

MIT Open Access Articles

Search for New Phenomena in Monophoton Final States in Proton–proton Collisions at $\sqrt{s} = 8$ TeV

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Khachatryan, V., A.M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, et al. "Search for New Phenomena in Monophoton Final States in Proton–proton Collisions at $\sqrt{s} = 8$ TeV." Physics Letters B 755 (April 2016): 102–124 © 2016 CERN for the benefit of the CMS Collaboration

As Published: http://dx.doi.org/10.1016/J.PHYSLETB.2016.01.057

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/116633

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution 4.0 International License

Accepted Manuscript

Search for new phenomena in monophoton final states in proton–proton collisions at $\sqrt{s} = 8$ TeV

CMS Collaboration

Please cite this article in press as: CMS Collaboration, Search for new phenomena in monophoton final states in proton–proton collisions at $\sqrt{s} = 8$ TeV, *Phys. Lett. B* (2016), http://dx.doi.org/10.1016/j.physletb.2016.01.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Search for new phenomena in monophoton final states in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration^a

 $^{a}CERN$

Abstract

Results are presented from a search for new physics in final states containing a photon and missing transverse momentum. The data correspond to an integrated luminosity of 19.6 fb⁻¹ collected in proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS experiment at the LHC. No deviation from the standard model predictions is observed for these final states. New, improved limits are set on dark matter production and on parameters of models with large extra dimensions. In particular, the first limits from the LHC on branon production are found and significantly extend previous limits from LEP and the Tevatron. A cross section upper limit of 14.0 fb is set at the 95% confidence level for events with a monophoton final state with photon transverse momentum greater than 145 GeV and missing transverse momentum greater than 140 GeV.

Keywords: CMS, physics, monophoton, dark matter

1. Introduction

The production of events containing photons with large transverse momentum and having large missing transverse momentum at the CERN LHC is sensitive to physics beyond the standard model (SM). In this Letter we investigate three possible extensions of the SM: a model incorporating pair production of dark matter (DM) particles, and two models with extra spatial dimensions, as described below.

At the LHC, DM particles (χ) [1] can be produced in the process $q\bar{q} \rightarrow \gamma \chi \bar{\chi}$, where the photon is radiated by one of the incoming quarks. With a photon in the final state, we gain sensitivity to the production of invisible particles. The SM-DM interaction is assumed to be mediated by a virtual particle ("mediator") with a mass M much heavier than the fermionic DM particle mass (M_{χ}) . Various processes are contracted into an effective field theory (EFT) [2–5], assuming M much larger than the momentum transfer scale Q (i.e. $M \gg Q$) and a contact interaction scale Λ given by $\Lambda^{-2} = g_{\chi}g_{q}M^{-2}$, where g_{χ} and g_{q} are the mediator couplings to χ and to quarks, respectively. Using this formalism, results from searches at the LHC can be related to limits for direct searches sensitive to χ -nucleon scattering [5]. The ADD model [6, 7] of large extra dimensions is postulated to have *n* extra compactified spatial dimensions at a characteristic scale *R* that reflects an effective Planck scale M_D through $M_{Pl}^2 \approx M_D^{n+2}R^n$, where M_{Pl} is the Planck scale. If M_D is of the same order as the electroweak scale ($M_{EW} \sim 10^2 \text{ GeV}$), the large value of M_{Pl} can be interpreted as being a consequence of large-volume ($\sim R^n$) suppression from extra dimensional space. This model predicts a sizable cross section for the process $q\bar{q} \rightarrow \gamma G$, where G is a graviton that escapes detection, and motivates the search for events with a single γ and missing transverse momentum.

In both the ADD and branon models, the SM particles are constrained to live on a 3+1 dimensional 3brane surface. In the branon family of models [8–11], it is assumed that the brane fluctuates in the extra dimensions, in contrast to the ADD model, where the brane is rigid. In this alternative scheme, the brane tension scale f is expected to be much smaller than other relevant scales such as M_D . The particles associated with such fluctuations are scalar particles called branons. Branons are stable and massive scalar particles of mass M_B , and are natural candidates for dark matter [12]. They can be pair-produced in association with SM particles at the LHC, giving rise to γ +missing transverse momentum final states [13]. If N extra dimensions are considered, then N branons are expected and their production cross

Email address:

cms-publication-committee-chair@cern.ch (The CMS
Collaboration)

Preprint submitted to Elsevier

section scales with N. In the following, only the N = 1 case is considered.

The primary background to the γ +missing transverse momentum signal is the irreducible SM background from $Z\gamma \rightarrow \nu \bar{\nu} \gamma$ production. Other backgrounds include $W\gamma \rightarrow \ell \nu \gamma$ (where ℓ is an undetected charged lepton), $W \rightarrow e\nu$ (where the electron is misidentified as a photon), γ +jet, QCD multijet (with a jet misidentified as a photon), $Z\gamma \rightarrow \ell \ell \gamma$, and diphoton events, as well as backgrounds from beam halo.

2. The CMS detector

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the *x* axis pointing to the center of the LHC, the *y* axis pointing up (perpendicular to the LHC plane), and the *z* axis along the anticlockwise-beam direction. The azimuthal angle ϕ is measured from the *x*-axis in the *x*-y plane and the polar angle θ is measured from the *z*-axis. Pseudorapidity is defined as $\eta = -\ln[\tan(\theta/2)]$.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel ($|\eta| < 1.479$) and two endcap (1.479 < $|\eta|$ < 3.0) sections. Electrons are found by associating clusters of ECAL energy with adjacent tracker hits. Muons are detected in the pseudorapidity range $|\eta| < 2.4$, using gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, and reconstructed from tracks in these detectors combined with those from the silicon tracker. Extensive forward calorimetry $(3.15 < |\eta| < 4.9)$ complements the coverage provided by the barrel and endcap detectors. The energy resolution for photons with transverse momentum \geq 60 GeV varies between 1.1% and 2.6% over the solid angle of the ECAL barrel, and from 2.2% to 5.0% in the endcaps [14]. The timing measurement of the ECAL has a resolution better than 200 ps for energy deposits larger than 10 GeV [14]. In the η - ϕ plane, and for $|\eta| < 1.48$, the HCAL cells map onto 5×5 arrays of ECAL crystals to form calorimeter towers projecting radially outward from the nominal interaction point. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref [15].

3. Event selection

In the following, it is convenient to refer to the missing transverse momentum vector, \vec{E}_{T} , defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed particles in an event. Its magnitude is referred to as \vec{E}_{T} .

Events are selected from a data sample corresponding to an integrated luminosity of 19.6 fb⁻¹ collected in proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS experiment at the LHC. Triggers requiring at least one electromagnetic cluster or a cluster along with large $E_{\rm T}$ are used. For the selected signal region of transverse energy $E_{\rm T}^{\gamma} > 145 \,{\rm GeV}$, pseudorapidity $|\eta^{\gamma}| < 1.44$, and $E_T > 140 \text{ GeV}$, these triggers are $\approx 96\%$ efficient for $E_{\rm T}^{\gamma}$ in the 145–160 GeV range, and fully efficient for $E_{\rm T}^{\hat{\gamma}} > 160 \,{\rm GeV}$. Events are required to have at least one primary vertex reconstructed within a longitudinal distance of |z| < 24 cm of the center of the detector and at a distance <2 cm from the z-axis. The primary vertex is chosen to be the vertex with the highest sum in $p_{\rm T}^2$ of its associated tracks, where $p_{\rm T}$ is the transverse momentum.

Candidate electromagnetic (EM) showers are restricted to the barrel region of the ECAL, where their purity is highest [16]. Photon candidates [17] are selected by requiring the ratio of the energy deposited in the closest HCAL tower to the energy of the EM showers in the ECAL to be less than 0.05 and the spatial distribution of energy in the EM shower to be consistent with that expected for a photon. In order to reject hadronic activity, photon candidates are required to be isolated, using the sum of the transverse energy of additional particles within a cone of $\Delta R < 0.3$ centered on the shower axis, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, reconstructed using a particle-flow algorithm [18, 19]. In this isolation cone, the sum of the transverse energy (in GeV) of additional photons is required to be less than $(0.7 + 0.005 E_{\rm T}^{\gamma})$, of neutral hadrons is required to be less than $(1.0 + 0.04E_T^{\gamma})$, and of charged hadrons is required to be less than 1.5. The charged hadron contribution includes that calculated from the other interaction vertices in the event (pileup), arising from the uncertainty in assigning the photon candidate to a particular vertex. The effect of pileup on the isolation variables is mitigated using the scheme presented in Ref. [20].

