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We present a porous electrode theory for capacitive deionization with electrodes containing nano-
particles that consist of a redox-active intercalation material. A geometry of a desalination cell is considered
which consists of two porous electrodes, two flow channels, and an anion-exchange membrane, and we use
the Nernst-Planck theory to describe ion transport in the aqueous phase in all these layers. A single-salt
solution is considered, with unequal diffusion coefficients for anions and cations. Similar to previous
models for capacitive deionization and electrodialysis, we solve the dynamic two-dimensional equations by
assuming that the flow of water, and thus the advection of ions, is zero in the electrode, and in the flow
channel only occurs in the direction along the electrode and membrane. In all layers, diffusion and
migration are only considered in the direction perpendicular to the flow of water. Electronic as well as ionic
transport limitations within the nanoparticles are neglected, and instead the Frumkin isotherm (or regular
solution model) is used to describe local chemical equilibrium of cations between the nanoparticles and the
adjacent electrolyte, as a function of the electrode potential. Our model describes the dynamics of key
parameters of the CDI process with intercalation electrodes, such as effluent salt concentration, the
distribution of intercalated ions, cell voltage, and energy consumption.

DOI: 10.1103/PhysRevApplied.9.064036

I. INTRODUCTION

Capacitive deionization (CDI) is a method of water
desalination where two porous electrodes adsorb ions from
the aqueous phase, and later release the ions again [1–3].
Salt removal is achieved by alternatingly charging and
discharging the electrodes which are connected through an
electrical circuit. The porous electrodes typically contain
three phases: water-filled pores for ion transport, a con-
ducting material for electronic current, and a phase where
ions are temporarily stored, see Fig. 1. Most work on CDI
uses electrodes with ion storage in materials based on
carbon (activated carbon, carbon nanotubes, graphene, etc.)
where ions are stored in the electrical double layer (EDLs)
along the carbon surface [4].
Another class of materials for ion storage is based on

intercalation host compounds, which are examples of
redox-active materials that are receiving increased attention
because of their potential for higher salt adsorption, lower
energy consumption, and tunable ion selectivity. Although
our general theory below could be applied to arbitrary

intercalation compounds, adsorbing cations or anions, we
will focus on the more common case of cation intercalation.
Examples of such materials are nickel hexacyanoferrate
(NiHCF), which is a Prussian blue analogue [5–11], sodium
manganese oxide (NMO) [12–16], and iron or titanium
phosphates [16,17] (which are also used in Li-ion batteries).
In response to an applied voltage, cations intercalate, or are
reversibly inserted, into the these redox-active host materials.
The host crystal structure contains transition metal atoms,
such as Fe or Mn which change redox state upon injection of
electronic charge. When this material is charged more
negatively (redox atoms in the crystal are reduced), to
maintain electroneutrality extra cations are incorporated in
the pores of the crystal, thus desalinating the water outside
the particles. The intercalation materials mentioned above
are highly cation selective (not incorporating anions), since
the crystal is negatively charged, which provides a back-
ground countercharge for the intercalated cations.
To describe desalination by traditional CDI based on

double-layer charging, porous electrode theory has been
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used since the 1970s [18,19]. Johnson and Newman
developed the first such theory for CDI and made the
assumption that for each electron injected in the EDL of a
carbon matrix, one counterion adsorbs [18]. Going beyond
this approximation, Bazant et al. initiated the microscopic
theory of double-layer charging dynamics and salt removal
for the model problem of parallel-plate blocking electrodes
[20]. Since 2010, Biesheuvel and Bazant incorporated this
physics into a porous electrode theory for double-layer
CDI, applied to carbon-based materials [21], which allows
for incorporation of any quasiequilibrium, thin or thick,
EDL structure. This generalized theory can be used for
EDL models that consider both counterions and co-ions,
ion mixtures of arbitrary valency, the presence of chemical
surface charge, and Faradaic charge transfer [22].
Porous electrode theories have also been developed for

