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HIGHER CRITICAL POINTS IN AN ELLIPTIC FREE

BOUNDARY PROBLEM

DAVID JERISON AND KANISHKA PERERA

Abstract. We study higher critical points of the variational functional associ-
ated with a free boundary problem related to plasma confinement. Existence and
regularity of minimizers in elliptic free boundary problems have already been stud-
ied extensively. But because the functionals are not smooth, standard variational
methods cannot be used directly to prove the existence of higher critical points.
Here we find a nontrivial critical point of mountain pass type and prove many of
the same estimates known for minimizers, including Lipschitz continuity and non-
degeneracy. We then show that the free boundary is smooth in dimension 2 and
prove partial regularity in higher dimensions.

1. Introduction

In this paper we consider a superlinear free boundary problem related to plasma
confinement (see, e.g., [10, 15, 17, 26, 27, 28]). Let Ω be a bounded domain in R

N

with smooth boundary, and define the functional

J(v) =

ˆ

Ω

[
1

2
|∇v|2 +Qp(x, v)

]
dx

with

Qp(x, v) = χ{v>1}(x) −
1

p
(v − 1)p

+

for 2 < p < ∞ if N = 2 and for 2 < p < 2N/(N − 2) if N ≥ 3. We seek a non-
minimizing critical point of this functional in the usual Sobolev space H1

0 (Ω), the
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closure of C∞
0 (Ω) in the norm

‖v‖2 =

ˆ

Ω

|∇v|2 dx.

The critical point u of J that we construct is Lipschitz continuous in Ω̄. The region

{u > 1} ⊂⊂ Ω

represents the plasma, and the boundary of the plasma,

F (u) := ∂{x ∈ Ω : u(x) > 1},

is the free boundary.
The function u satisfies the following interior Euler-Lagrange equation

(1.1) − ∆u = (u− 1)p
+, in Ω \ F (u),

where w± = max {±w, 0} denote the positive and negative parts of w, respectively.
The function u also satisfies, in various generalized forms, the free boundary condition

|∇u+|2 − |∇u−|2 = 2 on F (u),

where ∇u± are the limits of ∇u from {u > 1} and {u ≤ 1}◦, respectively. The
ultimate goal is to show that at most (or all) points, the free boundary is smoooth,
and at those points the free boundary condition is satisfied in the ordinary, classical
sense.

The assumption p > 2 makes the Euler-Lagrange equation superlinear, which helps
us to prove existence of a nontrivial mountain pass solution. We also make use of
the assumption p > 2 in proving important nondegeneracy properties of u that lead
to regularity of the free boundary. The upper limitation on p is imposed so that the
inclusion from H1

0 (Ω) to Lp(Ω) is a compact. The limiting exponent p = 2N/(N−2),
N ≥ 3, is treated in [31].

Our first theorem, Theorem 1.2, says that there is a Lipschitz continuous mountain
pass solution to the variational problem. Our second theorem, Theorem 1.4, says
that this solution is nondegenerate and satisfies the free boundary condition in the
sense of viscosity. Our third theorem, Theorem 1.5, establishes full regularity of the
free boundary in dimension 2 and partial regularity in higher dimensions. We believe
that these are the first results in the literature to address existence and regularity of
higher critical points of free boundary functionals. This paper is an improvement on
our preprint [21], which established weaker partial regularity of the free boundary.

For minimizers there is a large literature proving existence and partial regularity
of the free boundary. (See, for example, [1, 2, 3, 5, 6, 7, 8, 9, 29, 30] and the
references therein). Our results are less general than those for minimizers, which
apply to many more classes of potentials than Qp(x, v). We chose this family of
potential functions because we are able to prove that the corresponding functional
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has a nontrivial mountain pass solution. In addition to being less general, our results
give less regularity for the free boundary than is valid for minimizers. We have only
proved that our critical point has a smooth free boundary in dimension 2. We
conjecture that our results are best possible in the sense that there does exist an
axisymmetric mountain pass solution in dimension 3 with a singular free boundary
point resembling the example in [1]. In the case of minimizers, the best results to
date are that the free boundary is smooth everywhere in all dimensions N ≤ 4 and
has singularities on a closed set of Hausdorff dimension at most N − 5 in higher
dimensions (see [12, 19, 13]).

To formulate our results more precisely, we recall the definition of a mountain pass
point.

Definition 1.1 (Hofer [18]). We say that u ∈ H1
0 (Ω) is a mountain pass point of

J if the set {v ∈ U : J(v) < J(u)} is neither empty nor path connected for every
neighborhood U of u.

Let
Γ =

{
γ ∈ C([0, 1], H1

0(Ω)) : γ(0) = 0, J(γ(1)) < 0
}

be the class of continuous paths from 0 to the set {u ∈ H1
0 (Ω) : J(u) < 0}, and denote

c∗ = c∗(Ω) := inf
γ∈Γ

max
u∈γ([0,1])

J(u).

It will follow from an integration by parts that our mountain pass point u belongs
to the Nehari-type manifold

M =

{
u ∈ H1

0 (Ω) :

ˆ

{u>1}

|∇u|2 dx =

ˆ

{u>1}

(u− 1)p dx > 0

}
.

Our first main result is the following.

Theorem 1.2. Let Ω be a smooth bounded domain in R
N , N ≥ 2, and J as above.

Then
a) c∗ = c∗(Ω) > 0.
b) The functional J has a mountain pass point u satisfying J(u) = c∗, and u

minimizes J |M. In particular, by part (a) the solution is nontrivial.
c) The function u is Lipschitz continuous on Ω̄ solving the interior Euler-Lagrange

equation (1.1). Moreover, u solves the free boundary condition in the variational
sense of Definition 4.3.

The following nondegeneracy is the fundamental estimate needed to be able to
establish more detailed properties of the free boundary.

Definition 1.3. We say that a continuous function u in Ω̄ is nondegenerate if there
exist constants r0, c > 0 such that if x0 ∈ {u > 1} and r := dist (x0, {u ≤ 1}) ≤ r0,
then u(x0) ≥ 1 + cr.
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Our other main results are as follows.

Theorem 1.4. The mountain pass solution u in Theorem 1.2 is nondegenerate in
the sense of Definition 1.3 and satisfies the free boundary condition in the sense
of viscosity, namely, if there is a ball B tangent to the free boundary and a point
x0 ∈ ∂ {u > 1} ∩ ∂B, then u has an asymptotic expansion of the form

u(x) = α〈x− x0, ν〉+ − β〈x− x0, ν〉− + o(|x− x0|), x → x0,

with

α > 0, β ≥ 0, α2 − β2 = 2,

where ν is the interior unit normal to ∂B at x0 if B ⊂ {u > 1} and the exterior unit
normal if B ⊂ {u ≤ 1}◦.

Theorem 1.5. The mountain pass solution u in Theorem 1.2 has a free boundary
∂{u > 1} of finite (N−1)-dimensional Hausdorff measure that is a C∞ hypersurface
except on a closed set of Hausdorff dimension at most N−3. Near the smooth subset
of the free boundary, (u− 1)± are smooth and the free boundary equation is satisfied
in the classical sense. If N = 2, then the exceptional set is empty, that is, the free
boundary is smooth at every point. In dimension N = 3, the free boundary has at
most finitely many nonsmooth points.

The proof of Theorem 1.5 depends on two propositions of independent interest.
Define

δ0 := dist ({u > 1} , ∂Ω) > 0.

Proposition 1.6. If u is a nondegenerate, Lipschitz continuous interior solution as
in (1.1), then there exists a constant C > 0 such that whenever r ≤ δ0/2,

σ(∂ {u > 1} ∩Br(x0)) ≤ CrN−1,

where σ denotes (N − 1)-dimensional Hausdorff measure. In particular, the free
boundary ∂ {u > 1} has finite (N − 1)-dimensional Hausdorff measure.

Proposition 1.7. If u is a nondegenerate, Lipschitz continuous interior solution
as in (1.1) that minimizes J |M, then there is a constant c > 0 such that whenever
x0 ∈ ∂ {u > 1} and 0 < r ≤ δ0/2,

(1.2) c ≤
L({u > 1} ∩ Br(x0))

L(Br(x0))
≤ 1 − c,

where L denotes the Lebesgue measure in R
N . Thus, the topological boundary of

{u > 1} coincides with its measure-theoretic boundary.
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Let us point out that the existence of a mountain pass solution is by no means
routine due to the lack of smoothness of J . Indeed, J is not even continuous, much
less of class C1. For the functional in which the discontinuous term χ{u>1} is removed,
there is no difficulty in applying the mountain pass theorem, as, for example, in
Flucher and Wei [15] and Shibata [26].

The outline of the proof of Theorem 1.2 is as follows. In Section 2, we introduce an
approximation Jǫ to the functional J , find associated mountain pass solutions uǫ, and
prove uniform Lipschitz bounds on these solutions with the help of a uniform estimate
of Caffarelli, Jerison, and Kenig [11] (see Proposition 2.8). Along the way, we show
that c∗ > 0 (part (a) of the theorem). In Section 3, we show that a subsequence of uǫ

converges to a function u that solves the Euler-Lagrange equation in the complement
of the free boundary. In Section 4 we show that our putative solution u belongs to
the Nehari manifold M and minimizes J when restricted to M. We also show that
J(u) = c∗, which ultimately leads to the variational equation for u.

In Section 5 we prove Theorem 1.4 by showing that any Lipschitz continuous
minimizer of J on M solving the interior equation (1.1) is nondegenerate. For
minimizers, nondegeneracy is proved using a harmonic replacement. Our proof of
nondegeneracy is somewhat different; it depends on p > 2 and projection onto the
Nehari manifold. The second part of the theorem is a corollary of theorems of
Lederman and Wolanski [24], which say that if a singular limit u such as ours is
nondegenerate, then it is a viscosity solution. (Note, however, that we obtain a
stronger form of viscosity solution because of a further complementary nondegeneracy
proved in Proposition 1.7.)

