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DENSITY OF GABOR SYSTEMS VIA THE SHORT TIME

FOURIER TRANSFORM

ANDREW AHN, WILLIAM CLARK, SHAHAF NITZAN, AND JOSEPH SULLIVAN

ABSTRACT. We apply a new approach to the study of the density of Gabor
systems, and obtain a simple and straightforward proof to Ramanathan and
Steger’s well–known result regarding the density of Gabor frames and Gabor
Riesz sequences. Moreover, this point of view allows us to extend this result
in several directions. The approach we use was first observed by A. Olevskii
and the third author in their study of exponential systems, here we develop and
simplify it further.

1. introdu
tion

For g ∈ L2(R) and Λ ⊂ R
2
, the Gabor system generated by g and Λ is denoted

by

G(g, Λ) := {e2πiµtg(t − λ)}(λ,µ)∈Λ. (1)

Su
h systems play a prominent role in time-frequen
y analysis and its appli
ations.

For example, they appear in the study of pseudo-di�erential operators and phase

spa
e 
on
entration and are used in spee
h pro
essing, the analysis of musi
al

signals, wireless transmission and quantum me
hani
s. The study of these systems

fo
uses on the interplay between the properties of G(g, Λ), the distribution of Λ,
and the time-frequen
y lo
alization of g.

In this paper we fo
us on questions of the following form: whi
h 
onditions

on the distribution of Λ are ne
essary for the system G(g, Λ) to have 
ertain

properties? In parti
ular, we are interested in the 
onditions on Λ implied by the

system G(g, Λ) being a Riesz basis, a frame (roughly speaking, an `over�
omplete'

basis), a Riesz sequen
e (an `under�
omplete' basis) and a uniformly minimal

system (a very relaxed version of a Riesz sequen
e).

Su
h questions were �rst 
onsidered in this setting by Ramanathan and Steger

who, in parti
ular, obtained the following well known result [19℄, (for the de�nition

of a uniformly dis
rete sequen
e see subse
tion 2.2).

Theorem A. [Ramanathan and Steger] Let g ∈ L2(R) and let Λ ⊂ R2
be a

uniformly dis
rete sequen
e.
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1. If G(g, Λ) is a Riesz sequen
e then

D+(Λ) := lim
R→∞

max(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

≤ 1, (2)

2. If G(g, Λ) is a frame then

D−(Λ) := lim
R→∞

min(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

≥ 1, (3)

where Q(a,b)(R) denotes the 
ube with 
enter at (a, b) and side length 2R.

To obtain this result, Ramanathan and Steger applied a te
hnique whi
h in-

volved tra
e estimates of 
ompositions of 
ertain proje
tion operators. The den-

sity of Gabor systems has sin
e be
ome a signi�
ant area of resear
h, see [9℄ and

referen
es therein for an extensive review of the area.

Prior to this Landau studied a similar question regarding sampling and inter-

polating sequen
es for fun
tions with a given bounded spe
trum [13℄. Landau's

te
hnique required a mu
h more deli
ate estimate of the eigenvalues of 
ompo-

sitions of proje
tion operators. This te
hnique, however, 
ould be applied in a

more general setting. Landau's te
hnique, as well as Ramanathan and Steger's,

has been applied in di�erent settings, e.g in the study of sampling and interpolat-

ing sequen
es in analyti
 fun
tion spa
es and in that of Fekete points on 
omplex

manifolds, ([16℄, [15℄, among many others).

Re
ently, A. Olevskii and the third author developed a new approa
h to Lan-

dau's theorems [17℄. This approa
h provided a signi�
antly simpler proof of

Landau's results as well as several extensions of them. In parti
ular, this te
h-

nique does not require any study of operators or estimates of eigenvalues (see

also [12℄,[11℄). The te
hnique developed in [17℄ 
an be applied to various other

settings, see e.g. [14℄, [7℄, [8℄, and [4℄ where theorem A is proved in the general

setting of reprodu
ing kernel Hilbert spa
es. In parti
ular, this te
hnique re�nes

and extends results previously obtained by Landau's or Ramanathan and Steger's

approa
h.

One of the main goals in this paper is to develop and simplify further the

approa
h introdu
ed in [17℄ (see e.g., Lemma 7 and its appli
ations in this paper).

We apply this approa
h to the study of Gabor systems, with the short time Fourier

transform taking the role that the Fourier transform played in [17℄. With this we

obtain a simple proof of Theorem A. Moreover, this te
hnique allows us to extend

Theorem A in several new dire
tions.

First, we �nd a more pre
ise estimate of the distribution of Λ in 
ases where the

generator g satis�es some additional 
onditions. For example, if g has some time

frequen
y�
on
entration we obtain the following theorem as a parti
ular 
ase of a

more general result.
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Theorem 1. Fix α > 0. Let Λ ⊂ R2
be a uniformly dis
rete sequen
e, with

separation 
onstant δ > 0, and let g ∈ L2(R) be su
h that

∫

R

|t|α|g(t)|2dt < ∞ and

∫

R

|w|α|ĝ(w)|2dw < ∞,

where ĝ denotes the Fourier transform of g.

