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Abstract—We consider the problem of providing protection
against failures in wireless networks by using disjoint paths.
Disjoint path routing is commonly used in wired networks for
protection, but due to the interference between transmitting nodes
in a wireless setting, this approach has not been previously
examined for wireless networks. In this paper, we develop a
non-disruptive and resource-efficient disjoint path scheme that
guarantees protection in wireless networks by utilizing capacity
“recapturing” after a failure. Using our scheme, protection can
oftentimes be provided for all demands using no additional
resources beyond what was required without any protection. We
show that the problem of disjoint path protection in wireless
networks is not only NP-hard, but in fact remains NP-hard to
approximate. We provide an ILP formulation to find an optimal
solution, and develop corresponding time-efficient algorithms. Our
approach utilizes 87% less protection resources on average than
the traditional disjoint path routing scheme. For the case of 2-hop
interference, which corresponds to the IEEE 802.11 standard, our
protection scheme requires only 8% more resources on average
than providing no protection whatsoever.

I. INTRODUCTION

Protecting networks against failure has been the subject of
much study over the years. Network infrastructure has tradi-
tionally been wired, being either copper or optical fiber. Con-
sequently, network protection schemes have been developed for
the parameters of wired networks, with disjoint path protection
being one of the most commonly used [1]. Multi-hop wireless
networks have emerged as a promising alternative to wired
networks for both backbone and last-mile Internet services,
particularly in developing nations [2]. Hence, it has become
increasingly important to make wireless networks equally re-
silient to failure as their wired counterparts. Failures in wireless
networks can occur due to node failure, obstructions, deep
fades, as well as malicious attacks [3]. As opposed to wired
networks, wireless networks must also handle the additional
complexity of interference, which occurs when two nodes
transmit simultaneously using the same frequency channel.
Because of these interference constraints, simply applying the
disjoint path protection scheme used in wired networks to the
wireless setting would not necessarily be effective. Switching
to a backup path after some failure may cause interference
with already existing paths, disrupting connections that were
not affected by that failure. Additionally, the increased demand
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on a wireless network’s already scarce resources may make
protection prohibitive. In this work, we consider the problem
of providing non-disruptive and resource-efficient protection by
using pre-planned disjoint paths for wireless networks that are
subject to interference constraints.

Disjoint path protection consists of a primary and failure-
disjoint backup path, such that after the failure along the
primary path, the flow will be switched to the surviving backup
path [4]. Consider the wired network shown in Figure 1: Two
primary paths, P1 and P2, are shown using solid lines, and a
disjoint backup path for P1 is shown using a dotted line, B1.
After the failure of some edge or node in P1, flow is switched
to B1, and flow continues on P2 unaffected.

P1	


P2	


B1	


Fig. 1: Disjoint path protection in a wired network

When applying disjoint path protection to wireless networks,
interference between nodes must be considered. If two nodes
are within close proximity, they cannot transmit simultaneously
in the same frequency channel without interfering with one
another. In order to avoid interference, transmissions can be
separated in time using slotted TDMA, where time is divided
into non-overlapping time slots, and transmissions are then
scheduled using those time slots [5]. Consider the same set
of paths as in Figure 1, except now in a wireless setting. A
schedule of link transmissions needs to be determined. Paths P1

and P2 must be scheduled so that they do not interfere with one
another, and the backup path B1 must also be scheduled so that
it can operate without interference. One possible approach is to
schedule B1 so that it does not interfere with either P1 or P2.
Such a scheme for disjoint path protection in wireless networks
was suggested in [6]. While this solves the issue of interference
between the backup and the primary paths, our simulations
show that the number of time slots needed for such an approach
more than doubles from the case without any protection, leading
to a 50% loss in throughput. Other works in wireless network
survivability have looked at guaranteeing connectivity after a
failure [7, 8], or real-time recovery approaches where new
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routes are found after a failure [9, 10]. These approaches to
resiliency do not consider routing and scheduling with respect
to interference constraints, and assume that there exists some
unspecified mechanism to find a route and schedule at any given
point in time. Furthermore, there is no guarantee that sufficient
capacity will be available to protect against a failure.

