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The differential branching fraction of the decay Ag — Aptu~ is measured as a function of the
square of the dimuon invariant mass, g2. A yield of 78 & 12 Ag — Autu~ decays is observed using
data, corresponding to an integrated luminosity of 1.0 b1, collected by the LHCb experiment at a
centre-of-mass energy of 7 TeV. A significant signal is found in the g2 region above the square of
the J/v mass, while at lower-g> values upper limits are set on the differential branching fraction.

Integrating the differential branching fraction over g2, while excluding the J/y and v (2S) regions, gives
a branching fraction of B(Ag — Aut ) = (0.96 £ 0.16(stat) + 0.13(syst) = 0.21(norm)) x 106, where

the uncertainties are statistical, systematic and due to the normalisation mode, Ag — J /¥ A, respectively.

© 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

The decay Ag — ApTu~ is a rare (b — s) flavour-changing
neutral current process that in the Standard Model proceeds
through electroweak loop (penguin and W box) diagrams. Since
non-Standard Model particles may also participate in these loop
diagrams, measurements of this and similar decays can be used to
search for physics beyond the Standard Model. In the past, more
emphasis has been placed on the study of rare decays of mesons
than of baryons, in part due to the theoretical complexity of the
latter [1]. In the particular system studied in this Letter, the decay
products include only a single hadron, simplifying the theoretical
modelling of hadronic physics in the final state.

The study of Ag baryon decays is of considerable interest for
two reasons. Firstly, as the Ag baryon has non-zero spin, there
is the potential to improve the limited understanding of the he-
licity structure of the underlying Hamiltonian, which cannot be
extracted from mesonic decays [1,2]. Secondly, as the composition
of the Ag baryon may be considered as the combination of a heavy
quark with a light diquark system, the hadronic physics differs sig-
nificantly from that of the B meson decay. This may allow this
aspect of the theory to be tested, which may lead to improvements
in understanding of B mesons.

Theoretical aspects of the Ag — AT~ decay have been con-
sidered both in the SM and in various scenarios of physics beyond
the Standard Model [3-15]. Although based on the same effec-
tive Hamiltonian as that for the corresponding mesonic transitions,
the hadronic form factors for the Ag baryon case are less well-
known due to the smaller number of experimental constraints.

This leads to a large spread in the predicted branching fractions.
The differential branching fraction as a function of the square of

the dimuon invariant mass, q2 = mi e is of particular interest.

The approaches taken by the theoretical calculations depend on
the g2 region. By comparing predictions with data as a function of
q?, these different methods of treating form factors are tested.

The first observation of the decay Ag — Autu~ by the CDF
Collaboration [16] had a signal yield of 24 4+ 5 events, corre-
sponding to an absolute branching fraction B(Ag — AutuT) =
(1.73 4 0.42(stat) & 0.55(syst)) x 10~6, with evidence for signal at
q? above the square of the mass of the v(2S) resonance.

Following previous measurements of rare decays involving
dimuon final states [17,18], a first measurement by LHCb of the
differential and total branching fractions for the rare decay Ag —
Apt = is reported. The inclusion of charge conjugate modes is
implicit throughout. The rates are normalised with respect to the
Ag — J/¥ A decay, with J/¥ — pu* ™. This analysis uses a pp
collision data sample, corresponding to an integrated luminosity
of 1.0 fb~!, collected during 2011 at a centre-of-mass energy of
7 TeV.

2. Detector and software

The LHCb detector [19] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < 1 < 5, designed for the
study of particles containing b or ¢ quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip vertex
detector (VELO) surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined

0370-2693/ © 2013 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license

http://dx.doi.org/10.1016/j.physletb.2013.06.060


http://dx.doi.org/10.1016/j.physletb.2013.06.060
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2013.06.060
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physletb.2013.06.060&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

26 LHCb Collaboration / Physics Letters B 725 (2013) 25-35

tracking system provides a momentum measurement with relative
uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,
and impact parameter (IP) resolution of 20 um for tracks with
high transverse momentum. Charged hadrons are identified using
two ring-imaging Cherenkov detectors [20]. Photon, electron and
hadron candidates are identified by a calorimeter system consisting
of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire pro-
portional chambers [21].

