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DENSITY OF GABOR SYSTEMS VIA THE SHORT TIME

FOURIER TRANSFORM

ANDREW AHN, WILLIAM CLARK, SHAHAF NITZAN, AND JOSEPH SULLIVAN

ABSTRACT. We apply a new approach to the study of the density of Gabor
systems, and obtain a simple and straightforward proof to Ramanathan and
Steger’s well–known result regarding the density of Gabor frames and Gabor
Riesz sequences. Moreover, this point of view allows us to extend this result
in several directions. The approach we use was first observed by A. Olevskii
and the third author in their study of exponential systems, here we develop and
simplify it further.

1. introdution

For g ∈ L2(R) and Λ ⊂ R
2
, the Gabor system generated by g and Λ is denoted

by

G(g, Λ) := {e2πiµtg(t − λ)}(λ,µ)∈Λ. (1)

Suh systems play a prominent role in time-frequeny analysis and its appliations.

For example, they appear in the study of pseudo-di�erential operators and phase

spae onentration and are used in speeh proessing, the analysis of musial

signals, wireless transmission and quantum mehanis. The study of these systems

fouses on the interplay between the properties of G(g, Λ), the distribution of Λ,
and the time-frequeny loalization of g.

In this paper we fous on questions of the following form: whih onditions

on the distribution of Λ are neessary for the system G(g, Λ) to have ertain

properties? In partiular, we are interested in the onditions on Λ implied by the

system G(g, Λ) being a Riesz basis, a frame (roughly speaking, an `over�omplete'

basis), a Riesz sequene (an `under�omplete' basis) and a uniformly minimal

system (a very relaxed version of a Riesz sequene).

Suh questions were �rst onsidered in this setting by Ramanathan and Steger

who, in partiular, obtained the following well known result [19℄, (for the de�nition

of a uniformly disrete sequene see subsetion 2.2).

Theorem A. [Ramanathan and Steger] Let g ∈ L2(R) and let Λ ⊂ R2
be a

uniformly disrete sequene.
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1. If G(g, Λ) is a Riesz sequene then

D+(Λ) := lim
R→∞

max(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

≤ 1, (2)

2. If G(g, Λ) is a frame then

D−(Λ) := lim
R→∞

min(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

≥ 1, (3)

where Q(a,b)(R) denotes the ube with enter at (a, b) and side length 2R.

To obtain this result, Ramanathan and Steger applied a tehnique whih in-

volved trae estimates of ompositions of ertain projetion operators. The den-

sity of Gabor systems has sine beome a signi�ant area of researh, see [9℄ and

referenes therein for an extensive review of the area.

Prior to this Landau studied a similar question regarding sampling and inter-

polating sequenes for funtions with a given bounded spetrum [13℄. Landau's

tehnique required a muh more deliate estimate of the eigenvalues of ompo-

sitions of projetion operators. This tehnique, however, ould be applied in a

more general setting. Landau's tehnique, as well as Ramanathan and Steger's,

has been applied in di�erent settings, e.g in the study of sampling and interpolat-

ing sequenes in analyti funtion spaes and in that of Fekete points on omplex

manifolds, ([16℄, [15℄, among many others).

Reently, A. Olevskii and the third author developed a new approah to Lan-

dau's theorems [17℄. This approah provided a signi�antly simpler proof of

Landau's results as well as several extensions of them. In partiular, this teh-

nique does not require any study of operators or estimates of eigenvalues (see

also [12℄,[11℄). The tehnique developed in [17℄ an be applied to various other

settings, see e.g. [14℄, [7℄, [8℄, and [4℄ where theorem A is proved in the general

setting of reproduing kernel Hilbert spaes. In partiular, this tehnique re�nes

and extends results previously obtained by Landau's or Ramanathan and Steger's

approah.

One of the main goals in this paper is to develop and simplify further the

approah introdued in [17℄ (see e.g., Lemma 7 and its appliations in this paper).

We apply this approah to the study of Gabor systems, with the short time Fourier

transform taking the role that the Fourier transform played in [17℄. With this we

obtain a simple proof of Theorem A. Moreover, this tehnique allows us to extend

Theorem A in several new diretions.

First, we �nd a more preise estimate of the distribution of Λ in ases where the

generator g satis�es some additional onditions. For example, if g has some time

frequeny�onentration we obtain the following theorem as a partiular ase of a

more general result.
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Theorem 1. Fix α > 0. Let Λ ⊂ R2
be a uniformly disrete sequene, with

separation onstant δ > 0, and let g ∈ L2(R) be suh that

∫

R

|t|α|g(t)|2dt < ∞ and

∫

R

|w|α|ĝ(w)|2dw < ∞,

where ĝ denotes the Fourier transform of g.

1. If G(g, Λ) is a Riesz sequene then

sup
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2 + Cρα(R).