In our work, we use the idea of “recapturing” lost capacity
that becomes available after a failure, which was first presented
in [11]. When path P1 fails, it no longer supports any flow;
hence, the time slots that were assigned to it are no longer
necessary to schedule those transmissions. Since the backup
path B1 will only be operational after the failure of P1, the
time slots that P1 used can be reused on B1. This capacity
recapturing approach significantly reduces the number of time
slots needed for protection, but it comes at the cost of additional
complexity. If the paths P1 and P2 did not interfere with
one another, then they could have been scheduled using the
same set of time slots. While P1 did not interfere with P2,
path B1 might interfere with P2, and hence, cannot reuse
P1’s time slots. Alternatively, path B1 could only partially
interfere with P2, allowing the reuse of only some of P1’s
time slots. Additionally, the time slots for protection on B1

can be possibly shared between P1 and P2 if the two primary
paths are failure disjoint of one another. In wired networks,
where there is no interference between nodes, shared backup
protection was shown to be NP-hard [4]. Adding scheduling to
allow interference-free communication adds further complexity.
To the best of our knowledge, disjoint path protection in
wireless networks subject to interference constraints has not
been previously examined.

The novel contributions of our paper is a scheme that
provides guaranteed protection using disjoint paths for wireless
networks that is both non-disruptive and resource-efficient.
We call this problem the Wireless Disjoint Path Protection
(WDPP) problem. In Section II, the model and problem de-
scription for WDPP is presented. In Section III, we show that
finding an optimal solution to WDPP is not only NP-hard,
but is in fact NP-hard to approximate. Simulations are run
comparing WDPP to the use of wired protection schemes in
wireless networks, showing significant reductions in resources
needed for protection. In Section IV, time-efficient algorithms
are developed. Notably, for the case of 2-hop interference,
which corresponds to the IEEE 802.11 standard, our protection
scheme requires only 8% more resources on average than
providing no protection whatsoever.

II. MODEL AND PROBLEM DESCRIPTION

In this paper, we study the problem of providing non-
disruptive and resource-efficient protection by using disjoint
paths for wireless networks that are subject to interference
constraints. Our goal is to provide disjoint backup path pro-
tection in a manner similar to what has been done in the wired
setting. Namely, after the failure of some network element,
connections that fail switch to their respective backup paths,
and connections that did not fail continue to use their primary
paths. After any failure, connections must maintain the same

amount of flow that they had before the failure. As opposed
to wired networks, transmissions in wireless networks must be
scheduled so communications can occur without interference.
In order to guarantee minimal disruption and to provide rapid
recovery, connections that were not affected by a failure will
continue to use their primary paths, as well as maintain the
same transmission schedule on those paths. In order to meet
these requirements, resources are allocated and scheduled in
advance for both the primary and backup routes to protect
against failures.

The mechanism for disjoint path protection in wireless
networks is as follows. Each demand will have a primary and
backup path, as well as an interference-free schedule for those
paths. After the failure of some network element, a demand
whose primary path fails will switch to its disjoint backup
path and schedule. If a demand’s primary path did not fail, it
will continue to use its pre-failure primary path and schedule.
If a primary path does fail, the time slots that were used to
schedule that path are no longer needed, and can be reused for
the protection path.

Our objective is to minimize the length of the schedule
needed to route and schedule all demands without interference.
Minimizing the length of the schedule will allow each link to
communicate for a longer period of time, raising the overall
throughput [5]. We call our problem Wireless Disjoint Path
Protection (WDPP). We develop a solution to WDPP for
general binary interference constraints, which can be extended
to SINR interference. Due to length constraints, only the binary
interference model is presented in this paper; treatment of the
SINR interference model can be found in the technical report
[12].