In Section 6 we prove Proposition 1.6, and in Section 7 we prove Proposition 1.7.
Both bounds in Proposition 1.7 should be viewed as nondegeneracy estimates. The
lower bound by c is an easy consequence of the nondegeneracy of Definition 1.3.
The upper bound by 1 − c is a new kind of complementary nondegeneracy of the
region {u ≤ 1}. In Section 8, we conclude the proof of Theorem 1.5 using a blow-up
argument based on the monotonicity formula of G. Weiss described in the appendix,
Section 9.

2. Approximate mountain pass solutions

We approximate J by C1-functionals as follows. Let β : R → [0, 2] be a smooth
function such that β(t) = 0 for t ≤ 0, β(t) > 0 for 0 < t < 1, β(t) = 0 for t ≥ 1, and
´ 1

0
β(s) ds = 1. Then set

B(t) =

ˆ t

0

β(s) ds,
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and note that B : R → [0, 1] is a smooth nondecreasing function such that B(t) = 0
for t ≤ 0, B(t) > 0 for 0 < t < 1, and B(t) = 1 for t ≥ 1. For ε > 0, let

Jε(u) =

ˆ

Ω

[
1

2
|∇u|2 + B

(
u− 1

ε

)
−

1

p
(u− 1)p

+

]
dx, u ∈ H1

0 (Ω)

and note that Jε is of class C1.
If u is a critical point of Jε, then u is a weak solution of

(2.1)





∆u =
1

ε
β

(
u− 1

ε

)
− (u− 1)p−1

+ in Ω

u = 0 on ∂Ω,

and hence also a classical C2,α solution by elliptic regularity theory.
Note that if u is not identically zero, then it is nontrivial in a stronger sense,

namely, u > 0 in Ω and {u > 1} is a nonempty open set. In fact, if u ≤ 1 then it is
harmonic in Ω and hence identically zero (since u = 0 on ∂Ω). Thus any nonzero u
is strictly greater than 1 on an open set. Furthermore, on {u < 1}, u is the harmonic
function with boundary values 0 on ∂Ω and 1 on ∂{u ≥ 1}, hence strictly positive.
(Here we are using the assumption that Ω is connected.)

Let Φ ∈ C1
0(Ω,R

N). Then by (2.1),

div

[(
1

2
|∇u|2 + B((u− 1)/ε) −

1

p
(u− 1)p

+

)
Φ − (∇u · Φ)∇u

]

=

(
1

2
|∇u|2 + B((u− 1)/ε) −

1

p
(u− 1)p

+

)
div Φ − ∇u(DΦ) · ∇u .

Hence,

(2.2)

ˆ

Ω

[(
1

2
|∇u|2 + B((u− 1)/ε) −

1

p
(u− 1)p

+

)
div Φ − ∇u(DΦ) · ∇u

]
dx = 0 .

This is one form of the critical equation that we will ultimately show is inherited in
the limit as ε → 0 by our mountain pass solution. It is the critical point equation for
Jε with respect to domain variations. Indeed, for sufficiently small t, x 7→ x+ tΦ(x)
is a diffeomorphism of Ω, and the left side of (2.2) is

d

dt

∣∣∣∣
t=0

Jε(u(x+ tΦ(x))) .

Lemma 2.1. Jε satisfies the Palais-Smale compactness condition, that is, every
sequence (uj) ⊂ H1

0 (Ω) such that Jε(uj) is bounded and J ′
ε(uj) → 0 in H1

0 (Ω) norm
has a convergent subsequence.
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Proof. We have

(2.3) Jε(uj) =

ˆ

Ω

[
1

2
|∇uj|

2 + B

(
uj − 1

ε

)
−

1

p
(uj − 1)p

+

]
dx = O(1)

and

(2.4) J ′
ε(uj) vj =

ˆ

Ω

[
∇uj · ∇vj +

1

ε
β

(
uj − 1

ε

)
vj − (uj − 1)p−1

+ vj

]
dx = o(‖vj‖),

vj ∈ H1
0 (Ω).

We begin by showing that ‖uj‖ is bounded. Write uj = u+
j + u−

j , where u±
j are

defined by

u+
j := (uj − 1)+, u−

j = 1 − (uj − 1)− .

Since B is bounded (2.3) gives
ˆ

Ω

[
|∇u+

j |2 + |∇u−
j |2 −

2

p
(u+

j )p

]
dx ≤ C < ∞.

Taking vj = u+
j in (2.4) and using

ˆ

Ω

|v| dx ≤ C‖v‖

and the fact that β is bounded, we have
ˆ

Ω

(u+
j )p dx ≤

ˆ

Ω

|∇u+
j |2 dx+ C‖u+

j ‖.

Combining our inequalities gives
(

1 −
2

p

)
‖u+

j ‖2 + ‖u−
j ‖2 ≤ C

(
‖u+

j ‖ + 1
)
,

which implies that ‖u±
j ‖ are bounded, and hence ‖uj‖, is bounded.

Replace uj by a subsequence (still denoted uj) that tends weakly to u in H1
0 (Ω)

and such that uj tends to u in Lp(Ω) norm and pointwise almost everywhere. Then
J ′

ε(uj)u → 0 and J ′
ε(uj)uj → 0 imply that

lim
j→∞

‖uj‖
2 = ‖u‖2.

Finally,

lim sup
j→∞

‖uj − u‖2 = lim sup
j→∞

(‖uj‖
2 + ‖u‖2 − 2〈uj, u〉) = 2‖u‖2 − 2〈u, u〉 = 0

�
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Since p < 2N/(N − 2), the Sobolev imbedding theorem implies

Jε(u) ≥

ˆ

Ω

[
1

2
|∇u|2 −

1

p
|u|p

]
dx ≥

1

2
‖u‖2 − C ‖u‖p ∀u ∈ H1

0 (Ω)

for some constant C depending on Ω. Since p > 2, then there exists a constant ρ > 0
such that

‖u‖ ≤ ρ =⇒ Jε(u) ≥
1

3
‖u‖2 .

Moreover,

Jε(u) ≤

ˆ

Ω

[
1

2
|∇u|2 + 1 −

1

p
(u− 1)p

+

]
dx

and hence, again because p > 2, there exists a function u0 ∈ H1
0 (Ω) such that

Jε(u0) < 0 = Jε(0). Therefore, the class of paths

Γε =
{
γ ∈ C([0, 1], H1

0(Ω)) : γ(0) = 0, Jε(γ(1)) < 0
}

is nonempty and

(2.5) cε := inf
γ∈Γε

max
u∈γ([0,1])

Jε(u) ≥
ρ2

3
.

Lemma 2.2. Jε has a (nontrivial) critical point uε at the level cε.

Proof. If not, then there exists a constant 0 < δ ≤ cε/2 and a continuous map
η : {Jε ≤ cε + δ} → {Jε ≤ cε − δ} such that η is the identity on {Jε ≤ 0} by the
first deformation lemma (see, e.g., Perera and Schechter [25, Lemma 1.3.3]). By the
definition of cε, there exists a path γ ∈ Γε such that maxγ([0,1]) Jε ≤ cε + δ. Then
γ̃ := η ◦ γ ∈ Γε and maxγ̃([0,1]) Jε ≤ cε − δ, contradicting the definition of cε. �

Lemma 2.3. We have cε ≤ c∗. In particular, by (2.5), c∗ > 0 and Theorem 1.2 (a)
holds.

Proof. Since B((t − 1)/ε) ≤ χ{t>1} for all t, Jε(u) ≤ J(u) for all u ∈ H1
0 (Ω). So

Γ ⊂ Γε and

cε ≤ max
u∈γ([0,1])

Jε(u) ≤ max
u∈γ([0,1])

J(u) ∀γ ∈ Γ. �

For 0 < ε ≤ 1, uε have the following uniform regularity properties.

Lemma 2.4. There exists a constant C > 0 such that, for 0 < ε ≤ 1, ‖uε‖ ≤ C.

Proof. By Lemma 2.3,
ˆ

Ω

[
1

2
|∇uε|2 + B

(
uε − 1

ε

)
−

1

p
(uε − 1)p

+

]
dx ≤ c∗
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and hence

(2.6)
1

2

ˆ

Ω

|∇uε|2 dx ≤ c∗ +
1

p

ˆ

{vε>0}

vp
ε dx,

where vε = uε − 1. Testing (2.1) with (uε − 1 − ε)+ gives

(2.7)

ˆ

{uε>1+ε}

|∇uε|2 dx =

ˆ

{vε>ε}

vp−1
ε (vε − ε) dx.

Fix λ > 2/(p− 2). Multiplying (2.7) by (λ+ 1)/pλ and subtracting from (2.6) gives

(2.8)
1

2

ˆ

{uε≤1+ε}

|∇uε|2 dx+
(p− 2)λ− 2

2pλ

ˆ

{uε>1+ε}

|∇uε|2 dx

≤ c∗ +
1

p

ˆ

{0<vε≤ε}

vp
ε dx+

1

pλ

ˆ

{vε>ε}

vp−1
ε

[
(λ+ 1) ε− vε

]
dx.

The last integral is less than or equal to
´

{ε<vε<(λ+1) ε}
vp−1

ε

[
(λ + 1) ε − vε

]
dx and

hence (2.8) gives

min

{
1

2
,
(p− 2)λ− 2

2pλ

}
ˆ

Ω

|∇uε|2 dx ≤ c∗ +
εp L(Ω)

p

[
1 + (λ+ 1)p−1

]
.