2. If G(g, Λ) is a frame then

inf
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≥ (2R − 1)2 − Cρα(R).

Where ρα(R) is de�ned by

ρα(R) =






R2−α 0 < α < 2
log R α = 2
1 α > 2

and C denotes a positive onstant whih may depend on g, α, δ and the Riesz

sequene or frame bounds.

The quantity ρα(R) in Theorem 1 determines how muh an the distribution

of Λ deviate from the distribution of the integer lattie. To see this, note that if

Λ = Z2
then

(2R − 1)2 < |Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2,

where the inequality on the left hand side is obtained when R is an integer and the

bound on the right hand side is approximated when R is smaller then an integer,

but arbitrarily lose to it.

Next, we show that the Riesz sequene ondition in Theorem A1 may be relaxed,

so that the theorem holds for a larger lass of 'under-omplete' systems. (For the

preise de�nition of uniformly minimal sequenes see subsetion 2.4).

Theorem 2. If G(g, Λ) is a uniformly minimal sequene then (2) holds. In gen-

eral, the onlusion does not hold if the system merely is minimal.

In partiular, when ombined with the results from [3℄, this implies that if g ∈
L1(R)∩L2(R) and G(g, Λ) is a Shauder basis then D(Λ) = D+(Λ) = D−(Λ) = 1.

Further, we have the following theorem.

Theorem 3. Let Λ ⊂ R
2
be a lattie. Note that in this ase D(Λ) := D−(Λ) =

D+(Λ) = 1/det(Λ). We have,

1. If G(g, Λ) is minimal then it is uniformly minimal and D(Λ) ≤ 1.
2. If G(g, Λ) is omplete then D(Λ) ≥ 1.
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We note that part 2 of Theorem 3 was obtained in [19℄. We give a simple proof

of this part as well.

Finally, Theorem A is known to hold when the single generator g is replaed by

a �nite amount of generators, [2℄ (see also [6℄). We �nd that this is true for all the

results formulated above.

Remark 1. All the results in this paper hold also in higher dimensions, with

similar proofs (and an appropriate hoie of exponents in the de�nition of ρα(R)
in Theorem 1). We formulate and prove the results in dimension one for ease of

notation alone.

The paper is organized as follows. In Setion 2, we provide some bakground

regarding systems of vetors in separable Hilbert spaes and the short time Fourier

transform. In Setion 3 we prove the key lemmas whih will be used throughout

the paper, as well as some auxiliary lemmas. In Setion 4 we prove a more general

version of Theorem A and obtain both it and Theorem 1 as orollaries. Theorem

2 is proved in Setion 5 and Theorem 3 in Setion 6. Finally, in Setion 7 we

disuss the ase of �nitely many generators.

2. Preliminaries

2.1. Notations. For (a, b) ∈ R2
, let Ta and Mb denote translation and modula-

tion operators on L2(R), that is

(Tag)(t) = g(t − a) and (Mbg)(t) = e2πibtg(t).

Given a funtion g ∈ L2(R), we denote gab := MbTag. So, for the Gabor system

generated by g ∈ L2(R) and the index set Λ ⊂ R2
we have

G(g, Λ) = {e2πiµtg(t − λ)}(λ,µ)∈Λ = {gλµ}(λ,µ)∈Λ.

For a funtion g ∈ L1(R) let Fg = ĝ denote the Fourier transform of g,

Fg(w) = ĝ(w) :=

∫

R

g(t)e−2πiwtdt,

with the usual extension of F to a unitary operator on L2(R).

As mentioned in the introdution, Q(a,b)(R) denotes the ube in R
2
with enter

at (a, b) and side length 2R,

Q(a,b)(R) = {(x, y) ∈ R2 : |x − a|, |y − b| ≤ R},

its omplement R2 \ Q(a,b)(R) is denoted by Qc
(a,b)(R).

If S ⊂ R2
is a measurable set then |S| denotes the Lebesgue measure of S.

Given a disrete set Λ ⊂ R2
, we write |Λ| for the number of points in |Λ|. It will

be lear from the ontext whih option is being used.

Given a Hilbert spae H and a subset E ⊂ H , we let span(E) denote the span
of E, that is the subspae of all �nite linear ombinations of elements from E.
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2.2. Density. Let Λ ⊂ R2
. We say that Λ is uniformly disrete with separation

onstant δ > 0 if dist(x, y) > δ for all distint x, y ∈ Λ. If Λ is uniformly disrete

then the following limits exist [1℄,

D+(Λ) := lim
R→∞

max(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

;

and

D−(Λ) := lim
R→∞

min(a,b)∈R2 |Λ ∩ Q(a,b)(R)|
(2R)2

.