The binary interference model is as follows: for any pair
of links, {i, j} and {k, l}, either both links can be active
simultaneously, or at most one link can be active [5]. Binary
interference is used for the K-hop interference model [13], and
the protocol interference model [14]. In K-hop interference, if
link {k, l} is within K hops of link {i, j}, the two links will
interfere. In the protocol model, link {i, j} can be active only
if i is within range of j, and no other nodes that are within
range of j are transmitting.

The following network model is used for the remainder of
the paper. We are given a graph G with a set of wireless nodes
V and edges E. A set of demands (si, di) ∈ D must be routed
and scheduled, such that there will exist a primary and disjoint
backup path from si to di, ∀i. Since we are considering wireless
networks in the context of backbone and last-mile services, we
assume that the wireless nodes are static. For any node, we
assume that its neighbors are fixed; hence, the set of edges
E is fixed. For the binary interference model, an interference
matrix I can be defined where Iklij ∈ I is 1 if links {i, j} and
{k, l} can be activated simultaneously (do not interfere with
each other), and 0 otherwise. We assume that the network uses
a synchronous time slotted system, with equal length time slots,
where the set of time slots used is T , and T = |T |.

Our objective is to minimize the total number of time slots
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needed to route and schedule all demands using disjoint path
protection. Solutions are developed for both node and link
failures, and similar to the work in wired protection, we use
a single failure model, where we assume at most one failure
at a time. Our work can be extended to multiple failures by
considering additional disjoint paths. All transmissions share a
single frequency channel.

III. MINIMUM LENGTH SCHEDULE FOR WIRELESS
DISJOINT PATH PROTECTION

We start by studying the minimum length schedule to route
a set of demands with disjoint path protection in a network that
is subject to interference constraints. We first demonstrate that
finding a minimum length schedule for Wireless Disjoint Path
Protection (WDPP) is NP-hard, and that the problem remains
NP-hard even to approximate. Subsequently, in Section III-A an
integer linear program (ILP) is formulated to find the optimal
solution for the minimum length schedule. In Section III-B, a
simulation of WDPP is performed, with results compared to
the use of a wired disjoint path protection scheme in wireless
networks.

Theorem 1. For a set of demands requiring disjoint path
protection in a wireless network subject to binary interference
constraints, determining a minimum-length schedule is NP-
hard, and remains NP-hard to approximate.

To prove the NP-hardness and non-approximability of
WDPP, we reduce from the problem of determining the chro-
matic number of a graph [15]. The proof can be found in the
technical report [12].

A. Integer Linear Program for WDPP
Since it is NP-hard to find a minimum length schedule,

and approximating a solution is also NP-hard, we develop
an integer linear program (ILP). The conditions for both link
and node-disjoint paths are given, where link-disjoint paths are
guaranteed to only survive a link failure, and node-disjoint are
guaranteed to survive either a link or node failure. We assume
unit demands, and that the links in the network all have unit
capacity. These two constraints can be easily modified.

For the ILP, the following values are given:
• G = (V,E) is the graph with a set of vertices and edges
• D is the set of demands
• T is the set of time slots in the system, T ⊂ Z+

• I is the interference matrix, where Iklij ∈ I is equal to 1
if links {i, j} and {k, l} can be activated simultaneously,
0 otherwise

The ILP solves for the following variables:
• xsdij is equal to 1 is the primary flow assigned for demand

(s, d) on link {i, j}, 0 otherwise
• ysdij is equal to 1 is the protection flow assigned on link
{i, j} for demand (s, d), 0 otherwise

• λsd,tij is a scheduling variable for the primary flow for
demand (s, d) and is equal to 1 if link {i, j} is activated
in time slot t, 0 otherwise

• δsd,tij,kl is a scheduling variable for the flow after the failure
of link {k, l} for demand (s, d), and is equal to 1 if link
{i, j} is activated in time slot t, 0 otherwise

• τ tij is a scheduling variable and is equal to 1 if link {i, j}
is activated in time slot t, 0 otherwise

• πtij,kl is a scheduling variable, and is 1 if link {i, j} is
activated in time slot t after link {k, l} fails, 0 otherwise

• st is equal to 1 if time slot t is used by the primary or
protection flow, and 0 otherwise

The objective function is to minimize the number of time
slots (the length of the schedule) needed to route all demands
with disjoint path protection.