The conclusion follows. �

Lemma 2.5. There exists a constant C > 0 such that, for 0 < ε ≤ 1,

max
x∈Ω

uε(x) ≤ C.

Proof. Since p < 2N/(N − 2), we have N(p− 2)/2 < 2N/(N − 2). Fix N(p− 2)/2 <
q < 2N/(N − 2). Since

−∆uε = (uε − 1)p−1
+ −

1

ε
β

(
uε − 1

ε

)
≤ (uε − 1)p−1

+ ≤ (uε)p−1,

there exists a constant C > 0 such that

‖uε‖∞ ≤ C ‖uε‖2q/(2q−N(p−2))
q

by Bonforte et al. [4, Theorem 3.1]. Since uε is bounded in Lq(Ω) by the Sobolev
imbedding theorem and Lemma 2.4, the conclusion follows. �

By Lemma 2.5, (uε − 1)p−1
+ ≤ A0 for some constant A0 > 0 independent of ε. Let

ϕ0 > 0 be the solution of 



−∆ϕ0 = A0 in Ω

ϕ0 = 0 on ∂Ω.
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Lemma 2.6. For 0 < ε ≤ 1,

uε(x) ≤ ϕ0(x) ∀x ∈ Ω,

in particular, {uε ≥ 1} ⊂ {ϕ0 ≥ 1} ⊂⊂ Ω.

Proof. Since β(t) ≥ 0 for all t,

−∆uε ≤ (uε − 1)p−1
+ ≤ A0 = −∆ϕ0,

so uε ≤ ϕ0 by the maximum principle. �

Lemma 2.7. There exists a constant C > 0 such that, for r > 0 and 0 < ε ≤ 1, if
Br(x0) ⊂ Ω, then

max
x∈Br/2(x0)

|∇uε(x)| ≤ C/r.

Proof. Since β(t) ≤ 2 for all t,

∆uε ≤
1

ε
β

(
uε − 1

ε

)
≤

2

ε
χ{|uε−1|<ε}(x),

and since β(t) ≥ 0 for all t,

−∆uε ≤ (uε − 1)p−1
+ ≤ A0,

so

±∆uε ≤ max {2, A0}

(
1

ε
χ{|uε−1|<ε}(x) + 1

)
.

Since uε is also uniformly bounded in L2(Ω) by Lemma 2.5, the conclusion follows
from the following result of Caffarelli, Jerison, and Kenig [11]. �

Proposition 2.8 ([11, Theorem 5.1]). Suppose that u is a Lipschitz continuous
function on B1(0) ⊂ R

N satisfying the distributional inequalities

±∆u ≤ A

(
1

ε
χ{|u−1|<ε}(x) + 1

)

for some constants A > 0 and 0 < ε ≤ 1. Then there exists a constant C > 0,
depending on N , A, and

´

B1(0)
u2 dx, but not on ε, such that

max
x∈B1/2(0)

|∇u(x)| ≤ C.
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3. Limits of mountain pass solutions

Let εj ց 0, let uj = uεj be the critical point of Jεj
obtained in Lemma 2.2, and

let cj = Jεj
(uj) (an abuse of notation, since this value was previously denoted cεj

).

Lemma 3.1. There exists a Lipschitz continuous function u on Ω̄ such that u ∈
H1

0 (Ω) ∩ C2(Ω̄ \ ∂ {u > 1}), and, for a suitable sequence εj,

(a) uj → u uniformly on Ω,

(b) −∆u = (u− 1)p−1
+ on Ω \ ∂ {u > 1},

(c) uj → u strongly in H1
0 (Ω),

(d) J(u) ≤ lim inf cj ≤ lim sup cj ≤ J(u) + L({u = 1}).

Moreover, u is nontrivial in the sense that J(u) + L({u = 1}) > 0.

Proof. First we prove (a). The majorant ϕ0 of Lemma 2.6 gives a uniform lower
bound δ0 > 0 on the distance from {uε ≥ 1} to ∂Ω. Thus uε is positive, harmonic
and bounded by 1 in a δ0 neighborhood of ∂Ω. It follows from standard boundary
regularity theory that uε is uniformly bounded in a δ0/2 neighborhood in, say, C3

norm. In particular, the family is compact in C2 norm on this set. By Lemmas
2.5 and 2.7, the family uε is uniformly Lipschitz continuous on the compact subset
of Ω at distance greater or equal to δ0/2 from ∂Ω. Finally, by Lemma 2.4, uε is
uniformly bounded in H1

0 (Ω). Thus we can choose εj so that uj converges uniformly
in Ω̄ to a Lipschitz function u, and so that there is strong converence in C2 on a δ0/2
neighborhood of ∂Ω and, finally, that there is weak convergence of uj to u in H1

0 (Ω).
Next we show that u satisfies the interior part of the Euler-Lagrange equation:

−∆u = (u− 1)p−1
+ in {u 6= 1} .

Let ϕ ∈ C∞
0 ({u > 1}). Then u ≥ 1 + 2 ε on the support of ϕ for some ε > 0. For all

sufficiently large j, εj < ε and |uj − u| < ε by (a). Then uj ≥ 1 + εj on the support
of ϕ, so testing

(3.1) − ∆uj = (uj − 1)p−1
+ −

1

εj

β

(
uj − 1

εj

)

with ϕ gives
ˆ

Ω

∇uj · ∇ϕdx =

ˆ

Ω

(uj − 1)p−1 ϕdx.

Passing to the limit gives

(3.2)

ˆ

Ω

∇u · ∇ϕdx =

ˆ

Ω

(u− 1)p−1 ϕdx

since uj converges to u weakly in H1
0 (Ω) and uniformly on Ω. Hence u is a distribu-

tional (and thus a classical) solution of −∆u = (u− 1)p−1 in {u > 1}.
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A similar argument shows that u satisfies −∆u = 0 in {u < 1}. We show next
that u is also harmonic in the possibly larger set {u ≤ 1}◦. Since β ≥ 0, testing (3.1)
with any nonnegative ϕ ∈ C∞

0 (Ω) and passing to the limit gives

(3.3) − ∆u ≤ (u− 1)p−1
+ in Ω

in the distributional sense. On the other hand, since u is harmonic in {u < 1},
min(u, 1) satisfies the super-mean value property. This implies (see, for instance, [1,
Remark 4.2])

∆ min(u, 1) ≤ 0

in the distributional sense. Combining with (3.3), we find that

∆u = 0

as a distribution on the open set {u ≤ 1}◦. Thus the same equation holds in the
strong sense, and this concludes the proof of (b). (Note that we do not exclude the
case of connected components of {u ≤ 1}◦ on which u ≡ 1.)

Since uj tends weakly to u in H1
0 (Ω), ‖u‖ ≤ lim inf ‖uj‖. So to prove (c), it

suffices to show that lim sup ‖uj‖ ≤ ‖u‖. Recall that uj converges in C2 norm to u
in a neighborhood of ∂Ω in Ω̄. Let n denote the outer unit normal to ∂Ω. Multiplying
(3.1) by uj − 1, integrating by parts, and noting that β((t− 1)/εj) (t− 1) ≥ 0 for all
t gives

(3.4)

ˆ

Ω

|∇uj|
2 dx ≤

ˆ

Ω

(uj − 1)p
+ dx−

ˆ

∂Ω

∂uj

∂n
dσ →

ˆ

Ω

(u− 1)p
+ dx−

ˆ

∂Ω

∂u

∂n
dσ.

Fix 0 < ε < 1. Taking ϕ = (u− 1 − ε)+ in (3.2) yields

(3.5)

ˆ

{u>1+ε}

|∇u|2 dx =

ˆ

Ω

(u− 1)p−1
+ (u− 1 − ε)+ dx,

and integrating (u− 1 + ε)− ∆u = 0 over Ω gives

(3.6)

ˆ

{u<1−ε}

|∇u|2 dx = −(1 − ε)

ˆ

∂Ω

∂u

∂n
dσ.

Adding (3.5) and (3.6), and letting ε ց 0, we find that1

ˆ

Ω

|∇u|2 dx =

ˆ

Ω

(u− 1)p
+ dx−

ˆ

∂Ω

∂u

∂n
dσ.

This together with (3.4) gives

lim sup

ˆ

Ω

|∇uj|
2 dx ≤

ˆ

Ω

|∇u|2 dx

1Here we are using the well known fact that

ˆ

{u=1}

|∇u|2 dx = 0.
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as desired.
To prove (d), write

Jεj
(uj) =

ˆ

Ω

[
1

2
|∇uj|

2 + B

(
uj − 1

εj

)
χ{u 6=1}(x) −

1

p
(uj − 1)p

+

]
dx

+

ˆ

{u=1}

B

(
uj − 1

εj

)
dx.

Since B((uj − 1)/εj)χ{u 6=1} converges pointwise to χ{u>1} and is bounded by 1, the
first integral converges to J(u) by (a) and (c). Since 0 ≤ B(t) ≤ 1 for all t,

0 ≤

ˆ

{u=1}

B

(
uj − 1

εj

)
dx ≤ L({u = 1}).

(d) follows.
By (d) and (2.5),

J(u) + L({u = 1}) ≥
ρ2

3
> 0

and hence u is nontrivial. �

4. Critical points on the Nehari manifold

Lemma 4.1. Every nonzero v ∈ C0(Ω̄) ∩ H1
0 (Ω) that solves −∆v = (v − 1)p−1

+ in
Ω \ ∂ {v > 1} belongs to the Nehari manifold M and satisfies J(v) > 0.

