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Abstract  

Despite the established knowledge that crystal dislocations can affect a material’s superconducting 

properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has 

long been missing. Being a type of defect, dislocations are expected to decrease a material’s superconducting 

transition temperature (Tc) by breaking the coherence.  Yet experimentally, even in isotropic type-I 

superconductors, dislocations can either decrease, increase or have little influence on Tc. These experimental 

findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained 

impurity-induced Tc reduction, no quantitative agreement has been reached in the case a dislocation given 

its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three 

dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides 

the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction 

between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of 

dislocations to superconductivity is thus clarified as the competition between the classical and quantum 

effects, showing excellent agreement with existing experimental data. In particular, the existence of both 

classical and quantum effects provides a plausible explanation to the illusive origin of dislocation-induced 

superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has 

been derived, in which a dislocated superconductor with low elastic moduli, small electron effective mass, 

and in a confined environment is inclined to enhance Tc. This provides a new pathway to engineer a 

material’s superconducting properties by using dislocations as an additional degree of freedom.  

Key Words: Dislocations; Electron-dislocation interaction; Dirty superconductor; Effective field theory.      

Dislocations are irregular atomic position changes within regular ordering of atoms, extending along a 

line shape in a crystalline solid1. As a common type of line defect, the motion of a dislocation explains 

the large discrepancy between theoretical and experimental shear strengths in a crystal, and thereby leads 
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to  plastic deformation behavior exhibited in materials2. In addition, dislocations have far-reaching 

impacts on material electronic properties, such as increasing electrical resistivity through deformation 

potential scattering3 or Coulomb scattering4 with electrons, changing electronic structures by forming 

electronic bound states5 or low-dissipation conducting channels6, 7, influencing superconducting 

properties8, 9, etc.    

  Dislocations play a dual role in a material’s superconducting properties. On the one hand, dislocations 

can immobilize the motion of a vortex line in type-II superconductors, leading to an increase of critical 

current. This mechanism is called flux pinning and is well understood8, 9. On the other hand, dislocations 

can change the superconducting transition temperature (Tc), a trend yet to be well understood. It is natural 

to consider that dislocations, as a type of material defect, can only cause a weakening of superconductivity 

since it results in electron scattering, and hence breaks the coherence of Cooper pairs. This picture is 

consistent with Anderson’s theory of dirty superconductors10, where Tc in a dirty superconductor is always 

slightly lower than the pure cases, and is even valid for high-temperature superconductors with anisotropic 

pairing11. However, experimentally, even in elementary type-I superconductors, the introduction of 

dislocations can either increase Tc (such as Zn), decrease Tc (such as Ti) or have negligible influence (such 

as Al) on Tc (listed in Table 1). This provides a hint that dislocations play a more profound role than 

behaving as mere impurities, yet no qualitative picture has been established to clarify its role, nor 

quantitative for that matter. A microscopic understanding of the electron-dislocation interaction 

mechanism in a dislocated superconductor has merit from not only a fundamental perspective, but also 

from a practical perspective, with the potential to provide guidelines for tailoring a material’s 

superconducting properties through dislocations.   

  In this study, we show that the quantization of a dislocation itself, namely “dislon”, is one suitable 

approach to tackle this problem. By generalizing the recently developed 1D dislon12, 13 to 3D space, the 

resulting 3D dislon shows interesting statistics on its own, going beyond purely Bosonic or Fermionic 

behavior. This deviation is due to the topological definition of a crystal dislocation = −∫ u b
C

d , where u 

is the lattice displacement field vector, b is the Burgers vector and C is an arbitrary loop enclosing the 

dislocation line14. To explore the significance of this quasiparticle, the electron-dislocation interaction is 

studied in the present work, where the electron effective Hamiltonian is obtained using a method inspired 

by the Faddeev-Popov gauge fixing approach15, 16 to impose the dislocation’s topological constraint. The 

effective electron Hamiltonian is shown to be composed of three terms - a diagonal quadratic term (non-

interacting electron), an off-diagonal quadratic term (classical scattering which changes electron 

momentum) and a quartic term (quantum-mechanical interaction coupling two electrons). The elusive 



 

role of the crystal dislocation on superconductivity is clarified as the competition between the two off-

diagonal terms, where a generalized BCS gap equation incorporating both the classical and quantum 

interactions is derived.  To validate the theory, the Tc of as many as ten dislocated superconductors are 

compared and excellent agreement is obtained. In particular, this theory provides a quantitative criteria 

for that which determines the change in Tc: a superconductor with low elastic moduli, small Burgers 

vector, high Poisson ratio, small effective mass, high Debye frequency and high density of state at the 

Fermi level. Most importantly, in a confined environment, such a superconductor tends to exhibit an 

increase in Tc when dislocations are introduced. Our theory provides a plausible explanation to the 

mysterious origin of the dislocation induced superconductivity in PbTe/PbS superlattice at nanoscale.  