Objective: min
∑
t∈T

st (1)

The following constraints are imposed to find a feasible
routing and scheduling.
Before a failure:
• Find a primary path for demand (s, d) before any link

failure.

∑
{i,j}∈E

xsdij −
∑
{j,i}∈E

xsdji =


1 if i = s

−1 if i = d

0 otherwise
, ∀(s,d)∈D∀i∈V (2)

• Ensure a link is scheduled to support the primary flow for
demand (s, d) on edge {i, j}.

xsdij ≤
∑
t∈T

λsd,tij , ∀{i,j}∈E
∀(s,d)∈D (3)

• At most one demand can use edge {i, j} during slot t.∑
∀(s,d)∈D

λsd,tij ≤ τij , ∀{i,j}∈E
∀t∈T (4)

• Mark if slot t is used to schedule a demand before a failure.

τ tij ≤ st, ∀{i,j}∈E
∀t∈T (5)

• Interference constraints: In a time slot, only links that do
not interfere can be activated simultaneously.

τ tij + τ tuv ≤ 1 + Iijuv,
∀{i,j}∈E, ∀{u,v}∈E
{i,j}6={u,v}, ∀t∈T (6)

After a failure:
• Find a second path for demand (s, d) to be used as the

disjoint protection path.

∑
{i,j}∈E

ysdij −
∑
{j,i}∈E

ysdji =


1 if i = s

−1 if i = d

0 otherwise
, ∀(s,d)∈D∀i∈V (7)

• Enforce path disjointness between the primary and protec-
tion path for demand (s, d).

– Edge-disjoint:

xsdij + ysdij ≤ 1, ∀(s,d)∈D
∀{i,j}∈E (8a)
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– Node-disjoint:∑
j∈V \(s,d)

xsdij +
∑

j∈V \(s,d)

ysdij ≤ 1, ∀(s,d)∈D
∀i∈V (8b)

• If after the failure of {k, l}, the primary path for demand
(s, d) did not fail (i.e. edge {k, l} was not part of the
primary path), then that primary path must remain active
and use the same schedule as from before the failure. In
other words, if edge {i, j} was part of the primary path,
but the failed edge {k, l} was not, then force the same
time slot assignment on edge {i, j} for after the failure of
{k, l} that {i, j} used before the failure, i.e. δsd,tij,kl = 1 if
λsd,tij = 1 when xsdij = 1 and xsdkl = 0.

λsd,tij +[(xsdij − xsdkl )−1] ≤ δsd,tij,kl,
∀{i,j}∈E, ∀{k,l}∈E
∀t∈T , ∀(s,d)∈D (9)

• If after the failure of edge {k, l}, the primary path for
demand (s, d) did fail (i.e. edge {k, l} was part of the
primary path), schedule the disjoint backup path.

ysdij − (1− xsdkl ) ≤
∑
t∈T

δsd,tij,kl,
∀{i,j}∈E, ∀{k,l}∈E

∀(s,d)∈D (10)

• At most one demand can use edge {i, j} during slot t after
the failure of {k, l}.∑

∀(s,d)∈D

δsd,tij,kl ≤ π
t
ij,kl,

∀{i,j}∈E, ∀{k,l}∈E
t∈T (11)

• Mark if slot t is used to schedule any demand’s disjoint
protection path after the failure of {k, l}.

πtij,kl ≤ st, ∀{i,j}∈E, ∀{k,l}∈E
∀t∈T (12)

• Interference constraints: In any given time slot, after the
failure of link {k, l}, only links that do not interfere with
one another can be activated simultaneously.