intercalation materials, albeit motivated by applications to
Li-ion batteries rather than CDI. In 1982, West et al. [23]
presented a porous electrode theory for energy storage in
intercalation, or insertion, materials, where the Nernst-
Planck theory describes both ion transport across the porous
electrode and inside the intercalation material. At the inter-
face of electrolyte and intercalation material, the Frumkin
intercalation isotherm is used [24,25], which provides a
relation between electrode potential (relative to the electro-
lyte phase), ion concentration in solution, and the interca-
lation degree (the degree to which the intercalation material
is filled with cations). This isotherm is an example of more
general regular solution theory describing the homogeneous
Gibbs free energy ofmixing of twoormore constituentswith
finite size (e.g., mean-field approximation on a crystal
lattice), as used in phase-field models of intercalation
materials [26–28]. Regular solution models can be used
to describe the thermodynamics of host materials containing
multiple mobile ionic species and point defects, such as
vacancies and interstitials, and form the basis for simulations

of nonlinear diffusion, phase separation, and electrochemi-
cal reactions [27], in both single-crystal nanoparticles and
multiphase porous electrodes [19,29].
In the present work we set up and solve a model for CDI

with intercalation materials along the lines of Johnson and
Newman [18] and West et al. [23]. We simplify the model
of West et al. by neglecting transport limitation within the
intercalation material, a common approximation in the
modeling of battery electrodes consisting of intercalation
nanoparticles [29,30]. This is a valid assumption when the
nanoparticles are very small and accessible on all sides by
the ions in the electrolyte (water) with fast insertion
reactions [19]. A rigorous criterion is not available for
validity of this assumption in all situations, because ion
transport in the electrode and adsorption in the particles is
not a simple steady-state resistances-in-series process. But
a first comparison can be made on the basis of a “critical
flux” of Naþ ions in the two phases, Jcrit ¼ cD=L, with c a
typical concentration, D a typical diffusion coefficient, and
L a typical distance. For the electrolyte we have
c ¼ 10 mM, D ¼ 2.2 × 10−10 m2=s (based on a porosity
of 30% and tortuosity based on the Bruggeman equation),
and L ¼ 250 μm, while for the nanoparticles, c ¼ 2.2M (at
ϑ ¼ 0.5 for NiHCF, see Ref. [8]), D ¼ 6.9 × 10−16 m2=s
[31], and L ¼ 5 nm (based on a particle with a size of
30 nm; note that for a sphere, a typical diffusion depth is
equal to the volume-area ratio, which is one sixth of the size
of the sphere). These numbers give a critical flux for Naþ in
the nanoparticles that is about 35× larger than in the
electrolyte phase in the electrode, thus underpinning the
choice to focus on transport in the electrolyte.
Though we simplify the model by West et al. [23], we

also extend their approach (which is for a single electrode)
by considering a full electrochemical cell consisting of two
electrodes, two flow channels (also called spacers or spacer
channels), and an anion-exchange membrane (AEM).

FIG. 1. Schematic of the CDI cell
with porous electrodes containing
nanoparticles of redox-active interca-
lation material. Electronic connections
through the electrode (drawn as black
lines) allow for the injection of charge
from an external circuit. Nanoparticles
are aggregated into water-filled ag-
glomerates. The electrodes are sepa-
rated by a pair of spacer channels for
water flow, and an anion-exchange
membrane which preferentially allows
the transport of anions. The schematic
captures the moment when ionic cur-
rent flows left to right leading to
deintercalation of Naþ on the left,
and intercalation on the right. Depicted
in the spacer channels are typical
profiles in salt concentration and
velocity of the water.

K. SINGH et al. PHYS. REV. APPLIED 9, 064036 (2018)

064036-2



The geometry is sketched in Fig. 1. This cell design was
invented by Smith and Dmello [14] to solve the problem
of how to desalinate water using two electrodes made
of intercalation materials that both are only capable of
adsorbing cations.
An interesting difference of our model with that of

Johnson and Newman [18] is that we do not assume a
constant capacitance, but instead implement the Frumkin
intercalation isotherm, which for several intercalation
materials has been shown to accurately describe chemical
equilibrium between the electron-conducting phase, inter-
calation material, and electrolyte [24,25,27,29]. According
to this equation, capacitance is high when the inter-
calation degree in the material is at an intermediate value
(ϑ ¼ 0.5), while it drops dramatically when the material
either is almost saturated with ions (ϑ → 1) or almost
empty (ϑ → 0).
The electrode model is combined with electrodiffusion

