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Abstract

In this paper, we consider the following family of two prover one-round games. In the CHSHq

game, two parties are given x, y P Fq uniformly at random, and each must produce an output
a, b P Fq without communicating with the other. The players’ objective is to maximize the
probability that their outputs satisfy a` b “ xy in Fq. This game was introduced by Buhrman
and Massar [7] as a large alphabet generalization of the CHSH game—which is one of the most
well-studied two-prover games in quantum information theory, and which has a large number
of applications to quantum cryptography and quantum complexity. Our main contributions in
this paper are the first asymptotic and explicit bounds on the entangled and classical values
of CHSHq, and the realization of a rather surprising connection between CHSHq and geometric
incidence theory. On the way to these results, we also resolve a problem of Paw lowski and
Winter [25] about pairwise independent Information Causality, which, beside being interesting
on its own, gives as an application a short proof of our upper bound for the entangled value of
CHSHq.

1. Introduction

In this work, we study a certain family of two prover one-round games. The study of multiprover
one-round games (from now on, simply referred to as games) began in the late 20th century in the
context of multiprover interactive proof systems in computer science [2], and also in the context
of the Bell inequalities in physics [1] with the topic continuing to be of significant interest in both
computer science and quantum physics to this day (see for example [5, 8, 12, 18, 28]). The particular
family of games we shall study was first introduced by Buhrman and Massar [7] nearly a decade
ago. It is defined as follows.

Definition 1.1. Let q be a prime, or a prime power, and Fq the unique field of size q. In the
CHSHq game, two non-communicating parties Alice and Bob are each given an input x and y from
Fq chosen uniformly at random. Their objective is to maximize the probability that their outputs
a, b P Fq satisfy a` b “ xy.
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Fig. 1: The CHSHq game.

The celebrated CHSH game, named after its inventors Clauser, Horne, Shimnoy and Holt [9], is
the case q “ 2 of the above definition. It is arguably the most well-studied game in quantum
information theory [34], and has many applications in the study of entanglement ([6, 34]) and also
in quantum cryptography [13] and quantum complexity [29]. Given the major role CHSH plays in
many aspects of quantum information theory, it has been of great interest to find well-structured
asymptotic generalizations of CHSH, as this could have much impact in the study of non-locality in
general, and in the above applications of CHSH in particular. In this paper we focus on Buhrman
and Massar’s generalization, described in Definition 1.1, since we expect that the algebraic form of
CHSHq would lead to a interesting and useful structure for this family of games. In fact one of the
main results of our work is the realization of a strong connection between the CHSHq game and
some remarkable mathematical results in incidence geometry and arithmetic combinatorics. This
surprising connection combined with our other results further supports the intuition about the rich
structure of these games.

Despite the simple form of this family of games and our precise understanding of the case q “ 2,
it turns out that analyzing CHSHq beyond the q “ 2 case is a rather difficult task. This difficulty
is not restricted to analyzing CHSHq; it is actually an instance of a more general phenomenon,
and is essentially shared with any game with q ě 3. The main issue here is that we do not know
a large alphabet generalization of the foundational result of Tsirelson on SDP characterization of
the entangled value of XOR games (which are a subclass of games with q “ 2).1 This result of
Tsirelson, combined with the tools of convex analysis such as complementary slackness and strong
duality, gives a powerful path toward analyzing the entangled value and the optimal strategies for
XOR games. The unavailability of the above powerful tool has resulted in a scarcity of results
for analyzing the games in the case q ‰ 2— which is regarded as one of the central challenges
in the study of non-local games (see [6, 14]). Indeed, a major goal of this work is to expand on
the set of examples and tools available for analyzing games beyond the relatively well-understood

1 See Definition 2.1 for a precise definition of XOR games. The games we consider here are perhaps the most
natural higher alphabet generalization of XOR games as the referee’s acceptance predicate only depends on the sum
over Fq of player’s outputs. Remarkably, such a simple generalization from q “ 2 to say q “ 3 seem to make a
substantial difference.
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case of XOR games, which we do in the context of studying CHSHq. We note that our results
do not go far on addressing the fundamental problems regarding the complexity of entangled two
prover non-XOR games. However, we believe that for tackling this fundamental problem, a certain
amount of preparatory work in the form of establishment of new tools and examples is a definite
prerequisite. We hope that our work constitutes an advance in the foundation necessary for tackling
the aforementioned fundamental problems.

Results. For a game G, we denote by ωpGq and ω˚pGq the maximum winning probability of
classical and quantum strategies, respectively. These are usually referred to as the classical and
entangled values, in short. Recall that since the quantum strategies contain the classical ones as a
subset, it is clear that ωpGq ď ω˚pGq.

Regarding the entangled value of CHSHq, we give two different proofs of the following theorem,
which generalizes the well-known upper bound of Tsirelson [31] for the original CHSH game.

Theorem 1.2. For any prime or prime power q we have

ω˚pCHSHqq ď
1

q
`
q ´ 1

q

1
?
q
.

Despite advances due to several researchers [7, 15, 21, 33] in analyzing the value of CHSHq games,
prior to our work there was no result, even in conjectured form, known for the asymptotic behavior
of the classical and entangled value of CHSHq. Even for small values of q, most results, with the
exception of the original 1

3 `
2
3

1?
3

upper bound of Buhrman and Massar for q “ 3, were obtained

using numerical methods. Thus, our work is the first to obtain asymptotic results on these games.

One interesting fact about the bound in Theorem 1.2 is the striking similarity of the bound 1{q `
pq´1q{pq

?
qq here, with the influential tight upper bound of Tsirelson [31] of 1{2`1{2

?
2 for CHSH.

This striking resemblance gives rise to the natural question of asymptotic (or exact) tightness of
the bound in Theorem 1.2. Although we cannot answer the above questions in full, we provide
some answers which clarify the situation to some extent, and highlight some of the relevant issues.

Theorem 1.3. There exists a universal constant ε0 ą 0 such that for any prime p and k ě 1 we
have

ωpCHSHqq “

#

Ωpq´
1
2 q for q “ p2k

Opq´
1
2
´ε0q for q “ p2k´1 .

To prove this theorem, we adopt a new view of CHSHq. The main insight here is the following.

Fact 1.4. A classical strategy for CHSHq is in direct correspondence with a configuration of q non-
vertical lines and q points in F2

q , with no two lines having the same slope, and no two points lying
on the same vertical line. Given such a configuration of lines and points, the winning probability
of the corresponding strategy for CHSHq is proportional to the number of point-line incidences.

The correspondence in Fact 1.4 allows us access to some powerful results in arithmetic combinatorics
where questions related to the incidences of collections of points and lines over finite fields have
seen much progress recently. Most relevant to our problem is the celebrated finite field Szemerédi-
Trotter theorem of Bourgain, Katz and Tao [4] which states that, under a certain size restriction
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satisfied in our case, the number of incidences between a collection of points P and a collection of
lines L is at most of the size |P |

3
4
´ε0 |L|

3
4
´ε0 for some ε0 ą 0.2 This result combined with Fact 1.4

is essentially sufficient to prove the upper bound in Theorem 1.3.

In fact, the relation between CHSHq and the finite field Szemerédi-Trotter theorem is closer than it
might first appear to be. As we show in Section 5, understanding the classical value of CHSHq is in
some sense equivalent to the finite field Szemerédi-Trotter theorem with the appropriate parameters.
We show this by proving that the restrictions on the points and lines in Fact 1.4, which is crucial
in order to translate the geometric configuration to a legal CHSHq strategy, can actually be relaxed
without losing much in the bounds.

Going back to the quantum and classical values of CHSHq, it is important to notice that our classical
lower bound in Theorem 1.3 shows that there is no asymptotic separation between the quantum
and classical values of the game for q “ p2k , while the classical upper bound of Opq´1{2´ε0q leaves
open the possibility of such a separation in the setting of q “ p2k´1. Hence the most obvious gap
in our bounds is captured by the following problem.