1. If G(g, Λ) is a Riesz sequen
e then

sup
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2 + Cρα(R).

2. If G(g, Λ) is a frame then

inf
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≥ (2R − 1)2 − Cρα(R).

Where ρα(R) is de�ned by

ρα(R) =






R2−α 0 < α < 2
log R α = 2
1 α > 2

and C denotes a positive 
onstant whi
h may depend on g, α, δ and the Riesz

sequen
e or frame bounds.

The quantity ρα(R) in Theorem 1 determines how mu
h 
an the distribution

of Λ deviate from the distribution of the integer latti
e. To see this, note that if

Λ = Z2
then

(2R − 1)2 < |Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2,

where the inequality on the left hand side is obtained when R is an integer and the

bound on the right hand side is approximated when R is smaller then an integer,

but arbitrarily 
lose to it.

Next, we show that the Riesz sequen
e 
ondition in Theorem A1 may be relaxed,

so that the theorem holds for a larger 
lass of 'under-
omplete' systems. (For the

pre
ise de�nition of uniformly minimal sequen
es see subse
tion 2.4).

Theorem 2. If G(g, Λ) is a uniformly minimal sequen
e then (2) holds. In gen-

eral, the 
on
lusion does not hold if the system merely is minimal.

In parti
ular, when 
ombined with the results from [3℄, this implies that if g ∈
L1(R)∩L2(R) and G(g, Λ) is a S
hauder basis then D(Λ) = D+(Λ) = D−(Λ) = 1.

Further, we have the following theorem.

Theorem 3. Let Λ ⊂ R
2
be a latti
e. Note that in this 
ase D(Λ) := D−(Λ) =

D+(Λ) = 1/det(Λ). We have,

1. If G(g, Λ) is minimal then it is uniformly minimal and D(Λ) ≤ 1.
2. If G(g, Λ) is 
omplete then D(Λ) ≥ 1.
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We note that part 2 of Theorem 3 was obtained in [19℄. We give a simple proof

of this part as well.

Finally, Theorem A is known to hold when the single generator g is repla
ed by

a �nite amount of generators, [2℄ (see also [6℄). We �nd that this is true for all the

results formulated above.

Remark 1. All the results in this paper hold also in higher dimensions, with

similar proofs (and an appropriate 
hoi
e of exponents in the de�nition of ρα(R)
in Theorem 1). We formulate and prove the results in dimension one for ease of

notation alone.

The paper is organized as follows. In Se
tion 2, we provide some ba
kground

regarding systems of ve
tors in separable Hilbert spa
es and the short time Fourier

transform. In Se
tion 3 we prove the key lemmas whi
h will be used throughout

the paper, as well as some auxiliary lemmas. In Se
tion 4 we prove a more general

version of Theorem A and obtain both it and Theorem 1 as 
orollaries. Theorem

2 is proved in Se
tion 5 and Theorem 3 in Se
tion 6. Finally, in Se
tion 7 we

dis
uss the 
ase of �nitely many generators.

2. Preliminaries

2.1. Notations. For (a, b) ∈ R2
, let Ta and Mb denote translation and modula-

tion operators on L2(R), that is

(Tag)(t) = g(t − a) and (Mbg)(t) = e2πibtg(t).

Given a fun
tion g ∈ L2(R), we denote gab := MbTag. So, for the Gabor system

generated by g ∈ L2(R) and the index set Λ ⊂ R2
we have

G(g, Λ) = {e2πiµtg(t − λ)}(λ,µ)∈Λ = {gλµ}(λ,µ)∈Λ.

For a fun
tion g ∈ L1(R) let Fg = ĝ denote the Fourier transform of g,

Fg(w) = ĝ(w) :=

∫

R

g(t)e−2πiwtdt,

with the usual extension of F to a unitary operator on L2(R).

As mentioned in the introdu
tion, Q(a,b)(R) denotes the 
ube in R
2
with 
enter

at (a, b) and side length 2R,

Q(a,b)(R) = {(x, y) ∈ R2 : |x − a|, |y − b| ≤ R},

its 
omplement R2 \ Q(a,b)(R) is denoted by Qc
(a,b)(R).

If S ⊂ R2
is a measurable set then |S| denotes the Lebesgue measure of S.

Given a dis
rete set Λ ⊂ R2
, we write |Λ| for the number of points in |Λ|. It will

be 
lear from the 
ontext whi
h option is being used.

Given a Hilbert spa
e H and a subset E ⊂ H , we let span(E) denote the span
of E, that is the subspa
e of all �nite linear 
ombinations of elements from E.
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2.2. Density. Let Λ ⊂ R2
. We say that Λ is uniformly dis
rete with separation


onstant δ > 0 if dist(x, y) > δ for all distin
t x, y ∈ Λ. If Λ is uniformly dis
rete

then the following limits exist [1℄,

D+(Λ) := lim
R→∞

max(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

;

and

D−(Λ) := lim
R→∞

min(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

.