 

The foundation of a quantized dislocation  

The best way to understand the quantized dislocation is most easily done by comparing it with a phonon. 

A phonon is a quantized lattice wave which can be mode-expanded in terms of plane waves17:  

 
1( )ph ph iu e
N λ

⋅= ∑ k R
k k

k
u R ε  (1) 

where phu is the lattice displacement at a given spatial position R, i.e. the difference of the atomic position 

with and without the presence of phonon induced atomic position deviations, λkε is the polarization vector 

and phuk  is the lattice displacement in the k-component mode, and k is a 3D vector in reciprocal space. In 

the static limit, there is no displacement, i.e. 0phu =k . As for a dislocation, inspired by mode-expansion 

work in 1D12, 13, we expand the lattice displacement vector caused by a single dislocation line ( )u R  

extending along the z-direction with core position 0 0( , ) (0,0)x y =  as  (Supporting Information I) 

 
1( ) ( ) ie u
A

⋅= ∑ k R
k

k
u R F k  (2) 

where A  is the sample area, uk is the dimensionless displacement, and ( )F k  is an expansion function. 

For later convenience we use s  to denote the 2D momentum perpendicular to the dislocation direction (

( , )x yk k≡s ), and κ  as the momentum along the dislocation direction, i.e. ( , , ) ( , )x y zk k k κ≡ ≡k s . In other 

words, instead of a plane-wave expansion, here it is a localized mode expansion around the dislocation 

core. A schematic is shown in Fig. S1. in Supporting Information I. Unlike the phonon case where k is a 

good quantum number due to translational symmetry, here k is more like a complete set for mode 

expansion and the local modes ( )F k  are not necessarily orthogonal to each other, but must be compatible 



 

with a classical dislocation without quantum fluctuations. In a 3D isotropic solid, for a dislocation line 

along the z-direction and glide plane within the xz-plane, ( )iF k  can be written explicitly as (Supporting 

information I) 

 ( ) ( ) ( )( )
2 2

1 1( ) ( ; )
(1 )xk k k

κ
ν

⋅ ⋅ 
≡ = + ⋅ + ⋅ − − 

k n k b k
F k F s n b k b n k  (3) 

where n is the glide plane normal direction, b is the Burgers vector, and ν is the Poisson ratio. The reason 

for the specific form in Eq. (2) and (3) is straightforward, such that under the following boundary 

condition,   

 0
lim 1,  for u
κ→

= ∀k s  (4) 

Eq. (2) reduces to the static, quenched dislocation, for both edge and screw dislocations (Supporting 

information I). In fact, Eq. (4) – the reducibility to a classical dislocation without quantum fluctuation– 

can be considered as the starting point of this theory.  

A brief comparison of a phonon and a quantized dislocation (aka dislon) is provided in Table 1.  

 

The 3D dislon Hamiltonian  

By substituting the dislocation’s displacement vector ( )u R  in Eq. (2) into a classical Hamiltonian 

composed of kinetic energy 
3

2 3

1
( )

2 i
i

T dρ
=

= ∑∫ u R R  and potential energy 31
2 ijkl ij klU c u u d= ∫ R  , where ρ is 

the mass density, ijklc is the stiffness tensor and iju is the strain tensor, the classical dislocation’s 

Hamiltonian H T U= + can be rewritten as (Supporting Information II)  

 
2

2 2
−

−
Ω

= +∑ ∑k k k k
k k

k kk

p p mH u u
m

 
(5) 

 

where 2( )m Lρ≡k F k  is a mass-like coefficient in which L is the system size assuming that the 

dislocation is located in an isotropic solid with box length L, is the canonical momentum 

conjugate to uk , 2 22 2( )[ ( )] ( ) ( )k F Fλ µ µ ρ Ω ≡ + ⋅ + k k F k k k plays the role of an excitation, in which 

we have assumed an isotropic solid hence ( )ijkl ij kl ik jl il jkc λδ δ µ δ δ δ δ= + + , with λ  the Lamé’s first 

parameter and µ the shear modulus.  



