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Abstract

This thesis is comprised of three essays that all take different approaches to the
subject of disequilibrium in games. The theory of disequilibrium in games is not
really new, but has gained a lot of attention recently in the literature on learning
and evolution. Chapter 1 exemplifies the use of disequilibrium for estimating the
structural form of an Industrial Organization model. Chapter 2 demonstrates the
use of experimental data to select among disequilibrium models and to establish
benchmarks of behavior. Chapter 3 illustrates the use of numerical simulation to
explore the convergence behavior of more complex models and to derive comparative
statics.

In chapter 1 we develop a simple model of oligopoly with multi-product, or multi-
location, firms. We show that the variable “number of products” (or locations) can be
either a strategic substitute or a strategic complement. Implications for comparative
statics are drawn. The model is estimated with data from the Portuguese banking
industry and with a partial adjustment version of the “cobwebbing” mechanism. The
results provide an explanation for the puzzling pattern of branching during the late
80's.

In chapter 2 individual data from an experimental setting is used to estimate a
learning model and an evolution model. These models characterize the behavior of
boundedly rational individuals in a setting of repeated interaction that mirrors the
experimental environment. The models represent two somewhat distinct approaches
by game theorists to relaxing the perfect rationality of Nash equilibrium. The esti-
mation reveals that both models are significant determinants of behavior. Moreover,
the strengths of each model complement the weaknesses of the other. A mixed model
does not reject either element. Some support is also found for focusing attention on
convergence behavior and for modelling players in the most heterogeneous fashion
possible. The learning model is found to be more sensitive to aggregation issues than
evolution, though learning is a better description of individual behavior.

This paper establishes a technique for estimating the probability of each equilib-
rium for a broad class of static games. The procedure is to simulate learning processes
to generate a database of convergence behavior and then estimate the probability of a
given outcome as a function of the game played. This prediction will approximate re-



ality to the extent that the theoretical learning process aproximates real players. The
predictions are also a useful way to characterize the behavior of the learning process
both as direct information about the process and as a basis for comparative statics.
In the class of 2x2 symmetric coordination games, those games with extreme risk
dominance are almost sure to eventually have the risk dominant equilibrium played
by everyone. The rest of the games have non-zero probability of convergence to either
equilibrium. Weighting more recent observations more heavily in the calculation of
beliefs about others’ play did not affect the expected action converged to, but did
increase the speed of convergence. Adding a cost of updating caused a dramatic shift
in the action converged to for some games, but only for some distributions of the
players’ propensity to update their behavior after one non-equilibrium outcome rela-
tive to arother. Making fictitious play more like an evolutionary model by changing
the way that players respond to their information from adopting the best response to
emulating other players slowed the process down dramatically.

Thesis Supervisor: Glenn Ellison
Title: Assistant Professor of Economics
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Chapter 1

A Model of Branching With an
Application to Portuguese

Banking

1.1 Introduction

How many branch offices should competing banks open in a given area and how many
varieties of soda should competing manufacturers produce? While there is an exten-
sive literature on product differentiation, the question of how many locations a given
firm will serve do not seem to have been examined for their strategic nature.! Salop’s
(1979) study asked how many locations are served in equilibrium with free entry when
each firm serves at most one location. Brander and Eaton (1984), Bhatt (1987) and
Klemperer (1992) look at the question of where firms should !ocate multiple prod-
ucts (i.e. clustered together, interspersed with the rival's products or on top of the
rival’s products), but consider only cases where firms are locating a fixed number of
products.

An important exception to this critique is the symmetric goods case of monopolis-

IThere is a noteable difference between the strategic question of number of locations or products
and questions of the optimal firm size based on cost considerations. See Aron (1988) for an interesting
analysis of diversification of products based on the costs of managerial incentives.
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tic competition as presented in Dixit and Stiglitz (1977). In that case the symmetry
of the goods and the zero profit condition of free entry result in an equilibrium where
each firm produces just one product. The intuition is that zero profit determines the
number of locations served so each firm is deciding if they want to serve an additional
location given that if they don’t someone else will. The symmetry ensures that an
incumbent firm faces the same zero profit as an entrant, so the incumbent is indif-
ferent. This solution is very sensitive to these two assumptions and when they are
relaxed Dixit and Stiglitz note that a firm could produce multiple products, but do
not treat this case.

This paper addresses the issue of multi-product, or multi-location, oligopoly com-
petition. We develop a simple model that allows us to focus on the size of a firm’s
network in either a product space or in ageographic region. One application of this
model is to banks’ decisions of how many branch offices to operate and in this respect
the model will be estimated with data from the Portuguese banking industry. The
qualitative analysis of the model, together with the empirical estimates, suggest an
explanation for the puzzling pattern of branch expansion in this industry during the
late 80’s.

From a theoretical point of view, the main question we address is the strategic
nature of the variable “number of varieties” or “number of locations.” There are
essentially two ways one can look at this variable. First, we can think of it as a measure
of scale—firms with a larger number of branches are larger than firms with a lower
number of branches. In this sense, we expect the variable “number of branches” to
be a strategic substitute, that is, we expect firm ¢'s reaction function to be decreasing
in firm j’s number of branches (just as in a Cournot oligopoly, for example).

However, we can also think of branching as a location decision. When a firm
opens a branch in some location, it will receive customers which originate from one
of three alternative sources: (i) previously unserved customers, (ii) previously own
customers in some other branch, or (iii) previously customers at some rival firm’s
branch. Now, when the rivals’ number of branches increases, it is possible that the

importance of the third source increase so ruch relative to the second one that the
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marginal revenue of an extra branch goes up; that is, the number of branches may
be a strategic complement (just as price in a Bertrand oligopoly or quality in various
vertically differentiated oligopolies).

In Section 1.2, we present a simple theoretical model which conforms to this
latter intuition. It is shown that the firms' best response functions are in general
non-monotonic. Specifically, they are increasing for low levels of the rivals’ number
of branches and decreasing for high levels of the rivals’ number of branches. Sorne
comparative statics implications of the model are also explored in Section 1.2. In
particular, it is shown that, in response to entry, small incumbents should reduce the
number of branches, while large incumbents, especially large incumbents with a large
loyal customer base, should increase the number of branches.

In Section 1.3.2, we estimate a version of the theoretical model using branching
data from the Portuguese banking industry. (Before, in Section 1.3.1, we provide a
brief overview of the industry.) The theoretical model is extended to allow for the
possibility of a partial adjustment to the equilibrium number of branches, which in
turn is given by the estimated reaction functions. A counterfactual analysis based
on the estimated model indicates that some of the incumbents did, indeed, respond
to entry by increasing their branch networks, a possibility which is suggested by the
theoretical model. In other words, if there had been no entry, some incumbent banks
would have increased their networks by less than they actually did.

Finally, in Section 1.3.3 we use the comparative statics of the theoretical model, as
well as the empirical estimates, to advance an interpretation for the pattern of branch
expansion in Portuguese banking during the late 80’s. We show that efficiency and
a large customer base are “substitute” factors in determining the desire to expand.
This in turn explains the observed heterogeneity of the banks which expanded the
most (large, old, inefficient banks as well as new, efficient ones). It also explains the

patterns of expansion across geographical areas.
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1.2 The basic model

In this section, we develop a simple static model of oligopoly competition between
multi-product, or multi-location, firms.? In this model, each firm’s decision of the
number of varieties/locations plays a central role. We first present the basic struc-
ture of the model and then derive some results regarding equilibrium and comparative
statics. As in much of the literature on product differentiation, the model can have
two interpretations: choice of varieties and spatial location. Since our empirical appli-
cation refers to the latter, we will in general refer to the firm'’s decision of branching,
that is, choosing the number of locations. As we will see, given the assumptions we
make, the model is actually better seen as a model of choice of varieties. However,
in the end of the section, we compare our model with an alternative, more standard
location model, and argue that our model provides a good approximation to reality,

both qualitatively and quantitatively.

1.2.1  Primitives

We assume that the market is characterized by a fixed number, N, of identical loca-
tional nodes and a mass of consumers, one per node. Consumers are located both at
the nodes and along the paths which connect the nodes. Firms, on the other hand,
can only locate their branches at the nodes.> Conceptually, these nodes are meant to
represent something like shopping areas or street corners abstracted from the immense
complexities of a realistic street system. Under the choice-of-variety interpretation,
nodes represent typical taste preferences. For example, in the market for ready-to-eat
breakfast cereals, typical nodes would be raisin bran, corn flakes, natural, etc.

Consumer preferences are lexicographic. Each consumer’s first concern is to min-

2There is an extensive related literature on the use of product proliferation as a means of entry
deterrence, which includes Hay (1976), Prescot and Visscher (1977), Schmalensee (1978), Eaton
and Lipsey (1979), Lane (1980), Bonano (1987), Shaked and Sutton (1990) and Judd (1985). This
literature typically allows strategic choice of the number of locations to serve, but imposes sequential
timing of these decisions and restricts the entrant’s choice to a single location.

3If the concentration of consumers around the nodes is sufficiently high, then this would be a
derived result.

14



imize transportation costs.! Therefore, if some firm is located at the nodc nearby
the consumer’s address, then the consumer purchases from some firin iocated at that
node. If no firm is located at that node, then the consumer travels to another node
according to some pre-determined preference ordering, until a served node is found.
These preference orderings for second-, third-, etc. choices are uniformly distributed
across consumers and are independent of location. The independence assumption is
similar to that in Von Ungern-Sternberg’s (1991) model of “monopolistic competition
on the pyramid” (see also Deneckere and Rothschild, 1986). In fact, Von Ungern-
Sternberg’s idea of an (/N — 1)-dimensional pyramid with firms located at each of the
N vertices and consumers located along the edges may be a useful one, and will be
maintained throughout. The assumption that second-choice preferences are indepen-
dent of location may not be such a bad approximation for geographic differentiation.
A consumer may first look for a branch located close to his home address. If no branch
is found, then he will look for a branch close to work; and then close to the child’s
school; etc. The idea is that there is little correlation between place of residence and
place of work, etc. In the case of product varieties, the assumption reflects the fact
that there are many dimensions to consumer preferences, so that relative orderings
are very subjective.3

Each of the m firms simultaneously decide how many branches to have, n;, and
allocate these to one node each. The analysis in Brander and Eaton (1984) and in
Bhatt (1987) of which subsets of a small finite set of product lines each firm can
pursue in equilibrium is similar to the question of where to locate branches. The
multiplicity of cases and equilibria in those papers illustrates the intractability of
the where to locate problem with many potential sites. Since our focus is on the
choice of the number of branches, we make the location choice as simple as possible.

Specifically, we assume that location is a random process, with each node being given

4 Anecdotal evidence from banking services, for example, shows that this assumption is not too
unrealistic.

5From the perspective of firm competition, the assumption implies the absence of “neighborhood
effects:” every firm/branch competes with every other firm/branch. In fact, this is the essence of
Chamberlin’s monopolistic competition. See P4scoa (1993).
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equal probability (given the constraint that not more than one branch is allocated to
any given node).®

The revenue earned by a branch of firm 7 from the customers located at each
node is given by the function R;(S)’, where S is the set of firms located at that
node (S will thus include firm 7). It is natural to assume that R;(-) is monotonic:
Sc S = R(S) > Ri(S'). An extreme example of functions R;(-) is given by
Bertrand competition: R;(S) =0, VS # {i}.

The opposite extreme of R;(-), one which will be considered in the empirical
application, is the case when there is no price competition. Under this assumption,
when there is more than one firm serving a given node, that is, when a node is
contested, consumers are divided between firms according to the following rule. If all
firms have a branch at the node, then firm ¢ gets a share ¢; of the total. For any set
S of firms with branches at a contested node, firm i will get a fraction ¢;/ 3¢5 g;-

The shares ¢g; may reflect quality differences between firms. In the case of product
variety, an example is given by ready-to-eat breakfast cereals: a consumer may prefer
corn flakes to raisin bran (preferences across nodes); and, given that he chooses to
buy corn flakes, there may be a preference between Kellogs and some other maker

of corn flakes (preference between firms, modeled by g;).3

In the case of spatial
competition, in particular bank competition, the values g; could reflect the proportion
of the population who are “loyal” to each firm in the sense that they would incur a
switching cost to purchase from a different firm. The assumption on transportation

costs means that these switching costs are low enough relative to transportation costs

8There are several reasons why this assumption may be a sensible one. First, one can show
that even for very simple location games there exists no equilibrium in pure strategies. Second,
the pattern of randomization we consider does constitute an equilibrium. Third, playing mixed
strategies can be interpreted on the basis of Harsanyi's (1973) purification argument. Applied to
the case in hand, the idea is that firms have some private information about demand at each node
(for example) and choose locations optimally according to this information. If each firm'’s private
information is uncorrelated with the other firms’, then equilibrium strategies will look as if firms
were randomizing locations.

"This is the revenue net of the cost of serving these consumers where the marginal cost of serving
an additional consumer is constant.

8The difference between firms can be a difference in vertical quality. In that case, interior values
of ¢; would be justified by a countervailing price difference which is valued differently by diffevent
consumers.
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to make a customer unwilling to walk away from a branch at the node where he lives
to a branch of the bank he is loyal to.

Finally, notice that the potential mass of customers at each node is given by
“local residents” plus the consumers who travel from unserved nodes. The fact that
second-choice node preferences are independent of location implies that unserved
customers are evenly distributed among the served nodes. As a result, the distribution
of consumers per served node is identical. We assume that each firm's revenue per
branch is given by QR;(S), where @ is the measure of customers served at the node

where the branch is located.?

1.2.2 Reaction functions: basic results

We will begin by characterizing the strategic nature of the variable “number of
branches” by studying the shape of the reaction functions. In order to avoid trivial
solutions, we will need some assumptions regarding the marginal cost of an additional

branch, ¢; for firm 7, and the size of the market.
Assumption 1 For all i, ¢; < (N + 1)R;({i})/6.
Assumption 2 For all i, ¢; > R;(U), where U is the set of all firms.

The meaning of these assumptions can be seen from the following three basic
lemmas.

First, suppose that firm i is a monopolist, that is, n; = 0, Vj # . Then, firm
i's optimal response is never to open more than one branch, that is, nj(0) < 1,
where n!(n_;) is firm 7's reaction function to n_;, the vector of the rivals’ number
of branches. In fact, since demand is inelastic with respect to transportation costs,
the only effect of opening more than one branch would be to increase the total cost
of branches opened, while total revenue would remain constant. This leads to the

following result.

9A linear demand function which is scaled up by the number of customers is one example which
would naturally lead to this proportionality rule.
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Lemma 1 n[(0) = 1.

Proof: One can easily check that Assumption 1 implies that the profit from open-
ing one branch is positive, so that n7(0) > 0. The argument above implies that

o<1 m

Now suppose that one of firm i’s rival firms opens one branch (n; = 1), while all
other firms open zero branches (n, = 0, Vk # ¢, j). What is firm ¢'s expected payoff if
it opens one branch? With probability 1/N, two rival branches will be located at the
same node, while with probability (N — 1)/N the two rival branches will be located
at different nodes. In the first case, both branches compete for a total demand of .V
consumers (or, N times the measure of consumers at each node); while, in the second
case, each firm will be a monopolist over one half of the total demand. We thus have

N-1N

(1, €) = HNR({i, 1)) + ~— 5 R — ¢ (L1)

where II(n;,n_;) is the expected payoff function and e; is a vector with a 1 on the
j — th component, zeros elsewhere.
Now suppose that firm ¢ opens 2 branches, still maintaining the same value of n_;.

Expected payoff is now given by

11(2,65) = & (FRUN + 5 RGN + 3N - (12)

Based on this, we can derive the following result.
Lemma 2 nf(e;) > 1, where the j-th element of e; is 1 and all other are zero.
Proof: Computation establishes that Assumption 1 is equivalent to II;(2,e;) >

H,-(l,e,-). [

Finally, let us consider the opposite extreme, namely the case when all firms j # ¢

choose the maximum possible number of branches, that is, n; = N, Vj # 1.
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Lemma 3 Ifn_; 4s suﬁ‘iez’ently large, then ni(n_;) = 0.

Proof: By Assumptionp 2,n; =N, Vi # 4 implies n(n_;) = 0. The result then
follows by continuity. |y

Together, Lemmas 1-3 imply the follo'ving corollary.

Corollary 1 n! s (strz'ctly) increasing for loy, values of n_; and decreasing for large

values of n_;.

(a) Strategic complementarity, When a firm opens a branch iy Some location,
it will recejve Customers whijch originate from one of three alternative sources: (i)
Previously unserved Customers, (i) Previously own customers in some other branch,

or (iii) previoyg] Customers at some rival firm’s branch, Now, when the rivals’ numher
y

complements.