The ECAL crystal containing the highest energy within the cluster of the photon candidate is required to have a time of deposition within ± 3 ns of particles arriving from the collision. This selection suppresses contributions from noncollision backgrounds. To reduce contamination from beam halo, the crystals (excluding

those associated with the photon candidate) are examined for evidence of the passage of a minimum-ionizing particle roughly parallel to the beam axis (beam halo tag). If sufficient energy is found along such a trajectory, the event is rejected. Highly ionizing particles traversing the sensitive volume of the readout photodiodes can give rise to spurious signals within the EM shower [21]. These EM showers are eliminated by requiring consistency among the timings of energy depositions in all crystals within the shower. Photon candidates are rejected if they are likely to be electrons, as inferred from characteristic patterns of hits in the pixel detector, called "pixel seeds", that are matched to candidate EM showers [22].

Jets are reconstructed with the anti- $k_{\rm T}$ algorithm [23] using a radius parameter of R = 0.5. Jets that are identified as arising from pileup are rejected [24]. In order to reduce QCD multijet backgrounds, events are rejected if there is more than one jet with $p_{\rm T} > 30 \,{\rm GeV}$ at $\Delta R > 0.5$ relative to the photon. Events with isolated leptons (electron or muon) with $p_{\rm T} > 10 \,{\rm GeV}, |\eta| < 2.4$ (2.5) for muons (electrons) and $\Delta R > 0.5$ relative to the photon, are also rejected to suppress $W\gamma \rightarrow \ell v\gamma$ and $Z\gamma \rightarrow \ell\ell\gamma$ backgrounds. Lepton isolation is computed using the sum of transverse energies of tracks, ECAL, and HCAL depositions within a surrounding cone of $\Delta R < 0.3$. For electron isolation, each contributing component of transverse energy (tracker, ECAL, and HCAL) is required to be less than 20% of the electron $p_{\rm T}$, while for muons only the tracker component is considered and is required to be less than 10% of the muon $p_{\mathrm{T}}.$

The candidate events are required to have $\not\!\!\!E_T > 140 \text{ GeV}$. A topological requirement of $\Delta \phi(\not\!\!\!E_T, \gamma) > 2 \text{ rad}$ is applied to suppress the contribution from the γ +jet background.

A major source of background comes from events with mismeasured $\not\!\!E_T$ due to finite detector resolution, mainly associated with jets. In order to reduce the contribution from events with mismeasured $\not\!\!E_T$, for each event a χ^2 function is constructed and minimized:

$$\chi^{2} = \sum_{i} \left(\frac{(p_{\mathrm{T}}^{\mathrm{reco}})_{i} - (\widetilde{p}_{\mathrm{T}})_{i}}{(\sigma_{p_{\mathrm{T}}})_{i}} \right)^{2} + \left(\frac{\overline{\ell}_{x}}{\sigma_{\overline{\ell}_{x}}} \right)^{2} + \left(\frac{\overline{\ell}_{y}}{\sigma_{\overline{\ell}_{y}}} \right)^{2}, \quad (1)$$

 Ref [25]. Lastly, \widetilde{E}_x and \widetilde{E}_y can be expressed as:

$$\widetilde{E}_{x,y} = E_{x,y}^{\text{reco}} + \sum_{i=\text{objects}} (p_{x,y}^{\text{reco}})_i - (\widetilde{p}_{x,y})_i$$

$$= -\sum_{i=\text{objects}} (\widetilde{p}_{x,y})_i$$
(2)

In events with no genuine E_{T} , the mismeasured quantities will be more readily re-distributed back into the particle momenta, which will result in a low χ^2 value. On the other hand, in events with genuine E_T from undetected particles, minimization of the χ^2 function will be more difficult and generally will result in larger χ^2 values. To reduce the contribution of events with mismeasured $E_{\rm T}$, the probability value obtained from the χ^2 minimization is required to be smaller than 10⁻⁶ and $\widetilde{E}_{T} = \sqrt{\widetilde{E}_{x}^{2}} + \widetilde{E}_{y}^{2}$, in which the original reconstructed particle momenta are replaced with those obtained with the χ^2 minimization, is required to be greater than 120 GeV. These requirements are optimized using the significance estimator S/ \sqrt{S} + B and remove 80% (35%) of γ +jet (QCD multijet) events, while keeping 99.5% of signal events.

After applying all selection criteria, 630 candidate events remain in the sample.

4. Background determination

Backgrounds from $Z\gamma \rightarrow \nu \bar{\nu} \gamma$, $W\gamma \rightarrow \ell \nu \gamma$, γ +jet, $Z\gamma \rightarrow \ell \ell \gamma$, and diphoton production are estimated from simulated samples processed through the full GEANT4based simulation of the CMS detector [26, 27], trigger emulation, and the same event reconstruction programs as used for data. The $Z\gamma$ \rightarrow $\nu\bar{\nu}\gamma$ and $W\gamma$ \rightarrow $\ell\nu\gamma$ samples are generated with MADGRAPH 5v1.3.30 [28], and the cross section is corrected to include next-to-leadingorder (NLO) effects through an $E_{\rm T}^{\gamma}$ dependent correction factor calculated with MCFM 6.1 [29]. The central values of the NLO cross section and the prediction for the photon $E_{\rm T}$ spectrum are calculated following the prescriptions of the PDF4LHC Working Group [30-32]. This prescription is also used to calculate the systematic uncertainties due to the parton distribution functions (PDF), and the strong coupling α_s and its dependence on the factorization scale and renormalization scale. The systematic uncertainties in the NLO cross sections are found to be in the range 8% to 48% and 16% to 82% for $Z\gamma \rightarrow \nu \overline{\nu} \gamma$ and $W\gamma \rightarrow \ell \nu \gamma$, respectively, over the $E_{\rm T}^{\gamma}$ spectrum from 145 GeV to 1000 GeV. The strong correlation in the uncertainties of the two channels is

propagated to the final result. The $Z\gamma \rightarrow \ell\ell\gamma$ sample is obtained using the MADGRAPH 5v1.3.30 generator [28]. The γ +jet and diphoton samples are obtained using the PYTHIA 6.426 generator [33] at leading order (LO), with the CTEQ6L1 [34] PDF. The γ +jet cross section is corrected to include NLO effects.

The backgrounds estimated from simulations are scaled by a factor *F* to correct for observed differences in efficiency between data and simulation. This overall data/simulation correction factor receives contributions from four sources as follows: the photon reconstruction efficiency ratio, estimated to be 0.97 ± 0.02 using $Z \rightarrow ee$ decays; the ratio of probabilities for satisfying a crystal timing requirement, estimated to be 0.99 ± 0.03 from a sample of electron data; the lepton veto efficiency ratio, estimated to be 0.99 ± 0.03 from a the jet veto efficiency ratio, estimated to be 0.99 ± 0.05 using $W \rightarrow ev$ decays; and confirmed using $Z\gamma \rightarrow ee\gamma$ data samples. The total correction factor obtained by combining these contributions is $F = 0.94 \pm 0.06$.

The total uncertainty in the backgrounds estimated through simulation includes contributions from the theoretical cross section, data-simulation factor F, pileup modeling, and the accuracy of energy calibration and resolution for photons [14], jets [35], and E_T [36]. The estimated contribution from the $Z\gamma \rightarrow \nu \overline{\nu}\gamma$ and $W\gamma \rightarrow \ell \nu \gamma$ processes to the background are, respectively, 345 ± 43 and 103 ± 21 events, where the dominant uncertainty is from the theoretical cross section calculations. To gain confidence in the estimates from simulation, control regions, which are dominated by these backgrounds and have negligible contributions from a signal, are defined in the data. As a crosscheck, the total contribution from $Z\gamma \rightarrow v\overline{v}\gamma$ is estimated in data using a sample of $Z\gamma \rightarrow \mu\mu\gamma$ candidates, where the muons from the decay of the Z boson are considered as invisible particles hence contributing to E_T [37]. The normalization is corrected both for the ratio of the branching fractions of $Z\gamma \rightarrow \nu \bar{\nu} \gamma$ and $Z\gamma \rightarrow \mu \mu \gamma$, and for differences in the acceptance and selection efficiencies. This crosscheck provides an estimate of 341 ± 50 events, where the uncertainty is dominated by the size of the sample. A control region dominated by the $W\gamma$ process is also studied by using the signal selection but inverting the lepton veto i.e., the final state is required to contain a reconstructed charged lepton. After this selection, 104 events are observed and 126 ± 23 are expected.

