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Efficient Grounding of Abstract Spatial Concepts for Natural
Language Interaction with Robot Manipulators

Rohan Paul1, Jacob Arkin2, Nicholas Roy1 and Thomas M. Howard2

Abstract—Our goal is to develop models that allow a robot
to understand natural language instructions in the context of
its world representation. Contemporary models learn possible
correspondences between parsed instructions and candidate
groundings that include objects, regions and motion constraints.
However, these models cannot reason about abstract concepts
expressed in an instruction like, “pick up the middle block in
the row of five blocks”. In this work, we introduce a probabilistic
model that incorporates an expressive space of abstract spatial
concepts as well as notions of cardinality and ordinality. The
graph is structured according to the parse structure of language
and introduces a factorisation over abstract concepts correlated
with concrete constituents. Inference in the model is posed as an
approximate search procedure that leverages partitioning of the
joint in terms of concrete and abstract factors. The algorithm
first estimates a set of probable concrete constituents that
constrains the search procedure to a reduced space of abstract
concepts, pruning away improbable portions of the exponentially-
large search space. Empirical evaluation demonstrates accurate
grounding of abstract concepts embedded in complex natural
language instructions commanding a robot manipulator. The
proposed inference method leads to significant efficiency gains
compared to the baseline, with minimal trade-off in accuracy.

I. INTRODUCTION

Advances in autonomy have allowed robots to enter our
factories, workplaces and homes where effective communica-
tion between humans and robots is vital. Natural language
provides a rich, intuitive and flexible medium for humans
and robots to interact and share information. Hence, a robot
operating alongside humans must possess the ability to infer
intent, task constraints and workspace knowledge conveyed in
natural language instructions.

The problem of assigning meaning or “grounding” natural
language instructions is challenging due to the complexity
of concepts expressed via human language and the diversity
of workspaces the robot may be operating in. Significant
progress has been made in the development of probabilistic
models [1]–[5] that associate natural language instructions
(noun, preposition and verb phrases) with semantic entities in
the world (objects, regions and actions). State of the art models
pose the grounding problem as inference on a probabilistic
graph and can successfully infer groundings and hence plans
from instructions such as “put the pallet on the the truck” or
“pick up the block on the table”.
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Fig. 1: Robot following the instruction, “pick up the middle block
in the row of five blocks on the right”. The grounding for an
aggregative concept (“rows”) is abstract and linked with the ex-
pression of constituent concrete groundings (“blocks”). The space of
abstract concepts is exponentially-large in the number of constituents,
17.3×106 symbols in this setup. We present a probabilistic model to
efficiently ground abstract concepts in natural language instructions.

The expressiveness of contemporary models is restricted to
concrete entities that partition the robot’s state-action space. A
key limitation is the lack of a notion of abstractions, pervasive
in human language. Consider the following instructions, “pick
up the second block from the row of blocks”, “keep visible
the circle of vehicles”, “exit through the third door” or “clear
the group of blocks in front” etc.

In this work, we present the Adaptive Distributed Corre-
spondence Graph (ADCG) model that incorporates a gener-
alised space of groundings encompassing abstract concepts.
Abstractions are expressed as hierarchical groundings that are
probabilistically linked to the expression of concrete con-
stituents. The model also incorporates notions of cardinality
(“one”, “two”, “three” etc.), ordinality (“fifth”, “sixth”, “sev-
enth” etc.) or spatial references (“farthest”, “nearest”, “left-
most” etc.) for resolving constituents within abstract concepts.
The joint distribution factorises both according to the parse
structure of the input language and hierarchically over abstract
and concrete factors. Training is accomplished in a data-
driven manner using predictors based on spatial, language and
contextual grounding cues.

A key technical challenge is efficient inference in the
proposed model since the domain of abstract groundings
grows exponentially in the number of concrete groundings.
We present an approximate search procedure that orders
factor evaluations such that likely concrete hypothesis are
estimated first. Conditioned on expressed concrete groundings



a reduced space of probable abstract concepts is determined,
pruning away improbable portions of the search space. The
abstract grounding variables in the model render the individual
concrete groundings conditionally independent of the other
groundings in the model. This permits an adaptive instanti-
ation of a reduced probable search space of abstract symbols
conditioned on likely concrete constituents, making efficient
approximate inference possible.