107 Bulow, Geanakoplos, and Klemperer (1985b) note (and exemplify), this characterization of
price and Quantity competition ig not general, It jg correct for the case of linear demang and in
other cages.
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(b) Strategic substitutability. When n_; is very large, P_; =~ 0, that is, the
fraction of unserved nodes is close to zero. Consequently, firm i's expected revenue
from an extra branch is proportional to the expected value of R;(S). But since R;(S)
is a decreasing function of S, and S is “increasing” in n_;, it follows that expected
revenue is decreasing in n_;.

In this case, the analogy is with quantity competition. When a Cournot oligopolist
increases the quantity it supplies, it reduces not just its marginal revenue but all
firms’ marginal revenue as well. In fact, marginal revenue is an increasing function
of price, which in turn is a decreasing function of total quantity. Likewise, in the
case of branching, marginal revenue is a decreasing function of S, which in turn is an
increasing function of all rivals’ number of branches (although not in the simple way
as in quantity competition).

Another immediate consequence of Lemmas 1-3 is the following.

Corollary 2 In any symmetric equilibrium with N > 1, the number of branches per

firm is greater under duopoly than under monopoly.

Section 1.2.5 includes a discussion of this corollary.

1.2.3 Reaction functions: continuous case

Unfortunately, it is not possible to determine the exact reaction function for a general
n_;. In order to get around the integer problem we will assume that the number of
branches is a continuous varaiable. When the elements of n_; are large numbers this
assumption i3 reasonable.

Denote by E;(n_;) firm #’s expected revenue from a branch located at a given node
which is originated from the customers located at that node. As we have seen before,
firm i's revenue is given by R;(S), where S is the set of firms located at the node.
Therefore, we have E;(n_;) = E(R;(S) | n—;). Notice that E;(n_;) does not depend
on n;, since the firms’ randomizations are independant.

The number of customers served at each node is typically greater than the number

of customers located at that node. This is so because there are generally nodes which
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remain unserved. The expected fraction of such nodes is given by

P(n) = k]zll (1 - %) , (1.3)

where n = [n;]. The total expected revenue for firm ¢ of a branch is then

5+ (25) =5 ()

Recalling that firm i's marginal cost of having an additional bianch is a constant c;,

firm i's total expected profit is

Mi(n) = niE; (1—-_1—5) - (1.5)

Equation (1.5) illustrates the tradeoffs to branching in this model. The first and
last n; represent the usual tradeoff between the revenue from an additional branch
and its cost. The revenue per branch, which is given by E; times the term in brackets,
is a decreasing function of n;. Additional branches take customers away from existing
branches. Some of these customers will switch between branches of the same firm,
and so they will not be a contribution to revenue. The larger a firm’s network is, the
more of the customers it gets at a new branch will be transfers of this sort, and the
lower will be the contribution to revenue.

The general profit function of Equation (1.5) is concave in n; so we can use the

first order condition to derive a reaction function. Let

Pi=11 (1 - %) . (1.6)

ki

It can be shown that firm 7’s reaction function is given by

ni(n_) =N (1.7)

Pi—1+ /E({I-P)
P_;
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1.2.4 Equilibrium in duopoly with no Price competition

In order to have a better idea of the shape of the reaction curves, we now specialize
the model to the case of a duopoly with no price competition. Specifically, we assume
there is a potential revenue 7 originating from the consumers at each node, and that
this revenue is divided between firms when the node is contested. The revenue sharing
is relatively simple in the duopoly case. If a node js served by only one firm, then
that firm gets all of the potential revenue from that node. If a node is served by both
firms, firm i gets g; of the potential revenue. If a node is served by neither firm, the
potential revenue from that node js divided among the nodes that are served. Firm

¢’s expected revenue at each node it serves is given by

L A 1‘1)_ (_&)
E',-7r( N )+q,7r(N =m(1 q,N . (1.8)

where g; = 1 — ¢;. Profits can thus be written as

nj N?
Hi(ni,nj) =n,; (1 - q‘iﬁ) [Nz — (N — n.)(N — TLJ)J T —Cin;. (19)

Taking the derivative with respect to n; and simplifying yields

N

n;(n;) =

p [‘"a‘ + \/njczi(N - anj)} - (1.10)

For the duopoly case, we are able to derive a strong result with respect to the
slope of the reaction functions at the equilibrium. The following lemma states that,
in equilibrium, the number of branches is a strategic substitute for one firm but a

strategic complement for the other.!!
Lemma 4 In equilibrium, (On! [0n;)(n5/0n;) <0 (i # ; ).

Proof: Taking the derivative of firm 4’s reaction function with respect to n;, we get

"In the words of Bulow, Geanakoplos, and Klemperer (1985a), the number of branches is a
strategic substitute from the perspective of one firm but a Strategic complement from the perspective
of the other. Bulow, Geanakoplos, and Klemperer ( 1985b) present an example of duopoly quantity
competition which implies a result similar to the following one.
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where A; = N[n;(N — n;)(N - g;n;)]™". Since A; >0and ¢; = 1 — aj,

sign g: g’: — sign -[g(ni—nj)+(%—q.-)2 (1.12)
) o ]

which proves the result. B

Corollary 3 If

(i) ¢= g; and ¢ <cj,

or (i) ¢ =c; and ¢; > g,
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then

(a) n; > n;j

and (b) On]/dn; >0 > Onj/0n,.

The idea of this result is that there are two main factors which influence a firm'’s
size and whether its number of branches is a strategic substitute or complement.
The first one is the cost of opening a new branch. The lower c; is, the higher firm
's number of branches, other things equal, and the greater the likelihood that n;
is a strategic complement. The second factor is the expected market share in each
served node, ¢;. The higher g; is, the higher firm i’s number of branches, other
things equal, and the greater the likelihood that n; is a strategic complement.!? In
this sense, one can say that efficiency (as reflected in ¢;) and a loyal customer base
(as reflected in ¢;) are “substitute” factors in determining a firm’s desire to expand
(and the likelihood that m; is a strategic complement). (This observation will play
a crucial role in the interpretation of the pattern of Portuguese banks’ expansion of
their branch networks.) Finally, Corollary 3 suggests that it is the larger firms that
have a positively sloped reaction function.!3

The situation of simultaneous strategic complements and subétit_utes is especially
relevant to analyzing the effects of entry. In order to keep the duopoly apparatus,
we will consider an expansion in the number of Firm 2's branches resulting from an
exogenous decrease in its cost, ¢z, from ¢, to ¢j. As illustrated in Figure 1-1, it is
conceivable that a dominant firm (a firm with lower ¢; and/or higher ¢;, Firm 1 in this
case) would rationally expand its branch network in response to this form of entry. In
the figure, the equilibrium changes from E’ to E”. Both Firm 2 and Firm 1 increase
n; as a result of a declire in c,.

As we noted before, the greater g, is, the greater the likelihood that n, is a

strategic complement; and ¢g; may be interpreted as the degree of customer loyalty

2Notice that the effect of ¢; on the derivative of n] with respect to n; comprises both a direct
effect and an effect through the value of n;; both effects have the same sign.
13However, one may find cases with ¢; < cj, ¢; < q; such that the order is reversed.

24



4
‘ nj(na)
Eﬂ
E’ / nj (i cl)
np(m|ch)
0 7711

Figure 1-1: Dominant firm’s reaction to rival’s increased efficiency

that Firm 1 enjoys. Then, the comparative statics on entry indicates that the more
loyal customers a firm has, the more likely it is that it will expand its branch network
in response to entry. The intuition is that when there are more loyal customers, the
incumbent firm has more to lose from reducing its relative density of branches; which
is to say, has more to gain from expanding the density of its branch network.
Finally, it is interesting to investigate the implications of the above results in a
model of sequential entry of the kind considered by Fudenberg and Tirole (1984).
Suppose that firm 1, the incumbent, has the opportunity of making an investment
I in cost reduction, such that ¢, = ¢;(I) with ¢|(I) < 0, before firm 2 enters the
market. In addition, suppose that q; = 1, and that c, is given. Following Fudenberg
and Tirole (1984), the effect I on firm 1's equilibrium profits can be decomposed in
a direct effect and a strategic effect. The direct effect is always positive: an increase
in I implies a decrease in ¢, which, ceteris paribus, implies an increase in firm 1’s

profits. The strategic effect is given by
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It can be shown that the sign of the stiategic effect is given by

. Bl'Il d’flg . 6[12 dﬁl . 6715
sign (Bng =7 ) = sign (B_nlﬁ X sign n; ) (1.14)

The first term on the right hand side is negative. In fact, one can see that firm i's

profit is decreasing in firm j’s number of branches. In the terminology of Fudenberg
and Tirole (1984), investment in cost reduction makes firm 1 “tough.” The sign of
the strategic effect is therefore opposite of the sign of the slope of firm 2’s reaction
curve. In particular, if the reaction curve is positively sloped, then the strategic effect
is negative. This in turn implies that the firm underinvests in cost reduction

Now, Corollary 3 implies that firm 2’s reaction function is positively sloped if and
only if ¢; > c;. Therefore, we conclude that 1 will underinvest in cost reduction if
¢z > ¢ (in the terminology of Fudenberg and Tirole (1984), follow a “puppy dog”
strategy) and overinvest in cost reduction if ¢; < ¢, (in the terminology of Fudenberg

and Tircle (1984), follow a “top dog” strategy).

1.2.5 Dissipative competition strategies

A closer examination of the previous subsections reveals that the main features of
the variable “number of branches” should also be found in the more general context
of strategic variables related to dissipative competition. In particular, the marginal
gain from investing in a dissipative strategy is positively related to two factors: (i)
the rivals’ market share (the greater it is, the more there is to transfer), and (ii) the
rivals’ investment in that strategy (the greater it is, the more difficult it is to transfer
market share).

These two factors are consistent with the observations made before, namely: (a)
investment in dissipation is a minimum when the number of firms is one (factor
(i): there is no market share to steal) or when it is very large (factor (ii): large
investments are needed in order to steal market share); (b) at low levels, reaction
curves are upward sloping (factor (i): as the rivals’ increase their market share, there

is more to steal from); and finally, (c) at high levels, reaction curves are downward
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sloping (factor (ii): as the rivals increase their investments, the required investment
to recover becomes higher).

An example to which these ideas seem to apply as well as branching is dissipative
advertising. In fact, our model can also be interpreted as a very stylized model of
dissipative advertising. Suppose that each node represents one consumer. Each firm
decides how many advertising messages to send, n;, and distributes them randomly
across consumers. A consumer who receives only one ad buys from the firm send-
ing that ad. A consumer who receives more than one ad chooses one of the sellers
according to the probability vector [Ri(S)/ ¥;es R;(S)], where S is the set of firms
whose ads that consumer reeeives. Finally, a consumer who does not receive any ads
“travels” to one of her neighbors and imitates his decision. This is the same story of
advertising as in Butters (1977), but with a different technology of advertising. But-
ters assumes that the random allocation of ads to consumers is done with replacement
so that a consumer can receive multiple ads from the same firm. In this interpretation
of our model the firms are assumed to be able to keep from duplicating their own
effort and we add word-of-mouth advertising for those consumers who receive no ads
directly.

In this context, it is interesting to address the question of what is the relation
between market structure (namely, number of firms) and the equilibrium number
of branches (or advertising messages). Numerical simulations reveal that in an m-
firm symmetric oligopoly the equilibrium number of branches per firm, n*(m), is a
decreasing function of m for m > 1, while the total number of branches, n*(m)m, is
an increasing function of m. In addition, the analysis presented above implies that

n* =1 when m = 1.1

1.2.6 An alternative model of spatial competition

The model we have developed so far may be criticized on the basis that it only allows

for localized competition in a very stylized way. Each network branch is in direct

14As the model applies to advertising, these results seem consistent with the evidence that adver-
tising/sales ratios are a quasiconcave function of market concentration (cf Martin, 1979).
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competition with other branches at the same node; but, other than that, it is equally
placed with respect to all other branches in all other nodes. We will now argue
that a more standard model of spatial competition may exaggerate in the opposite
direction, that is, may involve too much localized competition. We will also provide
other reasons why our model may provide, both qualitatively and quantitatively, a
good approximation to reality.

The most common model of localized competition, in the tradition of Hotelling
(1929), is Salop’s (1979) circular road model. In order to make the comparison with
our model possible, we will consider the extreme case when the density of nodes is so
large that the probability of two branches coinciding is close to negligible. Suppose
that there are two firms who have to decide how many branches to have and how
to distribute them along the circle. As before, we will assume there is no price
competition, so that we have a pure location game.

It can be shown that there exist no pure-strategy equilibria in this location game:
each firm’s best response is always to locate just around the rival’s locations and thus
maximize the customer base. It can also be shown that it is an equilibrium for firms
to locate their branches equally spaced along the circle and randomize the location
of this pattern on the circle with a uniform distribution.

Based on this, market shares can be easily computed: they are given by s; =
ni/(2n;) and s; = (2n; — n;)/(2n;), where n; < n;. From market shares, we can
derive expected profit and reaction functions. It can be shown that the reaction
function nf(n;) consists of three different sections. For n; < n', n{(n;) is increasing,
concave and greater than nj; for n' < n; < n", nl(n;) = n;; and for n; > n”,
ni(n;) = 0.

The circular road model has both differences and elements in common with the
mode] we presented above, the pyramid model. First, note that in both cases reaction
functions are first increasing and then decreasing. However, in the circular model this
occurs in a discontinuous way. In particular, the decreasing “region” is the disconti-
nuity at n” where it is suddenly no longer profitable to participate. Alternatively, the

reaction functions for the pyramid model estimated in Section 1.2.4 are smooth. The
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circular model does not have a region of downward sloped reaction functions, so it is
not possible for an equilibrium to occur there. Second, while a unique equilibrium
was found for the pyramid model, the circular road model can easily admit multiple
equilibria: recall that, when n' < n; < n”, nl(n;) = n;.

The third point of comparison relates to market shares. As we mentioned before,
the pyramid model may be criticized on the basis that it does not admit enough
localized competition. However, the circular road model may be criticize for the
precise opposite reason. In fact, the model tends to over-estimate the larger firms’
market share. The idea is that the larger firm guarantees to itself all of the demand
between two of its adjacent branches; the smaller firm is thus confined to a small
fraction of the potential market. In fact, the smaller firm’s market share, ni/(2n,), is
1ess than the fraction of the total number of branches that it owns, r; = n; [(ni +n;).
In the pyramid model, however, it can be shown that when N — oo, we have s; —
ni/(n; + n;). In particular, it can be shown that, at r; = 0, 9s;/0n; = 1 for the
pyramid model and 8s;/dn; = 1/2 for the circular road model. But the data we use
in the empirical section seem to reject the second hypothesis against the first.!s

In summary, the pyramid and the circular road models are qualitatively similar
with regards to the shape of reaction functions. However, the former seems better

indicated for the purpose of empirical estimation.

1.3 An application to Portuguese banking

Bank branching is one of the most obvious applications of the theoretical model devel-
oped in the preceding section. In this section, we consider the case of the Portuguese
banking industry during the late 80’s. The section begins with a brief overview of
the industry.’® We then present the empirical model used and the estimation results.

The section ends with a discussion of the results.

'5For example, in the district Lisbon and in 1990, a regression of s; on r; yielded, for the smaller
banks, s; = 0.88r;, with a standard error of 0.09.

18The reader is also referred to Gordy (1991a,b) for interesting analyses of Portuguese banking
(namely branching).
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1.3.1 The puzzling pattern of Portuguese bank branching

From 1975 to 1984, virtually all banks operating in Portugal were State-owned. In-
terest rates, credit ceilings, and other variables were directly controlled by the Gov-
ernment and the Bank of Portugal (the central bank). Competition was therefore
virtually nonexistent. The 1980’s, by contrast, were a decade of overall deregulation
and privatization, and the banking sector was not an exception. In 1984, a law was
passed allowing entry by new private banks. Later on, a plan of privatization for
several of the public banks was drafted; the first privatization was processed by the
end of the decade.'” Beginning in December of 1984, new domestic private banks
were created and foreign banks entered the Portuguese market. These new banks
gradually increased their number of branches. Together with the expansion by the
incumbent banks, this led to a very rapid increase in the total number of branches.'8
Table 1.1 presents the number of branches in continental Portugal by the end of 1988,
as well as the increase in the number of branches during the period 1989-91.

The table depicts a pattern of branching that is puzzling. First, the total increase
in the number of branches during 1989-91 was fairly large, a growth rate of more
than 10% a year. Second, growth was highly concentrated in four banks, Caixa
Geral de Depdsitos (CGD), Banco Comercial Portugués (BCP), Banco Espirito Santo
e Comercial de Lisboa (BESCL), and Banco Pinto e Sotto Mayor (BPSM), which
accounted for more than two thirds of the increase in the number of branches. Of
these four, CGD and BCP alone accounted for roughly half. Third, the increase in the
number of branches was more or less evenly distributed between public and private
banks (although, since there were more public banks initially, the growth rate was
much higher for private banks than for public banks). Finally, while private banks
have mainly invested in “urban areas” (Lisbon and Oporto districts), public banks
seem to have focussed on “rural areas” (all districts except Lisbon and Oporto).

