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The Design and Price of Information†

By Dirk Bergemann, Alessandro Bonatti, and Alex Smolin*

A data buyer faces a decision problem under uncertainty. He can 
augment his initial private information with supplemental data from 
a data seller. His willingness to pay for supplemental data is deter-
mined by the quality of his initial private information. The data seller 
optimally offers a menu of statistical experiments. We establish the 
properties that any revenue-maximizing menu of experiments must 
satisfy. Every experiment is a non-dispersed stochastic matrix, and 
every menu contains a fully informative experiment. In the cases of 
binary states and actions, or binary types, we provide an explicit 
construction of the optimal menu of experiments. (JEL D42, D81, 
D82, D83)

The mechanisms by which information is traded can shape the creation and the 
distribution of surplus in many important markets. Information about individual 
borrowers guides banks’ lending decisions, information about consumers’ char-
acteristics facilitates targeted online advertising, and information about a patient’s 
genome enhances health care delivery. In all these settings, information buyers (i.e., 
lenders, advertisers, and health care providers) have private knowledge relevant to 
their decision problem at the time of contracting (e.g., independent knowledge of 
a borrower, prior interactions with specific consumers, access to a patient’s family 
history). Thus, potential data buyers seek to acquire supplemental information to 
improve the quality of their decision making.

In this paper, we develop a framework to analyze the sale of supplemental infor-
mation. We consider a data buyer who faces a decision problem under uncertainty. 
A monopolist data seller owns a database containing information about a “state” 
variable that is relevant to the buyer’s decision. Initially, the data buyer has only 
partial information about the state. This information is private to the data buyer 
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and unknown to the data seller. The precision of the buyer’s private  information 
determines his willingness to pay for any supplemental information. Thus, from 
the perspective of the data seller, there are many possible types of the data buyer. 
We investigate the revenue-maximizing information policy, i.e., how much infor-
mation the data seller should provide and how she should price access to the data.

In order to screen the heterogeneous data buyer types, the seller offers a menu of 
information products. In our context, these products are statistical experiments—
signals that reveal information about the payoff-relevant state. Only the information 
product itself is assumed to be contractible. By contrast, payments cannot be made 
contingent on either the buyer’s action or the realized state and signal. Consequently, 
the value of an experiment to a buyer is determined by the buyer’s private belief and 
can be computed independently of the price of the experiment. We can recast the 
resulting screening problem as a nonlinear pricing framework wherein the buyer’s 
type is given by his prior belief. In other words, the seller’s problem is to design and 
price different versions of experiments, that is, different information products from 
the same underlying database. Because the design of information can be rephrased 
in terms of hypothesis testing, the present analysis can also be interpreted as a pric-
ing model for statistical tests.

A large body of literature studies the problem of versioning information goods, 
emphasizing that digital production allows sellers to easily customize (or degrade) 
the attributes of such products (Shapiro and Varian 1999). This argument applies 
even more forcefully to information products (i.e., statistical experiments). In a nut-
shell, the data seller’s problem consists of degrading the quality of the information 
sold to some buyers in order to charge higher prices to higher-value buyers. We show 
that the very nature of information products enriches the scope of price discrimina-
tion. Because information is valuable to the extent to which it affects decision mak-
ing, buyers with different beliefs do not simply value experiments differently: they 
may even disagree on their ranking. In this sense, the value of information naturally 
has both a vertical element (the quality of the information) and a horizontal element 
(the position of the information).

We show that the optimal menu contains, in general, both the fully informative 
experiment and partially informative “distorted” experiments. The distorted infor-
mation products are not simply noisy versions of the same data. Instead, optimality 
imposes considerable structure on the distortions in the information provided. In 
particular, every experiment offered as part of the optimal menu is non-dispersed, 
i.e., it contains a signal realization that rules out one of the states. Moreover, if the 
buyer’s decision problem is to match his action with a state, every experiment is 
concentrated, i.e., it induces the buyer to take the correct action with probability 1, 
conditional on at least one realized state.

We provide a full characterization of the optimal menu in the case of binary states 
and actions. This setting yields sharp insights into the profitability of discriminatory 
pricing for selling information. In the binary-state environment, the buyer’s types 
are one-dimensional and the utilities are piecewise linear with a kink at the belief at 
which the buyer would switch his optimal action. If all buyer types are congruent, 
i.e., they take identical actions without additional information, an intuition analo-
gous to the “no-haggling” result for monopoly pricing (Myerson 1981; Riley and 
Zeckhauser 1983) applies: the seller simply offers the fully informative experiment 
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at a fixed price. In general, however, the seller’s problem consists of screening types 
both within and across classes of congruent types.

The beneficial use of partial information can be seen with two types that are 
ranked according to their valuation of the fully informative experiment. The “high” 
type is ex ante less informed, while the “low” type is ex ante more informed. 
Suppose that types would pursue distinct actions in the absence of additional infor-
mation. A feasible policy for the seller is to offer the high type the fully informative 
experiment and the low type a partially informative experiment that generates one 
of two signals: with small but positive probability, the signal informs the low type 
without noise about the state that he considers less likely ex ante; with the remaining 
probability, it sends a second noisy signal. This allows the low type to improve the 
quality of his decision making; thus, he would be willing to pay a positive amount 
for the experiment. By contrast, the high type would not attach a positive value to 
this partial information. After all, he would have chosen the action suggested by the 
noiseless signal under his prior anyway, and given his prior, the noisy signal is too 
weak to modify his action.

The optimal menu for two types exploits the horizontal element of information 
to extract value from the low type without conceding any rents to the high type. 
Such profitable screening by providing partial information is the novel element that 
distinguishes the pricing of information from other monopoly problems, such as 
designing insurance or goods of differentiated quality. With a continuum of types, 
the optimal menu still contains at most two experiments: one is fully informative, 
and the other contains two signals, one of which perfectly reveals the true state. 
In particular, the optimal menu involves discriminatory pricing (i.e., two different 
experiments are offered) only if “ironing” is required (Myerson 1981). Intuitively, 
the second experiment intends to serve buyers in one group, while charging higher 
prices to the other group.

Our findings have concrete implications for the sale of information. In Section IV, 
we illustrate our results in the context of the information being sold by online data 
brokers, focusing on a broad class of products (“data appends”) that are used for 
marketing and risk-mitigation purposes. We use the language of hypothesis test-
ing and statistical errors to demonstrate how the design of data products can be 
informed by the structural properties of the optimal experiments we identified in 
our analysis. In particular, we argue that no experiment in an optimal menu should 
add unbiased noise to the seller’s information, and we discuss whether enabling the 
buyer to access only a portion of the seller’s data is equivalent to introducing noise.

In Section V, we take the first step toward more general results. We fully charac-
terize the menu with two types that face a matching decision problem. In an optimal 
menu, the high type purchases the fully informative experiment, while the low type 
purchases an experiment that is at least partially informative. This can occur even 
if the types are congruent. The latter experiment provides “directional” information 
about the states the low type perceives to be relatively more likely and induces 
him to take the corresponding actions more often. In this way, the seller optimally 
reduces the information rents of the less informed type, possibly to zero, without 
needing to exclude the more informed type.

In online Appendix A, we illustrate the construction of the optimal menu and 
the implications for information rents in the model with many actions and two (or 
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three) types. In online Appendix B, we consider a setting with two types but we 
relax the assumption of matching state-action payoffs. In particular, we consider an 
example with two types, two states, and three actions. Finally, in online Appendix C, 
we discuss by means of an example how the analysis is affected by considering a 
sequential setting.

Related Literature.—Our paper is part of the body of literature on selling infor-
mation to imperfectly informed decision makers. In seminal papers, Admati and 
Pfleiderer (1986, 1990) analyze the sale of information to a continuum of ex ante 
homogeneous agents, all with the same prior information. After the purchase of 
supplemental information, the agents trade an asset with a common value. They 
show that it is optimal to provide noisy, idiosyncratic and, hence, heterogeneous 
information. This idiosyncratic information guarantees the traders a local monop-
oly, which preserves the value of acquiring information even in an informative, 
rational-expectations equilibrium. Thus, Admati and Pfleiderer (1986, 1990) explic-
itly consider interactions among data buyers that we do not pursue here. By contrast, 
we focus on ex ante heterogeneous types of a single buyer who value information 
differently due to their different prior beliefs. The data seller in our setting offers 
noisy versions of the data to screen the buyer’s initial information and to extract 
more surplus, leading to profound differences in the optimal experiments. A second 
contribution of this paper relative to Admati and Pfleiderer (1986, 1990) is that we 
consider all feasible statistical experiments, whereas they restrict their attention to 
normally distributed priors and signals. We shall see that the optimal experiment is 
outside of the normal class, even if the priors are normally distributed.

In recent work, Babaioff, Kleinberg, and Paes Leme (2012) also analyze the opti-
mal mechanisms for selling information. While we consider the same general ques-
tion, the details of the model, the contracting environment, and the nature of the 
results differ substantially. In their model, the ex post payoff function of the data 
buyer depends on two state variables. The seller has private information about one 
state variable, and the buyer has private information about the other. Their contract-
ing environment differs from ours in that the seller is allowed to make the informa-
tion disclosure and the price dependent on his privately observed signal. By contrast, 
we ask the data seller to commit to a selling mechanism before the realization of any 
state variable. The central results of their paper are statements of the revelation prin-
ciple and algorithms for the optimal mechanism using surplus extraction arguments, 
as in Crémer and McLean (1988).

Within the mechanism design literature, our approach is related to, yet conceptually 
distinct from, models of discriminatory information disclosure in which the seller of 
a good discloses match-value information and sets a price. Several papers, including 
Lizzeri (1999); Ottaviani and Prat (2001); Johnson and Myatt (2006); Bergemann and 
Pesendorfer (2007); Eső and Szentes (2007a); Krähmer and Strausz (2015); and Li 
and Shi (forthcoming) analyze this problem from an ex ante perspective, where the 
seller commits (simultaneously or sequentially) to a disclosure rule and a pricing pol-
icy.1 Eső and Szentes (2007b) consider a related model of selling advice. Their model 

1 In addition, a number of more recent papers, including Balestrieri and Izmalkov (2014); Celik (2014); Koessler 
and Skreta (2016); and Mylovanov and Tröger (2014) analyze this question from an informed principal perspective. 
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is distinct from our analysis in two dimensions. First, the private information of the 
agent is the expected value difference between two possible actions. Thus, the private 
information is one-dimensional rather than multidimensional. Second, the seller can 
make the payment contingent on both the statistical experiment and the buyer’s action. 
By contrast, our seller can price the information but not the action itself. Commitment 
to a disclosure policy is present in the literature on Bayesian persuasion, e.g., Rayo 
and Segal (2010); Kamenica and Gentzkow (2011); and Kolotilin et al. (forthcoming). 
In contrast to this line of work, our model admits monetary transfers and rules out any 
direct effect of the buyer’s ex post action on the seller’s utility.

Our previous work (Bergemann and Bonatti 2015) considered the informa-
tion-acquisition policy of a data buyer who then decided on the placement of dis-
play advertising. This earlier model was simpler in many respects. First, the price 
of information was given or determined by a competitive market. Second, the data 
buyer did not have any private information. Third, despite allowing for a continuum 
of matching values (states) and advertising levels (actions), the available informa-
tion structures were restricted to simple queries that perfectly revealed individual 
state realizations. The analysis focused on the nature of the buyer’s optimal queries 
given the distribution of match values and the cost of advertising.

Hörner and Skrzypacz (2016) share a similar title but consider a very different 
setting. They consider a dynamic hold-up game, except that information rather than 
a physical object is sold. At the beginning of the game, the buyer has no private 
information and wants to hire a competent data seller. The data seller knows whether 
she is competent and can prove her competence by sequentially undertaking tests 
within a fixed subclass of statistical experiments. Hörner and Skrzypacz (2016) 
allow for sequential monetary transfers and characterize an equilibrium that is most 
favorable to the competent seller.

Finally, our seller’s problem bears some resemblance to a bundling problem. With 
more than two states, the buyer types are multidimensional and it is well known (see, 
for example, Pavlov 2011b) that the single-price result of Myerson (1981) and Riley 
and Zeckhauser (1983) does not hold. Indeed, the optimal menu involves stochas-
tic bundling quite generally, and the structure of the bundles offered can be quite 
rich.2 Stochastic bundles are analogous to the partially informative experiments in 
our model. To further distinguish from these classic multidimensional problems, sto-
chastic bundling can arise in our setting even when buyer types are one-dimensional.

I. Model

A single decision maker, the data buyer, faces a decision problem under uncer-
tainty. The state of nature  ω  is drawn from a finite set  Ω =  { ω 1   , … ,  ω i   , … ,  ω I  }  . 
The data buyer chooses an action  a  from a finite set  A =  { a  1   , … ,  a  j   , … ,  a  J  }  . The 
ex post utility is denoted by

(1)  u ( ω i   ,  a  j  )  ≜  u  ij   ∈  ℝ +   . 

2 For example, see Manelli and Vincent (2006); Pycia (2006); Pavlov (2011a); and Rochet and Thanassoulis 
(2017). In particular, Daskalakis, Deckelbaum, and Tzamos (2017) construct an example wherein the types follow 
a Beta distribution, and the optimal menu contains a continuum of stochastic allocations. 
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The ex post payoffs can thus be represented by an  I × J  matrix:

u   a  1   ⋯   a  J   

.

  ω 1     u  11   ⋯   u  1J   

⋮ ⋮ ⋮
  ω I     u  I1   ⋯   u  IJ   

We impose the following weak assumptions on the matrix: (i)  I ≤ J  , and (ii)   u  ii   >  u  ij    
for all  j ≠ i . These two assumptions capture the idea that the action space is at 
least as rich as the state space and that for every state   ω i    , there is a unique action 
(labeled   a  i   ) that maximizes the decision maker’s utility in that state.

Matching Utility.—A useful special case is one in which the data buyer faces 
binary ex post payoffs in each state, i.e., he seeks to match the state and the action. 
In that case, we frequently drop the second subscript for the ex post utility on the 
diagonal. The utility function  u ( ω i   ,  a  j  )   is then given by

(2)  u ( ω i   ,  a  j  )  ≜  핀  [i=j]    ⋅  u  i   , and  u  i   ≜  u  ii   ; 

or in matrix form,

u   a  1   ⋯   a  I   

.

  ω 1     u  1   0

⋮ ⋱
  ω I   0   u  I   

This formulation assumes that, in each state, the data buyer assigns the same value to 
each wrong action. This value is normalized to 0 because adding a state-dependent 
translation to the utility function does not affect preferences over actions. Under this 
assumption, it is without loss of generality to assume that the sets of actions and 
states have the same cardinality:   |A|  =  |Ω|  = I = J. 

Prior Information.—The interim belief  θ  about the state is the type of the data 
buyer  θ ∈ Θ ≜ ΔΩ  , where   θ i    denotes the interim probability that type  θ  assigns 
to state   ω i    , with  i = 1, … , I . The interim beliefs of the data buyer are his private 
information. From the perspective of the data seller, these beliefs are distributed 
according to a distribution  F ∈ ΔΘ  , which we take as a primitive of our model.3

In line with the interpretation of selling supplemental information, the beliefs  
θ ∈ Θ  can be generated from a common prior and privately observed signals. Thus, 
suppose there is a common prior  μ ∈ ΔΩ . The decision maker privately observes 

3 As usual, the model allows for the alternative interpretations of a single buyer and a continuum of buyers. 
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a signal  r ∈ R  according to a commonly known experiment  λ : Ω → ΔR . The 
decision maker then forms his interim belief via Bayes’ rule:

  θ (ω | r)  ≜   
λ (r | ω)  μ (ω) 

  ______________  
 ∑ ω′∈Ω     λ (r | ω′)  μ (ω′)    . 

The interim beliefs  θ (ω | r)   , simply denoted by  θ  , are thus the private information of 
the data buyer. From the data seller’s perspective, the common prior  μ ∈ ΔΩ  and 
the distribution of signals  λ : Ω → ΔR  induce a distribution  F ∈ ΔΘ  of interim 
beliefs.