Proof. As before for uε, if v ≤ 1 in Ω, then it is harmonic and hence identically zero.
Thus if v is not identically zero, {v > 1} is a nonempty open set, where it it satisfies
−∆v = (v − 1)p−1. As in the proof of Lemma 3.1 (c), multiplying this equation by
v − 1 and integrating over the set {v > 1} shows that v lies on M. Finally, since
v ∈ M,

J(v) =
1

2

ˆ

{v<1}

|∇v|2 dx+

(
1

2
−

1

p

)
ˆ

{v>1}

|∇v|2 dx+ L({v > 1}) > 0. �

Proposition 4.2. We have

(4.1) c∗ ≤ inf
v∈M

J(v).

If v ∈ M and J(v) = c∗, then v is a mountain pass point of J .

Proof. For v ∈ H1
0 (Ω), set

v+ = (v − 1)+, v− = 1 − (v − 1)−; v = v− + v+.

Let
W =

{
v ∈ H1

0 (Ω) : v+ 6= 0, and v− 6= 0
}
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Then M ⊂ W , and for v ∈ W , we define the curve

ζv(s) =

{
(1 + s) v−, s ∈ [−1, 0]

v− + s v+, s ∈ (0,∞),

which passes through v at s = 1. For s ∈ [−1, 0],

J(ζv(s)) =
(1 + s)2

2

ˆ

{v<1}

|∇v|2 dx

is increasing in s. There is a discontinuity in J at s = 0:

lim
sց0

J(ζv(s)) = J(ζv(0)) + L({v > 1}) > J(ζv(0)).

For s ∈ (0,∞),

(4.2) J(ζv(s)) =
1

2

ˆ

{v<1}

|∇v|2 dx+
s2

2

ˆ

{v>1}

|∇v|2 dx−
sp

p

ˆ

{v>1}

(v − 1)p dx

+ L({v > 1})

and
d

ds
J(ζv(s)) = s

[
ˆ

{v>1}

|∇v|2 dx− sp−2

ˆ

{v>1}

(v − 1)p dx

]
.

Define

(4.3) sv =




ˆ

{v>1}

|∇v|2 dx

ˆ

{v>1}

(v − 1)p dx




1/(p−2)

.

Thus, we see that J(ζv(s)) increases for s ∈ [−1, sv), attains its maximum at s = sv,
decreases for s ∈ (sv,∞), and

(4.4) lim
s→∞

J(ζv(s)) = −∞.

For each v ∈ M, (4.4) implies that we may choose s̄ > 1 sufficiently large so that
J(ζv(s̄)) < 0. Note that sv = 1. Therefore,

γv(t) = ζv((s̄+ 1) t− 1), t ∈ [0, 1]

defines a path γv ∈ Γ such that

max
w∈γv([0,1])

J(w) = J(ζv(sv)) = J(v),

so c∗ ≤ J(v). Thus (4.1) holds.
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Next, suppose v ∈ M and J(v) = c∗. Let U be a neighborhood of v. The path γv

passes through v at t = 2/(s̄+ 1) =: t̄ and J(γv(t)) < c for t 6= t̄. By the continuity
of γv, there exist 0 < t− < t̄ < t+ < 1 such that γv(t

±) ∈ U , in particular, the set
{w ∈ U : J(w) < c} is nonempty. If it is path connected, then this set contains a
path η joining γv(t

±), and reparametrizing γv|[0,t−] ∪ η ∪ γu|[t+,1] gives a path in Γ on
which J < c∗, contradicting the definition of c∗. So the set is not path connected,
and v is a mountain pass point of J . This concludes the proof of Proposition 4.2. �

We can now conclude the proof of part (b) of Theorem 1.2. The limit u obtained
in Lemma 3.1 belongs to M by Lemma 3.1 (b) and Lemma 4.1. Hence

inf
M

J ≤ J(u).

By Lemma 3.1 (d), Lemma 2.3, and (4.1), we also have

J(u) ≤ lim inf cj ≤ lim sup cj ≤ c∗ ≤ inf
M

J.

In all,
J(u) = c∗ = inf

M
J.

Thus, u minimizes J restricted to M, and by Proposition 4.2 it is a mountain pass
point of J . By construction u is Lipschitz continuous on Ω̄.

The inequalities of the preceding paragraph also show that

lim
j→∞

cj = c∗.

This property will enable us to take the limit in the variational equations for uj to
show that u is a variational solution in the following sense.

Definition 4.3. A variational solution u of the Euler-Lagrange equation for J is a
function u ∈ H1

0 (Ω) satisfying
ˆ

Ω

[(
1

2
|∇u|2 + χ{u>1} −

1

p
(u− 1)p

+

)
div Φ − ∇u(DΦ) · ∇u

]
dx = 0 .

for every Φ ∈ C1
0(Ω,R

N).

Note first that cj → c∗ implies Jεj
(uj) → J(u) as j → ∞. Since uj converges to u

uniformly and strongly in H1
0 (Ω), we obtain

lim
j→∞

ˆ

Ω

B

(
uj − 1

εj

)
dx = L({u > 1}).

Hence,

lim sup
j→∞

ˆ

{u≤1}

B

(
uj − 1

εj

)
dx ≤ L({u > 1}) − lim inf

j→∞

ˆ

{u>1}

B

(
uj − 1

εj

)
dx
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On the other hand, because uj tends uniformly to u,

lim inf
j→∞

ˆ

{u>1}

B

(
uj − 1

εj

)
dx ≥ L({u ≥ 1 + δ})

for every δ > 0. Taking the limit as δ → 0, we find that

lim inf
j→∞

ˆ

{u>1}

B

(
uj − 1

εj

)
dx ≥ L({u > 1})

Therefore,

(4.5) lim sup
j→∞

ˆ

{u≤1}

B

(
uj − 1

εj

)
dx = 0

It follows from this and the dominated convergence theorem that

lim
j→∞

ˆ

Ω

B

(
uj − 1

εj

)
div Φ dx = lim

j→∞

ˆ

{u>1}

B

(
uj − 1

εj

)
div Φ dx

=

ˆ

{u>1}

div Φ dx

This limiting value takes care of the only potentially discontinuous term in the varia-
tional equation. The others tend to the appropriate limits because uj tends uniformly
to u and strongly in H1

0 (Ω). Thus the variational equation for u holds because it is
the limit of the variational equation (2.2) for uj. This concludes the proof of part
(c) of Theorem 1.2.

5. Nondegeneracy

In this section we prove our main estimate of nondegeneracy.

Proposition 5.1. If u is a Lipschitz continuous minimizer of J |M that satisfies the
interior Euler-Lagrange equation (1.1), then u is nondegenerate as in Definition 1.3.

Proof. For v ∈ W , ζv intersects M exactly at one point, namely, where s = sv, and
sv = 1 if v ∈ M. So we can define a continuous projection π : W → M by

π(v) = ζv(sv) = v− + sv v
+.

Lemma 5.2. For v ∈ W ,

J(π(v)) =
1

2

ˆ

{v<1}

|∇v|2 dx+

(
1

2
−

1

p

)
s2

v

ˆ

{v>1}

|∇v|2 dx+ L({v > 1}).

In particular, for v ∈ M, since π(v) = v,

J(v) =
1

2

ˆ

{v<1}

|∇v|2 dx+

(
1

2
−

1

p

)
ˆ

{v>1}

|∇v|2 dx+ L({v > 1}).
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Proof. J(π(v)) is given by (4.2) with s = sv, and

s2
v

ˆ

{v>1}

|∇v|2 dx = sp
v

ˆ

{v>1}

(v − 1)p dx. �

Now consider u Suppose that Br(x0) ⊂ {x ∈ Ω : u(x) > 1} and ∃x1 ∈ ∂Br(x0)
such that u(x1) = 1. Define

v(y) =
1

r
(u(x0 + ry) − 1).

Our goal is to show that

α := v(0) ≥ c > 0.

We begin by observing that

(5.1) 0 < v(y) =
1

r
(u(x0 + ry) − u(x1)) ≤

L

r
|x0 − x1 + ry| ≤ 2L ∀y ∈ B1(0),

where L is the Lipschitz constant of u in {u ≥ 1}, and

−∆v = rpvp−1 in B1(0).

Define h by 




−∆h = rpvp−1 in B1(0)

h = 0 on ∂B1(0).

Then |h| ≤ CLp−1rp, and applying the Harnack inequality to v−h+ max h, there is
a constant C depending on N and L such that

v(y) ≤ C (α+ rp) ∀y ∈ B2/3(0).

Take a smooth cutoff function ψ : B1(0) → [0, 1] such that ψ = 0 in B1/3(0),

0 < ψ < 1 in B2/3(0) \B1/3(0) and ψ = 1 in B1(0) \B2/3(0), let

w(y) =





min {v(y), C (α + rp)ψ(y)} , y ∈ B2/3(0)

v(y), otherwise,

and set z(x) = 1 + rw((x− x0)/r). Since u is a minimizer of J |M,

J(u) ≤ J(π(z)).

Since z− = u−, z = 1 in Br/3(x0), and {z > 1} = {u > 1} \ Br/3(x0), Lemma 5.2
implies this inequality can be rewritten as

(
1

2
−

1

p

)
ˆ

{u>1}

|∇u|2 dx+ L(Br/3(x0)) ≤

(
1

2
−

1

p

)
s2

z

ˆ

{u>1}

|∇z|2 dx.
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Let y = (x− x0)/r and define

D :=
{
x ∈ B2r/3(x0) : v(y) > C (α+ rp)ψ(y)

}
.

Because z = u outside D, the last inequality implies

(5.2) s2
z

ˆ

D

|∇z|2 dx+
(
s2

z − 1
)ˆ

{u>1}\D

|∇u|2 dx ≥
2p

p− 2
L(B1/3(0))rN .