D−(Λ) and D+(Λ) are alled the lower and upper (Beurling) densities of Λ, re-
spetively. If D−(Λ) = D+(Λ) we say that Λ has uniform density and denote it

by D(Λ). These de�nitions go bak to Beurling and Kahane. The hoie of the

ube in these de�nitions is arbitrary and is made for onveniene; the values of

these densities remain the same if the ube is replaed by any other onvex set in

R2
. For a preise formulation and proof of this laim, see [13℄.

2.3. The short time Fourier transform. Let φ ∈ L2(R). The short-time

Fourier transform (STFT) with window funtion φ is the operator ating on L2(R)
by

Vφg(x, y) := 〈g, φxy〉 =

∫

R

g(t)φ(t − x)e−2πiytdt.

This transform is an important tool in the study of Gabor systems and time

frequeny analysis. It is well known that if ‖φ‖L2(R) = 1 then Vφ is a unitary

operator from L2(R) into L2(R2). Moreover, we have

Lemma 1. Let φ, g ∈ L2(R). Then:

1. VφTλg(x, y) = e−2πiλyVφg(x − λ, y);
2. VφMµg(x, y) = Vφg(x, y − µ).

In partiular, the following equality holds,

|Vφgλµ(x, y)| = |Vφg(x − λ, y − µ)|. (4)

For more information on the STFT see e.g. [5℄.

The following lemma was pointed out in [19℄ and is essentially an immediate

onsequene of the fat that the image of the Bergman-Fok transform is a spae

of entire funtions.

Lemma 2. Let φ(t) = e−|t|2
. For every δ > 0 there exists C(δ) suh that for every

(λ, µ), (x, y) ∈ R2
and for every G = Vφg, g ∈ L2(R), we have

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Q(λ,µ)(δ)

|G(x − s, y − t)|2dsdt.

As an immediate onsequene of Lemma 2 we obtain the following.
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Lemma 3. Let φ(t) = e−|t|2
and 0 < δ. There exists C(δ) depending only on δ

suh that the following holds: For every Λ ⊂ R
2
with separation onstant δ, every

G = Vφg where g ∈ L2(R), and every ube Q(a,b)(R) we have

∑

Λ∩Q(a,b)(R)

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Q(a,b)(R+ 1
4
)

|G(x − s, y − t)|2dsdt, (5)

and

∑

Λ∩Qc
(a,b)

(R)

|G(x − λ, y − µ)|2 ≤ C(δ)

∫

Qc
(a,b)

(R− 1
4
)

|G(x − s, y − t)|2dsdt. (6)

for all (x, y) ∈ R2
.

The following lemma relates the time�frequeny loalization of a funtion to the

deay of its Gabor transform. We use the notation

L2
α(Rd) =

{
F :

∫

Rd

(
d∑

l=1

|xl|α
)

|F (x)|2dx < ∞
}

to denote the weighted L2
spae.

Lemma 4. Let φ(t) = e−|t|2
. If g ∈ L2(R) satis�es g, ĝ ∈ L2

α(R), then the Gabor

transform of g satis�es

Vφg ∈ L2
α(R2)

Proof. By Parseval's equality

∫

R2

|x|α|Vφg(x, y)|2dxdy =

∫

R

|x|α
∫

R

|g(t)φ(t − x)|2dtdx

≤ C(α)

∫

R

(|t|α + |t − x|α)

∫

R

|g(t)φ(t − x)|2dtdx

= C(α)
(

‖g‖2
L2(R)‖φ‖2

L2
α(R) + ‖φ‖2

L2(R)‖g‖2
L2

α(R)

)
< ∞.

Next, we note that

∫

R

g(t)φ(t − x)e−2πiytdt = e−2πiyx

∫

R

ĝ(w)φ(w + y)e−2πixwdw

so we an use the same omputation again to omplete the proof. �

For additional results of this type see [5℄

2.4. Systems of vetors in a Hilbert spae.
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2.4.1. De�nitions. Let H be a separable Hilbert spae. Throughout this paper we

will be interested in several di�erent types of systems in H .

De�nition 1. A system of vetors {fn} ⊂ H is a Riesz basis (RB) in H if there

exists an orthonormal sequene {en} ⊂ H and a bounded invertible operator

T : H → H suh that fn = Ten for all n.

The following two de�nitions formalize the ideas of `over�omplete basis' and

`under�omplete basis' respetively.

De�nition 2. A system of vetors {fn} ⊂ H is a frame if

A‖f‖2 ≤
∑

|〈f, fn〉|2 ≤ B‖f‖2 ∀f ∈ H, (7)

where A and B are positive onstants. (The best possible onstants A and B
for whih this inequality holds are alled the lower and upper frame bounds). A

system whih satis�es the right side inequality in (7) is alled a Bessel sequene.