Problem 1.5 (Open). Does there exists an infinite family of q “ p2k´1 such that ω˚pCHSHqq “

Ωpq´
1
2 q, or some δ ą 0 and an infinite family of q “ p2k´1 such that ω˚pCHSHqq “ Opq´

1
2
´δq? 3

Given the geometric picture in Fact 1.4, we observe that our main open problem, Problem 1.5,
is related to a question of Kempe and Kasher [19] about the security of Bourgain’s two-source
extractor [3, 27] in the presence of quantum memory. The main point is that Bourgain’s extractor
consists of two main ingredients: The first is a crucial preprocessing step, which (roughly-speaking)
makes sure the two sources are in generic position with respect to each other. The second is an
application of a Hadamard extractor on the two preprocessed sources. It was shown by Kasher and
Kempe that the bare Hadamard extractor remains secure in the presence of quantum adversaries.
Hence, the missing part in the analysis of Bourgain’s extractor in the presence of quantum memory
is the first step, analysis of which heavily relies on Szemerédi-Trotter theorem on finite fields. Thus,
the core of both Kasher and Kempe’s question and that of ours seem to be the extent to which
finite-field Szemerédi-Trotter theorem can be (or fails to be) extended to the quantum setting.

1.1. Techniques

Let us start by giving more detail on our two different proofs of Theorem 1.2. A common aspect of
both these methods is that they avoid a direct analysis of the norms of associated game operators.
Instead, they take a novel indirect approach via reductions. In order to rule out a certain winning
probability p for G, we show that the ability to win instances of G with probability greater than
p would allow us to achieve a winning probability p1 for a more generic game G1, one which we
already know to be impossible.

Both our methods for proving the upper bound on the entangled value of CHSHq game work by a
reduction to another generic result: the first method uses a reduction to a large alphabet variant

2The original proof of Bourgain et al. did not show an explicit bound on ε0 however work in recent years have
obtained explicit bounds of the form ε0 ą

1
700

. However, the truth is believed to be much better than what is proved
in these works.

3It is possible that the answer to both questions above are positive. In fact this would be the best possible outcome
from the point of view of applications.
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of the result of Linden et al. on quantum and classical strategies for certain distributed tasks [22].4

This approach has the advantage of being self-contained and quite simple. The main idea here
is to analyze a slightly different variant of CHSHq game, called CHSHdist

q , in which two parties
receive pα, γq P F2

q and pβ, δq P F2
q , and their objective is to produce outputs a and b satisfying

a` b “ pα` βqpγ ` δq.

The other approach is by a reduction to a new form of the principle of information causality due
to Paw lowski and Winter [25], further generalized in this paper. A benefit of this approach is that
executing the approach naturally leads us to an open problem of Paw lowski and Winter [25] which
we resolve in Appendix B. Given the amount of attention paid to information causality principle
in the foundations of quantum physics in recent years, this result is certainly significant on its own
right. What makes this result even more attractive is that using it we can give as an application a
very short proof of Theorem 1.2.

To discuss our result about pairwise independent information causality, it is best to first recall the
standard scenario for information causality (IC) [24].

Definition 1.6 (IC). In an information causality game, Alice is given an input X “ pX1, X2, . . . , XN q

from a known distribution π, and Bob an index b P rN s. After making a measurement on her sys-
tem, Alice sends a message α P Σ to Bob. After receiving α from Alice, Bob makes a measurement
on his system producing an output Z P Λ. Alice and Bob’s goal is to maximize the quantity
ICpA,Bq “

řN
i“1 IpXi;Z|b “ iq.5

The main idea behind the principle of information causality is that assuming a certain form of
independence among Alice’s inputs (i.e. tXiu

N
i“1), there is a stringent limit to the amount of corre-

lation, as quantified by ICpA,Bq, that the two parties can create by limited communication—even
given arbitrarily entanglement between Alice and Bob. Our main result about the information
causality game is as follows.

Theorem 1.7 (Pairwise Independent IC). Consider an information causality game as in Definition
1.6. Assume Alice’s input X “ pX1, X2, . . . , XN q is drawn from an unbiased (i.e. with uniform
marginals) pairwise independent distribution. Then we have

ICpA,Bq “
N
ÿ

i“1

IpXi;Z|b “ iq “ O|Σ|,|Λ|p1q ,

where O|Σ|,|Λ|p1q is a quantity depending only on the sizes of the alphabets of Alice’s message to
Bob and Bob’s output, and not N .6

The original setting of information causality from [24] is the case where tXiu
N
i“1 are fully indepen-

dent. Paw lowksi and Winter in [25] strengthened the original information causality by showing that

4Linden et al. prove their result only about F2-output games. We generalize this result to larger alphabets only
as much as we need for our particular application. A full generalization of all aspects of the result of Linden et al.
could be interesting but is beyond the scope of this article.

5A moment of reflection shows that the distribution of Bob’s input b P rN s does not play any role here. Hence, it
can be taken to be uniform over rN s for simplicity.

6In most applications of information causality type theorems, including ours, the exact dependence on |Σ| and |Λ|
is not important. The bound here is linear in |Σ||Λ|.
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a similar bound holds even if the full independence condition is relaxed to pairwise independence,
under the restriction that both Z and α have only two outcomes. They posed as an open problem
to extend their result to larger alphabets. As it turns out such a theorem is precisely what we need
to prove Theorem 1.2 by our information theoretic approach. We prove this Theorem in Appendix
B and use it in Section 4.1 to prove Theorem 1.2.

Finally we end this part with a technical remark about Theorem 1.7.

Remark 1.8. (i) There is a crucial difference between IpX1 . . . XN ;Z|b “ iq and
řN
i“1 IpXi;Z|b “

iq. It follows from the data processing inequality that the former is bounded by O|Σ|p1q with no need

for any independence assumption. On the other hand, taking X1 “ X2 “ . . . “ XN “ Bernoullip1
2q,

we see that ICpA,Bq could be as large as ΩpNq in this case. Thus, some independence assumption
is necessary for Theorem 1.7 type results. (ii) The original information causality result of [24]
can be proved by an appropriate use of data processing inequality and the chain rule applied to
IpX1X2 . . . XN ;αq “ O|Σ|p1q. Similar approaches run into trouble in the pairwise independence
setting because of the correlations between Xi’s.

1.2. Prior work

Buhrman and Massar were the first to study CHSHq for q ‰ 2 obtaining the upper bound of
1{3 ` 2{3

?
3 for q “ 3 using information theoretic methods (different from the ones used here).

Although the algebraic view of CHSH is in retrospect more or less clear, this was not the language
originally used to describe the CHSH game. Hence, the contribution of Buhrman and Massar was
to both realize this view, and to tackle the next interesting case after the original CHSH, which
was the case of q “ 3. In the same work, they mentioned that their method seemed not to work
for higher values of q. After the work of Buhrman and Massar, the problem was attacked for
small values of q by Ji et al. [15] and then by Liang, Lim and Deng [21] who, through a mix of
numerical work and analytic insights, obtained several upper and lower bounds for quantum and
classical value of the games for q’s up to 13. Since the approach in the above line of work is mostly
numerical, it is hard to infer much about the asymptotic questions of interest from the bounds
there. The only work prior to ours to obtain some general results about CHSHq is [33]. There,
Wang proved various interesting results including a large alphabet generalization of a result of van
Dam [11], on the collapse of communication complexity in the presence of perfect CHSHq oracle
boxes (this is a natural higher alphabet analogue of the well-known Popescu-Rohlich box [26]). He
also approached the problem of analyzing the value of CHSHq using the principle of information
causality; however, the arguments there did not seem to provide explicit bounds. We discuss the
similarities and the differences between our approach and Wang’s in more detail in Section 3. This
provides some intuition on why basic information causality of [24] seems insufficient to achieve the
bound in Theorem 1.2 showing the advantage offered by the strengthened version in Theorem 1.7.

Before finishing the discussion of the prior work, let us take some time to elaborate more on the
work of Liang et al. [21]. The upper bounds on their work is based on numerically solving the SDP
hierarchies from [23]. Their method of lower bound (described on the bottom of page 4 of their
paper) is a variant of the following natural heuristic: One starts with an arbitrary choice of Alice’s
and Bob’s strategies and a joint state ψ P Cd bCd in a candidate dimension d. Then one runs the
following three-step iterative procedure: We first optimize for Bob’s strategy, given the state ψ and
Alice’s strategy. Then, we optimize Alice’s strategy fixing Bob’s strategy and the state ψ. Finally,
we optimize for ψ while fixing everything else. The first two steps are SDP computations, and the
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latter is simply a maximum eigenvalue computation. The above process is repeated until a (near)
local optimum is reached.7

1.3. Organization of the paper

To gain a better understanding of the main ideas behind the information theoretic approach in
analyzing the two prover games, we recommend the reader to review the exposition of the approach
as presented in Section 3. Although the arguments in Section 3 are not essential for proving the main
results, it may provide much intuition and make the steps in various arguments more transparent.
The most technical part of the paper is Appendix B which contains the proof of the open problem
of Paw lowski and Winter. This section can be skipped if one is only interested in the application
of Information Causality type principle to two-prover games rather than the proof of such results.
Also for the sake of brevity, the second proof of Theorem 1.2 based on reduction to distributed
non-local computation and the proof of Lemma 5.3, which requires more familiarity with projective
spaces, are transferred from the main body to the appendices in this version.