Supplemental Information.—The data buyer seeks to augment his initial private 
information by obtaining additional information from the data seller in order to 
improve the quality of his decision making. A statistical experiment (equivalently, 
an information structure)  E =  (S, π)   consists of a set  S  of signals  s  and a likelihood 
function:

  π : Ω → ΔS. 

We assume throughout that the realization of the buyer’s private signal  r ∈ R  and 
that of the signal  s ∈ S  from any experiment  E  are independent, conditional on the 
state  ω . In other words, the buyer and the seller draw their information from inde-
pendent sources.

For a given experiment  E =  (S, π)   , let  S  denote the (finite) set of signals that are 
in the support of the experiment and   π ik    the conditional probability of signal   s  k   ∈ S  
in state   ω i   . Letting  K ≜  |S|   , we have

   π ik   ≜  Pr  
 
 
 
   [ s  k   |  ω i  ] , 

where   π ik   ≥ 0   and   ∑ k=1  K     π ik   = 1  for all  i .
We then obtain the stochastic matrix

(3)

E   s  1   ⋯   s  k   ⋯   s  K   

.

  ω 1     π 11   ⋯   π 1k   ⋯   π 1K   

⋮ ⋮ ⋮
  ω i     π i1     π ik     π iK   

⋮ ⋮ ⋮
  ω I     π I1   ⋯   π Ik   ⋯   π IK   

The following experiments are of particular interest:

 (i) A non-dispersed experiment contains at least one nil entry   π ik   = 0  for  
some  i, k ;
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 (ii) A concentrated experiment contains a standard basis vector   π ii   = 1  for 
some  i ;

 (iii) The fully informative experiment    
_
 E    , with   π ii   = 1  for all  i .

In a non-dispersed experiment, one signal   s  k    allows the decision maker to rule out 
some state   ω i   . In a concentrated experiment, there exists a state   ω i    that is ruled out by 
all signals   s  k   ≠  s  i   . The fully informative experiment perfectly reveals the true state.

A menu of experiments   =  {, t}   (or an information policy) consists of a col-
lection    of experiments  E  and an associated tariff function

  t :  →  ℝ +   . 

Our goal is to characterize the revenue-maximizing menu for the seller. The timing 
of the game is as follows:

 (i) The seller posts a menu   ;

 (ii) The true state  ω  and the buyer’s type  θ  are realized;

 (iii) The buyer chooses an experiment  E ∈   and pays the corresponding price 
 t (E)  ;

 (iv) The buyer observes a signal  s  from experiment  E  and chooses an action  a .

We emphasize that the data seller is unrestricted in her choice of statistical exper-
iment (i.e., the seller can improve upon the buyer’s original information with arbi-
trarily accurate signals), and that the marginal cost of providing the information is 
nil. These assumptions capture settings in which sellers hold very precise data and 
distribution costs are negligible.

We deliberately focus on the pure problem of the design and pricing of statisti-
cal experiments. We thus assume that the seller commits to a menu of experiments 
before the realization of the state  ω  and the type  θ . We further assume that none 
of the following are contractible: the buyer’s action  a  , the realized state  ω  , or the 
signal  s . Thus, scoring rules and other belief-elicitation schemes that compare 
the elicited beliefs with the realization of some random variable are not available 
to the seller. Finally, we consider only static mechanisms and do not investigate 
sequential protocols. We expect that the sequential sale of experiments would 
allow the data seller to extract additional surplus relative to static mechanisms, 
as this would allow the seller to correlate individual payments with the realized 
states. However, the nature of the incentive constraints would not be affected (at 
least in the last round of communication), and we expect the qualitative results to 
remain unchanged.
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II. Information Design

A. Value of Information

We first describe the value of the buyer’s initial information and then determine 
the incremental value of an experiment  E =  (S, π)  . The value of the data buyer’s 
problem under prior information only is given by choosing an action  a (θ)   that max-
imizes the expected utility given the interim belief  θ  , i.e.,

  a (θ)  ∈   arg max  
   a  j  ∈A

    {  ∑ 
i=1

  
I

     θ i    u  ij  } . 

The expected utility of type  θ  is therefore given by

  u (θ)  ≜   max    
 a  j  ∈A

    {  ∑ 
i=1

  
I

     θ i    u  ij  } . 

By contrast, if the data buyer has access to an experiment  E =  (S, π)   , he first 
observes the signal realization   s  k   ∈ S  , updates his beliefs, and then chooses an 
appropriate action. The marginal distribution of signals   s  k    from the perspective of 
type  θ  is given by

   Pr  
 
 
 
   [ s  k   | θ]  =   ∑ 

i=1
  

I

     θ i    π ik   . 

Consequently, for any signal   s  k    that occurs with strictly positive probability 
 Pr [ s  k   | θ]   , an action that maximizes the expected utility of type  θ  is given by

(4)  a ( s  k   | θ)  ∈   arg max    
 a  j  ∈A

    {  ∑ 
i=1

  
I

    (   θ i    π ik   __________ 
 ∑  i ′  =1  I     θ  i ′      π  i ′  k  

  )   u  ij  } ,  

which leads to the following conditional expected utility:

(5)  u ( s  k   | θ)  ≜  max  
 a  j  ∈A

      {  ∑ 
i=1

  
I

    (   θ i    π ik   __________ 
 ∑  i ′  =1  I     θ  i ′      π  i ′  k  

  )   u  ij  } . 

Integrating over all signal realizations   s  k    and subtracting the value of prior informa-
tion, the (net) value of an experiment  E  for type  θ  is given by

(6)  V (E, θ)  ≜ E [u (s | θ) ]  − u (θ)  =   ∑ 
k=1

  
K

     max  
j
      {  ∑ 

i=1
  

I

     θ i    π ik    u  ij  }  − u (θ) . 

In the case of the previously defined matching utility (2), the value of information 
takes the simpler form

(7)  V (E, θ)  =   ∑ 
k=1

  
K

     max  
i
      { θ i    π ik    u  i  }  −  max  

i
      { θ i    u  i  } . 
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The value of the prior information, given by   max  i       θ i    u  i    , is generated by the action 
that has the highest value-weighted probability of matching the state. The value of 
an experiment  E  is generated by choosing an action on the basis of the posterior 
belief   θ i    π ik    induced by each signal   s  k   . Under matching utility, the value of infor-
mation is given by the (value-weighted) incremental probability of choosing the 
correct action.4

In Figure 1, we illustrate the value of an experiment in a model with three actions 
and three states   ω i   ∈  { ω 1   ,  ω 2   ,  ω 3  }  . The prior belief of each agent is therefore an 
element of the two-dimensional simplex,  θ =  ( θ 1   ,  θ 2   , 1 −  θ 1   −  θ 2  )  . The utility 
function is given by state-action matching with uniform weights, i.e.,   u  i   ≜ 1 . We 
display the value of the fully informative experiment    

_
 E    and of a partially informa-

tive experiment  E  as a function of the buyer’s prior.5

Viewed as a function of the types, the value of an experiment  V (E, θ)   is piecewise 
linear in  θ  with a finite number of linear components. The linearity of the value 
function is a consequence of the Bayesian nature of our problem, where types are 
prior probabilities of states. The concave kinks are due to the  max  operator in the 
buyer’s reservation utility  u (θ)  . They correspond to changes in the buyer’s action 
without supplemental information. The convex kinks are generated by the  max  oper-
ator in (5) and reflect changes in the buyer’s preferred action upon observing a 
signal. Finally, the experiment  E  is only valuable if at least two signals lead to dif-
ferent actions. If the buyer chooses a constant action following every signal   s  k    , then 
 V (E, θ)  = 0  , as can be seen in formulations (6) and (7), as well as in Figure 1 
(panel B).

4 The value of information for the data buyer differs from a consumer’s value for multiple goods or bundles 
of characteristics. In particular, the first  max  operator in (6) and (7) corresponds to the optimality condition for 
the buyer’s action given the available information. The second  max  operator reflects the type-dependent nature of 
participation constraints. Both elements are missing from the multiproduct monopolist’s problem (Pavlov 2011a,b; 
Daskalakis, Deckelbaum, and Tzamos 2017). 

5 The information structure in panel B is given by the following stochastic matrix:

E   s  1     s  2     s  3   

  ω 1   1/2 1/4 1/4

  ω 2   0 3/4 1/4

  ω 3   0 1/4 3/4 .

Figure 1. Value of Full and Partial Information,  I = J = 3
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B. The Seller’s Problem

The seller’s choice of a revenue-maximizing menu of experiments may involve, 
in principle, designing one experiment per buyer type. In turn, each experiment 
entails a type-dependent mapping from signals into actions. The seller’s problem 
can, however, be simplified by reducing the set of menus of experiments to a smaller 
and very tractable class.

First, by the revelation principle, we can restrict attention to direct mechanisms  
 = { E (θ) , t (θ) }  that assign an experiment  E (θ)  =  (S (θ) , π (θ) )   and a price  t (θ)   
to each type  θ  of data buyer. We denote the indirect (net) utility for the truth-telling 
agent by

  V (θ)  ≜ V (E (θ) , θ)  − t (θ) . 

The seller’s problem consists of maximizing the expected transfers

(8)    max  
 {E (θ) , t (θ) } 

       ∫ θ∈Θ  
 
    t (θ)  dF (θ)   

subject to incentive-compatibility constraints

(9)  V (θ)  ≥ V (E ( θ ′  ) , θ)  − t ( θ ′  ) ,  ∀ θ,  θ ′   ∈ Θ,  

and individual-rationality constraints

  V (θ)  ≥ 0,   ∀ θ ∈ Θ. 

Second, given any direct mechanism   = { E (θ) , t (θ) }  , we say that experiment  
E (θ)   is responsive if every signal  s ∈ S (θ)   leads type  θ  to a different optimal choice 
of action and, in particular,

(10)  a ( s  k   | θ)  =  a  k   for all   s  k   ∈ S (θ) . 

Importantly, condition (10) is only required for every experiment  E (θ)   and for the 
corresponding type  θ . In other words, we do not require this condition to hold if 
signals   s  k   ∈ S (θ)   are evaluated by a different type   θ ′   ≠ θ . Finally, we define an 
outcome of a menu as the joint distribution of states, actions, and monetary transfers 
resulting from every type’s optimal choice of experiment and subsequent choice of 
action.

Proposition 1 establishes that it is without loss of generality to restrict atten-
tion to responsive menus—direct revelation mechanisms in which every experiment 
 E (θ)    is responsive.

PROPOSITION 1 (Responsive Menus): The outcome of every menu    can be 
attained by a responsive menu.
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Our proof closely follows the argument of the revelation principle for Bayesian 
games of communication established by Myerson (1982). We show that we can 
always reduce the size of the signal space to the size of the action space recommended 
in equilibrium. The intuition is straightforward. Consider an incentive-compatible 
menu that contains an experiment  E (θ)   with more signals than actions. We can com-
bine all signals in  E(θ)  that lead to the same choice of action for type  θ . The value 
of this experiment remains constant for type  θ  , who does not modify his behavior. 
However, because the new experiment is (weakly) less informative than the exper-
iment we started with,  V(E(θ) , θ′ )  decreases (weakly) for all  θ′ ≠ θ  , relaxing the 
incentive constraints. Finally, because every signal sent with positive probability 
under experiment  E (θ)   leads type  θ  to a different action, we can order the signals 
such that each   s  k   ∈ S (θ)   recommends the corresponding action   a  k   .

The language of the Bayesian games of communication, as suggested by Myerson 
(1982), is helpful for understanding the nature of the seller’s problem more gener-
ally. The solution to the data seller’s problem has to satisfy two different constraints, 
the truth-telling (or honesty) constraint given by (9) and the obedience constraint 
given by (10). Thus, the buyer must be jointly honest and obedient. In particular, 
double deviations (lying and disobeying) must not be profitable for the buyer.

An immediate implication of Proposition 1 is that, without loss of generality, we 
can restrict our attention to experiments in which the signal space has the cardinal-
ity of the action space, i.e.,  K = J . This insight allows us to write the likelihood 
function of every experiment (3) as a matrix with the same dimensions as the payoff 
matrix, i.e.,

E   s  1    (=   a  1   ) ⋯   s  i    (=   a  j   ) ⋯   s  J    (=   a  J   ) 

.

  ω 1     π 11   ⋯   π 1j   ⋯   π 1J   

⋮ ⋮ ⋮
  ω i     π i1     π ij     π iJ   

⋮ ⋮ ⋮
  ω I     π I1   ⋯   π Ij   ⋯   π IJ   

Thus, we can replace the signal   s  j    with the action recommendation   a  j   . This property 
does not require that every action   a  j    is recommended with strictly positive probability. 
For instance, some signals   s  j    may never be sent, corresponding to a column vector 
of zeros at the  j th position. The resulting value of experiment  E (θ)   for type  θ  can be 
written as

(11)  V (E (θ) , θ)  =   ∑ 
j=1

  
J

       ∑ 
i=1

  
I

     θ i    π ij   (θ)   u  ij   −  max  
j
      {  ∑ 

i=1
  

I

     θ i    u  ij  } . 

Under the restriction to responsive experiments, formulation (11) removes the first  
max  operator from the value of experiment  E (θ)   for the truth-telling type  θ . Because 
a misreporting type need not always take the recommended action, we must still 
use the original formulation (6) when computing the value of experiment  E (θ)   for 
type  θ ′.
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When payoffs are given by state-action matching as in (2), the value of experi-
ment  E (θ)   for the truth-telling type  θ  simplifies to

(12)  V (E (θ) , θ)  =   ∑ 
i=1

  
I

     θ i    π ii   (θ)   u  i   −  max  
i
      { θ i    u  i  } . 

In formulation (12), the value of experiment  E (θ)   for type  θ  is fully determined by 
its diagonal entries   π ii   . By contrast, the off-diagonal entries   π ij   (θ)   may enter the 
value of experiment  E (θ)   for different types  θ ′ , as in (7).

C. Structural Properties

We now leverage the nature of the value of information to impose additional 
structure on the experiments that are part of an optimal menu.

PROPOSITION 2 (Optimal Experiments):

 (i) The fully informative experiment    
_

 E    is part of an optimal menu.

 (ii) Every experiment in any optimal menu is non-dispersed, i.e.,   π ij   = 0  for 
some  i ≠ j .

 (iii) In the matching case, every experiment in any optimal menu is concentrated, 
i.e.,   π ii   = 1  for some  i .

The first part of this result can be established via contradiction. Every type  θ  
values the fully informative experiment    

_
 E    the most among all the experiments. 

Suppose, then, that    
_
 E    is not part of the menu, and denote the most expensive item 

currently on the menu by   E ′   . The seller can replace experiment   E ′    with the complete 
experiment    

_
 E    , keeping all other prices constant and charging a higher price for    

_
 E    

than for   E ′   . The new menu weakly increases the seller’s revenue without lowering 
the net utility of any buyer type.6

The second and third parts imply that every optimal experiment eliminates the buy-
er’s uncertainty along some dimension. They are also established by an improvement 
argument. Fix an experiment  E  and suppose all entries   π ij    are strictly positive. In each 
state (row)  i  , the seller increases the probability   π ii    of the signal   s  i    that yields the 
highest payoff   u  ii    for an obedient type in that state. Concurrently, the seller reduces 
the probability   π ij    of the signal   s  j    that yields the lowest payoff   min  j       u  ij    for an obedient 
type. The seller shifts a probability mass inversely proportional to the difference in 
payoffs   u  ii   −  u  ij    , and hence, the resulting payoff gain is uniform across states   ω i   . This 
procedure is applied until the first entry   π ij    reaches  0 . Because the beliefs of each 
type  θ  sum to 1, this shift is valued uniformly by all obedient types and weakly less 
by any other type. A commensurate increase in the price of the experiment offsets 

6 The fully informative experiment is part of every optimal menu if all types assign positive probability to all 
states. It need not be part of every optimal menu if some types assign zero probability to some states. In that case, an 
optimal menu may contain a partially informative experiment that, combined with some type’s prior, fully reveals 
all states that have positive probability, and so remains fully informative in this weaker sense. 
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the value of the additional information provided and, hence, strictly increases profits 
while (weakly) relaxing the truth-telling and participation constraints.