De�nition 3. A system of vetors {fn} ⊂ H is a Riesz sequene (RS) if it is a

Riesz basis in the losure of its linear span. This is equivalent to the statement

that,

A
∑

|an|2 ≤
∥∥∥
∑

anfn

∥∥∥
2

≤ B
∑

|an|2, ∀{an} ∈ l2, (8)

where A and B are positive onstants. (The best possible onstants A and B for

whih this inequality holds are alled the lower and upper RS bounds).

We will use the following lemma, whih follows from a simple duality argument.

Lemma 5. A Riesz basis is both a frame and a RS. In this ase, the lower and

upper RS bounds are equal to the lower and upper frame bounds.

The left inequality in the frame ondition implies that every frame is om-

plete. The opposite impliation does not hold, in fat the frame ondition is muh

stronger then mere ompleteness. Similarly, the left inequality in the RS ondition

implies that every RS is minimal, i.e., every vetor in the system lies outside the

losed linear span of the rest of the vetors. The following de�nition provides for

a somewhat stronger version of minimality.

De�nition 4. A system of vetors {fn} ⊂ H is uniformly minimal if there exists

some δ > 0 suh that dist(fn, span{fk}k 6=n) > δ for all n.

Every RS is, in partiular, uniformly minimal. The opposite impliation does

not hold, i.e., uniform minimality is a muh more relaxed notion than the RS

ondition.

2.4.2. Dual systems and expansions. It is well known that a system {fn} ⊂ H is

minimal if and only if there exists a system {gn} ⊂ H suh that the two systems

are biorthogonal, i.e. 〈fn, gm〉 = δnm where δnm is the Kroneker delta. The system

{gn} is sometimes referred to as a dual system to {fn}. A dual system is unique

if and only if the system {fn} is omplete. We will use the following.
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Lemma 6. A system {fn} ⊂ H is uniformly minimal if and only if there exists a

bounded system {gn} ⊂ H suh that the two are biorthogonal.

If {fn} is a RB then the system {gn} above is also a RB whih is alled the dual

Riesz basis of {fn}. In this ase, every f ∈ H an be deomposed into a series

f =
∑

〈f, gn〉fn =
∑

〈f, fn〉gn.

In general, frames do not admit a dual whih provides bi-orthogonality. Instead,

we use the notion of a dual frame. If {fn} is a frame in H , then there exists a

frame {gn} ⊂ H suh that every f ∈ H an be deomposed into a series

f =
∑

〈f, gn〉fn =
∑

〈f, fn〉gn.

The system {gn} is alled a dual frame of {fn}.
For more information about systems of vetors in separable Hilbert spaes see

e.g. [20℄ or [10℄.

3. The main observations and some auxiliary lemmas

Throughout the rest of the paper we �x φ = Ce−|t|2
where the onstant C is

hosen to satisfy ‖φ‖L2(R) = 1. This implies that the STFT with window funtion

φ is unitary and that Lemmas 3 and 4 hold.

3.1. The main observations. The following two lemmas are the key ingredients

of the approah presented in this paper.

Lemma 7. Let W ⊂ L2(R) be a �nite dimensional subspae and let PW be the

orthogonal projetion of L2(R) on W . Then

∫

R2

‖PWφxy‖2dxdy = dim W.

Proof. Let M = dim W and let h1, ..., hM be an orthonormal basis for W . Then,

sine we �xed φ above so that ‖φ‖L2(R) = 1 and therefore the STFT is unitary,

∫

R2

‖PWφxy‖2dxdy =

∫

R2

∑

m

|〈hm, φxy〉|2dxdy

=
∑

m

∫

R2

|Vφhm(x, y)|2dxdy =
∑

m

‖hm‖2 = dim W.

�

Lemma 8. Let {gn} and {hn} be dual Riesz bases of some losed subspae W ⊂
L2(R). Denote Gn(x, y) = Vφgn(x, y) and Hn(x, y) = Vφhn(x, y). Then, ‖PWφxy‖2 =∑

n Gn(x, y)Hn(x, y), and therefore

0 ≤
∑

n

Gn(x, y)Hn(x, y) ≤ 1; ∀(x, y) ∈ R
2.
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Proof. Let PW be the orthogonal projetion onto W . We have,

∑

n

Gn(x, y)Hn(x, y) =
∑

n

〈gn, φxy〉L2(R)〈φxy, hn〉L2(R)

= 〈
(∑

n

〈φxy, hn〉gn

)
, φxy〉 = 〈PWφxy, φxy〉 = ‖PWφxy‖2.

�

3.2. Auxiliary lemmas. For G ∈ L2(R2) and R > 1 denote

IG(R) :=

∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|G(t − x, s − y)|2dtdsdxdy

Lemma 9. Let G ∈ L2(R2). then

1

R2
IG(R) → 0 as R → ∞.

