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Continuous-variable systems realized in quantum optics play a major role in quantum information processing,
and it is also one of the promising candidates for a scalable quantum computer. We introduce a resource theory
for continuous-variable systems relevant to universal quantum computation. In our theory, easily implementable
operations—Gaussian operations combined with feed-forward—are chosen to be the free operations, making
the convex hull of the Gaussian states the natural free states. Since our free operations and free states cannot
perform universal quantum computation, genuine non-Gaussian states—states not in the convex hull of Gaussian
states—are the necessary resource states for universal quantum computation together with free operations. We
introduce a monotone to quantify the genuine non-Gaussianity of resource states, in analogy to the stabilizer
theory. A direct application of our resource theory is to bound the conversion rate between genuine non-Gaussian
states. Finally, we give a protocol that probabilistically distills genuine non-Gaussianity—increases the genuine
non-Gaussianity of resource states—only using free operations and postselection on Gaussian measurements,
where our theory gives an upper bound for the distillation rate. In particular, the same protocol allows the distillation
of cubic phase states, which enable universal quantum computation when combined with free operations.

DOI: 10.1103/PhysRevA.97.062337

I. INTRODUCTION

Continuous-variable quantum information deals with con-
tinuous degrees of freedom, such as position and momentum
quadratures, in quantum systems like optical fields or vibration
modes. With a close connection to quantum optical experi-
ments [1], continuous-variable systems have been an important
grounds for quantum information processing [2], in parallel
with discrete-variable systems (qudits).

Gaussian states and Gaussian operations [3–5] especially
play important roles in continuous-variable quantum infor-
mation processing. Despite being in an infinite-dimensional
Hilbert space, Gaussian states often enable analytical results
in the analysis of quantum information processing, due to
their characteristic functions in a Gaussian form. As an ex-
ample, Gaussian operations—operations that map Gaussian
states to Gaussian states—are completely characterized by
linear transforms of the mean and covariance [3]. Besides the
convenience of analytic treatment, it is desirable to restrict
ourselves in the Gaussian regime, also because preparation
of Gaussian states and application of Gaussian operations are
readily accessible in quantum optical experiments [1]. Not only
are they experimentally realizable, but they allow for useful
quantum information processing protocols such as quantum
teleportation [6–8], (noisy) quantum cloning [9,10], quantum-
enhanced sensing [11–15], and quantum key distribution [16].

Unfortunately, such Gaussian schemes are limited in their
power of continuous-variable quantum information process-
ing. It has been shown that non-Gaussianity in the form of either
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non-Gaussian states or non-Gaussian operations are required
for entanglement distillation [3,17–19], error correction [20],
loophole-free [21] violation of Bell’s inequality [22–29], and
universal quantum computation [30–33]. Recently, it has been
also shown that any Gaussian quantum resource cannot be
distilled if one is restricted to the Gaussian regime [34]. To
quantitatively take into account the necessary resource for
these protocols, resource theories of non-Gaussianity have
been proposed [35–38]. Resource theories are frameworks for
quantifying the amount of resource, with respect to a given set
of free states and free operations [39–41]. Previous proposals
establish resource theories in a state-driven manner. They first
choose Gaussian states as the free states and define resource
measures based on the deviation, e.g., measured by relative
entropy, from the set of Gaussian states. Afterwards, Gaussian
operations are naturally chosen as the free operations, which
preserve the set of free states.

However, some non-Gaussian operations are actually easy
to implement. A major class of such operations is the class
of operations composed by Gaussian operations with adaptive
feed-forward on measurement outcomes of Gaussian measure-
ments. They can produce probabilistic mixtures of Gaussian
states, which are non-Gaussian due to the nonconvexity of
the set of Gaussian states. In contrast to state-driven theo-
ries, setting Gaussian operations with feed-forward as free
operations is more suitable, when accessible operations are
being considered. The convex hull of the Gaussian states is
a natural set of free states because it is invariant under the
free operations and also the largest set of states generated by
them. It is easy to see that all such free states have non-negative
Wigner functions [42]. This implies that the states or operations
outside of the free sets are necessary for universal quantum
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computation, since quantum circuits involving only states with
non-negative Wigner function and operations that cannot create
negativity can be efficiently simulated classically [43,44].
Thus, a resource theory with this choice of free operations and
free states is more relevant to universal quantum computation
than previous proposals with the set of free states being
Gaussian states. Indeed, in the discrete-variable case, similar
resource theory of quantum computation has been established
by taking the stabilizer operations with feed-forward as the
free operations and the convex hull of the stabilizer states as
free states [45,46].

In this paper, we establish a resource theory relevant to
universal quantum computation with continuous variable. Its
free operations are Gaussian operations combined with feed-
forward, which are experimentally easy to implement and
generate the convex hull of Gaussian states, which we take as
the set of free states. States outside the convex hull of Gaussian
states—genuine non-Gaussian states—are the resource states.
As a quantifier of the resourcefulness in quantum computation,
we consider the logarithmic negativity of Wigner function, the
logarithm of the integral of the absolute value of the Wigner
function. It is easily computable, and relevant to universal
quantum computation—it bounds the classical simulability
[47]. We show that it is a valid measure for genuine non-
Gaussianity, which takes zero for the states in convex hull
of Gaussian states and satisfies the monotonic property under
free operations. We compute the logarithmic negativity for a
number of common resource states and compare them with
respect to their mean photon numbers. We find that number
states, cubic phase states [48], as well as recently proposed
ON states [49] have similar values of logarithmic negativity
for fixed mean photon numbers. We further apply our theory
to the protocol implementing the cubic phase gate using the
ON state [49] and show that their protocol is efficient in terms
of genuine non-Gaussianity.

To facilitate the preparation of the resource state, we also
provide a distillation protocol that increases the genuine non-
Gaussianity. We exploit a partial homodyne measurement idea
considered in Refs. [50,51] to nondeterministically extract
larger genuine non-Gaussianity comparing to the initial value.
Our approach is entirely different from the discrete-variable
stabilizer quantum computation resource state (magic state)
distillation protocols, which are based on the property of
discrete-variable error correcting codes [52–57]. Due to this
different approach, our protocol only requires a single copy
of the input state, unlike usual distillation protocols. In analog
to Ref. [45]’s application of resource theory on magic-state
distillation, we apply our resource theory to this protocol to
give an upper bound of the obtainable logarithmic negativity
with respect to the success rate of the protocol. We verify
it by numerically computing the logarithmic negativity for
input and output states, when the input states are imperfect
cubic phase states obtained by applying a cubic phase gate to
finitely squeezed states. Conditioned on success, we find that
the protocol not only increases the logarithmic negativity but
also increases the fidelity from a better cubic phase state—a
state obtained by applying a cubic phase gate on a finitely
squeezed state with larger squeezing parameter. Thus, it works
as “state distillation” as well as “genuine non-Gaussianity”
distillation.

This paper is organized as follows. In Sec. II, we introduce
Gaussian states, Gaussian channels, and continuous-variable
quantum computation. In Sec. III, we establish the resource
theory framework—free states, free operations, and a mono-
tone. In Sec. IV, we compare the genuine non-Gaussianity of
some resource states. In Sec. V, we apply our resource theory
on state conversion and distillation. Finally, we conclude in
Sec. VI by more discussions and future directions.

II. PRELIMINARIES

A. Gaussian states and Gaussian channels

We use the notation in Ref. [58]. An N -mode bosonic
continuous-variable system is described by annihilation oper-
ators {âk,1 � k � N}, which satisfy the commutation relation
[âk,â

†
j ] = δkj ,[âk,âj ] = 0. One can also define real quadrature

field operators q̂k = âk + â
†
k,p̂k = i(â†

k − âk) and formally de-
fine a real vector of operators x̂ = (q̂1,p̂1, . . . ,q̂N ,p̂N ), which
satisfies the canonical commutation relation [x̂i ,x̂j ] = 2i�ij .

Here � = i
⊕N

k=1 Y , where Y is the Pauli matrix. The mean
photon number (power) in mode k is given by the expectation
value of operator â

†
kâk = (p̂2

k + q̂2
k )/4 − 1/2.

A quantum state ρ̂ can be described by its Wigner charac-
teristic function,

χ (ξ ; ρ̂) = Tr[ρ̂D̂(ξ )], (1)

where ξ = (ξ1, . . . ξ2N ) ∈ R2N and D̂(ξ ) = exp(ix̂T �ξ ) is
the Weyl displacement operator for all modes. Under this
convention, the displacement operator on position D̂q(x) ≡
exp(−ip̂x/2), which satisfies D̂q(x) |y〉 = |y + x〉. Similarly,
D̂p(P ) ≡ exp(iq̂P/2), which satisfies D̂p(P ) |m〉 = |m + P 〉.
For a pure state |ψ〉, for simplicity, we will write χ (ξ ; |ψ〉) and
for other similar cases.

The Wigner function is defined as the Fourier transform of
the Wigner characteristic function,

W (x; ρ̂) =
∫

d2Nξ

(2π )2N
exp(−ixT �ξ )χ (ξ ; ρ̂). (2)

Note by definition, both the Wigner function and the Wigner
characteristic function are linear in ρ̂.

A state ρ̂ is Gaussian if its characteristic function has the
Gaussian form,

χ (ξ ; ρ̂) = exp
(− 1

2ξT (�	�T )ξ − i(�x)T ξ
)
. (3)

Here the x = 〈x̂〉ρ̂ is the state’s mean and 	ij =
1
2 〈{x̂i − xi,x̂j − xj }〉ρ̂ is its covariance matrix, where {,} is

the anticommutator and 〈Â〉ρ̂ ≡ Tr(Âρ̂) for operator Â.
Gaussian channels are complete-positive and trace-

preserving (CPTP) maps that map any Gaussian state to a
Gaussian state [3–5]. They can be extended to Gaussian
unitaries on the input and a vacuum environment (Stinespring
dilation) [3], therefore we focus on Gaussian unitaries. A
Gaussian unitary ÛS,d transforms

Û
†
S,d x̂ÛS,d = Sx̂ + d, (4)

where d = (d1, . . . ,d2N ) is the displacement and S is
a matrix. Commutation relation preserving requires
that [

∑
m Samxm + da,

∑
n Sbnxn + db] = ∑

mn Sam(2i)
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�mnSbn = 2i�ab, thus S�ST = �. Because S�(ST �S) =
(S�ST )�S = �2S = −S, we have ST �S = �. Since
det (�) = 1, we have the Jacobian of the linear transform
| det (S)| = 1. Also we have Û

†
S,d = ÛS−1,−S−1d . Here we give

some examples of Gaussian unitaries: single-mode squeezing
Ŝ(s) = exp(s(â2 − â†2)/2), where s is the squeezing strength;
phase rotation R̂(θ ) = exp(−iθ â†â); displacement operator
which has already been introduced.

Lemma 1. Gaussian unitary corresponds to a linear coordi-
nate transform for the Wigner characteristic function and the
Wigner function.