Electrons misidentified as photons arise mainly from highly off-shell W boson ($W^* \rightarrow e\nu$) events. These backgrounds are inclusively estimated from data. The efficiency, ϵ_{pix} , of matching electron showers in the calorimeter to pixel seeds is estimated using a tag-andprobe technique [38] on $Z \rightarrow ee$ events in data, verified with simulated events. The efficiency is found to be $\epsilon_{pix} = 0.984 \pm 0.002$ for electrons with $E_T > 100$ GeV. A control sample of $W^* \rightarrow ev$ events is also obtained from data through use of all the standard candidate selections, with the exception of the pixel seed, which is inverted. The number of events in this sample is scaled by the value of $(1 - \epsilon_{pix})/\epsilon_{pix}$ resulting in an inclusive estimate of 60 ± 6 W^{*} $\rightarrow ev$ events in the signal region.

The contamination from jets misidentified as photons is estimated in data using a control sample with E_T < 30 GeV, dominated by QCD events. This sample is used to measure the ratio of the number of objects that pass photon identification criteria to the number that fail at least one of the isolation requirements. The control sample also contains objects from QCD direct photon production that must be removed from the numerator of the ratio. This contribution is estimated by fitting the shower shape distribution with template distributions. For true photons, a template for the shower width is formed using simulated γ +jets events. For jets misidentified as photons, the template is formed using a separate control sample, where the objects are required to fail charged hadron isolation. This corrected ratio is used to scale a set of data events that pass the denominator selection of the fake ratio and all other candidate requirements, providing an inclusive estimate for all backgrounds in which jets are misidentified as photons of 45 ± 14 events.

Noncollision backgrounds are estimated from data by examining the shower width of the EM cluster and the time-of-arrival of the signal in the crystal containing the largest deposition of energy. Templates for anomalous signals, cosmic ray muons, and beam halo events are obtained by inverting the shower shape and beam halo tag requirements, and are fitted to the timing distribution of the candidate sample. The only nonnegligible residual contribution to the candidate sample is found to arise from the beam halo, with an estimated 25 ± 6 events.

5. Results

Table 1 shows the estimated number of events and associated uncertainty from each background process along with the total number of events observed in the data, for the entire data set, which corresponds to 19.6 fb^{-1} . The number of events observed in data agrees with the expectation from SM background. The photon $E_{\rm T}$ and $E_{\rm T}$ distributions for the selected candidates and estimated backgrounds are shown in Fig. 1. The spectra expected from the ADD model for $M_{\rm D} = 2 \text{ TeV}$ and

n = 3 are also shown for comparison. Limits are set for the DM, ADD, and branon models using the $E_{\rm T}^{\gamma}$ spectrum.

Table 1: Summary of estimated backgrounds and observed total number of candidates. Backgrounds listed as "Others" include the small contributions from $W \rightarrow \mu v$, $W \rightarrow \tau v$, $Z\gamma \rightarrow \ell \ell \gamma$, $\gamma \gamma$, and γ +jet. Uncertainties include both statistical and systematic contributions, and the total systematic uncertainty includes the effect of correlations in the individual estimates.

Process	Estimate
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	345 ± 43
$\mathrm{W}(\rightarrow\ell\nu)+\gamma$	103 ± 21
electron $\rightarrow \gamma$ MisID	60 ± 6
jet $\rightarrow \gamma$ MisID	45 ± 14
Beam halo	25 ± 6
Others	36 ± 3
Total background	614 ± 63
Data	630

Table 2: Observed (expected) 95% CL and 90% CL upper limits on σA as a function of the cut on the E_T^{γ} for the photon and $\not\!\!\!E_T$ final state. The $\not\!\!\!E_T$ threshold is fixed at 140 GeV. In addition to 95% CL upper limits, 90% limits are also shown to allow direct comparison with results from astrophysics DM searches.

$E_{\rm T}^{\gamma}$ Threshold [GeV]	σA [fb]	σA [fb]
-	(95% CL)	(90% CL)
145	14 (13)	12 (11)
160	11 (10)	9.3 (8.8)
190	5.4 (6.4)	4.4 (5.4)
250	2.9 (3.2)	2.4 (2.7)
400	0.87 (1.0)	0.71 (0.83)
700	0.22 (0.32)	0.16 (0.25)

The product of the acceptance and the efficiency $(A\epsilon)$ is estimated by calculating $A\epsilon_{\rm MC}$ from the simulation, and multiplying it by the F to account for the difference in efficiency between simulation and data. The ADD, DM, and branon simulated samples are processed through the full GEANT4-based simulation of the CMS detector [26, 27], trigger emulation, and the same event reconstruction programs as used for data. For DM production, the simulated samples are produced using MADGRAPH 5v1.3.12 [39], and requiring $E_{\rm T}^{\gamma} > 130 \,{\rm GeV}$ and $|\eta^{\gamma}| < 1.5$. The estimated value of $A\epsilon_{\rm MC}$ for M_{χ} in the range 1-1000 GeV varies over the range 41.6-44.4% for vector and 41.4-44.1% for axial-vector couplings, respectively. The $E_{\rm T}^{\gamma}$ spectra for ADD simulated events are generated using PYTHIA 8.153 [40], requiring $E_{\rm T}^{\gamma}$ > 130 GeV. The $A\epsilon_{MC}$ for the ADD model varies over the range 33.4-37.4% in the parameter space spanned by n = 3-6 and $M_D = 1-3$ TeV. The spectra for sim-

Figure 1: The photon $E_{\rm T}$ and $E_{\rm T}$ distributions for the candidate sample, compared with estimated contributions from SM backgrounds, and the predictions from the ADD model for $M_{\rm D} = 2$ TeV and n = 3. The horizontal bar on each data point indicates the width of the bin. The background uncertainty includes statistical and systematic components. The bottom panel shows the ratio of data and SM background predictions.

ulated branon events are generated using MADGRAPH 5v1.5.5 [39], requiring $E_{\rm T}^{\gamma} > 130 \,{\rm GeV}$. The value of $A\epsilon_{\rm MC}$ for branon production varies over the range 41.3–48.9% in the parameter space spanned by the range of branon masses $M_{\rm B} = 100-3500 \,{\rm GeV}$ and brane tensions $f = 100-1000 \,{\rm GeV}$. The systematic uncertainty in $A\epsilon_{\rm MC}$ from the modeling of pileup, the energy calibration, and the resolution for photons, jets, and $E_{\rm T}$ is $\pm 2.1\%$. The systematic uncertainty from the scale fac-

Figure 2: Upper limits at 95% confidence level (CL) on the product of cross section and acceptance as a function of the E_T^{γ} threshold (>145 GeV) for the photon and E_T final state.

tor is 6.4%, resulting in a total systematic uncertainty in $A\epsilon_{\rm MC}$ of 6.7%. The systematic uncertainty in the measured integrated luminosity is $\pm 2.6\%$ [41]. Theoretical uncertainties in the acceptance of the signal processes, based on the choice of PDF and scale, are found to be of order 1%, and thus have a negligible effect on the observed limits.

Upper limits on the signal cross section are calculated using the CL_s method [42, 43]. In the fit to the observed spectra, systematic uncertainties are represented by nuisance parameters with log-normal prior probability density functions. The changes in shape of the expected spectra that result from varying the photon energy scale and the theoretical differential cross section within their respective uncertainties are treated using a morphing technique [44]. The signal region studied in this analysis is defined with the requirement $E_{\rm T}^{\gamma} > 145 \,{\rm GeV}$. The observed and expected upper limits on the product of cross section and acceptance (σA), plotted as a function of the $E_{\rm T}^{\gamma}$ threshold (> 145 GeV), are shown in Fig. 2 and listed in Table 2. Results shown can be generally applied to any new physics that leads to the photon and $E_{\rm T}$ final state.

Tables 3 and 4 summarize the 90% CL upper limits on the production cross sections of the DM particles $\chi \bar{\chi}$, as a function of M_{χ} . In general, the effective operator could be a mixture of vector and axial terms; for explicitness, the limiting cases of pure vector and pure axial vector operators have been chosen,

Figure 3: The 90% CL upper limits on the χ -nucleon cross section as a function of the DM particle mass M_{χ} for spin-independent couplings (top) and spin-dependent couplings (bottom). Results from the current search are shown as "CMS Monophoton, 8 TeV". Shown are the limits from CMS using monojet [37] and monolepton [45] signatures (where ξ is the interference parameter addressing potentially different couplings to up- and down-type quarks and values of $\xi = \pm 1$ maximize the effects of interference). Also shown are the limits from several published direct detection experiments [46–55]. The solid and hatched yellow contours show the 68% and 95% CL contours respectively for a possible signal from CDMS [56]. Limits similar to those from the current search are obtained by ATLAS [57].

corresponding to spin-independent and spin-dependent interactions, respectively. Following the procedures of Refs. [2] and [5], the upper limits on the DM production

Table 3: Dark Matter production cross sections as a function of the DM mass, assuming a vector interaction: theoretical DM production cross sections, where the generated photon transverse momentum is greater than 130 GeV and the contact interaction scale Λ is 10 TeV; observed (expected) 90% CL upper limits on the DM production cross section σ ; 90% CL lower limits on the contact interaction scale Λ ; and 90% CL upper limits on the χ -nucleon cross section.