2. Preliminaries

In this work, q will denote a prime power unless otherwise noted. We let rns denote the set of
positive integers in the range 1 to n. By Oα,βp¨q we mean a quantity which is bounded by a
universal constant depending only on the parameters α and β. In parts of the paper, we require a
basic knowledge of information theory. A brief introduction to relevant notions from this area is
presented in Appendix A.

By a game we always mean a two prover one-round refereed game unless otherwise specified. For
our purposes, we only need the definition of following subclass of games.

Definition 2.1. An XOR-game G is specified by the following data: a set of question Q1 for Alice
and a set of question Q2 for Bob, a distribution π over Q1ˆQ2, and matrix V with entries from F2

of size Q1 ˆQ2. Given q1 P Q1 to Alice, and q2 P Q2 to Bob with probability πpq1, q2q, Alice and
Bob must each produce a, b P F2 respectively. They succeed if a ` b “ V pq1, q2q. If in the above
setting one replaces the additive group of F2 with the additive group of Fq, the resulting class of
games will be called q-XOR games.

For q-XOR games, it is convenient to define the bias of a strategy as an alternative way of quantifying
the winning probability.

Definition 2.2. For any probability 0 ď pwin ď 1 corresponding to winning probability of some
strategy for a q-XOR game, we define the bias parameter of the strategy to be

E
def
“ pqpwin ´ 1q{pq ´ 1q .

With this definition we have pwin “
1
q `

q´1
q E. Note the bias parameter quantifies by how much

a strategy outperforms the trivial random strategy which for q-XOR games achieves the expected
winning probability of 1{q. Hence, we have E ě 0 for the optimal strategy of any q-XOR game.

7 Let us note that an anonymous reviewer, based on their own personal experiments, has raised some doubts
regarding the validity of the lower bounds for q “ 3 in Liang et al. We believe that in this case Liang et al. result is
correct, as prior to becoming aware of their result we independently obtained their lower bound for q “ 3 via different
methods.
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Remark 2.3. We note that the notion of bias can also be defined in the same way in the more
general setting of unique games with alphabet size q. However, we shall not need to work in this
general setting for the purposes of this work and we do not require the definition of what a unique
game is. However, the reader familiar with the terminology should note that all q-XOR games, and
in particular CHSHq games, are unique games.

3. Overview of Information Causality approach

Here we discuss the basic method that allows one to use information causality type theorems to
prove bounds on the value of CHSHq game. Since more precise arguments with better bounds are
provided in Section 4 and Appendix C, we omit some of the details. For simplicity, we work in the
fully independent setting of the information causality game; this has the added benefit of clarifying
why we need the strengthened version of the information causality principle, Theorem 1.7, in order
to prove Theorem 1.2. In this section, for the ease of notation, we use a slightly different convention
from other sections by taking Alice’s input to be indexed from 0 to N ´ 1, as opposed to 1 to N .

The idea is best captured in the noiseless setting: assume that we have a (quantum or whatever)
strategy that allows us to win the CHSHq game with probability 1. Let us see that this leads to
some unlikely consequences.

Fig. 2: The players’ strategies for CHSHq can be used to eliminate ˆ gates from a distributed circuit,
replacing them with ` gates—at the cost of some noise.

Let q “ 2 for simplicity. Assume Alice is given X0, X1, X2, X3 P F2 uniformly at random. Bob is
given an index pointing to one of the Alice’s inputs in the form of b “ b0b1 with bi P t0, 1u. The
main observation is that the desired output of Bob, which is Xb, can be written as a polynomial
over F2 in terms of Xi’s and bj ’s. Let us denote the desired output of Bob by g2p¨q “ Xb. In general
gk denote the polynomial that Alice and Bob want to compute in the “kth level” of the game, i.e.,
the setting where we have N “ 2k ´ 1 and b “ b0b1 . . . bk´1. Observe that

g2pX0, X1, X2, X3, b0, b1q “ b0b1X3 ` p1´ b0qb1X2 ` b0p1´ b1qX1 ` p1´ b0qp1´ b1qX0 .

From the above, it is clear what Alice and Bob should do: given (say) the first monomial, b0b1X3,
Alice and Bob could use their perfect CHSH strategy to produce u3` v3 “ b0b1X3. Doing the same
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thing for all other monomials, they essentially dispose of all multiplications and are left with

g2pX0, X1, X2, X3, b0, b1q “
3
ÿ

i“0

ui `
3
ÿ

i“0

vi .

Hence, if Alice sends
ř3
i“0 ui to Bob, using just one bit of communication, Alice and Bob manage to

compute g2p¨q successfully. It is clear that the above perfect strategy can be extended in the same

manner to arbitrary “level k,” i.e. when Alice is given tXiu
2k´1
i“0 and Bob an index b “ b0b1 . . . bk´1,

with no need for more than 1-bit of communication. Hence, it seems that there must be some
information theoretic impossibility here, as one bit of communication should not be sufficient to
allow two players to compute the rather complicated address function gkp¨q for large k. This is
exactly the main idea of the information theoretic approach for Theorem 1.2.

To prove Theorem 1.2 we need a more careful version of the above argument in order to derive a
contradiction even when Alice and Bob only share a noisy strategy for CHSH or CHSHq. Let us
give some more detail: imagine Alice and Bob now only have a strategy that allows them to win
with probability w ă 1. Instead of being as generous as before, Alice and Bob should now try
to minimize the number of times they use their strategy for CHSH to transform a multiplication
into an addition. Naively, if there exists a circuit with m multiplication gates for computing the
polynomial gkp¨q, one would expect the winning probability of Alice and Bob to scale like wm. As
one increases k, if Alice’s and Bob’s probability of success in computing gkp¨q deteriorates slowly
enough compared to the rate of increase in the information complexity of computing gkp¨q, this
gives us our desired contradiction.

The above illustrates the basic strategy for proving upper bounds on winning probabilities of games,
in our case CHSHq, using information theoretic methods. The above analysis can be improved in
several ways; however even with all improvements we are unable to prove Theorem 1.2 using just
basic information causality result of [24]. The main difficulty here stems from the situation at the
first level, and this difficulty in our view is one of the reasons why the method of Wang [33] and
our own initial method based on the basic Information Causality theorem [24] seemed incapable of
reproducing the bounds in Theorem 1.2.8 To demonstrate this, assume q “ 3. Let X0, X1, X2, b0 P
F3 and let h1p¨q be the polynomial over F3 which Alice and Bob would like to compute at level 1.
We have

h1pX0, X1, X2, b0q “ p1´ b
2
0qX0 ` p1´ pb0 ´ 1q2qX1 ` p1´ pb0 ` 1q2qX2

“ X0 ` pX2 ´X1qb0 ´ pX0 `X1 `X2qb
2
0 .

We see that the number of multiplications we have at level 1 for F3 is 2; on the other hand, over F2

we have g1pX0, X2, b0q “ X0`pX0`X1qb0. The increase in the number of multiplication gates per
level is the main problem which forces us to use Theorem 1.7 as opposed to the fully independent
version. To see the advantage of Theorem 1.7, suppose that we choose Alice’s input uniformly at
random from the subspace X0 `X1 `X2 “ 0. Notice that although Xi’s are now correlated, they

8The other major difference between our work and that of Wang in our view is the use of Regularization Lemma
4.2 which greatly simplifies our analysis by reducing the number of parameters we have to keep track of in Proposition
4.4 to the bare minimum.
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are still pairwise independent. The main advantage of taking Xi’s from subspace X0`X1`X2 “ 0
is that this allows to save one multiplication in the evaluation of h1 since

h1pX0, X1, X2, b0q “ X0 ` pX2 ´X1qb0

in this case. The above method indeed can be extended to higher values of k to prove Theorem
1.7. Essentially, the idea is to take Alice’s input uniformly at random from an appropriately chosen

subspace of the vector space (over F3) spanned by tXiu
3k´1
i“0 . However, using the full strength of

Theorem 1.7 we can actually give a simpler information theoretic proof of Theorem 1.2, as presented
in Section 4.1.