χ (ξ ; ÛS,d ρ̂Û
†
S,d ) = χ (S−1ξ ; ρ̂) exp(idT �ξ ), (5)

W (x; ÛS,d ρ̂Û
†
S,d ) = W (S−1(x − d); ρ̂). (6)

The proof is attached in Appendix A. In discrete-variable
systems, it is known that the Clifford unitaries are permutations
on the discrete Wigner functions [45]. Lemma 1 shows the
analog between Gaussian unitaries and Clifford unitaries.

In the following, we list the well-known properties of
Wigner functions.

Lemma 2. Wigner functions satisfy the following.
(2.1) Consider bipartite state ρ̂AB with two parts A and

B. Let xA,xB denote the variable in the Wigner func-
tion associated with each part. Then W (xB ; TrA(ρ̂AB)) =∫

dxAW (xA,xB ; ρ̂AB).
(2.2) The probability of homodyne measurement on the

mth mode described by {|qm〉〈qm|} has result qm with probabil-
ity Pm(qm) = ∫

dpm

∏
k �=m d2xkW (x; ρ̂). Similar results hold

for projection on multiple modes.
(2.3) Consider product state ρ̂AB with two parts A and B.

Then

W (xA,xB ; ρ̂A ⊗ ρ̂B) = W (xA; ρ̂A)W (xB ; ρ̂B). (7)

(2.4) Suppose one performs a homodyne measure-
ment on a single mode A and gets the result q̃A, the
Wigner function of the post-measurement state ρ̂B|q̃A

=
〈q̃A|ρ̂AB |q̃A〉/TrB(〈q̃A|ρ̂AB |q̃A〉) is

W (xB ; ρ̂B|q̃A
) =

∫
dpAW (pA,q̃A,xB ; ρ̂AB)∫

dxB

∫
dpAW (pA,q̃A,xB ; ρ̂AB)

. (8)

Similar results can be obtained for measuring multiple modes,
by considering the measurement sequentially.

(2.5) The trace of the product of two single-mode
quantum states can be evaluated as follows, Tr(ρ̂σ̂ ) =
4π

∫
dxW (x; ρ̂)W (x; σ̂ ).

(2.6) For the single-mode pure state with position space
wave function ψ(q), we have

W (q,p; |ψ〉) = 1

2π

∫ ∞

−∞
dyψ�(q − y)ψ(q + y)e−ipy. (9)

Note that (2.6) is different from Ref. [59], and (2.5) has
a factor of 4π , because of the choice of h̄ = 2, which is the
convention in Ref. [58]. To clarify these two points, we show
their proof in Appendix B. The proof of the other properties
are well known, straightforward, and not presented here.

B. Continuous-variable quantum computation

We consider the definition of continuous-variable universal
quantum computation in Ref. [30], i.e., a set of operations is
universal if by a finite number of applications of operations
in the set, one can approach arbitrarily close to any unitary
evolution generated by Hamiltonians of a polynomial form in
operators q̂k’s and p̂k’s. Under this definition of universality,
Ref. [30] also shows that Gaussian operations alone are not
universal, since Gaussian unitaries correspond to generators
of second-order polynomials in q̂k’s and p̂k’s. However, an
arbitrary extra unitary with generators of higher order than two,
in addition to Gaussian operations, will be universal. Based
on this finding, Ref. [60] developed a systematical way of
performing the decomposition of any unitary generated by the
polynomial Hamiltonian to a basic set of Gaussian unitaries
{eiπ(p̂2+q̂2)/2,eit1q̂ ,eit2 q̂

2} and the cubic phase gate,

V̂ (γ ) = eiγ q̂3
. (10)

The choice of the non-Gaussian unitary is not unique and the
cubic phase gate, generated by q̂3, is basically one of the most
simple non-Gaussian unitaries, in the sense that it is generated
by the lowest polynomial of order higher than two.

There are a number of experimental proposals of realizing
the cubic phase gate, involving genuine non-Gaussian resource
states and Gaussian operations combined with feed-forward
[48,49,59,61]. Reference [48] (GKP scheme) uses the cubic
phase state,

|γ 〉 = V̂ (γ ) |0〉p =
∫

dqeiγ q3 |q〉 , (11)

as the resource state, where |0〉p is the zero-momentum state
at the infinite squeezing limit and unnormalizable. They also
provide a scheme for preparing approximate cubic phase states
by two-mode squeezing, displacement, and photon number
counting. Reference [59] analyzes the above approximate
preparation scheme in detail, and provides alternative schemes
with number state |N〉 as the resource state. Reference [61]
provides a scheme by sequential photon number subtractions
and displacement to produce approximate weak cubic phase
states, which is experimentally implemented in Ref. [62].
Reference [49] further introduces the ON state,

|ON〉 = 1√
1 + |a|2

(|0〉 + a |N〉), (12)

as a replacement of the cubic phase state to realize the cubic
phase gate.

Reference [63] shows that instead of genuine non-Gaussian
states as the resource, it is possible to have non-Gaussian
measurements such as photon number counting to enable
cubic phase gates. This is similar to the idea of Gaussian
cluster state measurement-based quantum computation [33],
where the measurement, e.g., photon number counting, is non-
Gaussian. In this paper, we focus on the case where genuine
non-Gaussian states are the necessary resource for universal
quantum computing combined with Gaussian operations and
feed-forward.
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III. RESOURCE THEORY FRAMEWORK

A. Free states and free operations

Resource theories are frameworks that deal with quan-
tification and manipulation of a quantity that is considered
resource under some setting. The states that are not resourceful
are called free states and operations that cannot create any
resource from free states are called free operations. The set
of free states is invariant under the free operations. In some
situations where one is more interested in the property of states,
it is natural to define the set of free states first and choose
a corresponding set of free operations. An example of such
resource theories is the theory of coherence [64,65], where
free states are naturally defined as incoherent states—the set
of diagonal states with respect to some fixed basis. Depending
on the focus, one can investigate various sets of free operations.
For example, in coherence theory, many sets of free operations
have been considered such as incoherent operations [65],
strictly incoherent operations [66,67], maximally incoherent
operations [64,68], etc., and each set has its own resource
quantifier and restriction on state transformation rules.

On the other hand, for other settings where one is more
interested in physically available operations, it is more nat-
ural to define the set of free operations as easily accessible
operations and choose a set of free states invariant under the
application of free operations. An example of such setting is the
case when two parties are restricted to the set of local operation
and classical communications (LOCC) [69]. As we set LOCC
as free operations, separable states are naturally found to be a
set of free states and other states—called entangled states—are
the resource states.

Here, we take the latter view to consider continuous-
variable systems relevant to quantum optics. In such a set-
ting, easily accessible operations are Gaussian operations and
homodyne measurements. It is also reasonable to allow feed-
forward—controlling further operations conditioned on the
outcome of the measurements. We call the above operations
combined as Gaussian protocols and we take them as our free
operations.

Definition 1. An operation is a Gaussian protocol if it is
composed by the following operations.

(1) Gaussian unitaries, ρ̂ → ÛS,d ρ̂Û
†
S,d .

(2) Composition with ancillary vacuum states, ρ̂ → ρ̂ ⊗
|0〉〈0|.

(3) Homodyne measurement described by POVM {|q〉〈q|}.
(4) Partial trace.
(5) The above quantum operations conditioned on the

outcomes of homodyne measurements.
Because general Gaussian measurement is equivalent to first

performing a general Gaussian unitary and then homodyne
[3], one only needs to consider homodyne measurement.
Note that the above set of operations includes performing
the above operations conditioned on classical randomness.
This is because one can generate classical randomness by
performing homodyne measurements on ancillae. By dividing
the measurement outcomes on ancillae into proper regions,
random numbers with an arbitrary probability distribution
can be generated. The above definition of Gaussian protocols
based on elementary operations is equivalent to the following
definition.

Lemma 3. The set of Gaussian protocols defined in Defini-
tion 1 is equivalent to the set of operations composed by the
following.

(1) Composition with ancillary vacuum states, ρ̂ → ρ̂ ⊗
|0〉〈0|.

(2) Homodyne measurement on one mode and conditional
Gaussian channel on the other modes,

∫
dq�q ⊗ Mq where

{�q} are Gaussian channels and Mq(·) = |q〉〈q| · |q〉〈q|.
Proof. Let O1 be the set of Gaussian protocols defined in

Definition 1 and O2 be the set of operations realized by the
above two elementary operations. Since (1), (2), and (4) in
Definition 1 can realize any Gaussian channel in dilution form,
together with (5) we get O2 ⊆ O1. To show O1 ⊆ O2, notice
that (1), (3), and (4) in Definition 1 are Gaussian channels.
They can be realized by attaching the ancillary vacuum state,
making a homodyne measurement on the vacuum state, and
applying the corresponding Gaussian channels no matter what
the measurement result is. (5) can be straightforwardly realized
again noticing that (1)–(4) are Gaussian channels. �

Now that we set up our free operations, we shall find
a set of free states that is invariant under free operations.
The set of Gaussian states is not appropriate for it due to
its nonconvexity property. A simple probabilistic mixture of
Gaussian operations, which are free operations, may transform
a Gaussian state to non-Gaussian states composed of a mixture
of Gaussian states. Indeed, an appropriate set of free states is
the convex hull of Gaussian states.

Definition 2. Denote the set of Gaussian states as G; the
states outside are called non-Gaussian. We consider the convex
hull,

Ḡ =
{∫

dλPλρ̂λ | ρ̂λ ∈ G,Pλ � 0,

∫
dλPλ = 1

}
. (13)

We call states in Ḡ as convex-Gaussian states and states outside
Ḡ as genuine non-Gaussian states.

It is clear by definition that any two convex-Gaussian states
are connected by some Gaussian protocol and Ḡ is the largest
set of states that can be prepared by Gaussian protocols from
Gaussian states. The following lemma greatly simplifies the
expression of Ḡ.

Lemma 4. The convex hull of all Gaussian pure states
equals Ḡ.

Proof. This lemma is mentioned in Ref. [70] without
proof. For completeness, we make the proof explicit. Any
Gaussian state can be transformed to a thermal state by
Gaussian unitary. For the single-mode case, ρ̂λ = Ûλσ̂

th
λ Ûλ =∫

d2αpαÛλ |α〉 〈α| Û †
λ , where pα > 0 is the P function of the

thermal state and |α〉 is the coherent state. The multimode case
is similar. �

All states in Ḡ have non-negative Wigner functions. Denote
the set of sates with non-negative Wigner functions as W+ [71].
We have [70,72] G � Ḡ � W+.

This choice of free operations and free states is the most
relevant to universal quantum computation with continuous-
variable systems. Reference [43] showed that when the initial
state and the Choi matrix of all operations are in W+, the
quantum computation can be classically simulated efficiently.
Genuine non-Gaussian states (with negative Wigner func-
tion) are naturally considered resource for universal quantum
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computation. Note states in W+ \ Ḡ are analogs of bound
genuine non-Gaussian states, which do not enable universal
quantum computation together with free states and free oper-
ations.