In addition to the data, there is some anecdotal evidence that the new, private

17To be more precise, banks were re-privatized, since most of them had been nationalized in 1975.
18The rate of expansion might have been higher if it were not for the bureaucratic costs of getting
new branches approved by the government—by 1992, entry has still not been completely liberalized.
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Table 1.1: Number of bank branches in continental Portugal. (Source: Bank of
Portugal.)

| Concept | By end 88 | New in 89+90 |

Four largest 628 225
BCP 18 113
CGD 339 45
Private 191 174
Urban 102 118
Rural 89 56
Public 1325 159
Urban 477 65
Rural 848 94
| Total | 1516 | 333 |

banks are more efficient than the old, public banks; in particular, there is a common
perception that the private banks’ marginal profitability of an extra branch is larger
than the public banks’, especially because operating costs are lower. On the other
hand, public banks, especially CGD, have the advantage of controlling a fairly large
customer base consisting mainly of very “loyal” depositors, that is, depositors with a
high cost of switching to other banks.

If we were to base our analysis solely on comparisons of bank profitability, we
would expect private banks to be the only ones expanding. But, perhaps a large
and loyal customer base is a “substitute” for high margins as a determinant of high
propensity to open new branches. This would help explain the difference between
“urban” and “rural” areas, but the traditional analysis would still have difficulty
explaining an incumbent that responds to entry by expanding.

All these stylized facts and conjectures motivate the estimation of the theoretical

model of Setion 1.2 using data from Portuguese bank branching.!®

19The theoretical model does not contemplate the possibility of direct consumer benefits from
network size. We believe that these benefits are small in the Portuguese market. For a typical
depositor, branches other than the “home” branch are used for the sole purpose of obtaining cash.
Now, the network of ATM machines is common to all Portuguese banks, so that depgsitors attach
relatively little importance to the network size of the bank they patronize. Models which explicitly
consider network effects include Gale (1992), Matutes and Padilla (1993), Nakamura and Parigi
(1992). Other models which explicitly address issues of banking, although not the same as ours,
include Neven (1990), Chiappori, Perez-Castrillo and Verdier (1992). Fuentelsaz and Salas (1992),
in particular, estimate the empirical determinants of the total number of bank branches in Spain.
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1.3.2 Empirical model

Unfortunately, the extremely high and sustained growth rate of branches in the Por-
tuguese banking industry during 1989-1991 indicates that the industry was not in an
equilibrium during this period. It is possible that year to year changes could produce
an equilibrium one year that was much higher than the equilibrium in another year.
It is also possible that another wave of changes could cause growth in multiple peri-
ods. But, a pattern of very high growth rates over a period of several years requires
a somewhat particular sequence of significant and unforseen shocks. Despite the high
rate of legislative change in this industry, a more compelling explanation seems to be
that the industry is undergoing a non-instantaneous transition to a higher equilib-
rium. This target equilibrium may be subject to some fluctuation from year to year,
but these changes seem less significant than the difference between the current state
and the equilibrium.

From an empirical perspective, disequilibrium is not very attractive. To com-
pletely model the situation, we should expand the model of competition in branches
to include a constraint on the acquisition of new branches and to include dynamic
interaction through an infinite-period game with discounting. However, this would
introduce additional complications since there would exist multiple equilibria. For
the purpose of empirical estimation, we have chosen to assume that the players fol-
low a particular strategy. In each period, they increase the number of branches by
some fixed proportion of the difference between the current level and the static reac-
tion function evaluated at that date—the game-theoretic correspondent to the partial
adjustment model, a model which is frequently used in applied econometrics. This
strategy is not completely arbitrary in that it is similar to a set of strategies that
Fudenberg and Tirole (1983) found to be a Markov perfect equilibrium of a capacity
accumulation game with infinitely patient players. The strategy has the advantage
that the accumulation is proportional to the myopic “need,” so the reaction func-

tion of the static game, and therefore the accumulation path, can be estimated with

In this paper, we are interested in the number of branches per bank.
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dynamic data.

The empirical model is thus

nyt - =0 (n:j(n!—ij) - ":j) +u; (1.15)

where nfj is the number of branches of bank i in geographic region j at time t. The
geographic regions of Portugal are considered to be separate markets, since it would
be unreasonable to believe that consumers in the Lisbon metropolitan area travel to
Oporto to do their banking. Therefore, the reaction function of player i, nf;(-), is
also indexed by the region, j. This allows for variation across regions in the number
of nodes, N, the expected share of revenue at a node, @,, and the potential profit
of a node relative to the branching cost, f: The reaction function also depends,

of course, on the number of branches that opponents have, but only in that region,

t
—ij-

the vector n The adjustment rate af is allowed to vary across banks and time.
This variance accomodates differences in the implicit constraints that keep the banks
from fully adjusting. The errors, u;;, are assumed to be independent and identically
distributed.

Since players are determining their reactions to the actions of all players in the
previous period, there is no problem of simultaneity in the estimation. Requiring that
all players assume this stationarity in the play of their opponents also has implications
for Qi;. In a forward looking framework, Q;; would be a random variable depending
on the current actions of the opponents, but in this model Q;; is fully determined.
In fact, Q;; can be obtained from the market shares in deposits, M S;;, since market
share is equal to the ratio of firm i’s revenue to the total revenue earned by firms in

this market.

" Qi ip
k(e QusT 2p)
i Qij

Lk (i Qk5)

MS;; (1.16)
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(1.17)

This deterministic @;; is a function of each other firm's Qy;, but they can all be
approximated together by an itterative method. In the first round Q{; = M'S;; where

the superscript is an index of itteration. Subsequent values are given by

atl _ _ MSi; Tz Qi
Y 1- MS,'J' LT '

(1.18)

This procedure is continued until convergence.
Rearranging Equation (1.15) and substituting the general reaction function for
n'"(-) yields

nt+! _ath '_1+\/Q'J¢=. (1-P)
ij

+ (1 - af)nt.. (1.19)

i/

Since N! , 7!. . ¢; and a! are unknown, we must also specif’
70 "y 1 '

N; = 01 + B2Pop ; + B3(Pop ;)2 + Ba(Dense ;) + ﬁs(ATMC;'): (1.20)
nt, = 61(Pro) + 6a(Pub ;) + 8y( V’jv’i{ 1) 1 6,(ATM Y), (1.21)
C = 65(Prv .‘) + Js(Pﬂb ,') (1.22)
and
o = ap(Big !) + @1(89) + a2(90) + a3(91). (1.23)

Since 7j; and ¢; do not enter the equation seperately, their coefficients cannot be
estimated seperately. Combining Equations 1.21 and 1.22 and simplifying produces

a single equation for the ratio of expected profits to startup costs:
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, VAM

Kitj= C =Qi; [(Prv)(m + 7 N )+‘73(ATM;'))
(Pub v+ 25(3d) + TW(ATM )] (1.24)

J

In these approximations Pop is the population, Dense is population density, ATMC
is the number of ATM machines, VAM is the Value Added in Manufacturing (which
is computed for 1990), ATM is the average daily transactions per ATM and MS is
the regional market. share (calculated from deposit data); Pub is 1 if the bank is one
of the old public banks, and Prv is I if Pub is 0. Those banks that were privatized
during the period are still classified as public since the intention is to explore the
effects of incumbency.?? The variable Big is the total number of branches opened
by the bank in a year. This variable serves as a normalization so that the number of
branches opened locally is compared to the global number. Finally, the errors from

these estimations are assumed to have been already accounted for in the uj;.

1.3.3 Empirical results and discussion

Substituting the linear approximations (1.20), (1.23) and (1.24) into the nonlinear
equation (1.19), the model can be estimated by Nonlinear Least Squares. The results,

with aproximate t-statistics in parentheses, are

a = 0.002289 (Big) —0.001236 (89) —0.001263 (90) —0.002443 (91)
(9.031) (—0.9960) (—0.9895) (—1.686)

N = 1918 —0.001395 (Pop) +4.102¢e—05 (Pop?)

(5.589)  (—0.1347) (6.559)
—1.591e+05 (Dense)  +0.03504 (ATMC)
(—1.092) (0.9245)

20This is probably a good place to mention that we assume profit maximization by both the
private and the public banks. We believe this is a sensible assumption since there is a significant
flow of managerial talent between the two types of banks, so that career concerns motivate profit
maximization by all managers.
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K = (Q)[(Prv)( 1504 +0.02034 (VAM) +0.04485 (ATM))
(0.9854)  (7.991) (0.5257)
(1.25)
+(Pub)( 1899 +0.03959 (VAM) —0.05328 (ATM))]
(1.949)  (0.5828) (—0.5646)

The traditional measure of goodness of fit, R?, is the ratio of estimated sum of
squares to total sum of squares and in this estimation is equal to 0.9831. However, in
the linear model R? has an interpretation as part of an F test of the hypothesis that
all of the coefficients are 0 except the constant term. Setting all of the coefficients to

be 0 in this nonlinear mode} zenerates a restricted medel where n}; is predicted by

t—1
ij

based on this generalized F test as

ni-! as opposed to the sample mean as in a linear model. Define a generalized R?

_ 2("5,‘ - ﬁ‘:j)2
. Z(nf; - mi; )

then R? is 0.8111. The generalized F test of the hypothesis that all of the coefficients

(1.26)

are 0 rejects overwhelmingly.

Although R? and R? indicate that this specific model fits the data very well,
there is still a question of whether or not another model might explain it better. In
order to test the specification of the model various coefficients were introduced on the
computed variables. The first test places a coefficient on P_; wherever it appears in
n"(-). The test statistic of the t test that this coefficient is equal to 1 is -0.0006687
which gives it a p-value of 0.9995. Thus, this specification restriction is not rejected
by the data for any typical significance level.

The next test expands the first. Since P.; appears 3 times, let the coefficient be
different for each one and test that all 3 are equal to one. The coefficients are given

by

el _ ot hPi-1+ ‘/st%(l — BePy)
ntT = a'N:

1= ot P +(1 - af)n;. (1.27)
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Table 1.2: P_; Coefficients

t statistic | p-value
By || -2.495 0.01280
Be || -1.712 0.08725
B3 || 1.857 0.06361

Table 1.3: N Coefficients

| t statistic | p-value
-0.1912 0.8484
-24.36 3.470e-98

Ba
Bs

The test statistics are reported in Table 1.2 for the t tests of the seperate hypotheses
that each of the coefficients equal 1. These tests are not as overwhelming as the first
test. In fact, for some reasonable significance levels these tests will reject. Still, the
results are somewhat ambiguous as the test statistics are borderline. In addition to
the seperate tests it is also possible to estimate a joint hypothesis that all three of
the coefficients are equal to 1.

The last specification test uses the fact that N enters n"(-) both directly and
through the calculation of P_;. Putting a coefficient on the direct N, f;, and another
on the indirect, (s, allows tests of the specification restriction that each of these equals
1. The test statistics are reported in Table 1.3. This time one of the coefficients
is overwhelmingly likely to be equal to 1, but the other is overwhelmingly unlikely.
Taken with the test results from above the indication seems to be that the data would
like more freedom in predicting the individual firms’ beliefs about the likelihood of
confrontation, but that if this belief is to come from a consistent model, then the
one specified is a good one. i.e. A better estimate could be made if each firm were
allowed to use a different value of N to predict the likelihood of confrontation from
the value used in determining their own actions. Also if the N’s are taken to be the
same then a better estimate might be made if the firms could be inconsistent about
there use of the prediction of the probability of confrontation. Still, if consistency is
imposed the specified model is valid.

The coefficient on ATMC is positive, so more ATM machines in a region implies
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more potential sites for bank branches. This would follow if ATM'’s and branches are
providing complementary services. Then, more ATM’s would indicate more demand
for banking and, thus, more potential sites for branches. On the other hand, if they
are substitutes, then an ATM would act as a branch at that location for every bank
since all banks use the one ATM network. Thus, a region with a given number of
nodes initially would seem to have fewer nodes for actual branches the more of them
were taken out of competition by an ATM machine. We can, therefore, conclude that
bank branches and ATM’s are providing complementary services.

The coefficient on Pop is negative and that on Pop ? is positive, which would
indicate a U-shaped curve. This shape and the fact that the regions of List~n and
Oporto are high outliers in the distribution of population indicates that these regions
constitute much larger markets than the other regions. The negative coefficient on
Dense indicates that in denser sections there are fewer nodes with larger popula-
tions. These results accord well with a perception of the urban markets as large and
profitable.

The last set of coefficients that offers an interesting interpretation are those on
ATM for the private and public banks. The fact that this is positive for private
banks and negative for public banks can be understood by viewing this variable
as an indication of depositor sophistication. Customers who use the ATM network
extensively probably have lower switching costs, so in a region where there is a large
proportion of this type of customer the established banks have less of an advantage.

We are interested in comparing the explanation of our model with the alternative
story of capacity expansion. A pure capacity expansion situation can be represented
by letting P_; tend to 1. In such a story, a new branch serves mainly customers
who were not being served before, and in the extreme is purely market expanding; in
other words, the probability of such a new branch being at an uncontested node is
close to 1. The parameters estimated in (1.25) produce values of P-; that range from
1.042e-16 to .1240 with a mean of only .05591. A test of the hypothesis P_; = 1 based
on the generalized Wald statistic rejects overwhelmingly. Moreover, the fact that the

distributior. of the estimated values of P_; is so tightly packed toward 0 means that
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Table 1.4: Average Values of Explanatory Variables

1988 1989 1990
Population 522.0 521.4 520.5
Urban 1843. 1844. 1843.
Rural 356.8 356.2 355.1
ATM (average daily use) 133.9 159.2 161.4
Urban 2199 219.3 205.2
Rural 123.2 151.6 156.0
ATMC (number of machines) {| 17.94 27.61 42.78
Urban 100.0 154.0 227.0
Rural 7.688 11.81 19.75
Area 4.933e+07
Urban 2.550e+07
Rural 5.231e+07
Value Added Manufacturing 6.688e+04
Urban 2.605e+05
Rural 4.268e+-04
Market Share 0.02857 0.02857 0.02857
Public Urban 0.06496 0.06354 0.06050
Private Urban 0.004309 | 0.005256 | 0.007283
Public Rural 0.07064 0.07067 0.07030
Private Rural 0.0005258 | 0.0005066 | 0.0007552

new branches are seen to be very likely to be at contested nodes; in other words, new
branches play a predominantly business stealing role in the market.

We are particularly interested in comparing private and public banks and their
behavior in the two types of regions. Table 1.4 provides some average values of the
explanatory variables and Table 1.5 provides averages of the computed variables for
the relevant groups. Recall that K is the ratio of expected profits to startup costs.
Dividing this term by @, the share of total profits at a node that a firm can expect,
yields the firm'’s perception of the ratio of profits to startup costs that the firm would
receive if it was a monopolist, 7/c. Examining the average values of this variable
seems to contradict the popular conception that urban markets are more profitable
than rural ones and that private banks are more efficient than public banks other
things equal. But, other things are not equal. In particular, there is a significant
difference in the distributions of the variable Q. Public banks have more customer

loyalty, so a higher Q on average. The significance of this loyalty is demonstrated
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Table 1.5: Average Values of Computed Variables by Group

1988 1989 1990
N
Urban 152.3 154.8 157.0
Rural 24.62 24.90 25.45
K
Public 8.025 8.566 7.279
Urban || 7.298 7.403 8.556
Rural [ 8.119 8.717 7.106
Private || 3.972 3.801 2.713
Urban || 4.240 4.241 3.662
Rural || 3.506 3.262 1.765
Q
Public 0.1175 | 0.1320 | 0.1190
Urban || 0.09412 | 0.09663 | 0.1152
Rural [ 0.1205 | 0.1366 | 0.1195
Private |[[ 0.06146 | 0.05930 | 0.04397
Urban || 0.07005 | 0.06978 | 0.06117
Rural [ 0.04657 | 0.04643 | 0.02677
m/c
Public 70.43 68.52 67.49
Private | 64.52 64.98 66.66
Urban 69.27 68.38 66.92
Rural || 6955 |67.74 | 67.40
a
Public 0.01357 | 0.01791 | 0.03404
Private | 0.01495 | 0.04409 | 0.06569
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Table 1.6: Descriptive Statistics for Computed Variables

Variable || Mean | Min Max | Std Dev
o 0.02634 | -0.007021 | 0.2356 | 0.04347
N 50.93 19.47 190.6 | 54.64
K 7.084 0.002006 | 63.14 | 7.135
() 4575 | 1.000 190.6 | 52.80
N-w() 5172 |0.000 189.6 | 24.74
n () —n' | 39.56 | 0.000 189.6 | 49.52
P_; 0.05591 | 1.042e-16 | 0.1240 | 0.03777
Qi 0.1096 | 3.178e-05 | 0.9527 | 0.07494

by the observation that the expected ratio of profits to costs, K, is higher for public
banks than for private banks. Customer loyalty, then, is a significant “substitute”
for efficiency. Further examination of K reveals that an average public bank should
not open a branch in an urban region, since it has a higher return to opening one in
a rural region. Also, an average private bank should not open a branch in a rural
region. Thus, the branching pattern is explained. The private banks, having less
customer loyalty, focused on the lucrative urban markets. The public banks have
also expanded slightly in these lucrative markets, but have acted more in the rural
markets where their loyal customer base is larger. The reversal of this story for public
banks in the last period is probably a result of privatization, but could represent a
successful reaction to entry, or diminishing returns in the rural regions.