Since {z > 1} = {u > 1} \Br/3(x0) and z = 1 in Br/3(x0),

sp−2
z =

ˆ

{z>1}

|∇z|2 dx

ˆ

{z>1}

(z − 1)p dx
=

ˆ

{u>1}

|∇z|2 dx

ˆ

{u>1}

(z − 1)p dx
.

Since z = u in {u > 1} \ D, we have

sp−2
z ≤

ˆ

{u>1}

|∇u|2 dx+

ˆ

D

|∇z|2 dx

ˆ

{u>1}

(u− 1)p dx−

ˆ

D

(u− 1)p dx

=

A1 +

ˆ

D

|∇z|2 dx

A1 −

ˆ

D

(u− 1)p dx

,

where, since u ∈ M,

A1 =

ˆ

{u>1}

|∇u|2 dx =

ˆ

{u>1}

(u− 1)p dx.

It follows as in (5.1) that 0 < u − 1 < 2Lr in D, and L(D) = O(rN) as r → 0.
Therefore

ˆ

D

(u− 1)p dx = O(rp+N).

It follows that

(5.3) sp−2
z ≤ 1 +

1

A1

ˆ

D

|∇z|2 dx+ O(rp+N).

We have

(5.4)

ˆ

D

|∇z|2 dx = C2 (α + rp)2 rN

ˆ

{y:x∈D}

|∇ψ|2 dy.

The right-hand side is O(rN) since 0 < α < 2L by (5.1). So (5.3) gives

s2
z ≤ 1 +

2

(p− 2)A1

ˆ

D

|∇z|2 dx+ O(rq+N),
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where q = min {p,N} ≥ 2. Using this estimate in (5.2) now gives

1

rN

ˆ

D

|∇z|2 dx+ O(rq) ≥ 2 L(B1/3(0)).

In view of (5.4), we find that there are r0, c > 0 such that r ≤ r0 implies α ≥ c,
which was our goal. �

Since the mountain pass solution of Theorem 1.2 satisfies the hypotheses of Propo-
sition 5.1, we obtain the first part of Theorem 1.4. The fact that this solution is a
viscosity solution now follows from results of Lederman and Wolanski.

We will define a weak viscosity solution is as follows.

Definition 5.3. We say that u ∈ C(Ω) satisfies the free boundary condition

|∇u+|2 − |∇u−|2 = 2

in the weak viscosity sense if whenever there exist a point x0 ∈ ∂ {u > 1}, a ball
B ⊂ {u > 1}, then either there are α1 > 0 and α2 > 0 such that α2

1 ≤ 2 and α2
2 ≤ 2

and

u(x) = 1 + α1〈x− x0, ν〉+ + α2〈x− x0, ν〉− + o(|x− x0|), x → x0,

with ν the interior normal to ∂B at x0, or else there are α > 0 and β ≥ 0 such that
α2 − β2 = 2 and

u(x) = 1 + α 〈x− x0, ν〉+ − β 〈x− x0, ν〉− + o(|x− x0|), x → x0.

Moreover, if the ball B ⊂ {u ≤ 1}, then the second asymptotic formula (with α and
β as above, but with ν the exterior normal to ∂B at x0) holds.

Denote

fj(x) = −(uj(x) − 1)p−1
+ , f(x) = −(u(x) − 1)p−1

+ , x ∈ Ω.

Since uj converges uniformly to u, fj converges uniformly to f . Therefore, uj solves
an equation of the form (2.1) (denoted Eε(f

ε) in the paper of Lederman and Wolan-
ski [24]). Since by Proposition 5.1, u is nondegenerate, Corollaries 7.1 and 7.2 of
[24] imply that u satisfies the free boundary condition in the weak viscosity sense.
Furthermore, Proposition 1.7, proved below, shows that the case u > 1 on both sides
of the free boundary (the case of positive α1 and α2) is ruled out. This concludes
the proof of Theorem 1.4.
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6. The free boundary has finite Hausdorff measure

In this section we prove Proposition 1.6. Let u be a Lipschitz, nondegenerate
solution to the interior equation (1.1). The outline and most details are the same
as the proof of Theorem 3.4 of Caffarelli-Salsa [5]. The only difference is that u− 1
solves an inhomogeneous equation ∆(u− 1) = (u− 1)p−1

+ in {u− 1 > 0} rather than
being harmonic.

Lemma 6.1. (See (3.4) [5]) There exists a constant C > 0 such that whenever
r ≤ δ0/2, with δ0 = dist({u > 1} , ∂Ω), and τ > 0,

ˆ

Br(x0)∩{|u−1|<τ}

|∇u|2 dx ≤ CτrN−1.

Proof. Denote by L the Lipschitz constant of u on Ω̄ and by M the maximum of u
over Ω̄. (This estimate does not depend on nondegeneracy.)

For 0 < ε < τ , let uτ
ε = min {(u− 1 − ε)+, τ − ε}. Since −∆u = (u − 1)p−1 in

{u > 1} and uτ
ε = 0 in {u ≤ 1 + ε}, we have −uτ

ε ∆u = (u−1)p−1 uτ
ε in Ω. Integrating

this equation over Br(x0) gives
ˆ

Br(x0)

∇u · ∇uτ
ε dx =

ˆ

∂Br(x0)

∂u

∂n
uτ

ε dσ +

ˆ

Br(x0)

(u− 1)p−1 uτ
ε dx,

where n is the outward unit normal to ∂Br(x0). Since uτ
ε = u−1−ε in {1 + ε < u < 1 + τ}

and uτ
ε is constant outside this set,

ˆ

Br(x0)

∇u · ∇uτ
ε dx =

ˆ

Br(x0)∩{1+ε<u<1+τ}

|∇u|2 dx →

ˆ

Br(x0)∩{1<u<1+τ}

|∇u|2 dx

as ε ց 0. We also have
∣∣∣∣
ˆ

∂Br(x0)

∂u

∂n
uτ

ε dσ

∣∣∣∣ ≤ Lτσ(∂Br) ≤ cNτLr
N−1,

and
ˆ

Br(x0)

(u− 1)p−1 uτ
ε dx ≤ cNτM

p−1rN .

So for a constant C depending only on L, M and the diameter of Ω,
ˆ

Br(x0)∩{1<u<1+τ}

|∇u|2 dx ≤ CτrN−1.

Since u is harmonic in {u < 1}, a similar argument gives the same bound for the
integral over {1 − τu < 1}. The conclusion follows since ∇u = 0 a.e. on the set
{u = 1}. �
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Lemma 6.2. (See Lemma 1.10 of [5]) There exist constants r0, λ > 0 such that
whenever x0 ∈ {u > 1} and r := dist (x0, {u ≤ 1}) ≤ r0, there is a point x1 ∈ ∂Br(x0)
satisfying

u(x1) ≥ 1 + (1 + λ) (u(x0) − 1).

Proof. Suppose not. Then there are sequences λj ց 0 and xj ∈ {u > 1} with
rj := dist (xj , {u ≤ 1}) → 0 such that

max
x∈∂Brj (xj)

u(x) < 1 + (1 + λj) (u(xj) − 1).

Since u is nondegenerate, we may assume that u(xj) ≥ 1 + crj for some constant
c > 0. Noting that Brj

(xj) ⊂ {u > 1} and ∃x′
j ∈ ∂Brj

(xj) such that u(x′
j) = 1, set

vj(y) =
1

rj

(u(xj + rjy) − 1), yj =
1

rj

(x′
j − xj).

Then vj ∈ C(B1(0)) ∩ C2(B1(0)) satisfies

−∆vj = rp
j v

p−1
j in B1(0),(6.1)

max
y∈∂B1(0)

vj(y) < (1 + λj) vj(0),(6.2)

vj(0) ≥ c, vj(yj) = 0.(6.3)

We have

0 ≤ vj(y) =
1

rj

(u(xj + rjy) − u(x′
j)) ≤

L

rj

|xj − x′
j + rjy| ≤ 2L ∀y ∈ B1(0),

|vj(y) − vj(z)| =
1

rj
|u(xj + rjy) − u(xj + rjz)| ≤ L |y − z| ∀y, z ∈ B1(0),

ˆ

B1(0)

|∇vj(y)|
2 dy = r−N

ˆ

Brj (xj)

|∇u(x)|2 dx ≤ NαNL
2,

so, for suitable subsequences, vj converges weakly in H1(B1(0)) and uniformly on

B1(0) to some Lipschitz continuous function v, and yj converges to some point y0 ∈
∂B1(0). For any ϕ ∈ C∞

0 (B1(0)), testing (6.1) with ϕ gives
ˆ

B1(0)

∇vj · ∇ϕdx = rp
j

ˆ

B1(0)

vp−1
j ϕdx,

and passing to the limit as rj → 0 gives
ˆ

B1(0)

∇v · ∇ϕdx = 0.
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So v is harmonic in B1(0). By (6.2),

max
y∈∂B1(0)

v(y) ≤ v(0),

and hence v is constant by the maximum principle. On the other hand,

v(0) ≥ c > 0 = v(y0)

by (6.3), which is impossible when v is constant. �

The rest of the proof follows [5] with no change. From the preceding lemma,
a chaining argument carried out in Theorem 1.9 and Lemma 3.3 of [5] gives the
following:

Lemma 6.3. There exist constants 0 < r0 ≤ δ0 and γ > 0 such that whenever
x0 ∈ ∂ {u > 1} and 0 < r ≤ r0, there is a point x ∈ Br(x0) \ Br/2(x0) satisfying
u(x) ≥ 1 + γr, in particular,

sup
x∈Br(x0)

u(x) ≥ 1 + γr.

Next, at the beginning of the proof of Theorem 3.4 [5], the following lemma is
deduced from Lemma 6.3:

Lemma 6.4. There exist constants 0 < r0 ≤ δ0 and κ > 0 such that whenever
x0 ∈ ∂ {u > 1} and 0 < r ≤ r0,

ˆ

Br(x0)

|∇u|2 dx ≥ κrN .