We evaluate the model using a corpus consisting of simu-
lated scenes from a manipulation domain paired with language
descriptions obtained from a user study. Results demonstrate
effectiveness in learning abstract concepts and successfully
grounding commands possessing nested and composed ab-
stract references. Empirical evaluation reveals significantly
lower runtime for the model with equivalent accuracy com-
pared to the state of the art baseline. The system was also
deployed on a Baxter Research Robot.

II. GROUNDING NATURAL LANGUAGE INSTRUCTIONS

The task of grounding natural language instructions involves
assigning “meaning” to input phrases in the context of the
robot’s world model and action space. Let (Υ) denote the
physical workspace of the robot that aggregates metric and
semantic information about constituent objects. The set of
groundings (Γ) consists of a set of symbols that correspond
to semantic notions such as objects, locations, regions, paths
or actions the robot can take. It is common to associate noun
phrases with objects, prepositional phrases with regions and
verb phrases with a set of actions or motion constraints. For
example, the set of groundings for the instruction “pick up the
block on the table” include objects for phrases “the block” and
“the table”, “on” is interpreted as a region above the “table”
object and “pick up” determines the intended grasp action to
be executed by the robot. The input instruction (Λ) consists
of a set of phrases {λ1, λ2, . . . , λn} determined from a parse
tree τ(Λ). The grounding problem is posed as estimating the
likely set of groundings Γ = {γ1, γ2, . . . , γn} for the input
instruction:

arg max
γ1...γn∈Γ

p(Γ|Λ,Υ). (1)

Contemporary techniques like Generalised Grounding
Graphs (G3) [2] model Equation 1 as inference on a fac-
tor graph structured according to the parse structure of the
input instruction. Binary correspondence variables (φi) ex-
press likely association between a phrase (λi) and candidate
grounding (γi). The model assumes conditional independence
between groundings for a phrase given child groundings (Γci

)
permitting factorisation across phrases. Probable groundings
are determined by maximising the conditional likelihood of
true correspondences while sampling over the unknown can-
didate groundings:

arg max
γ1...γn∈Γ

|N |∏
i=1

p(φi = True|γi, λi,Γci
,Υ). (2)

The Distributed Correspondence Graph (DCG) [6] model,
discretises the continuous space of groundings as regions and
motion constraints, ameliorating the need to sample trajecto-
ries or locations. Correspondence variables (φij) relate the ith

phrase (λi) with the th grounding constituent (γij). The model
distributes grounding constituents as conditionally independent
factors and structures inference as a search over unknown
correspondences:

arg max
φij∈Φ

|N |∏
i=1

|C|∏
j=1

p(φij |γij , λi,Φci
,Υ). (3)

The factor graph representation appears in Figure 2(a).
Contemporary approaches only model concrete entities in
the world model and hence implicitly assume a flat non-
hierarchical space of groundings. This representation is in-
sufficient for grounding spatial abstractions whose meaning
is interpreted hierarchically in terms of concrete constituent
entities. In this work, we develop a probabilistic model that
can reason about abstractions. We proceed by formulating a
generalised space of groundings in the next section followed
by the graphical model in Section IV.

III. GENERALISED SPACE OF GROUNDINGS

In this section, we develop a symbolic representation of the
robot’s state-action space including notions of spatial abstrac-
tions. The symbol set represents the space of groundings (Γ)
in which the input language instruction (Λ) is interpreted.

A. Concrete Groundings

A set of concrete symbols model constituents of the robot’s
state-action space. The robot’s workspace is represented as
the set of objects (O) within perceptual view, each possessing
geometric, appearance and pose information. The set (L)
denotes semantic labels (“red block”, “robot hand”, “table”
etc.) typically classification outputs from a perception system.
We assume that the robot is capable of executing a set of
manipulation actions (“pick”, “place”, “clear” etc.) forming
the set (∆) parameterised by the objects under consideration.
Next, we introduce the following sets of grounding symbols
that range over objects, labels and actions: ΓO = {γoi |oj ∈
O}, ΓL = {γli |li ∈ L} and Γ∆ = {γαi |αi ∈ ∆}.