 

The form of. Eq. (5) appears to be similar to the case of the phonon, but with a momentum-dependent 

mass term. However, there is a huge difference due to the topological constraint set by Eq. (4). Defining 

2Z m≡ Ωk k k , if we impose a canonical quantization procedure such that  

 
2

u Z a a

ip a a
Z

+
−

+
−

  = + 


 = −  


k k k k

k k k
k



 (6) 

it can be proven that the usual Bosonic canonical commutation relation [ , ]a a δ+
′ ′=k k kk  is indeed 

incompatible with the boundary condition of Eq. (4), yet compatible with the following quantization 

condition (Supporting Information III) 

 [ , ] sgn( )a a δ+
′ ′=k k kk k  (7) 

where sgn( )k is the vector sign function. A few properties related to vector sign functions are discussed 

in Supporting Information IV.  

It is well known that a constraint may result in a breakdown of a canonical quantization condition18. For 

instance, dimensional constraint leads to anyonic statistics19. Here, the dislocation’s constraint is also 

shown to be incompatible with canonical quantization condition, as shown in Eq. (7).   

  In other words, the topological constraint of the dislocation given by Eq. (4) prevents the quantized 

displacement field of a dislocation from being purely Bosonic. To understand this, we define a new 

operator b a+
− =k k whenever sgn( ) 0<k , hence the new fields bk and b+

k satisfy canonical quantization 

condition [ , ]b b δ+
′ ′=k k kk (Supporting Information V). Therefore, the quantized Hamiltonian can finally be 

written as two Bosonic fields a and b (Supporting Information V) 

 

 
0 0

1 1( ) ( ) ( )
2 2

H a a a a b b+ + +

≥ ≥

   = Ω = Ω + + Ω +   
   

∑ ∑ ∑k k k k k k
k k k

k k k    (8) 

 

where we have used the fact that ( ) 0Ω = =k 0 , and the short-hand notation of 0≥k denoting sgn 0≥k .  

The necessity of two fields in representing a quantized dislocation very much resembles a Dirac 

monopole20, where two magnetic vector potentials have to be defined for the south and north poles.. In 

both cases, a single field quantity – whether a classical vector potential or a quantized Bosonic field – is 

simply not sufficient in describing the topological nature. 



 

The electron-dislon interaction  

The generic electron-ion interacting Hamiltonian can be represented using the deformation potential 

approximation as17 

 3 0

1
( ) ( )

N

e ion e ei j j
j

H d Vρ−
=

= ∇ − ⋅∑∫ RR R R R u  (9) 

where ( )eρ R  is the charge density operator which is defined as +( ) ( ) i
e e

een e c c
V σ σ

σ

ρ − ⋅ += = ∑ p R
k p k

kp
R R , and 

the Coulomb potential 
0( )0 1( ) ji

ei jV V e
V

⋅ −− = ∑ k R R
k

k
R R , having a Fourier component 2 2

4

TF

ZeV
k k
π

≡
+k , in 

which TFk  is the Thomas-Fermi screening wavenumber. Using Eq. (2), the electron-quantized dislocation 

(aka dislon) interacting Hamiltonian Eq. (9) can be further simplified as (Supporting information VI) 

 
*

0 0

( ) ( )e disH g c c a b g c c b aσ σ σ σ
σ σ

+ + + +
′ ′ ′ ′− + −

′ ′
≥ ≥

= + + +∑ ∑k k k k k k k k k k k k
k k
k k

 
(10) 

 in which the electron-dislocation coupling constant is defined as [ ]( )
2D

eNg N V i
VA m

≡ ⋅
Ωk k

k k

k F k   

where N is the number of ions in the system, V is the sample volume, and DN is the number of dislocations 

(Supporting Information VII). A brief comparison of an electron-phonon vs electron-dislon interaction is 

also provided in Supporting Information VII.  