4. Generalized Tsirelson bound for CHSHq

The aim of this section is to prove Theorem 1.2. We have two different proofs of this result. Here we
just present the proof based on the pairwise independent Information Causality principle, Theorem
1.7. The second proof, which is based on a large alphabet generalization of result of Linden et
al. [22], is presented in Appendix C. In both proofs of Theorem 1.2, we can substantially simplify
the arguments by assuming the optimal strategy P for CHSHq always produces different types of
error with equal probability. This is formalized as follows.

Definition 4.1. A classical or quantum strategy for CHSHq is called regular if the following holds:

Pr
a,bÐP˚

ra` b “ xy ` k|x, ys “
1

q
´
E

q
@ k P F˚q .

Here, a, b are the outputs of Alice and Bob’s strategies given x, y as inputs, respectively. The
symbol a, b Ð P means that the outputs a, b of Alice and Bob’s strategies are produced via the
protocol P (given x, y as inputs). The symbol E as usual denotes the bias of the game defined as
in Definition 2.2. In some occasions, for the ease of notation, we do not write out a, b Ð P fully,
and instead simply write P to represent the fact that the players follow the particular strategy P
for producing their outputs.

It turns out that we can without loss of generality assume any protocol P for CHSHq is regular
which is the content of the following lemma.

Lemma 4.2 (Regularization Lemma). Given any protocol P for CHSHq, there exists a generic
method to obtain a regular protocol P˚ from P without changing the winning probability.

Proof. Given any quantum strategy P for CHSHq game, define its regularized version P˚ as follows:
On inputs x and y, A and B use shared randomness to agree upon α, β P F˚q and γ, δ P Fq uniformly
at random. Then, they follow the original strategy on inputs rx “ pαx ` γq, ry “ pβy ` δq. Let ra
and rb be their outputs here. Finally, A outputs a “ 1

αβ pra´ δαx´ γδq and B outputs 1
αβ p

rb´ βγyq.
We show P˚ satisfies the properties we wanted.

First, notice that P˚ has the same winning probability as P since the input distribution remains
uniform on Fq ˆ Fq, i.e. PrP˚ra` b “ xy|x, ys “ PrP,x1,y1ra

1 ` b1 “ x1y1s “ pwin . It is not too hard
to see that

Pr
a,bÐP˚

ra` b “ xy ` s|x, ys “ Pr
a1,b1ÐP,x1,y1

ra1 ` b1 “ x1y1 ` s αβs .

10



The key here is that quadruple px1, y1, α, βq have a uniform product distribution over its domain
pFqq2 ˆ pF˚q q2. For s P F˚q , we have that sαβ is uniformly distributed over F˚q . This and the fact
that the input px1, y1q is uniform on Fq ˆ Fq imply the regularity property.

4.1. Reduction to pairwise independent information causality

Let m be a positive integer which will be a parameter taken to be sufficiently large in our proof.
We want to instantiate Theorem 1.7 by a subcode of generalized Hadamard code over Fq. Let us
recall the definition of this code:

Definition 4.3. The generalized Hadamard code corresponds to an m-dimensional subspace of
a qm ´ 1 dimensional vector space over Fq. Given a seed Y “ pY1, Y2, . . . , Ymq P Fmq we have a
coordinate per each ξ P Fmq zt0u defined by

Hadξ “ ξ1Y1 ` ξ2Y2 ` . . .` ξmYm .

Hence, a codeword is a point in the above subspace and it is given by the list of qm´ 1 coordinates
defined as above.

The overall plan is to let Alice’s input be a random codeword from tHadξuξPFm
q zt0u

, and Bob’s input

to be some ξ P Fmq zt0u which is an index to one of the coordinates of Alice’s input. This, however,
does not quite work as the generalized Hadamard codeword is not pairwise independent. To fix
this issue, we instead take Alice’s input to be a proper subset Um Ď Fmq zt0u such that tHadξuξPUm

is pairwise independent. Concretely, we take Um to consist of a P Fmq zt0u with their first non-zero

coordinate equal to 1. 9 With this setup we have n “ qm´1
q´1 , Bob’s input is some b P Um and Alice’s

input is a uniformly random word from tHadξuξPUm .

Now we need a proposition.

Proposition 4.4. Let P be a regular protocol for CHSHq with bias E. Assume Alice is given
pc1, c2, . . . , cmq P Fmq and Bob pd1, d2, . . . , dmq P Fmq . Assume Alice and Bob use the protocol P once
per input pair tpck, dkqu

m
k“1 to produce taku

m
k“1 and tbku

m
k“1, i.e. using pak, bkq Ð Ppck, dkq. Let

Z “
řm
i“1 ak `

řm
i“1 bk. We have

Pr

«

Z “
m
ÿ

i“1

cidi

ff

“
1

q
`
q ´ 1

q
Em .

Also, for all e P F˚q we have

Pr

«

Z “
m
ÿ

i“1

cidi ` e

ff

“
1

q
´

1

q
Em .

Proof. The proof is by induction on m. For m “ 1 this is clear. Assume the result for m ´ 1.
Notice that for Z “

řm
i“1 cidi to occur, it must be the case that the error in level m ´ 1, i.e.

9This is chosen such that the map π : pξ1, ξ2, . . . , ξmq ÞÑ pξ1 : ξ2 : . . . : ξmq injects onto PFm´1
q
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řm´1
i“1 cidi´ai´bi, exactly cancels out the error occurred in the last step, which is am`bm´cmdm.

Now by the assumptions,

Pr

«

Z “
m
ÿ

i“1

cidi

ff

“

ˆ

1

q
`
q ´ 1

q
Em´1

˙ˆ

1

q
`
q ´ 1

q
E

˙

` pq ´ 1q

ˆ

1

q
´

1

q
Em´1

˙ˆ

1

q
´

1

q
E

˙

“
1

q
`
q ´ 1

q
Em .

This finishes the first claim of the theorem. The second claim of the theorem follows from the first
one and the symmetry.

We apply this proposition to the setting where Alice is given tHadξuξPUm and Bob ξ˚ P Um. Alice
and Bob want to compute Hadξ˚ “ ξ˚1Y1` ξ

˚
2Y2` . . .` ξ

˚
mYm. Here, Yi’s are given to Alice as part

of her inputs as any coordinate of the form p0, 0, . . . , 1, 0, . . . , 0q is in Um and ξ˚ is precisely the
input to Bob. Hence by following the above protocol, Alice ends up sending

řm
i“1 ai to Bob as the

message and Bob outputs Z “
řm
i“1pai ` biq. The resulting output Z will satisfy the following:

IpXξ;Z|b “ ξq “ p
1

q
`
q ´ 1

q
Emq log2p1` pq ´ 1qEmq

`
q ´ 1

q2
p1´ Emq log2p1´ E

mq .

Notice that the calculation above was not too hard because the regularity guaranteed from Propo-
sition 4.4 specifies the exact joint distribution of pXξ, Zq. Now we take m large enough such that

Em ! 1
q . In this regime, it is easy to see that above expression is always larger than E2m

polypqq for a

fixed polynomial independent of m. Using IpXξ;Z|b “ ξq ě E2m

polypqq in Theorem 1.7, and noticing

that |Um| “ pq
m´ 1q{pq´ 1q, we see that qm´1

q´1
E2m

polypqq “ Oqp1q . For this to hold for arbitrarily large
m, we must have

E ď
1
?
q
,

which is our desired result.

5. Classical aspects of CHSHq and point-line incidences

In this section, we present our results regarding the classical value of CHSHq. This includes Theorem
1.3 and various other results.

We begin by a short introduction to some notions from geometric incidence theory. Let Π “ F2 be
the plane over a field F. For a collection of lines L and points P over a plane Π we define the set
of incidences as

IpP,Lq “ tpp, lq P P ˆ L , p P lu .