D−(Λ) and D+(Λ) are 
alled the lower and upper (Beurling) densities of Λ, re-
spe
tively. If D−(Λ) = D+(Λ) we say that Λ has uniform density and denote it

by D(Λ). These de�nitions go ba
k to Beurling and Kahane. The 
hoi
e of the


ube in these de�nitions is arbitrary and is made for 
onvenien
e; the values of

these densities remain the same if the 
ube is repla
ed by any other 
onvex set in

R2
. For a pre
ise formulation and proof of this 
laim, see [13℄.

2.3. The short time Fourier transform. Let φ ∈ L2(R). The short-time

Fourier transform (STFT) with window fun
tion φ is the operator a
ting on L2(R)
by

Vφg(x, y) := 〈g, φxy〉 =

∫

R

g(t)φ(t − x)e−2πiytdt.

This transform is an important tool in the study of Gabor systems and time

frequen
y analysis. It is well known that if ‖φ‖L2(R) = 1 then Vφ is a unitary

operator from L2(R) into L2(R2). Moreover, we have

Lemma 1. Let φ, g ∈ L2(R). Then:

1. VφTλg(x, y) = e−2πiλyVφg(x − λ, y);
2. VφMµg(x, y) = Vφg(x, y − µ).

In parti
ular, the following equality holds,

|Vφgλµ(x, y)| = |Vφg(x − λ, y − µ)|. (4)

For more information on the STFT see e.g. [5℄.

The following lemma was pointed out in [19℄ and is essentially an immediate


onsequen
e of the fa
t that the image of the Bergman-Fo
k transform is a spa
e

of entire fun
tions.

Lemma 2. Let φ(t) = e−|t|2
. For every δ > 0 there exists C(δ) su
h that for every

(λ, µ), (x, y) ∈ R2
and for every G = Vφg, g ∈ L2(R), we have

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Q(λ,µ)(δ)

|G(x − s, y − t)|2dsdt.

As an immediate 
onsequen
e of Lemma 2 we obtain the following.
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Lemma 3. Let φ(t) = e−|t|2
and 0 < δ. There exists C(δ) depending only on δ

su
h that the following holds: For every Λ ⊂ R
2
with separation 
onstant δ, every

G = Vφg where g ∈ L2(R), and every 
ube Q(a,b)(R) we have

∑

Λ∩Q(a,b)(R)

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Q(a,b)(R+ 1
4
)

|G(x − s, y − t)|2dsdt, (5)

and

∑

Λ∩Qc
(a,b)

(R)

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Qc
(a,b)

(R− 1
4
)

|G(x − s, y − t)|2dsdt. (6)

for all (x, y) ∈ R2
.

The following lemma relates the time�frequen
y lo
alization of a fun
tion to the

de
ay of its Gabor transform. We use the notation

L2
α(Rd) =

{
F :

∫

Rd

(
d∑

l=1

|xl|α
)

|F (x)|2dx < ∞
}

to denote the weighted L2
spa
e.

Lemma 4. Let φ(t) = e−|t|2
. If g ∈ L2(R) satis�es g, ĝ ∈ L2

α(R), then the Gabor

transform of g satis�es

Vφg ∈ L2
α(R2)

Proof. By Parseval's equality

∫

R2

|x|α|Vφg(x, y)|2dxdy =

∫

R

|x|α
∫

R

|g(t)φ(t − x)|2dtdx

≤ C(α)

∫

R

(|t|α + |t − x|α)

∫

R

|g(t)φ(t − x)|2dtdx

= C(α)
(

‖g‖2
L2(R)‖φ‖2

L2
α(R) + ‖φ‖2

L2(R)‖g‖2
L2

α(R)

)
< ∞.

Next, we note that

∫

R

g(t)φ(t − x)e−2πiytdt = e−2πiyx

∫

R

ĝ(w)φ(w + y)e−2πixwdw

so we 
an use the same 
omputation again to 
omplete the proof. �

For additional results of this type see [5℄

2.4. Systems of ve
tors in a Hilbert spa
e.
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2.4.1. De�nitions. Let H be a separable Hilbert spa
e. Throughout this paper we

will be interested in several di�erent types of systems in H .

De�nition 1. A system of ve
tors {fn} ⊂ H is a Riesz basis (RB) in H if there

exists an orthonormal sequen
e {en} ⊂ H and a bounded invertible operator

T : H → H su
h that fn = Ten for all n.

The following two de�nitions formalize the ideas of `over�
omplete basis' and

`under�
omplete basis' respe
tively.

De�nition 2. A system of ve
tors {fn} ⊂ H is a frame if

A‖f‖2 ≤
∑

|〈f, fn〉|2 ≤ B‖f‖2 ∀f ∈ H, (7)

where A and B are positive 
onstants. (The best possible 
onstants A and B
for whi
h this inequality holds are 
alled the lower and upper frame bounds). A

system whi
h satis�es the right side inequality in (7) is 
alled a Bessel sequen
e.