Thus, with arbitrary payoffs, every experiment  E  contains a signal   s  j    that allows 
the buyer to rule out some state   ω i   . The limits of this result are related to the possibil-
ity of double deviations evoked earlier. A misreporting type   θ ′    may not necessarily 
choose the action recommended by every signal in the experiment  E (θ)   intended 
for type  θ . For the improvement argument above to discourage double deviations, 
it is critical that the probability mass is shifted away from the worst action in each 
state   ω i    , thus yielding the largest possible marginal benefit  ( max  j       u  ij   −  min  j       u  ij   )  for 
every obedient type in state   ω i   . Any other shift may yield a strictly higher benefit to 
type   θ ′    than to type  θ  and lead to the violation of the truth-telling constraints.

In the case of matching utility, the seller can shift the probability mass to the 
diagonal from any off-diagonal entry until the first entry   π ii    reaches  1 . Indeed, when 
the probability is shifted to the diagonal, any type that does not follow the signal’s 
recommendation obtains a strictly lower benefit relative to an obedient type. As a 
result, any optimal experiment is concentrated, i.e., there exists at least one state   ω i    
under which signal   s  i    is sent with probability one, and the buyer takes the correct 
action   a  i   . Conversely, the buyer is able to rule out (at least) one state   ω i    after observ-
ing any signal   s  k   ≠  s  i   .

In Sections III and V, we show that with binary states and actions or binary types, 
respectively, it is sufficient to consider truth-telling and obedience separately. By 
contrast, Example 3 in online Appendix A demonstrates that with three (or more) 
actions and types, double deviations typically impose additional restrictions on the 
optimal menu.

III. Optimal Menu with Binary Actions

In this section, we consider an environment with two actions  a ∈  { a  1   ,  a  2  }   and 
two states  ω ∈  { ω 1   ,  ω 2  }  . In this setting, the restriction to matching utility func-
tions entails no loss of generality relative to a general payoff matrix. To wit, for 
every state   ω i    , we can always subtract the (state-dependent) constant   u  ij    with  
i ≠ j . This linear transformation normalizes the payoffs of the data buyer by set-
ting   u  12   =  u  21   = 0  without affecting the optimality conditions of the data buyer’s 
decision problem.

We thus obtain a diagonal payoff matrix as in (2) with positive entries given by

   u  1   ≜  u  11   ,  u  2   ≜  u  22   . 

With binary states, the interim belief of the data buyer (his type) is one-dimensional. 
We identify each type with the interim probability of state   ω 1   :

  θ ≜  Pr  
 
 
 
   [ω =  ω 1  ]  ∈  [0, 1] . 

We denote the interim belief type  θ  that is indifferent between action   a  1    and   a  2    by   θ   ∗   
as

(13)   θ   ∗   u  1   =  (1 −  θ   ∗ )   u  2   ⇔  θ   ∗  =    u  2   _____  u  1   +  u  2     . 
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A. Binary Experiments

With binary actions, Proposition 1 implies that it is sufficient to consider for 
every type  θ  experiments  E (θ)   that generate (at most) two signals:

(14)
E(θ)   s  1     s  2   

.

  ω 1     π 11   (θ) 1 −   π 11   (θ)
  ω 1   1 −   π 22   (θ)   π 22   (θ)

With binary signals, we can simplify the notation by dropping the second subscript 
for diagonal entries, as we did for the payoff function:

   π 1   (θ)  ≜  π 11   (θ) ,  π 2   (θ)  ≜  π 22   (θ) . 

Without loss of generality, we assume that   π 1   (θ)  +  π 2   (θ)  ≥ 1 . In other words, 
signal   s  1    is relatively more likely to occur than signal   s  2    under state   ω 1    than under 
state   ω 2    , or

    
 π 1   (θ)  _______ 

1 −  π 1   (θ) 
   ≥   

1 −  π 2   (θ)  _______ 
 π 2   (θ) 

   . 

With binary states and actions, the general payoff environment conforms to the 
matching utility environment. We can therefore write the value for an arbitrary 
experiment  E  as follows by modifying expression (12):

(15)  V (E, θ)  =  max  
 
     {θ  π 1    u  1   +  (1 − θ)   π 2    u  2   −  max  

 
     { θ  u  1   ,  (1 − θ)   u  2   }, 0}  . 

As in the earlier formulation (12), the diagonal entries of the matrix  π (θ)   generate 
the probability that experiment  E (θ)   allows type  θ  to match the realized state with 
his action. Conversely, the first  max  operator accounts for the possibility that a mis-
reporting type   θ ′    does not follow the recommendation implicit in one of the signals 
of  E (θ)   and, hence, derives no value from the supplemental information.

In Figure 2, we illustrate how the value of information changes as a function of 
the type  θ  for the case   u  1   =  u  2   = 1 . We compare two experiments with binary 
signals, namely, the fully informative experiment   E ′   =  ( π  1  ′   ,  π  2  ′  )  =  (1, 1)   and a 
partially informative experiment   E ″   =  ( π  1  ′′  ,  π  2  ′′ )  =  (1 / 2, 1)  .

The value of information as a function of the buyer’s interim beliefs  θ  reflects 
many intuitive properties that we formally establish in Section IIIB:

 (i) The most valuable type for the seller is the ex ante least informed. In the 
examples in Figure 2, this is type   θ   ∗  = 1 / 2 . Conversely, the most informed 
types  θ ∈ { 0, 1}  have zero value of information. The linear decline in each 
direction away from   θ   ∗   follows from the linearity of the value of information 
in the interim probability.

 (ii) When we consider any asymmetric experiment, such as the one displayed in 
panel B of Figure 2, the distance from the least informed type   |θ −  θ   ∗ |   is not 
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a sufficient statistic for the value of information. The different slopes on each 
side of   θ   ∗   indicate different marginal benefits for matching state   ω 1    versus 
state   ω 2    on the basis of differences in the interim beliefs  θ .

Thus, even in an environment where types are clearly one-dimensional, informa-
tion products are inherently multidimensional (in this case, two-dimensional). In 
particular, information always has both vertical (quality) and horizontal (position-
ing) dimensions. Unlike in models of nonlinear pricing (with respect to either quan-
tity or quality) where all the types agree on the relative ranking of all the products, 
in the current environment, the types disagree on the very ranking of all partially 
informative experiments.

B. Binary Types

We derive the optimal menu with two data buyer types,  θ ∈ Θ =  { θ   L  ,  θ   H } .  
The high (value) type   θ   H   assigns a higher value to receiving the fully informative 
experiment, i.e.,

(16)  V (  _ E  ,  θ   H )  ≥ V (  _ E  ,  θ   L ) . 

With uniform weights   u  1   =  u  2   > 0  , this simply means the high (value) type is less 
well informed ex ante, i.e.,

   | θ   H  − 1/ 2|  ≤  | θ   L  − 1 / 2| . 

We refer to the distance between the interim belief  θ  and the indifference belief   θ   ∗   as 
the precision of the type  θ . We denote the frequency of a high type as

  γ ≜  Pr  
 
 
 
   [ θ =  θ   H  ]. 

The following distinction proves helpful. The interim beliefs of the two types are 
said to be congruent if both types would choose the same action without additional 
information. If we adopt the convention that the high type chooses action   a  1    under 
his prior information (i.e.,   θ   H  >  θ   ∗  ), then beliefs (and corresponding types) are 
congruent if   θ   ∗  <  θ   H  <  θ   L   and noncongruent if   θ   L  <  θ   ∗  <  θ   H  .

Figure 2. Value of Full and Partial Information (I = J = 2,   u  1    =   u  2    = 1)
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We first establish two familiar properties: “no distortion at the top,” i.e., for the 
high type and “no rent at the bottom,” i.e., for the low type.

LEMMA 1 (Binding Constraints): In an optimal menu:

 (i) Type   θ   H   purchases the fully informative experiment    
_

 E   ;

 (ii) The participation constraint of type   θ   L   binds;

 (iii) The incentive-compatibility constraint of type   θ   H   binds.

These properties of the two-type environment hold for any number of states and 
actions under arbitrary payoffs, and we shall revisit them in Section V. The descrip-
tion of the optimal menu is then completed by characterizing the experiment  E(  θ   L  )  
purchased by the low type. Here, it is productive to distinguish between congruent 
and noncongruent beliefs.

Congruent Beliefs.—In the case of congruent beliefs   ( θ   ∗  <  θ   H  <  θ   L )   , the argu-
ment is related to the classic monopoly pricing problem. By Proposition 2, we know 
that the optimal experiment  E( θ   L )  is concentrated. With congruent beliefs, both 
types would choose action   a  1    absent any additional information. The data seller 
does not want to reduce the information relative to the outside option and, thus, 
sets   π 1   ( θ   L ) = 1 . The issue is then how much information to provide about state   ω 2    , 
i.e.,

E(  θ   L  )   s  1     s  2   

.

  ω 1   1 0

  ω 1   1 −   π 2   (  θ   L  )   π 2   (  θ   L  )

Now, any partially informative experiment with   π 2   ( θ   L ) ∈  (0, 1)   geared toward 
the low type is also valuable to the high type. Using the expression for the value of 
information given by (15), we can write the incentive constraint for the high type 
as follows:

   θ   H   u  1   +  (1 −  θ   H )   u  2   − t( θ   H ) ≥  θ   H   u  1   +  (1 −  θ   H )   π 2   ( θ   L )  u  2   − t( θ   L ), 

since   π 1   ( θ   H ) =  π 2   ( θ   H ) = 1  and   π 1   ( θ   L  ) = 1 . The incentive constraint for the 
high type thus reduces to

(17)     (1 −  θ   H )  
 
 

⏟
   

 Pr  
 
 
 
   [ ω 2  ] 

    ⋅     (1 −  π 2   (  θ   L  ))   
 


    

additional precision

    ⋅  u  2    ≥ t(  θ   H  ) − t(  θ   L  ). 

Hence, we observe that both the objective and the constraints in the seller’s problem 
are linear in the choice variable   π 2   . We can therefore appeal to the no-haggling result 
of Riley and Zeckhauser (1983) that establishes the optimality of an extremal policy. 
Such a policy consists of either allocating the object (here, the information) with 
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probability 1 or not allocating it at all, hence,   π 2   ∈  {0, 1}  . As in the single-good 
monopolist’s problem, the optimal policy depends on the distribution of buyer types. 
In particular, the low type receives the fully informative experiment if and only if the 
probability  γ  of the high type is sufficiently small, or

  (1 −  θ   L  )  u  2   ≥ γ(1 −  θ   H  )  u  2   ⇔ γ ≤   1 −  θ   L  _____ 
1 −  θ   H 

   . 

Noncongruent Beliefs.—In the case of noncongruent beliefs   ( θ   L  <  θ   ∗  <  θ   H )   , 
both the argument and the result are distinct from those of the classic monopoly 
problem. In the absence of additional information, the two types choose different 
actions. The seller can then provide information in a format that has positive value 
to one type but zero value to the other type. For example, suppose that   π 2   (  θ   L  ) = 1  
and   π 1   (  θ   L  )  is chosen such that after receiving signal   s  2    , the high type   θ   H   is indiffer-
ent between actions   a  1    and   a  2    (i.e., his posterior belief is   θ   ∗  ):

(18)   θ   H  (1 −  π  1  ′  )   u  1   =  (1 −  θ   H )   u  2   ⇔  π  1  ′   =   
 u  1    θ   H  −  u  2   (1 −  θ   H ) 

  _____________  
 u  1    θ   H 

   ∈  (0, 1)  . 

Because type   θ   H   chooses action   a  1    without additional information, the experiment

(19)
E′   s  1     s  2   

  ω 1     π  1  ′   1 −   π  1  ′   
  ω 2   0 1

does not lead to a strict improvement in the decision making (or utility) of the high 
type   θ   H  . By contrast, the low type   θ   L   assigns a positive value to experiment   E ′   . After 
all, signal   s  1    would lead him to match his action to state   ω 1    , which he would never 
achieve without additional information. Thus, the seller can offer partial information 
to the low type without incurring any implicit cost in terms of surplus extraction 
vis-à-vis the high type.7

The argument in support of a partially informative experiment is illustrated for 
the case   u  1   =  u  2   = 1  in Figure 3, which depicts the value of two experiments 
net of the price as a function of the buyer’s type  θ ∈ [ 0, 1 ] . In this example, we 
set   θ   L  = 1/5 < 1/2 < 7/10 =  θ   H  .

The net value of the fully informative experiment    
_
 E    is depicted by the solid line 

at a price  t( θ   H  ) = 1 −  θ   H   that leaves the type   θ   H   indifferent between buying and 
not buying the fully informative experiment. The dashed line depicts the partial 
information experiment given by   π  1  ′    , as described by (18). The associated partially 
informative experiment   E ′    leaves the low type   θ   L   indifferent between buying and not 
buying. As for the high type   θ   H   , this experiment offers zero value at a positive price. 
Therefore, for the high type, the net value of the partially informative experiment  

7 Discriminatory menus that do not shut down the low-value type are optimal in nonlinear screening models, 
such as the monopolistic insurance market studied in Stiglitz (1977). The novel element of selling information to 
buyers with noncongruent priors is that the seller can more easily extract (possibly all) the information rents.
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E ′ is strictly below the net value of the fully informative experiment, leaving his 
incentive constraint slack.

As the incentive-compatibility constraints are slack given this specific menu of 
experiments for both types, the seller can offer a more informative experiment   E ″    
to the low type   θ   L   while still satisfying the incentive constraint for the high type   θ   H  .  
As the partially informative experiment   E ″    has a positive price tailored to type   θ   L   , 
i.e.,  t( θ   L  ) =  θ   L   π  1  ′′   u  1    , the high type can be made indifferent between experiments 
   
_
 E    and   E ″    by making sure that incentive constraint (17) is binding:

(20)      θ   H    ⏟
    

 Pr  
 
 
 
   [ ω 1  ] 

   ⋅     (1 −  π  1  ′′ )   
 

⏟
  ⋅  u  1     

additional precision

   =    (1 −  θ   H )   u  2    
 


   

t( θ   H )

    −    θ   L   π  1  ′′   u  1     ⏟
   

t( θ   L )
     ⇔  π  1  ′′  =   

 u  1    θ   H  −  u  2   (1 −  θ   H ) 
  _____________  

 u  1   ( θ   H  −  θ   L )    . 

The experiment   E ″    characterized in (20) is as informative as possible while satis-
fying the high type’s incentive compatibility constraint and both participation con-
straints with equality. Experiments    

_
 E    and   E ″    are illustrated in Figure 4, again for the 

case   u  1   =  u  2   = 1 .
This example highlights the horizontal aspect of selling information that increases 

the scope of screening: the high type   θ   H   buys the perfectly informative experiment; 
the low type   θ   L   buys a partially informative experiment; and the seller extracts the 
entire surplus (which, however, falls short of the socially efficient surplus). The 
relative frequency of each buyer type determines the shape of the optimal menu. In 
particular, the partially informative experiment   E ″    is replaced by the fully informa-
tive experiment when there is a high proportion of low types, i.e., when  γ <  θ   L / θ   H   
for all payoffs   ( u  1   ,  u  2  )  .