Mass [GeV]	$\sigma_{ m theo}[m fb]$	σ [fb]	Λ [GeV]	$\sigma_{\chi- m nucleon} [m cm^2]$
1	2.5×10^{-4}	7.8 (10.6)	750 (694)	$8.2 \times 10^{-40} (1.1 \times 10^{-39})$
10	2.5×10^{-4}	8.0 (10.5)	745 (696)	$2.6 \times 10^{-39} (3.5 \times 10^{-39})$
100	2.4×10^{-4}	8.0 (11.2)	742 (684)	$3.2 \times 10^{-39} (4.4 \times 10^{-39})$
200	2.2×10^{-4}	7.6 (9.9)	729 (684)	$3.4 \times 10^{-39} (4.4 \times 10^{-39})$
300	1.8×10^{-4}	6.9 (9.4)	714 (660)	$3.7 \times 10^{-39} (5.1 \times 10^{-39})$
500	1.0×10^{-4}	5.2 (7.8)	666 (602)	$4.9 \times 10^{-39} (7.4 \times 10^{-39})$
1000	1.5×10^{-5}	4.9 (7.2)	422 (382)	$3.1 \times 10^{-38} (4.6 \times 10^{-38})$

Table 4: Dark Matter production cross sections as a function of the DM mass, assuming an axial-vector interaction: theoretical DM production cross sections, where the generated photon transverse momentum is greater than 130 GeV and the contact interaction scale Λ is 10 TeV; observed (expected) 90% CL upper limits on the DM production cross section σ ; 90% CL lower limits on the contact interaction scale Λ ; and 90% CL upper limits on the χ -nucleon cross section.

Mass [GeV]	$\sigma_{ m theo}[m fb]$	σ [fb]	Λ [GeV]	$\sigma_{\chi- m nucleon} [m cm^2]$
1	2.4×10^{-4}	7.9 (10.5)	746 (694)	$3.1 \times 10^{-41} (4.1 \times 10^{-41})$
10	2.5×10^{-4}	7.9 (11.0)	748 (688)	$9.6 \times 10^{-41} (1.3 \times 10^{-40})$
100	2.2×10^{-4}	8.2 (10.7)	718 (671)	$1.3 \times 10^{-40} (1.7 \times 10^{-40})$
200	1.6×10^{-4}	6.7 (9.5)	702 (643)	$1.5 \times 10^{-40} \ (2.0 \times 10^{-40})$
300	1.1×10^{-4}	5.8 (8.5)	663 (604)	$1.8 \times 10^{-40} \ (2.6 \times 10^{-40})$
500	4.9×10^{-5}	5.5 (8.1)	544 (495)	$4.0 \times 10^{-40} (5.9 \times 10^{-40})$
1000	4.2×10^{-6}	5.3 (7.7)	298 (272)	$4.5 \times 10^{-39} (6.5 \times 10^{-39})$

Figure 4: Observed limits on the SM-DM interaction mediator mass divided by coupling, $M/\sqrt{g_{\chi}g_{q}}$, as a function of the mediator mass M, assuming vector interactions, for DM particle masses of 50 GeV and 500 GeV. The width, Γ , of the mediator is varied between $M/8\pi$ and M/3. The dotted lines show contours of constant coupling.

cross sections are converted into corresponding lower limits on the contact interaction scale Λ , which are then translated into upper limits on the χ -nucleon scattering cross sections, calculated within the EFT framework. These results, as a function of M_{χ} , are listed in Tables 3 and 4 and also displayed in Fig. 3. Superimposed are the results published by other experiments [46–56].

Table 5: Observed and expected 95% CL lower limits on ADD model parameters $M_{\rm D}$, the effective Planck scale, as a function of *n*, the number of extra dimensions.

n	Obs. Limit [TeV]	Exp. Limit [TeV]
3	2.12	1.96
4	2.07	1.92
5	2.02	1.89
6	1.97	1.88

The validity of the EFT framework at the energy scale probed by the LHC has been recently explored in detail [2, 3, 5, 65–67]. These studies show that the condition $M \gg Q$ may not always be satisfied because of the high momentum transfer scale at the LHC energies. Therefore, to interpret the data in a meaningful way where the EFT does not hold, following [3] we consider a simplified model predicting DM produc-

Figure 5: The 95% CL lower limits on the effective Planck scale, M_D , as a function of the number of extra dimensions in the ADD model, together with LO results from similar searches at the Tevatron [58, 59], LEP [60–63] and CMS [64].

tion via an s-channel vector mediator. For this simplified model, the simulated samples are produced using MADGRAPH 5v1.5.12 [39], and requiring $E_{\rm T}^{\gamma} > 130 \,{\rm GeV}$ and $|\eta^{\gamma}| < 1.5$. Limits on the SM-DM interaction mediator mass divided by coupling, for this model, are shown in Fig. 4. The mass of the mediator is varied for two fixed values of the mass of the DM particle: 50 GeV and 500 GeV, and the width of the mediator is varied from $M/8\pi$ to M/3 [3]. The contours for fixed values of $\sqrt{g_{\chi}g_{q}}$ are also shown for comparison. For $M_{\chi} = 500 \,\text{GeV}$ the results for a mediator with a mass \gtrsim 5 TeV are similar to those obtained from the EFT approach as listed in Table 3, while the limits are weaker for $M \leq 100$ GeV. The limits are stronger than those of the EFT approach in the range of M from $\sim 100 \text{ GeV}$ to ~4 TeV, because of the resonance production enhancement in the cross section. In other words, the limits derived within the EFT framework are conservative in this region. For illustration purposes, similar distributions for $M_{\chi} = 50 \text{ GeV}$ are also shown in Fig. 4.

Upper limits at 95% CL are also placed on the production cross section of the ADD and branon models, and translated into exclusions on the parameter space of the models. For the ADD model we follow the convention of Ref. [69] and only consider $\hat{s} < M_D^2$ when calculating the cross sections. The limits on M_D for several values of *n*, the number of extra dimensions, are summarized in Table 5. These limits, along with existing

Figure 6: The 95% CL upper limits on the branon cross sections as a function of the branon mass $M_{\rm B}$ for N=1. Also shown are the theoretical cross sections in the branon model for the brane tension scale f = 100, 200, 300, and 400 GeV (top). Limits on f as a function of $M_{\rm B}$, compared to results from similar searches at LEP [68] and the Tevatron [13] (bottom).

ADD limits from the Tevatron [58, 59] and LEP [60–63], are shown in Fig. 5 as a function of $M_{\rm D}$. All these results are based on LO cross sections. Our results extend significantly the experimental limits on the ADD model in the single-photon channel [64, 70], and set limits of $M_{\rm D} > 2.12$ –1.97 TeV for n = 3–6, at 95% CL. These results are comparable with the recent ATLAS limits [57].

Limits on f for branons are summarized in Table 6. For massless branons, the brane tension f is found to be greater than 410 GeV at 95% CL. These limits along

Table 6: Observed and expected 95% CL lower limits on the brane tension f as a function of the branen mass $M_{\rm B}$ for N=1.

	$M_{\rm B}$ [GeV]									
	100	500	1000	1500	2000	2500	2800	3000	3200	3500
Obs. limit [GeV]	410	380	320	240	170	97	59	48	36	20
Exp. limit [GeV]	400	370	310	240	170	97	59	48	36	20

with the existing limits from LEP [68] and the Tevatron [13], are shown in Fig. 6. Branon masses $M_{\rm B}$ < 3.5 TeV are excluded at 95% CL for low brane tension (20 GeV). These bounds are the most stringent published to date. These limits complement astrophysical constraints already set on the branon parameters [12].