B. Monotone

Besides free states and free operations, another important
concept of resource theories is monotones. Monotones are
maps from a quantum state to a real number that is meant to
quantify how resourceful the state is. Here, we are interested in
quantum states acting on an infinite-dimensional Hilbert space.
If a quantum state describes a N -mode bosonic system, the
state is expressed by a density operator ρ̂ acting on the Hilbert
space H⊗N . We formally define monotones as the following.

Definition 3. Let D(H⊗N ) be a space of the density oper-
ators for N -mode bosonic systems and MN : D(H⊗N ) → R
be a map from the set of quantum states for N -bosonic systems
to real numbers. LetM(ρ̂) ≡ MN (ρ̂) for ρ̂ ∈ D(H⊗N ) so that
M automatically takes into account the number of the modes
in the system that the input state belongs to. M is called the
genuine non-Gaussian monotone if it satisfies the following.

(1) M(ρ̂) � 0 and M(ρ̂) = 0, ∀ρ̂ ∈ Ḡ.
(2) It does not increase under a Gaussian protocol.

To clarify what it means, consider the elementary oper-
ations for the Gaussian protocols in Lemma 3. We say
that M does not increase under a Gaussian protocol if
(i) M(ρ̂)�M(ρ̂⊗|0〉〈0|) and (ii) M(ρ̂)�M(

∫
dqP (q)σ̂q )

and M(ρ̂) �
∫

dqP (q)M(σ̂q ) where P (q) = Tr[(Î ⊗ M̂q)ρ̂]
and σ̂q = �q ⊗ Mq(ρ̂)/P (q).

The last inequality is sometimes called selective monotonic-
ity because it states that the expectation value after a selective
measurement cannot increase. It is not a very standard require-
ment for other resource theories; it is more common to only
require the monotonicity under free operations. Nevertheless,
we take the selective monotonicity as a requirement as well
because it will be relevant to a nondeterministic distillation
protocol which we shall discuss later. Although there are
many candidates for monotones, in this paper we focus on
the logarithmic negativity of the Wigner function. We pick it
up because it is easily computable and it is a relevant resource
measure for universal quantum computation. The definition
and properties are given as follows (proof in Appendix C)

Lemma 5. Logarithmic negativity of the Wigner function,

NL(ρ̂) = ln
∫

d2Nx|W (x; ρ̂)|, (14)

satisfies the following properties.
(5.1) Invariant under Gaussian unitaries.
(5.2) Nonincreasing under partial trace.
(5.3) Additive. NL(ρ̂A ⊗ ρ̂B) = NL(ρ̂A) + NL(ρ̂B).
(5.4) NL(ρ̂) = 0, iff ρ̂ ∈ W+.
(5.5) Nonincreasing under Gaussian channel �G .

NL(�G(ρ̂)) � NL(ρ̂).
(5.6) Nonincreasing under free operations in the sense of

Definition 3.
Since Ḡ � W+ and states in W+ \ Ḡ have zero logarithmic

negativity, logarithmic negativity is not a faithful monotone.
However, states in W+ \ Ḡ cannot be resources for universal
quantum computation, and should be considered as bound
genuine non-Gaussian states, as the analog of bound entangled

Number state

single�PNS�PNA

cubic phase �0.05

ON state a�2

ON state a�

0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

mean photon number

L

FIG. 1. Genuine non-Gaussianity measured by logarithmic neg-
ativity of some resource states. PNS: photon-number subtraction.
PNA: photon-number addition. Note that for single-PNS/PNA, we
are plotting the maximum genuine non-Gassianity.

states [73,74] and bound magic states [75], where the distillable
resource is zero. In general, although logarithmic negativity is
usually not analytically calculable, it can be easily obtained
numerically when the Wigner function is available analytically.

IV. RESOURCE STATES

As discussed in Sec. II B, cubic phase states, number
states, and ON states can be used as resource states to
facilitate continuous-variable universal quantum computation,
when combined with Gaussian protocols. In this section, we
will compute their genuine non-Gaussianity measured by the
logarithmic negativity; we will also compare their genuine
non-Gaussianity when each state has the same mean photon
number. For completeness, we also consider photon-number
added or subtracted states, which have been shown to improve
the entanglement of two-mode Gaussian states [76]. We numer-
ically obtain the logarithmic negativity in Fig. 1. Surprisingly,
number states, ON states, and cubic phase states with the same
mean photon number (same energy) have very close amount of
the negativity even though the description of the cubic phase
states looks very different from the other two. Below, we make
comments on these resource states to clarify the meaning of
Fig. 1.

(1) Number states. Photon number state |N〉 is the most
common non-Gaussian source. And it has been known that
for fixed photon number, number states, and its superpositions
maximize the nonconvex version of non-Gaussianity [36,37].
The Wigner function is given in Appendix D.

(2) Single photon added and subtracted states. Ideal sin-
gle photon-number addition (PNA) operation and photon-
number subtraction (PNS) operation can be described by
the annihilation and creation operators â and â† [76,77].
Experimental schemes of PNS and PNA can be found in
Refs. [78–84]. Conditioned on success, they map a pure state
|ψ〉 to another pure state ∝ â |ψ〉 (PNS) or ∝ â† |ψ〉 (PNA).
For single-photon-subtracted or added zero-mean Gaussian
state, the Wigner functions are analytically calculable [85,86]
(details in Appendix D). Here we consider the zero-mean
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single-mode photon-number subtracted or added pure state
with the maximum logarithmic negativity. It suffices to
consider PNS or PNA on the squeezed pure state |θ,s〉 =
R̂(θ )Ŝ(s) |0〉. Note that âR̂(θ ) = eiθ R̂(θ )â and that Gaussian
unitary does not change logarithmic negativity; we only need
to consider θ = 0. Afterwards, a simple numerical calculation
shows that for all values of s, both the single-photon-added
state and single-photon-subtracted state has

NL = ln(4/
√

e − 1) � 0.354. (15)

This equals NL(|1〉) exactly, which coincides with the conclu-
sion by using the nonconvex version of non-Gaussianity [87].

(3) Cubic phase states. The ideal cubic phase state cannot
be normalized, thus is not physical. The unnormalized Wigner
functions of |γ 〉 is given in Appendix D. We instead consider an
imperfect cubic phase state created by applying the cubic phase
gate to the finitely squeezed state with squeezing parameter s,
namely,

|γ,P,s〉 = V̂ (γ ) |P,s〉p , (16)

where |P,s〉p = D̂p(P )Ŝ(−s) |0〉. The wave function of
|γ,P,s〉 in the q space is given by

ψ(q) = (2πe2s)−1/4 exp

(
iγ q3 − q2

4e2s
+ i

P q

2

)
. (17)

As the squeezing strength s increases, it approaches the ideal
cubic phase state. The Wigner function of |γ,P,s〉 is given
in Appendix D. The mean photon number can be analytically
obtained (details also in Appendix D) as

NS = 1
2 (cosh(2s) − 1) + 18γ 2e4s + 1

4 (P + 6γ e2s)2. (18)

We consider the state with P = −6γ e2s in Fig. 1, which has the
minimum mean photon number, when we compare the genuine
non-Gaussianity.

(4) ON states. The wave function is given in Eq. (12). The
Wigner functions of ON states are given in Appendix D. The
mean photon number of the ON state is |a|2

1+|a|2 N .

V. APPLICATIONS

A. State conversions

Consider a state transformation ρ̂ → ∫
dqP (q)σ̂q under a

Gaussian protocol where P (q) = Tr[�q ⊗ Mq(ρ̂)] in the sense
of Lemma 3. The monotonicity of the logarithmic negativity
NL(ρ̂) �

∫
dqP (q)NL(σ̂q) serves as a necessary condition

for such a transformation to be possible under a Gaussian
protocol. As an example, let us take a closer look at the
protocol in Ref. [49] which implements a cubic phase gate
using the ON state, which is defined in Eq. (12). It starts with
input state |ψ〉 and ancillary ON state |ON〉 and apply the
continuous version of controlled-NOT gate from |ψ〉 to |ON〉.
The homodyne measurement is made on the ancillary system
and Gaussian feed-forward operation is applied to the other
system. They showed that when N = 3 and |a| � 1 where a

is the parameter of |ON〉 in Eq. (12), the output state can be
approximated by 1

P (q̃) Âq̃ V̂ (γ ) |ψ〉 where q̃ is the outcome of
the homodyne measurement, P (q̃) is the probability density
of obtaining the outcome P (q̃), and Âq̃ = exp[−(q̂ + q̃)2/4]
is a noise factor. γ is related to a by γ = (−i/

√
6)a. It can

be seen as a state transformation under a Gaussian protocol
with ρ̂ being |ψ〉 ⊗ |ON〉 and σq̃ being 1

P (q̃) Âq̃ V̂ (γ ) |ψ〉, so
the monotonicity relation applies. For instance, suppose |ψ〉
is the infinitely squeezed state. Since the squeezed state has
zero logarithmic negativity and the logarithmic negativity is
additive, the initial logarithmic negativity is NL(|03〉) where
|03〉 is the ON state with N = 3. σ̂q̃ in this case is pro-
portional to

∫
dq exp[−(q + q̃)2/4 + iγ q3] |q〉. In Ref. [49],

they examined P (q̃) for various |ψ〉 and observed that for
squeezed states the distributions are Gaussian-like and become
flatter as the squeezing level increases. We obtained that for
γ = 0.1,NL(|03〉) = 0.11 and NL(σ̂q̃) ∼ 0.09 for various q̃

we examined. It not only confirms the monotonicity relation but
asserts that it is quite an efficient protocol in terms of genuine
non-Gaussianity in this case. The monotonocity relation would
be useful in general to get insights to the relationship between
output states and corresponding probability density for various
input states |ψ〉.

If |ψ〉 is a squeezed state and the outcomes q̃ ∼ 0 are
postselected, it works as a nonderterministic conversion to
the imperfect cubic phase state in Eq. (17) and the success
probability of such a protocol is bounded by the ratio between
the initial logarithmic negativity to the output logarithmic
negativity. As we shall see in the next section, the imperfect
cubic phase state in Eq. (17) may be further purified by
another protocol, and the level of purification and the success
probability have a similar constraint due to the monotonicity
of the logarithmic negativity.

Finally, although in Ref. [49] only the ON state of N = 3
is discussed for the implementation of the cubic phase gate, it
is possible that larger N would be helpful to realize a better
cubic phase gate since it may allow tuning up to higher order
terms. The logarithmic negativity of the ON states for various
N in Fig. 1 serves as a bound for quality of the implemented
gate and success probability of such protocols.