The rest of the proof of Proposition 1.6 is a covering argument, exactly as in
Theorem 3.4 of [5].

7. Nondegeneracy of the non-plasma phase {u ≤ 1}

Now we turn to the proof of Proposition 1.7, which says that not only {u > 1}
but also {u ≤ 1} has significant measure near each topological boundary point. The
measure-theoretic boundary ∂∗E of a measurable set E ⊂ R

N is defined as the set
of x ∈ R

N such that for all r > 0,

L(E ∩ Br(x)) > 0 and L(Ec ∩Br(x)) > 0.

Evidently, the measure-theoretic boundary ∂∗E is a subset of the topological bound-
ary ∂E. The proposition is a quantitative, scale-invariant estimate showing that the
topological boundary is contained in the measure-theoretic boundary.
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Lemma 7.1. Let B = B1(0) be the unit ball in RN . Let h ∈ C(B̄) be a harmonic
function in the ball and such that

h(0) > 0; |h(x) − h(y)| ≤ L|x− y|, x, y ∈ ∂B.

Define

ε = σ(∂B ∩ {h ≤ 0}).

There exists a constant C > 0 depending on dimension and L such that
ˆ

{h≤0}

|∇h|2 dx ≤ C

[
ε

h(0)

]1/N

.

Proof. Since h(0) > 0, there is at least one point of ∂B at which h is positive. It
follows that

h(y) ≥ −2L

for all y ∈ ∂B and hence in all of B by the maximum principle.
The Poisson integral formula says

h(x) =
1 − |x|2

ωN

ˆ

∂B

h(y)

|x− y|N
dσ(y), x ∈ B,

in which ωN = σ(∂B). Therefore,
ˆ

y∈∂B∩{h>0}

h(y)

|x− y|N
dσ(y) ≥

1

2N

ˆ

∂B∩{h>0}

h dσ

≥
1

2N

ˆ

∂B

h dσ =
ωNh(0)

2N
.

For any κ > 0 and any x ∈ B1−κ(0), we have
ˆ

∂B∩{h≤0}

h(y)

|x− y|N
dσ(y) ≥ −

2εL

κN

Choose

κ = 4(εL/ωNh(0))1/N .

Then for every x ∈ B1−κ(0), h(x) > 0, and hence

{h ≤ 0} ⊂ B \B1−κ(0).

Denoting the spherical part of the gradient by ∇θ, we have |∇θh| ≤ L. Using the
expansion of h in spherical harmonics, we have

ˆ

∂B

|∇h|2dσ ≤ 2

ˆ

∂B

|∇θh|
2dσ ≤ 2LωN
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(In fact, the best constant isN/(N−1), achieved by linear functions h.) Furthermore,
since |∇h|2 is subharmonic, for all r < 1,

ˆ

∂Br

|∇h|2dσ ≤

ˆ

∂B

|∇h|2dσ.

Therefore,
ˆ

{h≤0}

|∇h|2 dx ≤

ˆ 1

1−κ

ˆ

∂Br

|∇h|2 dσ dr

≤ 2LωN

ˆ 1

1−κ

dr = 2LωNκ

= cNL

(
εL

h(0)

)1/N

�

We will now deduce a variant of Lemma 6.3.

Lemma 7.2. There exist constants r0, c0 > 0 and c1 > 0 such that whenever x0 ∈
∂ {u > 1} and 0 < r ≤ r0, there is x1 ∈ ∂Br(x0) such that

u(x1) − 1 ≥ c1r

Moreover,

(7.1)

 

∂Br(x0)

(u− 1)+ dσ ≥ c0r

Proof. Suppose by contradiction that there is no such c1. Then (u(x) − 1)+ ≪ r on
∂Br(x0). Note, in addition, that

∆(u− 1)+ ≥ −(u− 1)p−1
+ ≥ −(Lr)p−1 in Br(x0).

Consider the barrier function v solving ∆v = −(Lr)p−1 in Br(x0), with constant
boundary values v = a ≪ r on ∂Br(x0). Then (u − 1)+ ≤ v, and for sufficiently
small r, v ≪ r on all of Br(x0). But this contradicts Lemma 6.3 which says that
there is a point of Br(x0) \Br/2(x0) at which u− 1 is larger than γr.

Next, take x1 ∈ ∂Br(x0) as above for which u(x1) > 1 + c1r. By Lipschitz con-
tinuity, u(x) > 1 + c1r/2 on Bc1r/2L(x1). Thus we have (7.1) for a constant c0 > 0
depending only on c1 and L. �

Lemma 7.3. There exist a positive constants c, ε0 and C depending on dimension
and the Lipschitz constant L such that whenever x0 ∈ ∂ {u > 1}, 0 < r ≤ r0,

(7.2) σ(∂Br(x0) ∩ {u ≤ 1}) < εrN−1
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for some ε < ε0, and v is the harmonic function in Br(x0) with v = u on ∂Br(x0),
we have

ˆ

Br(x0)

(v − 1)p
+ dx+

ˆ

Br(x0)

(u− 1)p
+ dx ≤ Crp+N ,(7.3)

ˆ

Br(x0)

|∇v|2 dx ≤

ˆ

Br(x0)

|∇u|2 dx− crN ,(7.4)

ˆ

{v≤1}∩Br(x0)

|∇v|2 dx ≤ Cε1/NrN .(7.5)

Proof. We have |u − 1| ≤ Lr on Br(x0), and hence |v − 1| ≤ Lr by the maximum
principle. Thus (7.3) follows.

To prove (7.4), begin by noting that
ˆ

Br(x0)

(
|∇u|2 − |∇v|2

)
dx =

ˆ

Br(x0)

|∇(u− v)|2 dx+ 2

ˆ

Br(x0)

∇(u− v) · ∇v dx.

Since u− v ∈ H1
0(Br(x0)),

ˆ

Br(x0)

|∇(u− v)|2 dx ≥
λ1

r2

ˆ

Br(x0)

(u− v)2 dx,

where λ1 > 0 is the first Dirichlet eigenvalue of the negative Laplacian in B1(0), and
since u = v on ∂Br(x0) and ∆v = 0 in Br(x0), an integration by parts gives

ˆ

Br(x0)

∇(u− v) · ∇v dx =

ˆ

∂Br(x0)

(u− v)
∂v

∂n
−

ˆ

Br(x0)

(u− v) ∆v dx = 0

Hence

(7.6)

ˆ

Br(x0)

(
|∇u|2 − |∇v|2

)
dx ≥

λ1

r2

ˆ

Br(x0)

(u− v)2 dx.

We have

(7.7) |u(x) − v(x)| ≥ |v(x0) − u(x0)| − |u(x) − u(x0)| − |v(x) − v(x0)|.

Fix κ ∈ (0, 1/2). Furthermore, for

(7.8) |u(x) − u(x0)| ≤ L|x− x0| ≤ Lκr, x ∈ Bκr(x0)

Since |v − 1| ≤ Lr on Br(x0) and v is harmonic inside the ball, it follows that
|∇v| ≤ C on Bκr(x0), and hence

(7.9) |v(x) − v(x0)| ≤ Cκr for all x ∈ Bκr(x0).



26 DAVID JERISON AND KANISHKA PERERA

Since u(x0) = 1, the mean value property of v implies
(7.10)

v(x0) − u(x0) =

 

∂Br(x0)

(u− 1) dσ =

 

∂Br(x0)

(u− 1)+ dσ −

 

∂Br(x0)

(u− 1)− dσ

≥

(
c0 −

Lε

ωN

)
r ≥

c0
2
r

by (7.1), (7.2), and since |u − 1| ≤ Lr on ∂Br(x0). Combining (7.7)–(7.10) and
taking κ sufficiently small gives |u(x) − v(x)| ≥ c0r/3, for all x ∈ Bκr(x0), Together
with (7.6), this yields (7.4).

To prove (7.5), we apply Lemma 7.1 to

h(y) =
1

r
(v(x0 + ry) − 1), y ∈ B,

noting that

h(0) =
1

r
(v(x0) − u(x0)) ≥

c0
2

by (7.10). �

Proof of Proposition 1.7. Let r0 and γ > 0 be as in Lemma 6.3, let x0 ∈ ∂ {u > 1},
and let 0 < r ≤ r0. Then there is x1 ∈ Br/2(x0) such that u(x1) ≥ 1 + γr/2. Let

κ = min
{
1/2, γ/2L

}
. Then

u(x) ≥ u(x1) − L|x− x1| > 1 +
(γ

2
− Lκ

)
r ≥ 1 ∀x ∈ Bκr(x1),

so the volume fraction of {u > 1} in Br(x0) of (1.2) is at least κN .
If the second inequality in (1.2) does not hold, then for arbitrarily small ρ, γ > 0,

∃x0 ∈ ∂ {u > 1} such that

(7.11) L({u ≤ 1} ∩ Bρ(x0)) < γρN .