A central question in geometric incidence theory is the following: Given |P | and |L|, what can be
said about the size |IpP,Lq|? If |P | and |L| are of roughly the same size, it is hard to imagine a
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configuration where every line in L would contain every point in P . Hence |IpP,Lq| ď |P ||L| seems
a rather pessimistic upper bound. In fact, using the fact that there is at most one line through two
distinct points and one point at the intersection of two distinct lines suffices to get a better upper
bound of |P |3{4|L|3{4 ` |P | ` |L|. As shown by Szemerédi and Trotter [30] the above bound can be
improved when F “ R to |P |2{3|L|2{3 ` |P | ` |L|. The proof of this result is very geometric and
relies on localization techniques that do not work in the finite field settings. The situation over
finite fields remained unclear until about a decade ago; finally Bourgain, Katz and Tao [4] used
tools from arithmetic combinatorics to show an improved upper bound on |IpP,Lq| as long as the
sets P and L are not too large. More specifically we have:

Theorem 5.1 (BKT). For any δ ą 0, there exists some ε ą 0 such that for any prime field Fp and
any collection of points P and lines L over F2

p satisfying pδ ď |P |, |L| ď p2´δ, we have

|IpP,Lq| “ O
´

|P |
3
4
´ε|L|

3
4
´ε
¯

.

Although the theorem of Bourgain et al. as stated above only holds for prime fields, it is not too
hard to see that essentially the same argument goes through whenever |P |, |L| are large compared
to the proper subfields of Fq. This is made explicit in the work of Jones [16, 17]. Although what
is proved in [16, 17] is more general, we just need the following corollary.

Corollary 5.2 (Jones). Let q be an odd power of a prime, and assume P and L are sets of points
and lines in F2

q of size Θpqq. There exists a universal constant ε ą 0 such that

IpP,Lq ď q
3
2
´ε .

5.1. From point-line incidences to CHSHq

Given the above results, Theorem 1.3 can be proved rather quickly. To see why, recall Fact 1.4
from the introduction where it was claimed that the winning probability of any classical strategy
for CHSHq corresponds to the number of point-line incidences among q lines and q points in F2

q

under some restrictions on the points and lines. Hence, the result of Jones immediately implies the
lower bound in Theorem 1.3. For the upper bound, we need the following lemma which allows to
relax the restrictions on the points and lines in Fact 1.4.

Lemma 5.3. Let P,L be a set of points and lines in F2
q with |P | “ Θpqq and |L| “ Θpqq. There

exists a set of points P 1, and a set of lines L1, satisfying the conditions of Fact 1.4 with |P 1| ď |P |
and |L1| ď |L| such that

|IpP 1, L1q| “ Ω p|IpP,Lq|q .

The main idea for proving this lemma is to start from the given configuration of P and L, and
apply a random projective transformation to them. The next step is to remove the lines with the
same slope, and the points on the same vertical line. This ensures that the remaining sets of points
and lines, P 1 and L1, satisfy the required condition. It is not too hard to show that this deletion
process shrinks the number of incidences only by a constant factor in expectation finishing the
proof of Lemma 5.3. Notice that one could not simply use affine transformations in the place of
the projective ones as affine transformations preserve the direction of lines which is problematic if
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the initial configuration of L has many parallel lines. A more detailed proof is given in Appendix
D.

Before proving Theorem 1.3 we need to establish some useful notation.

Definition 5.4. Let F2
q “ Fqrz1, z2s be the plane. We denote by `a,b the line

`a,b “ tpz1, z2q P F2
q : z2 “ az1 ´ bu.

Proof of Theorem 1.3 and Fact 1.4. The optimal classical strategies for CHSHq are given by two
functions f, g : Fq Ñ Fq corresponding to Alice and Bob’s strategies maximizing

|tx, y P Fq | fpxq ` gpyq “ xyu| .

Given f : Fq Ñ Fq corresponding to Alice’s strategy, let P be the collection of q points of the
form px, fpxqq P F2

q . To Bob’s strategy g : Fq Ñ Fq, we associate a collection L of q lines t`y,gpyqu.
Observe in this language any pair px, yq P F2

q satisfying CHSHq correspond to a point-line incidence.
Hence, we have

fpxq ` gpyq “ xy ô px, fpxqq P `y,gpyq ,

which means that
ÿ

x,yPFq

1fpxq`gpyq“xy “ IpP,Lq.

The upper bound for q “ p2k´1 now follows from Corollary 5.2.
Now assume q “ p2k. Recall that in this case there exists a subfield K – F?q such that K Ă Fq.
Let P “ tpa, bq P F2

q : a, b P Ku and L “ t`c,d : c, d P Ku. Notice that |P | “ |L| “ q, and

|IpP,Lq| “ q3{2. Combined with Lemma 5.3, this proves the lower bound.

This framework can also be used to give an improved lower bound for general q’s.

Theorem 5.5. There exists a strategy for CHSHq achieving a winning probability Ωpq´2{3q.

Let us note that the above lower bound was somewhat counterintuitive to us at first. The point
is that we expected that the function px, yq ÞÑ xy to be in some sense maximally psuedorandom
against the function pa, bq ÞÑ a` b. Given this, it was reasonable to assume that the best classical
strategy for CHSHq would achieve a winning probability of rOpq´1q which is up to polylogarithmic
factor the same as that of a random strategy. The logarithmic advantages can be seen to be
achievable using a simple balls-and-bins analysis by taking a random function f : Fq Ñ Fq as
Alice’s strategy, and optimizing Bob’s strategy g : Fq Ñ Fq given that of Alice. In fact, numerical
experiments which looked for locally optimal solutions confirmed the above intuition.10 Despite all
this, Theorem 5.5 states that much better lower bounds are achievable in general.

Proof of Theorem 5.5. This follows from Lemma 5.3 applied to the next proposition.

10More precisely, the algorithm used was the following: we start from two random strategies f, g : Fq Ñ Fq, and in
every iteration we fix one of the functions and update the other one to the optimal strategy taking the other function
as fixed.
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Proposition 5.6. For any finite field field Fq, there exists a set of at most q lines and at most q
points over F2

q with Ωpq4{3q incidences.

Proof. Let q “ ps. First we handle the case s “ 1, then we give a construction for s ě 2. Since
we are concerned with an asymptotic statement, we can assume q is sufficiently large. As a result,
we can safely ignore the ceiling and floor signs as they do not affect the asymptotic. For the prime
case s “ 1, the construction is very simple: let P “

“

q1{3
‰

ˆ
“

q2{3
‰

. Let L be the collection of

lines `c,d of the form y “ cx ` d with c P rq1{3{2s and d P rq2{3{2s. It is clear that this achieves
IpP,Lq “ Θpq4{3q with |P |, |L| ď q.

For the case s ě 2, we choose our set P to be a product set, P “ AˆB where A,B Ă Fq are both
subspaces. Let g be a primitive element of Fq so t1, g, g2, . . . , gs´1u form a basis of Fq as a vector
space over Fp.

Let b ď s be a positive integer, close to 2s{3, to be specified later. Let a “ s ´ b (the condition
s ě 2 will turn out to be sufficient for a ě 1 which we require). Define

A “ Fp ` g Fp ` g2Fp ` . . .` ga´1Fp

and
B “ Fp ` g Fp ` g2Fp ` . . .` gb´1Fp

and
C “ Fp ` g Fp ` g2Fp ` . . .` gb´aFp .

Notice that |P | “ |A||B| “ q.

Let `c,d Ă F2
q to be the line corresponding to tpx, yq P F2

q : y “ cx` du. Define

L “ t`c,d : c P C, d P Bu .

Given this we can see
IpP,Lq “ |A||B||C| , |L| “ |B||C| .

We want |L| “ Opqq while IpP,Lq “ Ωpq4{3q. Since |A||B| “ q, it suffices to choose b such that

|C| “ p2b´s`1 “ Ωpp
s
3 q , |B||C| “ p3b´s`1 “ Oppsq .

Now if s mod 3 “ 2 then

ZX
„

2s

3
´

1

2
,
2s

3
´

1

3



‰ H.