of ions in the two flow channels and in the AEM (see
geometry depicted in Fig. 1). For ion transport in the pores
of the electrode, and in the flow channel, we implement that
the ions have a different diffusion coefficient. Besides, we
include a full description of the AEM, allowing the passage
of both cations and anions. Because the membrane has a
large concentration of positive fixed charge, the flux of
anions is much larger than of cations. We make calculations
of complete charge-discharge cycles and show the develop-
ment over time of key parameters such as cell voltage,
effluent salinity, and the intercalation degree of the
electrodes.
Note that our theory considers the intercalation particles

to fill up homogeneously, without phase separation inside
the solid phase. This phase separation is not occurring for
NiHCF in aqueous electrolyte, but does happen for other
systems, such as Li insertion in FePO4-based electrodes in
organic solvent, where Li-dense and Li-sparse regions
coexist within the same material. Extensions to porous
electrode theory that are required to include phase sepa-
ration in the solid phase are introduced and reviewed in
Refs. [19,27,29].
For an electrochemical cell based on porous electrodes

containing nanoparticles of redox-active intercalation
material, the kinetics of ion adsorption depends on various
transport processes, and each must be included in a
complete theory for the entire device. These processes
include
(1) Diffusion and migration of ions through the

electrolyte-filled pores of the electrode;
(2) Ion insertion (intercalation) into the redox-active

material, and transport across these particles;
(3) Electronic charge transport across the electrode,

from an external current source all the way down
into each nanoparticle;

(4) Ion transport (advection, diffusion and migration) in
a transport channel located outside the electrode; and

(5) Transfer of ions across the ion-exchange membrane.
In the present work, transport by processes 1, 4, and 5 is
addressed, while instead of addressing items 2 and 3 in
detail, the transport resistance related to these processes is
assumed to be infinitely low. Note that we do not consider
a rate limitation in the intercalation step of ion transfer
between the electrolyte and the intercalation material. In
many situations, this ion-transfer reaction may not be rate
limiting, though it can be included in future extensions of
our model, using various models of electrochemical reac-
tion kinetics [14,27,29,32].
Similar to Johnson and Newman [18] and West et al.

[23], we make use of the Nernst-Planck (NP) equation for
ion transport, an equation which is valid for a sufficiently
dilute electrolyte, and which describes each ion in the same
way. This approach is mathematically different from
models developed for (Li-ion) batteries, which incorporate
a solution-phase potential as the driving force for the
transport of cations [33]. This potential combines the
electrical potential in solution with a term dependent on
Liþ ion concentration. Also thermodynamic nonidealities,
beyond the NP equation, are incorporated in such state-of-
the-art battery models. Though these battery models were
also successfully applied for CDI with intercalation mate-
rials [14,34], nevertheless, in the present work we follow
Refs. [18,23] and make use of porous electrode theory
based on the NP equation. Advantages of the NP approach
are that it is mathematically easier to understand and
implement, and in a later stage can be readily extended
to ionic mixtures. Such modifications are not so straight-
forward to implement in the available codes for battery
models [29]. For a dilute electrolyte, the NP equation is a
valid approximation, because thermodynamic nonidealities
of the aqueous phase are not very pronounced. Thus, we
use the ideal NP equation for migration and diffusion of
each ionic species in the different elements in the cell,
extended with an advection term for the flow channel.
In summary, in the present work we aim to develop and

present a mathematical model for water desalination by CDI
using porous electrodes consisting of nanoparticles of
intercalation material. Our approach is to use a theoretical
framework which is not excessively complicated while it
describes a large number of the physical and chemical
processes that take place in CDIwith intercalationmaterials.
At a later stage, the present model can be extended in a
straightforward manner to describe mixtures of salts, by
using a generalized Frumkin intercalation isotherm for ionic
mixtures [8,35]. Such an extensionwould bevery difficult to
make in the classical theoretical framework of modeling
Li-ion batteries that use quasielectrostatic potentials and
concentrated solution theory. In our presentworkwe discuss
two different modes of operation of the electrochemical cell
and the influence thereof on key parameters relevant for
understanding cell performance (e.g., salt concentration,
intercalation degree, and cell voltage).
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II. THEORY

We make a calculation for a complete CDI desalination
cell which consists of two electrodes, two spacer channels,
and an anion-exchange membrane (AEM) which is placed in
the middle of the cell, see Fig. 1. This arrangement, with the
electrodes connected to an external electronic circuit, forms
the desalination system that we will describe. The feed
streams enter the spacer channels on one side and leave on
the other, in a direction longitudinal to membrane and
electrode. The spacer channels are in contact with an
electrode on one side and the AEM on the other. The
channels are not completely open, but contain a porous layer
with a certain porosity εs and tortuosity τs. Feedwater is used
with a sufficiently low salt concentration for the assumptions
of dilute solution theory to hold (activity coefficient, γ ∼ 1)
[19]. Ion transport in these channels is described by the NP
equation, extended to include advective flow,