The trigger [22] consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a
software stage, which applies a full event reconstruction. Candidate
events are first required to pass a hardware trigger which selects
muons with a transverse momentum, pt > 1.48 GeV/c. In the sub-
sequent software trigger, at least one of the final state particles is
required to have both pr > 0.8 GeV/c and an impact parameter
greater than 100 pm with respect to all of the primary pp interac-
tion vertices (PVs) in the event. Finally, the tracks of two or more
of the final state particles are required to form a vertex that is sig-
nificantly displaced from the PVs in the event.

A candidate A) — Aputpu~ or A) — J/¢ A decay that is di-
rectly responsible for triggering both the hardware and software
triggers is denoted as “trigger on signal”. An event in which a Ag
baryon is reconstructed in either of these modes but none of the
daughter particles are necessary for the trigger decision is referred
to as “trigger independent of signal”. As these two categories of
event are not mutually exclusive, the overlap may be used to esti-
mate the efficiency of the trigger selection directly from data.

In the simulation, pp collisions are generated using PYTHIA 6.4
[23] with a specific LHCb configuration [24]. Decays of hadronic
particles are described by EVTGEN [25] in which final state radia-
tion is generated using PHoTOs [26]. The interaction of the gener-
ated particles with the detector and its response are implemented
using the GEANT4 toolkit [27,28] as described in Ref. [29].

3. Candidate selection

Candidate Ag — AuT e~ (signal mode) and Ag — J/¥ A (nor-
malisation mode) decays are reconstructed from muon, A baryon
and J/v candidates. The J/¢ candidates are reconstructed via
their dimuon decays and therefore the Ag — J/Y¥ A decay is an
ideal normalisation process. The dimuon candidates are formed
from two oppositely-charged particles identified as muons [21,20].
Good track quality is ensured by requiring x2/ndf (x? per degree
of freedom) <4 for a track fit. The candidates must also have X]zp
with respect to any primary interaction greater than 16, where X12p
is defined as the difference in x?2 of a given PV reconstructed with
and without the considered track. These pu* ™ pairs are required
to have an invariant mass of less than 5050 MeV/c? and to be con-
sistent with originating from a common vertex (Xftx/ndf< 9).

Candidate A decays are reconstructed in the A — pm~ mode
from two oppositely-charged particles that either both originate
within the acceptance of the VELO (“long A” candidates), or both
originate outside the acceptance of the VELO (“downstream A”
candidates). Tracks are required to have pr > 0.5 GeV/c, and A
candidates must have xZ2,/ndf < 30 (<25 for downstream A can-
didates), a decay time of at least 2 ps, and a reconstructed invari-
ant mass within 30 MeV/c? of the world average value [30]. Due to
the distinct kinematics and topology of the A decay, it is not nec-
essary to impose particle identification requirements on the decay
products of the A candidate.

Candidate Ag decays are formed by combining A and dimuon
candidates that originate from a common vertex (xZ,/ndf < 8),

have x2 <9, xJ > 100 and an invariant mass in the interval
4.9-7.0 GeV/c?. The yJs is defined as the difference in x? be-
tween fits in which the Ag decay vertex is assumed to coincide
with the PV and allowing the decay vertex to be distinct from the
PV. Candidates must also point to the associated PV by requiring
the angle between the Ag momentum vector and the vector be-
tween the PV and the Ag decay vertex is less than 8 mrad. The
associated PV is the one relative to which the Ag candidate has
the lowest x2 value.