De�nition 3. A system of ve
tors {fn} ⊂ H is a Riesz sequen
e (RS) if it is a

Riesz basis in the 
losure of its linear span. This is equivalent to the statement

that,

A
∑

|an|2 ≤
∥∥∥
∑

anfn

∥∥∥
2

≤ B
∑

|an|2, ∀{an} ∈ l2, (8)

where A and B are positive 
onstants. (The best possible 
onstants A and B for

whi
h this inequality holds are 
alled the lower and upper RS bounds).

We will use the following lemma, whi
h follows from a simple duality argument.

Lemma 5. A Riesz basis is both a frame and a RS. In this 
ase, the lower and

upper RS bounds are equal to the lower and upper frame bounds.

The left inequality in the frame 
ondition implies that every frame is 
om-

plete. The opposite impli
ation does not hold, in fa
t the frame 
ondition is mu
h

stronger then mere 
ompleteness. Similarly, the left inequality in the RS 
ondition

implies that every RS is minimal, i.e., every ve
tor in the system lies outside the


losed linear span of the rest of the ve
tors. The following de�nition provides for

a somewhat stronger version of minimality.

De�nition 4. A system of ve
tors {fn} ⊂ H is uniformly minimal if there exists

some δ > 0 su
h that dist(fn, span{fk}k 6=n) > δ for all n.

Every RS is, in parti
ular, uniformly minimal. The opposite impli
ation does

not hold, i.e., uniform minimality is a mu
h more relaxed notion than the RS


ondition.

2.4.2. Dual systems and expansions. It is well known that a system {fn} ⊂ H is

minimal if and only if there exists a system {gn} ⊂ H su
h that the two systems

are biorthogonal, i.e. 〈fn, gm〉 = δnm where δnm is the Krone
ker delta. The system

{gn} is sometimes referred to as a dual system to {fn}. A dual system is unique

if and only if the system {fn} is 
omplete. We will use the following.
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Lemma 6. A system {fn} ⊂ H is uniformly minimal if and only if there exists a

bounded system {gn} ⊂ H su
h that the two are biorthogonal.

If {fn} is a RB then the system {gn} above is also a RB whi
h is 
alled the dual

Riesz basis of {fn}. In this 
ase, every f ∈ H 
an be de
omposed into a series

f =
∑

〈f, gn〉fn =
∑

〈f, fn〉gn.

In general, frames do not admit a dual whi
h provides bi-orthogonality. Instead,

we use the notion of a dual frame. If {fn} is a frame in H , then there exists a

frame {gn} ⊂ H su
h that every f ∈ H 
an be de
omposed into a series

f =
∑

〈f, gn〉fn =
∑

〈f, fn〉gn.

The system {gn} is 
alled a dual frame of {fn}.
For more information about systems of ve
tors in separable Hilbert spa
es see

e.g. [20℄ or [10℄.

3. The main observations and some auxiliary lemmas

Throughout the rest of the paper we �x φ = Ce−|t|2
where the 
onstant C is


hosen to satisfy ‖φ‖L2(R) = 1. This implies that the STFT with window fun
tion

φ is unitary and that Lemmas 3 and 4 hold.

3.1. The main observations. The following two lemmas are the key ingredients

of the approa
h presented in this paper.

Lemma 7. Let W ⊂ L2(R) be a �nite dimensional subspa
e and let PW be the

orthogonal proje
tion of L2(R) on W . Then

∫

R2

‖PWφxy‖2dxdy = dim W.

Proof. Let M = dim W and let h1, ..., hM be an orthonormal basis for W . Then,

sin
e we �xed φ above so that ‖φ‖L2(R) = 1 and therefore the STFT is unitary,

∫

R2

‖PWφxy‖2dxdy =

∫

R2

∑

m

|〈hm, φxy〉|2dxdy

=
∑

m

∫

R2

|Vφhm(x, y)|2dxdy =
∑

m

‖hm‖2 = dim W.

�

Lemma 8. Let {gn} and {hn} be dual Riesz bases of some 
losed subspa
e W ⊂
L2(R). Denote Gn(x, y) = Vφgn(x, y) and Hn(x, y) = Vφhn(x, y). Then, ‖PWφxy‖2 =∑

n Gn(x, y)Hn(x, y), and therefore

0 ≤
∑

n

Gn(x, y)Hn(x, y) ≤ 1; ∀(x, y) ∈ R
2.
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Proof. Let PW be the orthogonal proje
tion onto W . We have,

∑

n

Gn(x, y)Hn(x, y) =
∑

n

〈gn, φxy〉L2(R)〈φxy, hn〉L2(R)

= 〈
(∑

n

〈φxy, hn〉gn

)
, φxy〉 = 〈PWφxy, φxy〉 = ‖PWφxy‖2.