We have thus shown the following results for the fully binary model.
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Figure 3. Suboptimal Menu: (  π 1   ,   π 2   ) ∈ {(1, 1), (4/7, 1)}
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PROPOSITION 3 (Informativeness of the Optimal Experiment): In a model with 
binary actions:

 (i) With congruent priors, type   θ   L   receives either zero or complete information.

 (ii) With noncongruent priors, type   θ   L   receives either partial or complete 
information.

 (iii) The informativeness     π 1    of the low type’s experiment  E( θ   L )  is
  (a)  decreasing in the frequency  γ  of the high type;
  (b)  decreasing in the precision of the low type’s prior belief   | θ   L  −  θ   ∗ |  ; and
  (c)  increasing in the precision of the high type’s prior belief   | θ   H  −  θ   ∗ |   when 

priors are congruent or the menu is discriminatory.

With both congruent and noncongruent priors, if the two types are sufficiently 
similar or if the low type is relatively frequent, they both receive complete infor-
mation. Offering two experiments becomes optimal if priors are noncongruent and 
the two types are sufficiently different in their level of informativeness. Importantly, 
the low type always receives some information in that case and is not excluded.8 
Furthermore, the high type receives positive rents only if he is pooled with the low 
type. Otherwise, the seller extracts the entire surplus that is generated.

8 In Section V, we establish a stronger result: with many actions and states, there always exists a distribution  γ  
such that partial information is provided to the low type unless the two types agree on both the most likely state and 
the relative likelihood of any other two states. In the binary-state model, the latter condition is vacuously satisfied. 
However, with more than two states, the latter condition fails generically. 
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Figure 4. Optimal Menu:  (  π 1   ,   π 2   ) ∈ {(1, 1), (4/5, 1)}
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We then turn to the comparative statics of the optimal menu. Recall that we have 
assumed   θ   H  >  θ   ∗  . Because the high type buys the fully informative experiment    

_
 E     

and the low type’s experiment is concentrated with   π 2   = 1  , the optimal experiment  
E(  θ   L  )  can be described by its first diagonal entry   π 1   . Even though the shape of the 
optimal menu depends on whether types have congruent or noncongruent priors, the 
comparative statics of the optimal experiment are robust across the different scenar-
ios. The rent extraction versus efficiency trade-off is resolved at the expense of the 
low type as (i) the fraction of high types increases, or (ii) the low type’s willingness 
to pay for the complete experiment decreases.

Finally, as the high type’s willingness to pay for information decreases (his prior 
becomes more precise), the optimal menu may switch from offering full to partial 
information to the low type. This occurs because separating the two types becomes 
profitable whenever the gap in their prior beliefs is sufficiently wide. Once partial 
information is offered, however, the optimal distortions decrease with the preci-
sion of the high type. This accounts for the qualifying statement in the last part of 
Proposition 3.

C. Continuum of Types

We now complete the analysis of the binary-action environment. We denote the 
interim belief of the data buyer by  θ ≜ Pr [ω =  ω 1  ]   and consider a continuum of 
types  θ ∈  [0, 1]   on the unit interval, with a distribution  F (θ)   and associated density 
 f  (θ)  . We shall show that many qualitative properties of the two-type case (including 
the cardinality of the optimal menu) hold in this setting.

Recall the value of information was described in (15):

  V (E, θ)  = max   {θ  π 1    u  1   +  (1 − θ)   π 2    u  2   − max   { θ  u  1   ,  (1 − θ)   u  2   }, 0} . 

We can rewrite the value of information as

  V (E, θ)  = max   {θ ( π 1    u  1   −  π 2    u  2  )  +  π 2    u  2   − max   { θ  u  1   ,  (1 − θ)   u  2   }, 0} , 

and we capture the value of experiment  E  for type  θ  via a one-dimensional variable

  q(θ)  ≜  π 1   (θ)  u  1   −  π 2   (θ)  u  2   ∈  [−  u  2   ,  u  1  ] , 

which describes the differential informativeness of the experiment. The endpoints 
of the interval   [−  u  2   ,  u  1  ]   identify two extreme experiments  q ∈  {−  u  2   ,  u  1  }   that are 
attained when either one of the two signals occurs with probability 1 in both states. 
In either case, the resulting experiment reveals no information to the data buyer. 
Conversely, the fully informative experiment is given by  q =  u  1   −  u  2   . Because 
Proposition 2 establishes that either   π 1   (θ)  = 1  or   π 2   (θ)  = 1  (or both) for each 
type  θ  , we know that  q (θ)  >  u  1   −  u  2    implies   π 1   (θ)  = 1  , and that  q (θ)  <  u  1   −  u  2    
implies   π 2   (θ)  = 1 . Collecting terms, we can rewrite the value of an experiment in 
terms of the one-dimensional variable  q  as follows:

(21)  V (q, θ)  = max   {θq +  u  2   + min   { u  1   −  u  2   − q, 0}  − max   { θ  u  1   ,  (1 − θ)   u  2   }, 0} . 
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The value of information in (21) illustrates the main properties of our screening 
problem: (i) the buyer has a type-dependent participation constraint; (ii) the ex ante 
indifferent type   θ   ∗   has the highest willingness to pay for any experiment  q ; (iii) the 
experiment  q =  u  1   −  u  2    is the most valuable for all types  θ ; (iv) different types  
θ  rank partially informative experiments differently; and (v) the utility function  
V(q, θ )  has the single-crossing property in  (θ, q ) .

The single-crossing property indicates that types with a higher  θ  , those who 
believe that state   ω 1    is more likely, assign a higher value to experiments with a 
higher  q . In turn, these experiments contain a signal that delivers stronger evi-
dence regarding state   ω 2    , which they deem less likely ex ante. As in the bina-
ry-type case, the vertical dimension (quality of the information) and the horizontal 
dimension (position of the information) cannot be chosen separately by the seller. 
In particular, it is not possible to change the differential informativeness of the 
experiment (i.e., to choose a very high or a very low  q ) without reducing its over-
all informativeness.

We know from Proposition 1 that we can focus on responsive menus. In the case 
of binary actions, an experiment is responsive if and only if the value of following 
both signals’ recommendations is nonnegative. Therefore, equation (21) implies 
that experiment  q (θ)   offered to type  θ  is responsive if and only if

(22)  q (θ)  ∈ Q (θ)  ≜  
⎧

 
⎪

 ⎨ 
⎪

 

⎩
 
 [−  u  2   ,   

 u  1   ___ 
1 − θ   −  u  2  ] 

  
for

  
θ ≤  θ   ∗ 

    
 [ u  1   −    u  2   __ θ   ,  u  1  ] 

  
for

  
 θ ≥  θ   ∗ 

  .  

In other words, the restriction  q (θ)  ∈ Q (θ)   allows us to eliminate the first  max  
operator from (21) when computing the value  V (q (θ) , θ)  . We thus obtain a charac-
terization of implementable and responsive menus of experiments.

LEMMA 2 (Implementable and Responsive Menus): A menu    {q (θ) }  θ∈Θ    is imple-
mentable and responsive if and only if

(23)  q (θ)  ∈  [−  u  2   ,  u  1  ]   is non-decreasing 

and

(24)    ∫ 
0
  
1
   q (θ)  dθ =  u  1   −  u  2   . 

To obtain some intuition for constraint (24), observe that the interior type   θ   ∗   
assigns the highest value to any experiment  q  , and that the utility function  V (q, θ)   
has a downward kink at  θ =  θ   ∗  . In order to compute the buyer’s rent func-
tion  V  , we apply the envelope theorem to the two intervals on  [0,  θ   ∗ ]  and  [ θ   ∗ , 1]  
separately. Because information has zero value for types  θ ∈  {0, 1}   , we know that 
 V (0)  = V (1)  = 0 . We thus obtain two (potentially different) expressions for  V( θ   ∗ ) . 
Finally, the buyer’s gross value of an experiment (21) is jointly continuous in   (q, θ)   , 
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and hence, the rent function  V  is continuous by the Maximum Theorem.9 Incentive 
compatibility then imposes the following restriction on responsive allocations:

(25)  V( θ   ∗ ) =  ∫ 
0
   θ   
∗     V  θ   (q, θ) dθ = −  ∫ 

 θ   ∗ 
  

1
    V  θ   (q, θ) dθ. 

Computing the buyer’s marginal rent from (21) and using the definition of   θ   ∗   to 
simplify (25) yields the integral condition (24).10 Notably, condition (22) does not 
appear in the statement of Lemma 2 because it is implied by the monotonicity con-
dition (23) and by the integral constraint (24).

With this result in place, the transfer  t (θ)   associated with every experiment  q(θ)  
can be computed from the envelope formula on the  [0,  θ   ∗  ]  and  [  θ   ∗ , 1 ]  separately. 
Using integral constraint (24) to simplify further, the seller’s problem can be written 
as

(26)   max  
q ( ⋅ ) 

       ∫ 
0
  
1
   [ (θf  (θ)  + F (θ) )  q (θ)  + min   { ( u  1   −  u  2   − q (θ) )  f  (θ) , 0} ]  dθ,  

subject to constraints (23) and (24).
Observe that the integrand in (26) is piecewise linear (and concave) in the exper-

iment  q (θ)  . Thus, absent the integral constraint, the optimal experiments take values 
at the kinks, i.e.,   q   ∗ (θ )  ∈ {− u  2   ,  u  1   −  u  2   ,  u  1   }  for all  θ . This corresponds to a menu 
containing the fully informative experiment only. While such a menu is, in fact, 
optimal under some conditions, the seller can sometimes do better by offering (at 
most) one additional experiment.

PROPOSITION 4 (Cardinality of the Optimal Menu): An optimal menu consists of 
at most two experiments.

To establish this property of optimal menus, we reduce the seller’s problem 
(26) to a linear program with equality and nonnegativity constraints. An application 
of the Fundamental Theorem of Linear Programming (e.g., Theorem 8.4 in Chvátal 
1983) implies that the solution is an increasing step function with at most three 
jumps.11 Because it is optimal to set  q (0)  = −  u  2    and  q (1)  =  u  1    , this means that the 
optimal menu contains at most two informative experiments  q ∈  (−  u  2   ,  u  1  )  . When 
offered, the second experiment contains a signal that perfectly reveals one state. 
However, no further versioning is optimal: the linearity of the environment prevents 
the seller from offering more than one distorted experiment.

9 Intuitively, if the rent function had a downward jump at   θ   ∗   , some nearby type   θ   ∗  + ε  could purchase the exper-
iment intended for type   θ   ∗  − ε . This yields a payoff that is arbitrarily close to  V ( θ   ∗  − ε)   , and hence, gives   θ   ∗  + ε  an 
incentive to misreport his type. 

10 Our environment with type-dependent participation constraints is an instance of the “high convexity” case in 
Jullien (2000). As such, the integral condition for implementability (24) differs from budget, capacity, or enforce-
ability constraints because the distribution  F (θ)   does not appear in the integrand. A similar condition, for different 
reasons and with different implications, appears as a persuasion budget constraint in Kolotilin et al. (forthcoming). 

11 This result is related to linear mechanism-design problems with budget constraints, such as Samuelson 
(1984); Brusco and Hopenhayn (2007); and Fuchs and Skrzypacz (2015). In our setting, the reduction to a linear 
program is obtained through a change of variable from  q (θ)   to its increments, and by imposing the additional con-
straint that some type   θ   ∗  ∈  (0, 1)   purchases the fully informative experiment. 
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To obtain further insights into the properties of the optimal menu, we refine 
our approach to the seller’s problem. We combine Lagrange methods, as in the 
type-dependent participation constraints model of Jullien (2000), with the ironing 
procedure developed by Toikka (2011) extending that in Myerson (1981). This 
approach allows us to overcome two difficulties posed by our problem: (i) integral 
constraint (24) and objective (26) have generically different weights,  dθ  and  dF(θ ) ; 
hence, (ii) the problem is nonseparable in the type  θ  and the experiment  q (θ)   , which 
interact in two different terms. In particular, the “virtual values”  ϕ (θ, q)  , defined as 
the partial derivative of the integrand in (26) with respect to  q , are a nonconstant 
function of the experiment.

We derive the solution to the seller’s problem by maximizing the virtual values. 
Because the integrand in objective (26) is piecewise linear in  q  , its partial derivative  
ϕ(θ, q )  takes on only two values. We then define the following two functions,

   ϕ   − (θ) ≜ θf  (θ)  + F (θ)  and

  ϕ   +  (θ)  ≜ (θ − 1 ) f  (θ)  + F (θ)  ,

that describe the virtual value  ϕ(θ, q )  for  q <  u  1   −  u  2    and  q ≥  u  1   −  u  2    , respec-
tively. Heuristically, the two virtual values represent the marginal benefit to the 
seller of increasing each type’s experiment  q  from  −  u  2    to   u  1   −  u  2    and from   u  1   −  u  2    
to   u  1   . If ironing à la Myerson is required, we denote the ironed virtual values as 
    
_
 ϕ     −  (θ)   and     

_
 ϕ     +  (θ)  .

Finally, we say that a menu satisfies the pooling property if it is constant on any 
interval where the relevant (ironed) virtual value is constant.

PROPOSITION 5 (Optimal Menu): The menu    { q   ∗  (θ) }  θ∈Θ    is optimal if and only if 
the following conditions hold:

 (i) There exists   λ   ∗  > 0  such that, for all  θ  ,

  q   ∗  (θ)  =    arg max  
q∈ [− u  2  ,  u  1  ] 

    [   
_
 ϕ     −  (θ)  min   {q,  u  1   −  u  2  }   +     

_
 ϕ     +  (θ)  max   {0, q  −  ( u  1   −  u  2  ) }  −  λ   ∗  q] ; 

 (ii)    { q   ∗  (θ) }  θ∈Θ    has the pooling property and satisfies integral constraint (24).

We now discuss sufficient conditions for the optimality of single-item pricing.

COROLLARY 1 (Single-Item Menu): The optimal menu contains a single item 
whenever any of the following hold:

 (i) Almost all types have congruent priors, i.e.,  F ( θ   ∗ )  ∈  {0, 1}  ;

 (ii) The monopoly price for experiment    
_

 E    is equal on  [0,  θ   ∗ ]  and  [  θ   ∗ , 1 ] ;

 (iii) Both virtual values   ϕ   −  (θ)  and   ϕ   +  (θ)  are strictly increasing.
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To grasp the intuition behind these results, consider a relaxed problem where the 
seller contracts separately with two groups of buyers,  θ <  θ   ∗   and  θ ≥  θ   ∗  . Part (i) 
essentially addresses this case. Because of the linearity of the problem, the optimal 
mechanism is a cutoff mechanism: the seller offers only the fully informative exper-
iment to each group, at generically different prices. Part (ii) states that, if the cutoff 
types in the two subproblems have the same willingness to pay, then those cutoffs 
also solve the unrestricted problem. For instance, when   u  1   =  u  2    , any distribution 
that is symmetric around  θ = 1 / 2  satisfies this condition. Part (iii) identifies regu-
larity conditions on the distribution of types that rule out, for example, most bimodal 
distributions. Under these conditions, the seller prefers to offer only the fully infor-
mative experiment (at an intermediate price).

We note that only condition (3) can be stated independently of the matching 
values   ( u  1   ,  u  2  )  . For example, an optimal menu contains a single item whenever the 
values are uniformly distributed, irrespective of the payoffs. Figure 5 describes 
the optimal menu for the case of constant match values,   u  1   =  u  2   = 1  , and uni-
formly distributed types. Because both virtual values are strictly increasing, they 
cross the threshold level   λ   ∗   only once. Thus, the optimal menu is a step function 
 q (θ)  ∈  {− 1, 0, 1}   assigning the fully informative experiment  q = 0  to types  
θ ∈ [ 1 / 4, 3 / 4 ]  at a price  t = 1 / 4  , and no information to all other types.