Then
ˆ ρ

ρ/2

σ({u ≤ 1} ∩ ∂Br(x0)) dr < γρN ,

and hence for some r, ρ/2 ≤ r ≤ ρ,

σ({u ≤ 1} ∩ ∂Br(x0)) ≤ 2γρN−1 ≤ 2NγrN−1

In other words, inequality (7.2) in Lemma 7.3 holds for ε = 2Nγ and some r ∈
(ρ/2, ρ).
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Let v be as in Lemma 7.3, and let w = v in Br(x0) and w = u in Ω\Br(x0). Then
ˆ

Ω

|∇w|2 dx ≤

ˆ

Ω

|∇u|2 dx− crN ,(7.12)

∣∣∣∣
ˆ

{w>1}

(w − 1)p dx−

ˆ

{u>1}

(u− 1)p dx

∣∣∣∣ ≤ Crp+N ,(7.13)

ˆ

{w≤1}

|∇w|2 dx ≤

ˆ

{u≤1}

|∇u|2 dx+ Cε1/NrN(7.14)

by (7.4), (7.3), and (7.5), respectively.
By (7.11),

L({w > 1}) ≤ L({u > 1} \Br(x0)) + L(Br(x0))

= L({u > 1}) + L({u ≤ 1} ∩ Br(x0))

≤ L({u > 1}) + γρN ,

Recalling r ≥ ρ/2 and ε = 2Nγ, we have

(7.15) L({w > 1}) ≤ L({u > 1}) + εrN .

Estimate (7.11) also implies
ˆ

{u≤1}∩Br(x0)

|∇u|2 dx ≤ L2γρN

which together with (7.12) gives

(7.16)

ˆ

{w>1}

|∇w|2 dx ≤

ˆ

{u>1}

|∇u|2 dx−
c

2
rN

for sufficiently small γ.
Referring to (4.3), by (7.16) and (7.13),

sw ≤




ˆ

{u>1}

|∇u|2 dx−
c

2
rN

ˆ

{u>1}

(u− 1)p dx− Crp+N




1/(p−2)

≤ 1

for sufficiently small r since u ∈ M. Then by Lemma 5.2,

J(π(w)) ≤
1

2

ˆ

{w<1}

|∇w|2 dx+

(
1

2
−

1

p

)
ˆ

{w>1}

|∇w|2 dx+ L({w > 1})
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Finally, using (7.14), (7.15), and (7.16),

J(π(w)) ≤ J(u) +

[
Cε1/N + ε−

(
1

2
−

1

p

)
c

2

]
rN < J(u)

if ε is sufficiently small. This is a contradiction, since π(w) ∈ M and u minimizes
J |M. �

8. Proof of regularity of the free boundary

The purpose of this section is to prove Theorem 1.5. We do this by taking blow-up
limits and applying a monotonicity result of G. Weiss.

Consider a boundary point x0 ∈ F (u) = ∂ {u > 1}. The Lipschitz continuity of u
implies there is a sequence rj → 0 such that

wj(y) = r−1
j (u(x0 + rjy) − 1)

converges uniformly on compact subsets of R
N to a Lipschitz continuous function

W (y). We now show that W inherits all the properties we found for u.

Lemma 8.1. a) The function W is Lipschitz continuous, uniformly in all R
N , and

solves the interior Euler-Lagrange equation

∆W = 0 in R
N \ ∂ {W > 0} .

b) (nondegeneracy of W ) There is c > 0 such that for every r > 0 and every y1

such that Br(y1) ⊂ {W > 0} we have

W (y1) ≥ cr.

For every r > 0 and every y0 ∈ ∂ {W > 0} there is y1 ∈ Br(y0) such that

W (y1) ≥ cr.

c) (locally finite perimeter) There is a constant C such that for every ball Br of
radius r > 0,

σ(Br ∩ ∂ {W > 0}) ≤ CrN−1.

d) (nondegeneracy of the phase {W ≤ 0}) For every r > 0 and every y0 ∈ ∂ {W > 0},

L(Br(y0) ∩ {W ≤ 0}◦) ≥ crN , L(Br(y0) ∩ {W > 0}) ≥ crN .

e) (viscosity solution) For every r > 0, if there is a tangent ball from either side
of the free boundary, that is, a ball Br such that y0 ∈ ∂Br ∩ ∂ {W > 0} and either
Br ⊂ {W > 0} or Br ⊂ {W ≤ 0}, then W has an asymptotic expansion as y → y0

of the form

W (y) = α〈y − y0, ν〉+ − β〈y − y0, ν〉− + o(|y − y0|),

with α > 0, β ≥ 0 and α2 − β2 = 2.
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f) (variational solution) W satisfies the variational equation
ˆ

RN

[(
1

2
|∇W |2 + χ{W>1}

)
div Φ − ∇w(DΦ) · ∇w

]
dx = 0,

for every Φ ∈ C∞
0 (RN ,RN).

Proof. All of the results except part (f) are proved by methods of Caffarelli described
in [6, 7, 8] and [5]. Part (f) is proved the same way as [20] Proposition 4.2.

On any compact subset of {W > 0}, we have wj > 0 for all sufficiently large j, and
therefore W inherits the first nondegeneracy property of part (b) from wj. Moreover,

the equation ∆wj = rj(wj)
p−1
+ holds in a fixed neighborhood of the compact set. It

follows that wj belongs to C2,α uniformly on the compact set. Hence a subsequence
of wj converges is C2 to W . Taking the limit in the equation we find that ∆W = 0
on {W > 0}. The second nondegeneracy property of (b) follows from the first using
the Lipschitz bound and the fact that W is harmonic in the set {W > 0}.

Denote

Ej = {wj > 1}, E = {W} > 1.

We claim that for a suitable subsequence

(8.1) Ej ∩ B̄ → E ∩ B̄

in Hausdorff distance for every ball B ⊂ R
N . Choose the subsequence so that Ej∩B̄R

converges in Hausdorff distance to a compact set K. We wish to show that

K = E ∩ B̄

Indeed, the fact that wj converges uniformly to W implies K ⊃ {W > 0} ∩ B and
hence, since K is compact, K ⊃ E ∩ B̄.

If x /∈ E, then we now show that for sufficiently small ε > 0 and large enough j,

(8.2) wj(y) ≤ 0 for all y ∈ Bε(x).

Choose ε > 0 sufficiently small that

B2ε(x) ∩ E = ∅.

Choose δ ≪ ε. Since W ≤ 0 on B2ε(x) and wj tends uniformly to W , for sufficiently
large j,

wj(y) ≤ δ for all y ∈ B2ε(x)

Suppose by contradiction that there is y1 ∈ Bε(x) such that wj(y1) > 0. By non-
degeneracy (Definition 1.3) wj(y1) ≤ δ implies there is y2, |y2 − y1| ≤ Cδ such that
wj(y2) ≤ 0. Hence there is a point y3 ∈ ∂wj > 0 on the segment between y1 and y2.
By the second form of nondegeneracy, Lemma 6.3, there is a point y4 ∈ Bε(y3) for
which wj(y4) ≥ γε. But y4 ∈ B2ε(x), so this contradicts δ << ε.
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We have just shown in (8.2) that for all sufficiently large j, Bε(x) ∩ Ej = ∅. It
follows that x /∈ K, which finishes the proof of (8.1).

Next, note that the same argument says that on compact subsets of Ec (the interior
of {W ≤ 0}) we have wj ≤ 0 for sufficiently large j and we can use the equation
∆wj = 0 to conclude that ∆W = 0 on Ec. This concludes part (a).

By the same argument as Proposition 1.6, we have part (c). In particular,

L(∂E) = L(∂ {W > 0}) = 0.

By uniform convergence of wj to W we have

L((E \ wj > 0) ∩ B) = L(({W > 0} \ {wj > 0}) ∩B) → 0, j → ∞.

for every ball B. On the other hand, we just showed that on every compact subset
of {W ≤ 0}◦, we have wj ≤ 0 for sufficiently large j. From this and the fact that
∂ {W ≤ 0} has zero measure it follows that

L(({W ≤ 0} \ {wj ≤ 0}) ∩ B) → 0, j → ∞.

In all,

χ{wj>0} → χ{W>0} in L1(B)

Part (d) now follows from the convergence in Hausdorff distance and the correspond-
ing estimates for u in Proposition 1.7.

Next we turn to part (e). It follows from the methods of Caffarelli [9], Caffarelli-
Salsa [5], and of Lederman-Wolanski [24] that the limit W is a solution in the weak
viscosity sense of Definition 5.3. Moreover, if there is a tangent ball at y0 from either
the {W > 0} of the {W ≤ 0}◦ side, then W has an asymptotic of the form

W (y) = α〈y − y0, ν〉+ − β〈y − y0, ν〉− + o(|y − y0|),

with α > 0. From part (d), we have the additional information that L({W ≤ 0} ∩
Br(y0)) ≥ crN , which rules our the case β < 0. Thus β ≥ 0, in that case, and the
methods of Caffarelli also show that α2 − β2 = 2.

Finally, we demonstrate part (f) by using the variational equation for wj and
applying the dominated convergence theorem. Recall that if K is a compact subset
of {W > 0}, respectively, {W ≤ 0}◦), then for sufficiently large j, K ⊂ {wj > 0},
respectively K ⊂ {wj ≤ 0}◦. It follows that for large j, wj is uniformly C2,α on
K. Thus taking subsequences, we may assume ∇wj converges pointwise to ∇W on
R

N \∂ {W > 0}. Since ∂ {W > 0} has Lebesgue measure zero, and the compact setK
was arbitrary, we can choose the subsequence ∇wj so that it tends pointwise almost
everywhere in R

N to ∇W . Recall also that on a suitable subsequence, χwj>0 → χW>0

in L1(Br) for any r < ∞. Since the test function Φ has compact support, the
dominated convergence theorem applies. Taking the limit in the variational equation,
Definition 4.3, for wj, we obtain (f).
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�

The proof of Theorem 1.5 proceeds by induction on dimension. The first step
(N = 2) requires relatively few of the conclusions of Lemma 8.1.

Consider any x0 ∈ ∂ {u > 1} and wj → W as above. Because wj is a variational
solution, the theorem of Weiss, Corollary 9.2, applies and says that the limit W is
homogeneous, W (ry) = rW (y) for all y ∈ R

N . By Lemma 8.1 (a), W is harmonic in
the cones {W > 0} and {W ≤ 0}◦. When N = 2, the cones are sectors and by part
(b) of the lemma, the only possibility is that for some unit vector ν, and some α > 0
and β ≥ 0,

W (x) = α〈x, ν〉+ − β〈x, ν〉− .