Besides the traditional goodness of fit measure, R?, we are also concerned with
the reasonableness of the computed variables. Descriptive statistics for these have
been reported in Table 1.6. As a whole these do seem to be reasonable. There are
some players who seek a saturation of the market, n"(-) = N, and there are others
who are barely participating. The average of 90% saturation seems reasonable when
the average region has 51 locations.

However, there is obviously a problem at the low end of the distribution of the
adjustment rate, a. A negative adjustment rate is clearly wrong. One explanation
for this shortcoming is that Nonlinear Least Squares does not do well when the
error distribution has thick tales. In this data there is a large disparity between the

growers and the non-growers. If this difference is not accounted for sufficiently in the
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Table 1.7: Predicted and Actual Growth

Urban areas Rural Areas

Pred. | Actual | Pred. | Actual

Public 197 172 212 202
BESCL 34 26 | 41.5 36
BPSM 23.4 22 279 21
BTA 26 20 31.3 27
CGD 44.5 4 259 51
Private 183 240 107 133
BCI 45.7 46 19.5 23
BCP 121 125 86.1 92

| Total | 380 [ 412 319 | 335
n2

0

n

Figure 1-2: Effect of Lower Reaction Curves

explanatory variables, then the errors will have thick tales. Banks either expanded
a lot or very little. This disparity probably arises from different business practices.
One bank may consider depositors an essential source of funds and compete heavily
in branches while another prefers the interbank market and uses branches for loans
only. Since this analysis has focused exclusively on the deposits side of banking, and
therefore assumed that all banks had the same business practice, the data have a
problem explaining banks that do not expand. Such a problem would lead to low
values of a and is indicated by the fact that the fitted values of growth in Table 1.7
are low for the private banks since that group would contain most of the banks with
business practices that are not focussed on deposit taking in Portugal.

Another explanation of the low adjustment rate, however, is also interesting. If
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banks perceive currently high profitability as a temporary state, then they will react
not to the current levels but to their expected levels discounted over time. This
behavior would mean that banks are not adjusting to today’s reaction curves but to
lower curves. Figure 1-2 illustrates how a large adjustment toward reaction curves
that are lower than the current ones can look like a small adjustment rate. The short
vectors are the laws of motion based on the reaction curves with equilibrium at A.
The longer ones are those for the curves that intersect at B. The adjustment rate is
the ratio of the actual distance travelled along the diagonal vector to the length of
that vector, so if the longer vector is used the adjustment rate looks smaller. It is
possible that banks have expectations of future profitability that make them adjust
in a slightly different direction than today’s reaction curves would indicate. If that is
true, then there will be some mis-estimation of the reaction functions. The difference
in the direction of adjustment can also be caused by an asymmetry in the starting
point. In this case, the estimated reaction functions will be slightly larger than the
true ones for the firms that have lower initial numbers of branches.

While the low end of the distribution of estimated adjustment rates looks bad, the
high end looks good. It would be difficult to say that the adjustment rate should be
much higher than 25% since the growth patterns do not taper off that much. Thus,
the problem seems to be that more of the adjustment rates should be at the higher end
of the observed range, rather than that the observed range is too low. This property
lends credence to the first explanation, different business practices. This model is,
perhaps, not appropriate for some of the participants in Portuguese banking.

Nevertheless, the estimation of the empirical model allows the numerical compu-
tation of an interesting counterfactual. What would the public banks have done if
the private banks had not entered the market? By using the estimated parameter

-values on a data set that contains only the public banks we can address a question
that is very close to this one. The difference arises from the fact that the parametric
form of K cannot be decomposed to fit the counterfactual. We cannot say what the
market shares would have been without entry, but this problem is less worrisome

than it appears. First, a new bank has very little customer loyalty. In this model a
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Table 1.8: New Branches In All Regions 1988-1991

Bank I Actual | Predicted | Predicted Numbei | % Difference
Number | Number | If No New Banks | In Predictions
BBI 3.00 1.88 1.85 0.798
BCA 0.00 -0.460 -0.460
BESCL 62.0 75.5 76.1 -0.977
BFB 15.0 18.3 18.3 -0.00823
BNU 7.00 6.83 6.95 -1.62
BPSM 43.0 51.4 51.9 -1.19
BPA 19.0 22.3 22.4 -0.279
BTA 47.0 57.3 57.5 -0.531
UBP 13.0 14.7 14.9 -1.09
CGD “ 95.0 70.4 70.9 -0.503
CPP A 38.0 52.4 52.5 -0.280
BFE 8.00 9.98 9.96 0.292
BMELL 2.00 0.00 0.00 0.00
CEL/MG 22.0 29.2 29.2 -0.0719

new bank is, therefore, not a significant factor in the expected share of revenue, Q;,
of other banks. Note that a new bank is still important to the level of their profits,
however, through the increased density of the system (i.e. through the P terms).
Second, a case can be made that since the people most likely to have switched to the
new banks are the people with the lowest switching costs. This self selection means
that the fact that we do not know who these customers would have been loyal to in
the counterfactual is not very important since they would not have been very loyal.
We have chosen to allocate the loyal customers of the new banks to the old banks
proportionately to the old banks’ current loyalty. This is somewhat ad hoc but the
above arguments indicate it is not overly significant.

Table 1.8 presents the results of the counterfactual analysis. While entry seems
to have had a slight stifling affect on the branching of incumbents, there is evidence
of increased branching by some incumbents as a result of entry. The increase is small
in terms of the total number of branches opened, but it is of the same magnitude as
the downward shifts. The fact that the increases are as significant as the decreases
indicates that the case of simultaneous strategic complements and substitutes is more

than just an interesting theoretical diversion. It is, quite possibly, the reality in this
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industry.

1.4 Conclusion

In this paper, we have developed a general model of oligopoly competition between
multi-product, or multi-location, firms. In particular, the model indicates two impor-
tant factors in the analysis of banks that compete by establishing branch networks.
First, that switching costs and consumer loyalty are substitutes of efficiency in de-
termining the profitability of branching. And second, that it may be optimal for a
bank to increase its own size in response to an increase in its rival’s size. The analysis
of the data reveals that both of these characteristics are important in expiaining the
pattern of branch network expansion in Portugal.

While we have mainly focused on issues of positive analysis, the results of the paper
have interesting policy implications as well. It is possible that the large customer
loyalty in rural regions inhibits social efficiency, in that this loyalty prompts a less
efficient bank to be the one opening a new branch. Moreover, pushing the new
banks to open branches in the rural regions could lead to even more branching by
the incumbents, an effect which would likely be socially wasteful. Efforts to reduce
customer switching costs would then be beneficial both directly and indirectly. The
incentives to open new branches would place greater weight on efficiency, and entry

would be promoted in a less risky manner.
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Chapter 2

Fitting Learning And Evolution
Models to Experimental Data

2.1 Introduction

The traditional solution concept of game theory, Nash equilibrium, relies on some
stringent assumptions. One is that all players have perfect information about their
opponents’ strategies. Another is that each player is perfectly rational and responds
to the opponents’ strategies with a best response. Many authors have explored the
results of relaxing. these assumptions by replacing the single game with an infinite
repetition of the same game where the only connection between rounds is a dynamic
process on the information or the response of the players.! There are two primary
strains to this literature. Learning models assume that players are still rational, but
initially lack information which they learn over time. Evolution models assume that
- the players can have all of the relevant information but not choose the fully rational
action. “Natural selection” works over time to eliminate players who choose worse

actions. These categories are not mutually exclusive nor are they complete.?

1See Young (1993), Matsui and Rob (1991) and Ellison (1993a) for example.

2A hybrid type of model, for example, is the myopic best response. These models assume that
players use only information from the most recent repetition and try to make a best response to
this information but the players also randomly “mutate” and play some other action. An example
of these models is Kandori, Mailath and Rob (1992).
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Researchers in this dynamic-process approach have typically focused on conver-
gence results as the number of repetitions approaches infinity. When information is
eventually learned or evolutionary pressure has removed all of the players who do
not play the best response, the systems converge and the distribution of play ap-
proaches a Nash equilibrium. In this sense, certain Nash equilibria might be said to
be justified on the grounds that with even looser assumptions players would learn
(or evolve or whatever) to play according to the equilibrium. Unfortunately, this
equilibrium-selection aspect of the literature suffers from the same problems as the
explicit equilibrium-selection literature. The equilibrium selected can differ depend-
ing on the mechanism used, and the modeller is left with no basis for choosing one
selection mechanism over another other than his or her own faith in the assump-
tions. Ideally, such faith should follow from objective empirical evidence that the
assumptions are a good approximation of reality.

While allowing for more realistic decision makers than under the Nash assump-
tions, the models introduce another distortion from reality in terms of the structure.
There are very few games of interest that have been played infinitely often, let alone
being played by restricted pools of players with intertemporal effects limited to the
specified dynamic. In response to this fact, it is often conjectured that players will
recognize games which are technically different as being similar enough to apply learn-
ing from one to the other.3 Still, there are likely to be many situations of interest
that are new and different or which are not similar to any garme that has been played
enough to make convergence results relevant. Thus, there is no ez ante justification
for evaluating the models on the basis of convergence results.

While game theorists have been developing models of learning and evolution,
experimental economists have typically viewed learning as a hurdle to be overcome

in collecting their data.* The typical experimental procedure is to have the subjects

3Li Calzi (1992) illustrates some of the difficulties involved in modelling learning in similar games
but shows that it is possible. Brandts and Holt (1992) find that experience in very similar experi-
mental games is significant.

‘For example see Camerer and Weigelt (1991). For an exception see Van Huyck, et al (1991).
Also, Crawford (1993) and Selten and Stoecker (1986) use the entire experiment to estimate Markov
processes that represent learning models. Roth and Erev (1993) use early period data to calibrate
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play the same game a large number of times and to focus on the behavior toward
the end of this process. Just as in the theoretical literature, players are led to treat
each repetition as a separate instance of a one period game through the devices of
random matching and anonymous opponents so there is a negligible effect on the
rest of the experiment from choices in any period. The focus on final periods in the
experimental procedure comes naturally from observing that in early periods behavior
tends to be widely scattered and tends not to support any prediction over any other,
while the play in later periods tends to converge to something and some predictions
can be rejected.’> The situation created in the laboratory is a very close match to the
situation postulated in the theory and a cursory examination of some of the results
indicates some support for the notion of an underlying dynamic system of behavioral
adjustment that tends to converge.

While the data on experimental play in early rounds is not very useful in distin-
guishing between static predictions, the path of play in these experiments may be
ideal for comparing and evaluating the models proposed by theorists. Since two theo-
retical models will use different dynamic systems, they will have different predictions
about the path of the observations from an experiment even when they agree on the
convergence behavior. Specifically, each dynamic system corresponds to a particular
Markov process in the behavioral state space and to a unique likelihood function
for evaluating a path of play. The theoretical models produce parameterized func-
tional forms for the processes. The data from experimental subjects playing the same
game repeatedly against randomly selected, anonymous opponents are observations
on these processes. Thus, the definition of a good relaxation of perfect rationality
will be that the model fits the data from a finitely repeated experiment.

Section 2.2 provides a summary of the experiment that will be used as a source
of data in this analysis. Section 2.3 describes the particular theoretical models to be
compared and section 2.4 describes the statistical methods used as well as reporting

the results obtained. The particular feedback from past play that each model predicts

the starting point of a numerical approximation of learning.
5This focus on final periods also takes the form of discussing the effect of experience on play as
in Van Huyck, et al (1990).
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will be important in determining future play turn out to be significant and to act in
the predicted fashion. However, each model has weaknesses. Learning insists that
players will not play a dominated action, but enough of them do that this failure
is significant. Evolution requires that the “gene pool” be an important variable,
but how the “gene pool” affects decisions requires some interpretation. Fortunately,
the models are complementary in their strengths and weaknesses. Evolution can be
a good description of players choosing a dominated action and learning is a good
interpretation of the “gene pool’s” role. A mixed model of evolution and learning is

estimated and the complementarity is found to be significant.

2.2 The Experimental Data

While the optimal results would be obtained from conducting an experiment specif-
ically designed to generate data for comparing the theories, such an experiment is
not truly necessary. The theories are applicable to the games already studied in the
experimental literature and the data from these studies has not been used in this way
before. Douglas DeJong was gracious enough to provide the extensive data from the
experiment used in “Selection Criteria in Coordination Games: Some Experimental
Results” by Cooper, DeJong, Forsythe and Ross (1990). The experimental method
is described fully there, and comparisons are made of various equilibrium-selection
predictions based on their fit to the end of experiment behavior. The extensive form
of the data allows tracking each individual’s choices in each period. Thus, the econo-
metric techniques of discrete choice can be applied rather than relying on an analysis
of aggregate data.

The experiment involved eleven subjects who played a symmetric 3x3 game twenty
times. The subjects were randomly matched each period to anonymous opponents
and were told afterward the action of their particular opponent only. The experiment
itself was then repeated six times with a new pool of subjects each time and a slight
variation of the game. The random matching of the experiment was not the ideal of

the theorist. Each player knew that there were only ten possible opponents and was
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told that he would face each one exactly twice. Nevertheless, this experiment is fairly

close to the theoretical assumptions.

Table 2.1: Experimental Games

Game 1 Game 2
[ 1 2 3 1 2 3
1 [ (350,350) | (350,250) | (1000,0) | 1 [[(350,350) | (350,250) | (700,0)
2 | (250,350) | (550,550) (0,0) 2 || (250,350) | (550,550) (0,0)
3 || (0,1000) (0,0) (600,600) 3 (0,700) (0,0) (600,600)
Game 3 Game 4
1 2 3 1 2 3
1) (350,350) | (350,250) | (700,0) 1 |} (350,350) | (350,250) | (700,0)
2 |[ (250,350) | (550,550) | (1000,0) 2 | (250,350) | (550,550) | (650,0)
3 | (0,700) | (0,1000) | (600,600) | 3 | (0,700) | (0,650) | (600,600)
Game 5 Game 6
'F 1 2 3 | 1 2 3
1 [ (350,350) | (350,250) | (700,0) 1 [ (350,350) | (350,250) | (1000,0)
2 | (250,350) | (550,550) (0,0) 2 {| (250,350) [ (550,550) (0,0)
3| (0,700) (0,0) (500,500) 3 ' (0,1000) (0,0) (500,500)

Table 2.1 are the payoff matrices for the six games.® The experimental payoffs were
points (out of 1000) for a lottery of $1 after the game so they should represent utility.
The six games are all a variant on a theme. There is a particular symmetric 2x2
coordination game common to all of the games. The games differ only in the payoffs
to the third action which is always dominated. While traditional non-cooperative
game theory says that such a variation does not affect the game, other approaches
disagree. In Games 1-4 the combined payoff maximizing outcome (which may be a
cooperative outcome) occurs at (3,3). Thus, players could have an approach to the
game that is fundamentally different from the maximization of the stated payoffs and
which causes them to view the games as different.

Figures 1-6 characterize the true distribution of play in each period in each game

and figure 7 does so for the games taken as a whole. In general each game has an

SNote that the numbering of the games here differs from that in Cooper, et al. since a dominant
strategy equilibrium game and an asymmetric game have been omitted from the present treatment.
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action that is played by more people over time. In games 1 and 2 this action is action
1 and in the rest of the games it is action 2. Since the pure strategy Nash equilibria
of these games are (1,1) and (2,2), the population distributions are converging to a
Nash equilibrium. However, the rate of convergence differs across the games whether
that rate is measured as the rate at which the distribution accumulates on one action
or as the first period in which all of the weight is on one action. Games 4 and 5
appear to have converged to everyone playing action 2, while game 3 would appear
to have done the same if the last round were omitted. This is not to say that the
last round of game 3 should be ignored. Indeed, it is particularly interesting that
someone would cheose in the last round of a game to play a dominated action when
no one else had played that action for at least seven rounds including the person who
did it at the end. What kind of signal could that person have gotten to induce him
to switch his play in such a way? This person was not alone. In games 1 and 6 there
is a person who plays action 3 once after an even longer spell and then doesn't play
it again. Game 2 has three people switching to action 3 at the same time after two
rounds with no one playing it and then at least one of them stops right away. It is
such peculiarities arising out of considering the path of play as a connected stream
that will serve to distinguish the fits of the dynamic models.