If the conditions of Corollary 1 fail, however, the seller may choose to offer a 
second (distorted) experiment to one group in order to maintain a high price for the 
fully informative experiment. Furthermore, Corollary 1 implies that the seller offers 
a second experiment only if the distribution of types requires ironing of the virtual 
values. When types correspond to interim beliefs, it is natural to consider bimodal 
densities that fail the strong regularity conditions and, therefore, introduce the need 
for ironing. This is the case, for example, if most buyers are well informed ex ante 
(with most types close to  0  or  1 ). In other words, ironing is not a technical curiosity 
in our case but rather a technique that becomes unavoidable because of the proper-
ties of the information environment. Panel A of Figure 6 illustrates the ironed virtual 
values for a bimodal probability density function (drawn on a different scale).12 
Panel B illustrates the resulting optimal menu, again for the case   u  1   =  u  2   .

12 The distribution in Figure 6 (panel A) represents a “perturbation” of the two-type example in Section IIIB. It 
is a mixture (with equal weights) of two Beta distributions with parameters   (8, 30)   and   (60, 30)  . 
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As in the optimal menu in the binary-type setting, the partially informative exper-
iment  q ≈ − 0.21  contains one signal that perfectly reveals state   ω 1   . This exper-
iment is relatively unattractive for higher types, and it allows the monopolist to 
increase the price for the large mass of types located around  θ ≈ 0.7 . Note that 
the ex ante least informed type   θ   ∗   need not purchase the fully informative experi-
ment, despite having the highest value of information and obtaining the highest rent 
 V ( θ   ∗ )  . Indeed, the type that is indifferent between the two experiments in Figure 6 
is  θ ≈ 0.55 . From the seller’s perspective, incentivizing type  θ = 1 / 2  to purchase 
the fully informative experiment would require further distortions (and, hence, a 
lower price) for the second experiment. This leads to a loss of revenue from the 
types around  θ ≈ 0.2 . Because such types are quite frequent, this loss more than 
offsets the gain in revenue from the types around  θ = 1/2 .

Finally, a sufficient condition for the optimality of two-item menus can be obtained 
by continuity with the binary-type case. In that setting, when the two types are 
equally likely, symmetric about  1 / 2  and sufficiently well informed (i.e.,   θ   H  > 2 / 3 ),  
the optimal menu is discriminatory for all   u  1   ≠  u  2   .

IV. Implications for Data Pricing

We discuss how to bring our model’s results to bear on the design of real-world 
information products. We focus on offline and online brokers of big data—firms 
such as Acxiom, Nielsen, and Oracle—that sell information about individual con-
sumers to business customers.

Data obtained from brokers are typically used to facilitate marketing efforts 
and to mitigate risks.13 Information used for marketing purposes is typically sold 
through data appends and marketing lists. Data appends reveal supplemental infor-
mation about a firm’s existing or potential customers, allowing the firm to place them 
into more precise market segments. For instance, all major data brokers offer data 
management platforms (DMPs), customized software that enables websites to track 
their users and integrate their own data with third-party data. Most risk-mitigation 
data products offered by credit rating agencies are also of this kind. Conversely, 

13 Marketing and risk-mitigation products generate 46 percent and 41 percent of data brokers’ revenues, respec-
tively (Federal Trade Commission 2014). 
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marketing lists facilitate targeted advertising to new consumers. Advertisers can 
choose whether to acquire standard lists of potential consumers with prespecified 
sets of characteristics, or to customize their list of desired consumer attributes.

Our model of selling supplemental information is best suited to analyzing data 
appends.14 We therefore describe these information products in greater detail, and 
we comment on marketing lists and other data services at the end of this section. For 
concreteness, consider the following examples of data appends:

•  Oracle ID Graph tracks firms’ customers across several devices, augmenting the 
data collected on the firms’ websites with behavioral observations from differ-
ent sources.15

•  Email Intelligence by TowerData attaches demographic, income, intent, and 
purchase information to a merchant’s own list of email addresses.16

•  The credit reporting agency Equifax offers its business customers (e.g., banks 
and credit card companies) a risk-mitigation product called Undisclosed Debt 
Monitoring. This product tracks an individual borrower to identify new nega-
tive information that arrives between the original loan approval and the closing 
date.17

Each of these products is available in several versions, which differ mainly in 
terms of the number of informative variables the seller discloses to the buyer. For 
instance, ID Graph and Email Intelligence allow buyers to customize their queries 
to the database (e.g., a consumer’s age group, income level, interests, and intent). 
Similarly, the versions of Undisclosed Debt Monitoring differ in terms of the num-
ber of potentially negative events (e.g., late payments, credit inquiries, bankruptcy 
filings) that are monitored and disclosed.

The most common buyers of data products are marketing and advertising 
firms, lenders and financial services firms, and retail companies (Federal Trade 
Commission 2014). The data buyers differ along several dimensions, including their 
ability to process data and the richness of their action space.18 Any of these dimen-
sions of heterogeneity can lead to interesting sorting patterns of buyers into product 
versions. Here we focus on the differences in the strength of the buyers’ priors, i.e., 
in the availability of initial information.

Our main structural results (Propositions 1 and 2) derive the properties of the 
distribution of states and signals that are associated with monopolistic screen-
ing. In particular, our results impose restrictions on the support of the conditional 
distribution of signals in a given state. In order to leverage these insights to eval-
uate and inform the design of data appends, it is useful to rephrase the design of a 

14 Many brokers offer both kinds of products. For example, Nielsen Total Audience identifies two ways of pack-
aging its data: a DMP to “expand, optimize, segment and activate your customer data across all marketing channels 
and platforms” and Data as a Service (DaaS) to “find your target audience segment, or customize your own based 
on the characteristics that are most important to you.” See http://www.nielsen.com/us/en/solutions/capabilities/
total-audience.html for more details. 

15 https://www.oracle.com/marketingcloud/products/data-management-platform/id-graph.html.
16 http://www.towerdata.com/email-intelligence/pricing.
17 https://www.equifax.com/business/undisclosed-debt-monitoring.
18 For instance, a local bank deciding whether to give a mortgage at the prevailing rate has a coarser action space 

than a major credit card company deciding on a new account’s credit limit and interest rate. 

http://www.nielsen.com/us/en/solutions/capabilities/total-audience.html
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 statistical experiment in terms of hypothesis testing. Our structural results identify 
the types of statistical errors incurred by data buyers as a consequence of market 
power in the sale of information.19

For the present purpose, consider a data buyer, such as an advertiser or a lender. 
The data buyer wishes to test the null hypothesis “target with an ad” or “grant a 
loan” for a specific consumer, i.e., to distinguish a null hypothesis   H  0    from an alter-
native hypothesis   H  1   . The data buyer is a Bayesian decision maker with a prior 
distribution over the hypotheses. He can take one of two actions, each of which is 
optimal under the respective hypothesis.

The data seller has a test statistic whose distribution, conditional on the true state 
of the world, is given by   H  0    or   H  1    as in Figure 7. We assume that   H  0    and   H  1    satisfy the 
monotone likelihood ratio property. While the data seller could potentially disclose 
arbitrary information about the distribution of the test statistic, suppose she chooses 
to inform the data buyer if the statistic is above or below a certain threshold. The 
data buyer then chooses the corresponding action. We can represent this experiment 
as a statistical test of the null hypothesis   H  0   =  { ω 2  }   ,

E   s  1     s  2   

,

  ω 1   1 − β β
  ω 2   α 1 − α

19 Any data broker enjoys some degree of market power to the extent that its data sources are not perfectly cor-
related with those of other brokers or it has a superior ability to process information. Furthermore, it can be shown 
that the structural properties of optimal menus (Proposition 2) hold even in an imperfectly competitive setting with 
differentiated products (e.g., competition in nonlinear prices among sellers with partially correlated databases). In 
that case, non-dispersed and concentrated experiments are the most profitable instruments through which to provide 
any given utility level to the data buyer. 

1

H0 H1

β α

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4

Figure 7. Conditional Distributions of the Test Statistic
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where  α  and  β  denote the probability of a type I and type II statistical error, 
respectively.20

Given the information contained in the database of the seller in Figure 7, the set 
of feasible statistical tests is described by the area between the curve and the straight 
line in panel A of Figure 8. The curve identifies the loci of the least type I and type 
II statistical errors given the data available. As the data seller can always introduce 
noise into the test statistic, the set of feasible statistical tests is given by the entire 
area. In our model, we assumed that the data seller has complete information, and 
thus, the boundary is given by the horizontal and vertical lines in panel B of Figure 
8, which coincide with the  α  and  β  axes.21

The central issue for the data seller is that she does not know the data buyer’s 
prior beliefs and, hence, the buyer’s willingness to pay for this information. She 
must therefore employ a richer mechanism to screen heterogeneous buyers. In par-
ticular, the seller offers the buyer a menu of binary (“pass/fail”) tests. Each test 
reports the outcome “pass” when the test statistic is below a particular threshold. 
Each test yields a different combination of type I and type II errors   (α, β)  .

Our main structural result (Proposition 2) identifies systematic patterns in the 
optimal design of partially informative statistical tests. With binary states and 
actions, and no constraints on   (α, β)   , the seller induces some buyers to make either 
type I or type II errors, but not both. The logic underlying this result extends to the 
case of a partially informed seller: an identical argument establishes the stronger 
result that all optimal tests lie on the lower boundary of the feasible set in Figure 8 
(panel A). Separation in the optimal menu is then supported by the differences in 
the error structure of each test and by the buyers’ heterogeneous preferences over 
statistical errors.

20 A type I error leads the decision maker to reject the null hypothesis even though it is true. By contrast, a type 
II error leads the decision maker to accept the null hypothesis even though it is false. 

21 Because distributions   H  0    and   H  1    satisfy the monotone likelihood ratio property, the feasibility frontier is 
spanned by threshold tests. As the informativeness of the statistic increases, the feasible set expands and approaches 
our unrestricted setting. 
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A concrete implication of the optimality of non-dispersed experiments is that no 
product in an optimal menu should add unbiased noise to the seller’s information. 
Adding idiosyncratic noise can be useful when multiple buyers compete in a down-
stream market, as in Admati and Pfleiderer (1986), or when it is important to preserve 
the anonymity of the data, as in the differential privacy literature (Dwork 2008). In 
the absence of these concerns, our results suggest that this practice reduces the seller’s 
revenues. Instead, optimal experiments should minimize the type II error for any level 
of type I error (as in Figure 8). For example, if the data buyer faces a binary adver-
tising decision, the optimal menu should lead to excessively broad or to excessively 
narrow campaigns, i.e., advertising to a subset of high-value consumers but not to low-
value consumers, or to all high-value and to some low-value consumers.

Interestingly, in practice, none of the data products described earlier appear to intro-
duce noise into the data. For example, credit rating agencies do not offer both precise 
and noisy versions of the same information (e.g., computing a consumer’s credit score 
on the basis of more or less detailed data). Instead, information is degraded by reveal-
ing only a portion of the available data to the buyer. We now discuss how omitting 
explanatory variables can be seen as implementing our optimal mechanism under spe-
cific conditions on the buyer’s decision problem and on the seller’s data.

Consider the following stylized description of the Equifax product Undisclosed 
Debt Monitoring mentioned above. A credit rating agency collects  K  binary char-
acteristics   x  k   ∈  {0, 1}   for each potential borrower. Each realization   x  k   = 1  corre-
sponds to a “red flag” on the borrower’s record. Suppose, for simplicity, that the 
data buyer’s (the lender’s) payoff-relevant state is  ω = 1 [ ∑ k=1  

K     x  k   = 0]   , i.e., it is 
optimal to grant a loan if and only if there are no red flags. The data seller knows 
the borrower’s vector of characteristics   ( x  1   ,  … ,  x  K  )   , while the data buyer privately 
knows the (identical) probability distribution of each binary characteristic   x  k   . In 
this case, hiding the realized value of any characteristic   x  k    induces the data buyer to 
grant a loan to an unqualified borrower with positive probability, but no qualified 
borrower is ever turned down.

In this example, the data buyer incurs only one type of statistical error. Thus, 
omitting variables can be part of an optimal design if subsets of the seller’s data 
contain conclusive evidence against at least one state. In other settings, withholding 
data may introduce full-support noise into the experiment. This is the case any time 
a hidden variable could have overturned the signals based on the revealed data and 
changed the buyer’s action in any direction. For example, it is not difficult to con-
struct examples in which a broker (e.g., Oracle or Nielsen) provides demographic, 
income, and interest information about consumers, but using demographic and 
income data as proxies for interest leads the data buyer to incur both types of statis-
tical errors.

Data brokers offer several other information products in addition to data appends. 
For instance, marketing lists are queries to a broker’s database of individual con-
sumer records. Such queries allow advertisers to identify potential customers with a 
set of desired characteristics.22 Thus, a marketing list can be viewed as a statistical 

22 For example, the online invitation website Evite sells lists of attendees of events at specific locations; the 
share-buttons provider AddThis sells lists of internet users’ tastes for news; and Mailways sells lists of physical 
mailing addresses at the mail carrier route level (Anderson and Simester 2013). 
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experiment where each signal indicates (possibly with error) a prespecified con-
sumer segment. From a modeling standpoint, however, selling a list is very different 
from appending data to the buyer’s existing information. In particular, when selling 
a list, the seller is able to charge a price contingent on the signal realization.23 
Marketing lists can also be sold contextually to advertising space. This occurs when 
a data provider (e.g., BlueKai) partners with a publisher of space (DoubleClick) and 
charges the advertiser a price per impression in addition to the cost of the advertising 
space. Thus, the price of the data augments the cost of the ads. In other words, the 
buyer’s advertising decision is contractible.24

V. Optimal Menu with Many Actions and Two Types

We now extend the analysis of the optimal menu to environments with many 
actions and many states. In order to make progress in this richer environment, we 
restrict our attention to the case of binary types and matching payoffs defined in (2). 
We then provide a suitable generalization of the optimal menu derived in Section III. 
We continue to define the low and the high type  θ ∈  { θ   L  ,  θ   H }   such that the high 
type values the completely informative experiment more than the low type, as in 
(16).

The construction of the optimal menu now proceeds differently than in Section III. 
We first solve a relaxed problem wherein we require the high type   θ   H   to take action   a  i    
upon observing signal   s  i    even when buying the experiment destined for the low 
type   θ   L  . We then show that the solution to the relaxed problem—which disregards 
the obedience constraints, indeed satisfies the original constraints—hence, it also 
solves the full problem. In other words, we first guess and then verify that the opti-
mal mechanism is obedient on and off the equilibrium path. In Example 3, we show 
that this relaxed approach fails to deliver a valid solution with more than two types. 
Thus, a different approach is required if we want to consider problems with arbitrary 
cardinality in both the action/state space and the type space.

In the relaxed problem, we replace the high type’s incentive-compatibility 
constraint

      V( θ   H  ) ≥ V (E( θ   L  ),  θ   H )  − t( θ   L  ) 

 =   ∑ 
j=1

  
I

     max  
i
      { θ  i  H   u  i    π ij   (  θ   L  )}  −  max  

i
      { θ  i  H   u  i  }  − t(  θ   L  ), 

with the weaker constraint

(27)  V( θ   H  ) ≥   ∑ 
i=1

  
I

     θ  i  H   u  i    π ii   (  θ   L  ) −  max  
i
      { θ  i  H   u  i  }  − t( θ   L  ). 

23 Babaioff, Kleinberg, and Paes Leme (2012) provide further insight into the role of realization-contingent 
pricing. In our model, contracting on signal realization leads to the first-best profits for the seller. 

24 In our setting, contracting on the buyer’s action leads to the first-best profits when the payoff of matching state 
and action is constant, though the same is not true in more general environments. Data provider-publisher partner-
ships can be analyzed more comprehensively in the setting of Eső and Szentes (2007b). 
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The relaxed version of the constraint drops the  max  operator and simply asks type 
  θ   H   to accept the recommendation   a  i    implicit in signal   s  i    of experiment  E( θ   L  ) .