Hence, we are done by taking b to be the integer in that interval. For, s “ 3k, s “ 3k ` 1 we take
b “ 2k and b “ 2k ` 1 respectively. In s “ 3k case, we have |IpP,Lq “ p4k`1 and |L| “ p3k`1.
The important thing is that although |L| is larger than its desired size by a factor of p, we are also
exceeding the desired |IpP,Lq| lower bound by a factor p. A moment of though reveals that choosing
L1 to be the subset of L of size p3k with maximum number incidences will finish the proof in this
case. The situation in s “ 3k ` 2 case is analogous: if we choose L1 be the the subset of L of size
p3k`1 with the maximum number of incident points from P that will finish the construction.
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6. Concluding remarks

In this work, we initiated the study of CHSHq in the asymptotic setting. We developed the theory
of both quantum and classical values of this family of games, and outlined the connection to the
problem of point-line incidences over finite fields. The fact that CHSHq is a natural problem to
consider in the study of non-XOR games (which is the original motivation of our work as well
as Burhman and Massar’s) while exhibiting intimate connections to above mathematical topics
indicates that this problem deserves further investigation in the future. This is especially boosted
by the fact that guaranteed progress can be made by using better numerical methods to investigate
higher values of q, and also by attempting to quantize the results in arithmetic combinatorics. An
investigation of the extent to which the results in additive and arithmetic combinatorics quantize
could certainly have much further impact beyond the problems considered here.

One goal of our study was to further develop the techniques available for analyzing the entangled
value of non-binary non-local games. We believe that by giving two rather different proofs of
Theorem 1.2, we demonstrated the power of the indirect approach of analyzing non-local games.

Future directions. As discussed previously, Problem 1.5 remains the most clear open problem
given the bounds proved here. As mentioned before, its resolutions is likely to also resolve to Kasher
and Kempe’s problem regarding the security of Bourgain’s two-source extractor in the presence of
entanglement[19]. We can think of two possible routes for resolving this problem: one is by trying to
quantize the arguments in the paper of Bourgain, Katz and Tao [4], and the other is by investigating
the SDP hierarchies of Navascués et al. [23] to see whether they could lead to any improvement
to Theorem 1.2 or lead to tightness results via some rounding scheme. In the hierarchy approach,
it might be useful to keep in mind the rounding scheme of Kempe et al. [20] (though their result
seem more relevant when the game value is close to 1 which is not the case here). Currently, with
some collaborators, we are pursuing the latter direction via the SDP hierarchies.

We finish by recounting the perhaps most intriguing (and rather open-ended) future direction.
This is the question of the extent to which the relatively well-understood theory of XOR games
extends to larger alphabets. A related question is to find a better explanation for the absence of
any analogue of a large alphabet generalization of Tsirelson’s theorem [32] for even slight variants
of non-XOR games (say q-XOR games for q “ 3) in the literature. A better understanding of the
above issues would certainly constitute a major advance in our understanding of two prover games
and non-locality in general.
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A. Information theory background

Here we give a brief account of some definition from Information Theory. We do not require any
knowledge of quantum information theory as the proofs in Appendix B are all based on classical
information theory. The only place where we use some quantum ideas (which we must as Theorem
1.7 is formulated in the quantum setting), is in Theorem B.1 which we borrow directly from
Paw lowski and Winter [25].
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For a random variables X over a domain X , we define the entropy of X as

HpXq “
ÿ

xPX
PrrX “ xs ¨ log

ˆ

1

PrrX “ xs

˙

.

The entropy of a random variable X conditioned on the value of random variable Y is the average
(according to Y ) entropy of random variables X|Y “ y, i.e.

HpX|Y q “
ÿ

yPY
PrrY “ ys ¨HpX|Y “ yq,

where HpX|Y “ yq “
ř

xPX PrrX “ x|Y “ ys ¨ log
´

1
PrrX“x|Y“ys

¯

.

Remark A.1. The above definition is equivalent with the more concise definition of HpX|Y q “
HpXY q ´HpY q.

Now we are ready to define and state the main property of mutual information.

Definition A.2 (Mutual Information). Given random variables X and Y we define their mutual
information via

IpX;Y q “ HpXq `HpY q ´HpXY q “ HpXq ´HpX|Y q “ HpY q ´HpY |Xq.

The main fact that we shall need regarding the mutual information is the following.

Proposition A.3 (Chain Rule). For any random variables X,Y, Z,W we have

IpX;Y Z|W q “ IpX;Y |W q ` IpX;Z|Y,W q.

For a more detailed introduction to information theory as well as the proof of the above claims, we
recommend the early chapters of [10].

B. Pairwise independent Information Causality

In this section we prove Theorem 1.7 resolving the main open problem of [25]. Our starting point
is the original theorem of Paw lowski and Winter which is the binary version of our result.

Theorem B.1 (PW). Assume in the information causality game of Definition 1.6, Alice’s input
X “ pX1, X2, . . . , Xnq is drawn from an unbiased pairwise independent distribution. Assume Alice’s
message to Bob α and output of Bob Z have both only two outcomes. We have

N
ÿ

i“0

IpXi;Z|b “ iq “ Op1q .

The main idea for proving this theorem is to reduce the sizes of alphabets of Bob’s output and
Alice’s message (to Bob)—while keeping a control of the information theoretic quantities of interest.
We do this in two steps: first, we relax the assumption on the alphabet size of Bob’s output Z, and
then we relax the assumption on the alphabet size of the message α.
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Proposition B.2. Assume in the information causality game of Definition 1.6, Alice’s input X “

pX1, X2, . . . , Xnq is drawn from an unbiased pairwise independent distribution. Assume Alice’s
message to Bob α has only two outcomes. Let Λ be the alphabet for Bob’s output Z. Then,

N
ÿ

i“0

IpXi;Z|b “ iq “ Op|Λ|q.

Note that what makes this alphabet reduction not so immediate is the fact that IpX;Z1Z2 . . . Zkq ě
m does not imply a lower bound on maxitIpX;Ziqu. The idea of alphabet reduction is as follows:
We imagine Bob, after doing his measurement and getting some output Z P Λ, performs a post-
processing on Z to produce a binary output Zbin. This Zbin will be only a function of Z and his
input b, and will satisfy

IpXi;Zbin|b “ iq ě
IpXi;Z|b “ iq

|Λ|
.

This establishes the desired result since
řn
i“1 IpXi;Zbin|b “ iq is at most a constant by Theorem

B.1. In order, to define Zbin as a function of Z and b to satisfy the above property, we need the
following lemma.

Lemma B.3. Let X and Y be two discrete random variables. Let Y take values in some domain
B and assume X to be uniform on its domain A. Then there exists a function f : B Ñ t0, 1u such
that

IpX; fpY qq ě
IpX;Y q

|B|
.

Proof. Let s be the ratio of the mutual information between X and Y , and the entropy of X.

IpX;Y q “ sHpXq ñ HpX|Y q “ p1´ sqHpXq .

For any j P B, define rj “ PrrY “ js and tj “
HpX|Y“jq
HpXq . Notice that since

ř

jPB rj “ 1 we have

HpX|Y q “ p1´ sqHpXq “
ÿ

jPB
rjtjHpXq “ HpXq ´

ÿ

jPB
p1´ tjqrjHpXq .

Hence, there exists j˚ P B such that rj˚p1 ´ tj˚q ě
s
|B| . Define the function f : B Ñ t0, 1u to be

everywhere zero expect at j˚. We have

HpX|fpY qq “ PrrfpY q “ 0sHpX|Y ‰ j˚q ` PrrfpY q “ 1sHpX|Y “ j˚q .

Since X is unbiased over its domain, the first term is bounded by p1´ rj˚qHpXq. The second term
is equal to rj˚tj˚HpXq. Adding these two terms and using the choice of j˚ it follows that

HpX|fpY qq ď HpXq ´ rj˚p1´ t
˚
j qHpXq ď HpXq

ˆ

1´
s

|B|

˙

,

which using the definition mutual information is seen to be the desired result.
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To prove Proposition B.2, for i P Λ we let fi : Λ Ñ t0, 1u be given by the above lemma applied to
Xi and Z which is applicable since Xi is unbiased. We let Zbin “ fipZq. By Theorem B.1 it follows
that

n
ÿ

i“1

IpXi;Zbin|b “ iq “ Op1q .

On the other hand IpXi;Z|b “ iq ď IpXi;Zbin|b “ iq|Λ| by the above lemma. Hence we are done
with Proposition B.2. Finally, we prove Theorem 1.7 by a reduction to the above proposition.