Ji ¼ civ −
εs
τs
Dið∇ci − zici∇ϕÞ; ð1Þ

where Ji is the flux of ion i, v is fluid velocity, and ci is ion
concentration. We relate the tortuosity of the porous material
to porosity with the Bruggeman equation, τ ¼ 1=

ffiffiffi
ε

p
, as we

will also do in the electrode. Furthermore, Di is the ion
diffusion coefficient in free solution, zi the valency of
the ion, and ϕ is the dimensionless electric potential.
Dimensions of this potential can be restored bymultiplication
with the thermal voltage VT ¼ RT=F ¼ kBT=e.
Mass conservation describes the change of ion concen-

tration with time at any position in these channels
according to

εs
∂ci
∂t ¼ −∇ · Ji; ð2Þ

which can be combined with Eq. (1) and further simplified
by assuming that
(a) Water flow in the spacer channels only has a compo-

nent in the y direction parallel to the membrane and
electrode (see Fig. 1); hence, vx ¼ 0, and

(b) Diffusion and electromigration are only considered in
the opposite, x, direction (which is perpendicular to
the y direction of water flow).

With these assumptions, the balance for each ionic
species in the spacer channel becomes [36]

εs
∂ci
∂t ¼ −vy

∂ci
∂y þ εs

τs
Di

�∂2ci
∂x2 þ zi

∂
∂x

�
ci
∂ϕ
∂x

��
; ð3Þ

which is combined with local charge neutrality
P

izici ¼ 0
and solved for each ionic species. For fluid velocity, we
assume plug flow, thus vy is independent of x.
The description of ion transport in the spacer channels

acts as the basis for understanding the transport of ions in
the porous electrodes, which results in the ion mass balance

εe
∂ci
∂t ¼ εe

τe
Di

�∂2ci
∂x2 þ zi

∂
∂x

�
ci
∂ϕ
∂x

��
− aJint;i; ð4Þ

where εe is electrode porosity (volume fraction of electrode
filled with electrolyte), and τe is electrode tortuosity. In the
electrode the fluid velocity is set to zero. Similar to the
spacer channel, electroneutrality is assumed in the electro-
lyte pore phase in the electrodes. In the model presented
here, this corresponds to ½Naþ� ¼ ½Cl−�. The new addition
in Eq. (4), aJint;i, is the ion flux from electrolyte into the
intercalation material (redox-active nanoparticles), and is
defined per unit area a, which is the area of the particles per
unit volume of total electrode. For a perfectly cation-
selective material, we have for all anions Jint;i ¼ 0, while
for the cations, Jint;i follows from a balance over the
nanoparticles. Assuming only a single cation to intercalate
in the intercalation material, a cation mass balance for the
nanoparticles is given by

cmaxεIM
∂ϑ
∂t ¼ aJint; ð5Þ

where we leave out subscript i, and where cmax is the
maximum possible concentration of cations in the inter-
calation material, εIM is the volume fraction of the
intercalation material (as a fraction of the total electrode
volume), and ϑ is the average cation intercalation degree
(average fraction of active sites in the host particles
occupied by a cation).
Finally, local chemical equilibrium is assumed between

cations in the intercalation material and in the electrolyte.
This chemical equilibrium is described using the Frumkin
isotherm for intercalation [8,23,24]

ϕECM − ϕ∞ ¼ μ† − ln
ϑ

1 − ϑ
þ ln

cþ
cref

− gðϑ − 1=2Þ; ð6Þ

where ϕECM is the potential of the electron-conducting
material (carbon in most cases), and ϕ is the potential in the
nearby electrolyte phase, which is the same ϕ as used in
Eq. (4). Furthermore, cþ is the concentration of cations
there, cref is a reference concentration, and μ† and g are
constant factors dependent on the type of cation, where g
can be considered as an intercation repulsion energy. For
NiHCF, the Frumkin isotherm fits very well equilibrium
data for electrode potential versus charge [8]. As noted
above, the Frumkin isotherm is equivalent to the regular
solution model for the Gibbs free energy of mixing of
intercalated ions and vacancies, which has been success-
fully used in phase-field models of Li-ion batteries
[26,27,29].
In the electron-conducting phase in the electrode, the

