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1 Introduction

The Brout-Englert-Higgs mechanism is a key element of the standard model (SM) of ele-

mentary particles and their interactions, explaining the origin of mass through spontaneous

breaking of electroweak symmetry [1–6]. The discovery of a Higgs boson with a mass mH

around 125 GeV by the ATLAS and CMS experiments [7–9] fixes the value, in the SM, of

the self-coupling λ in the scalar potential, whose shape is determined by the symmetries of

the SM and the requirement of renormalisability. Direct information on the Higgs three-

and four-point interactions will provide an indication of the scalar potential structure.

Nonresonant Higgs boson pair production (HH) can be used to directly study the Higgs

boson self-coupling. At the CERN LHC, Higgs boson pairs are predominantly produced

through gluon-gluon fusion via two destructively interfering diagrams, shown in figure 1.

In the SM the destructive interference between these two diagrams makes the observation

of HH production extremely challenging, even in the most optimistic scenarios of energy

and integrated luminosity at the future High Luminosity LHC [10, 11]. The SM cross

section for HH production in proton-proton collisions at
√
s = 13 TeV for a Higgs boson

mass of 125 GeV is σHH = 33.5 fb at next-to-next-to-leading order (NNLO) in quantum

chromodynamics (QCD) for the gluon-gluon fusion process [12–21].
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Indirect effects at the electroweak scale arising from beyond the standard model (BSM)

phenomena at a higher scale can be parameterised in an effective field theory frame-

work [22–24] by introducing coupling modifiers for the SM parameters involved in HH

production, namely κλ = λ/λSM for the Higgs boson self-coupling λ and κt = yt/ytSM for

the top quark Yukawa coupling yt. Such modifications of the Higgs boson couplings could

enhance Higgs boson pair production to rates observable with the current dataset. The

relevant part of the modified Lagrangian takes the form:

LH =
1

2
∂µH ∂µH− 1

2
m2

HH2 − κλ λSM vH3 − mt

v
(v + κt H) (tLtR + h.c.), (1.1)

where H is the Higgs boson field, v is the vacuum expectation value of H, mt is the top

quark mass, t̄L and tR are the left- and right-handed top quark fields, and h.c. is the

Hermitian conjugate. The appearance of new contact-like interactions, not considered in

this paper, could also result in an enhancement of HH production.

Extensions of the scalar sector of the SM postulate the existence of additional Higgs

bosons. An explored scenario is the two-Higgs-doublet model (2HDM) [25], where a second

doublet of complex scalar fields is added to the SM scalar sector Lagrangian. The generic

2HDM potential has a large number of degrees of freedom, which can be reduced to six

under specific assumptions. In case the new CP-even state is massive enough (mass larger

than 2mH) it can decay to a pair of Higgs bosons. Models inspired by warped extra

dimensions [26] predict the existence of new heavy particles that can decay to pairs of Higgs

bosons. Examples of such particles are the radion (spin 0) [27–30] or the first Kaluza-Klein

(KK) excitation of the graviton (spin 2) [31, 32]. In the following, we will use X to denote

a generic state decaying into pairs of Higgs bosons.

Searches for Higgs boson pair production have been performed by the ATLAS and

CMS experiments using LHC proton-proton collision data. These include searches for

BSM production as well as more targeted searches for production with SM-like kinematics

in
√
s = 8 TeV [33–37] and 13 TeV data [38, 39].

This paper reports on a search for Higgs boson pair production, HH, and resonant

Higgs boson pair production, X → HH, where one of the H decays into bb, and the other

into Z(``)Z(νν) or W(`ν)W(`ν), where ` is either an electron, a muon, or a tau lepton

that decays leptonically. The search is based on LHC proton-proton collision data at√
s = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity

of 35.9 fb−1. The analysis focuses on the invariant mass distribution of the b jet pairs,

searching for a resonant-like excess compatible with the Higgs boson mass, in combination

with an artificial neural network discriminator based on kinematic information. The dom-

inant background is tt production, with smaller contributions from Drell-Yan (DY) and

single top quark production.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel

– 2 –
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Figure 1. Feynman diagrams for Higgs boson pair production via gluon fusion in the SM. The

coupling modifiers for the Higgs boson self-coupling and the top quark Yukawa coupling are denoted

by κλ and κt, respectively.

and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass

and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.

Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap

detectors. Muons are detected in gas-ionisation chambers embedded in the steel flux-return

yoke outside the solenoid. A more detailed description of the CMS detector, together with

a definition of the coordinate system used and the relevant kinematic variables, can be

found in ref. [40].

3 Event simulation

The main background processes, in decreasing order of importance, are tt, DY, and single

top quark production. Diboson, triboson, ttV and SM single Higgs boson production

are also considered. Other contributions, such as W+jets or QCD multijet events with

jets misidentified as leptons, are negligible due to the dilepton selection described in the

next section. The dominant contribution, especially in the e±µ∓ channel, arises from tt

production yielding the same final state as the signal process (two b quark jets, two leptons,

and two neutrinos) when both W bosons from top quark decays further decay leptonically.

Background simulation samples have been generated at next-to-leading order

(NLO) in QCD using powheg 2 [41–45], and MadGraph5 amc@nlo versions 2.2.2.0

and 2.3.2.2 [46] with FxFx merging [47] and MadSpin [48]. The signal samples of gluon

fusion production of two Higgs bosons, and of spin-0 or spin-2 narrow resonances de-

caying into two Higgs bosons, have been generated at leading order (LO) in QCD using

MadGraph5 amc@nlo version 2.2.2.0. The spin-2 narrow resonance is produced as a

KK-graviton with minimal coupling [49], leading to spin projection ±2 on the beam axis.

The mass of the Higgs boson has been fixed to 125 GeV [50], and its branching frac-

tions to those in the SM. One of the Higgs bosons is required to decay into a pair of

b quarks, while the second one is required to decay to final states containing two lep-

tons and two neutrinos of any flavour. This implies that the signal samples contain both

H→ Z(``)Z(νν) and H→W(`ν)W(`ν) decay chains, leading to a total branching fraction

B(HH → bbVV → bb`ν`ν) of 2.7% [12]. The event generators used for both signal and

background samples are interfaced with pythia 8.212 [51, 52] for simulation of the par-
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ton showering, hadronisation, and underlying event using the CUETP8M1 tune [53]. The

NNPDF 3.0 [54] LO and NLO Parton Distribution Functions (PDF) are used.

For all processes, the detector response is simulated using a detailed description of

the CMS apparatus, based on the Geant4 package [55]. Additional pp interactions in

the same and in the neighbouring bunch crossings (pileup) are generated with pythia and

overlapped with the simulated events of interest to reproduce the pileup measured in data.

All background processes are normalised to their most accurate theoretical cross sec-

tions. The tt, DY, single top quark and W+W− samples are normalised to NNLO preci-

sion in QCD [56–59], while remaining diboson, triboson and ttV processes are normalised

to NLO precision in QCD [46, 60]. The single Higgs boson production cross section is

computed at the NNLO precision of QCD corrections and NLO precision of electroweak

corrections [12].

4 Event selection and background predictions

Data are collected with a set of dilepton triggers. The pT thresholds applied by the triggers

are asymmetric and channel-dependent, and vary from 17 to 23 GeV for the leading leptons

and from 8 to 12 GeV for the subleading leptons. Trigger efficiencies are measured with a

“tag-and-probe” technique [61] as a function of lepton pT and η in a data control region

consisting of Z→ `` events.

Events with two oppositely charged leptons (e+e−, µ+µ−, e±µ∓) are selected using

asymmetric pT requirements, chosen to be above the corresponding trigger thresholds,

for leading and subleading leptons of 25 GeV and 15 GeV for ee and µe events, 20 GeV and

10 GeV for µµ events, and 25 GeV and 10 GeV for eµ events. Electrons in the pseudorapidity

range |η| < 2.5 and muons in the range |η| < 2.4 are considered.