The final selection is based on a neural network classifier [31,
32] with 15 variables as input. The single most important vari-
able is the x?2 from a kinematic fit [33] that constrains the decay
products of the Ag, the A and the dimuon systems to originate
from their respective vertices. Other variables that contribute sig-
nificantly are the momentum and transverse momentum of the
AY candidate, the x2 and track x?/ndf for both muons, the x2
of the A} candidate, and the separation of the A and A} ver-
tices. Downstream and long A decays have separate inputs to the
neural network for xﬁ, and X\%s because of the differing track
resolution and kinematics. In the final selection of Ag — J/YA
candidates, the pu*u~ invariant mass is required to be in the
interval 3030-3150 MeV/c?. The signal sample used to train the
neural network consists of simulated Ag — At events, while
background is taken from data in the upper sideband of the Ag
candidate mass spectrum, between 6.0 and 7.0 GeV/c2, which is
dominated by candidates with dimuon mass in the J/y region.
The requirement on the output of the neural network is chosen to
maximise Ns/+/Ns + Ng, where Ns and Np are the expected num-
bers of signal and background events, respectively. To ensure an
appropriate normalisation of Ns, the number of Ag — J/¥ A can-
didates after the preselection is scaled by the measured ratio of
branching fractions between the A) — Au*p~ and A) — J/¥ A
decays [16], and the J/v¥ — utu~ branching fraction [30]. The
value of Np is derived from the background training sample nor-
malised to the number of candidates in the signal region after
preselection. The Ag — Aptp~ signal candidates exclude the g2
regions of 8.68-10.09 GeV/c* and 12.86-14.18 GeV/c*, which are
dominated by contributions from the J/v and v (2S) resonances,
respectively. The effect of finite g% resolution is negligible. Rela-
tive to the preselected event sample, the neural network retains
(76.0 £0.3)% of the rare decay signal while rejecting (95.9+0.2)%
of the background.

4. Peaking backgrounds

Backgrounds are studied using simulated samples of b hadrons
in which the final state includes two muons. For the Ag — J/vA

channel, the only significant contribution found is from B? —
]/1//1(8 decays, with Kg — w7, which has the same topology

as the Ag — J /¥ A mode. This contribution leads to a broad shape
that peaks below the Ag mass region and is accommodated in the
mass fit described later.

For the Ag — Aut ™ channel, sources of peaking background
are considered in the g2 ranges of interest. The contributions iden-
tified are Ag — J/¥ A decays in which an energetic photon is
radiated from either of the muons, and B® — Kg,u.*,tf decays,
where Kg — 7+~ and a pion is misreconstructed as a proton.
The Ag — J/¥ A decays contribute in the g region just below
mﬁ/‘/}, and populate a mass region significantly below the Ag
mass. The contribution from the B® — Kg/ﬁ,u‘ decays is esti-
mated by taking the number of BY — ]/wl(g events found in the
Ag — J/¥ A fit, and scaling this by the ratio of world average
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branching fractions between the decay processes B® — Kg,uﬂ/f
and B® — J/yKQ (including the ]/ — pu*u~ branching frac-
tion) [30]. This gives fewer than 10 events integrated over g2,
which is small relative to the expected total background levels.

5. Yields
5.1. Fit description

The yields of signal and background events in the data are
determined in the mass range 5.35-5.85 GeV/c? using unbinned,
extended maximum likelihood fits, for the Ag — Aputu~ and the

A) — J/¥A modes. The likelihood function has the form

L — e~ (Ns+Np+Np)

N

x H[NSPS(mi)+NBPB(mi)+NPPP(mi)]7 (1)

i=1
where Ng, Ng and Np are number of signal, combinatorial and
peaking background events, respectively, and P;(m;) are the cor-
responding probability density functions (PDFs). The mass of the
Ag candidate, m;, is determined by a kinematic fit of the full de-
cay chain in which the proton and pion are constrained such that
the pmr~ invariant mass corresponds to the A baryon mass [30].