B. Distillation of genuine non-Gaussianity

Although genuine non-Gaussianity is necessary for some
tasks such as universal quantum computation, it is usually hard
to prepare states with large genuine non-Gaussianity. One can
then ask whether it is possible to nondeterministically increase
the genuine non-Gaussianity of states only by Gaussian proto-
cols and postselection. Here, we provide such a protocol which
only consists of a beam splitter, homodyne measurement,
and postselection. It is so simple that it should be readily
implementable in experiments. The protocol is based on the
partial homodyne measurement that allows for distillation of
coherent-state superpositions [50] and distillation of squeezing
under non-Gaussian noise [51]. Intuitively, it works as a filter
function that focuses on some region of the Wigner plane and
reduces the contributions from the other regions. By tuning
the strategy of postselection, one can somewhat engineer the
output state. We apply this idea to increase the genuine non-
Gaussianity by focusing on the region on the Wigner plane that
has more negativity than the other. It turns out that the same
protocol also allows for distillation of the cubic phase state
in the sense that it increases the fidelity of imperfect cubic
phase states from a “better” cubic phase state, which may be
of interest on its own.
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FIG. 2. (a) Schematic of the distillation protocol. The yellow box is a beam splitter with transmittance t . “Homo” means homodyne
measurement. The dashed line denotes the postsection by the homodyne measurement result p̃v . “Vac” denotes the vacuum ancilla.
(b) Mechanism of the distillation protocol. The cross section of the Wigner function at q = 0 is shown as functions of p. Dotted blue curve
represents the input vacuum state with standard deviation σ = 1 and purple curve represents the input resource state. In this figure, the Wigner
function of an imperfect cubic phase state is plotted. The partial homodyne shifts the Gaussian distribution by −√

t/(1 − t) p̃v where t is the
transmittance of the beam splitter and p̃v is the outcome of the homodyne measurement. The case of a negative p̃v is shown. The Wigner
function of the resource state is also shifted in the opposite direction by −√

(1 − t)/t p̃v , but it is not shown in the figure because the shift
is small when 1 − t � 1. The Wigner function of the output state is the product of the shifted Gaussian distribution and the slightly shifted
distribution of the resource state. The shifted Gaussian works as a filter function that focuses on the region which has a large contribution to
the negativity. (c) Logarithmic negativity NL of imperfect cubic phase states |γ,P,s〉 with γ = 0.05, P = 0 in terms of squeezing parameter s.
(d) Logarithmic negativity NL(p̃v) (blue dots) and the probability density P (p̃v) (purple squares) for the case when the input state is |γ,P,sin〉
with γ = 0.05, P = 0,sin = 1 in terms of the outcome of the homodyne measurement p̃v . The horizontal dotted line is the logarithmic negativity
of the input state N ini

L .

The setup of the protocol is described in Fig. 2(a). Sup-
pose we have a beam splitter with transmittance t � 1 and
homodyne detector that measures the momentum quadrature
p̂. The input state ρ̂in and vacuum state |0〉 are mixed by the
beam splitter. The transformation at the beam splitter is q̂ ′ =√

t q̂ + √
1 − t q̂v, p̂′ = √

t p̂ + √
1 − t p̂v, q̂ ′

v = √
t q̂v −√

1 − t q̂, p̂′
v = √

t p̂v − √
1 − t p̂, where q̂, p̂, q̂v, p̂v are the

quadrature operators for the input state and the vacuum and
prime denotes the operator after the transform. The momentum
of the outgoing vacuum state is measured at the homodyne
detector and postselection is made based on the measurement
outcome. Specifically, the state is discarded if the measured
momentum is not within the prespecified region, which can
be tuned by the experimenter. From (2.3), the initial Wigner
function of the input state and vacuum state is

Wini(q,p,qv,pv) = W (q,p; ρ̂in)W (qv,pv; |0〉). (19)

Using Lemma 1, the Wigner function of the total output state
right after the beam splitter transformation is

Wf (q,p,qv,pv) = W (q ′
inv,p

′
inv; ρ̂in)W (q ′

v,inv,p
′
v,inv; |0〉), (20)

where q ′
inv=

√
tq−√

1 − tqv, p′
inv=

√
tp−√

1 − tpv,q
′
v,inv =√

tqv + √
1 − tq, p′

v,inv = √
tpv + √

1 − tp. From (2.4), the
output state ρ̂out conditioned that the measurement result p̃v

has the Wigner function,

W
(
q,p; ρ̂out|p̃v

) =
∫

dqvWf (q,p,qv,p̃v)∫
dqdpdqvWf (q,p,qv,p̃v)

. (21)

Note that since the exponent of Wf is quadratic with respect
to qv , the integration of qv can be carried out analytically.
Let p̃−

v and p̃+
v be the thresholds for the postselection. We

call the protocol successful and keep the output state when
p̃v ∈ [p̃−

v ,p̃+
v ]. The probability density of obtaining the mea-

surement outcome p̃v is

P (p̃v) =
∫

dqdpdqvWf (q,p,qv,p̃v), (22)

and the success probability Psuc is obtained by

Psuc =
∫ p̃+

v

p̃−
v

dp̃vP (p̃v). (23)

Here, we give an intuition why our protocol allows one
to increase the negativity. At the beginning, the input state
and vacuum state are uncorrelated and the total Wigner
function is just a product of these two. The beam splitter
with transmittance t � 1 generates a slight correlation between
them, although it does not alter the input state significantly
because we assume 1 − t � 1. However, it still allows the
homodyne measurement to partially extract the information
about the input state and give a kickback by the measurement.
The Wigner function after the beam splitter depends on the
measurement outcome p̃v and it is a product of the slightly
shifted Wigner function of the input resource state and a shifted
Gaussian distribution from the vacuum state. How much these
two are shifted depends on the measured momentum p̃v , and
the shifted Gaussian distribution works as a filter function
that passes the region which has a large contribution to the
negativity. Figure 2(b) shows the mechanism of the protocol
with the input state being an imperfect cubic phase state.
Although we have only checked the genuine non-Gaussianity
increase for imperfect cubic phase states having the form of
Eq. (17), we expect that our protocol will work for a large class
of resource states in the same mechanism. One should be able
to tune the thresholds for postselection so the shifted Gaussian
distribution appropriately focuses on the region on the Wigner
plane where many ripples occur.

Furthermore, specifically for the cubic phase state, it can be
expected that the output state gets closer to another imperfect
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FIG. 3. (a) Logarithmic negativity after postselection N post
L in terms of success probability Psuc for different input squeezing parameters.

Input states are |γ,P,sini〉 with γ = 0.05, P = 0. The initial logarithmic negativity for each sini are N ini
L = 0.11,0.38,0.81 for sini = 0.2,0.6,1.0,

respectively. (b) Average logarithmic negativity after the protocol 〈N fin
L 〉 normalized by the initial logarithmic negativity. (c) Fidelity from the

target state |γ,P ′,starg〉 after postselection F post in terms of success probability Psuc for different input squeezing parameters. The target squeezing
parameter is set as starg = 4.0. Input states are |γ,P,sini〉 with γ = 0.05, P = 0. The initial fidelity for each sini are F ini = 0.04,0.10,0.18 for
sini = 0.2,1.0,1.6, respectively.

cubic phase state with the larger squeezing parameter as long as
the input squeezing level is not too large. One can check that the
intervals of ripples of the Wigner functions for imperfect cubic
phase states do not vary much with squeezing parameters, but
states with a larger squeezing parameter have less difference
in the amplitudes between neighboring peaks in the small
p domain. As can be seen in Fig. 2(b), the broad Gaussian
distribution evens out the difference in the amplitudes in the
small p region if the amplitude difference and filtering of the
Gaussian distribution balances out. In such cases, the filter
function makes the shape of the Wigner function closer to the
one for a larger squeezing parameter. However, when the initial
squeezing is so large that ripples are still significantly large in a
large p domain, the amplification in the focused domain starts
beating the ripple in the small p domain, so it will not get closer
to the state with the larger squeezing parameter although it will
still increase the negativity. We shall observe this tendency of
the fidelity increase later in this section.

Let us first look at the negativity increase. We are interested
to compare the initial logarithmic negativity to the final loga-
rithmic negativity. LetN ini

L be the initial logarithmic negativity.
LetNL(p̃v) denote the logarithmic negativity of state described
by the Wigner function in Eq. (21). The average negativity
conditioned on the postselection is given by

N post
L = 〈

N fin
L

〉
/Psuc, (24)

where 〈
N fin

L

〉 =
∫ p̃+

v

p̃−
v

dp̃vP (p̃v)NL(p̃v). (25)

The resource theory developed above allows one to put an
upper bound on the average logarithmic negativity without a
postselection. Namely,〈

N fin
L

〉
� N ini

L , (26)

and it holds for any choice of p̃−
v and p̃+

v . One can see it as
a trade-off relation between the output negativity and success
probability N post

L � N ini
L /Psuc by applying Eqs. (26) to (24).

Note that the left-hand side of Eq. (26) is monotonically
increasing as the success region gets larger. It increases the
success probability but may reduce the output negativity after
postselection.

We choose an imperfect cubic phase state |γ,P,sini〉 as
the input state ρ̂in, then N ini

L = NL(|γ,P,sini〉) + NL(|0〉) =
NL(|γ,P,sini〉). Since NL is independent of P , we choose
P = 0 without loss of generality. As seen in the previous
section, |γ,P,s〉 approaches the ideal cubic phase state as s

increases, so it is expected that the genuine non-Gaussianity
also increases as s increases. We find that it is indeed the case
as shown in Fig. 2(c). We choose p̃±

v for given Psuc such that
it gives the maximum N post

L while satisfying Eq. (23). NL(p̃v)
and P (p̃v) are plotted in terms of p̃v in Fig. 2(d). The Gaussian
shape of the probability distribution is a reminiscence of the
Gaussian Wigner function of the vacuum state. SinceNL(p̃v) is
monotonically decreasing with p̃v , we set p̃−

v = −∞ and take
p̃+

v that satisfies Eq. (23). This monotonic behavior of NL(p̃v)
in terms of p̃v was also seen in the other choice of sini for
0 � sini � 1.4. Figure 3(a) shows the change in the logarithmic
negativity by our protocol in terms of the success probability.
There is a clear trade-off between the negativity increase and
the success probability, but positive increase in the negativity
is realized at most of the success probabilities. Figure 3(b)
shows the ratios of the average logarithmic negativity after the
protocol to the initial logarithmic negativity in terms of the
success probability. It confirms that the selective monotonicity
of the logarithmic negativity Eq. (26) is satisfied. Note that
the description of the output state is also known because the
Wigner function of the output state contains all the information
about the state. Thus, larger genuine non-Gaussianity of the
output state will be helpful to realize tasks such as universal
quantum computation under a noisy environment.