Incidentally, it does sometimes happen that W is strictly positive on both sides of
the free boundary for limits of other kinds of non-minimizing critical points, even
in dimension 2 (see [20]). But as in our earlier discussion of viscosity solutions in
Theorem 1.4, β < 0 is ruled out by the fact that L(Br(0) ∩ {W ≤ 0}) ≥ crN .

It follows from the central results in the work on free boundaries of Caffarelli that
the free boundary of u is a smooth hypersurface in a neighborhood of x0. In fact,
because wj tends uniformly to W and wj is nondegenerate, the free boundary of u is
“flat” near x0. The solution u satisfies the free boundary condition in the viscosity
sense, and hence the free boundary is smooth using the “flat implies Lipschitz”
and “Lipschitz implies smooth” theorems of Caffarelli [6, 7, 8]; see also [5]. (Those
theorems were carried out for zero right hand side, but can be modified to this
situation without difficulty because (u − 1)p−1

+ is zero at the free boundary.) In
dimension 3, we follow the inductive method of G. Weiss. Consider the cone

Γ = {W > 0} .

Let y0 ∈ Γ, y0 6= 0. By the uniform Lipschitz bound on W , there is sequence rj → 0
for which the limit

W̄ (z) := lim
j→∞

r−1
j W (y0 + rjz)

exists and the convergence is uniform on compact subsets of R
N . Since the radial

derivative of W is zero, one can show that y0 ·∇W̄ (z) ≡ 0 for all z ∈ R
N \∂

{
W̄ > 0

}
.

Thus W̄ is a two-dimensional solution. Furthermore, since by Lemma 8.1 (e), W is
a variational solution, Corollary 9.2 with Q ≡ 1 implies that W̄ is homogeneous. It
follows as in the two-dimensional case that W̄ is a planar solution and hence that
Γ is smooth near y0. It then follows that the free boundary of u is flat near every
point of a punctured neighborhood of x0. The free boundary ∂ {u > 1} is covered
by finitely many balls of this type, and the free boundary is smooth except possibly
at the centers of these balls. This completes the proof in dimension 3. The bound
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on the Hausdorff dimension of the singular set in higher dimensions follows by an
induction as in G. Weiss [30]. This concludes the proof of Theorem 1.5.

Without using scale-invariance and Weiss monotonicity one can obtain a weaker,
qualitative version of the preceding results. Namely, the free boundary is smooth
except on a closed set of zero (N − 1)-dimensional Hausdorff measure.

Recall that Proposition 1.7 implies that the topological boundary ∂ {u > 1} is the
same as the measure-theoretic boundary. Proposition 1.6 implies that ∂ {u > 1} has
finite (N − 1)-dimensional Hausdorff measure. By the criterion for finite perimeter
of Section 5.11 of Evans-Gariepy [14], the set {u > 1} has finite perimeter, that is,
χ{u>1} is a function of bounded variation. By Lemma 1 Section 5.8 of Evans-Gariepy
[14], the reduced boundary of a set of finite perimeter is of full (N − 1)-dimensional
Hausdorff measure in the measure-theoretic boundary. Since, by definition, at every
point of the reduced boundary there is a measure-theoretic normal, we may apply
Theorem 9.2 of Lederman and Wolanski [24]) saying that the free boundary is a
C1, α-surface in a neighborhood of each point for which there is a measure-theoretic
normal. (This theorem applies with the same hypotheses as the theorem about
viscosity solutions, namely, that uj tends uniformly to u and u is nondegenerate.)
Thus the set of points where the free boundary is smooth is an open set of full (N−1)
Hausdorff measure in the free boundary.

9. Appendix: Weiss monotonicity

For completeness, we state and prove the monotonicity formula of G. Weiss in the
form used here.

Proposition 9.1. [G. Weiss] Suppose that w is a Lipschitz continuous function in
the unit ball B ⊂ R

N . Let Q ∈ Cα(B) for some α > 0 be such that Q(0) = 0 Suppose
that w satisfies the variational free boundary equation

ˆ

B

[
1

2
|∇w|2 +Q(x)χ{w>0}

]
div Φ dx−

ˆ

B

∇wDΦ · ∇w dx = 0

for every Φ ∈ C∞
0 (B,RN). Suppose further that w(0) = 0 and w∆w is well-defined

as a distribution and satisfies

|w∆w| ≤ C|x|α.

Denote

ψ(r) = r−N

ˆ

Br

[
1

2
|∇w|2 + χ{w>0}

]
dx−

1

2
r−1−N

ˆ

∂Br

w2 dσ

Then for every 0 < r0 < r1 ≤ 1,

ψ(r1) − ψ(r0) =

ˆ

r0<|x|<r1

(x · ∇w − w)2 dx

|x|N+2
+O(rα

1 )
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Proof. The proof is close to the one in G. Weiss [29]. Consider a test function
Φ : R

N → R
N that is Lipschitz continuous and compactly supported in B. By

taking convolution with a smooth approximate identity, we can find a sequence of
test functions in C∞

0 (B,RN) whose gradients tend pointwise almost everywhere to
∇Φ. Thus, by the dominated convergence theorem, the variational equation is valid
for Φ.

We will use the family of Lipschitz continuous test functions Φε(x) = ηε(x)x, where

ηε(x) =






1 |x| ≤ r − ε
r−|x|

ε
r − ε ≤ |x| ≤ r

0 r ≤ |x| ≤ 1.

We have

∂

∂xj
Φi

ε(x) = ηε(x)δij −
xixj

ε|x|
χ{r−ε<|x|<r},

and hence

div Φε(x) = Nηε(x) −
|x|

ε
χ{r−ε<|x|<r}.

By Fubini’s theorem, for almost every fixed r, 0 < r < 1, ∇w(ry), y ∈ ∂B, is a
well-defined function in L2(∂B). Furthermore, let φ ∈ L∞(R) have compact support
and integral equal to 1. The vector-valued maximal theorem implies that for almost
every r,

lim
ε→0

1

ε

ˆ

φ((s− r)/ε)∇w(sy) ds = ∇w(ry)

in L2(∂B) norm. Therefore, we can take the limit as ε → 0 in the variational formula
of the hypothesis with test function Φε to find for almost every r,

0 =

ˆ

Br

[
N

(
1

2
|∇w|2 +Q(x)χ{w>0}

)
− |∇w|2

]
dx

− r

ˆ

∂Br

(
1

2
|∇w|2 +Q(x)χ{w>0}

)
dσ + r

ˆ

∂Br

(
x · ∇w

|x|

)2

dσ.

Integrating by parts, and using |w∆w| ≤ C|x|α,

ˆ

Br

|∇w|2 dx =

ˆ

∂Br

w
x · ∇w

|x|
dσ +O(rN+α)



34 DAVID JERISON AND KANISHKA PERERA

Combining these two equation, multiplying by −r−N−1 and using |Q − 1| ≤ C|x|α,
we have

−Nr−N−1

ˆ

Br

(
1

2
|∇w|2 + χ{w>0}

)
dx+ r−N

ˆ

∂Br

(
1

2
|∇w|2 + χ{w>0}

)
dσ

= −r−N−1

ˆ

∂Br

w
x · ∇w

r
dσ + r−N−2

ˆ

∂Br

(x · ∇w)2 dσ +O(r−1+α).

On the other hand, for almost every r, 0 < r < 1,

d

dr

(
r−2

ˆ

y∈∂B

w(ry)2 dσ

)

= −2r−3

ˆ

y∈∂B

w(ry)2 dσ + r−2

ˆ

y∈∂B

2w(ry) y · ∇w(ry) dσ

= −2r−2−N

ˆ

x∈∂Br

w2 dσ + 2r−1−N

ˆ

x∈∂Br

w
x · ∇w

r
dσ

Thus, ψ is absolutely continuous, and for almost every r, 0 < r < 1,

ψ′(r) = −Nr−N−1

ˆ

Br

(
1

2
|∇w|2 + χw>0

)
dx+ r−N

ˆ

∂Br

(
1

2
|∇w|2 + χw>0

)
dσ

+ r−2−N

ˆ

∂Br

w2 dσ − r−1−N

ˆ

∂B

w
x · ∇w

r
dσ

= r−N−2

ˆ

∂Br

(x · ∇w − w)2 dσ +O(r−1+α).

Integrating in r finishes the proof of the proposition. �

Corollary 9.2. Suppose that w is as in Proposition 9.1. If rj tends to zero and

1

rj
w(rjx) → W (x)

uniformly on compact subsets of R
N . Then W is homogeneous of degree 1:

W (rx) = rW (x)

for all x ∈ R
N .

Proof. From the proposition, we have
ˆ

{|x|<1}

(x · w − w)2 dx

|x|N+2
< ∞.

It follows that
ˆ

{|x|<r}

(x · w − w)2 dx

|x|N+2
→ 0 as r → 0.
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Hence, for fixed 0 < a < b < ∞, as rj → 0,
ˆ

a<|y|<b

(y · ∇wj(y) − wj(y))
2 dy

|y|N+2
=

ˆ

arj<|x|<brj

(x · ∇w(x) − w(x))2 dx

|x|N+2
→ 0.

Thus the sequence y · ∇wj − wj tends to zero in L2 norm on a < |y| < b. A
subsequence tends weakly to y · ∇W −W , showing that y · ∇W −W = 0 weakly in
L2. In particular, W is homogeneous of degree 1 as a distribution on 0 < |y| < ∞.
Since W is Lipschitz continuous, it is also homogeneous in the ordinary sense. �
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