Figure 7 does not show a significant growth of the probability of one action,
certainly not to the extent of one action becoming overwhelmingly more likely than
any other. This “failure to converge” indicates that a person with no knowledge
of population specific history could make a good prediction of 30% action 1, 65%
action 2 and that if this person were told the number of times the people had played
the game the only significant change would be in adjusting the probability of seeing
action 3. While there is a mixed strategy equilibrium, it has every player putting
probability 2/3 on action 1 and 1/3 on action 2. In fact, this figure does not even
represent convergence to something other than a Nash equilibrium. Rather, the figure
represents a problem of aggregation. The individual game figures }ndicate tnat the
mixture of actions comes from aggregating games that move toward action 1 with

games that move toward action 2, so a considerable improvement could be made by
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Table 2.2: Transition Probabilities By Game

Game 1 Game 2 Game 3
1 2 3 1 2 3 1 2 3
1| .8844 | .3023 | .4737 1) .8219 | .4516 | .5313 1] .2000 | .0156 0
2| .0816 | .6279 | .1579 2 | .0685 | .3548 | .1875 2 | .8000 | .9323 | .8333
31.0340 { .0698 | .3684 3(.1096 | .1935 | .2813 3 0 0521 | .1667
#| 147 | 43 19 #| 146 | 31 | 32 #| 5 192 | 12
Game 4 Game 5 Game 6
1 2 3 1 2 3 1 2 3
11| .6000 | .0185 1 .0938 1| .5000 | .0449 | .6667 1].6769 | .1007 | .6000
2 [ .2667 | .9753 | .1563 2| .4643 | .9551 | .3333 2| .2615 | .8921 | .4000
3{.1333 { .0062 | .7500 31.0357| 0 G 3(.0615].0072( 0
# 15 162 32 # 28 178 3 # 65 139 5

knowing more details about the relevant piayers.

The simple Markov transition matrices from last period’s action to the current
period’s are estimated in Table 2.2 by game (so averaging across players and periods)
and in Table 2.3 by period. The possible Nash equilibria are not absorbing states
but they are fairly close. For example, in game 3 few players stopped playing action
2 once they started and many players switched from the other actions to action
2. It is interesting to note that what distinguishes action 3 from the other two is
not necessarily an inability to retain players but an inability to attract new players.
Table 2.3 indicates that while the three actions started out relatively equal, actions
1 and 2 increased their retention rate and the number of people playing them while
action 3 lost players and only had repeat players until round 9. This pattern implies
a dynamic system that eventually eliminates unprofitable play and which leads to
coordination on one of the possible Nash equilibria.

The mechanics of this dynamic system are illustrated in Table 2.4 which reports
the sample probability of each action conditional on the previous outcome. The
outcomes are listed with the player’s own action first. Two observations are apparrent
for actions 1 and 2. The first is that once a player plays 1 or 2 he is much more likely
to do so again than to play any other action no matter what his opponent played.

The second observation is that if a player’s opponent plays 1 or 2, then the player
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Table 2.3: Transition Probabilities By Period

Period 2
1 2 3
.6500 { .1250 | .2143
.1500 | .7500 | .1429
.2000 | .1250 | .6429
20 32 14
Period 5
1 2 3
.7500 | .1515 | .3077
.2500 | .7879 | .3077
0 .0606 | .3846
20 33 13
Period 8
1 2 3
.8214 | .1471 0
.1429 | .8529 | .2500
0357 0 .7500
28 34 4
Period 11
1 2 3
.6957 | .0250 | .3333
.1304 | .9750 | .6667
1739 0 0
23 40 3
Pertod 14
1 2 3
.7647 | .0870 | .3333
2353 | .8913 | .6667
0 .0217 0
17 46 3
Period 17
1 2 3
7500 [ 0 NA
.0833 1 NA
.1667 0 NA
24 42 0
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Period 3 Period 4
1 2 3 1 2 3
.8000 | .0345 | .3529 1] .7391 | .0625 | .0909
.1500 | .8621 | .2353 2| .1304 | .8438 | .2727
.0500 | .1034 | .4118 3 .1304 | .0938 | .6364
20 29 17 #| 23 32 11
Period 6 Period 7
1 2 3 1 2 3
.5833 | .1714 | .1429 1| .6667 | .2286 | .6000
.2500 | .8286 0 2| .3333 | .7429 | .1000
.1667 0 .8571 3 0 .0286 | .3000
24 35 7 # 21 35 10
Period 9 Period 10
1 2 3 1 2 3
.8214 | .0588 | .2500 1| .6923 | .0811 | .6667
.1429 | .9412 | .2500 2| .2692 | .8649 | .3333
.0357 0 .5000 3 | .0385 | .0541 0
28 34 4 # 26 37 3
Period 12 Period 13
1 2 3 1 2 3
1 0 .2500 1| .7895 | .0435 0
0 9773 | .7500 2 | .1053 | .9348 1
0 0227 0 3 {.1053 | .0217 0
18 44 4 # 19 46 1
Period 15 Period 16
1 2 3 1 2 3
.8333 | .1064 0 1| .9500 | .0889 1
.1667 | .8723 1 2 | .0500 | .9111 0
0 .0213 0 3 0 0 0
18 47 1 #1 20 45 1
Period 18 Period 19
1 2 3 1 2 3
8333 | .0227 | .7500 1[.8947 | .0435 | 1
.1667 | .9545 | .2500 2 0 .9565 0
0 0227 0 3| .1053 0 0
18 44 4 # 19 46 1
Period 20
1 2 3
9500 0 1
0 9773 0
.0500 | .0227 0
20 44 2




Table 2.4: Action Distribution Conditional on Previous Outcome

Previous Current Action

Outcome 1 2 3 Number
(1,1) 0.8348 | 0.0870 | 0.0783 230
(1,2) || 0.6423 | 0.2920 | 0.0657 137
(1,3) || 0.9744 | 0.0000 | 0.0256 39
(2,1) || 0.2628 | 0.6861 | 0.0511 137
(2,2) || 0.0248 | 0.9592 | 0.0160 564
(2,3) || 0.1136 | 0.7727 | 0.1136 44
(3,1) || 0.5641 | 0.1795 | 0.2564 39
(3,2) || 0.2045 | 0.3636 | 0.4318 44
(3,3) [ 0.1500 | 0.2000 | 0.6500 | 20

is more likely to adopt that action than if his opponent played another action. For
action 3, however, neither of these is true. After a (1,3) or a (3,1), both players are
more likely to play action 1. Playing 3 after (3,3) has only the same probability as
2 after (2,1) or 1 after (1,2). Both of these facts indicate the importance of previous
period’s profits in determining a player’s propensity to play action 3 repeatedly.

In short, the data indicate that there is some underlying dynamic process pushing
play toward one of the two Nash equilibria in each game. While this fact supports
the broad research program of modelling such a process we are also interested in how

closely particular models fit to the true process.

2.3 The Theoretical Models

Fictitious play will serve as the paragon of the learning models, but since the actual
estimation will introduce errors it will look a bit strange. The replicator dynamic
would be the natural candidate to represent evolution models, except that it is a
continuous-time model with dubious applicability to the experimental setting. In-
stead, the economic muddler model which Binmore and Samuelson (1992) present as
a discrete time extension of the replicator dynamic for economic modelling will be
used. Table 2.5 represents the games in a generalized fashion which will be used in

this section.
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Table 2.5: Generalized Game
L+ | 2 | 3 |
1 || (350,350) | (350,250) | (a,0)
2 || (250,350) | (550,550) | (b,0)
3] (0,2) (0,b) | ()

a>c in all games, so action 1
always dominates action 3.

2.3.1 The Learning Model

Fictitious play assumes that each player believes his opponents to be playing a par-
ticular mixed strategy each period. The player does not know these strategies, so he
is assumed to have Dirichelet priors over the possible mixed strategies. Each period
all players play a best response to their current beliefs about the actions of their
opponents and update their beliefs on the basis of what their opponent that period
played. Assuming Dirichelet priors over the possible mixed strategies and Bayesian
updating implies that the beliefs over current opponent’s actions have a conveniently
simple form. The priors over current opponent’s actions of player i can be represented

by niy, niz, ni3. If at round t the number of times player i has seen action j is z;, then

Pt = Mij + I:j
Y Yk(na + )

(2.1)

where P; is the probability that player i assigns to the event that his period ¢ opponent
is playing action j. Note that the assumption of a common mixed strategy and
updating beliefs about what that mixed strategy is over time ignores the possibility
that opponents’ strategies change. Assuming a constant strategy by all opponents
is particularly limited thinking for a player who is doing the updating in order to
change his own behavior. Thus, strategies are fully rational given beliefs, but belief
formation is not assumed to be consistent with common knowledge of the game, or

of the learning process itself.”

"For a more formal and extensive justification of fictitious play as a learning model see Fudenberg
and Kreps (1991). For a learning model that is fully rational see Kahlai and Lehrer (?).
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Since 3 is dominated, a fictitious-play player would never choose it. Therefore, the
decision is only between 1 and 2. A player (i) will choose to play action 1 in period ¢
if

(100)P;; — (200)P; + (a — b)P3 > 0, (2.2)

where a and b are the parameters in Table 2.5. Substituting for the P

condition (2.2)

becomes
— 100n;; + 200n;; — (a — b)n,-;, < 1001‘:1 - 20017:2 + (a - b)xf3 (23)

Even ignoring the fact that some players play action 3, it is not pessible to con-
struct beliefs of this form so that condition (2.3) is satisfied if and only if a player
plays action 1. This failure is not surprising since any number of factors could in-
terfere between the realization of the condition and the realization of the action.
For example the players could have non-material concerns over the outcomes which
contribute in an unobserved way to their utility functions.® The players could also
be experimenting with actions that they would not otherwise play to be sure of the
consequences.® We will say that fictitious-play learning is an important determinant
of behavior, then, if this interference is such that when condition (2.3) is close to
equality the interference may be strong, but when the term on the left (N;) is much
smaller than the term on the right (hf) it is much more likely that the player will play
action 1. Letting G(-) be the distribution of an independant error term incorporating

the interference, the distribution of play is

Prob(a; =1|k{) = 1-G(N; —hi) . (2.4)

Prob(at = 2|hf) G(N; — h}).

8See Rabin (1992) for an example of incorporating such concerns into game theory.
9Fudenberg and Kreps (1991) demonstrate how such experimentation can be important to learn-
ing in extensive-form games.
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For lack of any more compelling model, let G(:) be logit so

o _ _exp(Lo + LiN; = Lyhj)
G(N: - hi) = 1+ ezp(Lo + L1 N; — L k)’ (25)

The term Ly + L, N; represents the effect on the path of play of each player having
unobserved and different priors. In order to examine the significance of this effect
we will estimate the model under three specifications. N; = N for all i assumes no
heterogeneity of priors. N; = N; ifi and j are in the same game assumes heterogeneity
only across games. The final specification places no restrictions on N; which ailows
for complete heterogeneity of priors.

As noted above, we also observe some instances of players playing action 3. Such
observations cause an immediate rejection of the pure fictitious-play model. Unlike
the interference between condition (2.3) and playing action 1, this failure cannot be
reconciled to the assumptions of fictitious play. In order to isolate tuis failure from
the question of whether or not fictitious play is an important determinant of behavior
we will say that players play according to (2.4) except that with probability ¢ they

play action 3, so the distribution of play is

Prob(at = 1K) = (1—€)(1—G(N; - hY)) (26)
Prob(a; =2|k;) = (1-€)(G(N; — k)
Prob(a; = 3|h}) = e.

Since we observe that most of the instances of action 3 are in early periods, we

will let ¢ depend on the number of rounds a player has participated in,

e = ezp(eo + €1t) ' 27)

1 + ezp(eo + €1t)
Within the context of fictitious play this can be loosely interpreted as allowing for the
possibility that players learn to be rational as well as learning about their opponents.
Since, however, we also noted that many of the action 3's were by players who had

played action 3 in the previous round we will also be concerned that e will be a source
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of heteroskedasticity.

Another factor which should influence ¢ is the tendency to play action 3 which
arises from concerns other than material self-interest. In the case of ¢ some of these
concerns can be modeled in such a way that differences between the experimental
games can be used as a variable to control for them. Rabin (1992) provides a formal
way to incorporate concerns over fairness into game theory. When Rabin’s fairness
equilibria of the games studied here are computed (3,3) is an equilibrium if the weight-
ing of fairness in the player’s utility is above a threshold that varies across the games.
Without any reason to suspect that one pool of players has a different distribution
of fairness weights than another, including the thresholds as variables to determine
€ should improve the estimation. Letting T; be the threshold of the game player i

plays, the specification

ot = _ezpleo + et + poTi + pitTi)
' 1+ exp(eo + &t + poT; + pitT;)’

(2.8)

will be used for comparison to determine if the players are choosing to play action
3 for rational reasons which are just not a part of fictitious play. This alternative
specification allows the non-material concerns to affect not only the probability of
players choosing action 3, but also the persistence of that rate over time. The mini-
mum fairness weights for (3,3) to be an equilibrium of games 1-6 respectively are 800,
200, 800, 200, 400 and 1000.

2.3.2 The Evolution Model

The assumptions of the replicator dynamic come from evolution rather than rational
optimization. Each player is “genetically coded” to play a particular action. Those
players whose action is profitable against the current population reproduce the most.
That generation is then replaced by their offspring who tend to have the same action
as their predecessor but with some slight mutation to playing a different action.
Fortunately no one actually dies during these experiments, but that means that there

is no natural selection so the pure replicator dynamic does not apply.

58



Assume, instead, that the players are boundedly rational in that they play a
particular strategy until it provides them with a payoff below some threshold level at
which point they realize that it is not very successful and choose another strategy. If
the thresholds are drawn from independent, identical distributions each period, such
an agent could be described by the economic muddler model. Binmore and Samuelson
(1992) specify that an agent whose payoffs are below the threshold tries to adopt the
strategy of a randomly chosen member of the population. With probability 1 — A
this attempt is succesful and with probability A the agent is a “mutant” and adopts
another action. A full characterization requires specifying the distribution used by
the mutant in determining this other action, so let the probability of choosing any
action after a mutation be 1/3. Binmore and Samuelson show that as A goes to zero,
and other variables are taken to their limits, the muddler model converges to the
replicator dynamic.

This story, however, requires that the players have information that they do not
actually have in these experiments. Specifically, the players only observe the actions
of their own opponents each period so cannot choose just any player in the prior
period to emulate. A natural adaptation is to assume that when a player updates he
chooses one of his former opponents to emulate.

Let F(-) be a logit distribution for the thresholds, so

F(z) = exp(Ey + E\z)

= . 2.9
1+ exp(Ey + Erx) (29)

And let 7} be i’s payoff in period ¢, and c;(a) be the proportion of player i's opponents

in periods 1 to ¢t — 1 who played action a. Then

Prob(afmt™,at =ai™) = (F(ni™)+ (1-F(x"))P(@}) (210

Prob(al|pt~",at # at™") = (1= F(m{™"))P(a;)

where
P(@}) = (4 + (1= Nel(a}) (2.11)

59



is the probabilty that a player who switches chooses the action af. Note that after
deciding to switch actions a player can be “reassured” of his or her original action by
observing other players choosing it or can end up playing the original action again by
mutating back to it.

As in the learning model the distribution on errors could depend on the player.
In order to allow for heterogeneity and for comparability with the learning model we
will estimate the three specifications: Ej is the same for all players; Ej is the same
for players in a given game; and Ej is not necessarily the same for any players.

Binmore and Samuelson first fix A and compute the limit as ¢t =& oo and then
compute the limit of this fixed A limit as A — 0. However, the value of ) is still a
constant within any instance of the process. As noted above it is interesting to test

the assumption that A is unaffected by players’ experience. The specification

¢ exp(Ao + Ait)
1 + exp(Ag + Art)

(2.12)

allows such a test while restricting A to take on values in (0,1).

2.4 The Empirical Results

Tables 2.6-2.8 provide the maximum-likelihood estimated coefficients for the relevant
specifications of each model with t-statistics in parentheses where available. The
exceptions to this format are the columns for the mutation rates which have the
rate at t=1 on the first line and for t=20 on the second and the columns for the
conctant terms of the logit distribution. The latter has entries of “ind” and “game”
to represent that the coefficient was estimated separately for each individual and
for each experimental pool respectively. For the former case the variance-covariance
matrix could not be computed so t-statistics are not reported.