As expected from Fig. 2(b) and the argument above, it turns
out that the same protocol also allows for the “cubic phase
state distillation” in the sense that it increases the fidelity
from another imperfect (but better) cubic phase state with
the higher squeezing parameter. Again, we take an imperfect
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cubic phase state |γ,Pini,sini〉 as an input state and look at the
fidelity from another imperfect cubic phase state |γ,Pini,starg〉
with starg > sini,

F ini ≡ F (|γ,Pini,sini〉 , |γ,Pini,starg〉)
= |〈γ,Pini,sini|γ,Pini,starg〉|2

= [cosh(sini − starg)]−1, (27)

where we used Eq. (17). Suppose we obtain p̃v as the outcome
of the homodyne measurement. Then, the fidelity between the
output state and the target state is

F (p̃v) ≡ F
(
ρ̂out|p̃v

,|γ,P ′,starg〉
)

= |〈γ,P ′,starg|ρ̂out|p̃v
|γ,P ′,starg〉|

= 4π

∫
dqdpW (q,p; ρ̂out|p̃v

)W (q,p; |γ,P ′,starg〉),
(28)

where we set P ′ =
√

1−t
t

p̃v to take into account the slight
shift of the Wigner function of the resource state along
the p direction due to the measurement. The form of
W (q,p; |γ,P,s〉) is given in Appendix D. We choose p̃±

v in
the same fashion so given Psuc it maximizes F post where

F post ≡ 〈F fin〉/Psuc, (29)

and

〈F fin〉 =
∫ p̃+

v

p̃−
v

dp̃vP (p̃v)F (p̃v). (30)

Figure 3(c) shows the change in the fidelity before and after
the protocol for different initial squeezing parameters. We
show the result for starg = 4, but similar behaviors were seen
for the other choices of starg. As can be seen in the figure, we
obtain 13% increase in the fidelity with success probability
1% for sini = 1. As expected, the increase in the fidelity
is not monotonic with sini; F post/F ini increases until about
sini = 1.2, but starts decreasing as sini increases from that
point. For sini = 1.6 the fidelity even decreases from the initial
fidelity. One may wonder whether sequential applications of
the protocol keeps increasing the fidelity. However, it turns out
that after some numbers of applications, the increase saturates
at some point that is not very far from the fidelity obtained
after the first application. It is not very surprising that the
saturation occurs because although it increases the negativity,
mismatch of the shape of the Wigner function can accumulate
over the number of applications of the protocol. We leave the
construction of a sequential protocol that keeps increasing the
fidelity for future work.

VI. CONCLUSIONS

We developed a resource theory of genuine non-Gaussianity
that is relevant to continuous-variable quantum computation.
Our theory is operation driven where we first fix a set of
operations that are easily accessible as free operations and a
set of free states is defined as the maximal set of the states
generated by them. We formally introduced the Gaussian
protocol as free operations and the convex hull of the Gaussian
states was naturally chosen to be a corresponding set of

free states. We showed that the logarithmic negativity of
the Wigner function, the logarithm of the integral of the
absolute value of the Wigner function, is a valid monotone
under the Gaussian protocols and examined its properties. We
computed the logarithmic negativity of well-known genuine
non-Gaussian resource states and compared them with respect
to the mean photon number. We found that number states,
ON states, and cubic phase states show similar behaviors. As
an application of our theory, we discussed state conversions
under the Gaussian protocols, where monotonicity serves as
a necessary condition for such conversions. We examined the
recently proposed protocol implementing the cubic phase gate
using the ON state and found that their protocol is efficient
in terms of genuine non-Gaussianity. For another application,
we proposed a simple protocol that may nondeterministically
increase the genuine non-Gaussianity using the Gaussian
protocol with postselection. We numerically verified that it
indeed increases the logarithmic negativity of imperfect cubic
phase states. We further showed that it may also work as a
“cubic phase state distillator”, which takes an imperfect cubic
phase state as input and outputs a state with higher fidelity to the
better cubic phase state with the larger squeezing parameter.
It needs to be noted that it is different from a conventional
state distillation protocol that keeps purifying the state to a
specific state under sequential applications of the protocols.
Under our protocol, fidelity saturates after some applications
due to the accumulation of the mismatch of the Wigner
functions.

From this work, there is much room to explore in the future.
When counting resources, the notion of the “golden unit” of
the resource is often helpful. In the quantum computation in
discrete systems, one could consider the T state as the golden
unit and evaluate a state by, for instance, the number of T states
required to create it. It is subtle to define the corresponding no-
tion in continuous-variable systems (with infinite dimension)
because the genuine non-Gaussianity diverges at the infinite
photon number limit. One may think that it can be still defined
for fixed mean photon numbers, but it is problematic because
Gaussian protocols can freely change the mean photon number.
A formal treatment awaits. Another concern would be that a
protocol that keeps purifying a state to a specific resource state
under sequential applications has not been known. Although
our protocol increases the fidelity of imperfect cubic phase
states, it ceases to increase the fidelity after some numbers of
applications. The notion of the golden unit will make more
sense if we have such a protocol.

The design of distillation protocols is related to the search of
sufficient resources for continuous-variable universal quantum
computation. The perfect cubic phase state, which implements
the perfect cubic phase gate, is not a valid quantum state.
What is physically relevant is whether Gaussian protocols,
with an infinite supply of an imperfect cubic phase state,
can perform universal quantum computation. In the case of
the qubit computation, stabilizer protocols with an infinite
supply of a noisy magic state are sufficient for the universal
quantum computation. This is because well-established magic-
state distillation protocols allow one to prepare a state that is
arbitrarily close to the target magic state. We could exploit the
same argument for the continuous-variable universal quantum
computation if we had a corresponding protocol. The protocol
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proposed in this paper may serve as a first step toward
answering this question.

Another possible future work would be to consider genuine
non-Gaussianity generating power of processes. The resource
generating power of a quantum process indicates the maximum
amount of the resource that it can create per use. It will play
an important role in evaluating the cost of classical simulation
of the circuit that involves operations that are not free [47].

Although we only discussed one monotone, the logarithmic
negativity, it will be interesting to examine other monotones
as well. Especially, the logarithmic negativity is not faithful,
and there are many potential choices for faithful measures.
For instance, distance-based measures which quantify how
far the state is from the closest free state are natural choices
of faithful monotones. Since the set of free states is convex,
the well-known robustness measure [46,88] and more general
measure [89] should also work. On introducing such faithful
measures, the following two points should be cared. One is that
such faithful measures will be hard to compute [45]—even
telling whether a state belongs to the set of free states is
difficult [90]. The other point is that one needs to clarify the
tasks on which bound genuine non-Gaussian states—genuine
non-Gaussian states with non-negative Wigner function—have
an advantage over the states that can be written by convex
mixtures of Gaussian states. The ways to detect bound genuine
non-Gaussian states have been investigated, motivated by a
desire to tell whether some genuinely non-Gaussian protocols
have been applied before certain noisy channels may have
caused the Wigner function to be positive again [70,72,91–94].
However, the operational meaning of bound genuine non-
Gaussian states is not known yet. As an analog, in entanglement
resource theory, bound entanglement can still improve the task
of channel discrimination [95]. It will be important to identify
such tasks in the Gaussian context.

Finally, if we take the perspective that the negativity is
a useful resource, one could develop a state-driven theory
starting from the set of free states being the states with the
non-negative Wigner function. It would be nice to clarify
the characterization of the “non-negative Wigner function
preserving operations” and examine how feasible it is to realize
such operations.

Note added. Recently, we became aware of a related work
by F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro
[96].
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APPENDIX A: PROOF OF LEMMA 1

χ (ξ ; ÛS,d ρ̂Û
†
S,d ) = Tr[ÛS,d ρ̂Û

†
S,d exp(ix̂T �ξ )]

= Tr[ρ̂Û
†
S,d exp(ix̂T �ξ )ÛS,d ]

= Tr[ρ̂ exp(i(Sx̂ + d)T �ξ )]

= χ (S−1ξ ; ρ̂) exp(idT �ξ ). (A1)

In the last step we used ST � = �S−1. To be more rigorous,
the cyclic property of trace is ensured by the Fubini-Tonelli
theorem.

Similarly, for Wigner function, we have

W (x; ÛS,d ρ̂Û
†
S,d )

=
∫

d2Nξ ′

(2π )2N
exp(−ixT �Sξ ′)χ (ξ ′; ρ̂) exp(idT �Sξ ′),

=
∫

d2Nξ ′

(2π )2N
exp(−i(S−1(x − d))T �ξ ′)χ (ξ ′; ρ̂)

= W (S−1(x − d); ρ̂), (A2)

where we let ξ ′ = S−1ξ and used |det (S)| = 1, and �S =
(S−1)T �.

APPENDIX B: PROOF OF (2.6), (2.5) IN LEMMA 2

Note that in accordance with Ref. [58], we use the follow-
ing convention: commutation relation [q̂,p̂] = 2i, delta func-
tion

∫
dp exp(ipx) = 2πδ(x), and displacement of position

D̂q(x) ≡ exp(−ip̂x/2), which satisfies D̂q(x) |y〉 = |y + x〉.
It suffices to prove the single-mode case. Denote ξ = (ξ1,ξ2),
thus D̂(ξ ) = e−ip̂ξ1+iq̂ξ2 = e−ip̂ξ1eiq̂ξ2eiξ1ξ2 .

From the definition, for single-mode pure states ρ̂ =
|ψ〉〈ψ |, we have (note all integration are from −∞ to ∞)

W (q,p; ρ̂) =
∫

d2ξ1ξ2

(2π )2 eipξ1e−iqξ2

∫
dx 〈x|ρ̂e−ip̂ξ1eiq̂ξ2eiξ1ξ2 |x〉 (B1)

=
∫

d2ξ1ξ2

(2π )2 eipξ1e−iqξ2

∫
dx 〈x|ψ〉 〈ψ |x + 2ξ1〉 eixξ2eiξ1ξ2 (B2)

=
∫

dξ1

2π
eipξ1

∫
dx 〈x|ψ〉 〈ψ |x + 2ξ1〉 δ(x + ξ1 − q) (B3)

=
∫

dξ1

2π
e−ipξ1 〈q + ξ1|ψ〉 〈ψ |q − ξ1〉 . (B4)

We arrive at (2.6).
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For two single-mode quantum states,

4π

∫
dxW (x; ρ̂)W (x; σ̂ ) (B5)

= 4π

∫
dqdp

∫
d2ξ1ξ2

(2π )2 eipξ1e−iqξ2

∫
dx 〈x|ρ̂|x + 2ξ1〉 eixξ2eiξ1ξ2 (B6)

×
∫

d2ξ ′
1ξ

′
2

(2π )2 eipξ ′
1e−iqξ ′

2

∫
dx ′ 〈x ′|σ̂ |x ′ + 2ξ ′

1〉 eix ′ξ ′
2eiξ ′

1ξ
′
2 (B7)

= 4π

∫
d2ξ1ξ2

(2π )2

∫
d2ξ ′

1ξ
′
2

(2π )2 2πδ(ξ1 + ξ ′
1)2πδ(ξ2 + ξ ′

2) (B8)

×
∫

dx 〈x|ρ̂|x + 2ξ1〉 eixξ2eiξ1ξ2

∫
dx ′ 〈x ′|σ̂ |x ′ + 2ξ ′

1〉 eix ′ξ ′
2eiξ ′

1ξ
′
2 (B9)

= 4π

∫
d2ξ1ξ2

(2π )2

∫
dx 〈x|ρ̂|x + 2ξ1〉 eixξ2eiξ1ξ2

∫
dx ′ 〈x ′|σ̂ |x ′ − 2ξ1〉 e−ix ′ξ2eiξ1ξ2 (B10)

= 4π

∫
dξ1

(2π )2

∫
dx 〈x|ρ̂|x + 2ξ1〉

∫
dx ′ 〈x ′|σ̂ |x ′ − 2ξ1〉 2πδ(x − x ′ + 2ξ1) (B11)

=
∫

d2ξ1

∫
dx 〈x|ρ̂|x + 2ξ1〉 〈x + 2ξ1|σ̂ |x〉 = Tr(ρ̂σ̂ ). (B12)

We arrive at (2.5).