 

Effective field theory of electrons 

To see how the electron-dislon interaction of Eq. (10) under the constraint of Eq. (4) really affects material 

electronic properties, we adopt a functional integral approach21 to eliminate the dislon degree of freedom 

and establish an effective field theory for solely electrons. The benefit of this approach is that the 

constraint of Eq. (4) can be properly taken into account. The effective electron Hamiltonian can finally 

be written as (Supporting Information VIII) 

 ( ) ( )
0

* ( )
eff c q

eff

H H H H

c c A c A c c V c c c cσ σ σ σ σ
σ σ

ε µ + + + + +
+ − ′ ′+ ↑ − ↓ − + ↓ ↓

′

= + +

= − + + +∑ ∑∑ ∑k k k s k s s k s k k q k k q k
k k s qkk

q  (11) 

in which εk is the single-electron energy and µ  is the Fermi level. The classical electron-dislocation 

scattering cH  (Figure 1a green straight line) indicates a change of electron momentum perpendicular to 



 

the dislocation line direction (since s is the 2D momentum perpendicular to the dislocation direction), 

with scattering amplitude [ ]( )
2 dis
eNA N V i
VA

= ⋅s s s F s . It can also be shown that the scattering amplitude 

As  is reducible to the classical dislocation deformation scattering potential22, where

1 2 sin
2 1

ca bV
r

ν θδ
π ν

− = −  − 
, supporting the consistency of the present theory (Supporting Information IX). 

In addition, the relaxation rate Γk of classical scattering is fully consistent with semi-classical theory, 

2
2 1 2

1disn b ν
ν

− Γ ∝  − 
 (Supporting Information X). Furthermore, the term 

*

2 2 2( )eff

g g
V

ω
Ω

= −
− + Ω

q q q

q

q




indicates 

an effective attraction between electrons pairs (Figure 1a wavy line). Eq. (11) is the main result of this 

study, describing how dislocations will interact with electrons from a quantitative many-body viewpoint. 

Interestingly, the effective attraction interaction mediated by a dislon shares some structural similarity 

with the interaction mediated by a phonon23, which leads to phonon-mediated superconductivity. Here 

the interaction has a different coupling constant and the phonon dispersion ωq is replaced by dislon 

dispersion Ωq , as shown in Table 1.  

 

The influence of dislocations to superconducting transition temperature 

Now using the effective electron Hamiltonian of an electron-dislon interaction (Eq. (11)), and 

incorporating the effective electron Hamiltonian from electron-phonon coupling, a generalized BCS 

equation taking into account both dislocations and phonons is derived using an auxiliary field approach24 

, which is capable of computing the influence of a dislocation upon the superconducting transition 

temperature (Supporting information XI) 

  
( )0

tanh tanh
2 21 ( )

2

D
c c

ph dis

i i
T T

N d
g g

ω
ξ ξ

µ ξ
ξ

   + Γ + Γ +Γ − Γ
+   

   =
+ + Γ∫  

(12) 

where  phg  is the electron-phonon coupling constant in usual BCS theory, which is measurable or 

computable from packages like EPW25, Dω  is the Debye frequency, and ( )N µ  is the density of states at 

the Fermi level. In particular, disg is the effective electron-dislon coupling constant, which can be written 

as (Supporting Information XI) 



 

 ( )
( )

222

4

4
2 2

dis
dis

TF

ZeN ng
V L k

π
λ µ

 = −  + 
 (13) 

where TFk is the Thomas-Fermi screening wavevector. Since we are interested in electrons near the Fermi 

level and Dω µ , and the decay mainly exists near the Fermi level, we write the classical decay constant 

as (Supporting Information X) 

 
2 2* 2

2
2 2 4

1 2~
4 1Fk dis

F TF

m Ze N n b
k k V
π ν

ν
  − Γ Γ =    −  

 (14) 

where *m is the effective electron mass, and Fk is the Fermi wavevector.  

From Eq. (12)-(14), the role of a dislocation to a material’s superconductivity becomes clear: it is 

governed by the competition between the classical scattering Γ  and the quantum interaction disg  (Figure 

1b). It also becomes clear that if the quantum interaction dominates , the 

superconducting transition temperature cT increases compared to a pure crystal, and vice versa. In 

particular, the near-linearity of the 0
c cT T= curve (black-dotted line) indicates the possibility of using a 

single parameter, namely the quantum-to-classical ratio  

 
( )

2
2 2

* 2

132/ ( )1 2~ ~
/ 2 ( )