Proof. Let A := Q0(R−
√

R) and Ac := Q0(R)\A. We note that

∫
Q0(R)

=
∫

A
+
∫

Ac

and write IG(R) = IA + IAc
aordingly. We have,

IAc

R2
≤ |Ac|‖G‖2

R2
≤ C

R1.5

R2
−→ 0,

and

IA

R2
≤ 1

R2

∫

Q0(R−
√

R)

∫

Qc
0(

√
R)

|G(t, s)|2dtdsdxdy

≤
∫

Qc
0(

√
R)

|G(t, s)|2dsdt −→ 0,

sine G ∈ L2(R2). �

Reall the notation,

L2
α(Rd) =

{
F :

∫

Rd

(
d∑

l=1

|xl|α
)

|F (x)|2dx < ∞
}

.

Lemma 10. If G ∈ L2
α(R) then

IG(R) ≤






C(α)‖G‖2
L2

α(R2)R
2−α 0 < α < 2

C(α)‖G‖2
L2

α(R2) log R α = 2

C(α)‖G‖2
L2

α(R2) α > 2

where C(α) is a positive onstant depending only on α.

Proof. We have

∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|G(t − x, s − y)|2dsdtdxdy
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≤
∫

Q0(R)

∫

Qc
0(R+ 1

4
)

|t − x|α + |s − y|α
(R + 1

4
− |x|)α + (R + 1

4
− |y|)α

|G(t − x, s − y)|2dsdtdxdy

≤ ‖G‖2
L2

α(R2)

∫

Q0(R)

1

(R + 1
4

− |x|)α + (R + 1
4

− |y|)α
dxdy

≤ C(α)‖G‖2
L2

α(R2)

∫ R

0

∫ R

0

1

(2R + 1
2

− x − y)α
dxdy.

The result follows. �

4. Proofs for Theorem A and Theorem 1

In this setion we use Lemma 7 to prove the following stronger version of The-

orem A. Theorem A itself, as well as Theorem 1 follow from this theorem as

orollaries.

Theorem 4. Let g ∈ L2(R) and let Λ ⊂ R2
be a uniformly disrete sequene, with

separation onstant δ. Denote G := Vφg. Then,

1. If G(g, Λ) is a Riesz sequene then

sup
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≤ (2R + 1)2 + CIG

(
R +

1

4

)
.

2. If G(g, Λ) is a frame then

inf
(a,b)∈R2

|Λ ∩ Q(a,b)(R)| ≥ (2R − 1)2 − CIG

(
R − 1

2

)
.

Where C denotes a positive onstant whih may depend on δ and the Riesz

sequene or frame bounds.

Remark 1. Clearly, Theorem A follows from Theorem 4 and Lemma 9 while

Theorem 1 follows from Theorem 4 ombined with Lemmas 4 and 10.

Remark 2. Keeping in mind the disussion after the formulation of Theorem

1, we see that IG(R) determines how muh the distribution of Λ an deviate from

the distribution of the integer lattie. IG(R) takes here the role that log R played

in Landaus result for a �nite union of intervals in [13℄; the role of the seond term

of onvergene when R tends to in�nity.

We now turn to the proof of Theorem 4.

4.1. Proof of Theorem 4 part 1, Riesz sequenes. Assume that G(g, Λ) is a
Riesz sequene and denote its lower Riesz sequene bound by A.

Fix (a, b) ∈ R2
and R > 0. Denote

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P = PW be the orthogonal projetion of L2(R) onto W .
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Step I. Clearly, the (�nite) system {gλ,µ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)} is a Riesz

basis for W with lower Riesz basis bound A. In partiular, this implies that

dim W = |Λ ∩ Q(a,b)(R)| (9)

Moreover, it follows from Lemma 5 that {gλ,µ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)} is a frame

in W with lower frame bound A. So, for every (x, y) ∈ R2
,

‖Pφxy‖2 ≤ 1

A

∑

Λ∩Q(a,b)(R)

|〈Pφxy, gλµ〉|2 =
1

A

∑

Λ∩Q(a,b)(R)

|〈φxy, gλµ〉|2

=
1

A

∑

Λ∩Q(a,b)(R)

|G(x − λ, y − µ)|2,

where the last equality follows from (4). Sine Λ is uniformly disrete, say with

separation onstant δ > 0, we may apply (5). We �nd that

‖Pφxy‖2 ≤ C(δ)

A

∫

Q(a,b)(R+ 1
4
)

|G(x − s, y − t)|2dsdt. (10)

Step II. For every (x, y) ∈ R2
we have

‖Pφxy‖2 ≤ 1.

Integrating over Q(a,b)(R + 1
2
) we obtain,

∫

Q(a,b)(R+ 1
2
)

‖Pφxy‖2dxdy ≤ (2R + 1)2

So, ∫

R2

‖Pφxy‖2dxdy ≤ (2R + 1)2 +

∫

Qc
(a,b)

(R+ 1
2
)

‖Pφxy‖2dxdy.