APPENDIX C: PROOF OF LEMMA 5

Proof. (5.1) directly comes from Lemma 1 as follows.

NL(ÛS,d ρ̂Û
†
S,d ) = ln

∫
d2Nx|W (x; ÛS,d ρ̂Û

†
S,d )| (C1)

= ln
∫

d2Nx|W (S−1x − S−1d; ρ̂)| (C2)

= NL(ρ̂). (C3)

(5.2) comes from (2.1) and triangle inequality. Consider
bipartite state ρ̂AB with two parts A and B.

NL(TrAρ̂AB)= ln
∫

d2NB xB |W (xB ; TrAρ̂AB)| (C4)

= ln
∫

d2NB xB |
∫

d2NAxAW (xA,xB ; ρ̂AB)| (C5)

� ln
∫

d2NB xB

∫
d2NAxA|W (xA,xB ; ρ̂AB)| (C6)

= NL(ρ̂AB). (C7)

(5.3) follows directly from (2.3).

NL(ρ̂A ⊗ ρ̂B)

= ln
∫

d2Nx|W (x; ρ̂A ⊗ ρ̂B)|. (C8)

= ln
∫

d2NAxA

∫
d2NB xB |W (xA; ρ̂A)||W (xB ; ρ̂B)| (C9)

= NL(ρ̂A) + NL(ρ̂B). (C10)

(5.4) is simply from the equality condition of triangular in-
equality. If

∫
d2Nx|W (x; ρ̂)| = ∫

d2NxW (x; ρ̂) = 1, we have
NL(ρ̂) = 0. If NL(ρ̂) = 0, we have W (x; ρ̂) � 0 except for

points with measure zero. These measure zero negative points
have no relevance to experiments in reality, and we have
included these cases in W+.

(5.5) directly follows from (5.1)–(5.4) and the fact that
any Gaussian channel has Stinespring dilation of a Gaussian
unitary ÛG with ancilla E in vacuum state 0̂. NL(�G(ρ̂)) =
NL(TrE(ρ̂ ⊗ 0̂)) � NL(ρ̂ ⊗ 0̂) = NL(ρ̂).

To prove (5.6), it suffices to prove nonincreasing under
the Gaussian protocol in Lemma 3 on state ρ̂AB : Perform a
homodyne on A and conditioned on the measurement result
qA, perform a Gaussian channel �qA

on B. By (2.2), the
measurement result’s distribution is given by

PqA
=

∫
dNApAd2NB xBW (pA,qA,xB ; ρ̂AB), (C11)

and the Wigner function of B conditioned on measurement
result qA is given by

W
(
xB ; ρ̂B|qA

) = 1

PqA

∫
dNApAW (pA,qA,xB ; ρ̂AB). (C12)

The logarithmic negativity of the overall output of the
channels {�qA

} conditioned on the measurement result qA is

NL

(∫
dNAqAPqA

�qA
(ρ̂B|qA

)

)
(C13)

= ln
∫

d2NB xB |
∫

dNAqAPqA
W (xB ; �qA

(ρ̂B|qA
))| (C14)

� ln
∫

dNAqAPqA

∫
d2NB xB |W (xB ; �qA

(ρ̂B|qA
))| (C15)

� ln
∫

dNAqAPqA

∫
d2NB xB |W (xB ; ρ̂B|qA

)| (C16)

= ln
∫

dq
NA

A PqA

∫
d2NB xB
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× | 1

PqA

∫
dNApAW (pA,qA,xB ; ρ̂AB)| (C17)

� ln
∫

dNAqA

∫
d2NB xB

×
∫

dNApA|W (pA,qA,xB ; ρ̂AB)| (C18)

= NL(ρ̂AB). (C19)

The first equality is due to the linearity of Wigner functions.
The first inequality is due to triangular inequality. The second
inequality is due to (5.5) and the monotonicity of ln (x). The
third inequality is due to triangular inequality.

The nonincreasing of the average logarithmic negativity can
be proved similarly as follows:

NL ≡
∫

dNAqAPqA
NL(�qA

(ρ̂B|qA
)) (C20)

�
∫

dNAqAPqA
NL(ρ̂B|qA

) (C21)

=
∫

dNAqAPqA
ln

∫
d2NB xB

× | 1

PqA

∫
dNApAW (pA,qA,xB ; ρ̂AB)| (C22)

� ln
∫

dNAqA

∫
d2NB xB

× |
∫

dNApAW (pA,qA,xB ; ρ̂AB)| (C23)

� ln
∫

dNAqA

∫
d2NB xB

×
∫

dNApA|W (pA,qA,xB ; ρ̂AB)| (C24)

= NL(ρ̂AB). (C25)

The first inequality is due to (5.5). The rest of the inequalities
are due to triangular inequality, ln (x) being concave, and
Jensen’s inequality. �

APPENDIX D: WIGNER FUNCTIONS
FOR RESOURCE STATES

1. Number state

The Wigner function of the number state |n〉 is

W (p,q; |n〉) = 1

2π
(−1)nLn(p2 + q2)e−(p2+q2)/2, (D1)

where Ln(x) is the Laguerre polynomial.

2. Single-photon-added and single-photon-subtracted states

The Wigner function of such states are analytically calcula-
ble [85,86]. The Wigner function of the single-photon-added
(+) or subtracted (−) state starting from |θ,s〉 = R(θ )S(s) |0〉
is given by

W±(x)= 1
2 [xV −1A±

g V −1xT −Tr(V −1A±
g )+2]W0(x), (D2)

where V is the covariance matrix of |θ,s〉 and

A±
g = 2

(V ± I )2

Tr(V ± I )
. (D3)

3. Cubic phase state

The unnormalized wave function of |γ,P 〉 is

ψ(q) ∝ exp

(
iγ q3 + i

P q

2

)
. (D4)

Using W (q,p) = 1
2π

∫
dyψ∗(q − y)ψ(q + y)e−ipy , the un-

normalized Wigner function of |γ,P 〉 is given by

W (q,p; |γ,P 〉)

∝
∫ ∞

−∞
dy exp

[
i

(
2γy3 + 2

(
3γ q2 − p − P

2

)
y

)]
(D5)

=
∫ ∞

0
dy 2 cos

[
2γy3 + 2

(
3γ q2 − p − P

2

)
y

]
(D6)

∝ Ai

((
4

3γ

)1/3(
3γ q2 − p − P

2

))
, (D7)

where Ai(x) is the Airy function.
The Wigner function of |γ,P,s〉 is obtained by

W (q,p; |γ,P,s〉) = (8π3e2s)−1/2 exp

[−q2

2e2s

] ∫ ∞

−∞
dy exp

[
i

(
2γy3 + 2

(
3γ q2 − p − P

2

)
y

)]
exp

[
− y2

2e2s

]

= (8π3e2s)−1/2 exp

[−q2

2e2s

] ∫ ∞

0
dy 2 cos

[
2γy3 + 2

(
3γ q2 − p − P

2

)
y

]
exp

[
− y2

2e2s

]
.

As an example, the Wigner function with γ = 0.05, P = 0, s = 1 for q > 0 is shown in Fig. 4 (it is symmetric for q → −q).
To calculate the mean photon number of state |γ,P,s〉, we notice that â†â = (p̂2 + q̂2)/4 − 1/2 and by definition Eq. (16)

|γ,P,s〉 = V̂ (γ )D̂p(P )Ŝ(−s) |0〉, thus the mean photon number is given by

NS = 〈0|Ŝ†(−s)D̂†
p(P )V̂ †(γ )(p̂2 + q̂2)V̂ (γ )D̂p(P )Ŝ(−s)|0〉/4 − 1/2 (D8)

= 〈0|Ŝ†(−s)V̂ †(γ )((p̂ + P )2 + q̂2)V̂ (γ )Ŝ(−s)|0〉/4 − 1/2, (D9)

where we have used [V̂ (γ ),D̂p(P )] = 0 and D̂
†
p(P )p̂D̂p(P ) = p̂ + P . Since [q̂,p̂] = 2i, by the correspondence p̂ = −2i d

dq̂
we

have [p̂,V̂ (γ )] = V̂ (γ )6γ q̂2, thus

[(p̂ + P )2,V̂ (γ )] = [p̂2,V̂ (γ )] + 2P [p̂,V̂ (γ )] = 4V̂ (γ )(9γ 2q̂4 + 3Pγ q̂2) + 6V̂ (γ )(p̂q̂2 + q̂2p̂). (D10)
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FIG. 4. Wigner function of |γ,P,s〉 with γ = 0.05, P = 0, s = 1.

With these in hand, one finds that

NS = 〈0|Ŝ†(−s)((p̂ + P )2 + q̂2 + 4(9γ 2q̂4 + 3Pγ q̂2)

+ 6(p̂q̂2 + q̂2p̂))Ŝ(−s)|0〉/4 − 1/2. (D11)

Now we are evaluating the expectation value of some poly-
nomial of quadrature operators on a zero-mean squeezed

vacuum state with 〈p̂2〉 = e−2s , 〈q̂2〉 = e2s . By Gaussian mo-
ment factoring (Wick’s theorem) we have 〈q̂4〉 = 3 〈q̂2〉2 =
3e4s , 〈q̂2p̂〉 = 〈p̂q̂2〉 = 0. Combing the above into Eq. (D11),
we have

NS = 1
2 (cosh(2s)−1)+18γ 2e4s + 1

4 (P +6γ e2s)2, (D12)

which is Eq. (18).

4. ON state

The Wigner function can be obtained analytically,

W (p,q; |ON〉) = 1

1 + |a|2 W (p,q; |0〉)

+ |a|2
1 + |a|2 W (p,q; |n〉)

+ 1

1 + |a|2
√

1

n!

1

2π
exp(−p2 − x2)

× (a(x − ip)n + a�(x + ip)n). (D13)

[1] D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science
& Business Media, New York 2007).

[2] C. Weedbrook, C. Ottaviani, and S. Pirandola, Phys. Rev. A 89,
012309 (2014).