Electrons, reconstructed by associating tracks with ECAL clusters, are identified by

a sequential selection using information on the cluster shape in the ECAL, track quality,

and the matching between the track and the ECAL cluster. Additionally, electrons from

photon conversions are rejected [62]. Muons are reconstructed from tracks found in the

muon system, associated with tracks in the silicon tracking detectors. They are identified

based on the quality of the track fit and the number of associated hits in the different

tracking detectors [63]. The lepton isolation, defined as the scalar pT sum of all particle

candidates in a cone around the lepton, excluding the lepton itself, divided by the lepton pT,

is required to be <0.04 for electrons (with a cone of radius ∆R =
√

(∆φ)2 + (∆η)2 = 0.3)

and <0.15 for muons (with a cone of radius ∆R = 0.4). Lepton identification and isolation

efficiencies in the simulation are corrected for residual differences with respect to data.

These corrections are measured in a data sample, enriched in Z → `` events, using a

“tag-and-probe” method and are parameterised as a function of lepton pT and η.

Jets are reconstructed using a particle flow (PF) technique [64]. PF candidates are

clustered to form jets using the anti-kT clustering algorithm [65] with a distance parameter

of 0.4, implemented in the FastJet package [66]. Jet energies are corrected for residual

nonuniformity and nonlinearity of the detector response [67]. Jets are required to have

pT > 20 GeV, |η| < 2.4, and be separated from identified leptons by a distance of ∆R > 0.3.

– 4 –



J
H
E
P
0
1
(
2
0
1
8
)
0
5
4

The missing transverse momentum vector, defined as the projection onto the transverse

plane relative to the beam axis, of the negative vector sum of the momenta of all PF

candidates, is referred to as ~pmiss
T [68, 69]. Its magnitude is denoted by pmiss

T . Corrections

to the jet energies are propagated to ~pmiss
T .

The reconstructed vertex with the largest value of summed object p2
T is taken to be the

primary pp interaction vertex, considering the objects returned by a clustering algorithm

applied to all charged tracks associated with the vertex, plus the corresponding associated

~pmiss
T .

The combined multivariate algorithm [70, 71] is used to identify jets originating from

b quarks. Jets are considered as b tagged if they pass the medium working point of

the algorithm, which provides around 70% efficiency with a mistag rate less than 1%.

Correction factors are applied in the simulation to the selected jets to account for the

different response of the combined multivariate algorithm between data and simulation [71].

Among all possible dijet combinations fulfilling the previous criteria, we select the two jets

with the highest combined multivariate algorithm outputs.

After the final object selection consisting of two opposite sign leptons and two b-tagged

jets, a requirement of 12 < m`` < mZ−15 GeV is applied to suppress quarkonia resonances

and jets misidentified as leptons, and to remove the large background at the Z boson peak

as well as the high-m`` tail of the DY and tt processes. This requirement has a negligible

impact on signal events where one H decays as H → W(`ν)W(`ν), and removes only the

portion of H→ Z(``)Z(νν) decays with on-shell Z(``) legs. Figure 2 shows the dijet pT for

data and simulated events after requiring the selection criteria described in this section.

All the background processes are estimated from simulation, with the exception of DY

production in the e+e− and µ+µ− channels. The DY contribution in the e±µ∓ channels is

almost negligible, and is taken from simulation.

The contribution of the DY process in the analysis selection is estimated from a data

sample enriched in DY plus jets events. The estimate is performed by requiring all the selec-

tion criteria described above, except for the b tagging requirements. The resulting dataset

is corrected with weights to represent the DY contribution in the full selection. The weights

are a function of kinematic variables and are tuned to reproduce the effect of applying the

b tagging requirements on the DY process. They account for the following features:

• The b tagging efficiencies are not constant and depend on jet kinematics. Moreover,

this dependency is different for b-, c- or light-flavour jets.

• The relative contributions of DY plus two jets of flavours k and l, where k, l =

b, c, or light-flavour, to the DY plus two jets process are not constant throughout the

phase-space. Modelling the effect of b tagging requires to parameterise the fractions

Fkl of jets with flavours k and l as a function of event kinematics.