By Lemma 7 the left hand side is equal to dim W whih, by (9), is equal to

|Λ ∩ Q(a,b)(R)|. Substituting (10) in the right hand side, we get

|Λ∩Q(a,b)(R)| ≤ (2R+1)2+
C(δ)

A

∫

Qc
(a,b)

(R+ 1
2
)

∫

Q(a,b)(R+ 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

The result for Riesz sequenes now follows from a simple hange of variables in

the integral.

4.2. Proof of Theorem 4 part 2, frames. Assume that G(g, Λ) is a frame,

denote its dual frame by {g̃λµ}.
Fix (a, b) ∈ R2

and R > 0. Denote

W = span{g̃λµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P and P+
be the orthogonal projetions of L2(R) on W and its orthogonal

omplement respetively.

Clearly,

dim W ≤ |Λ ∩ Q(a,b)(R)| (11)
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Step I. This step follows an idea from [6℄. Sine {g̃λµ} is a frame, say with

upper bound B, we have for every (x, y) ∈ R2
,

‖P+φxy‖2 ≤‖φxy −
∑

Λ∩Q(a,b)(R)

〈φxy, gλµ〉g̃λµ‖2 = ‖
∑

Λ∩Qc
(a,b)

(R)

〈φxy, gλµ〉g̃λµ‖2

≤B
∑

Λ∩Qc
(a,b)

(R)

|〈φxy, gλµ〉|2 = B
∑

Λ∩Qc
(a,b)

(R)

|G(x − λ, y − µ)|2.

Sine Λ is uniformly disrete, say with separation onstant δ, we may apply (6).

We �nd that

‖P+φxy‖2 ≤ BC(δ)

∫

Qc
(a,b)

(R− 1
4
)

|G(x − t, y − s)|2dtds. (12)

Step II. For every (x, y) ∈ R2
we have 1 = ‖Pφxy‖2 + ‖P+φxy‖2

. Integrating

over Q(a,b)(R − 1
2
) we obtain,

(2R − 1)2 =

∫

Q(a,b)(R− 1
2
)

‖Pφxy‖2dxdy +

∫

Q(a,b)(R− 1
2
)

‖P+φxy‖2dxdy.

We �rst note that, by lemma 7 and (11)

∫

Q(a,b)(R− 1
2
)

‖Pφxy‖2dxdy ≤ dimW ≤ |Λ ∩ Q(a,b)(R)|.

Next, (12) implies that

∫

Q(a,b)(R− 1
2
)

‖P+φxy‖2dxdy ≤ BC(δ)

∫

Q(a,b)(R− 1
2
)

∫

Qc
(a,b)

(R− 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

Combining these estimates we obtain,

|Λ∩Q(a,b)(R)| ≥ (2R−1)2−BC(δ)

∫

Q(a,b)(R− 1
2
)

∫

Qc
(a,b)

(R− 1
4
)

|G(x−t, y−s)|2dtdsdxdy.

The result for frames now follows from a simple hange of variables in the integral.

�

5. Uniform minimality, a proof for Theorem 2

In this setion we use Lemma 8 to prove Theorem 2. This proof follows the

orresponding proof from [17℄ and presents a di�erent aspet of the approah in

this paper.

Fix ǫ > 0 and hoose b > 0 suh that∫

Qc
0(b)

|Vφg(x, y)|2dxdy < ǫ2. (13)
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Sine G(g, Λ) is uniformly minimal, by Lemma 6 there exists a bounded system

{hλµ} suh that the two systems are biorthogonal. Denote the bound of this

system by B. (Note that in general {hλµ} is not a Gabor system but rather is just

a sequene of funtions indexed by Λ).

For (a, b) ∈ R
2
and R > 0, onsider the spae

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)}
and denote by P = PW the orthogonal projetion from L2(R) onto this spae.

The (�nite) systems {gλµ}Λ∩Q(a,b)(R) and {Phλµ}Λ∩Q(a,b)(R) are biorthogonal Riesz

bases in W . Denote Gλµ = Vφgλµ and Hλµ = Vφ(Phλµ). By Lemma 8 we have,

0 ≤
∑

Λ∩Q(a,b)(R)

Gλµ(x, y)Hλµ(x, y) ≤ 1, ∀(x, y) ∈ R
2.

Integrating over Q(a,b)(R + b), we obtain

∑

Λ∩Q(a,b)(R)

∫

Q(a,b)(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy ≤ (2(R + b))2. (14)

Sine the STFT is unitary and the systems are biorthogonal,

∫

R2

Gλµ(x, y)Hλµ(x, y)dxdy = 〈gλµ, Phλµ〉L2(R) = 〈gλµ, h
λµ〉L2(R) = 1. (15)

Substituting in (14) and using the triangle inequality we have

|Λ ∩ Q(a,b)(R)| −
∑

Λ∩Q(a,b)(R)

∣∣
∫

Qc
(a,b)

(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy
∣∣

≤ (2(R + b))2. (16)

Sine the dual system is bounded by B,

‖Hλµ‖2
L2(R2) = ‖Phλµ‖2

L2(R) ≤ B2.