electronic resistance is considered to be zero. This implies
that the potential here, ϕECM, does not vary with position.
However, it is different for cathode and anode, and it
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varies in time. Thus, the voltage as measured between
anode and cathode, the cell voltage, is given by Vcell ¼
VTðϕECM;A − ϕECM;CÞ where A and C refer to anode and
cathode.
Finally, ion transport in the AEM separating the two

halves of the cell must be described. As in the other regions,
transport of ions in the AEM is described by the NP
equation (1). Ion transport by advection is neglected in the
membrane. Similar to the electrodes and the spacer chan-
nels, it is assumed that diffusion and migration occur only
in the x direction across the membrane of thickness δm.
Accumulation of mass is neglected in the membrane and as
a consequence, in the membrane the flux of each ion
remains invariant with position x. An equal diffusion
coefficient Dm, in which the term ε=τ is included, is
assumed for all ions in the membrane, and we define
a transfer coefficient km ¼ Dm=δm. The membrane is
furthermore defined by the fixed charge density ωX, which
is a positive number for an AEM. A typical value for
a commercial membrane is of the order of X ¼ 4M. This is
a fixed charge concentration per unit aqueous phase in the
membrane. For a binary monovalent electrolyte, charge
neutrality in the membrane is given by cþ;m − c−;m þ
ωX ¼ 0 and a total ion concentration in the membrane
is defined as cT;m¼cþ;mþc−;m. The total ion flux is
Jions;m¼Jþ;mþJ−;m and the charge flux (ion current
density) is Jch;m ¼ Jþ;m − J−;m.
When the fixed charge density in the membrane is much

higher than the salinity outside the membrane, the ion
concentrations and the electrical potential ϕ can be
assumed to be varying linearly with position inside the
membrane [37]. As a consequence, the fluxes Jions;m and
Jch;m become

Jions;m ¼ −kmðΔcT;m − ωXΔϕmÞ;
Jch;m ¼ −kmhcT;miΔϕm; ð7Þ

where h…i is an average between values at the extreme
ends of the membrane, and Δ refers to a difference between
these positions (with fluxes defined from left to right, Δ is
defined as “right”minus “left”). The total ion concentration
on each side of the membrane is related to the salt
concentration just outside (i.e., in the spacer channel, at
a position right next to the membrane) c�, as

cT;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ ð2c�Þ2

q
; ð8Þ

while the Donnan potential (change in electrical potential)
across each membrane edge is given by

ΔϕD ¼ sinh−1 ðωX=2c�Þ: ð9Þ

III. RESULTS AND DISCUSSION

The calculations for the CDI cell are set up for an
electrolyte with a single cation Naþ that can intercalate into
redox-active nanoparticles under the influence of an
applied electrical current. As a specific geometrical exam-
ple of an electrochemical desalination cell, we consider
CDI with porous electrodes containing intercalation par-
ticles where the electrode has the spacer channel on one
side and the “current collector” on the other side. Here,
electronic current is injected in the electrode. The spacer
channels are positioned next to the AEM which is in the
middle of the cell, as shown in Fig. 1. The electrolyte,
a NaCl solution, flows through the spacer channel and both
ions diffuse in and out of the electrodes, while Cl− ions
(and some Naþ ions) also diffuse through the membrane.
Note that also other designs are possible: in Ref. [14] a cell
design was theoretically analyzed with the water flowing
through the electrodes, and in Ref. [8] the spacer channel
was located on the other side of the electrodes (on the
outsides of the cell).