The signal shape, in both Ag — Aputu~ and Ag — J/vA
modes, is described by the sum of two Gaussian functions that
share a common mean but have independent widths. The com-
binatorial background is parametrised by a first-order polynomial,
while the background due to B — J/y K decays is modelled by
an exponential function (with a cut-off) convolved with a Gaussian
function.

For the Ag — J/¥ A mode, the widths and common mean in
the signal parametrisation are free parameters. The contribution of
the narrower Gaussian function is fixed to be 86% of the total yield
based on studies with simulated data. The parameters describing
the shape of the peaking background are fixed to those derived
from simulated B? — ]/1//1(8 decays.

For the Ag — Aput ™ decay, the signal shape parameters are
fixed according to the result of the fit to Ag — J/¥ A data. Studies
with simulated data show that the signal shape parameters in both
decay modes are consistent with one another, the only deviations
being in the tails of the mass distribution. These are due to small
differences in the momentum spectra of the muons and energy
loss from radiative effects, and are negligible given the uncertain-
ties inherent in the size of the current data sample. The peaking
background is found to be negligible in the g2 regions considered
and is therefore excluded from the fit.

5.2. Fit results

The invariant mass distributions of the Ag — J/¥ A candidates
is shown in Fig. 1. The fitted function provides a good descrip-
tion of the data, with a x2/ndf corresponding to a probability of
47%. The numbers of signal, combinatorial background and peak-
ing background events are found to be 2680 + 64, 1294 + 83 and
1501 £ 85, respectively, and the widths of the Gaussian functions
are 16.0+0.4 and 33 £5 MeV/cz, compatible with simulation.

The invariant mass distribution for the Ag — Autu~ pro-
cess, integrated over g and in six g2 intervals, are shown in
Figs. 2 and 3, respectively. The yields, both integrated and differ-
ential in 2, are summarised in Table 1. The same ¢ intervals
as in Ref. [16] are used to facilitate comparison with the CDF
measurements. The statistical significance of the observed signal
yields in Table 1 are evaluated as v2AIn L, where AlnL is the

[9%]
W
(=]

LHCb
Ay IYA

(98]
(=
S

250
200
150
100

Candidates per 5 MeV/c?

(9]
(=)

obot v v R
54 5.5 5.6 5.7 5.8

M(AL'W) [GeV/c?]

Fig. 1. Invariant mass distribution of the Ag — J/¥ A candidates. The histogram
shows data, the solid red line is the overall fit function, the dotted blue line repre-
sents the sum of the combinatorial and peaking backgrounds and the dash-dotted
green line the combinatorial background component. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of
this Letter.)
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Fig. 2. Invariant mass distribution of the Ag — Apt ™ candidates, integrated over
all g2 values, together with the fit function described in the text. The histogram
shows data, the solid red line is the overall fit function and the dotted blue line rep-
resents the background component. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this Letter.)

change in the logarithm of the likelihood function when the sig-
nal component is excluded from the fit, relative to the nominal fit
in which it is present. Significant signal yields are only apparent
for > >m7,,. Yields at lower-q> values are compatible with zero,
consistent with previous observations [16].

6. Efficiency

The measurement of the differential branching fraction of
A) - Aptp~ relative to A) — ]/ A benefits from the cancel-
lation of several potential sources of systematic uncertainty in the
ratio of efficiencies, &rel = £10t(A) > At ™) /Ewot(A) — J /¥ A).
The efficiency for each of the decays is calculated according to

&0t = £(geometry)e (selection|geometry)
x & (trigger|selection), (2)

where the first term represents the efficiency for the final state
particles to be within the LHCb angular acceptance, the second
term the combined efficiency for candidate detection, reconstruc-
tion and selection, and the rightmost term the efficiency for an
event to satisfy the trigger requirements if it is reconstructed
and selected. All efficiencies are evaluated using simulated data.
A phase space model is used for Ag — J/¥ A decays. The model
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Table 1