6. Summary

Proton-proton collision events containing a photon and missing transverse momentum have been investigated to search for new phenomena. In the $\sqrt{s} = 8 \text{ TeV}$ data set corresponding to 19.6 fb⁻¹ of integrated luminosity, no deviations from the standard model predictions are observed. Bounds are placed on models predicting monophoton events; specifically, 95% confidence level upper limits for the cross section times acceptance for the selected final state are set and vary from 14.0 fb for $E_{\rm T}^{\gamma} > 145$ GeV to 0.22 fb for $E_{\rm T}^{\gamma} > 700$ GeV. Constraints are set on χ production and translated into upper limits on vector and axial-vector contributions to the χ -nucleon scattering cross section, assuming the validity of the EFT framework. For $M_{\chi} = 10 \text{ GeV}$, the χ -nucleon cross section is constrained to be less than 2.6×10^{-39} cm² (9.6×10^{-41} cm²) for a spin-independent (spin-dependent) interaction at 90% confidence level. In addition the most stringent limits to date are obtained on the effective Planck scale in the ADD model with large spatial extra dimensions and on the brane tension scale in the branon model.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CIN-VESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-

and operation of the LHC and the CMS detector pro-

vided by the following funding agencies: BMWFW and

FWF (Austria); FNRS and FWO (Belgium); CNPq,

CAPES, FAPERJ, and FAPESP (Brazil); MES (Bul-

garia); CERN; CAS, MoST, and NSFC (China); COL-

CIENCIAS (Colombia); MSES and CSF (Croatia);

Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Oatar National Research Fund.

References

- R. Gaitskell, Direct detection of dark matter, Annual Review of Nuclear and Particle Science 54 (2004) 315. doi:10.1146/ annurev.nucl.54.070103.181244.
- [2] Y. Bai, P. J. Fox, R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048. doi:10.1007/ JHEP12(2010)048. arXiv:1005.3797v2.
- [3] P. J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011. doi:10.1103/PhysRevD.85.056011. arXiv:1109.4398.
- [4] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185. doi:10.1016/j.physletb. 2010.11.009. arXiv:1005.1286.
- [5] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010. doi:10.1103/PhysRevD.82.116010. arXiv:1008.1783.
- [6] N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263. doi:10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315.
- [7] N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004. doi:10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344.
- [8] R. Sundrum, Effective field theory for a three-brane universe, Phys. Rev. D 59 (1999) 085009. doi:10.1103/PhysRevD.59. 085009. arXiv:hep-ph/9805471.
- [9] A. Dobado, A. L. Maroto, The dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203. doi:10. 1016/S0550-3213(00)00574-5. arXiv:hep-ph/0007100.
- [10] J. A. R. Cembranos, A. Dobado, A. L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005. doi:10. 1103/PhysRevD.65.026005. arXiv:hep-ph/0106322.
- [11] J. A. R. Cembranos, R. L. Delgado, A. Dobado, Brane worlds at the LHC: branons and KK gravitons, Phys. Rev. D 88 (2013) 075021. doi:10.1103/PhysRevD.88.075021. arXiv:1306.4900.
- [12] J. A. R. Cembranos, A. Dobado, A. L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505. doi:10.1103/PhysRevD.68.103505. arXiv:hep-ph/0307062.
- [13] J. A. R. Cembranos, A. Dobado, A. L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001. doi:10. 1103/PhysRevD.70.096001. arXiv:hep-ph/0405286.
- [14] CMS Collaboration, Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $\sqrt{s} = 7$ TeV, JINST 8 (2013) P09009. doi:10.1088/1748-0221/8/09/P09009. arXiv:1306.2016.
- [15] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3 (2008) S08004. doi:10.1088/1748-0221/3/ 08/S08004.
- [16] CMS Collaboration, Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, 2015. arXiv:1502.02702, submitted to JINST.
- [17] CMS Collaboration, Isolated Photon Reconstruction and Identification at $\sqrt{s} = 7$ TeV, CMS Physics Analysis Summary CMS-PAS-EGM-10-006, 2011. URL: http://cdsweb.cern. ch/record/1324545.
- [18] CMS Collaboration, Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET, CMS Physics

Analysis Summary CMS-PAS-PFT-09-001, 2009. URL: http: //cdsweb.cern.ch/record/1194487.

- [19] CMS Collaboration, Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010. URL: http://cdsweb.cern.ch/ record/1247373.
- [20] M. Cacciari, G. P. Salam, G. Soyez, The catchment area of jets, JHEP 04 (2008) 005. doi:10.1088/1126-6708/2008/ 04/005. arXiv:0802.1188.
- [21] CMS Collaboration, Mitigation of anomalous APD signals in the CMS electromagnetic calorimeter, in: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012), Santa Fe, USA, 2012. doi:10.1088/ 1742-6596/404/1/012043, [J. Phys. Conf. Ser. 404 (2012) 012043].
- [22] CMS Collaboration, Electron Reconstruction and Identification at $\sqrt{s} = 7$ TeV, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, 2010. URL: http://cdsweb.cern.ch/ record/1299116.
- [23] M. Cacciari, G. P. Salam, G. Soyez, The anti-k_t jet clustering algorithm, JHEP 04 (2008) 063. doi:10.1088/1126-6708/ 2008/04/063. arXiv:0802.1189.
- [24] CMS Collaboration, Pileup Jet Identification, CMS Physics Analysis Summary CMS-PAS-JME-13-005, 2013. URL: http: //cdsweb.cern.ch/record/1581583.
- [25] CMS Collaboration, MET performance in 8 TeV data, CMS Physics Analysis Summary CMS-PAS-JME-12-002, 2013. URL: http://cdsweb.cern.ch/record/1543527.
- [26] S. Agostinelli, et al. (GEANT4), Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250. doi:10.1016/ S0168-9002(03)01368-8.
- [27] J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. doi:10.1109/TNS.2006. 869826.
- [28] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079. doi:10.1007/ JHEP07(2014)079. arXiv:1405.0301.
- [29] J. Campbell, R. Ellis, C. Williams, MCFM v6.1: A Monte Carlo for FeMtobarn processes at Hadron Colliders, 2011. URL: http://mcfm.fnal.gov/mcfm.pdf.
- [30] S. Alekhin, et al., The PDF4LHC Working Group Interim Report, 2011. arXiv:1101.0536.
- [31] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, R. Thorne, The PDF4LHC Working Group Interim Recommendations, 2011. arXiv:1101.0538.
- [32] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, M. Ubiali (NNPDF), Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296. doi:10.1016/j. nuclphysb.2011.03.021. arXiv:1101.1300.
- [33] T. Sjöstrand, S. Mrenna, P. Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 26. doi:10.1088/1126-6708/2006/ 05/026. arXiv:hep-ph/0603175.
- [34] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012. doi:10. 1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195.
- [35] CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, JINST 6 (2011) P11002. doi:10.1088/1748-0221/6/11/P11002.

arXiv:1107.4277.

- [36] CMS Collaboration, Missing transverse energy performance of the CMS detector, J. Instrum. 6 (2011) P09001. doi:10.1088/ 1748-0221/6/09/P09001.
- [37] CMS Collaboration, Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at $\sqrt{s} = 8$ TeV, 2014. arXiv:1408.3583, submitted to Eur. Phys. J. C.
- [38] CMS Collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the cms experiment, J. High Energy Phys. 10 (2011) 132. doi:10. 1007/JHEP10(2011)132.
- [39] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-Graph 5: going beyond, JHEP 06 (2011) 128. doi:10.1007/ JHEP06 (2011) 128. arXiv:1106.0522.
- [40] T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852. doi:10.1016/j.cpc.2008.01.036. arXiv:0710.3820.
- [41] CMS Collaboration, CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013. URL: http://cdsweb. cern.ch/record/1598864.
- [42] A. L. Read, Presentation of search results: the *CL_s* technique, J. Phys. G 28 (2002) 2693. doi:10.1088/0954-3899/28/10/ 313.
- [43] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435. doi:10.1016/S0168-9002(99)00498-2. arXiv:hep-ex/9902006.
- [44] J. S. Conway, Nuisance parameters in likelihoods for multisource spectra, in: H. B. Propser, L. Lyons (Eds.), Proceedings of PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva, Switzerland, 2011, p. 115. doi:10.5170/ CERN-2011-006.
- [45] CMS Collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at $\sqrt{s} = 8$ TeV, 2014. arXiv:1408.2745, submitted to Phys. Rev. D.
- [46] E. Aprile, et al. (XENON100), Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301. doi:10.1103/PhysRevLett.109. 181301. arXiv:1207.5988.
- [47] Z. Ahmed, et al. (CDMS), Results from a low-energy analysis of the CDMS II germanium data, Phys. Rev. Lett. 106 (2011) 131302. doi:10.1103/PhysRevLett.106. 131302. arXiv:1011.2482v3.
- [48] Z. Ahmed, et al. (CDMS II), Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619. doi:10.1126/ science.1186112.
- [49] C. E. Aalseth, et al. (CoGeNT), Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301. doi:10.1103/ PhysRevLett.106.131301. arXiv:1002.4703.
- [50] M. Felizardo, et al. (SIMPLE), Final Analysis and Results of the Phase II SIMPLE Dark Matter Search, Phys. Rev. Lett. 108 (2012) 201302. doi:10.1103/PhysRevLett.108. 201302. arXiv:1106.3014.
- [51] E. Behnke, et al. (COUPP), First Dark Matter Search Results from a 4-kg CF₃I Bubble Chamber Operated in a Deep Underground Site, Phys. Rev. D 86 (2012) 052001. doi:10. 1103/PhysRevD.86.052001. arXiv:1204.3094, [Erratum: 10.1103/PhysRevD.90.079902].
- [52] M. G. Aartsen, et al. (IceCube), Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys.