So, Cauhy inequality and Lemma 1 imply that eah summand on the left hand

side satis�es,

∣∣
∫

Qc
(a,b)

(R+b)

Gλµ(x, y)Hλµ(x, y)dxdy
∣∣2 ≤ B2

∫

Qc
(a,b)

(R+b)

|G(x − λ, y − µ)|2dxdy

≤ B2

∫

Qc
0(b)

|G(x, y)|2dxdy,

where the last inequality follows from the fat that (λ, µ) ∈ Λ ∩ Q(a,b)(R). Now,

(13) implies that the last expression is less then B2ǫ2
. Substituting in (16), we get

(1 − Bǫ)|Λ ∩ Q(a,b)(R)| ≤ (2(R + b))2.

Dividing both sides by (2R)2
and letting �rst R tend to in�nity and then ǫ tend

to zero, we obtain the required result.
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Finally, in the following proposition we use a result from [18℄ to show that in

general, the 'uniformity' ondition is neessary for Theorem 2 to hold.

Proposition. Fix d > 0. There exist g ∈ L2(R) and Λ ⊂ R2
with D+(Λ) > d

suh that G(g, Λ) is minimal.

Proof. Let a > 0 be arbitrarily small. It is shown in [18℄ that there exists Λ ⊂ R

suh that {e2πiλt}λ∈Λ is minimal in L2(−a, a) and D+(Λ) > 1 (where D+(Λ) is the
upper density of Λ as a subset of the line). Let K = (2aZ) × Λ and g = 11[−a,a] be

the indiator of the interval [−a, a]. It follows that G(g, K) is minimal in L2(R)
and that D+(K) ≥ 1/(2a), whih an be made arbitrarily large by hoosing a
small enough. �

6. Lattie index set, a proof for Theorem 3

In this setion we prove Theorem 3. To this end, reall the notations Ma and Tb

de�ned in Subsetion 2.1. Note that, given a, b ∈ R, there exists ξ = ξ(a, b) ∈ C,

with |ξ| = 1, suh that

MaTbg = ξTbMag ∀g ∈ L2(R).

6.1. A proof for Theorem 3 part 1. Let v = (v1, v2), w = (w1, w2) ∈ R2
be

suh that Λ = {nv + kw : (n, k) ∈ Z2} Denote the elements of G(g, Λ) by

gnk := Mnv2+kw2Tnv1+kw1g, (n, k) ∈ Z
2.

Sine the system G(g, Λ) is minimal it has a dual system; in partiular, there exists

a funtion h ∈ L2(R) suh that 〈g, h〉 = 1 and 〈gnk, h〉 = 0 for all (n, k) 6= (0, 0)
in Z2

.

De�ne

hnk := Mnv2+kw2Tnv1+kw1h, (n, k) ∈ Z
2.

Note that 〈gnk, hnk〉 = 〈g, h〉 = 1, while for (m, l) 6= (n, k) there exists ξ :=
ξ(m, l, n, k) suh that

〈gml, hnk〉 = ξ〈M(m−n)v2+(l−k)w2T(m−n)v1+(l−k)w1g, h〉 = 0.

It follows that {gnk} and {hnk} are biorthogonal sequenes. Sine for all (n, k) ∈ Z2

we have ‖hnk‖ = ‖h‖, the system {hnk} is bounded, whih by Lemma 6 implies

that G(g, Λ) is uniformly minimal. Theorem 2 implies now that D+(Λ) ≤ 1.

6.2. A proof for Theorem 3 part 2. Let v, w ∈ R2
be suh that Λ = {nv+kw :

(n, k) ∈ Z2} and denote A = {ξv + ηw : (ξ, η) ∈ [0, 1]2}.

Step I. Using the terminology of [19℄, in this step we prove that G(g, Λ) has

the homogeneous approximation property, in muh the same way as is done in [19℄.
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Fix ǫ > 0. Sine G(g, Λ) is omplete and A is ompat, there exists d′ > 0
suh that for all (x, y) ∈ A the funtion φxy an be approximated within

√
ǫ by a

funtion from

span{gλµ : (λ, µ) ∈ Λ ∩ Q0(d
′)}.

Sine Λ is a lattie, it follows that there exists d > 0 suh that for all (x, y) ∈ R2

the funtion φxy an be approximated up to

√
ǫ by a funtion from

span{gλµ : (λ, µ) ∈ Λ ∩ Q(x,y)(d)}.

Step II. In the terminology of [19℄, in this step we prove that if G(g, Λ) has

the homogeneous approximation property then D−(Λ) ≥ 1.