Signal (Ns) and background (Ng) decay yields obtained from the Ag — Aptu~ mass fit in each g2 interval. The integrated yield is
the result of a fit without separation of the data into distinct g% regions. The statistical significance is calculated as described in the

text.
q? interval [GeV?/c?] Ns Ng Significance
0.00-2.00 243 3446 0.8
2.00-4.30 443 42+7 1.4
4.30-8.68 445 134+12 1.0
10.09-12.86 1345 5248 3.4
14.18-16.00 14+4 20+5 4.9
16.00-20.30 44+7 24+6 9.8
Integrated yield 78 +12 310+19 8.9
used for Ag — Autu~ decays includes g? and angular depen- Table 2

dence as described in Ref. [34], together with Wilson coefficients
based on Refs. [35,36]. Interference effects from charmonium con-
tributions are not included.

With these models, the geometric acceptance is found to be
16% for A) — J/¥A decays and in the range 16-20% (q* de-
pendent) for the Ag — Aut ™ channel. The overall efficiency to
reconstruct and select the Ag — Apt ™ decays varies from 1.3%

in the lowest g* interval to values around 2.5% in the higher-q>
regions. The Ag — J/¥ A decay has a similar efficiency to the
larger-q® regions of the rare decay. The trigger efficiency is calcu-
lated using an emulation of the hardware trigger, combined with
the same software stage of the trigger that was used for data. The
trigger efficiency increases from approximately 50% to 80% for the
lowest to highest g regions, respectively. An independent cross-
check of the trigger efficiency is performed using A[? — J/vA
data by calculating the ratio of yields that are both classified as
trigger on signal and trigger independent of signal relative to those
that are only classified as trigger independent of signal. This data-
driven method gives an efficiency of (75 + 7)%, which is consistent
with that of (70.5 + 0.3)% computed from simulation.

The relative efficiency for the ratio of branching fractions in
each g2 interval, calculated from the absolute efficiencies described
above, are given in Table 2. The rise in relative efficiency as a func-
tion of increasing g% is dominated by two effects. Firstly, at low g2
the muons have lower momenta and therefore have a lower proba-
bility of satisfying the trigger requirements. Secondly, at low g2 the

Total relative efficiency, erei, between A) — Aptp~ and A —
J/¥ A decays. The uncertainties are the combination of both sta-
tistical and systematic components, and are dominated by the lat-

ter.

q? interval [GeV?/c4] Erel
0.00-2.00 0.48 +0.07
2.00-4.30 0.74+0.08
4.30-8.68 0.88 +0.09

10.09-12.86 1.19+0.12

14.18-16.00 1.36+£0.14
16.00-20.30 1.28£0.15

A baryon has a larger fraction of the AE momentum and is more
likely to decay outside of the acceptance. The uncertainties com-
bine both statistical and systematic contributions (with the latter
dominating) and include a small correlated uncertainty due to the
use of a single sample of Ag — J/¥ A decays as the normalisa-
tion channel for all g? intervals. The systematic uncertainties are
described in more detail in Section 7.

7. Systematic uncertainties
7.1. Yields
Three separate sources of systematic uncertainty on the mea-

sured yields are considered for both the Ag — J/¥ A and Ag —
Apt e~ decay modes: the definition of the signal PDF, the defini-
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Table 3
Absolute systematic uncertainties on the yields for the Ag — Aptu~ decay.

Source q? interval [GeV?Z/c?]

0.00-2.00 2.00-4.30 4.30-8.68 10.09-12.86 14.18-16.00 16.00-20.30
Signal PDF 0.08 0.08 0.16 0.4 0.08 2.3
Combinatorial background 2.7 0.7 0.21 3.5 2.2 2.5
Signal shape parameters 0.04 0.08 0.09 0.4 0.17 1.1
Total 2.7 0.7 0.28 35 2.2 35

tion of the background PDF and the choice of the fixed parameters
used in the fits to data.