The learning model specifications discussed in section 2.3.1 are estimated in Ta-
bles 2.6 and 2.7. For all the specifications L, is positive so the more likely condi-

tion (2.2) is to fail the more likely that players will play action 2 rather than action
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Table 2.6: Learning Specifications

Logit Logit € € e(t=1)
Constant | E[m(1) — m(2)] | Constant | Time | e(t=20) [ InL/n
(Lo) (L1) (€0) (e1)
ind .001801 | -.987233 | -.175157 | .23823 | -.425053
.01109
game .000859 | -.987233 | -.175157 | .23823 | -.564191
(7.806) | (-4.723) | (-7.037) | .01109
.632670 .001364 | -.987233 | -.175157 | .23823 | -.584685
(7.386) (17.116) | (-4.723) | (-7.037) | .01109
Table 2.7: Learning Specifications With Fairness
Logit Logit € € € €
Constant | E[m(1) — n(2)] | Constant | Time | Fairness | Fair*Time | InL/n
(Lo) (L1) (€o) (€1) (p0) (p1)
ind .001801 | -.426565 | -.130084 { -.000952 -.000119 | -.415640
game .000859 | -.426566 | -.130084 | -.000952 -.000119 | -.554778
(7.431) | (-1.101) | (-2.918) | (-1.315) | (-1.256)
632670 .001364 | -.426565 | -.130084 | -.000952 -.000119 | -.575272
(7.389) (17.117) | (-1.101) | (-2.918) | (-1.315) | (-1.256)

1. Since condition (2.2) was the condition for a rational player to choose action 1
over action 2, this result is as expected. In every specification the inconsistency pa-
rameter ¢ (the probability of playing the dominated action 3) depends significantly
on experience as represented by the number of repetitions the player has participated
in (coefficient ¢;). The starting value for the inconsistency (€p) is significantly less
than 0 which in the specification used corresponds to the probability of playing ac-
tion 3 initially being less than 1/2. The rate quickly drops off, so the probability
at the end of the 20 periods is less than 1/20. The thresholds for an individual's
fairness weight in utility to make (3,3) a fairness equilibrium also significantly affect
both the initial probability of playing action 3 and the persistence of that probability.
Since py is negative, players in games with lower thresholds (so the weights are more
likely to be on the (3,3) side) are more likely to play action 3 initially. Since p, (the
coefficient on the threshold interactive with experience) is negative, fairness also in-

creases the persistence of playing action 3. Note that while the coefficients po and p,
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Table 2.8: Evolution Specifications

Logit Logit A A A(t=1)
Constant | #*~! | Constant | Time | A(t=20) | InL/n
(Eo) (£1) (Xo) (A1)
ind | .012888 876985 | -.195849 .66399 | -.390520
.045651
game | .007891 | 0.628426 | -.224361 09966 | -.453011
(6.578) | (-1.809) | (-2.400) | .020658
-2.711573 | 0.007417 | 0.649036 | -.220352 .60556 | -.460698
(-6.326) | (8.065) | (2.118) | (-5.774) | .022799

do not have significant t-statistics the likelihood ratio test of their joint significance
overwhelmingly rejects the hypothesis that both are 0.

The evolution model specifications are estimated in Table 2.8. The coefficient E)
is always positive so high profits in the previous period make playing the same action
as in the previous period more likely. This accords with the assumption that players
are switching strategies only when they fall below a threshold. The mutation rate (\)
depends on experience. The initial level of mutation (\g) is positive and significantly
different from 0, so the probability of mutation starts well above 1/2. The dependence
on experience (\;) is significantly negative so the probability declines over time.

Why would a mutation rate be affected by the experience of the player? Even
dropping the evolution metaphor and considering A\ as the mixture by a boundedly
rational individual between a uniform distribution and a more reasoned distribution
the dependence on experience is puzzling. Perhaps the players are becoming more ra-
tional in their approach to the game. This evolution of the evolutionary process could
be accomplished b.y players remembering what happened to them in previous periods
of playing different actions so that the computational costs of deciding which action
to employ decrease with experience and we observe more rational play. This model
is only a proxy, though, for the way people process information. It is likely that the
dependence of A on experience is due to the proxy becoming better than the uniform
distribution as players gain experience and as play converges. Thus, the decreasing

A could indicate that the model is incomplete as there are other factors (such as
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Table 2.9: Evolution - Population Distribution vs Observed Distribution

1 2 3
Satisficing Constant -2.711572 -1.361150 -2.788616
(-6.329)  (-5.018)  (-5.893)
Profit 0.007417 0.004582 0.006477
Last Period | (8.069)  (7.022)  (6.382)
Mix Of Constant 0.905910
Observed (1.332)
(vs Population) Experience -0.067685
Model (-1.239)
Probability Constant 0.649035 0.864645
Of (2.121) (1.245)
Mutating Experience | -0.220352 -0.447879
(Observed) (-5.789) (-1.993)
Probability Constant -0.607765 -2.981663
Of (-1.303)  (-0.496)
Mutating Experience -0.094059 -0.061806
(Population) (-2.540)  (-0.173)
Mean Log Likelihood -0.460698 -0.464673 -0.434959

learning) which compel the population to converge and which so are correlated with
experience.

A natural way to explore this issue is to return to the original model of Bin-
more and Samuelson. Recall that this model put great weight on the population
distribution over actions in the previous period to determine current play. We can
think of this last period population distribution as a proxy for the forces of conver-
gence outside of the model. We re-estimated the no heterogeneity of constant term
specification of evolution with the last period’s population distribution replacing the
sample distribution from the player’s observation of past opponents’ behavior. The
two estimates are reported in Table 2.9 for comparison along with the estimates from
a model that mixes the two distributions. The mutation rate in the new estimation
(specification 2) is insignificantly below 1/2 initially, but declines slower to a much
higher final value. This change in the pattern of the mutation rate’s dependence on
time indicates that the population distribution is a reasonable proxy for the outside

convergence forces. The mixed model (specification 3) has a less significant depen-
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Table 2.10: Merged Model

Probability ! Cond’l Probability | Cond’l Cond’l Probability | Action
F(ni™h) Last Period’s Action
1-F(xt™h U G(hf) Action 1
© 1-G(hY) Action 2
) A+ (1= ))c(a) Any Action a

dence of mutation on experience. Likelihood ratio tests overwhelmingly reject the
hypothesis that the model is complete without the proxy.

The learning model is also a simplified description of the way that players process
information and could be improved by adding the possibility that players play their
last period’s action again unless the profits were particularly low. Such an extension
would explain much of the observations of action 3. The implication is that the two
models have a great deal of complementarity. In order to explore this possibility a
merged model was estimated. The story of this model is that players first decide
whether or not to update their action depending on whether profits were high or low
last period. If the action is updated, then the new action is chosen on the basis of
condition (2.3) with probability u and is determined on the basis of the evolution
updating scheme with probability 1 — . This model is outlined in Table 2.10 and the
estimates for it are reported in Table 2.11. Because there may he some concern that
the most recent observations are being weighted differently in the two formulations
of beliefs (i.e. the learning update rule treats all past observations the same and the
evolution update rule only uses last period’s population distribution) we will allow
the most recent observations to enter the calculation of condition (2.3) with a differ-
ent coefficient.!® We will also estimate this model substituting sample distributions
from observed opponents for the previous period’s population distribution. In all of
these specifications both models are significant and the parameters have the correct
signs. In the specifications where the evolution component uses last period’s popu-

lation distribution, however, it is no longer the case that the mutation rate depends

10This allows for both all past observations are the same and for a somewhat hyperbolic discounting
of observations in the updating of priors.
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Table 2.11: Merged Model Estimates

1 2 3 4

Satisficing Constant -1.601022 -1.534988 -1.532919 -1.464930

(-5.041)  (-4.882) (-5.037)  (-4.898)

Profit 0.004465 0.004324 0.004440 0.004298

Last Period (5.614)  (5.484)  (5.792)  (5.658)

Learning Constant -1.030387 -0.868225 -0.970586 -0.853118

(-1.857)  (-1.771)  (-2.064)  (-1.798)

E,[r(1) — m(2)] 0.002000 0.000795 0.001464 0.000335

(3.531)  (0.851)  (4.117)  (0.507)

E,|n(1) — m(2)]- 0.002203 0.002441

Ey_y[m(1) — m(2)] (1.052) (1.472)

Mix Of Constant -1.550398 -1.486832 -1.406879 -1.413977

Learning (-2.294)  (-2.130) (-2.188)  (-2.175)

(vs Evolution) Experience 0.117992 0.116409 0.101499 0.100762

Updating (1.922)  (1.833)  (2.036)  (2.044)
Mix Of Constant -0.042674 -0.049692
Uniform (-0.097)  (-0.059)
{vs Population) ~Experience -0.042674 -0.044765

Distribution (-0.623)  (-0.566) :

Mix Of Constant 2.600734 2.705044

Uniform (1.724) (1.818)

(vs Observed) ~Experience -0.537321 -0.563272

Distribution (-1.845)  (-2.003)

Mean Log Likelihood -0.456408 -0.455988 -0.455813 -0.454569

65




significantiy on experience. When the evolution component uses the sample distribu-
tion based on the player’s observations the dependence on experience is significant,
but the initial value is even higher and the decline even steeper than in the evolu-
tion model alone with this distribution. Such a change in the path indicates that
the uniform distribution is representing priors that are stronger initially but quickly
updated away. These results reaffirm the implication that the proxy interpretation of
evolution is correct. With this merged model it is also possible to make restrictions on
the parameters to get back each of the separate models. The likelihood ratio tests of
these restrictions reject for both of the models. This result indicates that the inferred
complementarity of these models is significant.

The evolution model best approximates the underlying dynamic when mutation
rates decrease with experience. Since in this model the mutation rate slows con-
vergence, this result indicates that the speed at which the true system accumulates
probability on an action increases over time. Some of the theoretical literature in-
corporates these rates as declining over time, but much of it imposes the assumption
of constant rates.!! Since the mutation rates generally act as a means of escaping a
basin of attraction of the dynamic system without mutation, a decrease in these rates
over time will lead to a larger role for the initial conditions in determining the state
of the system at any given time than if the mutation rates had stayed at their initial
levels. As this effect increases the rate of convergence, it indicates that analyzing the
limits of the theoretical models may not be such an abstraction from reality as earlier
rounds will be more like the limit than with a constant rate.

Both the learning model and the evolution model demonstrate an importance
of heterogeneity in the constant term of the logit distribution (Lo and E;). The
likelihood ratio tests in each case on each level of restriction produce p-values below
1078, Thus, the restrictions are rejected and the specification that allows complete
heterogeneity is strongly implied to be acceptable despite the dramatic increase in

the number of parameters. Recall that for the learning model this result has the

"'For example, the experimentation rate in Fudenberg and Kreps ( 1991) declines over time. The
mutation rate in Binmore and Samuelson (1992) does not.

66



interpretation of rejecting the assumption of common priors. The question arises of
what heterogeneity of priors means. The likelihood ratio test does not distinguish
between a small number of extreme outliers and a smooth distribution. However, in
asking whether an assumption of common priors is valid it may be that 65 players with
exactly the sarme priors and one player with very different priors is not very different
from common priors. To address this issue we will need to compute N; for each player.
If Ly = 0 then a statistic which converges to N; is the ratio of the estimated constant
term over the estimated L,. Even if Ly # 0 this statistic will still be informative of
the distribution of the NV, as long as the true Ly does not vary across individuals.
Note that N; is player i's expectation of the net profitability of action 2 versus action
1 where the expectation is with regard to player i's priors. Figure 8 is a histogram
of the N; computed from the coefficients in the full heterogeneity specification. The
histogram displays a three-peaked distribution. Slightly more than half the players
are in the central peak and are nicely distributed around 0. The remainder are at
one of the two extremes 12,000 and -12,000. These magnitudes are large enough to
prevent a fictitious-play player from switching strategies for the entire 20 periods.
While there are no observations between the peaks this does seem to be a case of
heterogeneous priors.

Since the nested comparison of the models rejected both in favor of the merged
model, we need to introduce a mechanism for comparing non-nested models in order
to look at the relative fits. One such mechanism is Akaike’s Information Criterion
(AIC). Under this criterion each model is assigned a score equal to the maximized
log likelihood minus a parameter penalty of two times the number of parameters.
The model with the highest score is chosen. AIC is an approximation to Bayesian
choice with a particular loss function, but the parameter penalty has drawn criticism
for arbitrariness.!? As long as the models to be compared have the same number
of parameters, however, any parameter penalty will drop out in the comparison of
the AIC scores. Therefore, we will only compare models with the same number of

parameters (i.e. the same degree of heterogeneity). For each level of heterogeneity

12Gee Amemiya (1985).
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the evolution model has higher log likelihood and so higher AIC score than learning.

Figures 9 and 10 aggregate the individual predictions for the learning and evolution
models. These graphs are representative of the other games for these models in
game 1 and can usefully be compared to Figure 1. The learning model has excessive
smoothness especially in the prediction of play on the dominated action 3. Since
the model itself had nothing to say about this action the indication is that some
exploration of a less arbitrary characterization of the reasons for playing such an
action would be warranted. Since fairness turned out to be a significant determinant
of this probability, a rational motivation for playing action 3 can be found even though
such a motivation does not appear in this learning model. In comparison the evolution
model is less smooth but is still more smooth than the data. Moreover, the evolution
model reacts strongly to the previous period’s behavior and can be exactly off a cycle
in the data. For example, in periods 7 to 10 there is a cycle in the proportion playing
action 1 (from .8 to .7 to .9 and back to .7). The evolution prediction also has a cycle
in this period but it lags behind by one period so it moves in the wrong direction.
The prediction in period 9 (the height of the observed cycle) is lower than in periods 8
and 10. Both models demonstrate excessive smoothness, the learning model does not
handle dominated actions well, but, the evolution model places too much importance
on last period’s proportions for this period’s predictions.

The excessive smoothness problem may be a result of another concern. The pre-
vious predictions allowed some heterogeneity, but they assumed a great deal of homo-
geneity. Particularly, they assumed that all of the individuals were following the same
underlying dynamic process (i.e. that everyone was learning). There is no compelling
reason why this should be the case. In fact, there is no reason to assume that two
individuals who are following a particular model should have the same coefficients
(i.e. that everyone learns at the same rate). Since the number of parameters is small
it is possible to break the data into individual time series and estimate them sepa-
rately. One drawback of this approach is that some individuals may not demonstrate
enough change in behavior to distinguish the competing explanations of how their be-

havior should change. Specifically, about one third of the people never change their
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Table 2.12: Results of Individual Estimations

Parameter All Players | Non Constant | “Learners” | “Evolvers”
Learning -1.859 -7.115 -6.303 -11.17
Constant (58.13) (67.05) (72.2) (33.5)
Learning .02158 .02938 .03231 .01473
E[r(1) — n(2)] (.06313) (.07267) (.07815) (.03371)
Learning -6.859 -2.086 6.586 -45.44
¢ Constant (93.07) (109.1) (105.2) (125.2)
Learning -3.876 -5.288 -5.586 -3.802
¢ Time (13.02) (15.06) (14.22) (19.85)
Evolution -22.8 -33.99 -35.2 -27.99
Constant (85.66) (98.32) (107.0) (32.22)
Evolution 07325 .09107 09541 .06934
nt-! (.2081) (.2420) (.2637) (.07311)
Evolution -20.85 -21.04 -3.538 -108.6
A Constant (202.1) (237.2) (236.1) (238.1)
Evolution -.4173 -.9084 -2.642 7.758
A Time (13.17) (15.42) (14.92) (15.93)
mean InL(Learn) -.2538 -.3490 -.3137 -.5252
mean InL(Evol) -.3207 -.4410 -.4441 -.4256
# of players 66 48 40 8

Mean values of parameters across players
(Standard Dev. of parameters across players)

action. These people can all be perfectly explained by either model in an individual
estimation by setting the priors or the distribution of thresholds at extreme values.

Table 2.12 lists the population mean and standard deviation for each parameter
for several interesting groups of players. The parameters are estimated for each
individual separately and then the estimates are grouped in this way fcr tractability.
The first group is all of the players. The rest of the groups exclude those players
who never change their action. For the last two groups a player is identified as
a “learner” if the likelihood of the learning model is larger than the likelihood of
the evolution model when estimated for that player alone. At the bottom of the
table are the mean log likelihoods for the populations. Since the two models were
estimated with the same number of parameters, a comparison of AIC sceres holding
the level of heterogeneity constant again reduces to comparison of the likelihoods for

any parameter penalty. Thus, allowing for extreme heterogeneity across individuals
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reverses the earlier ordering of the two models. All of the parameters have the same
signs on average as before, but the magnitudes are much larger. Since we don't have
any intuition for the correct magnitude for any of these parameters interpreting this
change is difficult. However, note that the most extreme values seem to be for the
sub-population that is best described by the other model. The exception to that
observation is the mutation rate in evolution. Here, the extreme values are realized
by the evolvers and the effect of experience is reversed. Combined with the number
of learners relative to the number of evolvers, the indication is that evolvers are
really the outliers of the distribution which learning cannot be stretched as easily to
explain. Thus, learning is a better story of individual behavior, but since individuals
differ greatly in terms of how concerns outside of the scope of this particular learning
model affect behavior (e.g. non-material preferences over outcomes), learning is much

more sensitive to aggregation.