Lemma 1 establishes that both the low type’s participation constraint and the 
high type’s incentive constraint bind. This reduces the seller’s problem to choos-
ing the diagonal entries of the low-value type’s experiment   π ii   ( θ   L  ) ∈  [0, 1] .   
Substituting  t( θ   L  ) = V(E( θ   L  ),  θ   L  )  in the right-hand side of (27), the seller  
maximizes

(28)   (1 − γ)     ( ∑ 
i=1

  
I

     θ  i  L   u  i    π ii   (  θ   L  ) −  max  
i
       θ  i  L   u  i  )   

 
  


    

t( θ   L )=V(E( θ   L ),  θ   L )

    +  γ    ( ∑ 
i=1

  
I

     θ  i  H   u  i   −  max  
i
       θ  i  H   u  i   − V(  θ   H  ))   
 
  


    

t( θ   H )=V(  
_
 E  ,  θ   H )−V( θ   H )

    

subject to the high type’s participation constraint,

(29)  V( θ   H  ) =   ∑ 
i=1

  
I

    ( θ  i  H  −  θ  i  L  )  u  i    π ii   ( θ   L  ) −  max  
i
      { θ  i  H   u  i  }  +  max  

i
      { θ  i  L   u  i  }  ≥ 0. 

The relaxation of the incentive constraints—fixing a mapping from signals to actions 
for both types and experiments—turns the seller’s problem into a linear program.

Intuitively, the seller’s choice of a partially informative experiment  E( θ   L  )  is 
guided by the disagreement in the beliefs over states of the two types. The seller is 
most willing to introduce noise into signals about states that the low type considers 
relatively less likely than the high type. The resulting distortions in the decisions 
facilitate screening without sacrificing too much of the surplus. To formalize this 
intuition, we reorder the states   ω j    by the likelihood ratios of the two types’ beliefs. 
In particular, let

(30)     θ  1  
L  ___ 

 θ  1  H 
   ≤ ⋯  ≤    θ  i  

L  ___ 
 θ  i  H 

   ≤ ⋯  ≤    θ  I  
L  ___ 

 θ  I  H 
   . 

A basic application of the Lagrange multiplier method yields the following charac-
terization result, which generalizes the optimal experiment in Section IIIB.

LEMMA 3 (Optimal Menu with Two Types): There exists a critical state   i   ∗  < I  
such that an optimal experiment  E( θ   L  )  has   π ii   = 0  for all  i <  i   ∗   and   π ii   = 1  for all  
i >  i   ∗  .

Because, without loss of generality, the low type chooses action   a  i    when observ-
ing signal   s  i    , a nil diagonal entry   π ii   = 0  means signal   s  i    is never sent by experi-
ment  E( θ   L  ).  Unlike in the binary action case, the partially informative experiment  
E( θ   L  )  may thus contain fewer signals than the available actions, as the seller drops 
some signals to reduce the information rent of the high type. Furthermore, Lemma 3 
implies that the optimal experiment  E( θ   L  )  has a lower triangular shape, with at most 
one strictly interior diagonal entry   π  i   ∗  i   ∗    ∈  (0, 1)  :
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(31)

E(  θ   L  )   s  1   ⋯   s  i*   ⋯   s  I   

  ω 1   0 ⋯ 0   π 1i*   ⋯   π 1I   

⋮ ⋮ ⋮
  ω i*   ⋮ ⋮   π i*i*   ⋯   π i*I   

0 1 0

⋮ ⋮ ⋱
  ω I   0 ⋯ 0 0 0 1

In other words, the seller chooses a subset of “targeted” states  i ∈  { i   ∗ ,  .  .  . , I}   in 
which the buyer takes the correct action with positive probability. Conversely, when 
a “residual” state  i ∈  {1,  .  .  . ,  i   ∗  − 1}   is realized, the buyer never takes the correct 
action. Residual states are used to degrade the information revealed about the tar-
geted states. The seller chooses how to partition states based on two factors: the two 
types’ relative beliefs and the relative frequency of each type.

In order to construct the optimal experiment  E( θ   L  )  , we substitute the expression 
for the information rent  V( θ   H  )  from (29) into the seller’s objective (28). Up to an 
additive constant, the seller’s profits are given by

(32)    ∑ 
i=1

  
I

    ( θ  i  L  − γ  θ  i  H  )  u  i    π ii   ( θ   L  ). 

The shape of the optimal experiment then depends on whether the participation 
constraint of the high type binds. In particular, if (29) is slack, the seller’s profits 
(32) are maximized by assigning only extreme values to the diagonal,   π ii   ∈  {0, 1}  . 
Because the likelihood ratios   θ  i  L / θ  i  H   are increasing, we have   π ii   = 1  for all  i ≥  i  s    , 
where

(33)   i  s   ≜  min  
 
 
 
   { i : γ ≤  θ  i  L / θ  i  H  }. 

To determine whether the participation constraint of the high type is satisfied by 
this solution, define the following function

  R ( j)  ≜  ∑ 
i=j

  
I

    ( θ  i  H  −  θ  i  L  )  u  i   −  max  
i
      { θ  i  H   u  i  }  +  max  

i
      { θ  i  L   u  i  } . 

This expression corresponds to the rent of the high type if the seller drops all signals   s  i    
(and, hence, recommended actions   a  i   ) with  i < j  and sets   π ii   = 1  for all  i ≥ j . In 
particular,  R (1)   is the difference in the value of full information between the high 
and the low type. By construction, it is positive. We further note that  R ( j)   is strictly 
decreasing in  j  if   θ  j  H  >  θ  j  L   and increasing otherwise. Furthermore, because of the 
likelihood ratio order on states  i  , it attains its minimum at   i  c   ≜ min  { i : 1 ≤  θ  i  L / θ  i  H  }  , 
where   i  c   ≥  i  s   . In the proof of Lemma 4, we show that  R ( i  c  )  < 0.  Therefore, if 
 R ( i  s  )  ≥ 0  , the constraint (29) is slack at the optimum.
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Conversely, if  R ( i  s  )  < 0  , then the solution to unconstrained problem (32) vio-
lates the high type’s participation constraint. Therefore, constraint (29) must bind 
at the optimum. In particular, the seller chooses a state   i  b    and a diagonal entry 
  π  i  b   i  b     ∈  [0, 1]   to satisfy (29) with equality when, in addition,   π ii   = 1  for all states  
i >  i  b    and   π ii   = 0  for all  i <  i  b   . By the properties of  R ( j)   , this critical state   i  b    is 
given by the unique solution to

  R ( i  b  )  > 0 > R ( i  b   + 1) . 

Intuitively, state   i  b    corresponds to the minimum number of signals (and corresponding 
action recommendations) that must be eliminated in order to satisfy the high type’s 
incentive constraint while extracting all the rent. Lemma 4 establishes that the 
participation constraint of the high type binds if and only if   i  b   <  i  s   .

LEMMA 4 (Information Rents with Two Types):

 (i) The critical state   ω i*    in experiment (31) is given by   i   ∗  = min { i  s   ,  i  b  }. 

 (ii) If   i  b   ≥  i  s    , then  E( θ   L )  has   π i*i*   = 1  and  V( θ   H ) > 0 .

 (iii) If   i  b   <  i  s    , then  E( θ   L )  has   π i*i*   ≤ 1  and  V( θ   H  ) = 0 .

To grasp the intuition, note that the definition of state   i  b    does not depend on the 
distribution of types, while state   i  s    is increasing in the fraction of high types  γ . The 
fraction of high types represents the shadow cost of providing information to the 
low types. When this opportunity cost is low, the monopolist prefers to limit dis-
tortions and concede rents to the high type. As  γ  increases, the informativeness of 
the low type’s experiment decreases. For example, if  γ <  θ  1  L  /  θ  1  H   (i.e.,   i  s   = 1 ), 
Lemma 4 implies that both types purchase the fully informative experiment    

_
 E    , and 

that the high type obtains positive rents. Conversely, if  γ >  θ  i  L  /  θ  i  H   for all  i  such 
that   θ  i  L / θ  i  H  < 1  , then   i  s   >  i  b    and the high type obtains no rent.

To complete the description of the optimal experiment  E( θ   L  )  , we need to specify 
the distribution of signals   π ij    for  i ≤  i   ∗  . We construct an off-diagonal assignment 
procedure that induces both types to follow the recommendation of every signal. 
In particular, for every state  i ≤  i   ∗   , we begin with the last signal   s  I    and assign the 
off-diagonal probabilities   π iI    such that the high type is indifferent between actions   a  i    
and   a  I    when recommended to choose   a  I   . We then proceed backward to signal   s  I−1    
preserving indifference and placing the residual probability, if any, on   π i i   ∗    . We show 
that the high type prefers action   a   i   ∗     to any action   a  i    with  i <  i   ∗ .  Therefore, the solu-
tion to the relaxed problem satisfies the original constraints. We illustrate the con-
struction of the optimal menu and the implications for information rents in Example 
1 in online Appendix A.

Earlier, we defined any two types   θ   L   and   θ   H   as congruent if they shared the same 
optimal action   a  i    for some  i  given their interim beliefs:

(34)    arg max    
 a  i  ∈A

    {  ∑ 
j=1

  
J

     θ  j  L   u  ij  }  =  arg max    
 a  i  ∈A

    {  ∑ 
j=1

  
J

     θ  j  H   u  ij  }  =  a  i   . 
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We now define two types to be strongly congruent if the posterior belief of   θ   L   can 
also be represented as a convex combination of   θ   H   and the vertex of the probability 
simplex identifying state   ω i    , i.e., if (34) holds and there exists  λ ∈  [0, 1]   such that

   θ   L  = λ  θ   H  +  (1 − λ)   (0, … , 0, 1, 0, … , 0) . 

In other words, if   θ   L   and   θ   H   are strongly congruent, then   θ   L   lies on a ray that goes 
through the vertex   (0, … , 0, 1, 0, … , 0)   and   θ   H  . An implication of this geometric 
condition is that the types   θ   L   and   θ   H   have a constant likelihood ratio   θ  j  L / θ  j  H  = λ  
across all states   ω j   ≠  ω i   .

With more than two states, discriminatory pricing can now be profitable even if 
the two types are congruent, as long as they are not strongly congruent. The next 
result follows directly from Lemmas 3 and 4.

PROPOSITION 6 (Informativeness of the Optimal Experiment):

 (i) With strongly congruent priors, the low type   θ   L   receives either zero or com-
plete information.

 (ii) Without strongly congruent priors, the low type   θ   L   receives zero, partial, or 
full information.

Proposition 6 thus strengthens and generalizes Proposition 3. With more than two 
states, the seller can exploit disagreement along any dimension and extract all the 
surplus through discriminatory pricing. Example 2 in online Appendix A illustrates 
how congruent, but not strongly congruent beliefs, allow for surplus extraction.

With more than two types (and more than two actions and states), our relaxed 
approach is not always valid, i.e., the optimal menu leads different types to choose 
different actions in response to the same signal realizations. In particular, type  θ  
need not follow the recommendation of every signal in all experiments  E(θ′ )  , for  
θ ≠ θ ′. We provide an instance of this additional issue in Example 3 of online 
Appendix A.

VI. Conclusion

We have studied a monopolist who sells supplemental information to privately 
informed buyers. The resulting screening problem reflects several key properties of 
information goods that set it apart from traditional models of price discrimination.

First, the Bayesian nature of the buyers’ decision making is fundamental to the 
seller’s problem. Differences in the buyers’ private beliefs introduce a novel aspect 
of horizontal differentiation that widens the seller’s scope for price discrimination.

Second, information is inherently rich and can be modified in many ways. Even 
one-dimensional data, such as a consumer’s credit score, can be turned into a rich set 
of information products, as some data buyers may want to identify consumers with 
excellent scores, while other data buyers may be concerned with avoiding consum-
ers with very low scores.
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Third, ultimately, instrumental information is useful as long as it guides the deci-
sion of the data buyer. Information therefore enters as an input into the buyer’s 
decision problem. Thus, buyers with different private beliefs may act differently 
upon receiving the same supplemental information. We have shown that the buy-
er’s ability to adjust his behavior in response to new information complicates the 
seller’s screening problem by introducing the possibility of double deviations. In 
this respect, selling information is akin to selling multiple inputs to heterogeneous 
buyers who can combine them in different ways, according to a privately known 
production technology.

In this paper, we have deliberately relied solely on belief heterogeneity to moti-
vate sales of supplemental information. In practice, however, buyers of information 
may differ along several alternative or additional dimensions, including their cost of 
choosing specific actions, their ability to process data, or their preferences for timely 
information.25 Each of these extensions can be implemented within the framework 
we have outlined. Combining different sources of heterogeneity appears more chal-
lenging but promises to yield additional insights. Finally, we have focused on the 
packaging or versioning problem of a seller who is free to acquire and degrade infor-
mation. Thus, our results represent only a first pass at understanding the trade-offs 
involved in selling information products. A richer model would distinguish the fixed 
cost of acquiring the information (e.g., building a database) from the variable cost of 
duplicating, distributing, and potentially degrading the available information.

Appendix

PROOF OF PROPOSITION 1:
Consider any type  θ  and experiment  E =  (S, π)  . Without loss of generality, let 

the type choose a single action after each signal.26 Let   S   a   denote the set of signals in 
experiment  E  that induces type  θ  to choose action  a . Thus,   ∪ a∈A    S   a  = S . Construct 
experiment   E ′   =  ( S ′  ,  π ′  )   as a recommendation for type  θ  based on experiment  E  , 
with signal space   S ′   =   { s  a  }  a∈A    and

  π′ ( s  a   | ω)  =  ∫ 
 S   a 
  

 
    π (s | ω)  ds, ω ∈ Ω, a ∈ A. 

By construction,   E ′    and  E  induce the same outcome distribution for type  θ ; hence,  V 
( E ′  , θ)  = V (E, θ)  . Moreover,   E ′    is a garbling of  E . By Blackwell’s theorem, we have  
V ( E ′  ,  θ ′  )  ≤ V (E,  θ ′  )     for all   θ ′   . Therefore, for any incentive-compatible and individ-
ually rational direct mechanism   {E (θ) , t (θ) }   , we can construct another direct mech-
anism   { E ′   (θ) , t (θ) }   whose experiments lead type  θ  to take action  a  after observing 
signal   s  a   ∈  S ′   (θ)     that is also incentive compatible and individually rational, thus 
yielding weakly larger profits.  ∎ 

25 For example, the Consumer Sentiment Index (released by Thomson Reuters and the University of Michigan) 
screens buyers of time-sensitive data by offering information products that differ only in the timing of their 
availability. 

26 Any signal inducing a mixed action could first be split (independently of  ω ) into subsignals that each induce 
one of the pure actions in the support the mixed action. The resulting experiment still satisfies obedience and 
truth-telling and induces the same outcome. 
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PROOF OF PROPOSITION 2:

 (i) The argument is given in the text.

 (ii) Let   =  {E (θ) , t (θ) }   be an individually rational and incentive-compatible 
direct mechanism. Fix an experiment  E ∈   , let   π ij    denote the conditional 
probability of signal   s  j    in state   ω i    , and suppose   π ij   > 0  for all  i  and  j . We 
argue the seller can improve her profits by replacing  E  with a non-dispersed 
experiment. By Proposition 1, we can restrict attention to responsive experi-
ments with  J  signals. Hence, the value of experiment  E   for any obedient type  
θ  is given by

 (A1)   V  ob   (E, θ)  =   ∑ 
i=1

  
I

     θ i     ∑ 
j=1

  
J

     π ij    u  ij   − u (θ)  . 