Further, we assume the presence of spatial references (“left”,
“center”, “behind” etc.) denoted by the set (S). We also
incorporate notions of cardinality (“two”, “three”, “four” etc.)
and ordinality (“fifth”, “sixth”, “seventh” etc.) represented as
the sets (χ) and (H) respectively. We associate the concrete
entities defined above with the set of grounding symbols
defined as: ΓS = {si|si ∈ S}, Γχ = {κi|κi ∈ χ} and
ΓH = {hi|hi ∈ H}.

The set of concrete groundings is sufficient capture ground-
ings for phrases such as “four blocks”, “fifth item on the
left”, “pick up the red block” etc. The union of symbol set
cumulatively forms the space of concrete symbols (ΓC) as:

ΓC = {ΓO ∪ ΓL ∪ ΓH ∪ Γχ ∪ ΓS ∪ Γ∆}. (4)
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Fig. 2: Factor graph representations. Input instruction is parsed into (N ) phrases where (λl) represents a child phrase for parent (λi).
Superscripts (C) and (A) denote concrete and abstract variables. Unknown variable nodes appear in grey. (a) The DCG model includes
concrete correspondences (“objects”, “regions”, “actions” etc.) conditioned on child correspondences relating phrases with groundings. (b)
The proposed ADCG model introduces factors for abstract concepts (“rows”, “columns”, “groups” etc.) that are hierarchically linked with
concrete groundings and correspondences from child phrases. (c) The approximate ADCG model used in inference. A reduced space of
abstract factors (Â) is selectively instantiated based on the expressed distribution for concrete groundings (dashed line) given child context.

B. Abstract Groundings

Abstractions are introduced as hierarchical symbols ex-
pressed as an aggregation of constitutent concrete symbols.

This includes the notion spatial aggregations or containers
(“rows”, “columns”, “groups”, “towers” etc.) conveyed in
instructions like “the column of red blocks”. The set of
containers (η) is formed as a subset of objects (Oj ⊆ O)
possessing a common spatial characteristic (“linearity”, “cir-
cularity”, “directivity” etc. ) denoted by the set (Σ):

η = {(σi,Oj)|σi ∈ Σ,Oj ⊆ O}. (5)

The induced space of grounding symbols for abstract con-
tainers is expressed as Γη = {γ(σj ,Ok)|(σj ,Ok) ∈ η}. Note
that the number of possible containers is (|Σ| × |P(O)|),
where P denotes the power set. Hence, the symbol space of
containers and associated regions is exponential O(2NO ) in
the number of objects populating the world model.

Another category of hierarchical symbols model attributes
associated with objects or containers. Consider the phrase,
“the middle block” in the instruction depicted in Figure 1.
The phrase grounding relates an object label (“block”) with an
abstract spatial reference (“middle”), that can be considered an
associated attribute. Such symbolic aggregations are abstract,
i.e., cannot be physically grounded to an object until it is
composed with a phrase like, “in the row” that provide context.
Additionally, abstract attributes can include index information,
for example, “the fifth block from the left”. We define abstract
object attributes ΠO as:

ΠO = {(li, κj , hk)|li ∈ L, κj ∈ χ, hk ∈ H}. (6)

Attributes can also be expressed in the context of containers,
for example, “the seven blocks in front” that associate index
(“first”) and cardinal (“seven”) symbol with a collection of
objects (“blocks”) till contextual symbols are grounded to
provide reference. The notion of abstract container attributes
is defined as:

Πη = {(li, hj , sk)|li ∈ L, hj ∈ H, sk ∈ S}. (7)

The corresponding grounding sets, ΓΠO and ΓΠη are in-
cluded as: ΓΠO = {γ(li,κj ,hk)|(li, κj , hk) ∈ ΠO} and ΓΠη =
{γ(li,hj ,sk)|(li, hj , sk) ∈ Πη}. Further, the set of spatial rela-
tions associated with containers (“center of a ring” or “right-
side of the column”) are included as: ΓRη = {γsi(σj ,Ok)|si ∈
S, (σj ,Ok) ∈ η}. The symbolic representation presented
above forms the space of abstract groundings (ΓC):

ΓA = {Γη ∪ ΓΠO ∪ ΓΠη ∪ ΓRη}. (8)

C. Space of Groundings
The concrete and abstract symbol spaces collectively form

the generalised space of groundings (Γ = ΓC ∪ ΓA). The size
of the concrete grounding space grows linearly as O(NO).
However, the space of abstract groundings is exponentially
large in the number of concrete symbols O(2|C|). This is deter-
mined primarily by the number of possible abstract containers
O(2NO ) growing exponentially with NO.