�

3.2. Auxiliary lemmas. For G ∈ L2(R2) and R > 1 denote

IG(R) :=

∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|G(t − x, s − y)|2dtdsdxdy

Lemma 9. Let G ∈ L2(R2). then

1

R2
IG(R) → 0 as R → ∞.

Proof. Let A := Q0(R−
√

R) and Ac := Q0(R)\A. We note that

∫
Q0(R)

=
∫

A
+
∫

Ac

and write IG(R) = IA + IAc
a

ordingly. We have,

IAc

R2
≤ |Ac|‖G‖2

R2
≤ C

R1.5

R2
−→ 0,

and

IA

R2
≤ 1

R2

∫

Q0(R−
√

R)

∫

Qc
0(

√
R)

|G(t, s)|2dtdsdxdy

≤
∫

Qc
0(

√
R)

|G(t, s)|2dsdt −→ 0,

sin
e G ∈ L2(R2). �

Re
all the notation,

L2
α(Rd) =

{
F :

∫

Rd

(
d∑

l=1

|xl|α
)

|F (x)|2dx < ∞
}

.

Lemma 10. If G ∈ L2
α(R) then

IG(R) ≤






C(α)‖G‖2
L2

α(R2)R
2−α 0 < α < 2

C(α)‖G‖2
L2

α(R2) log R α = 2

C(α)‖G‖2
L2

α(R2) α > 2

where C(α) is a positive 
onstant depending only on α.

Proof. We have

∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|G(t − x, s − y)|2dsdtdxdy
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≤
∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|t − x|α + |s − y|α
(R + 1

4
− |x|)α + (R + 1

4
− |y|)α

|G(t − x, s − y)|2dsdtdxdy

≤ ‖G‖2
L2

α(R2)

∫

Q0(R)

1

(R + 1
4

− |x|)α + (R + 1
4

− |y|)α
dxdy

≤ C(α)‖G‖2
L2

α(R2)

∫ R

0

∫ R

0

1

(2R + 1
2

− x − y)α
dxdy.

The result follows. �

4. Proofs for Theorem A and Theorem 1

In this se
tion we use Lemma 7 to prove the following stronger version of The-

orem A. Theorem A itself, as well as Theorem 1 follow from this theorem as


orollaries.

Theorem 4. Let g ∈ L2(R) and let Λ ⊂ R2
be a uniformly dis
rete sequen
e, with

separation 
onstant δ. Denote G := Vφg. Then,

1. If G(g, Λ) is a Riesz sequen
e then

sup
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2 + CIG

(
R +

1

4

)
.

2. If G(g, Λ) is a frame then

inf
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≥ (2R − 1)2 − CIG

(
R − 1

2

)
.

Where C denotes a positive 
onstant whi
h may depend on δ and the Riesz

sequen
e or frame bounds.

Remark 1. Clearly, Theorem A follows from Theorem 4 and Lemma 9 while

Theorem 1 follows from Theorem 4 
ombined with Lemmas 4 and 10.

Remark 2. Keeping in mind the dis
ussion after the formulation of Theorem

1, we see that IG(R) determines how mu
h the distribution of Λ 
an deviate from

the distribution of the integer latti
e. IG(R) takes here the role that log R played

in Landaus result for a �nite union of intervals in [13℄; the role of the se
ond term

of 
onvergen
e when R tends to in�nity.

We now turn to the proof of Theorem 4.

4.1. Proof of Theorem 4 part 1, Riesz sequen
es. Assume that G(g, Λ) is a
Riesz sequen
e and denote its lower Riesz sequen
e bound by A.

Fix (a, b) ∈ R2
and R > 0. Denote

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P = PW be the orthogonal proje
tion of L2(R) onto W .
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Step I. Clearly, the (�nite) system {gλ,µ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)} is a Riesz

basis for W with lower Riesz basis bound A. In parti
ular, this implies that

dim W = |Λ ∩ Q(a,b)(R)| (9)

Moreover, it follows from Lemma 5 that {gλ,µ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)} is a frame

in W with lower frame bound A. So, for every (x, y) ∈ R2
,

‖Pφxy‖2 ≤ 1

A

∑

Λ∩Q(a,b)(R)

|〈Pφxy, gλµ〉|2 =
1

A

∑

Λ∩Q(a,b)(R)

|〈φxy, gλµ〉|2

=
1

A

∑

Λ∩Q(a,b)(R)

|G(x − λ, y − µ)|2,

where the last equality follows from (4). Sin
e Λ is uniformly dis
rete, say with

separation 
onstant δ > 0, we may apply (5). We �nd that

‖Pφxy‖2 ≤ C(δ)

A

∫

Q(a,b)(R+ 1
4
)

|G(x − s, y − t)|2dsdt. (10)

Step II. For every (x, y) ∈ R2
we have

‖Pφxy‖2 ≤ 1.