For the Ag — J /¥ A decays, the default signal PDF is replaced
by a single Gaussian function. A 2.0% change in signal yield rela-
tive to the default fit is observed and assigned as the systematic
uncertainty. The shape of the combinatorial background function
is changed from the default first-order polynomial to a second-
order polynomial. The 1.8% change in the signal yield is assigned
as the systematic uncertainty. To estimate the sensitivity of the
background process B? — ]/t/fl(g to differences between data and
simulation, the shape of this background is varied in the fit. A
relative uncertainty of 4.7% is assigned. For Ag — Aputu~ de-
cays, as the parameter values of the signal PDF are from fits to
the Ag — J/¥ A data, the uncertainty in the signal shape is ac-
counted for by using the signal shape parameters and covariance
matrix obtained from the Ag — J/¥ A mass fit. The dependence
on the shape of the signal PDF is investigated by fitting data us-
ing the parameters determined from the single-Gaussian function
treatment of the Ag — J/¥ A data described above. The com-
binatorial background modelling is studied in the same way as
for the Ag — J/¥ A decays. The systematic uncertainties on the
yield in each ¢? interval are summarised in Table 3, where the to-
tal is the sum in quadrature of the three individual components.
No additional uncertainty is assigned to account for finite peak-
ing background, as constraining it to the prediction from simulated
B — Kg/ﬁ/f decays has a negligible effect.

7.2. Relative efficiencies

In measuring the g2 dependence of the differential branching
fraction, three types of correlation are taken into account: those
between the normalisation and signal decays; those between the
different g% regions; and those between the geometric, selection
and trigger efficiencies. For simplicity, correlations among g2 in-
tervals are taken into account where a systematic uncertainty is
significant and neglected where a given uncertainty is small com-
pared to the dominant sources. Overall, the dominant systematic
effect identified is that related to the current knowledge of the
angular structure of the decays and g dependence of the decay
channels. The uncertainty due to the finite size of simulated sam-
ples used is comparable to that from other sources considered, and
is summarised together with all other contributions to the relative
efficiency in Table 4, where the total is the sum in quadrature of
the individual components.

7.2.1. Decay structure and production polarisation

The main factors that affect the detection efficiencies are the
angular structure of the decays and the production polarisation.
Although these arise from different parts of the process, the effi-
ciencies are linked and therefore are treated together.

For the Ag — Aut ™ decay, the impact of the limited knowl-
edge of the production polarisation, Py, is estimated by comparing
the default efficiency with that in either of the fully polarised
scenarios, P, = +1, taking the larger difference as the associated
uncertainty. To assess the systematic uncertainty due to the decay

structure, the efficiency from the default model [34-36] is com-
pared with that from the phase space decay, taking the larger of
this difference or the statistical precision as the systematic uncer-
tainty.

For the Ag — J/¥ A mode, the default phase space decay
is compared with the efficiency derived using the model from
Ref. [37], which depends on the polarisation parameter P, and
four complex amplitudes. While fixing P, =0, a scan of the four
complex amplitudes is made and the distribution of the change in
efficiency relative to the default is constructed. The sum in quadra-
ture of the mean and r.m.s. of this distribution is assigned as the
systematic uncertainty due to the decay structure.

To assess the importance of the production polarisation, this
exercise is repeated while setting Pp = +1. The sum in quadra-
ture of the mean and r.m.s. of the distribution of deviations from
the default gives the combined effect of decay structure and pro-
duction polarisation. The systematic uncertainty due to production
polarisation alone is determined by subtracting in quadrature the
systematic uncertainty due to the decay structure.

The impact of P, on the efficiencies is found to be small us-
ing the fully polarised scenarios, which are a conservative variation
relative to the recent measurement of Ref. [38].

7.2.2. Lifetime of AQ baryon

The Ag baryon lifetime used throughout is 1.425 ps [30] and
the systematic uncertainty associated with this assumption is
investigated by varying the lifetime by one standard deviation
(0.032 ps). No significant effect is found.