This poses a significant challenge as the robot manipulator
may be operating in complex environments possessing a large
number of objects with diverse spatial layouts. Even in a
simplistic block world setup with 20 objects, Figure 1, results
in an abstract search space that includes 17.3 million symbols.
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Fig. 3: Approaches for modelling abstract concepts. (a) Introduction
of a joint factor between concrete correspondences (φC) or (b) Inclu-
sion of abstract correspondence variables (φA), each associated with a
unique subset of true concrete correspondences. An abstract variable
(φAik) acts as an indicator for an expressed concrete aggregation {φCl1
. . .φClm}. Note that given the knowledge of an abstract grounding
(φAlk), a parent correspondence (φi) is independent of the set of
concrete correspondences {φCl1, . . .φClC}. This decorrelation allows
significant reduction in factor training and inference complexity.

IV. INFERENCE OVER THE PROBABILISTIC MODEL

This section presents the Adaptive Distributed Correspon-
dence Graph (ADCG) model that incorporates the expressive
symbol space introduced previously. This is followed by a
description of the log-linear model and features that enable
learning of abstract concepts from spatial and language cues.
We then address the crucial issue of efficient inference in the
exponentially-large space of abstract symbols and describe the
generation of a reduced adaptive abstract search space.

A. Variables

Estimating the likely correspondences (Φ) between the input
natural language instruction (Λ) and the generalised space
of groundings (ΓC ∪ ΓA) is posed as inference on a factor
graph. Following the DCG formulation (Section II) concrete
correspondence variables (φ

C
ij) are introduced that relate a

phrase (λi) with concrete groundings (γ
C
ij).

Next, we introduce abstract concepts as hierarchical sym-
bols correlated with concrete groundings. All possible aggre-
gations of concrete groundings constitute the space of abstract
concepts. Figure 3(a) illustrates an approach for modelling this
relationship by introducing a shared factor between all con-
crete correspondences. Although, the factor captures the joint
association of concrete groundings it loses distinguishability
in resolving multiple aggregative groundings. For example, a
phrase like, “the first two blocks in the row” and “the third
farthest blocks in the column” would ground to a set of five

expressed objects without expressing the semantics of being
associated with a container. Further, grounding a hierarchically
linked phrase such as, “the middle block in the row” would
necessitate reasoning jointly about the full set of objects as
well as references to a subset within the collections.

This motivates the inclusion of explicit abstract grounding
variables (γ

A
ik) and correspondences (φ

A
ik), Figure 3(b). Each

variable expresses a unique subset of concrete correspon-
dences. Although, this representation has the same expres-
siveness as before, it has the advantage that the abstract
correspondences act as indicator functions distinguishing each
expressed aggregation. Further, conditioning on the abstract
variable, a hierarchically linked grounding, like “the middle
block” is de-correlated with the joint distribution over concrete
constituents. This reduces the complexity of factor training
at the expense of introducing more grounding factors (which
we address this in the next section). The set of abstract
correspondence variables form a Markov boundary for the
concrete correspondences.

B. Factorisation

Factors in the model are partitioned as concrete and abstract.
Each factor relates unknown correspondences, an input phrase
and a probable grounding as well as the set of correspon-
dences from child phrases. Let the variable sets (ΦC

ci ) and
(ΦA

ci ) denote concrete and abstract correspondences for all
child phrases for the parent phrase (λi). Conditioning the
concrete factor on (ΦC

ci ) allows grounding of concrete objects
that possess pairwise relationships, e.g. “near the red block
and blue block” whereas the set (ΦA

ci ), provides context for
grounding a constituent element referenced as “the farthest
block in the group”.