Rev. Lett. 110 (2013) 131302. doi:10.1103/PhysRevLett. 110.131302. arXiv:1212.4097.

- [53] T. Tanaka, et al. (Super-Kamiokande), An indirect search for weakly interacting massive particles in the sun using 3109.6 days of upward-going muons in Super-Kamiokande, Astrophys. J. 742 (2011) 78. doi:10.1088/0004-637X/742/2/78. arXiv:1108.3384.
- [54] D. S. Akerib, et al. (LUX), First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303. doi:10.1103/ PhysRevLett.112.091303. arXiv:1310.8214.
- [55] R. Agnese, et al. (SuperCDMS Soudan), Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett. 112 (2014) 041302. doi:10.1103/ PhysRevLett.112.041302. arXiv:1309.3259.
- [56] R. Agnese, et al. (CDMS), Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301. doi:10.1103/PhysRevLett.111. 251301.arXiv:1304.4279.
- [57] ATLAS Collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008. doi:10.1103/PhysRevD.91.012008. arXiv:1411.1559.
- [58] T. Aaltonen, et al. (CDF), Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 101 (2008) 181602. doi:10.1103/PhysRevLett. 101.181602. arXiv:0807.3132.
- [59] V. M. Abazov, et al. (D0), Search for Large Extra Dimensions via Single Photon plus Missing Energy Final States at \sqrt{s} = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 011601. doi:10.1103/ PhysRevLett.101.011601. arXiv:0803.2137.
- [60] J. Abdallah, et al. (DELPHI), Photon events with missing energy in e⁺ e⁻ collisions at √s = 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395. doi:10.1140/epjc/s2004-02051-8. arXiv:hep-ex/0406019.
- [61] P. Achard, et al. (L3), Single- and multi-photon events with missing energy in e⁺ e⁻ collisions at LEP, Phys. Lett. B 587 (2004) 16. doi:10.1016/j.physletb.2004.01.010. arXiv:hep-ex/0402002.
- [62] G. Abbiendi, et al. (OPAL), Photonic events with missing energy in $e^+ e^-$ collisions at $\sqrt{s} = 189$ GeV, Eur. Phys. J. C 18 (2000) 253. doi:10.1007/s100520000522. arXiv:hep-ex/0005002.
- [63] A. Heister, et al. (ALEPH), Single photon and multiphoton production in e⁺ e⁻ collisions at √s up to 209 GeV, Eur. Phys. J. C 28 (2003) 1. doi:10.1140/epjc/s2002-01129-7.
- [64] CMS Collaboration, Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803. doi:10. 1103/PhysRevLett.108.261803. arXiv:1204.0821.
- [65] H. An, X. Ji, L.-T. Wang, Light dark matter and Z' dark force at colliders, JHEP 07 (2012) 182. doi:10.1007/JHEP07(2012) 182. arXiv:1202.2894.
- [66] A. Friedland, M. L. Graesser, I. M. Shoemaker, L. Vecchi, Probing nonstandard standard model backgrounds with LHC monojets, Phys. Lett. B 714 (2012) 267. doi:10.1016/j.physletb. 2012.06.078. arXiv:1111.5331.
- [67] O. Buchmueller, M. J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025. doi:10.1007/JHEP01(2014)025.arXiv:1308.6799.
- [68] P. Achard, et al. (L3), Search for branons at LEP, Phys. Lett. B 597 (2004) 145. doi:10.1016/j.physletb.2004.07.014.

arXiv:hep-ex/0407017.

- [69] G. F. Giudice, R. Rattazzi, J. D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3. doi:10.1016/S0550-3213(99)00044-9. arXiv:hep-ph/9811291.
- [70] ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \sqrt{s} = 7 TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802. doi:10.1103/PhysRevLett.110. 011802. arXiv:1209.4625.

Yerevan Physics Institute, Yerevan, Armenia

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

W. Adam, T. Bergauer, M. Dragicevic, J. Erö,
M. Friedl, R. Frühwirthtextsuperscript1,
V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec,
M. Jeitlertextsuperscript1, W. Kiesenhofer, V. Knünz,
M. Krammertextsuperscript1, I. Krätschmer, D. Liko,
I. Mikulec, D. Rabadytextsuperscript2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss,
W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulztextsuperscript1

National Centre for Particle and High Energy Physics, Minsk, Belarus

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, S. Blyweert, J. D'Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniètextsuperscript2, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

S. Basegmez, C. Beluffitextsuperscript3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammancotextsuperscript4, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popovtextsuperscript5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Y.

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Mora Herrera, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

W. Carvalho, J. Chinellatotextsuperscript6,
A. Custódio, E.M. Da Costa, D. De Jesus
Damiao, C. De Oliveira Martins, S. Fonseca De
Souza, H. Malbouisson, D. Matos Figueiredo,
L. Mundim, H. Nogima, W.L. Prado Da Silva,
J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli
Manganotetextsuperscript6, A. Vilela Pereira

Universidade Estadual Paulista ^{*a*}, Universidade Federal do ABC ^{*b*}, São Paulo, Brazil

C.A. Bernardes^b, S. Dogra^a, T.R. Fernandez Perez Tomei^a, E.M. Gregores^b, P.G. Mercadante^b, S.F. Novaes^a, Sandra S. Padula^a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Aleksandrov, V. Genchevtextsuperscript2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, L. Litov,B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestinatextsuperscript7, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, W. Zou

Universidad de Los Andes, Bogota, Colombia

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis Charles University, Prague, Czech Republic

M. Bodlak, M. Finger, M. Finger Jr.textsuperscript8

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

Assrantextsuperscript9, Elgammaltextsuperscript10,

S. Elgammaltextsuperscript10, M.A. Mahmoudtextsuperscript11,

A. Raditextsuperscript12[,]textsuperscript13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland

J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Neveu, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, P. Busson, C. Charlot,

T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic,

A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo,

P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen,

C. Ochando, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agramtextsuperscript14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Contetextsuperscript14, J.-C. Fontainetextsuperscript14, D. Gelé, U. Goerlach,

C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique

Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, G. Boudoultextsuperscript2, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardotextsuperscript2, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia

L. Rurua

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, O. Hindrichs, K. Klein, A. Ostapchuk, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukovtextsuperscript5

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemanntextsuperscript2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholztextsuperscript15, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, M. Hempeltextsuperscript15, D. Horton, H. Jung, A. Kalogeropoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmanntextsuperscript15, B. Lutz, R. Mankel, I. Marfintextsuperscript15, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Navak, O. Novgorodova, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte,

A. Raspereza, P.M. Ribeiro Cipriano, B. Roland,
E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena,
R. Schmidttextsuperscript15, T. Schoerner-Sadenius,
M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas
Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany

M. Aldaya Martin, V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

C. Barth, C. Baus, J. Berger, C. Böser, E. Butz,
T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert,
F. Hartmanntextsuperscript2, T. Hauthtextsuperscript2,
U. Husemann, I. Katkovtextsuperscript5,
A. Kornmayertextsuperscript2, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg,
G. Quast, K. Rabbertz, S. Röcker, H.J. Simonis,
F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand,
T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas,

J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, P. Hidas,

D. Horvathtextsuperscript16, F. Sikler, V. Veszpremi,

G. Vesztergombitextsuperscript17, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

N. Beni, S. Czellar, J. Karancsitextsuperscript18, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary

A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

ΈΡΤΕΟ ΜΑ

National Institute of Science Education and Research, Bhubaneswar, India

S.K. Swain

Panjab University, Chandigarh, India

S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta,

B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohantytextsuperscript2, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