2.5 Conclusion

Theorists have proposed a number of competing models of how agents who do not
meet the requirements of Nash equilibrium would adjust their behavior in response to
certain feedback resulting from repeated play of a particular game. This phenomenon
is observable in experimental games and such games have the same structure as is
assumed in the theories. Since the theoretical models are essentially functional form
assumptions, they can be fit to the data from experiments. Doing so allows us to
explore the consequences of relaxing Nash equilibrium in two somewhat orthogonal
ways and reveals that the best way incorporates the features of both. Real players in
the sittuation assumed by theorists will play a given action until it gives them profits
which they consider to be too low. When they do change actions, the new action is
determined by the best response to what the players think their next opponent will
be doing based on what the players have seen other opponents do.

The estimation also has implications for additior.al modelling. Both of the separate

models have a dependence on experience that should be incorporated in new models.
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Also, the models reject assumptions of common priors and of common aspiration
levels across players. A useful extension that is not possible with this sample would
be to incorporate demographic data on the players and look for some regularities of
the parameters by identifiable individual characteristics. Mason and Phillips (1990)
have found that experience affects men and women differently, so such an extension
should prove rewarding.

As far as direct comparison of the two models goes learning is probably a better
description of individual behavior than evolution. However, learning suffers from
a greater sensitivity to heterogeneous factors and so is more negatively affected by
aggregation. Learning does better when the parameters are distinct for individuals
while evolution does better when most of the parameters are held to be the same
for the population. Another usefull extension would be to examine the aggregate
prediction of a learning model that allows rational players to play a dominated action

by formally incorporating some non-material concerns.

71



Distribution of Actions Played
Game 1

11 16
Period

\\\\\\\\\\\ ey

(r aume) iinnindn g

72
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Distribution of Actions Played
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Distribution of Actions Played

Game 4

16

777777/,
llllllllll

7177777777/, .
Illllllll-
717777y s/

!llllll'll
1S/ S/ )
N S SR SN GO SN S I S S———

1177/ /S ‘
SRR S S S SN SR S SN S SU—

\\\\\\\\\\\\\\\

S SR SR ST AT S SR
SIS/ . -

L L L4 ] | T

?9._03.& :o_t&o.n_. |

75



76

Distribution of Actions Played
Game 5

(pexoers) uosodosy



77

Distribution of Actions Played
Game 6

(pexoeys) uoodord



Distribution of Actions Played

Total Of All Games

N

Action 2

| Action 3 |

1N

1| Action 1

L
S S DS A

Period

78



# Frequency

16

14

12

10

2. —'stogram of N's Fram -

b

Retsrogeneity s

w

T

LI

n g

—12000

-8000

-4000

79

0
N

.

4000

8000

12000



Probability (Stacked)

-
N

Figure 9: Estimated Distribution
Learning Model -- Game 1

-bd

o
®

o
®

I |}

il

o
>

o
n

e

7

12
Period

80

17

Action 3

Action 2

Action 1




IoN

ted Distribut

ima

Est

Evolution Model -- Game 1

Figure 10

Action 3

N -—
c c
(o] (o]
=ANE
2NE

q

.///////////////////////////; M“

I I///////////////////////////4
S S S

I ANNNNNNANNNRNRNNNINRNNNNNNNNNNNNN

I \AAAMAAMNNANNNNNNNNNNNNNNNNNNY

I NN

I ONONNNNNNNNNNNNNNNNNNNNNY

I AANONUNNNTNRRRRRRNRRRRRRNNNNN
I S SRS S

. |///////////////////////

NANNNNNNNNNNNNNNNNNNNNNM

i L e e ———

i
| AAANNAAAANAAAANANNNNY
: IR ST S

I N\ N\ NNNNNUNONUUUNUNNRNNNNNNNNT

I AN

I N NNNNNNNNNNNNNNNNNNNNNNN

B NONN\NNNONONONONNNNNNONONOONONNNNNN

B ONNNNONONOUNNNNNOONNNONNONOONNNNNNN
SRR S S SRS

I ONONNNNNONNOOUONONONONOOONOOOOOONNN
: I S E—

I O\ NN\ NN

I NNV
I S S

I N NN\ NN

L ASSAANNSAANANNNNNSSSESS
S S S S S

I N\ NN T

17

12

Period

7

1.2

|
L}
- (<) ©

<
o

c o
(pexoEls) Aungeqoud

81



Chapter 3

Simulating Players Through

Learning

3.1 Introduction

There is a large and growing literature that models the process by which players learn
to play games. This literature relaxes the assumptions of Nash equilibrium to more
realistically model the players. Specifically, the players have some uncertainty about
what everyone else is doing in the game. The players are also boundedly rational in
some of their decisions. These realistic players are set in an environment of repeatedly
playing the same game and given a simple rule for updating their b.ehavior from one
period to the next based on their experience at that point. The behavior rules have to
be relatively simple because results are obtained by computing the limit of behavior
as the number of repetitions becomes infinite. Even for these simple behavior rules
proving propositions about the limit behavior can be computationally difficult.

In this paper we will simulate a number of variations on the basic fictitious play
model of learning. Simulation offers several advantages over analytic computation of
the limits. For one thing it will be computationally feasible to compare many different
learning models for a broad spectrum of games. Some of the variations that will be
simulated have not been solved analytically. Another advantage of simulation is that

the complexity of the behavior rule is not constrained by computability. With more
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complicated behavior rules we can more closely approximate the learning process of
real players. Majure (1994) showed that fictitious play was not sufficiently complex
to fully describe the learning behavior of players in an experimental setting. A third
advantage to simulation is that our attention is not restricted to the limit as the
number of repetitions goes to infinity. Very few games are well characterized as having
been played so many times that this limit would be approached. It may be the case
that the limit behavior is relevant even to games that are played infrequently,! but
without some approach, such as simulation, that allows us to look at finite repetition
behavior of the process, there is no way to know.

While the simulation procedure allows us to look at any aspect of behavior in finite
time for any learning model, in order to have a basis of comparison for the learning
models considered here, we will focus on convergence of the population to all playing
the same action. In the pure fictitious play model this type of convergence implies
that the action will be the limit behavior as well. The short-term convergence need
not imply limit behavior in the other models, though. Obviously, we can’t simulate
an infinite repetition. One interpetation of the short-term convergence behavior is as
descriptive statistics of the finite repetition of the processes. In this interpretation
we would use the fact that in a given game the short-term convergence is much more
likely to be to action 1 than to action 2, say, to infer that this process predicts that
action 1 is much more likely in this game. Another interpretation is that we are
measuring the relative sizes of the basins of attraction. If, for randomly selected
initial conditions, action 1 is much more likely to be converged to in the short term
than action 2, then we can infer that action 1 has a much larger basin of attraction.

A caveat to the first interpretation is that to take these simulations as a Monte
Carlo estimation of the probability that real players will play a given action we have
to believe that we have used a distribution on the initial conditions that accurately
reflects the population. Majure (1994) estimates parameter values for several learning

processes in games similar to the class studied here. That work demonstrates how we

1For example we will see that in some games the expected time until fictitious play achieves the
limit behavior is only four repetitions.
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can address this question and justifies for this interpretation some of the parametric
assumptions that we will make in this paper. All of the parametric assumptions in
this analysis, though, are subject to further experimental testing. Doubtless, further
experimental and theoretical work will refine our knowledge of learning and the pre-
diction interpretation will become more compelling, especially if a particular learning
process can be shown to accurately reflect the learning process of real players. If we
have correctly specified the learning process and we have accurately represented the
population in our parameters, then under this interpretation of simulation we have a
Monte Carlo approach to making actual predictions in games. The observed propor-
tion of simulated players playing an action will approximate the probability that real
players will play that action. These probabilities will allow us to make predictions
that say more than just what can happen in a game.

Perhaps a more direct interpretation of the short-term convargence behavior is as
a meaéure of the size of the basins of attraction and their relative pull. Counting the
number of times that an even distribution of initial conditions produce a given action
is akin to measuring the size of some bowls by evenly dropping marbles over them
and counting the number in each bowl. It is, admittedly, a rough measure, but in this
case it is much easier than direct measurement. Determining the relative sizes of the
basins of attraction is the approach to computing the limit behavior of some learning
models.? There is a possibility of such a connection in the models studied here, but
I do not want to compare the processes on the basis of limit behavior. Rather, I
want to compare them on the basis of their propensity to produce a certain result for
realistically finite repetitions.

The comparisons yield a few characterizations that hold true across all of the
specifications. In games with very strong risk dominance, the risk dominant action
is converged to almost every time. The risk dominant outcome has such a large
basin of attraction that if initial conditions are independent and uniform, then the
probability of observing another equilibrium is effectively zero. Between these regions

of prediction with certainty is a region for each specification where the basins of

2See for example Kandori, Mailath and Rob (1992)
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attraction are more even. In these games the prediction is a non-zero probability for
each action. Both of these results deserve further exploration as predictions. If the
former is borne out, then we have a set of games in which this approach mirrors the
refinement approach by completely eliminating an outcome. Conversely, the second
demonstrates the existence of a set of games that should not be refined to a unique
prediction. In this second set of games predictions of the relative probabilities of the
different equilibria are essential for the application of game theory to real situations.
The comparisons also yield some comparative statics that should be useful in the
search for a learning process that more closely describes reality in a broad spectrum
of games. We will see that weighting more recent observations more heavily in ficti-
tious play’s calculation of beliefs does not significantly affect the action converged to,
but does increase the speed of convergence. Adding a cost of updating behavior to
fictitious play causes a dramatic shift in the action converged to for some games and
for some parametric distributions but not for others. We will also see that changing
the behavior rule of fictitious play from choosing a best response to trying to emulate
other players will slow the convergence down. There will also be an indication that
emulation changes the action converged to, but the new process is so slow to converge
that this effect may be confused with a failure to converge.
+  While these predictions and comparative statics are useful, the most important
contribution of this paper is the methodology. By taking the learning process seriously
as a description of how players come to have the beliefs that they do, this paper
demonstrates the usefulness of simulating the learning process to acquire enough

data to be able to predict how people will play in a broad class of static games.

3.2 The Games and the Learning Processes

The class of games that will be used in this paper is the simplest class that has multiple
equilibria - symmetric, 2-player, 2-action coordination games. The procedure can
easily be generalized to more complicated games. The games in this class can all

be represented, through some rescaling of payoffs and relabeling of the actions, by
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Table 3.1: The General Form of Games in the Class

1 2
1{1,1|0,c
21c0|dd

the game in table 3.1 where the parameters ¢ and d are on the interval [0,1]. These
games have a Pareto dominant equilibrium at (1,1) and another equilibrium at (2,2).
Each also has a mixed strategy equilibrium which we will essentially ignore since
the learning processes that we are considering do not converge to mixed strategy
equilibria in a manner that is useful for prediction. As the games are all symmetric,
we will act as if all players are player 1, so the outcome (1,2) is where the player is
playing action 1 and her opponent is playing action 2.

The general learning process assumes that a game is not just played once. Rather,
the current game is just one in an infinite repetition of the same game. At each
repetition players are randomly assigned opponents from a large population. Each
player uses their history to determine their current play and then updates their history
on une basis of the outcome. The manner in which the players use their information
determines the particular model. There are roughly two strains of models in the
literature — “learning” and “cvolution.” When these models converge, they converge
to a Nash equilibrium.? But not all Nash equilibria are equally likely to be converged
to. In fact, some Nash equilibria are so unlikely to be converged to that equilibrium
refinements have been developed on this basis. The evolution model in particular has

been used in this fashion to refine the set of predicted equilibria.! We will start with

3There is really nothing special about equilibria in this simulation approach. The process is
completely generalizeable to estimating the probabilities of all outcomes. The learning literature
does ascribe importance to convergence behavior and I have maintained that focus here. Thus, we
will focus on equilibria only because these learning processes converge to equilibria.

4ESS is a primary example of such work. Ellison (1993b) indicates how fictitious play can generate
a similar refinement. If fictitious play stability is with regard to the addition of a single fully rational
player, then Ellison’s work would have the result that Pareto dominated equilibria that are also risk
dominated are not stable. We will show a similar result in that strongly risk dominated equilibria
are not converged to by fictitious play.
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the traditional learning model — fictitious play — and introduce variations that are
suggested by other models in the literature. One variation will make fictitious play
similar to an evolution model.

The basic fictitious play story is that players do not know the behavior of their
opponents, but assume that all of their potential opponents are playing the same
strategy and that this strategy is not changing over time so that they can learn what
the strategy is by updating prior beliefs on the basis of current observation. Each
player has initial beliefs that can be represented by two parameters (n;,n,). If the
player has observed a history with ¢, observations of action 1 and c; of action 2, then

the player believes that the probability of action 1 in the next period is

n + ¢
P1= .
n1+n2+cl+02

(3.1)

The players will choose their action in each period as a best response to their current
belief about their opponent’s action (P;).

The first variation on fictitious play that we will consider will allow players to put
greater weight on more recent observations. If I(t) is 1 if the player observed action

1 in period t and 0 otherwise, then this type of updating can be represented by

n + YL, teI(t)
n +ng+ Y, to

P(T) = (3.2)

Note that the updating rule of equation 3.1 is a special case of this discounting rule
where a = 0.°

The second variation that we will consider is to give players a cost of updating
their actions. We will make this change by saying that players follow a heuristic rule
for when to incur this cost. The rule that we will use is that each player has an
aspiration level in the game and the player chooses a new action only when his payoff
to playing his old action falls below this level. Note that the traditional fictitious

play model is a special case of this variation as well. For the games that we are

5Weighting more recent observations more heavily is suggested by the model of Young (1993)
where only a fixed number of the most recent observations are kept.
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considering if every player has an aspiration level of 1, then they always update as in
the traditional fictitious play model.®

The last variation that we will consider is to change the way in which a new
action is chosen. In fictitious play the players adopt the best response. Therefore, as
a player’s beliefs change, her action will not change until the beliefs cross a threshold
and then suddenly the player changes actions. In this variant beliefs will have a more
gradual effect on actions. This variant is based on the economic muddling model of
Binmore and Samuelson which is a discrete time version of the familiar replicator
dynamic.

The model presented by Binmure and Samuelson has players who only update their
behavior when their payoff in a previous period falls below some personal aspiration
level. Updating takes the form of drawing another player randomly to emulate. This
updating is subject to a random shock, mutation, where instead of emulating another
player the updating player just switches actions. As the time between periods and
the probability of mutation go to zero this model converges to the familiar replicator
dynamic. In order to be consistent with the informational assumption that each
player only observes the play of their chosen opponent each period we will replace the
emulation of play in the most recent period with emulation of a player drawn from
all past opponents. We want to allow the possibility that this choice is biased toward
more recent opponents. For consistency with the rest of the analysis we will use the

distribution such that

ZT: 1 t*

is the probability that emulating another player leads to playing action 1.

P(T) = (3.3)

3.3 The Simulation and Estimation Techniques

We will simulate the models of section 3.2 for a large number of randomly drawn

initial conditions. In order to describe the convergence behavior of these processes

8This aspiration level heuristic comes from the evolution model of Binmore and Samuelson (1992)
discussed below.
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we will estimate the relationship between the two game parameters (¢ and d) and
the descriptive statistics of convergence — the action converged to and the time of
convergence. The random parameters will all be drawn from uniform distributions so
that for a large number of simulations this procedure will approximate a grid search
simulation.

An advantage to using random parameters is that a large number of parameters
can be varied without necessarily having to increase the number of simulations by
orders of magnitude. It might be possible to make some simplifying assumptions to
reduce the number of parameters, but the more obvious ones are not consistent with
earlier results on learning processes. In particular, it is possible to reduce the pool of
players by assuming that there are just two players. Ellison has demonstrated that
the possibility of “contagion” (meeting someone who's actions have been influenced
by your earlier interaction with another player) is significant in large populations
Reducing the population, then, would lose some of the interesting dynamics of the
process. The number of parameters needed to define the processes could also, po-
tentially, be reduced by assuming homogeneity across players. This approach would
maintain the dynamics of a large population since each player would be reacting to
a different history of observed repetitions. However, in fitting these processes to the
actual behavior of players in an experimental coordination game, Majure statistically
rejected the hypothesis that these same parameters could be made homogeneous. In
fact, to the extent that the parameters were recoverable in that estimation, the in-
dication is that they come from a wide distribution. Another alternative that was
considered was using these estimated parameters. The results obtained from such
simulations were found to be extremely sensitive to the particular game in the class
chosen to simulate. Since the parameters were estimated for only one game in the
class the fact that the processes behaved significantly differently for the same param-
eters in a slightly different game is an overwhelming rejection of the applicability of
the estimates for other games.