Integrating over Q(a,b)(R + 1
2
) we obtain,

∫

Q(a,b)(R+ 1
2
)

‖Pφxy‖2dxdy ≤ (2R + 1)2

So, ∫

R2

‖Pφxy‖2dxdy ≤ (2R + 1)2 +

∫

Qc
(a,b)

(R+ 1
2
)

‖Pφxy‖2dxdy.

By Lemma 7 the left hand side is equal to dim W whi
h, by (9), is equal to

|Λ ∩ Q(a,b)(R)|. Substituting (10) in the right hand side, we get

|Λ∩Q(a,b)(R)| ≤ (2R+1)2+
C(δ)

A

∫

Qc
(a,b)

(R+ 1
2
)

∫

Q(a,b)(R+ 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

The result for Riesz sequen
es now follows from a simple 
hange of variables in

the integral.

4.2. Proof of Theorem 4 part 2, frames. Assume that G(g, Λ) is a frame,

denote its dual frame by {g̃λµ}.
Fix (a, b) ∈ R2

and R > 0. Denote

W = span{g̃λµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P and P+
be the orthogonal proje
tions of L2(R) on W and its orthogonal


omplement respe
tively.

Clearly,

dim W ≤ |Λ ∩ Q(a,b)(R)| (11)
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Step I. This step follows an idea from [6℄. Sin
e {g̃λµ} is a frame, say with

upper bound B, we have for every (x, y) ∈ R2
,

‖P+φxy‖2 ≤‖φxy −
∑

Λ∩Q(a,b)(R)

〈φxy, gλµ〉g̃λµ‖2 = ‖
∑

Λ∩Qc
(a,b)

(R)

〈φxy, gλµ〉g̃λµ‖2

≤B
∑

Λ∩Qc
(a,b)

(R)

|〈φxy, gλµ〉|2 = B
∑

Λ∩Qc
(a,b)

(R)

|G(x − λ, y − µ)|2.

Sin
e Λ is uniformly dis
rete, say with separation 
onstant δ, we may apply (6).

We �nd that

‖P+φxy‖2 ≤ BC(δ)

∫

Qc
(a,b)

(R− 1
4
)

|G(x − t, y − s)|2dtds. (12)

Step II. For every (x, y) ∈ R2
we have 1 = ‖Pφxy‖2 + ‖P+φxy‖2

. Integrating

over Q(a,b)(R − 1
2
) we obtain,

(2R − 1)2 =

∫

Q(a,b)(R− 1
2
)

‖Pφxy‖2dxdy +

∫

Q(a,b)(R− 1
2
)

‖P+φxy‖2dxdy.

We �rst note that, by lemma 7 and (11)

∫

Q(a,b)(R− 1
2
)

‖Pφxy‖2dxdy ≤ dimW ≤ |Λ ∩ Q(a,b)(R)|.

Next, (12) implies that

∫

Q(a,b)(R− 1
2
)

‖P+φxy‖2dxdy ≤ BC(δ)

∫

Q(a,b)(R− 1
2
)

∫

Qc
(a,b)

(R− 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

Combining these estimates we obtain,

|Λ∩Q(a,b)(R)| ≥ (2R−1)2−BC(δ)

∫

Q(a,b)(R− 1
2
)

∫

Qc
(a,b)

(R− 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

The result for frames now follows from a simple 
hange of variables in the integral.

�

5. Uniform minimality, a proof for Theorem 2

In this se
tion we use Lemma 8 to prove Theorem 2. This proof follows the


orresponding proof from [17℄ and presents a di�erent aspe
t of the approa
h in

this paper.

Fix ǫ > 0 and 
hoose b > 0 su
h that∫

Qc
0(b)

|Vφg(x, y)|2dxdy < ǫ2. (13)
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Sin
e G(g, Λ) is uniformly minimal, by Lemma 6 there exists a bounded system

{hλµ} su
h that the two systems are biorthogonal. Denote the bound of this

system by B. (Note that in general {hλµ} is not a Gabor system but rather is just

a sequen
e of fun
tions indexed by Λ).

For (a, b) ∈ R
2
and R > 0, 
onsider the spa
e

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)}
and denote by P = PW the orthogonal proje
tion from L2(R) onto this spa
e.

The (�nite) systems {gλµ}Λ∩Q(a,b)(R) and {Phλµ}Λ∩Q(a,b)(R) are biorthogonal Riesz

bases in W . Denote Gλµ = Vφgλµ and Hλµ = Vφ(Phλµ). By Lemma 8 we have,

0 ≤
∑

Λ∩Q(a,b)(R)

Gλµ(x, y)Hλµ(x, y) ≤ 1, ∀(x, y) ∈ R
2.

Integrating over Q(a,b)(R + b), we obtain

∑

Λ∩Q(a,b)(R)

∫

Q(a,b)(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy ≤ (2(R + b))2. (14)

Sin
e the STFT is unitary and the systems are biorthogonal,

∫

R2

Gλµ(x, y)Hλµ(x, y)dxdy = 〈gλµ, Phλµ〉L2(R) = 〈gλµ, h
λµ〉L2(R) = 1. (15)

Substituting in (14) and using the triangle inequality we have

|Λ ∩ Q(a,b)(R)| −
∑

Λ∩Q(a,b)(R)

∣∣
∫

Qc
(a,b)

(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy
∣∣

≤ (2(R + b))2. (16)

Sin
e the dual system is bounded by B,

‖Hλµ‖2
L2(R2) = ‖Phλµ‖2

L2(R) ≤ B2.