F
dis ph D

D ph

kg gQuantum N
Classical m b L N g

νπ
ω µν

ω λ µ µ

− 
 − 

Γ +   



 (15) 

to estimate whether the presence of the dislocation will increase or decrease cT . The reason we use the 

ratio Eq. (15) as an indicator is that the disn  dependence is cancelled out in Eq. (15), a quantity not 

measured in many experimental reports.  In addition, as shown in Fig. 1b, along the dashed line, 0
c cT T=  

regardless of disn , further validating the use of Eq. (15). Therefore, we conclude that for a possible 

increase of cT , it is preferable for a material to have a small electron effective mass *m , low values of 

rigidityλ  and µ , and a smaller system size L. What is striking from Eq. (15) is that a combination of 

electronic properties and material properties, which are generally considered independent, appear to 

coordinate together to determine the superconducting properties.  

Comparison with Existing Experimental Data 



 

Now we are ready to compare the theory Eqs. (12) and (15) with existing experimental data. In fact, the 

advantage of Eq. (15) is quite straightforward, since the dislocation density disn - which is required to 

compute the absolute magnitude of disg  and Γ  but is often missing due to the paucity of experimental 

data- is cancelled out and does not appear in Eq. (15) (See Methods). We see that even when relying on 

the simplified expression of disg  and Γ as in Eqs. (13) and (14), the predicted cT  show excellent 

quantitative agreement with existing experimental data (Table 2). 

  In addition to the small influences of dislocations on superconductivity, it is worth mentioning that in 

some semiconducting monochalgogenide nanostructures26, 27 such as PbTe/PbS superlattice, introducing 

high-density misfit dislocations could directly drive a semiconductor-superconductor phase transition. 

Although some qualitative explanation of the pressure-induced phase transition or dislocation-induced 

flat band28 have been given, no quantitative agreement has been reached. Here we show that the present 

theory, even though it is formulated for an isotropic system, can still explain the magnitude of the Tc 

change observed in experiments. For a PbTe/PbS superlattice, due to its very low elastic moduli29 (

19.9GPaλ = , 21.4GPaµ = ), very small effective mass30 ( * ~ 0.02 em m in PbTe), small dislocation grid 

period ( 5.2nmL =  in PbTe/PbS, where we have assumed that the system size is the dislocation grid size)26, 

and high electron density of state caused by the formation of flat band28, the estimated quantum-to-

classical ratio according to Eq. (15) is expected to be exceedingly high, leading to a great enhancement 

of superconducting transition temperature cT . Assuming a 136K Debye temperature (which is the Debye 

temperature of pure PbTe) and ( ) 0.1phN gµ =  without dislocations, the resulting dislocation-free 

superconducting transition temperature gives only 0 0.01KcT < . When dislocations are introduced, 

assuming ( ) 0.2phN gµ =  due to the increase in the density of states caused by the electronic flat band28, 

the resulting cT could be increased to ~10K, as shown in Fig. 2b. This is in excellent agreement with a 

series of semiconducting monochalgogenide nanostructures with different dislocation grid periods, hence 

different system sizes, where both theory and experiments reveal a common feature: a larger size gives a 

lower cT . In addition, the experiments showed that both YbS/YbSe and YbS/EuS superlattices are not 

superconducting, while PbSe/EuS, PbS/YbS and PbTe/YbS are superconductors. From the present theory, 

we could understand this readily: there has to be a narrow bandgap semiconductor to reduce the *m  and 

hence increase the quantum to classical ratio in Eq. (15), in order to allow for superconductivity. Since 

both YbS and EuS are large bandgap insulators which in general have a larger effective mass compared 

with narrow bandgap semiconductors such as PbTe31 (for instance *(EuS) 0.45 em m=  32), the quantum-



 

to-classical ratio is greatly reduced. The existence of superconductivity in YbS/EuS further excludes the 

dominating role of ferromagnetism in EuS. This provides a possible working theory to explain the effect 

of dislocations on materials superconductivity.  

Conclusions 

In this study, we show that due to a dislocation’s topological constraint as given in Eq. (4), a quantized 

dislocation, the “dislon”, is indeed composed of two Bosonic fields (8). As a result, we show that there 

are two distinct types of electron-dislocation interactions: besides the well-known classical scattering 

where electron momentum is changed, a new type of interaction is revealed, which could couple electron 

pairs through a dislon (Eq. (11)). This leads to the resolution in understanding the role of dislocations in 

a materials superconducting transition temperature cT . Ultimately, the competition between two 

interactions determines the direction of change in cT . The theory not only shows very good agreement 

with multiple previous experiments in elementary BCS superconductors, but also explains the mystic 

phenomena of why misfit dislocations in a superlattice system could turn a semiconductor into a 

superconductor. This theory may open up new routes to understanding the role of dislocations on material 

electronic, thermal, magnetic and optical properties at a new level of clarity.  