Let d be the number hosen in Step I and �x (a, b) ∈ R2
and R > d. Denote

W = span{gλµ : (λ, µ) ∈ Λ ∩ Q(a,b)(R)},

and let P be the orthogonal projetions of L2(R) onto W. Clearly,

dim W ≤ |Λ ∩ Q(a,b)(R)|. (17)

It follows from our hoie of d that for all (x, y) ∈ Q(a,b)(R − d) we have

‖Pφxy‖2 ≥ 1 − ǫ. (18)

Integrating over Q(a,b)(R − d), we obtain

(1 − ǫ)(2R − 2d)2 ≤
∫

Q(a,b)(R−d)

‖Pφxy‖2dxdy.

By Lemma 7 and (17)

∫

Q(a,b)(R−d)

‖Pφxy‖2dxdy ≤ dim W ≤ |Λ ∩ Q(a,b)(R)|.

Combining these we obtain

(1 − ǫ)(2R − 2d)2 ≤ |Λ ∩ Q(a,b)(R)|.

Dividing by (2R)2
and letting �rst R tend to in�nity and then ǫ tend to zero, the

result follows.

7. Finite sets of generators

In this setion we formulate a version of our results in the ase that the system

onsidered is generated by a �nite number of generators. To avoid repetition we

omit the proofs of these theorems as they are muh the same as in the ase of a

single generator.
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7.1. De�nitions. We will use the following de�nitions. Let {Λn}N
n=1 be a �nite

family of sequenes Λn ⊂ R2
. We say that {Λn} is a uniformly disrete family if

eah Λn is uniformly disrete.

For a uniformly disrete family {Λn} the following limits exist,

D+({Λn}) := lim
R→∞

max(a,b)∈R2

∑N
n=1 |Λn ∩ Q(a,b)(R)|
(2R)2

;

and

D−({Λn}) := lim
R→∞

min(a,b)∈R2

∑N
n=1 |Λn ∩ Q(a,b)(R)|
(2R)2

.

We all D−({Λn}) and D+({Λn}) the lower and upper densities of the family

{Λn} respetively.

7.2. Results. We have the following extension of Theorem 4.

Theorem 4'. Let g1, ..., gN be distint funtions in L2(R) and let {Λn}N
n=1 be a

uniformly disrete family of real sequenes. Denote Gn := Vφgn, 1 ≤ n ≤ N .

There exists C > 0 suh that,

1. If

⋃N

n=1 G(gn, Λn) is a Riesz sequene then

sup
(a,b)∈R2

N∑

n=1

|Λn ∩ Q(a,b)(R)| ≤ (2R + 1)2 + C

N∑

n=1

IGn
(R +

1

4
).

2. If

⋃N

n=1 G(gn, Λn) is a frame then

inf
(a,b)∈R2

N∑

n=1

|Λn ∩ Q(a,b)(R)| ≥ (2R − 1)2 − C

N∑

n=1

IGn
(R − 1

2
).

A similar extensions of Theorems A follows.

Theorem A'. Let g1, ..., gN be distint funtions in L2(R) and let {Λn}N
n=1 be a

uniformly disrete family of real sequenes.

1. If

⋃N

n=1 G(gn, Λn) is a Riesz sequene then D+({Λn}) ≤ 1,

2. If

⋃N

n=1 G(gn, Λn) is a frame then D−({Λn}) ≥ 1.

Remark 2. Suppose that in part 1 of Theorem A' we had onsidered the

quantity

∑N

n=1 D+(Λn) instead of the upper density D+({Λn}). Sine the subset

of a RS is itself a RS, Theorem A easily implies that

D+({Λn}) ≤
N∑

n=1

D+(Λn) ≤ N.

However, the estimate on the right hand side is the best that an be made. As an

example of this fat onsider the sets

Λ∗
n :=

{
(x, y) ∈ Z

2 : Arg(x, y) ∈
(

2π(n − 1)

N
,
2πn

N

]}
. n = 1, ..., N
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Then the distint funtions gn := e2πint11[0,1] and the family Λn := Λ∗
n − (0, n).

In addition, we have the following extensions of Theorems 2 and 3.

Theorem 2'. If

⋃N

n=1 G(gn, Λn) is uniformly minimal then D+({Λn}) ≤ 1. In

general, the onlusion does not hold if the system merely is minimal.

Theorem 3'. Let g1, ..., gN ∈ L2(R), Λ ⊂ R2
be a lattie and x1, ..., xN be distint

points in R2
. Denote Λn := xn + Λ. Then,

1. If

⋃N

n=1 G(gn, Λn) is minimal then it is uniformly minimal and D(Λ) ≤ 1/N .

2. If

⋃N

n=1 G(gn, Λn) is omplete then D(Λ) ≥ 1/N .
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