We compute the weights as:

Wsim =
∑

k,l=b,c,light-flavour

Fkl(BDT) εk(p
j1
T , η

j1) εl(p
j2
T , η

j2), (4.1)
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Figure 2. The dijet pT distributions in data and simulated events after requiring two leptons,

two b-tagged jets, and 12 < m`` < mZ − 15 GeV, for e+e− (top left), e±µ∓ (top right), and µ+µ−

(bottom) events. The various signal hypotheses displayed have been scaled to a cross section of

5 pb for display purposes. Error bars indicate statistical uncertainties, while shaded bands show

post-fit systematic uncertainties.

where εk and εl are the b tagging efficiencies for k- and l-flavour jets calculated from

simulation as a function of pT and η of the jets and corrected for differences between data

and simulation, and j1 and j2 denote the two pT-ordered jets selected according to the

above requirements. The expected fractions of jets with flavours k and l in the dataset

are denoted by Fkl and are parameterised as a function of the output value of a Boosted

Decision Tree (BDT) [72]. The indices k and l refer to the assumed flavour of j1 and j2,

respectively. The flavour fractions Fkl are estimated from a simulated DY sample. Their

dependency on the BDT output value accounts for the different kinematical behaviours

of heavy- or light-flavour associated DY processes, effectively reducing the dimensionality

of the phase-space to a single variable. The BDT is trained to discriminate DY+bb, cc

from other DY associated production processes using the following input variables: pj1T ,
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pj2T , ηj1 , ηj2 , pjjT , p``T , η``, ∆φ(``, ~pmiss
T ) (defined as the ∆φ between the dilepton system and

~pmiss
T ), number of jets, and HT defined as the scalar sum of the transverse momentum of

all selected leptons and jets.

Beside DY, the data sample without b tagging requirements contains small contribu-

tions from other backgrounds such as tt, single top quark and diboson production. Hence,

the same reweighting procedure is applied to simulated samples for these processes, and the

result is subtracted from the weighted data to define the estimate of the DY background

in the analysis region.

The method is validated both in simulation and in two data control regions requiring

either m`` > mZ − 15 GeV or |m`` −mZ| < 15 GeV. The predicted DY distributions are in

agreement with data and simulation within the uncertainties of the method, described in

section 6.

5 Parameterised multivariate discriminators for signal extraction

Deep neural network (DNN) discriminators, based on the Keras library [73], are used to

improve the signal-to-background separation. As the dominant background process (tt

production) is irreducible, the DNNs rely on information related to event kinematics. The

variables provided as input to the DNNs exploit the presence in the signal of two Higgs

bosons decaying into two b jets on the one hand, and two leptons and two neutrinos on

the other hand, which results in different kinematics for the dilepton and dijet systems

between signal and background processes. The variables used as input are: m``, ∆R``,

∆Rjj , ∆φ(``, jj) (defined as the ∆φ between the dijet and the dilepton systems), p``T , pjjT ,

min(∆Rj`), and mT =
√

2p``Tp
miss
T [1− cos ∆φ(``, ~pmiss

T )].

The DNNs utilise a parameterised machine learning technique [74] in order to ensure

optimal sensitivity on the full range of signal hypotheses considered in these searches. In

this approach, one or more physics parameters describing the wider scope of the problem,

as for example the mass of the resonance in the resonant search case, are provided as input

to the DNNs, in addition to reconstructed quantities. The parameterised network is able

to perform as well as individual networks trained on specific hypotheses (parameter values)

while requiring only a single training, and provides a smooth interpolation to cases not seen

during the training phase, as shown by figure 3. Two parameterised DNNs are trained: one

for the resonant and one for the nonresonant search. In the first case, the set of parameters

are the masses of the resonance, providing 13 values for the network training (mX = 260,

270, 300, 350, 400, 450, 500, 550, 600, 650, 750, 800, 900 GeV), and a discrete variable

indicating the dilepton flavour channel: same flavour (e+e− and µ+µ−) or different flavour

(e±µ∓). In the second case, the parameters are κλ and κt, providing 32 combinations of

those for the network training (κλ = −20, -5, 0, 1, 2.4, 3.8, 5, 20 and κt = 0.5, 1, 1.75,

2.5), and the dilepton flavour channel variable as in the resonant case.