[3] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
[4] G. De Palma, A. Mari, V. Giovannetti, and A. S. Holevo, J. Math.

Phys. 56, 052202 (2015).
[5] G. De Palma, arXiv:1710.9395.
[6] L. Vaidman, Phys. Rev. A 49, 1473 (1994).
[7] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869

(1998).
[8] T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).
[9] N. J. Cerf and S. Iblisdir, Phys. Rev. A 62, 040301 (2000).

[10] G. Lindblad, J. Phys. A: Math. Gen. 33, 5059 (2000).
[11] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[12] R. S. Bondurant and J. H. Shapiro, Phys. Rev. D 30, 2548

(1984).
[13] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L.

Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev. Lett. 101,
253601 (2008).

[14] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. Lett. 118,
040801 (2017).

[15] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 97, 032329
(2018).

[16] F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902
(2002).

[17] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89, 137903
(2002).

[18] J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
[19] S. L. Zhang and P. van Loock, Phys. Rev. A 82, 062316 (2010).
[20] J. Niset, J. Fiurášek, and N. J. Cerf, Phys. Rev. Lett. 102, 120501

(2009).
[21] If one trusts the device, then Gaussian states and operations

suffice for Bell’s inequality violation [97,98].
[22] K. Banaszek and K. Wódkiewicz, Phys. Rev. A 58, 4345 (1998).

[23] K. Banaszek and K. Wódkiewicz, Phys. Rev. Lett. 82, 2009
(1999).

[24] R. Filip and L. Mišta, Jr., Phys. Rev. A 66, 044309 (2002).
[25] Z.-B. Chen, J.-W. Pan, G. Hou, and Y.-D. Zhang, Phys. Rev.

Lett. 88, 040406 (2002).
[26] H. Nha and H. J. Carmichael, Phys. Rev. Lett. 93, 020401 (2004).
[27] C. Invernizzi, S. Olivares, M. G. A. Paris, and K. Banaszek,

Phys. Rev. A 72, 042105 (2005).
[28] R. García-Patrón, J. Fiurášek, and N. J. Cerf, Phys. Rev. A 71,

022105 (2005).
[29] A. Ferraro and M. G. Paris, J. Opt. B: Quantum Semiclass. Opt.

7, 174 (2005).
[30] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
[31] S. D. Bartlett and B. C. Sanders, Phys. Rev. A 65, 042304 (2002).
[32] M. Ohliger, K. Kieling, and J. Eisert, Phys. Rev. A 82, 042336

(2010).
[33] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C.

Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006).
[34] L. Lami, B. Regula, X. Wang, R. Nichols, A. Winter, and G.

Adesso, arXiv:1801.5450.
[35] P. Marian and T. A. Marian, Phys. Rev. A 88, 012322 (2013).
[36] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A

78, 060303 (2008).
[37] M. G. Genoni and M. G. A. Paris, Phys. Rev. A 82, 052341

(2010).
[38] Q. Zhuang, P. W. Shor, and J. H. Shapiro, Phys. Rev. A 97,

052317 (2018).
[39] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys. B 27,

1345019 (2013).
[40] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115, 070503

(2015).
[41] E. Chitambar and G. Gour, arXiv:1806.06107
[42] The converse is not true. And various ways to test whether

a quantum state is in such a free set are being considered
[70,72,91–94].

062337-13

https://doi.org/10.1103/PhysRevA.89.012309
https://doi.org/10.1103/PhysRevA.89.012309
https://doi.org/10.1103/PhysRevA.89.012309
https://doi.org/10.1103/PhysRevA.89.012309
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1103/PhysRevA.66.032316
https://doi.org/10.1063/1.4921265
https://doi.org/10.1063/1.4921265
https://doi.org/10.1063/1.4921265
https://doi.org/10.1063/1.4921265
http://arxiv.org/abs/arXiv:1710.9395
https://doi.org/10.1103/PhysRevA.49.1473
https://doi.org/10.1103/PhysRevA.49.1473
https://doi.org/10.1103/PhysRevA.49.1473
https://doi.org/10.1103/PhysRevA.49.1473
https://doi.org/10.1103/PhysRevLett.80.869
https://doi.org/10.1103/PhysRevLett.80.869
https://doi.org/10.1103/PhysRevLett.80.869
https://doi.org/10.1103/PhysRevLett.80.869
https://doi.org/10.1103/PhysRevLett.81.5668
https://doi.org/10.1103/PhysRevLett.81.5668
https://doi.org/10.1103/PhysRevLett.81.5668
https://doi.org/10.1103/PhysRevLett.81.5668
https://doi.org/10.1103/PhysRevA.62.040301
https://doi.org/10.1103/PhysRevA.62.040301
https://doi.org/10.1103/PhysRevA.62.040301
https://doi.org/10.1103/PhysRevA.62.040301
https://doi.org/10.1088/0305-4470/33/28/310
https://doi.org/10.1088/0305-4470/33/28/310
https://doi.org/10.1088/0305-4470/33/28/310
https://doi.org/10.1088/0305-4470/33/28/310
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.30.2548
https://doi.org/10.1103/PhysRevD.30.2548
https://doi.org/10.1103/PhysRevD.30.2548
https://doi.org/10.1103/PhysRevD.30.2548
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1103/PhysRevLett.118.040801
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevA.97.032329
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevLett.88.057902
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137903
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevLett.89.137904
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevA.82.062316
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevLett.102.120501
https://doi.org/10.1103/PhysRevA.58.4345
https://doi.org/10.1103/PhysRevA.58.4345
https://doi.org/10.1103/PhysRevA.58.4345
https://doi.org/10.1103/PhysRevA.58.4345
https://doi.org/10.1103/PhysRevLett.82.2009
https://doi.org/10.1103/PhysRevLett.82.2009
https://doi.org/10.1103/PhysRevLett.82.2009
https://doi.org/10.1103/PhysRevLett.82.2009
https://doi.org/10.1103/PhysRevA.66.044309
https://doi.org/10.1103/PhysRevA.66.044309
https://doi.org/10.1103/PhysRevA.66.044309
https://doi.org/10.1103/PhysRevA.66.044309
https://doi.org/10.1103/PhysRevLett.88.040406
https://doi.org/10.1103/PhysRevLett.88.040406
https://doi.org/10.1103/PhysRevLett.88.040406
https://doi.org/10.1103/PhysRevLett.88.040406
https://doi.org/10.1103/PhysRevLett.93.020401
https://doi.org/10.1103/PhysRevLett.93.020401
https://doi.org/10.1103/PhysRevLett.93.020401
https://doi.org/10.1103/PhysRevLett.93.020401
https://doi.org/10.1103/PhysRevA.72.042105
https://doi.org/10.1103/PhysRevA.72.042105
https://doi.org/10.1103/PhysRevA.72.042105
https://doi.org/10.1103/PhysRevA.72.042105
https://doi.org/10.1103/PhysRevA.71.022105
https://doi.org/10.1103/PhysRevA.71.022105
https://doi.org/10.1103/PhysRevA.71.022105
https://doi.org/10.1103/PhysRevA.71.022105
https://doi.org/10.1088/1464-4266/7/6/003
https://doi.org/10.1088/1464-4266/7/6/003
https://doi.org/10.1088/1464-4266/7/6/003
https://doi.org/10.1088/1464-4266/7/6/003
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevLett.82.1784
https://doi.org/10.1103/PhysRevA.65.042304
https://doi.org/10.1103/PhysRevA.65.042304
https://doi.org/10.1103/PhysRevA.65.042304
https://doi.org/10.1103/PhysRevA.65.042304
https://doi.org/10.1103/PhysRevA.82.042336
https://doi.org/10.1103/PhysRevA.82.042336
https://doi.org/10.1103/PhysRevA.82.042336
https://doi.org/10.1103/PhysRevA.82.042336
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/PhysRevLett.97.110501
http://arxiv.org/abs/arXiv:1801.5450
https://doi.org/10.1103/PhysRevA.88.012322
https://doi.org/10.1103/PhysRevA.88.012322
https://doi.org/10.1103/PhysRevA.88.012322
https://doi.org/10.1103/PhysRevA.88.012322
https://doi.org/10.1103/PhysRevA.78.060303
https://doi.org/10.1103/PhysRevA.78.060303
https://doi.org/10.1103/PhysRevA.78.060303
https://doi.org/10.1103/PhysRevA.78.060303
https://doi.org/10.1103/PhysRevA.82.052341
https://doi.org/10.1103/PhysRevA.82.052341
https://doi.org/10.1103/PhysRevA.82.052341
https://doi.org/10.1103/PhysRevA.82.052341
https://doi.org/10.1103/PhysRevA.97.052317
https://doi.org/10.1103/PhysRevA.97.052317
https://doi.org/10.1103/PhysRevA.97.052317
https://doi.org/10.1103/PhysRevA.97.052317
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
http://arxiv.org/abs/arXiv:1806.06107


RYUJI TAKAGI AND QUNTAO ZHUANG PHYSICAL REVIEW A 97, 062337 (2018)

[43] A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503 (2012).
[44] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, New J. Phys. 15,

013037 (2013).
[45] V. Veitch, S. H. Mousavian, D. Gottesman, and J. Emerson,

New J. Phys. 16, 013009 (2014).
[46] M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501

(2017).
[47] H. Pashayan, J. J. Wallman, and S. D. Bartlett, Phys. Rev. Lett.

115, 070501 (2015).
[48] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64, 012310

(2001).
[49] K. K. Sabapathy and C. Weedbrook, Phys. Rev. A 97, 062315

(2018).
[50] S. Suzuki, M. Takeoka, M. Sasaki, U. L. Andersen, and F.

Kannari, Phys. Rev. A 73, 042304 (2006).
[51] J. Heersink, C. Marquardt, R. Dong, R. Filip, S. Lorenz, G.

Leuchs, and U. L. Andersen, Phys. Rev. Lett. 96, 253601
(2006).

[52] E. Dennis, Phys. Rev. A 63, 052314 (2001).
[53] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[54] B. W. Reichardt, Quantum Inf. Process. 4, 251 (2005).
[55] S. Bravyi and J. Haah, Phys. Rev. A 86, 052329 (2012).
[56] A. M. Meier, B. Eastin, and E. Knill, Quantum Inf. Comput. 13,

195 (2013).
[57] B. Eastin, Phys. Rev. A 87, 032321 (2013).
[58] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.

Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621
(2012).

[59] S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855 (2007).
[60] S. Sefi and P. van Loock, Phys. Rev. Lett. 107, 170501

(2011).
[61] P. Marek, R. Filip, and A. Furusawa, Phys. Rev. A 84, 053802

(2011).
[62] M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, and

A. Furusawa, Phys. Rev. A 88, 053816 (2013).
[63] F. Arzani, N. Treps, and G. Ferrini, Phys. Rev. A 95, 052352

(2017).
[64] J. Aberg, arXiv:quant-ph/0612146.
[65] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).
[66] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
[67] B. Yadin, J. Ma, D. Girolami, M. Gu, and V. Vedral, Phys. Rev.