7.2.3. Reconstruction efficiency for A baryon

The A baryon is reconstructed from either long or downstream
tracks, and their relative proportions differ between data and sim-
ulation. For simulated Ag — J/¥ A decays, (21.1 £ 0.2)% of A
baryon candidates are reconstructed from long tracks, compared
to (26.4 + 0.7)% in data. For the phase space decay distribution
of simulated Ag — ApTp~ decays, (21.5 £ 0.1)% (integrated over
q?) are long tracks, indicating that both decay modes have a sim-
ilar behaviour. To account for a potential effect due to the dif-
ferent fractions of long and downstream tracks observed in data
and simulation, the efficiencies are first determined separately
for A baryon candidates formed exclusively from long and from
downstream tracks. A new relative efficiency is then determined,
setting the fraction of downstream tracks to 27% for simulated
Ag — J/¥ A decays, and increasing it by 5% in each ¢ interval for
simulated Al? — ApT ™ decays. The systematic uncertainty from
this source is assigned as the difference between this reweighted
efficiency and the default case.

7.2.4. Production kinematics

There is a small difference between data and simulation in
the momentum and transverse momentum distributions of the A
baryon produced in the Ag — J/¥ A decays. Simulated data are
reweighted to reproduce these distributions in data, and the dif-
ferences in the relative efficiencies with respect to the default are
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Table 4
Absolute systematic uncertainties on the total relative efficiency, &re|.
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Source q? interval [GeV?/c?]
0.00-2.00 2.00-4.30 4.30-8.68 10.09-12.86 14.18-16.00 16.00-20.30

Simulated sample size 0.014 0.015 0.015 0.025 0.04 0.032
Decay structure 0.05 0.07 0.08 0.11 0.13 0.12
Polarisation 0.007 0.007 0.011 0.014 0.015 0.05

A reconstruction efficiency 0.027 0.009 0.003 < 0.001 0.003 0.004
Production kinematics 0.023 0.005 0.007 0.026 0.014 0.05

Neural network 0.021 0.027 0.032 0.021 0.002 0.04

Total 0.07 0.08 0.09 0.12 0.14 0.15

Table 5

Measured relative differential branching fraction, (1/B(A2 — ]/wA))dB(Ag — Autp~)/dg?. The first uncertainty is statistical
and the second is systematic. The systematic uncertainty includes the small, correlated component due to B(J/¥ — utu™) =
(5.93 £ 0.06) x 10~2 [30]. The rightmost column gives the 90% (95%) confidence level upper limit (UL) on the relative branching

fraction in g2 intervals where no significant signal is observed.

2 2 4 1 dB -4 2 14y —1 —4 2 4y —1
g° interval [GeV~/c?] Bl T/0 A 42 [107* (GeV~/c*)~'] UL [10™* (GeV~/c*)™ ']
0.00-2.00 0.45+0.62 +0.64 1.7 (21)
2.00-4.30 0.50+0.41 £0.11 1.3 (1.5)
4.30-8.68 0.254+0.27 £0.03 0.7 (0.9)
10.09-12.86 0.90+0.34+0.26 -
14.18-16.00 1.26 +£0.38 £ 0.25 -
16.00-20.30 1.76 £0.29 £ 0.27 -
Table 6

Measured differential branching fraction, dB(A) — Au*p=)/dg?, for B(A) > J/¥A) = (6.2 +1.4) x 10~* [30], where the first
uncertainty is statistical, the second systematic and the third from the uncertainty in B(Ag — J/¥ A). The rightmost column gives
the 90% (95%) confidence level upper limit (UL) on the branching fraction in g2 intervals where no significant signal is observed.

q? interval [GeV?/c?]

dB/dq? [1077 (GeVZ2/c*)~1]

UL [1077 (GeV2/chH—1

0.00-2.00 0.28 £0.38 0.40 +0.06 1.2 (1.5)

2.00-4.30 0.31+£0.26 £0.07 +0.07 0.9 (1.1)

4.30-8.68 0.15£0.17 £0.02 +0.03 0.5 (0.6)
10.09-12.86 0.56 £0.21 £0.16 £ 0.12 -
14.18-16.00 0.79+0.24+0.15+0.17 -
16.00-20.30 1.10+0.18£0.17 £ 0.24 -

assigned as the systematic uncertainty due to production kinemat-
ics.