πtij,kl + πtuv,kl ≤ 1 + Iijuv,
∀{i,j}∈E, ∀{u,v}∈E
∀{k,l}∈E, ∀t∈T
{i,j}6={u,v}6={k,l}

(13)

B. Simulation Results for WDPP

The Wireless Disjoint Path Protection scheme is compared
to the traditional 1 + 1 protection scheme used in wireless
networks, as was suggested in [6]. For this scheme, a disjoint
primary and backup path are identified, and a schedule is found
such that the two paths do not interfere with one another. We
call this approach wireless 1 + 1. The number of time slots
to route and schedule the demands without any protection is
a lower bound for any solution that includes protection for
the same set of demands. Hence, we compare the number of
additional time slots needed for protection beyond those that
were needed for the case without any protection.

Due to its complexity, an integer linear program can take
a long time to run. Because of this, it may not always be
possible to obtain an optimal solution, even for small networks;
we found this to be the case for WDPP. The ILP developed
in Section III-A jointly optimizes the schedule for before and
after a failure. To allow our ILP to run in a reasonable amount
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Fig. 2: Binary interference simulation results

of time, we separate the before and after phase, and use a
two-step approach: First, we find the routes and schedules for
all of the demands “before a failure”, then we find the same
for “after a failure”. While this approach is sub-optimal, our
simulations show that the routes and schedules found required
only minimal additional time slots for protection beyond the
solution without any protection. The “before a failure” phase
is the minimum number of time slots to route and schedule
the demands without any protection. The minimum number of
time slots for the wireless 1 + 1 scheme is found using an ILP.

The 2-hop binary interference model is used, which corre-
sponds to the IEEE 802.11 standard [13]. Fifty random graphs
were generated with twenty nodes each. Nodes that are within
a certain transmission range of one another have a link, and the
transmission range is varied to give different desired average
node degrees (i.e. average number of neighbors that a node
has). The node degree is varied from 3.5 to 6.5, and for each
graph, twelve source/destination pairs are randomly chosen to
be routed concurrently. We simulate only the edge-disjoint case.
The results are plotted in Figure 2. On average, WDPP used
94% fewer time slots to provide the same level of resiliency as
that of wireless 1+1. In fact, for 50% of the cases tested, WDPP
needed no additional time slots beyond what was required to
route and schedule the demands without protection. On average,
WDPP needed only 8% more time slots beyond that of the no
protection case, while wireless 1 + 1 needed 128% additional
time slots. For the most part, the same time slots that were
used to schedule the primary paths can be reused to schedule
the disjoint backup paths.

IV. TIME-EFFICIENT ALGORITHMS FOR WDPP
In the previous section, an integer linear program was

presented to find the minimum length schedule for Wireless
Disjoint Path Protection (WDPP). An ILP is not a computa-
tionally efficient method of finding a solution; in fact, the ILP
in Section III needed to be split into two parts to allow it to
run in a reasonable amount of time. In this section, we develop
a time-efficient algorithm for WDPP. As was demonstrated in
Section III, an optimal solution to WDPP is NP-hard, even to
approximate. To solve WDPP, we utilize a dynamic approach
that will route and schedule each demand one-at-a-time, where
each demand is scheduled such that it does not interfere with
previously scheduled connections. In Theorem 2, we show
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that even when demands are routed one-at-a-time, finding the
minimum number of time slots to route and schedule any
individual demand is NP-hard.

Since it is NP-hard to determine the minimum number of
time slots to route and schedule any individual demand, the
algorithm will work in the following fashion: For each demand,
a route and schedule is first found for the primary path, and
then a route and schedule is found for the disjoint protection
path. In Section IV-A, an algorithm to find an interference-free
path is presented. This path is found as follows: We first find a
path that is of low-interference (a metric that we define later),
and then determine an interference-free schedule for that path.
This path algorithm is then used as a subroutine to efficiently
solve WDPP, which is presented in Section IV-B.