The mjj distributions, and resonant and nonresonant DNN discriminators after selec-

tion requirements, are shown in figures 4 and 5, respectively. Given their discrimination

power between signal and background, both variables are used to enhance the sensitivity

of the analysis. We define three regions in mjj : two of them enriched in background,

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
0
5
4

0.0 0.2 0.4 0.6 0.8 1.0
Background efficiency

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
gn

al
 e

ffi
cie

nc
y

Xspin 0 HH bbVV bbl l

CMS Simulation (13 TeV)

Training with all masses,
evaluated at mX = 650 GeV
Training with all masses except 650 GeV,
evaluated at mX = 650 GeV

Figure 3. Performance of the parameterised DNN for the resonant search, shown as the selection

efficiency for the mX = 650 GeV signal as a function of the selection efficiency for the background

(ROC curve), for the combined e+e−, µ+µ− and e±µ∓ channels. The dashed line corresponds

to the DNN used in the analysis, trained on all available signal samples, and evaluated at

mX = 650 GeV. The dotted line shows an alternative DNN trained using all signal samples

except for mX = 650 GeV, and evaluated at mX = 650 GeV. Both curves overlap, indicating

that the parameterised DNN is able to generalise to cases not seen during the training phase by

interpolating the signal behaviour from nearby mX points.

mjj < 75 GeV and mjj ≥ 140 GeV, and the other enriched in signal, mjj ∈ [ 75, 140 ) GeV.

In each region, we use the DNN output as our final discriminant, as shown in figure 6,

where the three mjj regions are represented in a single distribution.

6 Systematic uncertainties

We investigate sources of systematic uncertainties and their impact on the statistical in-

terpretation of the results by considering both uncertainties in the normalisation of the

various processes in the analysis, as well as those affecting the shapes of the distributions.

Theoretical uncertainties in the cross sections of backgrounds estimated using simula-

tion are considered as systematic uncertainties in the yield predictions. The uncertainty in

the total integrated luminosity is determined to be 2.5% [75].

The following sources of systematic uncertainties that affect the normalisation and

shape of the templates used in the statistical evaluation are considered:

• Trigger efficiency, lepton identification and isolation: uncertainties in the

measurement, using a “tag-and-probe” technique, of trigger efficiencies as well as

electron and muon isolation and identification efficiencies, are considered as sources

of systematic uncertainties. These are evaluated as a function of lepton pT and η, and
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Figure 4. The mjj distribution in data and simulated events after requiring all selection criteria in

the e+e− (top left), e±µ∓ (top right), and µ+µ− (bottom) channels. The various signal hypotheses

displayed have been scaled to a cross section of 5 pb for display purposes. Error bars indicate

statistical uncertainties, while shaded bands show post-fit systematic uncertainties.

their effect on the analysis is estimated by varying the corrections to the efficiencies

by ±1 standard deviation.

• Jet energy scale and resolution: uncertainties in the jet energy scale are of the

order of a few percent and are computed as a function of jet pT and η [67]. A difference

in the jet energy resolution of about 10% between data and simulation is accounted

for by worsening the jet energy resolution in simulation by η-dependent factors. The

uncertainty due to these corrections is estimated by a variation of the factors applied

by ±1 standard deviation. Variations of jet energies are propagated to ~pmiss
T .

• b tagging: b tagging efficiency and light-flavour mistag rate corrections and

associated uncertainties are determined as a function of the jet pT [71]. Their effect

on the analysis is estimated by varying these corrections by ±1 standard deviation.
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Figure 5. The DNN output distributions in data and simulated events after requiring all selection

criteria, in the e+e− (top), e±µ∓ (middle), and µ+µ− (bottom) channels. Output values towards

0 are background-like, while output values towards 1 are signal-like. The parameterised resonant

DNN output (left) is evaluated at mX = 400 GeV and the parameterised nonresonant DNN output

(right) is evaluated at κλ = 1, κt = 1. The two signal hypotheses displayed have been scaled to a

cross section of 5 pb for display purposes. Error bars indicate statistical uncertainties, while shaded

bands show post-fit systematic uncertainties.
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Figure 6. The DNN output distributions in data and simulated events, for the e+e− (top), e±µ∓