X 6, 041028 (2016).
[68] E. Chitambar and G. Gour, Phys. Rev. A 94, 052336 (2016).
[69] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[70] M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim,

and M. G. A. Paris, Phys. Rev. A 87, 062104 (2013).
[71] We include states of the Wigner function with negative values

at measure zero points in this set. These measure zero negative
points should be irrelevant to any experiments in reality.

[72] R. Filip and L. Mišta, Jr., Phys. Rev. Lett. 106, 200401 (2011).
[73] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett.

80, 5239 (1998).
[74] D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and

A. V. Thapliyal, Phys. Rev. A 61, 062312 (2000).
[75] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, New J. Phys. 14,

113011 (2012).
[76] C. Navarrete-Benlloch, R. García-Patrón, J. H. Shapiro, and

N. J. Cerf, Phys. Rev. A 86, 012328 (2012).
[77] M. S. Kim, H. Jeong, A. Zavatta, V. Parigi, and M. Bellini,

Phys. Rev. Lett. 101, 260401 (2008).
[78] V. Parigi, A. Zavatta, M. Kim, and M. Bellini, Science 317, 1890

(2007).
[79] J. Fiurášek, Phys. Rev. A 80, 053822 (2009).
[80] P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A 78, 063811

(2008).
[81] A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, Phys. Rev.

A 73, 042310 (2006).
[82] N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura,

and S. Inoue, Nat. Photonics 4, 655 (2010).
[83] J. Fiurášek, R. García-Patrón, and N. J. Cerf, Phys. Rev. A 72,

033822 (2005).
[84] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Opt.

Express 15, 3568 (2007).
[85] M. Walschaers, C. Fabre, V. Parigi, and N. Treps, Phys. Rev.

Lett. 119, 183601 (2017).
[86] M. Walschaers, C. Fabre, V. Parigi, and N. Treps, Phys. Rev. A

96, 053835 (2017).
[87] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Phys. Rev. A

76, 042327 (2007).
[88] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999).
[89] B. Regula, J. Phys. A: Math. Theor. 51, 045303 (2018).
[90] F. de Melo, P. Ćwikliński, and B. M. Terhal, New J. Phys. 15,

013015 (2013).
[91] J. Park, J. Zhang, J. Lee, S.-W. Ji, M. Um, D. Lv, K. Kim, and

H. Nha, Phys. Rev. Lett. 114, 190402 (2015).
[92] C. Hughes, M. G. Genoni, T. Tufarelli, M. G. A. Paris, and

M. S. Kim, Phys. Rev. A 90, 013810 (2014).
[93] M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R.

Filip, Phys. Rev. Lett. 107, 213602 (2011).
[94] L. Happ, M. A. Efremov, H. Nha, and W. P. Schleich, New J.

Phys. 20, 023046 (2018).
[95] M. Piani and J. Watrous, Phys. Rev. Lett. 102, 250501 (2009).
[96] F. Albarelli, M. G. Genoni, M. G. A. Paris, and A. Ferraro,

arXiv:1804.5763.
[97] T. C. Ralph, W. J. Munro, and R. E. S. Polkinghorne, Phys. Rev.

Lett. 85, 2035 (2000).
[98] O. Thearle, J. Janousek, S. Armstrong, S. Hosseini, M. Schüne-

mann (Mraz), S. Assad, T. Symul, M. R. James, E. Huntington,
T. C. Ralph, and P. K. Lam, Phys. Rev. Lett. 120, 040406 (2018).

062337-14

https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1103/PhysRevLett.109.230503
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.118.090501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevLett.115.070501
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.97.062315
https://doi.org/10.1103/PhysRevA.97.062315
https://doi.org/10.1103/PhysRevA.97.062315
https://doi.org/10.1103/PhysRevA.97.062315
https://doi.org/10.1103/PhysRevA.73.042304
https://doi.org/10.1103/PhysRevA.73.042304
https://doi.org/10.1103/PhysRevA.73.042304
https://doi.org/10.1103/PhysRevA.73.042304
https://doi.org/10.1103/PhysRevLett.96.253601
https://doi.org/10.1103/PhysRevLett.96.253601
https://doi.org/10.1103/PhysRevLett.96.253601
https://doi.org/10.1103/PhysRevLett.96.253601
https://doi.org/10.1103/PhysRevA.63.052314
https://doi.org/10.1103/PhysRevA.63.052314
https://doi.org/10.1103/PhysRevA.63.052314
https://doi.org/10.1103/PhysRevA.63.052314
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1007/s11128-005-7654-8
https://doi.org/10.1007/s11128-005-7654-8
https://doi.org/10.1007/s11128-005-7654-8
https://doi.org/10.1007/s11128-005-7654-8
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.87.032321
https://doi.org/10.1103/PhysRevA.87.032321
https://doi.org/10.1103/PhysRevA.87.032321
https://doi.org/10.1103/PhysRevA.87.032321
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1080/09500340601101575
https://doi.org/10.1080/09500340601101575
https://doi.org/10.1080/09500340601101575
https://doi.org/10.1080/09500340601101575
https://doi.org/10.1103/PhysRevLett.107.170501
https://doi.org/10.1103/PhysRevLett.107.170501
https://doi.org/10.1103/PhysRevLett.107.170501
https://doi.org/10.1103/PhysRevLett.107.170501
https://doi.org/10.1103/PhysRevA.84.053802
https://doi.org/10.1103/PhysRevA.84.053802
https://doi.org/10.1103/PhysRevA.84.053802
https://doi.org/10.1103/PhysRevA.84.053802
https://doi.org/10.1103/PhysRevA.88.053816
https://doi.org/10.1103/PhysRevA.88.053816
https://doi.org/10.1103/PhysRevA.88.053816
https://doi.org/10.1103/PhysRevA.88.053816
https://doi.org/10.1103/PhysRevA.95.052352
https://doi.org/10.1103/PhysRevA.95.052352
https://doi.org/10.1103/PhysRevA.95.052352
https://doi.org/10.1103/PhysRevA.95.052352
http://arxiv.org/abs/arXiv:quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevX.6.041028
https://doi.org/10.1103/PhysRevA.94.052336
https://doi.org/10.1103/PhysRevA.94.052336
https://doi.org/10.1103/PhysRevA.94.052336
https://doi.org/10.1103/PhysRevA.94.052336
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1103/PhysRevA.87.062104
https://doi.org/10.1103/PhysRevA.87.062104
https://doi.org/10.1103/PhysRevA.87.062104
https://doi.org/10.1103/PhysRevA.87.062104
https://doi.org/10.1103/PhysRevLett.106.200401
https://doi.org/10.1103/PhysRevLett.106.200401
https://doi.org/10.1103/PhysRevLett.106.200401
https://doi.org/10.1103/PhysRevLett.106.200401
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1103/PhysRevA.61.062312
https://doi.org/10.1103/PhysRevA.61.062312
https://doi.org/10.1103/PhysRevA.61.062312
https://doi.org/10.1103/PhysRevA.61.062312
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevA.86.012328
https://doi.org/10.1103/PhysRevLett.101.260401
https://doi.org/10.1103/PhysRevLett.101.260401
https://doi.org/10.1103/PhysRevLett.101.260401
https://doi.org/10.1103/PhysRevLett.101.260401
https://doi.org/10.1126/science.1146204
https://doi.org/10.1126/science.1146204
https://doi.org/10.1126/science.1146204
https://doi.org/10.1126/science.1146204
https://doi.org/10.1103/PhysRevA.80.053822
https://doi.org/10.1103/PhysRevA.80.053822
https://doi.org/10.1103/PhysRevA.80.053822
https://doi.org/10.1103/PhysRevA.80.053822
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.78.063811
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1103/PhysRevA.73.042310
https://doi.org/10.1038/nphoton.2010.158
https://doi.org/10.1038/nphoton.2010.158
https://doi.org/10.1038/nphoton.2010.158
https://doi.org/10.1038/nphoton.2010.158
https://doi.org/10.1103/PhysRevA.72.033822
https://doi.org/10.1103/PhysRevA.72.033822
https://doi.org/10.1103/PhysRevA.72.033822
https://doi.org/10.1103/PhysRevA.72.033822
https://doi.org/10.1364/OE.15.003568
https://doi.org/10.1364/OE.15.003568
https://doi.org/10.1364/OE.15.003568
https://doi.org/10.1364/OE.15.003568
https://doi.org/10.1103/PhysRevLett.119.183601
https://doi.org/10.1103/PhysRevLett.119.183601
https://doi.org/10.1103/PhysRevLett.119.183601
https://doi.org/10.1103/PhysRevLett.119.183601
https://doi.org/10.1103/PhysRevA.96.053835
https://doi.org/10.1103/PhysRevA.96.053835
https://doi.org/10.1103/PhysRevA.96.053835
https://doi.org/10.1103/PhysRevA.96.053835
https://doi.org/10.1103/PhysRevA.76.042327
https://doi.org/10.1103/PhysRevA.76.042327
https://doi.org/10.1103/PhysRevA.76.042327
https://doi.org/10.1103/PhysRevA.76.042327
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1088/1751-8121/aa9100
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1103/PhysRevLett.114.190402
https://doi.org/10.1103/PhysRevLett.114.190402
https://doi.org/10.1103/PhysRevLett.114.190402
https://doi.org/10.1103/PhysRevLett.114.190402
https://doi.org/10.1103/PhysRevA.90.013810
https://doi.org/10.1103/PhysRevA.90.013810
https://doi.org/10.1103/PhysRevA.90.013810
https://doi.org/10.1103/PhysRevA.90.013810
https://doi.org/10.1103/PhysRevLett.107.213602
https://doi.org/10.1103/PhysRevLett.107.213602
https://doi.org/10.1103/PhysRevLett.107.213602
https://doi.org/10.1103/PhysRevLett.107.213602
https://doi.org/10.1088/1367-2630/aaac25
https://doi.org/10.1088/1367-2630/aaac25
https://doi.org/10.1088/1367-2630/aaac25
https://doi.org/10.1088/1367-2630/aaac25
https://doi.org/10.1103/PhysRevLett.102.250501
https://doi.org/10.1103/PhysRevLett.102.250501
https://doi.org/10.1103/PhysRevLett.102.250501
https://doi.org/10.1103/PhysRevLett.102.250501
http://arxiv.org/abs/arXiv:1804.5763
https://doi.org/10.1103/PhysRevLett.85.2035
https://doi.org/10.1103/PhysRevLett.85.2035
https://doi.org/10.1103/PhysRevLett.85.2035
https://doi.org/10.1103/PhysRevLett.85.2035
https://doi.org/10.1103/PhysRevLett.120.040406
https://doi.org/10.1103/PhysRevLett.120.040406
https://doi.org/10.1103/PhysRevLett.120.040406
https://doi.org/10.1103/PhysRevLett.120.040406