Theorem 2. When demands are routed and scheduled one-at-
a-time with disjoint path protection under binary interference
constraints, the minimum number of time slots for any individ-
ual demand is NP-hard to determine when accounting for the
time slots that are currently in use.

To prove Theorem 2, a reduction from the Dynamic Shared-
Path-Protected Lightpath-Provisioning Problem (DSPLP) [4] is
performed. The proof can be found in the technical report [12].

A. Interference-Free Path with a Minimal Length Schedule

In this section, an algorithm is developed to find an
interference-free path, which will then be used to construct the
disjoint path protection algorithm in the following section. We
assume connections already exist, and are scheduled using the
set of T time slots. We desire to set up a new path from s
to d. We take a two-step approach: First, find a path that is
of “low-interference”, and then find a minimal length schedule
for this path. We call this algorithm feasible_path. The
details for SINR interference can be found in [12].

1) Low-Interference Path: Given that a set of connections
already exist using the set of T time slots across the set of edges
E, each edge can be assigned a value according to its general
“interference load”, which we define to be the set of time slots
that cannot be used for that particular edge. These time slots
may not be available because either that edge uses them, or
some interfering edge uses them. For edge {i, j}, we label the
set of unavailable time slots τij . If an edge that is heavily loaded
(few available time slots) is used for a connection, then that
may prevent some future connection from being able to find an
interference-free path without the use of additional time slots.
To find paths that are of low-interference, we assign a cost to
each edge that is equal to its interference load: cij = |τij |. We
then find a shortest path from s to d with respect to these edge-
costs, giving preference to edges that are not heavily loaded.

We build the set τij for edge {i, j} in the following manner.
Define the set of time slots that are currently assigned to edge
{i, j} as tij . For binary interference, label the set of edges that
{i, j} interferes with as γij . The set of time slots not available
for use on {i, j} are the ones currently assigned to {i, j} and
to the set of edges γij : τij = tij ∪{k,l}∈γij tkl.

2) Minimal Length Schedule for a Path: Once a low-
interference path has been found, we want to find a minimal
length schedule for it. We construct a conflict graph Gc, which
is built as follows: A node is added for each edge in the
original graph, and an edge is added between two nodes in
Gc if the edges associated with those nodes interfere with one
another [5]. Any independent set1 of Gc are a set of edges in
the original graph that can be activated simultaneously. Any
feasible coloring2 of the nodes of Gc is a feasible schedule of
link activations. Label the set of edges of the path as P . We
construct Gc using only the set of edges P : Add node vij to
Gc for each edge in P , and add an edge between vij and vkl
if edges {i, j} and {k, l} cannot be active simultaneously.

We wish to find a minimum node-coloring of Gc, which
will be a minimum-length schedule for P . The minimum node-
coloring problem is NP-hard to solve [15]. For our problem, we
have a restriction that not all colors are available for all nodes:
The set of colors not available for node vij is the set of time
slots that edge {i, j} cannot use: τij . We note that this restricted
node-coloring problem remains NP-hard; a valid instance of
the restricted problem is to have τij = ∅, ∀{i, j}, which is
simply the original NP-hard node-coloring problem. To find a
solution, we use the Welsh-Powell algorithm that colors the
nodes (assigns time slots) in a greedy fashion, starting with
nodes that have highest degree [16].

B. Wireless Disjoint Path Protection

In Section IV-A, an algorithm feasible_path was pre-
sented that finds a path and schedule between two nodes that
takes into account other scheduled connections in the network.
We use feasible_path as a subroutine to construct an algo-
rithm for WDPP. We label the algorithm presented in this sec-
tion WDPP_alg. We present the algorithm for the edge-disjoint
protection case, but it can be easily modified for the node-
disjoint case as well. Since the subroutine feasible_path
finds a path with respect to interference constraints, WDPP_alg
is agnostic to the interference constraints used.