So, Cau
hy inequality and Lemma 1 imply that ea
h summand on the left hand

side satis�es,

∣∣
∫

Qc
(a,b)

(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy
∣∣2 ≤ B2

∫

Qc
(a,b)

(R+b)

|G(x − λ, y − µ)|2dxdy

≤ B2

∫

Qc
0(b)

|G(x, y)|2dxdy,

where the last inequality follows from the fa
t that (λ, µ) ∈ Λ ∩ Q(a,b)(R). Now,

(13) implies that the last expression is less then B2ǫ2
. Substituting in (16), we get

(1 − Bǫ)|Λ ∩ Q(a,b)(R)| ≤ (2(R + b))2.

Dividing both sides by (2R)2
and letting �rst R tend to in�nity and then ǫ tend

to zero, we obtain the required result.
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Finally, in the following proposition we use a result from [18℄ to show that in

general, the 'uniformity' 
ondition is ne
essary for Theorem 2 to hold.

Proposition. Fix d > 0. There exist g ∈ L2(R) and Λ ⊂ R2
with D+(Λ) > d

su
h that G(g, Λ) is minimal.

Proof. Let a > 0 be arbitrarily small. It is shown in [18℄ that there exists Λ ⊂ R

su
h that {e2πiλt}λ∈Λ is minimal in L2(−a, a) and D+(Λ) > 1 (where D+(Λ) is the
upper density of Λ as a subset of the line). Let K = (2aZ) × Λ and g = 11[−a,a] be

the indi
ator of the interval [−a, a]. It follows that G(g, K) is minimal in L2(R)
and that D+(K) ≥ 1/(2a), whi
h 
an be made arbitrarily large by 
hoosing a
small enough. �

6. Latti
e index set, a proof for Theorem 3

In this se
tion we prove Theorem 3. To this end, re
all the notations Ma and Tb

de�ned in Subse
tion 2.1. Note that, given a, b ∈ R, there exists ξ = ξ(a, b) ∈ C,

with |ξ| = 1, su
h that

MaTbg = ξTbMag ∀g ∈ L2(R).

6.1. A proof for Theorem 3 part 1. Let v = (v1, v2), w = (w1, w2) ∈ R2
be

su
h that Λ = {nv + kw : (n, k) ∈ Z2} Denote the elements of G(g, Λ) by

gnk := Mnv2+kw2Tnv1+kw1g, (n, k) ∈ Z
2.

Sin
e the system G(g, Λ) is minimal it has a dual system; in parti
ular, there exists

a fun
tion h ∈ L2(R) su
h that 〈g, h〉 = 1 and 〈gnk, h〉 = 0 for all (n, k) 6= (0, 0)
in Z2

.

De�ne

hnk := Mnv2+kw2Tnv1+kw1h, (n, k) ∈ Z
2.

Note that 〈gnk, hnk〉 = 〈g, h〉 = 1, while for (m, l) 6= (n, k) there exists ξ :=
ξ(m, l, n, k) su
h that

〈gml, hnk〉 = ξ〈M(m−n)v2+(l−k)w2T(m−n)v1+(l−k)w1g, h〉 = 0.

It follows that {gnk} and {hnk} are biorthogonal sequen
es. Sin
e for all (n, k) ∈ Z2

we have ‖hnk‖ = ‖h‖, the system {hnk} is bounded, whi
h by Lemma 6 implies

that G(g, Λ) is uniformly minimal. Theorem 2 implies now that D+(Λ) ≤ 1.

6.2. A proof for Theorem 3 part 2. Let v, w ∈ R2
be su
h that Λ = {nv+kw :

(n, k) ∈ Z2} and denote A = {ξv + ηw : (ξ, η) ∈ [0, 1]2}.

Step I. Using the terminology of [19℄, in this step we prove that G(g, Λ) has

the homogeneous approximation property, in mu
h the same way as is done in [19℄.
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Fix ǫ > 0. Sin
e G(g, Λ) is 
omplete and A is 
ompa
t, there exists d′ > 0
su
h that for all (x, y) ∈ A the fun
tion φxy 
an be approximated within

√
ǫ by a

fun
tion from

span{gλµ : (λ, µ) ∈ Λ ∩ Q0(d
′)}.

Sin
e Λ is a latti
e, it follows that there exists d > 0 su
h that for all (x, y) ∈ R2

the fun
tion φxy 
an be approximated up to

√
ǫ by a fun
tion from

span{gλµ : (λ, µ) ∈ Λ ∩ Q(x,y)(d)}.