 

Methods  

Experimental Data 

Simple material data for metals are taken from the Landolt–Börnstein database33 and a few others34-36 to 

ensure consistency, while the data for dislocated superconductors are taken separately37-42, which are all 

compiled in the Table in Supporting Information XII. Since the dislocation density is unknown for the 

majority of materials, and the ratio in Eq. (15) does not fix the absolute magnitude of disg  , we have chosen 

a reasonably estimated value 0.02=dis phg g  to scale all materials (as an example, take dislocation density 

12 2~ 10Dn cm− , 10L nm=  and other values from Zn, 
( )

( )

222

4

4
~

2 2
dis dis

ph TF

Zeg nN
g V L k

π

λ µ
 
  + 

). A different choice 

of parameters within a reasonable range would slightly change the magnitude but not qualitatively change 

the behavior. Since disg  and Γ have different dimensions, for computational purposes we normalize 

→dis disg g V  to match experimental energy dimensions so that all coupling strengths have the dimension 



 

of energy. To estimate the Fermi-wavevector using the free-electron model, we use 
1/3

0

9 1
4

 =  
 

F
s

k
a r

π
, 

where the density parameter is defined as 3 3
0

4 1
3 sna rπ

≡ .  
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Figure 1. Classical vs quantized dislocation. (a) The electron-dislocation interactions have two types. The 
classical interaction (green straight lines with arrows) denotes the momentum-transfer scattering resulting in a 
weakened superconductivity, while another quantum interaction (green wavy lines) leads to an effective attraction 
between electrons, resulting in enhanced superconductivity. (b) The influence of a dislocation to a materials 
superconducting transition temperature cT  is explained as the competition between classical and quantum 
interactions. There is a clear line (black-dotted) separating the dislocation-enhanced superconductivity ( 0

c cT T> ) 
region from the dislocation-weakened superconductivity ( 0

c cT T<  ) region. 

 

 

 

 

 

 
Figure 2. Dislocation induced superconductivity in semiconducting monochalgogenide superlattice. (a) 
Atomic configuration of a PbTe/PbS superlattice. When misfit dislocations are introduced, the semiconducting 
superlattice system experiences a phase transition, thus becoming a superconductor. (b)The comparison between 
the present theory using Eqs. (12)–(15) with PbTe/PbS and pure PbTe parameters (see main text), and the 
experimental reports26, where the four data points correspond to PbTe/PbS, PbTe/PbSe, PbS/PbSe and PbSe/EuS, 



 

with the system size 5.2nm,  8.6nm,  13.5nmL = and 18.0nm , respectively. Both theory and experiments show 
the same trend that is a larger size leads to a reduced superconducting transition temperature cT  .  

 

 

 

 

 

 

 

 

 

 

Table 1. Comparison between theory and experimental superconducting transition temperature for a series of 
simple-metal dislocated superconductors, showing good agreement. The parameters used for calculation and the 
corresponding references are listed in Supporting Information XII.    

 Al In Nb Pb Sn Ta Ti Tl V Zn 
0

Exp
  c cT T  1.00 1.04 1.06 1.00 1.06 1.00 0.75 1.13 1.09 1.54 

0

Theory
  c cT T  0.94 1.07 1.06 1.03 1.06 1.01 0.87 1.07 1.05 1.28 
[Trend]Exp ─ ↑ ↑ ─ ↑ ─ ↓ ↑ ↑ ↑ 
[Trend]Theo

 

↓ ↑ ↑ ↑ ↑ ─ ↓ ↑ ↑ ↑ 
 

 
 

Table 2. Comparison between a phonon and a dislon. The topological constraint of a dislocation leads to a series 
of differences compared with a phonon, but still share many structural similarities between the two.  

 Phonon Quantized dislocation (Dislon) 

Essence small displacement u displacement u with constraint 

d = −∫ u b


 

Mode expansion ( ) ~ iu e ⋅∑ k R
k k
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