An abstract factor links the input phrase with correspon-
dences related to abstract groundings. Let the variable set
(ΦC

i) denote the concrete correspondences for the current
phrase. The set cumulatively represents concrete groundings
inferred from child context for the current phrase. Each
abstract factor is shared with (ΦC

i), expressing the correlation
of a hierarchical abstract grounding with the set of concrete
groundings, e.g. “column of blocks on the right”. The links
connecting the abstract factors between parent and child
phrases facilitate reasoning over relationships between abstract
groundings,“between the row and the column”.

The above construction is followed for each parent and
child phrase resulting in the full grounding graph structured
according to the parse tree of the input instruction. The
model distributes conditionally independent grounding ele-
ments across multiple factors for input phrases. Concrete cor-
respondences phrases are considered independent given child
groundings and conditioned on the concrete groundings for a
phrase. The abstract correspondences are independent given
the concrete groundings and child groundings. The grounding
elements are known and the model searches over unknown
correspondences. Figure 2(b) presents the factor graph. The
distribution joint distribution is modelled as a product of factor
potentials (Ψ) given as:
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i=1

( |C|∏
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(9)

C. Factor Potentials

The factors in the model are are evaluated using a log-
linear model. Each factor potential (Ψ) is expressed as a
linear combination of binary feature functions (fl) predicting
association between the constituent variables. The feature
weights (µl) are learned using a labeled corpus.

ψ(φ
A
ik, γ

A
ik, λi, {Φ

C
i ∪ΦC

ci ∪ΦA
ci},Υ)=

exp
∑
l µlfl(φ

A
ik,γ
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C
i∪ΦC
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∪ΦA
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},Υ)∑
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∑
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A
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A
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C
i∪ΦC
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∪ΦA

ci
},Γ

A
cik

},Υ)

(10)

A set of geometric features are introduced that capture
spatial characteristics of object aggregations in the workspace.
These included shape likelihood (inlier fraction), model fit
(statistics for deviation from a linear fit), element coherence
(uniformity of object types in the aggregation), separation
(inter-element distances), ordering (relative positioning among
constituent elements), orientation (along principal axes) and
model separation (distance to nearest non-member elements).
Features are computed using linear and square exponential
kernels. The second set of features capture lexical cues and
part-of-speech information determined from parsing. Addi-
tional features capture the association of abstract groundings in
the context of expressed concrete child groundings propagated
from nested child phrases in the tree-structured graph. The
continuous features are scale-normalised and discretised using
uniform sampling to output binary values. A total of 50,820
binary features were used in the log-linear model. Feature
weights are learnt by maximising the training set likelihood
using a stochastic gradient descent routine L-BFGS [7].

D. Approximate Inference

Inference in the graphical model is posed as tree-structured
search over possible correspondences between phrases and
groundings given child context. The inclusion of abstract
groundings leads to an exponential increase in the size of
the search space, rendering exhaustive search infeasible. This
necessitates the use of approximate techniques. In order to
search efficiently, we leverage a partitioning of the joint
distribution between concrete and abstract factors, Equation
9. For each phrase, factor evaluations are ordered such that
the distribution over concrete symbols given child groundings
is determined first and the set of probable solutions above
a confidence threshold are obtained. For example, the set of
possible object groundings are obtained as:

Ô(i) = {ôj |γ
C
ij = ôj , p(φ

C
ij |γ

C
ij , λi,Φci) ≥ pT , j ∈ C}. (11)

The next step is to search over the space of abstract
factors. Note that each abstract factor is conditioned on the
expressed concrete groundings as well as groundings from
child phrases. Instead of exhaustively searching over the entire
abstract search space, the procedure uses the expressed con-
crete groundings to selectively instantiate a restricted space of
probable abstract symbols that is then explored for solutions.
For example, the likely object groundings deterministically
generate a set of container hypothesis, generating a reduced
search space for evaluation:

η̂(i) = {(σi, Ôj)|σi ∈ Σ, Ôj ⊆ O}. (12)

Similarly, the space of probable abstract object and con-
tainer attribute symbols can also be constrained based on con-
crete groundings. The approximate abstract search space ΓÂ(i)

is not fixed, but varies dynamically per phrase λi, constructed
based on the probable constituents of the distribution over
concrete symbols:

ΓÂ(i) = {Γη̂(i) ∪ ΓΠ̂O(i) ∪ ΓΠ̂η(i) ∪ ΓR̂η(i)} (13)

The solutions for both concrete and abstract correspon-
dences are then combined and passed as child groundings
up the search tree to parent nodes. The search process is
implemented in a bottom-up manner, that starts grounding the
leaf phrases upwards. The procedure continues till the root
phrase is grounded, forming the grounding solution for the
entire instruction. Figure 2(c) presents the factor graph for the
approximate model used for inference. The induced abstract
factors constitute the following approximate joint distribution
for the model:

arg max
φ
C
ij ,φ

A
ik∈Φ

{ |N |∏
i=1

( |C|∏
j=1

Ψ(φ
C
ij , γ

C
ij , λi, {Φ

C
ci ∪ΦÂ

ci},Υ)

|Â(i)|∏
k=1

Ψ(φ
Â(i)
ik , γ

Â(i)
ik , λi, {ΦC

i ∪ΦC
ci ∪ΦÂ

ci},Υ)

)} (14)

Note that the knowledge of abstract correspondences makes
the individual concrete correspondences conditionally inde-
pendent of the rest of the model. This allows reasoning about
concrete constituents first for proposing an approximate space
of abstract concepts, independently of the remaining model.
Although, in the worst case, the entire abstract space may
need to be searched, in practice, the size of the adaptive
search space is significantly smaller, leading to a significant
reduction in inference time. Note that search is approximate.
Firstly, the set of likely candidate groundings passed as child
groundings is bounded (beam-width parameter). Further, the
constrained search space of abstract symbols may directly ex-
clude hypotheses for which concrete groundings are uncertain.
However, we establish empirically in the next section that
the approximation leads to significant efficiency gains with
a minimal loss in accuracy.



Fig. 4: Examples of natural language descriptions in our aligned
corpora that were collected using Amazon Mechanical Turk and our
simulation environment.

V. EVALUATION

The proposed model was trained and evaluated using a
data corpus from a user study. This section outlines the data
collection and experimental setup.

A. Corpus

The data corpus consisted of natural language descriptions
paired with simulated scenes showing a Baxter robot carrying
out manipulation tasks with varying blocks arrangements,
Figure 4. The relative positions of objects and the robot’s end
effector were randomised by applying random force vectors
and simulating the physical effects for a short duration (2.5
sec) until stable configurations were obtained. A set of 128
images were generated and overlaid with bounding boxes
indicating all visible spatial groupings and constituent objects
within the collection. Further, a data set consisting of 8 short
video sequences (3-7 seconds) was collected showing the
robot executing pick, place and clearing tasks in a randomised
workspaces.

The language descriptions were obtained from human sub-
jects via the Amazon Mechanical Turk platform.Subjects were
presented with the image sequences and requested to describe
the marked objects in the context of the spatial neighbourhood
and the robot’s end effector position. For the video data set,
subjects were asked to provide a natural language command
that would generate the observed behaviour of the robot.
Subjects were presented the data only once and on average 10
language descriptions were obtained for each image or video.
The final corpus included a total of 135 language descriptions,
each paired with spatial context arising from 21 randomised
workspaces resulting in a total of 1672 individual phrases.
The input instructions were tagged with part-of-speech labels
from the Penn Tagset [8] and parsed using the Cocke-Kasami-
Younger (CKY) algorithm [9]. The parsed instructions were
annotated with ground truth grounding sets. All incorrect
combinations provided negative training data.

B. Experimental Setup and Baseline
The proposed model was compared against the DCG [1]

model as a baseline. For a fair comparison, the search
space was expanded to include all possible abstract concepts
(the power set of concrete constituents). Independent factors
were introduced linking phrases with concrete and abstract
groundings respectively. Note that this factorisation makes
the abstract groundings independent of base groundings and
follows directly the non-hierarchical inclusion of grounding
symbols in the DCG model. The search space was fixed and
searched exhaustively for all phrases. The log-linear model
training step, feature sets and training remained the same for
both models. All tests were run on a Quad core Intel Core
i5 processor with 16 GB of RAM running Mac OS X 10.11
(x86-64) architecture.