  For each state   ω i    , define the worst action   a  j (i)     and the corresponding sig-
nal   s  j (i)     , where  j (i)  ∈ arg  min  j       u  ij   . Now let

   ε i   ≜   η _______  u  ii   −  u  ij (i)       with η ≜  min  
i
  
 
   { ( u  ii   −  u  ij (i)   )   π ij (i)   }  , 

  and construct a new experiment   E ′    where   π  ii  ′   =  π ii   +  ε i    and   π  ij (i)   ′   =  π ij (i)    −  ε i    
for all  i . Experiment   E ′    is non-dispersed by construction, i.e.,   π  i   ∗ j ( i   ∗ )    = 0  , where

   i   ∗  ∈  arg min  
i
  
 
   { ( u  ii   −  u  ij (i)   )  π ij (i)   } . 

  Using (A1), we write the incremental value of experiment   E ′    for an obedient 
type  θ  as follows:

   V  ob   ( E ′  , θ)  −  V  ob   (E, θ)  =   ∑ 
i=1

  
I

     θ i   ( u  ii   −  u  ij (i)   )   ε i   =   ∑ 
i=1

  
I

     θ i   η = η. 

  The seller can therefore increase the price of experiment  E  by exactly  η  and 
leave the net utility of any truth-telling type  θ  unchanged.

  Now consider any other type   θ ′    who chooses a different action   a  j   ≠  a  j (i)     after 
signal   s  j (i)     from experiment  E . The marginal benefit to type   θ ′    in state   ω i    from 
the shift in probability from   π ij (i)     to   π ii    is given by

   u  ii   −  u  ij   ≤  u  ii   −  u  ij (i)    

  by definition of action  j (i)  . Furthermore, if the discrete shift in probabilities 
causes type   θ ′    to change his action in response to a given signal, the average 
benefit of such a shift will be a convex combination of   u  ii   −  u  ij    and   u  ii   −  u  ij (i)    . 
Therefore, the value of experiment   E ′    for type   θ ′    exceeds the value of  E  by at 
most by  η .

  Finally, suppose the original experiment was intended for type  θ  , i.e., 
 E = E (θ)  . The direct mechanism  ′  , where   E ′   (θ)   replaces  E (θ)   and  t (θ)  + η  
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replaces  t (θ)   , is individually rational and incentive compatible. Moreover, 
 experiment   E ′   (θ)   is non-dispersed by construction, and all transfers are 
weakly greater than in the original mechanism   . 

 (iii) For some utility functions   u  ij    , multiple actions can be  critical for any given 
state. The uniform-improvement procedure can then be applied to an exper-
iment as long as it assigns positive probabilities to critical actions in every 
state. As a result, every optimal experiment will contain one row with a num-
ber of zero entries greater than or equal to   min  i      |arg  min  j       u  ij  |  . In the case of 
matching utility,   |arg  min  j       u  ij  |  = J − 1  for all  i ; hence, every optimal experi-
ment is concentrated.  ∎ 

PROOF OF LEMMA 1:

 (i) We know from Proposition 2 that at least one type must buy the fully infor-
mative experiment    

_
 E   . Suppose only type   θ   L   buys    

_
 E    as part of the optimal 

menu. Then the price of    
_
 E    is at most  V(  

_
 E  ,  θ   L  ) . By incentive compatibility, 

if the high type   θ   H   purchases  E ≠   
_
 E    , it must be that  t(  θ   H  ) < V(  

_
 E  ,  θ   L  ) . 

Therefore, eliminating experiment  E(  θ   H  )  from the menu strictly improves 
the seller’s profits, yielding a contradiction.

 (ii) The participation constraint of   θ   L   must bind. Indeed, some participation con-
straint must bind, otherwise the seller could increase both prices. Suppose 
the constraint of   θ   H   is binding and that of   θ   L   is not. Since   θ   H   is served by    

_
 E    , 

then  t( θ   H  ) = V (  _ E  ,  θ   H )  ≥ V (  _ E  ,  θ   L )  . Hence, we can increase the price  t( θ   L  )  
without violating incentive compatibility.

 (iii) The incentive constraint of type   θ   H   must bind. Suppose not and then consider 
two cases: if the participation constraint of type   θ   H   does not bind, we can 
increase  t( θ   H  ) ; if the participation constraint of type   θ   H   does bind, then it 
must be that  E(  θ   L  )  is not equal to    

_
 E   . Since payoffs are continuous in   π ij    we 

can increase both the informativeness of  E( θ   L  )  and the price  t( θ   L  ) . ∎

PROOF OF PROPOSITION 3:

 (i) Recall the definition   θ   ∗  =  u  2   / (  u  1   +  u  2   )  , and consider the case of congru-
ent priors   θ   L  >  θ   H  >  θ   ∗  . It follows from Lemma 4 that an optimal menu 
contains only the fully informative experiment    

_
 E   . The value of experiment    

_
 E    

is given by  (1 −  θ   H  )  u  2    and  (1 −  θ   L  )  u  2    for the high type and the low type, 
respectively. The profits from selling to one or both types are given by 
 γ (1 −  θ   H )   u  2    and  (1 −  θ   L  )  u  2    , respectively. Thus, it is optimal to serve both 
types if and only if  γ ≤ (1 −  θ   L  ) / (1 −  θ   H  ) .

 (ii) Consider the case of noncongruent priors,   θ   L  <  θ   ∗  <  θ   H  . Let  
q ≜  π 11    u  1   −  π 22    u  2    and denote   q   L  = q( θ   L  ),  q   H  = q( θ   H  ) . It follows from 
Lemma 4 that in an optimal menu, we have   q   L  ≤  q   H  =  u  1   −  u  2   . If  γ <  θ   L / θ   H   , 
we wish to show that selling a single item is optimal, i.e.,   q   L  =  q   H  =  u  1   −  u  2    
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and   t  1   =  t  2   = (1 −  θ   L  )  u  1   . Fix an incentive-compatible menu   ( q   H  ,  q   L  ,  t   H  ,  t   L )   
with   q   L  <  u  1   −  u  2    and define the following modification:

 (A2)  ( q   H ′,  t   H ′,  q   L ′,  t   L ′ ) = (  q   H  ,  t   H  − ε(  θ   H  −  θ   L  ),  q   L  + ε,  t   L  + ε  θ   L  ). 

  If   q   L  <  u  1   −  u  2    , modification (A2) with  ε ∈  (0,  u  1   −  u  2   −  q  L  )   preserves 
incentive compatibility. Furthermore, because  γ <  θ   L / θ   H   , this improves 
profits by at least

  ε  θ   L  (1 − γ )  − ε(  θ   H  −  θ   L  )γ > 0, 

  which yields a contradiction. Finally, we argue that if  γ >  θ   L / θ   H   , then dis-
criminatory pricing is optimal. First, notice that the individual rationality of 
the high type must bind, i.e.,   q   H  =  u  1   −  u  2    and   t   H  = (1 −  θ   H  )  u  2   ; other-
wise, modification (A2) would be profitable for some  ε < 0 . Second,   q   L   
and   t   L   maximize the payment of the low type, subject to his individual- 
rationality constraint and to the high type’s incentive-compatibility con-
straint. At the optimum, both constraints bind, and the solution is given by

     q   L  =    θ   
H   u  1   − (1 −  θ   L  )  u  2    _____________  

 θ   H  −  θ   L 
   ,  t   L  =   

 ( θ   H   u  1   − (1 −  θ   H  )  u  2  )   θ   L    _________________  
 θ   H  −  θ   L 

   . 

  Substituting the definition of  q  yields expression (20) in the text. In particu-
lar, the low type’s experiment  E(  θ   L  )  has   π 2   = 1  and

   π 1   =   π ˆ   1   ≜    θ   
H   u  1   − (1 −  θ   H  )  u  2    _____________  

(  θ   H  −  θ   L  )  u  1  
   . 

(iiia)  If priors are congruent then   π 1   = 1  for  γ ≤ (1 −  θ   L  )/(1 −  θ   H  )  and   π 1   = 0   
otherwise. If priors are noncongruent then   π 1   = 1  for  γ ≤  θ   L / θ   H   
and   π 1   =   π ̂   1    otherwise.

(iiib)  If priors are congruent then   | θ   L  −  θ   ∗ |  =  θ   L  −  θ   ∗  . The optimal menu 
has   π 1   = 1  if   θ   L  ≤ 1 − γ  (1 −  θ   H )   and   π 1   = 0  otherwise. If priors are 
noncongruent then   | θ   L  −  θ   ∗ |  =  θ   ∗  −  θ   L  . The optimal menu has   π 1   = 0  
if   θ   L  < γ  θ   H   and   π 1   =   π ̂   1    , which is increasing in   θ   L   , otherwise.

(iiic)  By the normalization of a high type   | θ   H  −  θ   ∗ |  =  θ   H  −  θ   ∗  . If  priors 
are congruent then the optimal experiment  E( θ   L  )  has   π 1   = 0  
if   θ   H  < 1 − (1 −  θ   L  )/γ  and   π 1   = 1  otherwise. If priors are noncon-
gruent and the optimal menu is discriminatory, then   π 1   =   π ̂   1    , which is 
increasing in   θ   H  . ∎
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PROOF OF LEMMA 2:
We begin with necessity. Consider a responsive menu    {q (θ) }  θ∈Θ    and any two 

types   θ 2   >  θ 1    who follow the recommendations of signals in both experiments   q  1    
and   q  2   . We can then rewrite the net utility of experiment  q  in (21) as

(A3)  V (q, θ)  = θq +  u  2   +  min  
 
 
 
   { u  1   −  u  2   − q, 0}  −  max  

 
     { θ  u  1   ,  (1 − θ)   u  2   }. 

Because the menu is implementable, the incentive-compatibility constraints imply

  V ( q  1   ,  θ 1  )  −  t  1    ≥ V ( q  2   ,  θ 1  )  −  t  2   ,

 V ( q  2   ,  θ 2  )  −  t  2    ≥ V ( q  1   ,  θ 2  )  −  t  1   ,

 V ( q  2   ,  θ 2  )  − V ( q  1   ,  θ 2  )  ≥  t  2   −  t  1   ≥ V ( q  2   ,  θ 1  )  − V ( q  1   ,  θ 1  ) . 

The strict single-crossing property of  V (q, θ)   in (A3) implies   q  2   ≥  q  1   ; hence,  q (θ)   
is increasing. Because the buyer’s rent is differentiable with respect to  θ  on  [ 0,  θ   ∗  ]  
and  [ θ   ∗ , 1]  respectively, we can compute the function  V (θ)   on these two intervals 
separately. By inspection of (A3), the rent is increasing on the former interval and 
decreasing on the latter. Furthermore, because the utility function  V (q, θ)   is con-
tinuous in  θ  , the rent function  V  is continuous by the Maximum Theorem. We thus 
obtain the expression in the text:

  V( θ   ∗  ) = V (0)  +  ∫ 
0
   θ   
∗     V  θ   (q, θ)  dθ = V (1)  −  ∫ 

 θ   ∗ 
  

1
    V  θ   (q, θ)  dθ. 

By the envelope theorem,   V  θ   (q, θ)  = q +  u  2    for  θ <  θ   ∗   , and   V  θ   (q, θ)  = q −  u  1    for  
θ >  θ   ∗  . Finally, because  V (0)  = V (1)   , we can simplify the equation above and 
obtain

   ∫ 
0
  
1
   q (θ)  dθ =  u  1   −  u  2   . 

We now turn to sufficiency. Suppose the menu    {q (θ) }  θ∈Θ    is increasing and satis-
fies the integral constraint (24). Then, construct the following transfers:

(A4)  t (θ)  =  
⎧
 

⎪

 ⎨ 
⎪
 

⎩
 
θq (θ)  +  u  2   + min { u  1   −  u  2   − q (θ) , 0}  −  ∫ 

0
  
θ
   (q (x)  +  u  2  )  dx −  (1 − θ)   u  2  

  
if
  

θ <  θ   ∗ 
         

θq (θ)  +  u  2   + min { u  1   −  u  2   − q (θ) , 0}  +  ∫ 
θ
  
1
   (q (x)  −  u  1  )  dx − θ  u  1  

  
if
  

θ ≥  θ   ∗ 
 .   

Because the menu satisfies the integral constraint, we have

   ∫ 
0
  
θ
   q (x)  dx =  u  1   −  u  2   −  ∫ 

θ
  
1
   q (x)  dx, 

and we can express all transfers  t (θ)   in (A4) as

(A5)  t (θ)  = θq (θ)  +  min  
 
 
 
   { u  1   −  u  2   − q (θ) , 0}  −  ∫ 

0
  
θ
   q (x)  dx. 

Under these transfers, the expected utility of type  θ  from reporting type  θ′  is given by
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 V (q ( θ ′  ) , θ)  − t ( θ ′  )  =  (θ −  θ ′  )  q ( θ ′  )  +  ∫ 
0
   θ 
′     q (x)  dx +  u  2   −  max  

 
     { θ  u  1   ,  (1 − θ)   u  2   }. 

Because  q  is monotone, the expression on the right-hand side is maximized 
at   θ ′   = θ  , and hence, the incentive constraints are satisfied. Because the rent 
 V (θ)  ≜ V (q (θ) , θ)  − t (θ)   is nonnegative for all  θ ∈  [0, 1]   , the participation con-
straints are also satisfied.

Finally, note that the integral constraint (24) and the monotonicity condition 
imply the responsiveness condition (22). The set  Q (θ)   of responsive experiments is 
described in Figure A1. Suppose to the contrary, that  q (θ)   ∉ Q (θ)   and, in particular, 
that  q (θ)  =  q ̂   <  u  1   −  u  2   / θ   for some  θ >  θ   ∗  . Then, by monotonicity, we would 
have

   ∫ 
0
  
1
   q (x)  dx ≤  q ̂   θ +  u  1   (1 − θ)  <  u  1   −  u  2   , 

which yields a contradiction.  ∎ 

PROOF OF PROPOSITION 4:
The Fundamental Theorem of Linear Programming applies to settings with  

b ∈  ℝ   m   and  c ∈  ℝ   n   , with  m < n . Let  A  be an  m × n  matrix with the  m  rows being 
linearly independent. If the linear problem

    max  
x∈ ℝ   n 

       c ⋅ x

 subject to  Ax = b and x ≥ 0 

has a solution, then it has a solution with all but  m  entries being zero.

In this form, the Fundamental Theorem cannot be directly applied to the 
monopolist’s problem (26): in this problem, (i) the number of choice variables is 
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Figure A1. Bounds on Responsive Experiments  Q(θ ) 
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a continuum; (ii) the objective function is nonlinear; and (iii) monotonicity con-
straints are absent in the canonical representation of the theorem. To address (i), 
we discretize the state space into a fine grid with a radius  ε  ,   [0, ε, 2ε,  … , 1]  . To 
address (ii), we recall from Proposition 2 that an optimal menu contains the fully 
informative experiment. Hence, for any optimal menu    {q (θ) }  θ∈Θ    , there is some 
type   θ   I   such that  q ( θ   I )  =  u  1   −  u  2   . Consequently, any optimal  q  must solve the 
problem with the additional constraint  q ( θ   I )  =  u  1   −  u  2    for an appropriately cho-
sen   θ   I  . Because the menu is monotone, the objective can be written linearly with 
 min { u  1   −  u  2   − q (θ) , 0}  = 0  for all  θ <  θ   I   and  min { u  1   −  u  2   − q (θ) , 0}   
=  u  1   −  u  2   − q (θ)   for all  θ >  θ   I  . Finally, to address (iii), we change variables from  
q (θ)   to its increment   q ̂   (θ)  ≜ q (θ)  − q (θ − ε)   , where   q ̂   (0)  ≜ 0 . Finally, we substi-
tute  q (θ)  = −  u  2   +  ∑ x≤θ      q ̂   (x)   and rewrite the monotonicity constraint as   q ̂   (θ)  ≥ 0 .