The mechanism for disjoint path protection in wireless
networks is as follows. Each demand will have a primary and
backup path, as well as an interference-free schedule for those
paths, and after the failure of some edge, a demand whose
primary path fails will switch to its disjoint backup path and
schedule. To minimize network disruption after a failure, if a
demand’s primary path did not fail, it will continue to use its
pre-failure primary path and schedule. If a primary path does
fail, the time slots that were used to schedule that path are no
longer needed, and can be reused for the protection path.

We consider some incoming demand between nodes s and
d, with the network already having some set of scheduled
connections using the set of time slots T . As defined in Section
IV-A1, τij is the set of time slots that cannot be used to schedule
edge {i, j}, which we called the ”interference load”. We call

1An independent set is a set of nodes where no two nodes are the end points
of the same edge.

2Each node is assigned a color such that all nodes of one color form an
independent set.
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Fig. 3: Binary interference algorithm simulation

the set of interference loads for each edge the interference
set, and we label it Γ = {τij |{i, j} ∈ E}. Because of the
different sets of paths used, the interference set can be different
before a failure and after any particular failure. For the existing
scheduled connections, the interference set before any failure
(only the primary paths) is labeled Γ, and is labeled Γkl for after
the failure of edge {k, l}. The interference set Γkl reflects the
schedules of all the paths that are currently used in the event
of the failure of {k, l}, which includes the backup paths for
demands that fail, as well as the primary paths for the demands
that did not fail.

The algorithm for wireless disjoint path protection
(WDPP_alg) is as follows. First, using the interference set
Γ, a path and its corresponding schedule is found between s
and d using feasible_path. This will be the primary path,
and we label its set of edges as P . Next, we find the disjoint
backup path. We construct a new graph GF that does not have
the set of edges P ; any path between s and d in GF will be
disjoint to P . We consider the possible failure of any edge in
the primary path. Upon the failure of edge {k, l} ∈ P , demands
that did not fail must continue to use their pre-failure path and
schedule, and demands that did fail switch to their backup path
and schedule. After the failure of an edge in P , the edges of
that path no longer supports any flow, and the time slots used
on those edges become available for protection. We form a new
interference set that contains the information of all the possible
paths used after the failure of any edge in the primary path:
ΓF = ∪{k,l}∈PΓkl. Since ΓF does not contain any scheduling
information regarding P , the time slots used to schedule P can
be reused to schedule the disjoint backup path. Using graph
GF and interference set ΓF , a path is found between s and d
using feasible_path, which is the disjoint backup path.

To demonstrate the performance of WDPP_alg, we simulate
the algorithm using the same parameters as the simulation
for the ILP in Section III. For WDPP_alg, the demands are
randomly ordered, and a route and schedule is found for
each demand one-at-a-time. The algorithm is compared to the
wireless 1 + 1 scheme and the two-step ILP, both of which
were described in Section III. Figure 3 shows the simulation
results for binary interference. On average, WDPP_alg per-
formed within 4% of the two-step ILP, and required 88% fewer
protection time slots than wireless 1 + 1.

V. CONCLUSION

In this paper, the problem of Wireless Disjoint Path Protec-
tion (WDPP) for networks subject to interference constraints
was examined. The motivation is to provide protection that is
similar to that of wired networks, but designed for wireless
networks. Our protection scheme takes advantage of the inter-
ference in wireless networks for greater resource efficiency:
Resources that are freed after a failure in the network can
be reused for protection from that failure. We demonstrated
that WDPP is NP-hard, even to approximate. We formulated
an ILP, giving solutions using 87% fewer protection resources
on average than the wired disjoint path scheme in wireless
networks. For the case of 2-hop interference, WDPP only
8% more resources on average than providing no protection
whatsoever. We then developed a time-efficient algorithm that
performed almost as well as the two-step ILP on average. A
future direction is to adapt our work for a distributed setting.
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