(middle), and µ+µ− (bottom) channels, in three different mjj regions: mjj < 75 GeV, mjj ∈
[ 75, 140 ) GeV, and mjj ≥ 140 GeV. The parameterised resonant DNN output (left) is evaluated

at mX = 400 GeV and the parameterised nonresonant DNN output (right) is evaluated at κλ = 1,

κt = 1. The two signal hypotheses displayed have been scaled to a cross section of 5 pb for display

purposes. Error bars indicate statistical uncertainties, while shaded bands show post-fit systematic

uncertainties.
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• Pileup: the measured total inelastic cross section is varied by ±5% [76] to produce

different expected pileup distributions.

• Renormalisation and factorisation scale uncertainty: this uncertainty is

estimated by varying the renormalisation (µR) and the factorisation (µF) scales

used during the generation of the simulated samples independently by factors of

0.5, 1, or 2. Unphysical cases, where the two scales are at opposite extremes, are

not considered. An envelope is built from the 6 possible combinations by keeping

maximum and minimum variations for each bin of the distributions, and is used as

an estimate of the scale uncertainties for all the background and signal samples.

• PDF uncertainty: the magnitudes of the uncertainties related to the PDFs and

the variation of the strong coupling constant for each simulated background and

signal process are obtained using variations of the NNPDF 3.0 set [54], following the

PDF4LHC prescriptions [77, 78].

• Simulated sample size: the finite nature of simulated samples is considered as

an additional source of systematic uncertainty. For each bin of the distributions,

one additional uncertainty is added, where only the considered bin is altered by

±1 standard deviation, keeping the others at their nominal value.

• DY background estimate from data: the systematic uncertainties listed above,

which affect the simulation samples, are propagated to εk and Fkl, both computed

from simulation. These uncertainties are then propagated to the weights Wsim and

to the normalisation and shape of the estimated DY background contribution. The

uncertainty due to the finite size of the simulation samples used for the determination

of εk and Fkl is also taken into account. Since previous measurements [79, 80]

have shown that the flavour composition of DY events with associated jets in

data is compatible with the simulation within scale uncertainties, no extra source

of theoretical uncertainty has been considered for Fkl. To account for residual

differences between the e+e− and µ+µ− channels not taken into account by Fkl, due

to the different requirements on lepton pT, a 5% uncertainty in the normalisation of

the DY background estimate is added in both channels.

The effects of these uncertainties on the total yields in the analysis selection are sum-

marised in table 1.

7 Results

A binned maximum likelihood fit is performed in order to extract best fit signal cross

sections. The fit is performed using templates built from the DNN output distributions in

the three mjj regions, as shown in figure 6, and in the three channels (e+e−, µ+µ−, and

e±µ∓). The likelihood function is the product of the Poisson likelihoods over all bins of
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Source Background yield variation Signal yield variation

Electron identification and isolation 2.0–3.2% 1.9–2.9%

Jet b tagging (heavy-flavour jets) 2.5% 2.5–2.7%

Integrated luminosity 2.5% 2.5%

Trigger efficiency 0.5–1.4% 0.4–1.4%

Pileup 0.3–1.4% 0.3–1.5%

Muon identification 0.4–0.8% 0.4–0.7%

PDFs 0.6–0.7% 1.0–1.4%

Jet b tagging (light-flavour jets) 0.3% 0.3–0.4%

Muon isolation 0.2–0.3% 0.1–0.2%

Jet energy scale <0.1–0.3% 0.7–1.0%

Jet energy resolution 0.1% <0.1%

Affecting only tt (85.1–95.7% of the total bkg.)

µR and µF scales 12.8–12.9%

tt cross section 5.2%

Simulated sample size <0.1%

Affecting only DY in e±µ∓ channel (0.9% of the total bkg.)

µR and µF scales 24.6–24.7%

Simulated sample size 7.7–11.6%

DY cross section 4.9%

Affecting only DY estimate from data in same-flavour events (7.1–10.7% of the total bkg.)

Simulated sample size 18.8–19.0%

Normalisation 5.0%

Affecting only single top quark (2.5–2.9% of the total bkg.)