VI. RESULTS

This section presents quantitative results for grounding
accuracy and runtime efficiency. Further, we present quali-
tative examples of instructions correctly grounded as well as
demonstration on the Baxter Research Robot.

A. Accuracy
We estimate the grounding accuracy for instructions in the

corpus for the proposed ADCG model and the baseline DCG
model, Figure 5. Training was carried out using randomly
sampled subsets and increasing the holdout fraction from 0.2
to 0.8 in increments of 0.05 with 9 runs for each fraction.
Maximum probable groundings (above a 0.75 threshold) were
determined for each phrase in the parsed instruction. An
instruction was considered correctly grounded if (i) the root
phrase was correctly grounded (root-accuracy) and (ii) all
phrases in the parse tree are correctly grounded (complete-
tree accuracy). The root-phrase accuracy for the ADCG model
ranged between 0.361 (0.8 holdout) and 0.781 (0.3 hold-
out). The complete tree accuracy for the ADCG model was
marginally lower ranging between 0.228 (0.75 holdout) and
0.667 (0.20 holdout). The ADCG accuracy closely followed
the DCG baseline.

B. Efficiency
Table I presents the total average inference runtime nor-

malised by the number of phrases per instruction for the
corpus. The ADCG model has significantly lower average
runtime than the DCG baseline. The runtime efficiency gain
for the ADCG model is more pronounced with greater scene
complexity. The runtime efficiency is determined by the size
of the search space of groundings contributing to the number
of factor evaluations. By learning a distribution over concrete
groundings, the search determines a subset of highly probable
concrete groundings which induce a reduced space of abstract
symbols, thereby eliminating less probable factor evaluations.
This approximation leads to a significant efficiency gain with
minimal loss in accuracy, as demonstrated in Figure 5. The
baseline model searches over the entire space of containers,
as a result, scaling exponentially with with the number of
concrete entities.
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Fig. 5: Test set accuracy (y-axis) vs. holdout fraction (x-axis) using the root-phrase metric (root phrase correctly grounded) and complete-tree
metric (all phrases correctly grounded). (a) The DCG model accuracy for both root-phrase and complete-tree accuracy metrics. (b) The ADCG
model accuracy using both root-phrase and complete-tree accuracy metrics. (c) The average root-phrase accuracy for both models. (d) The
average complete-tree accuracy for both models. Note the scale on the y-axis. The accuracy of the proposed ADCG model closely followed
the DCG baseline. The holdout fraction varied between 0.2 to 0.8 in increments of 0.05 with 9 runs for each fraction in the experiments.
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Fig. 6: Representative examples of abstract groundings that are correctly inferred by the model. The input phrases are overlaid on the images
and colour coded to display constituent phrase groundings to abstract concepts, constituents and spatial relations indicated by bounding boxes
and arrows. Figure best viewed in colour.

TABLE I: Average Inference Runtime for Corpus

Runtime (seconds)
Objects Instructions Worlds DCG ADCG
4 4 1 0.14 ±0.003 0.007 ±2.3×10−4

5 45 9 0.21 ±0.009 0.009 ±5.7×10−4

7 62 5 0.47 ±0.033 0.010 ±7.9×10−4

10 10 5 2.96 ±0.177 0.010 ±1.0×10−4

12 13 1 14.25 ±0.510 0.011 ±7.2×10−4

Total 134 21 1.89 ±4.12 0.062 ±1.0×10−3

C. Inferred Groundings

Figure 6 presents representative examples of natural lan-
guage instructions correctly grounded by the model. For
example, “the second farthest block to the left in the row of
blocks in front of the robot”. References to abstract concepts in
the context of spatial and numeric information like “horizontal
line of four blocks”, “farthest three blocks”, “row of blocks in

front”, “group of eight blocks”, “ nearest two blocks” etc. are
correctly grounded. References to constituents like “middle”,
“second farthest”, “nearest” are also correctly inferred by the
system. The model learns the groundings for concepts by
using cues from both language cues and spatial characteristics.
Figure 7 illustrates an example the input phrase, “the five
blocks on the right” is inferred as an abstract container of
type row, using spatial information alone in the absence of
the word “row”.