Another advantage of random parameters is that if we specify the distribution of

the parameters, then we can change it and evaluate the consequences. Because we
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Table 3.2: Distributions of Parameter Values

Uniform Over
Parameter Low | High | Comments

Payoff to (2,1) (c) 0 1
Payoff to (2,2) (d) 0 1
Aspiration Level 0 1
5 1
1 1 always updating
History Weighting 0 0 all history the same
() 1 1 linear weights
2 2 convex weights
0 2 heterogeneous weights
Unupdateability (n; +np) | 0 20
Initial Belief (P;(0)) 0 1

want to interpret these simulations as predictions of play, we have to be concerned
with the accuracy of our distributional assumptions. The conventional grid-search
method of simulation implicitly imposes a uniform distribution on the parameters.
It turns out that we have reason to believe that the parameters in this case are
uniformly distributed.” Nevertheless, we want to be able to examine the robustness
of this assumption.

At the start of each simulation all of the parameters are drawn independantly
from the distributions in table 3.2. Where appropriate a separate parameter is drawn
for each player. If the same parameter is used in two variants of a model or in two
different models, then for each player the same value of the parameter is used for each
process. Each period a pool of 20 players are randomly matched to play each other
where the probability of meeting any two opponents is the same. Play is determined
by the process and the players’ personal histories of the play in prior periods. The
histories do not include the identity of previous opponents as we are imposing the
condition that the players treat the population as large. The players also cannot
make their play contingent on whether they are a row or column player. Convergence

is defined as a run of ten periods which starts with every player playing the same

7See Chapter 2.

90



action and which has at most one player deviating from that action in each of the
remaining nine periods. The time of convergence is the first period of the run. If
there is no convergence after 100 periods, then the process is stopped and marked as
non-convergent. This simulation procedure is repeated 10,000 times.

We are focusing on the action converged to and the time until this convergence.
For predicting the outcome of a static game we are most interested in the action
converged to, but our confidence in the distribution of these actions as the prediction
of play in a given game is reduced if the learning process needs to have been operating
for a particularly long time to get to that point. In terms of using these estimations
to understand the learning processes themselves, these descriptive statistics are both
important characteristics. The action converged to is the basin that attracted this
instance of the process. The time to convergence indicates the amount of pull from
that basin.

Since we do not want to impose any functional form assumptions on the relation-
ship between the game and these convergence properties, the appropriate estimation
technique will be non-parametric estimation. We use a standard kernel estimator.®
An advantage of this approach is that while imposing some smoothness it estimates
the expected value of the dependant variable for a grid on the explanatory variables.
In this case that allows us to look for a very non-linear relationship between the game
being played and the behavior of the learning process. The estimation technique also
allows us to identify games for which the learning process changes when a parameter
is changed and types of games for which it does not.

The kernel estimator essentially computes the sample average of the convergence
behavior across simulations of the same game. The smoothness comes from the fact
that this sample average is actually a weighted average of the behavior in all the
simulations with the weight decreasing in the distance of the game played from the
game being estimated. The actual estimates are given by a surface over the plane
that defines the games. Since all of the games in this class are defined by c and d

and since these payoffs are constrained to be in [0,1], the relevant payoff space is the

8See Bierens (1987) and also Hardle (1990)
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unit square. As we have defined them, every game in this class is a point on the unit
square. The kernel estimator actually estimates the expected value of the behavior
conditional on the game being played. When the action converged to is the behavior
to be estimated there are only two possibilities, so the expectation can be interpreted
as the probability of action 2. Thus, if a particular game converges to action 2 in 3/4
of the simulations, the estimation should be 1.75 at that point in the game space.
The only way to concisely report these estimates is graphically. Since we have a two
dimensional payoff space the graphs are three-dimensional. In order to help illustrate
how the surface (the estimation) changes with the game I have also provided contour
plots. The contour plots are in the game space, so a contour is the set of games that

have the same expected convergence behavior.

3.4 The Estimations and Comparisons

All of the estimations share a common pattern. In each model there is a region in
the game space where (2,2) is converged to every time and a region where (1,1) is.
On the surface plots these are the regions for which the surface is flat at 1 and at 2.
On the contoﬁr plots we see that these are the games above the 1.9 contour and also
the games below the 1.1 contour. When action 2 guarantees the player a payoff of 1,
the prediction is always (2,2). Likewise, when action % guarantees the player a payoff
of 0, the prediction is (1,1). The certainty of the convergence target should not be
surprising in these games. What is surprising is that the two regions of games around
these, where the prediction is also certain, are quite large. They are separated only
by a relatively narrow band where convergence can occur to either action.

It is possible for any of these learning processes to specify initial conditions for
which the process converges to the other action in any of these games where the
convargence is certain. For example, it is always possible for a population of fictitious
play players to be convinced that their opponents are playing according to a given
equilibrium. Since everyone has the same correct beliefs, fictitious play immediately

converges to Nash equilibrium. What this result implies is that the probability of
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drawing any initial conditions that would drive the process to the “wrong” action
in these games is so small that it is effectively zero. The basin of attraction for the
“wrong” equilibrium is so small that none of our uniformly drawn initial conditions

are inside it.

3.4.1 Standard Fictitious Play

The standard fictitious play model (no satisficing and no discounting) is estimated in
figure 3-1. The uncertainty region for the action converged to is centered on games
with no risk dominance. In the graphs the games with no risk dominance are on
the line in the payoff space between (1,0) and (0,1). Games farther from this line
have more risk dominance with action 1 risk dominating action 2 above the line and
action 2 risk dominating action 1 below it. Note that as risk dominance increases
the expected action converged to quickly approaches the risk dominant action. Thus,
as risk dominance increases the relative size of the basin of attraction for the risk
dominant action increases so quickly that we soon stop seeing the risk dominated
action.

The expected time to convergence is decreasing in risk dominance with the extreme
cases taking an average of only four periods to converge. Holding the degree of risk
dominance constant (i.e. moving parallel to the line between (0,1) and (1,0)) the time
to convergence is increasing in d (the payoff to (2,2)). Thus, net of the risk dominance
effect, there is a similarity effect that the more similar action 1 is to action 2, the longer
convergence takes. This effect implies that the speed of convergence is increasing in
the degree of Pareto dominance. Recall that the (1,1) equilibrium always Pareto
dominates the (2,2) equilibrium and that the payoff to (1,1) is fixed at 1. Therefore,

increasing d decreases the degree of Pareto dominance.

3.4.2 Weighted Histories

We add discounting to the fictitious play model in figures 3-2 and 3-3 In figure 3-

2 the players all have @ = 1. More recent observations are weighted more heavily
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Table 3.3: The Game With Action 2 Identical To Action 1

1 2
1[1,1]0,0
0011

in computing the player’'s beliefs and the weighting is linear. Linear weighting is
contrasted with the convex weighting of figure 3-3. In figure 3-3 the players all have
a = 2, so not only are more recent observations weighted more heavily, the size of
the weights increases tith repetition. Recall that figure 3-1 has a = 0 as there is no
weighting.

Comparing figure 3-1 with figures 3-2 and 3-3 we see very little change in the ex-
pected convergence behavior. In fact, there is no noticeable difference in the expected
action converged to for any part of the game space. This similarity of expected action
converged to is even more surprising when we note that discounting does not leave
the process unaffected in the sense that for the same initial conditions and the same
matching of players the discounted and undiscounted models are likely to converge to
different actions. Figures 3-4 and 3-5 estimate the expectation of the absolute value
of the difference in the convergence behavior between the undiscounted fictitious play
and linear and convex discounting respectively. This measure of the disagreement.
between the models is, of course, zero in the games where the models always converge
to one action. But, in the region of games where both actions have non-negligible
basins of attraction the probability of disagreement can be as high as 50%. This dis-
agreement probability is increasing as risk dominance decreases (i.e. as the estimated
sizes of the basins of attraction become closer to equal) and as the Pareto dominance
of action 1 over action 2 is decreasing. The disagreement is at a maximum in the
game of table 3.4.2 which has the trait that there is no difference between the actions
as they could be re-labeled without affecting the game. The fact that the expected
action is not affected by these differences implies an averaging effect across initial

conditions that is not biased by discounting.
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While the expected action converged to does not change with discounting, the
expected time to convergence does. The shape of the surfaces does not change much
from figure 3-1 to figures 3-2 and 3-3, but the level does. Both discounted models
converge more quickly than the undiscounted model. The fact that the shapes of the
surfaces do not change indicates that the same effects across games are present with
discounting as without. The increased speed, then, is attributable entirely to the fact
that the initial beliefs are also discounted away like early observations. In particular,
the player’s conviction of the correctness of his initial priors is eroded more quickly.
This erosion is necessary for the players to overcome an initial conviction that the
game will be played one way when the system is converging the other. It is interesting
to note that there is little difference between the linear and the convex discounting.
Perhaps a little discounting is sufficient for this effect and more discounting does
nothing more.

Since heterogeneity was found to be important for other parameters, we are inter-
ested in looking at the robustness of the homogeneity assumption we have implicitly
made on a. Figure 3-6 estimates behavior for the model with & drawn independently
for each player from U(0,2). It is still the case that the expected action is the same
for all of the games. The expected time to convergence is slightly longer than in
figures 3-2 and 3-3. This relative slowness is probably due to some players getting o

values that are too small to effectively discount wrong initial convictions quickly.

3.4.3 Updating Costs

Updating costs are added to the basic fictitious play model in figures 3-7 and 3-8.
In figure 3-7 the players draw their aspiration levels from the distribution U(0,1),
while in figure 3-8 they draw from U(.5,1). With the wider distribution on aspiration
levels the uncertainty region shifts downward on the contour plot. This shift means
that the set of games where action 2 is always converged to grows while the action 1
region shrinks. The implication is that the basin of attraction for action 2 has grown
(or action 1's has shrunken). In some games this makes action 1’s basin negligible

and in others it converts action 2's basin to being non-negligible, but in the rest
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of the games the change is not enough to affect the expectation. The shift is most
noticeable around the point where action 2 guarantees the players the mean (.5) of
their aspiration distribution. The players who choose 1 when their opponent chooses
2 always update, but in this case there are some players who choose 2 when their
opponent chooses 1 who do not update. This bias makes convergence to action 2
more likely.

When aspiration levels are U(.5,1), there is only a slight change in the uncertainty
region from the standard model. This change is only apparent for payoffs of less than
.5 to (2,2). The reason for the different magnitude of change is that people in the
first case are not updating from action 2 when the system would be converging to
action 1 while in the second case the failure to update from action 2 is only likely in
games that are converging to action 2 anyway.

This analysis of the effect of updating costs is borne out by looking at the time till
convergence. Comparing the estimates in figure 3-7 with figure 3-1 we see that a “hill”
has risen above the region of games where the two models disagree on the likelihood
of convergence to each action. On the contour plot this region is roughly identified
as the games inside the contour of 28 periods. In this region of games updating costs
produce much slower convergence. The continued unwillingness to update of a small
but significant element can alter the course of the process in these games but it takes

a long time to do so.

3.4.4 The “Fictitious Play” Version of Binmore-Samuelson

The last variant that we wanted to consider was the hybrid of Binmore and Samuel-
son’s evolution model with fictitious play. This model with aspiration levels dis-
tributed U(0,1) and is estimated in figure 3-9 and with the distribuﬁion U(.5,1) in
figure 3-10. The uncertainty region of the predicted action is determined by the dis-
tribution of individuals’ aspirations and is something of an L-shape around the mean
of that distribution. Any game where action 2 guarantees at least this mean is cer-
tain to converge to action 2. When the payoff to (2,2) is below the mean aspiration,

the probability of action 2 quickly drops to zero. When the payoff to playing 2 in
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response to 1 is below the mean aspiration the probability of action 2 also drops to
zero, but the effect can be mitigated by a high payoff to (2,2). This is the same effect
of the bias in updating between action 1 and action 2 that we noticed in fictitious
play with updating costs, but now it is determining the course of play to a greater
extent. Comparing figure 3-9 and 3-10 illustrates the significance of the fact that the
convergence action depends so heavily on the mean of the aspiration distribution. If
we want to use this model for prediction, then at least for all of the games between
the two different uncertainty bands our prediction will depend critically on the dis-
tribution assumption. Figure 3-11 demonstrates that this difference creates a region
where the two processes are almost certain to diverge for the same initial conditions.

The time till convergence can roughly be described as decreasing in the payoff to
(2,2) and increasing in the payoff to playing 2 in response to 1, with noteable excep-
tion for games where action 2 guarantees less than the minimum aspiration. Games
in the uncertainty region take slightly longer to converge. These times to convergence
are much longer than in fictitious play. This causes concern that a sizeable portion
of the simulations are not converging in the finite time allowed. When discounting
was added to this model there was very low probability of disagreement between the
undiscounted and discounted models even for games where the separate estimations
gave opposite results. This peculiarity is due to the fact that the estimations here
are all conditional on the simulation converging and the congruence estimates are
conditional on both models converging for given initial conditions. In standard ficti-
tious play the probability of non-convergence was negligible, but in this model it is a
problem.

Figure 3-12 compares this model to fictitious play with both models having a cost
of updating with aspiration levels distributed U(0,1). The congruence is startling. Re-
call that these estimations are conditional on both of the processes having converged
so some areas of disagreement may not be represented. Still, the set of games where
the two process always converge to the same action for the same initial conditions is
about 3/4 of all of the games in the class. In the remaining éames the probability of

disagreement is only greater than 1/4 in a narrow band and only ever gets as high as
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1/2. The biggest difference in the models is that fictitious play converges as much as

55 periods earlier out of a maximum convergence time of 90 periods.

3.4.5 Robustness

As mentioned above an advantage of using random parameter distributions is that
we can check the robustness of our results to changes in the distribution. Figure 3-
13 estimates the standard fictitious play model with priors that are correlated. The
correlation is generated by drawing a base prior for the population {p*) from U(0,1)

and defining each individual’s prior to be
P0)=p"+p(1-p") or P(0)=p"—pp" (3.4)

The probability of adjusting upward or downward is 1/2. Each player draws a p from
the distrbution U(0,1). These correlated priors should make it more likely that the
type of initial conditions necessary for the process to converge to the “wrong” outcome
are drawn. Therefore we would expect that there is less certainty of convergence in
this model. This is not necessarily the case, though. Since the only beliefs that we
know go the “wrong” way have absolute correlation, it may be the case that even one
player with the opposite beliefs is enough to contaminate the population. Looking at
figure 3-13 we see that the band where both actions are converged to some of the time
is a little wider than in figure 3-1. The characterization, however, is the same. We
conclude, therefore, that correlated priors will weaken our results but won’t change

them.

3.5 Conclusion and Extensions

We have shown that simulating the learning process is a useful tool for comparison.
This approach made it computationally feasible to compare a number of variations of
the basic fictitious play model. We were also able to alter the model by incorporating

some of the features of an evolutionary model without having to worry that the new,
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hybrid model would not be analytically tractable. Hopefully, this procedure will lead
to more complicated models of learning that better approximate real learning.

Our basis for comparing these models was their short-term convergence behavior.
We argued that this behavior could be interpreted as the prediction of how likely
particular equilibria were. A natural extension is to try to identify learning models
that more accurately depict the learning behavior of real people and to use a distri-
bution on parameters that more closely fits a particular population. In that case we
can hope that the methodology of simulation will allow us to say conclusively that a
certain outcome in a game will happen with a particular probability. In the interim
the predictions found here will serve as a first pass. The general prediction is that
games with a great deal of risk dominance are almost sure to eventually have the risk
dominant action played by everyone. Conversely, the games between these regions of
prediction with certainty have a non-zero probability of each action. These are the
games where a conclusive prediction of the probability of each outcome offers a lot to
the applied user of game theory.

The comparisons also gave some results that should be useful in developing a
model of learning that more closely approximates reality. Weighting more recent
observations more heavily in the calculation of beliefs about others’ play did not
affect the expected action converged to, but did increase the speed of convergence.
Adding a cost of updating caused a dramatic shift in the action converged to for some
games, but only for some distributions of the players’ propensity to update their
behavior after one non-equilibrium outcome relative to another. Making fictitious
play more like an evolutionary model by changing the way that players respond to
their information from adopting the best response to emulating other players slowed

the process down dramatically.
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Figure 3-1: Standard Fictitious Play
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Figure 3-2: Fictitious Play With Linear Discounting
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Figure 3-3: Fictitious Play With Convex Discounting
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Figure 3-7: Fictitious Play With Widely Distributed Aspiration Levels
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Figure 3-8: Fictitious Play With Higher Aspiration Levels
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Figure 3-9: “Fictitious Play” Version of Binmore-Samuelson
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Figure 3-10: Adapted Binmore-Samuelson With Higher Aspiration Levels
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