A. Numerical aspects

The CDI cell model for our geometry is solved numeri-
cally, based on the conservation equations (3)–(5). These
equations are used for both ions, for spacer and electrode,
along with the Frumkin isotherm (6) and the equations for
the membrane. In the x direction (left-right direction in
Fig. 1), discretization of the partial differential equations
in each domain is done using a large number of nodes
(>20 in each domain), but in y direction we use only use a
single node and an implicit Euler scheme (backward
Euler). Because of this choice it is as if in the flow
direction each flow line is one (very thin) “stirred tank,” an
approach successfully applied for CDI in Ref. [38] and for
electrodialysis in Ref. [39]. For the low desalination
degrees as obtained in the present work, discretization
in the y direction into more nodes, will not significantly
change the results of the calculations. Note that in the case
of “one node in the y direction,” the geometry of how
inlets and outlets of the two cell compartments are
oriented relative to one another (e.g., co-current vs
countercurrent) does not matter; this only starts to influ-
ence the calculation outcome with a higher discretization
in the y direction. Another numerical aspect of our model
is as follows: with more than one node in the y direction,
constant current operation, where a certain current I is
made to flow from anode to cathode, requires solving all
equations on each node in the y direction simultaneously,
because current I will not be evenly distributed over all y
coordinates. However, when a boundary condition of
constant cell voltage is used, then it is actually possible
to solve each y node “sequentially,” i.e., one after the
other. Especially for steady-state operation in electrodi-
alysis, this is particularly useful. Finally, note that because
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we have neglected diffusion and migration in the y
direction, we do not have to deal with various numerical
complications at the inlet and outlet of the cell, such as
ionic currents straying outside the cell, or the choice of
correct boundary conditions in advection-diffusion prob-
lems, where the concentration decay in the y direction can
propagate upward into feed tubes; see, e.g., Ref. [40].
For our calculations, parameters are based on experi-

ments in Ref. [8], resulting in: csalt;inflow ¼ 10 mM,
εs ¼ 1.00, εe ¼ 0.30, εIM ¼ 0.50, cmax ¼ 4.4M, cell area
A ¼ 36 cm2, electrode thickness δe ¼ 250 μm, spacer
thickness δs ¼ 700 μm, and water flow rate per channel
Φv ¼ 5.0 mL=min, which results in a residence time of
(water in) each spacer channel of Aδs=Φv¼30 s. Diffusion
coefficients of Naþ and Cl− are 1.33×10−9m2=s and
2.00 × 10−9 m2=s, respectively. For the membrane, the
transfer coefficient is set to the value km ¼ 0.55 μm=s
(based on taking the average of DNaþ and DCl− , reducing
that by a factor of 20, and implementing a membrane
thickness of δm ¼ 150 μm). Membrane charge density is
X ¼ 4.0M (ω ¼ þ1 for an AEM). Operation is always with
constant current at a value of I ¼ �10 mA. With this
current running for one hour, this implies that the average
intercalation degree in a certain electrode then changes by
about Δϑ ¼ 0.20, because AδeFεIMcmaxΔϑ ¼ IΔt, where
Δt is the time period of charging. For the intercation
repulsion g, we use g ¼ 3.50 (dimensionally, 90 mV). The
factor μ† does not influence any calculation output and
neither does the choice of cref .

B. Initial charging and discharge

In all cases we start the calculation with both electrodes
charged half-way, i.e., ϑ ¼ 0.5, without gradients in ϑ
across the electrode. Then we charge one electrode relative
to the other for a period of 1 h, resulting in one electrode
reaching an average ϑavg ¼ 0.30 and the other ϑavg ¼ 0.70.
Then we discharge (i.e., reverse the direction of current) for
the same duration of 1 h, after which each electrode is back
to ϑavg ¼ 0.50. These are average values of ϑ, with the
profiles in ϑ across each electrode as presented in Fig. 2(c)
for different moments during the first hour of charging, and
in Fig. 2(d) for various times during discharge. The salt
concentration profiles during these periods are presented in
Figs. 2(a) and 2(b). This initial cycle of charge and
discharge is also shown as the first 2 h in Fig. 3, as well
as the first 2 h in Fig. 4.