Step II. In the terminology of [19℄, in this step we prove that if G(g, Λ) has

the homogeneous approximation property then D−(Λ) ≥ 1.

Let d be the number 
hosen in Step I and �x (a, b) ∈ R2
and R > d. Denote

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P be the orthogonal proje
tions of L2(R) onto W. Clearly,

dim W ≤ |Λ ∩ Q(a,b)(R)|. (17)

It follows from our 
hoi
e of d that for all (x, y) ∈ Q(a,b)(R − d) we have

‖Pφxy‖2 ≥ 1 − ǫ. (18)

Integrating over Q(a,b)(R − d), we obtain

(1 − ǫ)(2R − 2d)2 ≤
∫

Q(a,b)(R−d)

‖Pφxy‖2dxdy.

By Lemma 7 and (17)

∫

Q(a,b)(R−d)

‖Pφxy‖2dxdy ≤ dim W ≤ |Λ ∩ Q(a,b)(R)|.

Combining these we obtain

(1 − ǫ)(2R − 2d)2 ≤ |Λ ∩ Q(a,b)(R)|.

Dividing by (2R)2
and letting �rst R tend to in�nity and then ǫ tend to zero, the

result follows.

7. Finite sets of generators

In this se
tion we formulate a version of our results in the 
ase that the system


onsidered is generated by a �nite number of generators. To avoid repetition we

omit the proofs of these theorems as they are mu
h the same as in the 
ase of a

single generator.
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7.1. De�nitions. We will use the following de�nitions. Let {Λn}N
n=1 be a �nite

family of sequen
es Λn ⊂ R2
. We say that {Λn} is a uniformly dis
rete family if

ea
h Λn is uniformly dis
rete.

For a uniformly dis
rete family {Λn} the following limits exist,

D+({Λn}) := lim
R→∞

max(a,b)∈R2

∑N
n=1 |Λn ∩ Q(a,b)(R)|
(2R)2

;

and

D−({Λn}) := lim
R→∞

min(a,b)∈R2

∑N
n=1 |Λn ∩ Q(a,b)(R)|
(2R)2

.

We 
all D−({Λn}) and D+({Λn}) the lower and upper densities of the family

{Λn} respe
tively.

7.2. Results. We have the following extension of Theorem 4.

Theorem 4'. Let g1, ..., gN be distin
t fun
tions in L2(R) and let {Λn}N
n=1 be a

uniformly dis
rete family of real sequen
es. Denote Gn := Vφgn, 1 ≤ n ≤ N .

There exists C > 0 su
h that,

1. If

⋃N

n=1 G(gn, Λn) is a Riesz sequen
e then

sup
(a,b)∈R2

N∑

n=1

|Λn ∩ Q(a,b)(R)| ≤ (2R + 1)2 + C

N∑

n=1

IGn
(R +

1

4
).

2. If

⋃N

n=1 G(gn, Λn) is a frame then

inf
(a,b)∈R2

N∑

n=1

|Λn ∩ Q(a,b)(R)| ≥ (2R − 1)2 − C

N∑

n=1

IGn
(R − 1

2
).

A similar extensions of Theorems A follows.

Theorem A'. Let g1, ..., gN be distin
t fun
tions in L2(R) and let {Λn}N
n=1 be a

uniformly dis
rete family of real sequen
es.

1. If

⋃N

n=1 G(gn, Λn) is a Riesz sequen
e then D+({Λn}) ≤ 1,

2. If

⋃N

n=1 G(gn, Λn) is a frame then D−({Λn}) ≥ 1.

Remark 2. Suppose that in part 1 of Theorem A' we had 
onsidered the

quantity

∑N

n=1 D+(Λn) instead of the upper density D+({Λn}). Sin
e the subset

of a RS is itself a RS, Theorem A easily implies that

D+({Λn}) ≤
N∑

n=1

D+(Λn) ≤ N.

However, the estimate on the right hand side is the best that 
an be made. As an

example of this fa
t 
onsider the sets

Λ∗
n :=

{
(x, y) ∈ Z

2 : Arg(x, y) ∈
(

2π(n − 1)

N
,
2πn

N

]}
. n = 1, ..., N
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Then the distin
t fun
tions gn := e2πint11[0,1] and the family Λn := Λ∗
n − (0, n).

In addition, we have the following extensions of Theorems 2 and 3.

Theorem 2'. If

⋃N

n=1 G(gn, Λn) is uniformly minimal then D+({Λn}) ≤ 1. In

general, the 
on
lusion does not hold if the system merely is minimal.

Theorem 3'. Let g1, ..., gN ∈ L2(R), Λ ⊂ R2
be a latti
e and x1, ..., xN be distin
t

points in R2
. Denote Λn := xn + Λ. Then,

1. If

⋃N

n=1 G(gn, Λn) is minimal then it is uniformly minimal and D(Λ) ≤ 1/N .

2. If

⋃N

n=1 G(gn, Λn) is 
omplete then D(Λ) ≥ 1/N .
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