Consider any protocol C for the information causality game in the setting of Theorem 1.2. From C,
we produce an auxiliary protocol C˚ with only a binary message (from Alice to Bob). By applying
Proposition B.2 to C˚ we prove the result. In C˚ the binary message sent from Alice to Bob is
denoted αbin, and Bob’s output is denoted by rZ. C˚ is defined as follows: Before even receiving
their inputs, Alice and Bob use shared randomness to “guess” α which Alice was going to send
to Bob in the original protocol C. Let that guess be α P Σ. Bob then proceeds with the original
protocol treating α as the message that Alice intended to send him in the original protocol C. By
following the original protocol, he produces a Z P Λ. Alice given her input makes the appropriate
measurement on her system according to the recipe given in C producing some α P Σ. She checks
if α “ α in which case she sends αbin “ 1 to Bob; otherwise she sends αbin “ 0. If Bob receives
αbin “ 1, he sets rZ “ Z, and outputs rZαbin. On the other hand, if he receives αbin “ 0, he discards
Z, and produces a completely random rZ. He again outputs rZαbin. The choice that Bob outputs
αbin as well as rZ is for technical convenience. In any case, this only increases the output size of
Bob in C˚ from |Λ| to 2|Λ|, which only slightly affects the constant in Op¨q in Theorem 1.7. Now
let us fill the rest of the details.

Proof of Theorem 1.7. The setup as usual is the following: Alice’s input X “ pX1, X2, . . . , Xnq

is taken from an unbiased pairwise independent distribution. Given her input, Alice makes a
measurement on her system and sends α to Bob where α P Σ. Bob, given his input b “ i P rN s
and α, outputs a Z P Λ. Given any protocol C for the above, consider C˚ which reduces the
communication to binary according to the recipe described above: so the message would be αbin
and Bob’s output rZαbin.

Now by the chain rule,

IpXi;αbin rZ|b “ iq “ IpXi;αbin|b “ iq ` IpXi; rZ|b “ i, αbinq .

So we have
IpXi;αbin rZ|b “ iq ě IpXi; rZ|b “ i, αbinq .

We know
řn
i“1 IpXi;αbin rZ|b “ iq “ Op|Λ|q by Proposition B.2. Because in this situation Alice only

communicates a bit αbin to Bob who outputs rZαbin which has alphabet size 2|Λ|.

Now we want to analyze the term IpXi; rZ|b “ i, αbinq. First notice that the event b “ i is indepen-
dent of the random variable αbin because αbin is produced entirely on Alice’s side. Hence,

Prrαbin “ 1s “ Prrαbin “ 1|b “ is

Now conditioned on αbin “ 0, rZ is chosen completely at random. Hence,

IpXi; rZ|b “ i, αbin “ 0q “ 0 .
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This proves that

IpXi; rZ|b “ i, αbinq “ Prrαbin “ 1sIpXi; rZ|b “ i, αbin “ 1q .

Conditioning on αbin “ 1 is independent of Xi as one can imagine that Alice first produces α
using the original protocol, and then selects α P Σ uniformly at random. Since α is completely
independent of everything else we see that the event αbin “ 1 is independent of Xi. The only effect
of conditioning on the event αbin “ 1 is that the joint distribution of pXi, rZq becomes the same
as the joint distribution of pXi, Zq. This means that this conditioning reduces us to the case of
original protocol C where α P Σ was communicated in its entirety. Hence, we have

IpXi; rZ|b “ i, αbin “ 1q “ IpXi;Z|b “ iq.

Noticing that Prrαbin “ 1s “ 1
|Σ| and using

n
ÿ

i“1

IpXi;αbin rZ|b “ iq “ Op|Λ|q ,

we get our desired result
N
ÿ

i“0

IpXi;Z|b “ iq “ Op|Σ||Λ|q .

C. Reduction to distributed nonlocal computation

Here we give an alternative proof of Theorem 1.2 by establishing a higher alphabet variant of
powerful result of Linden et al. [22]. The main result of their work is that for a certain broad
class of games, quantum and classical strategies are equivalent in their power. This class of games,
called distributed non-local computation games, is defined as follows.

Definition C.1. Let f : Fn2 Ñ F2 be any function and D any distribution on Fn2 . In the 2-party
non-local computation of pf,Dq, Alice receives x P Fn2 uniformly at random and Bob receives

y
def
“ z ´ x where z is chosen according to D. Alice and Bob succeed if their outputs α, β P F2

satisfy α` β “ fpzq.

Theorem C.2 (Linden et al.). For any binary distributed computation problem S, given by pf,Dq,
the entangled value and the classical value of the game coincide to the best linear approximation of
f .

ω˚pSq “ ωpSq “ max
lPL

Pr
zPD
rfpzq “ lpzqs ,

where L “ tl : Fn2 Ñ F2 | lpx` yq “ lpxq ` lpyqu is the set of all linear functions.

Now we can naturally define the distributed version of the CHSHq game following the above recipe.

Definition C.3. In CHSHdist
q , Alice and Bob receive pα, γq P F2

q and pβ, δq P F2
q . Their objective is

to produce outputs a and b satisfying a` b “ pα` βqpγ ` δq.
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Any strategy P for CHSHq results in a natural strategy Pdist for CHSHdist
q as follows: assume Alice

and Bob have a strategy P succeeding in CHSHq game with probability pwin “ 1{q ` E pq ´ 1q{q.
In Pdist, first Alice and Bob use P on inputs pα, δq to produce a1 and b1, and then use P for a
second time to produce a2 and b2 for inputs pγ, βq. Finally Alice outputs a “ a1 ` a2 ` αγ, and
Bob outputs b “ b1 ` b2 ` βδ.

We have the following proposition about Pdist which is straightforward to establish.

Proposition C.4. Let P be a regular protocol for CHSHq with bias E. Let Pdist be the resulting
distributed protocol obtained through above procedure from P. The winning probability of Alice and
Bob in the protocol Pdist has bias E2, i.e. we have

pwin “
1

q
`
q ´ 1

q
E2 .

Moreover, the resulting protocol for CHSHdist
q is itself regular.

The fact that Pdist is regular when P is regular because of the symmetry all elements of F˚q . To see

the statement about the winning probability of Pdist , notice that P˚ succeeds if and only if the
type of errors produced in two uses of P in Pdist give errors of opposite sign. Hence, the following
calculation confirms the above proposition.

ˆ

1

q
`
q ´ 1

q
E

˙2

`

q
ÿ

k“1

ˆ

1

q
´
E

q

˙2

“
1

q
`
q ´ 1

q
E2 .

Because of Proposition C.4, it suffices to prove an upper bound of 2{q ´ 1{q2 for the winning
probability of regular strategies in CHSHdist

q to finish the proof of Theorem 1.2. Notice that, as
hinted before, this value is exactly the winning probability achieved by the trivial strategy in which
both players just output 0. This can be seen to be the best linear approximation to the polynomial
fpx, yq “ xy which is aligned with the philosophy of Linden et al. [22] on equivalence of quantum
and classical players for the distributed version of the game.

Now we proceed to the proof of Theorem 1.2. For simplicity, throughout this proof we shall assume q
is a prime. However, essentially the same argument works in general with some small modifications
mentioned at the end of the section. First we need the following lemma.

Lemma C.5. Let ω be a qth primitive root of unity. For any set of unit vector ux, vy P Cn we have

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x,y

ω´xyxux, vyy

ˇ

ˇ

ˇ

ˇ

ˇ

ď q3{2 . (1)

Proof. Since the discrete Fourier transform matrix Hx,y “
1?
qω
´xy is unitary it follows that for any

f : Fq Ñ C and g : Fq Ñ C then

ˇ

ˇ

ˇ

ÿ

x,y

ω´xyfpxqgpyq
ˇ

ˇ

ˇ
ď
?
q}f}2}g}2 .
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Here we used Cauchy-Schwarz inequality between f̂pyq and gpyq. To finish the proof of the lemma,
we apply the above fact to the n coordinate functions fi, gi : Fq Ñ C defined by fipxq “ uxpiq and
gipxq “ vypiq. Combining that with another Cauchy-Schwarz we get

ˇ

ˇ

ˇ

ÿ

x,y

ω´xyxux, vyy
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ÿ

i,x,y

ω´xyfipxqgipyq
ˇ

ˇ

ˇ

ď
?
q

n
ÿ

i“1

¨

˝

ÿ

xPFq

|uxpiq|
2

˛

‚

1
2
¨

˝

ÿ

yPFq

|vypiq|
2

˛

‚

1
2

ď
?
q

˜

ÿ

i,x

|uxpiq|
2

¸
1
2
˜

ÿ

i,y

|vypiq|
2

¸
1
2

“ q3{2 .