T. Aziz, S. Banerjee, S. Bhowmiktextsuperscript19, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtutextsuperscript20, G. Kole, S. Kumar, M. Maitytextsuperscript19, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramagetextsuperscript21

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshiansohi, Η. Behnamian, S.M. Etesamitextsuperscript22, Α. Fahimtextsuperscript23, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi,

B. Safarzadehtextsuperscript24, M. Zeinali

University College Dublin, Dublin, Ireland M. Felcini, M. Grunewald

INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^c, Bari, Italy

- M. Abbrescia^{a,b}, C. Calabria^{a,b}, S.S. Chhibra^{a,b}, A. Colaleo^{*a*}, D. Creanza^{*a*,*c*}, N. De Filippis^{*a*,*c*}, $Palma^{a,b}$, Iaselli^{*a*,*c*}, L. Fiore^a, G. М. De $My^{a,c}$, G. Maggi^{*a*,*c*}, M. Maggi^{*a*}, S. Nuzzo^{*a,b*}, Pugliese^{*a*,*c*}, S. A. Pompili a,b , G. Radogna^{*a,b*}, textsuperscript2, Selvaggi^{a,b} R. G. A. Sharma, L. Silvestris^a, textsuperscript2, R. Venditti^{a,b} INFN Sezione di Bologna ^a, Università di Bologna^b, Bologna, Italy G. Abbiendi^{*a*}, A.C. Benvenuti^{*a*}, D. Bonacorsi^{*a*,*b*}, Braibant-Giacomelli^{*a*,*b*}, Brigliadori^{*a*,*b*}, S. L.
- R. Campanini^{a,b}, P. Capiluppi^{a,b}, A. Castro^{a,b}, F.R. Cavallo^{*a*}, G. Codispoti^{*a*,*b*}, M. Cuffiani^{*a*,*b*},

- A. Fanfani^{*a*,*b*} G.M. Dallavalle^{*a*}, F. Fabbri^a,
- Fasanella^{*a*,*b*}, P. Giacomelli^{*a*}, C. D. Grandi^a, L
- Guiducci^{*a,b*}, S. Marcellini^{*a*}, G. Masetti^{*a*},
- Montanari^a, F.L. Navarria^{a,b}, Α. A. Perrotta^{*a*},
- Primavera^{a,b}, A.M. Rossi^{a,b}, T. Rovelli^{a,b}, E. G.P. Siroli^{*a,b*}, N. Tosi^{*a,b*}, R. Travaglini^{*a,b*}

INFN Sezione di Catania^a, Università di Catania^b, CSFNSM^c, Catania, Italy

S. Albergo^{*a,b*}, G. Cappello^{*a*}, M. Chiorboli^{*a,b*}, $Costa^{a,b}$. F. Giordano^{*a,c*}, textsuperscript2, S.

R. Potenza^{*a,b*}, A. Tricomi^{*a,b*}, C. Tuve^{*a,b*}

INFN Sezione di Firenze^{*a*}, Università di Firenze^{*b*}, **Firenze**, Italy

- Ciulli a,b , G. Barbagli^a. V. С. Civinini^a,
- R. D'Alessandro^{a,b}, E. Focardi^{a,b}, E. Gallo^a,
- S. Gonzi^{*a,b*}, V. Gori^{*a,b*}, textsuperscript2, P. Lenzi^{*a,b*},
- M. Meschini^a, S. Paoletti^a, G. Sguazzoni^a,
- A. Tropiano a,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova^{*a*}, Università di Genova^{*b*}, Genova, Italy

R. Ferretti^{*a,b*}, F. Ferro^{*a*}, M. Lo Vetere^{*a,b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca^a, Università di Milano-Bicocca^b, Milano, Italy

- Dinardo a,b , Fiorendi^{a,b}. M.E. S. S.
- Gennai^a, text superscript 2, Gerosa^{*a,b*}, text superscript 2,
- Ghezzi^{*a*,*b*}, R. Α. Govoni^{*a,b*}, M.T. Lucchini^{*a,b*}, textsuperscript2,
- P. Malvezzi^{*a*}, R.A. Manzoni^{*a,b*}, A. Martelli^{*a,b*}, S.
- Marzocchi^{*a,b*}, D. Menasce^{*a*}, Β. L. Moroni^{*a*},
- M. Paganoni^{*a,b*}, D. Pedrini^{*a*}, S. Ragazzi^{*a,b*},
- N. Redaelli^{*a*}, T. Tabarelli de Fatis^{*a,b*}

INFN Sezione di Napoli ^a, Università di Napoli 'Federico II'^b, Università della Basilicata (Potenza)^c, Università G. Marconi (Roma)^d, Napoli, Italy

S. Buontempo^{*a*}, N. Cavallo^{*a*,*c*}, S. Di Guida^{*a,d*}, textsuperscript2, F. Fabozzi^{*a*,*c*}, A.O.M. Iorio^{*a,b*}, L. Lista^{*a*}, S. Meola^{*a,d*}, textsuperscript2, M. Merola^{*a*}, P. Paolucci^{*a*}, textsuperscript2

INFN Sezione di Padova^a, Università di Padova^b, Università di Trento (Trento)^c, Padova, Italy

P. Azzi^{*a*}, N. Bacchetta^{*a*}, D. Bisello^{*a,b*}, A. Branca^{*a,b*}, R. Carlin^{*a,b*}, P. Checchia^{*a*}, M. Dall'Osso^{*a,b*}, T. Dorigo^{*a*}, M. Galanti^{a,b}, U. Gasparini^{a,b}, P. Giubilato^{a,b}, Gozzelino^{*a*}, K. Kanishchev^{*a*,*c*}, S. Lacaprara^{*a*}, A. M. Margoni^{a,b}, A.T. Meneguzzo^{a,b}, J. Pazzini^{a,b}, N. Pozzobon^{a,b}, P. Ronchese^{a,b}, F. Simonetto^{a,b},

E. Torassa^a, M. Tosi^{a,b}, S. Vanini^{a,b}, S. Ventura^a,
P. Zotto^{a,b}, A. Zucchetta^{a,b}, G. Zumerle^{a,b}

INFN Sezione di Pavia ^a, Università di Pavia ^b, Pavia, Italy

M. Gabusi^{*a,b*}, S.P. Ratti^{*a,b*}, V. Re^{*a*}, C. Riccardi^{*a,b*}, P. Salvini^{*a*}, P. Vitulo^{*a,b*}

INFN Sezione di Perugia ^a, Università di Perugia ^b, Perugia, Italy

M. Biasini^{a,b}, G.M. Bilei^a, D. Ciangottini^{a,b},
L. Fanò^{a,b}, P. Lariccia^{a,b}, G. Mantovani^{a,b},
M. Menichelli^a, A. Saha^a, A. Santocchia^{a,b},
A. Spiezia^{a,b} textsuperscript2

INFN Sezione di Pisa^{*a*}, Università di Pisa^{*b*}, Scuola Normale Superiore di Pisa^c, Pisa, Italy Androsov^{*a*}, text superscript 25, Κ. P. Azzurri^a, G. Bagliesi^{*a*}, J. Bernardini^{*a*}, T. Boccali^{*a*}, G. Broccolo^{*a*,*c*}, R. Castaldi^a, M.A. Ciocci^{*a*}, text superscript 25, R. Dell'Orso^a, S. Donato^{a,c}, F. Fiori^{a,c}, L. Foà^{a,c}, Giassi^{*a*}, M.T. Grippo^{*a*}, text superscript 25, Α. Ligabue^{*a*,*c*}, T. Lomtadze^a, L. Martini^{a,b}, E. Messineo^{a,b}, C.S. Moon^{*a*}, text superscript 26, Α. F. Palla^{*a*}, textsuperscript2, A. Rizzi^{*a*,*b*}, A. Savoy-Navarro^{*a*}, textsuperscript27, A.T. Serban^{*a*}, P. Spagnolo^{*a*},

P. Squillacioti^{a,}textsuperscript25, R. Tenchini^a,
 G. Tonelli^{a,b}, A. Venturi^a, P.G. Verdini^a,
 C. Vernieri^{a,c,}textsuperscript2

INFN Sezione di Roma ^{*a*}, Università di Roma ^{*b*}, Roma, Italy

L. Barone^{a,b}, F. Cavallari^a, G. D'imperio^{a,b},
D. Del Re^{a,b}, M. Diemoz^a, C. Jorda^a,
E. Longo^{a,b}, F. Margaroli^{a,b}, P. Meridiani^a,
F. Micheli^{a,b} textsuperscript2, S. Nourbakhsh^{a,b},
G. Organtini^{a,b}, R. Paramatti^a, S. Rahatlou^{a,b},