C. Two modes of operation
of charge-discharge cycles

After that time (from t ¼ 2 h onward), two distinct
operational modes are considered. In mode 1, at t ¼ 2 h
we again reverse the current direction and go back to the
situation we had at t ¼ 1 h, at least in terms of ϑavg. This
cycle is then repeated with the current reversed every hour.
Mode 1 is depicted in Figs. 3(a) and 3(c) and in Fig. 4.
Instead, in mode 2, at t ¼ 2 h, nothing is changed, and the
current continues such that after another hour, at t ¼ 3 h,
we reach a situation that the values of ϑavg are now reversed
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FIG. 2. Time-dependent profiles
of salt concentration and inter-
calation degree during water
desalination with intercalation
electrodes. (a),(b) Salt concentra-
tion in electrodes and spacers;
(c),(d) Intercalation degree in the
two electrodes ϑ. These profiles
are given as a function of position
in the cell during (a),(c) first
charging step, and (b),(d) first
discharge step. Arrows depict
the progression of time.
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compared to the situation at t ¼ 1 h, i.e., the electrode that
had ϑavg¼0.70 at t ¼ 1 h, now, at t ¼ 3 h, has ϑavg ¼ 0.30
(and vice versa). Only now, at time t ¼ 3 h, is the current
reversed, and a period of charging starts that in 2 h will
bring us back to the other end of the cycle (so that in terms
of ϑavg, the cell is the same at t ¼ 5 h as at t ¼ 1 h). The
main advantage of mode 2 operation is that (when the limit
cycle is reached, and for a perfectly symmetric system)
operation goes from a cell voltage of þV at one end of the
cycle, to a voltage of −V at the other end, see Fig. 4. This
symmetry is not found for operation according to mode 1.
Thus, the mode 2 operation is very easily established
experimentally by setting a value of �V at which the cell
reverses the direction of current.
Interestingly, in this mode 2 of operation where the

current is reversed when the cell voltage is �V, each “half-
cycle” is now exactly the same as that in the next half-cycle,
with the only difference being that what happens in
electrode 1 during a certain half-cycle, now happens in
electrode 2 in the next. This can be observed in Fig. 3(d),
where the red dashed line during period 1–3 h, is almost the
same as the blue solid line in the period 3–5 h, and the same
for the blue line in the period 1–3 h which can be compared
with the red dashed line in the period 3–5 h. In Fig. 3, the
behavior is not yet exactly the same because the limit cycle
or “dynamic steady state” is not yet reached after 1 h.
Interestingly, for operation in this mode 2, it is impossible
to find an objective criterion about which half of the cycle is

to be called “charge” and which “discharge.” There is no
criterion because both halves of the cycle are exactly
identical in terms of desalination performance, energy
consumption, and other indicators. This exact symmetry
occurs only when for both halves of the cell all operational
settings are the same such as water flow rate and electrode
mass. Interestingly, it is not necessary for both electrodes to
have the same initial ϑ at time zero when we operate by
fixing the end voltages of each step to �V.
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intercalation degree ϑ versus time
for (a),(c) operation in mode 1, and
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cases calculation results are pre-
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Finally, we show in Fig. 4 calculation results for the
development in time of cell voltage for the two modes of
operation. These voltage-time (V-t) plots are important as
they fully describe the electrical energy input in the
process: for a constant current of �I, the electrical energy
input is proportional to the area under the V-t curve (and
delineated by the line Vcell ¼ 0). As Fig. 4 shows, after
reversal of the current direction, there is also a small “area”
which corresponds to energy “output” (e.g., from 1 to
1.15 h), i.e., where energy recovery is in theory possible
[41], after which a much longer period follows where
energy must be invested to run the cell (from 1.15 to 3 h for
mode 2).

IV. CONCLUSIONS

In conclusion, in this work we combine porous electrode
theory for electrodes with redox-active intercalation mate-
rials with a description of spacer channels and a membrane,
to describe an electrochemical system for capacitive deion-
ization (CDI) with two intercalation electrodes that are
chemically the same. The CDI cell design has an intrinsic
symmetry as it is composed of two identical porous
electrodes, both interfacing a spacer channel, separated
by one anion-exchange membrane. We consider a single-
salt solution, and calculated transport of ions by diffusion,
migration, and advection in two directions. Transport of
ions in the pores of the electrodes is modeled based on
the Nernst-Planck equation. Thermodynamics of cation
adsorption from electrolyte into the intercalation material is
described by the Frumkin isotherm (regular solution
theory), which factors in the lattice occupancy, intercation
repulsion, electrolyte salinity and electrode potential.
Homogeneous adsorption of ions is assumed, i.e., without
phase separation within the nanoparticles. Including of this
effect may be of importance for certain material chemis-
tries. The required model extensions can be based on
approaches discussed in Refs. [19,27,29].
In our model, a limitation in transport of ions within the

intercalation material is neglected, just as is a resistance for
flow of electronic current across the electrode. The model
describes the development in time of salt concentration,
intercalation degree, and cell voltage, parameters important
for the description of performance of a CDI desalination
cell. This work intends to provide a platform upon which
future models can be constructed for more realistic water
sources with ionic mixtures and for other geometries of
desalination systems involving porous electrodes with
redox-active intercalation materials.
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