D. Physical Demonstration

The system was deployed on a Baxter Research Robot.
Figure 8 demonstrates the execution of the inferred actions for
the natural language expressions “pick up the farthest block
in the column of three blocks on the left” and“pick up the
middle block of the row of five blocks on the right”. In (a),
the system inferred the correct collection of blocks on the left
of the effector and used the linguistic spatial cues to determine



Fig. 7: Grounding examples. Left: The abstract concept “row” is
inferred using spatial information in the absence of a language cue.
Right: The abstract concept “column” is similarly inferred using
spatial information.

(a) (b)

Fig. 8: Two images illustrating execution of correctly inferred sets
of actions, objects and containers using the ADCG model for natural
language expressions (a) “pick up the farthest block in the column
of three blocks on the left” and (b) “ pick up the middle block in the
row of five blocks on the right”; in a known world setup using the
Baxter Research Robot.

the correct block for grasp and vertical displacement. In (b),
the system inferred the correct collection of blocks on the right
hand side of the effector and determined the intended block
in the centre of the collection to be grasped and displaced
vertically. The language grounding step was completed in
0.33 seconds for (a) and 0.37 seconds for (b); the inferred
command and grounding triggered the motion planning and
task execution routine that required required 10 seconds in
each case. Results were consistent across multiple runs.

VII. RELATED WORK

The problem of grounding natural language instructions
has received attention in robotics, artificial intelligence and
linguistics. Ge and Mooney [10] learn a semantic parser that
relates natural language descriptions to a formal representation
language. Zettlemoyer and Collins [11] present an online
learning approach to parse sentences into lambda-calculus rep-
resentations. Chen and Mooney [12] learn a translation model
for langague using event traces from videos associated with
textual commentaries. Sergio et. al. [13] demonstrate a stystem
that integrates visual and spatial information with semantic
parsing to interpret actions and ground spatial relations. Our
approach, in contrast, is probabilistic and infers groundings
related to the robot’s state action space from natural language
using predictors modeling spatial and parse context.

Researchers have investigated learning cost functions to
model the association of language with the physical represen-
tation of the world. Kollar et. al. [14] learn cost functions that
score motion verbs and spatial relations with candidate plans
in the environment. Misra et. al. [15] formulate the language
grounding problem as energy minimisation over a conditional
random field encoding the environment and task context.
Authors in [16] and [17] apply reinforcement learning to
learn a mapping from language to action sequences. Matuszek
et. al. [4] learn grounding relations from data that relate
unconstrained language commands with control sequences
in novel environments. Duvallet et. al. [18] incorporate use
inverse optimal control technique to learn a cost function
from language to carry out a variety of navigation behaviours.
Boularias et. al. [3] use a related approach to ground language
commands into a tactical behaviour specification encoding
high-level behaviours. Although, these approaches can suc-
cessfully learn high-level action sequences, the formulations
do not express the notion of abstractions.

Our approach is based on Generalised Grounding Graphs
[2] and Distributed Correspondence Graphs [1] formulations.
Here, we incoporate abstract groundings and develop an effi-
cient approximate search procedure. The work of Chung et.
al. [19] is complimentary to ours. The model hierarchically
infers a reduced symbol space using spatial context and
input utterance but does not consider abstract groundings.
Other efforts have explored grounding language by leveraging
knowledge representations for reasoning about the world state
[20], verifying output plans using formal logic [21], learning
semantic maps using grounded natural language [22] and
actively acquiring symbolic representations [23].

VIII. CONCLUSIONS

In this paper, we presented a probabilistic model for ground-
ing natural language commands conveying abstract spatial
concepts that consist of aggregations of atomic symbols in
the robot’s world model. Further, notions of cardinality and
indexing are introduced to reference constituent elements
within the aggregation. Probabilistic factors were introduced
linking the expression of abstract grounding constituents with
expressed concrete symbols. The model is trained using feature
functions that capture spatial characteristics, language cues and
child groundings. Inference is carried out via an approximate
search based technique that leverages factorisation between
concrete and abstract symbols and dynamically generates the
search space of abstract symbols based on expressed concrete
symbols, significantly pruning away less likely portions of
the exponentially large grounding space. Extensive evaluation
demonstrated accuracy and timing efficiency in grounding
abstract concepts.
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