7.2.5. Modelling of neural network observables
A discrepancy is observed between data and simulation in the
neural network response for Ag — J/¥ A decay candidates. This

is due to differences between x? distributions in data and simu-
lation. A systematic uncertainty is assigned as the change relative
to the default efficiency after all efficiencies are recalculated using
reweighted neural network input variables.

8. Results and conclusion

The relative differential branching fraction is measured in each
q? interval as

1 dB(Ag — AutuT)

B(A) — J/y A) dg?
_ Ns(Aj—> Aptu™) 1

T ONs(A) = J/YA) €l

B(J/¥y = utu”) (3)

A%’
where Ag? represents the width of the given g? interval.
For g2 regions in which no statistically significant signal is ob-
served, an upper limit on dB(Ag — AputpT)/dg? is calculated
using the following Bayesian approach. The signal PDF for Ag —
At~ decays is reparametrised in terms of the relative differen-
tial rate of Eq. (3), Ns(A) — J/¥A), & and B(J /¥ — ptu).

The known uncertainties on the Ag — J/¥ A yield and g are
included in the fit with Gaussian constraints and the profile like-
lihood over the relative branching fraction is then obtained. An
upper limit is set at the value where the posterior likelihood cor-
responds to 90% (95%). A uniform prior between zero and 3 x 10~3
is used. The limits on the absolute differential branching fractions
are given by the product of the relative limit and B(Ag — J/UA)
and include the uncertainty on B(Ag — J/¢¥ A) from Ref. [30].

The measured relative differential branching fraction is pre-
sented in Table 5, while the absolute differential branching fraction
is given in Table 6 and shown in Fig. 4. The integrated relative
branching fraction is obtained as the sum of the differential rates
in six g% intervals (weighted by Aq?). This gives the integral over
the full phase space, with the exception of the g regions corre-
sponding to the J/v and ¢ (2S) resonances. In this integration the
statistical uncertainties are added in quadrature. Systematic un-
certainties on the Ag — Autu~ yield and the relative efficiency
are treated as uncorrelated. The remaining systematic uncertain-
ties, including the statistical and systematic uncertainties in the
normalisation mode yield from Ref. [30], are treated as fully corre-
lated. This leads to the relative branching fraction of

B(Ag — Aputu)
B(A) — ] /¥ A)
= (1.54 £ 0.30(stat) £ 0.20(syst) & 0.02(norm)) x 1073,

which corresponds to the absolute branching fraction
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Fig. 4. Measured differential branching fraction for the Ag — Autu~ decay. In re-
gions without a significant signal, the 90% confidence level upper limits are also
shown. The uncertainties due to components that are fully correlated across all g2
bins, e.g. the branching fraction of the normalisation channel from Ref. [30], are not
included in this figure. The dashed red line with the filled area shows the theoret-
ical prediction from Ref. [14]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this Letter.)

B(A) — Apt™)
— (0.96 £ 0.16(stat) = 0.13(syst) = 0.21(norm)) x 107,

where the last uncertainty accounts for the branching fraction of
the normalisation mode [30].

These new measurements of the branching fraction and dif-
ferential branching fraction for the rare decay Ag — Aputu~ are
based on a yield of 78 £ 12 signal decays obtained from data, cor-
responding to an integrated luminosity of 1.0 fb~!, collected at a
centre-of-mass energy of 7 TeV. Evidence for this process is found
for g% > m? v and is compatible with previous measurements by
the CDF Collaboration [16]. Within the precision of measurements
presented in this Letter, the Standard Model predictions of Ref. [14]
provide a good description of the data.
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