Single t cross section 7.0%

Simulated sample size <0.1–1.0%

µR and µF scales <0.1–0.2%

Affecting only signal SM signal mX = 400 GeV

µR and µF scales 24.2% 4.6–4.7%

Simulated sample size <0.1% <0.1%

Table 1. Summary of the systematic uncertainties and their impact on total background yields

and on the SM and mX = 400 GeV signal hypotheses in the signal region.
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the templates and is given by

L(βsignal, βk|data) =

Nbins∏
i=1

µni
i e−µi

ni!
,

where ni is the number of observed events in bin i and the Poisson mean for bin i is given by

µi = βsignal Si +
∑
k

βk Tk,i,

where k denotes all of the considered background processes, Tk,i is the bin content of bin i

of the template for process k, and Si is the bin content of bin i of the signal template. The

parameter βk is the nuisance parameter for the normalisation of the process k, constrained

by theoretical uncertainties with a log-normal prior, and βsignal is the signal strength,

unconstrained. For each systematic uncertainty affecting the shape (normalisation) of the

templates, a nuisance parameter is introduced with a Gaussian (log-normal) prior.

The best-fit values for all the nuisance parameters, as well as the corresponding post-

fit uncertainties, are extracted by performing a binned maximum likelihood fit, in the

background-only hypothesis, of the mjj vs. DNN output distributions (such as figure 6

left) to the data. Only nuisance parameters affecting the backgrounds are considered.

7.1 Resonant production

The fit results in signal cross sections compatible with zero; no significant excess above back-

ground predictions is observed for X particle mass hypotheses between 260 and 900 GeV.

We set upper limits at 95% confidence level (CL) on the product of the production cross

section for X and branching fraction for X → HH → bbVV → bb`ν`ν using the asymp-

totic modified frequentist method (asymptotic CLs) [81–83] as a function of the X mass

hypothesis. The limits are shown in figure 7. The observed upper limits on the product of

the production cross section and branching fraction for a narrow-width spin-0 resonance

range from 430 to 17 fb, in agreement with expected upper limits of 340+140
−100 to 14+6

−4 fb. For

narrow-width spin-2 particles produced in gluon fusion with minimal gravity-like coupling,

the observed upper limits range from 450 to 14 fb, in agreement with expected upper limits

of 360+140
−100 to 13+6

−4 fb.

The left plot of figure 7 shows possible cross sections for the production of a radion,

for the parameters ΛR = 1 TeV (mass scale) and kL = 35 (size of the extra dimension).

The right plot of figure 7 shows possible cross sections for the production of a Kaluza-Klein

graviton, for the parameters k/MPl = 0.1 (curvature) and kL = 35. These cross sections

are taken from [49], assuming absence of mixing with the Higgs boson.

7.2 Nonresonant production

Likewise for the nonresonant case, the fit results in signal cross sections compatible with

zero; no significant excess above background predictions is seen. We set upper limits at 95%

CL on the product of the Higgs boson pair production cross section and branching fraction

for HH → bbVV → bb`ν`ν using the asymptotic CLs, combining the e+e−, µ+µ− and
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Figure 7. Expected (dashed) and observed (continuous) 95% CL upper limits on the product

of the production cross section for X and branching fraction for X → HH → bbVV → bb`ν`ν,

as a function of mX. The inner (green) band and the outer (yellow) band indicate the regions

containing 68 and 95%, respectively, of the distribution of limits expected under the background-

only hypothesis. These limits are computed using the asymptotic CLs method, combining the

e+e−, µ+µ− and e±µ∓ channels, for spin-0 (left) and spin-2 (right) hypotheses. The solid circles

represent fully-simulated mass points. The dashed red lines represent possible cross sections for the

production of a radion (left) or a Kaluza-Klein graviton (right), assuming absence of mixing with

the Higgs boson [49]. Parameters used to compute these cross sections can be found in the legend.

e±µ∓ channels. The observed upper limit on the SM HH→ bbVV→ bb`ν`ν cross section

is found to be 72 fb, in agreement with an expected upper limit of 81+42
−25 fb. Including

theoretical uncertainties in the SM signal cross section, this observed upper limit amounts

to 79 times the SM prediction, in agreement with an expected upper limit of 89+47
−28 times

the SM prediction.