We also need the following convenient notation for quantifying the probability of different types of
error.

Notation C.6. We let pk “ Pra,bÐPdistra ` b “ k ` pα ` βqpγ ` δqs according to Pdist (defined
after definition C.3).

Proof of Theorem 1.2. Let ω be a primitive qth root of unity. First notice that since p0 “
1
q`

q´1
q E2

and pk “
1
q ´

1
qE

2 for k P F˚q , it follows that

q´1
ÿ

k“0

pk ω
k “ E2 `

ˆ

1

q
´
E2

q

˙ q´1
ÿ

k“0

ωk “ E2. (2)

Denote by x “ pα, γq the input of Alice, and by y “ pβ, δq the input of Bob. Let P ax and Qby
be the measurement operators for Alice and Bob given inputs x and y. Define Ux “

řq´1
a“0 ω

aP ax
and Vy “

řq´1
b“0 ω

bQby. Since we have not assumed any bound on the dimension of Alice and Bob’s

system, we can assume the operators P ax and Qby are projections. This implies that the operators
Ux and Vy’s are unitary. Now we have

E2 “

q´1
ÿ

k“0

pkω
k “

q´1
ÿ

k“0

E
x,y

»

–

ÿ

a`b“k`xy

xψ|P ax bQ
b
y|ψy

fi

fl ωk

“ xψ|| E
x,y

»

–

q´1
ÿ

a,b“0

ωa`b´xyP ax bQ
b
y

fi

fl |ψy

“
1

q2

ÿ

x,yPF 2
q

ω´xyxψ|Ux b Vy|ψy

“
1

q2

ÿ

x,yPF 2
q

ω´xyxux|vyy,
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where U :x b I|ψy “ |uxy and I b Vy|ψy “ |vyy are unit vectors. So Lemma C.5 implies E ď 1?
q

which establishes the desired result.

General prime powers. In the above discussion we assumed q was a prime. Here we present
the slight modifications necessary in the more general case of q “ ps with s not necessarily 1.

Suppose we have a function χ : Fq Ñ C with the following properties:

1. For all x P Fq we have |χpxq| “ 1.

2. χpx` yq “ χpxqχpyq.

3.
ř

xPFq
χpxq “ 0.

Now if we replace the function x ÞÑ ωx with x ÞÑ χpxq in our argument we claim that the argument
goes through exactly the same as before. To check this, first note that the q ˆ q matrix Mxy “
1?
qχpxyq is again unitary. This is because for any y ‰ y1 P F˚q we have

ÿ

xPFq

Ğχpxyq ¨ χpxy1q “
ÿ

xPFq

χpxpy1 ´ yqq “ 0,

where we used the second and third properties of χ. This establishes that the analogue of equation
(1) holds.

Next note that the main property we used in equation (2) was the fact that
ř

kPFq
χpkq “ 0 which

again holds here. Similarly, from the fact that |χpaq| “ 1 it follows that operators of the form
Ux “

ř

aPFq
χpaqP ax are again unitary. It is easy to check the rest of our calculations are similarly

valid given properties 1-3 of χ.

Finally, we shall note that a function such as χ is easy to construct using an additive isomorphism
between Fq and Fsp where p is the characteristic of q “ ps. 11

D. Projective transforms and the classical value of CHSHq

The goal of this section is to give a proof of Lemma 5.3. To do so we need to introduce some
basic concepts from projective geometry. The major advantages of working over the projective
plane as opposed to the affine plane for our purposes here is that firstly, the duality between points
and lines becomes quite transparent and clean over the projective plane, and secondly (and more
importantly), it turns out that set of projective transformations, while still preserving the point-line
incidence structure, is much larger and richer than the group of affine transformations.

Recall that the points of the projective plane PF2
q are given by the triples px : y : zq, with at least

one coordinate non-zero, where we identify any two points px : y : zq and pλx : λy : λzq for λ P F˚q .
The lines in the projective plane are given by triples pl : m : nq consisting of all point px : y : zq
satisfying lx `my ` nz “ 0. Hence, PF2

q consists of a total of q2 ` q ` 1 points and lines, where
each line contains q ` 1 points, and similarly each point is contained in q ` 1 lines. One can go

11A particularly common choice is ωTrp¨q where ω is pth root of unity and Trp¨q denotes the trace function given by

α ÞÑ α` αp
` . . .` αps´1

which can be shown to be a map from Fq to Fp.
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from the projective plane to the affine plane by discarding all the points on the “line at infinity”,
which consists of points of the form pa : b : 0q. Any point remaining can then be put in the form
pa : b : 1q which corresponds to the point pa, bq of the affine plane. Two points lying on the same
a vertical line in the affine plane are pa : b : 1q and pa : b1 : 1q. These lie on the projective line
p1 : 0 : ´aq. These projective lines all go through the point p0 : 1 : 0q, or the “vertical infinity”.

Next we describe the concept of a projective transformation. Any 3ˆ3 invertible matrix A induces
a map on PF2

q by its action on F3
q . Two matrices A and B induce the same action on PF2

q , if they
are related to by A “ λB by some λ P F˚q . Each element of this equivalence class represents a
projective transformation on the projective plane.

Now we are almost ready to prove Lemma 5.3. The main idea of the proof is to start from the given
sets of points P and lines L with large IpP,Lq which possibly are far from satisfying the conditions
of Fact 1.4 and apply a projective transformation. After, this we discard some of our points and
lines so that the hypothesis of Fact 1.4 is satisfied. We argue that a good portion of our incidences
would remain after the above deletion process finishing the proof. The details are as follows.

Proof of Lemma 5.3. Let P and L in PF2
q be the set of points and lines given by the hypothesis.

In the argument we shall operate under the assumption that |P |, |L| ď q
2 . Indeed, one can cut the

sizes of P and L by any constant factor without losing much in |IpP,Lq| as follows: first we shrink
|P | by keeping the q

2 points with the most number of incident lines—which shrinks |IpP,Lq| only

by a factor of 2|P |
q “ Op1q factor—and after keeping those lines with the most number incident

points (among the q
2 size points that we kept).

Now we apply a random projective transformation to PF2
q which can be seen to be equivalent to

the following operation: Take a line l from all q2` q`1 lines in PF2
q uniformly at random to be the

new line at the infinity. Choose a random point on l to be the new vertical point at infinity (and
a random points from the remaining q points on the line at the infinity to be the new horizontal
point at infinity, but this latter point plays no role for us). Next we discard all but a single line
from any subset of L that are parallel after this operation. Similarly, we discard all but one point
from any set of points in P that are on the same vertical line after this operation. We also discard
any point of P on the new line at infinity; this puts us back in the case of the affine plane F2

q . Let
P 1 and L1 be the set of points and lines in F2

q obtained after the above operation. To finish the
proof, it suffices to show that in expectation P 1, L1 and IpP 1, L1q would remain within constant
factors of their original sizes.

Let us first compute the probability that two given lines `1 and `2 have the same slope. If we
choose a random line as `8, two lines will have the same slope if they intersect the line `8 at the
same point. The probability of this event for a specific pair of lines is 1{pq ` 1q (assuming that
neither is the line at infinity), as this happens exactly when `8 intersects `1 at the same point that
`2 intersects `1. We now compute the probability that a given line survives. The probability that

it is not the line at infinity is q2`q
q2`q`1

, and given that it is not the line at infinity, it is eliminated

with probability at most q´1
2pq`1q , since there are q´1

2 other lines that could eliminate it by having

the same slope. This gives a total probability that it is eliminated of qpq`3q
2pq2`q`1q

ă 1
2 . This shows

that the expected number of lines that survive is at least q`1
4 .

We next need to analyze the effect of choosing the point at vertical infinity at random and throwing
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out points lying on the same vertical line. The argument is analogous to the above. Again, the
probability that a given two points lie on a vertical is 1{pq` 1q. The probability that a point is not

on the line at infinity is q2

q2`q`1
. By the same argument as before, we have that the expectation

that a given point survives is at least q2pq`3q
2pq2`q`1qpq`1q

. Thus, the expected number of points that

survive is also Θpqq. Furthermore the process of throwing out points and the process of throwing
out lines are independent. Thus, the probability that we keep a point-line incidence is at least Ωp1q
which finishes the proof.
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