecture is crucial for 
decision-making during the development process and 
constitutes a core capability for the primary system 

development organization. This capability is essential for 
complexity to be tracked and actively managed during the 
process. It is argued that delivering the system properties is 
ultimately the responsibility of primary system development 
organization with an appropriate integrative mechanism where 
the overall system architecture remains visible.   

5. DISCUSSIONS 
In this work, we formulate the structural complexity metric 

for engineered complex systems, which is shown to consist of 
three terms representing complexities of system components, 
connections among these components and topological 
complexity. We introduced the notion of matrix energy as a 
measure of topological complexity of product architecture as a 
rigorous measure of topological complexity. Topological 
complexity metric also shares properties similar to and found to 
correlate strongly with information-theoretic complexity 
metrics for networks. Topological complexity increases from 
centralized towards more distributed architectures. We have 
performed mathematical / conceptual verification of the metric 
using Weyuker’s criteria. Operationalization of this metric in 
the context of product architecture is demonstrated.  

Sensitivity analysis due to system component removal was 
presented and its application to an aircraft engines hinted at the 
systemic importance of secondary system over the primary 
functionality generators as the architected systems become 
more distributed in nature. 

In order to establish the proposed metric as a valid measure 
of structural complexity, we presented empirical evidence from 
literature and experimental validations are being performed to 
further buttress the validation aspects of the proposed 
complexity metric. We have posited a super-linear growth in 
development cost with increasing structural complexity and 
presented confirmatory evidence from existing literature and 
preliminary experimental validation. We also hinted at 
existence of complicatedness function for human decision 
units/actor through which structural complexity is manifested in 
terms of system development cost, which is a system 
observable.  

We demonstrated that structural complexity and 
modularity are not necessarily negatively correlated, against a 
popular conventional wisdom. We further discussed 
distribution of complexity across the system architecture and 
argued that adequate knowledge and visibility of the overall 
system architecture is absolutely essential for matured 
complexity management capability. This leads to eventual 
success of the system development activity. Distribution of 
overall complexity is a critically important and has a big impact 
on system architecting. If there are significantly more complex 
subsystems, the development team should have the capability to 
handle this high complexity. Knowledge of the relative 
subsystem complexities influences the selection / composition 
of the subsystem development team. It is imperative for every 
large-scale system development effort to have active 
complexity distribution and management capability. 
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Going forward, the proposed structural complexity metric 
can serve future complexity-based product design and 
optimization framework and help explore important questions 
related to tracking, management and distribution of structural 
complexity across the system architecture and its impact on 
other system performance/lifecycle measures.  

ACKNOWLEDGMENTS 
This work was supported by DARPA AVM funding via 

Vanderbilt University, VU-DSR # 21807-S8. Also, the authors 
would like to thank Mr. Harun Omer for conducting the human 
experiments with ball and stick modeling kit. 

REFERENCES 
 

Denman J., Sinha K., de Weck O., “Technology Insertion in 
Turbofan Engine and assessment of Architectural Complexity”, 
13th International DSM Conference, Cambridge, MA, 
September 14-15, 2011.  
 
Baldwin, C.Y and Clark, K.B, “Design Rules”, MIT Press, 
2000. 
 
Fabrikant A., Koutsoupias E., Papadimitriou C., “Heuristically 
Optimized Trade-Offs: A New Paradigm for Power Laws in the 
Internet”, Automata, Languages and Programming, Vol. 2380, 
January 2002. 
 
Horn and Johnson, “Topics in Matrix Analysis”, Cambridge 
Press, 1994. 
 
Hirschi N.W, and Frey D.D., “Cognition and complexity: An 
experiment on the effect of coupling in parameter design”, 
Research in Engineering Design 13, 2002, pp 123 – 131. 
 
Ivan Gutman, Tanja Soldatovic and Dusica Vidovic, “The 
energy of a graph and its size dependence. A Monte Carlo 
approach”, Chemical Physics Letters 297 (1998), 428–432.  
 
Agte J., Borer N. and de Weck O., “Design of Long-Endurance 
Systems With Inherent Robustness to Partial Failures During 
Operations”, J. Mech. Des. 134(10), 2012. 
 
Lindemann U, Maurer M, and Braun T., “Structural 
Complexity Management - An Approach for the Field of 
Product Design” – Springer, 2008. 
 
Liu, D., Wang, H., and Van Mieghem, P., “Spectral 
Perturbation and reconstructability of complex networks”, 
Physical Review E 81, 016101, 2010. 
 
Peter S. Cohan, “You Can't Order Change: Lessons from Jim 
McNerney's Turnaround at Boeing”, Portfolio Hardcover, 
ISBN-10: 1591842395, 2008. 

 
Piet Van Mieghem (2011): Graph Spectra for Complex 
Networks, Cambridge University Press, ISBN 978-0-521-
19458-7, 2011. 
 
Sheard S.A. and Mostashari A., “A Complexity Typology for 
Systems Engineering”, Systems Engineering, 2010. 
 
Sinha K., de Weck O., “Structural Complexity Metric for 
Engineered Complex Systems and its Application”, 14th 
International DSM Conference, 2012. 
 
Tang.V, Salminen.V : “Towards a Theory of Complicatedness: 
Framework for Complex Systems Analysis and Design” , 13th 
International Conference on Engineering Design, Glasgow, 
Scotland, August 2001 
 
Ulrich, K.; Eppinger, S. (1995): Product Design and 
Development. New York: McGraw-Hill 1995. 
 
V. Nikiforov, “The energy of graphs and matrices”, J. Math. 
Anal. Appl. 326 (2007), 1472–1475. 
 
Weyuker E. “Evaluating software complexity measures”, IEEE 
Transactions on Software Engineering, 1988, 14 (9), 1357-
1365. 
 
Wood et al., “Interfaces and Product Architecture”, ASME 
DETC, 2001. 
 
Wertz J.R. and Larson W.J., “Reducing Space Mission Cost”, 
Springer (1996), ISBN-10: 1881883051.  
 
Garvey P.R., “Probability Methods for Cost Uncertainty 
Analysis: A Systems Engineering Perspective”, CRC Press 
(2000), ISBN-10: 0824789660.  
 
Sadin, Stanley R., Povinelli, Frederick P.; Rosen, Robert 
(1988), “The NASA technology push towards future space 
mission systems”, 39th International Astronautical 
Congress,1988. 
 
Wilhelm, T.; Hollunder, J., “Information theoretic description 
of networks”, Physica A 2007, 385, 385–396. 
 
http://www.darpa.mil/Our_Work/TTO/Programs/AVM/AVM_
Design_Tools_(META).aspx, 2011 
 
Dave Heimsch, “http://www.scribd.com/doc/59779160/Boeing-
Dream-Liner-Outsourcing-Study”, 2011. 
 
Cohan P. S. ,“http://www.dailyfinance.com/2011/01/21/boeing-
dreamliner-delays-outsourcing-goes-too-far/”, 2011.

 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 03/20/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use