In the BSM hypothesis, upper limits are set as a function of κλ/κt, as shown in figure 8

(left panel), since the signal kinematics depend only on this ratio of couplings. Red lines

show the theoretical cross sections, along with their uncertainties, for κt = 1 (SM) and

κt = 2. The theoretical signal cross section is minimal for κλ/κt = 2.45 [84], corresponding

to a maximal interference between the diagrams shown on figure 1.

Excluded regions in the κt vs. κλ plane are shown in figure 8 (right panel). The signal

cross sections and kinematics are invariant under a (κλ, κt)↔ (−κλ,−κt) transformation,

hence the expected and observed limits on the production cross section, as well as the

constraints on the κλ and κt parameters respect the same symmetry. The red region in the

panel corresponds to parameters excluded at 95% CL with the observed data, whereas the

dashed black line and the blue areas correspond to the expected exclusions and the 68 and

95% bands. Isolines of the product of the theoretical cross section and branching fraction

for HH→ bbVV→ bb`ν`ν are shown as dashed-dotted lines.
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Figure 8. Left: expected (dashed) and observed (continuous) 95% CL upper limits on the product

of the Higgs boson pair production cross section and branching fraction for HH → bbVV→ bb`ν`ν

as a function of κλ/κt. The inner (green) band and the outer (yellow) band indicate the regions

containing 68 and 95%, respectively, of the distribution of limits expected under the background-

only hypothesis. Red lines show the theoretical cross sections, along with their uncertainties, for

κt = 1 (SM) and κt = 2. Right: exclusions in the (κλ, κt) plane. The red region corresponds

to parameters excluded at 95% CL with the observed data, whereas the dashed black line and

the blue areas correspond to the expected exclusions and the 68 and 95% bands (light and dark

respectively). Isolines of the product of the theoretical cross section and branching fraction for

HH → bbVV → bb`ν`ν are shown as dashed-dotted lines. The diamond marker indicates the

prediction of the SM. All theoretical predictions are extracted from refs. [12–17, 84].

8 Summary

A search for resonant and nonresonant Higgs boson pair production (HH) is presented,

where one of the Higgs bosons decays to bb, and the other to VV → `ν`ν, where V is

either a W or a Z boson. The LHC proton-proton collision data at
√
s = 13 TeV collected

by the CMS experiment corresponding to an integrated luminosity of 35.9 fb−1 are used.

Masses are considered in the range between 260 and 900 GeV for the resonant search,

while anomalous Higgs boson self-coupling and coupling to the top quark are considered

in addition to the standard model case for the nonresonant search.

The results obtained are in agreement, within uncertainties, with the predictions of

the standard model. For the resonant search, the data exclude a product of the production

cross section and branching fraction of narrow-width spin-0 particles from 430 to 17 fb, in

agreement with the expectations of 340+140
−100 to 14+6

−4 fb, and narrow-width spin-2 particles

produced with minimal gravity-like coupling from 450 to 14 fb, in agreement with the

expectations of 360+140
−100 to 13+6

−4 fb. For the standard model HH hypothesis, the data exclude

a product of the production cross section and branching fraction of 72 fb, corresponding to

79 times the SM cross section. The expected exclusion is 81+42
−25 fb, corresponding to 89+47

−28

times the SM cross section.
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Université Libre de Bruxelles, Bruxelles, Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart,

R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk,

A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom,

R. Yonamine, F. Zenoni, F. Zhang2

Ghent University, Ghent, Belgium

A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas,

S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis
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RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
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I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann17,

R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller,

E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko,

S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing,

O. Zenaiev

University of Hamburg, Hamburg, Germany

S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller,

A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,

S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin,

F. Pantaleo14, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann,

J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen,
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INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy,
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L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b,
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nológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado

Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix,

M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa,
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E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo,

K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone,

S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, U.S.A.

A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, U.S.A.

O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Del-

gado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon71, R. Mueller, Y. Pakhotin,
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