C. Rovelli^{*a*}, F. Santanastasio^{*a,b*}, L. Soffi^{*a,b*}, textsuperscript2, P. Traczyk^{*a,b*}

INFN Sezione di Torino ^{*a*}, Università di Torino ^{*b*}, Università del Piemonte Orientale (Novara) ^{*c*}, Torino, Italy

N. Amapane^{a,b}, R. Arcidiacono^{a,c}, S. Argiro^{a,b},
M. Arneodo^{a,c}, R. Bellan^{a,b}, C. Biino^a, N. Cartiglia^a,
S. Casasso^{a,b},textsuperscript2, M. Costa^{a,b},
A. Degano^{a,b}, N. Demaria^a, L. Finco^{a,b}, C. Mariotti^a,
S. Maselli^a, E. Migliore^{a,b}, V. Monaco^{a,b}, M. Musich^a,
M.M. Obertino^{a,c},textsuperscript2, G. Ortona^{a,b},
L. Pacher^{a,b}, N. Pastrone^a, M. Pelliccioni^a, G.L. Pinna
Angioni^{a,b}, A. Potenza^{a,b}, A. Romero^{a,b}, M. Ruspa^{a,c},
R. Sacchi^{a,b}, A. Solano^{a,b}, A. Staiano^a, U. Tamponi^a

INFN Sezione di Trieste ^{*a*}, Università di Trieste ^{*b*}, Trieste, Italy

S. Belforte^a, V. Candelise^{a,b}, M. Casarsa^a, F. Cossutti^a,
G. Della Ricca^{a,b}, B. Gobbo^a, C. La Licata^{a,b},
M. Marone^{a,b}, A. Schizzi^{a,b}, T. Umer^{a,b}, A. Zanetti^a

Kangwon National University, Chunchon, Korea S. Chang, A. Kropivnitskaya, S.K. Nam Kyungpook National University, Daegu, Korea

D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea T.J. Kim

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

J.Y. Kim, S. Song

Korea University, Seoul, Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim,

B. Lee, K.S. Lee, S.K. Park, Y. Roh University of Seoul, Seoul, Korea

M. Choi, J.H. Kim, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea

Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania

A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruztextsuperscript28,

A. Hernandez-Almada, R. Lopez-Fernandez,

A. Sanchez-Hernandez Universidad Ibaroamaricana Maxica City Max

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

A. Morelos Pineda

University of Auckland, Auckland, New Zealand D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli,P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias,F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela,P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, I. Golutvin, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov,

V. Matveevtextsuperscript29, P. Moisenz, V. Palichik,

V. Perelygin, M. Savina, S. Shmatov, S. Shulha,

N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kimtextsuperscript30, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, V. Bunichev,
M. Dubinintextsuperscript31, L. Dudko, A. Ershov,
A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin,
S. Obraztsov, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov,

A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov,

R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin,

N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzictextsuperscript32, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez,S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernettextsuperscript7, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschitextsuperscript33, M. D'Alfonso, D. d'Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz,

G. Rolanditextsuperscript34, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicastextsuperscript35, D. Spiga,

J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi,

D. Treille, A. Tsirou, G.I. Verestextsuperscript17,

N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, R. Horisberger,

Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, **Zurich**, Switzerland

F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, C. Nägelitextsuperscript36, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumovtextsuperscript37, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland

C. Amslertextsuperscript38, M.F. Canelli, V. Chiochia,

A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster,

C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Adiguzel, Bakircitextsuperscript39, Α. M.N. S. Cercitextsuperscript40, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onenguttextsuperscript41, K. Ozdemir, S. Ozturktextsuperscript39, A. Polatoz, D. Sunar Cercitextsuperscript40, Β. Talitextsuperscript40, H. Topaklitextsuperscript39, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

Bilin, I.V. Β. S. Akin, Bilmis,

- Gamsizkantextsuperscript42, H. B. Isildaktextsuperscript43, G.
 - Karapinartextsuperscript44,
- K. Ocalantextsuperscript45, S. Sekmen, U.E. Surat,

M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

E.A. Albayraktextsuperscript46, E. Gülmez,

M. Kayatextsuperscript47, O. Kayatextsuperscript48,

T. Yetkintextsuperscript49

Istanbul Technical University, Istanbul, Turkey K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newboldtextsuperscript50, S. Paramesvaran, A. Poll, T. Sakuma, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaevtextsuperscript51, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucastextsuperscript50, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenkotextsuperscript37, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp[†], A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, USA

A. Avetisyan, T. Bose, C. Fantasia, P. Lawson,

C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA

J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA

R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA

K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson,J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy,F. Lacroix, O.R. Long, A. Luthra, M. Malberti,M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo,S. Wimpenny

University of California, San Diego, La Jolla, USA J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D'Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani,

V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu,

A. Vartak, C. Welke, F. Würthwein, A. Yagil

University of California, Santa Barbara, Santa Barbara, USA

D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, J.R. Vlimant, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA J.P. Cumalat, W.T. Ford, A. Gaz, M. Krohn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, Y. Musienkotextsuperscript29, S. Nahn, C. Newman-Holmes, V. O'Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, P. Milenovictextsuperscript52, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas,

S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper,

V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O'Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA

B. Bilkitextsuperscript53, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkayatextsuperscript54, A. Mestvirishvili,

A. Moeller, J. Nachtman, H. Ogul, Y. Onel,F. Ozoktextsuperscript46, A. Penzo, R. Rahmat,S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA

B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA

P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA

I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA

A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph,

C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch,

M. Yang, M. Zanetti, V. Zhukova

ivi. Tung, ivi. Zunetti, v. Zhukovu

University of Minnesota, Minneapolis, USA

B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller,

D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA

J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA

K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA

A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA

O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Sticklandtextsuperscript2, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA

E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

V.E. Barnes, D. Benedetti, D. Bortoletto, M. De Mattia, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA N. Parashar, J. Stupak

Rice University, Houston, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

- B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro,
- R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido,
- P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili,
- S. Korjenevski, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA

R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana,

E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

O. Bouhalitextsuperscript55, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamontextsuperscript56, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA

E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA

M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, P. Verwilligen, C. Vuosalo, N. Woods

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria

2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia6: Also at Universidade Estadual de Campinas, Campinas, Brazil

7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

8: Also at Joint Institute for Nuclear Research, Dubna, Russia

9: Also at Suez University, Suez, Egypt

10: Also at British University in Egypt, Cairo, Egypt 11: Also at Fayoum University, El-Fayoum, Egypt 12: Also at Ain Shams University, Cairo, Egypt

13: Now at Sultan Qaboos University, Muscat, Oman

14: Also at Université de Haute Alsace, Mulhouse, France

15: Also at Brandenburg University of Technology, Cottbus, Germany

16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary

17: Also at Eötvös Loránd University, Budapest, Hungary

18: Also at University of Debrecen, Debrecen, Hungary19: Also at University of Visva-Bharati, Santiniketan,India

20: Now at King Abdulaziz University, Jeddah, Saudi Arabia

21: Also at University of Ruhuna, Matara, Sri Lanka

22: Also at Isfahan University of Technology, Isfahan, Iran

23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran

24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran

25: Also at Università degli Studi di Siena, Siena, Italy 26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France

27: Also at Purdue University, West Lafayette, USA

28: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico

29: Also at Institute for Nuclear Research, Moscow, Russia

30: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia

31: Also at California Institute of Technology, Pasadena, USA

32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia

33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy

34: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy

35: Also at University of Athens, Athens, Greece

36: Also at Paul Scherrer Institut, Villigen, Switzerland

37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland

39: Also at Gaziosmanpasa University, Tokat, Turkey

40: Also at Adiyaman University, Adiyaman, Turkey

41: Also at Cag University, Mersin, Turkey

42: Also at Anadolu University, Eskisehir, Turkey

43: Also at Ozyegin University, Istanbul, Turkey

44: Also at Izmir Institute of Technology, Izmir, Turkey 45: Also at Necmettin Erbakan University, Konya, Turkey

46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey

47: Also at Marmara University, Istanbul, Turkey

48: Also at Kafkas University, Kars, Turkey

49: Also at Yildiz Technical University, Istanbul, Turkey

50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

53: Also at Argonne National Laboratory, Argonne, USA

54: Also at Erzincan University, Erzincan, Turkey

55: Also at Texas A&M University at Qatar, Doha, Qatar

56: Also at Kyungpook National University, Daegu, Korea