The monopolist’s problem (26) can be restated as

   max  
 q ̂   (θ) 

         ∑ 
θ=0

  
1

    q ̂   (θ)   
(

  ∑ 
x=θ

  
1

    (x  f  (x)  + F (x) )  −   ∑ 
x≥max   {θ,  θ   I } 

  
 
    f  (x) 

)
 

 subject to   ∑ 
θ≤ θ   I 

  
 
     q ̂   (θ)  =  u  1   ,

   ∑ 
θ> θ   I 

  
 
     q ̂   (θ)  =  u  2   ,

   ∑ 
θ≥0

  
 
     ( q ̂   (θ)    ∑ 

x≥θ
  

 
    1)  =   ∑ 

θ>0
  

 
     u  1   ,

  q ̂   (θ)  ≥ 0. 

This is a canonical linear programming problem with three linearly indepen-
dent equality constraints. The first two correspond to the total change from the 
experiment  q (0)  = −  u  2    to the fully informative experiment  q(  θ   I  ) =  u  1   −  u  2    to 
 q (1)  =  u  1   . The last equality is integral constraint (24). Hence, by the Fundamental 
Theorem, for any   θ   I   there is an optimal menu of experiments with at most three 
positive entries. Since  q (1)  =  u  1    corresponds to an uninformative experi-
ment, this implies there are at most two informative experiments in any optimal 
menu.

Finally, consider an arbitrary discrete distribution that converges in distribution 
to a continuous distribution. The profits converge for any fixed menu, and hence, 
optimal profits converge as well. Furthermore, the set of profits that can be achieved 
by two-item menus is compact. Therefore, there exists an optimal menu with con-
tinuous types that has at most two items.  ∎ 

PROOF OF PROPOSITION 5:
We first derive the seller’s objective in the usual way. Using (A5) to write the 

expected transfers and integrating by parts, we obtain

   ∫ 
0
  
1
   t (θ)  dF (θ)  =  ∫ 

0
  
1
   (θq (θ)  +  min  

 
 
 
   { u  1   −  u  2   − q (θ) , 0}  −   

1 − F (θ) 
 ______ 

f  (θ)    q (θ) )  dF (θ) . 
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Using the integral constraint, we obtain (up to an additive constant)

   ∫ 
0
  
1
   t (θ)  dF (θ)  =  ∫ 

0
  
1
   [ (θf  (θ)  + F (θ) )  q (θ)  +  min  

 
 
 
   { u  1   −  u  2   − q (θ) , 0}  f  (θ) ]  dθ. 

We now establish that the solution to the seller’s problem (26) can be character-
ized through Lagrangian methods. For necessity, note that the objective is concave 
in the experiment; the set of nondecreasing functions is convex, and the integral 
constraint can be weakened to the real-valued inequality constraint

(A6)   ∫ 
0
  
1
   q(θ) dθ ≤  u  1   −  u  2   . 

Necessity of the Lagrangian then follows from Theorem 8.3.1 in Luenberger (1969). 
Sufficiency follows from Theorem 8.4.1 in Luenberger (1969). In particular, any 
solution maximizer of the Lagrangian  q(θ)  with

   ∫ 
0
  
1
   q(θ) dθ =   q ̅   

maximizes the original objective subject to the inequality constraint

   ∫ 
0
  
1
   q(θ) dθ ≤   q ̅  . 

Thus, any solution to the Lagrangian that satisfies the constraint solves the original 
problem.

Because the Lagrangian approach is valid, we apply the results of Toikka (2011) 
to solve the seller’s problem for a given value of the multiplier  λ  on the integral 
constraint. Write the Lagrangian as

  ∫ 
0
  
1
   [ (θf  (θ)  + F (θ) )  q (θ)  + min   { u  1   −  u  2   − q (θ) , 0}  f  (θ)  + λ ( u  1   −  u  2   − q (θ) ) ]  dθ. 

In order to maximize the Lagrangian subject to the monotonicity constraint, con-
sider the generalized virtual surplus

  Φ(θ, q)  :=  ∫ − u  2  
  

q
    (  

_
 ϕ   (θ, x)  −  λ   ∗ )  dx, 

where    
_
 ϕ   (θ, x)   denotes the ironed virtual value for experiment  x . (Up to a constant,  

Φ(θ, q )  is a general formulation of the virtual value in the statement of the propo-
sition.) Note that the virtual surplus  Φ(θ, q )  is weakly concave in  q . Because the 
multiplier  λ  shifts all virtual values by a constant, the result in Proposition 5 follows 
from Theorem 4.4 in Toikka (2011). Finally, note that the optimal value of   λ   ∗   is 
strictly positive: because   ϕ   −  (θ)  ≥ 0  for all  θ  (a property inherited by the virtual 
value     

_
 ϕ     −  (θ)  ), then  λ ≤ 0  would imply that the pointwise maximizer of  Φ (θ, q)   is 

weakly above   u  1   −  u  2    and strictly so for some  θ . This leads to a violation of the inte-
gral constraint. Therefore, the inequality constraint (A6) is binding.  ∎ 



44 THE AMERICAN ECONOMIC REVIEW JANuARy 2018

PROOF OF LEMMA 3:
We know from Lemma 1 that the high type   θ   H   purchases the fully informative 

experiment. We now derive the optimal experiment  E(  θ   L  ) . Suppose (as we later 
verify) that both types   θ   H   and   θ   L   choose action   a  i    after observing signal   s  i    from 
experiment  E(  θ   L  ) . The seller’s relaxed problem can be written as

    max  
0≤ π ii  ≤1,  V( θ   H )

       (1 − γ)    ∑ 
i=1

  
I

     θ  i  L   u  i    π ii   − γV(  θ   H  ),

subject to  V(  θ   H  ) ≥   ∑ 
i=1

  
I

     π ii    u  i   ( θ  i  H  −  θ  i  L )  −  max  
i
       θ  i  H   u  i   +  max  

i
       θ  i  L   u  i   ≥ 0, 

where the latter inequality ensures that the high type   θ   H   achieves a nonnegative 
payoff when misreporting his type and following every signal’s recommendation.

We now simplify the problem as follows. By Lemma 1, the incentive-compatibility 
constraint of type   θ   H   binds and the relaxed problem can be rewritten as

(A7)    max  
0≤ π ii  ≤1

         ∑ 
i=1

  
I

     π ii    u  i   (  θ  i  L  − γ  θ  i  H  ), 

(A8) subject to     ∑ 
i=1

  
I

     π ii    u  i   (  θ  i  H  −  θ  i  L  ) −  max  
i
      { θ  i  H   u  i  }  +  max  

i
      { θ  i  L   u  i  }  ≥ 0. 

Now, arrange the states such that

     θ  1  
L  ___ 

 θ  1  H 
   ≤ ⋯  ≤    θ  I  

L  ___ 
 θ  I  H 

   . 

Notice that (A7)–(A8) is a linear problem that attains a monotone solution. In par-
ticular, any solution must be a monotone sequence:   π ii   = 0  for  i <   ı ̂    and   π ii   = 1  
for  i >   ı ̂    , for some    ı ̂   ∈  {1, … , I}  . This structure can be seen immediately from the 
Lagrange multiplier method, as the solution must maximize some linear combina-
tion of the objective function and the constraint.

We complete the description of the optimal experiment  E(  θ   L  )  by assigning the 
off-diagonal probabilities   π ij    in the proof of Lemma 4.  ∎ 

PROOF OF LEMMA 4:
Consider the function  R (i)   defined in the text:

  R ( j)  ≜  ∑ 
i=j

  
I

     u  i   ( θ  i  H  −  θ  i  L  ) −  max  
i
      { θ  i  H   u  i  }  +  max  

i
      { θ  i  L   u  i  } . 

The function  R ( j)   is decreasing in  j  for  j <  i  c     and increasing in  j  for  j >  i  c    , where

(A9)   i  c   ≜  min  
 
 
 
   {i : 1 ≤  θ  i  L / θ  i  H } . 
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We now show that   min  j      R ( j)  = R ( i  c  )  < 0 . This is immediate if   max  i      { θ  i  H   u  i  }   
≥  max  i      { θ  i  L   u  i  }   , as we have   ∑ i= i  c    

I     u  i   (  θ  i  H  −  θ  i  L  ) < 0  by construction. Conversely, 
if   max  i      {  θ  i  H   u  i   } <  max  i      {  θ  i  L   u  i   }  , then we let   i  L   ≜ arg  max  i      { θ  i  L   u  i  }   , and we derive 
the following bound:

  R ( i  c  )  ≤ R ( i  L  )  ≤   ∑ 
i= i  L  

  
I

     u  i   (  θ  i  H  −  θ  i  L  ) −  θ   i  L    
H   u   i  L     +  θ   i  L    

L    u   i  L     =   ∑ 
i= i  L  +1

  
I

     u  i   (  θ  i  H  −  θ  i  L  ) < 0 ,

where the latter inequality follows from the fact that   max  i      { θ  i  H   u  i  }  <  max  i      { θ  i  L   u  i  }   
implies   θ   i  L    

L   >  θ   i  L    
H   , which means   i  L   ≥  i  c   .

We now turn to the solution to the seller’s problem. Suppose that the constraint 
does not bind at the optimum. Then, the solution assigns   π ii   = 1  if and only if  
i ≥  i  s   ≜ min {i : γ ≤  θ  i  L  /  θ  i  H } .  Note that   i  s   ≤  i  c    , which was defined in (A9). 
Therefore, if  R ( i  s  )  ≥ 0  the constraint is satisfied at the unconstrained optimum. If, 
instead, we have  R ( i  s  )  < 0  , then by the definition of the critical state   i  b   , 

  R ( i  b  )  > 0 > R ( i  b   + 1) , 

we have   i  b   <  i  s   .  In this case, the solution is given by   π ii   = 0  for  i <  i  b    ,   π ii   = 1  
for  i >  i  b    and by setting   π  i  b   i  b      to satisfy (A8) with equality, i.e.,

(A10)   π  i  b   i  b     =   
 ∑ j= i  b  +1  I    (  θ  j  L  −  θ  j  H  )  u  j   −  max  j       θ  j  L   u  j   +  max  j       θ  j  H   u  j      __________________________________   

(  θ   i  b    
H  −  θ   i  b    

L  )  u   i  b    
   . 

Combining these two arguments, we conclude that the optimal cutoff state    ı ̂    is given 
by   i   ∗  = min { i  b   ,  i  s  }   and that   π  i   ∗  i   ∗    ∈  { π  i  b   i  b     , 1}   depending on whether   i  b   ≶  i  s   .

To complete the menu, we now need to specify the off-diagonal entries   π ij    to 
ensure both types   θ   H   and   θ   L   choose action   a  i    when observing signal   s  i   . This requires

   π ii    θ i    u  i   ≥  π ji    θ j    u  j   

for both types and for all  j < i  , because the signal matrix can be taken to be lower 
triangular. In particular, we need to ensure that, for all  j <  i   ∗   ,

   π  i   ∗  i   ∗     u   i   ∗     θ   i   ∗   H   ≥  π j i   ∗     u  j    θ  j  H  ,

  π  i   ∗  i   ∗     u   i   ∗     θ   i   ∗   L    ≥  π j i   ∗     u  j    θ  j  L  . 

Because   θ  j  L / θ  j  H  ≤  θ  i  L / θ  i  H   for  j < i  , it suffices to satisfy the constraint of type   θ   H  .
We proceed as follows. Fix an alternative action   a  j    with  j <  i   ∗  . For any  i >  i   ∗   , 

we make type   θ   H   indifferent between following the recommendation of signal  i  and 
choosing action   a  j    ; we do so beginning with   π jI    and proceeding backward as long as 
required. In particular, for any  i ∈ {  i   ∗  + 1, .  .  . , I}  , we let

   π ji   =  min  
 
 
 
   {max   {1 −   ∑ 

k=i+1
  

I

     π j, k   , 0} ,    u  i    θ  i  H  ____ 
 u  j    θ  j  H 

  } , 
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and we let

   π j i   ∗    = max   {1 −   ∑ 
k= i   ∗ +1

  
I

     π j, k   , 0} . 

Thus, if this procedure assigns positive weight to   π j i   ∗     , it must be that

(A11)   π j i   ∗    = 1 −   ∑ 
i= i   ∗ +1

  
I

       θ  i  
H   u  i   ____ 

 θ  j  H   u  j  
   . 

We argue that type   θ   H   has strict incentives to follow the recommendation of signal   i   ∗  .  
(A fortiori, type   θ   H   has strict incentives to choose action   a  i    following any signal   s  i    
with  i ≥  i   ∗   if   π ii   = 1 .) Recall the definition

   π  i   ∗  i   ∗     θ   i   ∗   H   u   i   ∗    =    ∑ i= i   ∗ +1  I     u  i   (  θ  i  L  −  θ  i  H  ) −  max  i       θ  i  L   u  i   +  max  i       θ  i  H   u  i      __________________________________   
 θ   i   ∗   H  −  θ   i   ∗   L  

    θ   i   ∗   H  . 

Let   i  L   = arg  max  i       θ  i  L   u  i    and   i  H   = arg  max  i       θ  i  H   u  i    , and consider the following two 
cases.

Case 1: If   i  L   >  i   ∗   , then we know that

    ∑ 
i= i   ∗ +1

  
I

     θ  i  L   u  i   >  max  
i
       θ  i  L   u  i   , 

  and we bound   π  i   ∗  i   ∗     θ   i   ∗   H   u   i   ∗     by

   π  i   ∗  i   ∗     θ   i   ∗   H   u   i   ∗    >    θ   i   ∗   H  _______ 
 θ   i   ∗   H  −  θ   i   ∗   L  

   ( θ  j  H   u  j   −   ∑ 
i= i   ∗ +1

  
I

     θ  i  H   u  i  )  

 >  θ  j  H   u  j   −   ∑ 
i= i   ∗ +1

  
I

     θ  i  H   u  i   =  π j i   ∗     θ  j  H   u  j   . 

Case 2: If   i  L   ≤  i   ∗   , then from (A10) and (A11), we know that the differ-
ence   π  i   ∗  i   ∗     θ   i   ∗   H   u   i   ∗    −  π j i   ∗     θ  j  H   u  j    is proportional to

    ∑ 
i= i   ∗ +1

  
I

     u  i   ( θ  i  L  −  θ  i  H  ) −  max  
i
       θ  i  L   u  i   +  max  

i
       θ  i  H   u  i   −  (1 −    θ   i   

∗   L   ___ 
 θ   i   ∗   H 

  )  ( θ  j  H   u  j   −   ∑ 
i= i   ∗ +1

  
I

     θ  i  H   u  i  ) 

   =    ∑ 
i= i   ∗ +1

  
I

     u  i   ( θ  i  L  −    θ   i   
∗   L   ___ 

 θ   i   ∗   H 
    θ  i  H )  −  max  

i
       θ  i  L   u  i   +  max  

i
       θ  i  H   u  i   −  (1 −    θ   i   

∗   L   ___ 
 θ   i   ∗   H 

  )   θ  j  H   u  j   . 
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  Notice that every term in the sum is positive because the likelihood ratio is 
increasing in  i.  The remaining terms can be written as

        − max  
i
       θ  i  L   u  i   +  max  

i
       θ  i  H   u  i   −  (1 −  θ   i   ∗   L   /  θ   i   ∗   H )   θ  j  H   u  j  

        =  − ( θ   i  L    L   /  θ   i  L    
H )   θ   i  L    H   u   i  L     +  θ   i  H    H   u   i  H     −  (1 −  θ   i   ∗   L   /  θ   i   ∗   H )   θ  j  H   u  j  

        ≥  θ   i  H    H   u   i  H     (1 −  θ   i  L    
L   /  θ   i  L    

H )  −  (1 −  θ   i   ∗   L   /  θ   i   ∗   H )   θ  j  H   u  j   . 

  Here, the likelihood ratios are ranked (because   i  L   ≤  i   ∗   in this case), 
and   θ   i  H    H   u   i  H     ≥  θ  j  H   u  j    by the definition of   i  H   .  ∎ 
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