Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Khachatryan, V., et al. “Search for Supersymmetry in Events with One Lepton and Multiple Jets in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV.” Physical Review D, vol. 95, no. 1, Jan. 2017. © 2017 CERN, for the CMS Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.95.012011</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/116673</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0</td>
</tr>
</tbody>
</table>
A search for supersymmetry is performed in events with a single electron or muon in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 2.3 fb\(^{-1}\). Several exclusive search regions are defined based on the number of jets and \(b\)-tagged jets, the scalar sum of the jet transverse momenta, and the scalar sum of the missing transverse momentum and the transverse momentum of the lepton. The observed event yields in data are consistent with the expected backgrounds from standard model processes. The results are interpreted using two simplified models of supersymmetric particle spectra, both of which describe gluino pair production.

In the first model, each gluino decays via a three-body process to top quarks and a neutralino, which is associated with the observed missing transverse momentum in the event. Gluinos with masses up to 1.6 TeV are excluded for neutralino masses below 600 GeV. In the second model, each gluino decays via a three-body process to two light quarks and a chargino, which subsequently decays to a W boson and a neutralino. The mass of the chargino is taken to be midway between the gluino and neutralino masses. In this model, gluinos with masses below 1.4 TeV are excluded for neutralino masses below 700 GeV.

I. INTRODUCTION

Supersymmetry (SUSY) [1–8] is a well-motivated theoretical framework that postulates new physics beyond the standard model (SM). Models based on SUSY can address several open questions in particle physics, e.g. the cancellation of quadratically divergent loop corrections when calculating the squared mass of the Higgs boson. In R-parity [9] conserving SUSY models, the lightest SUSY particle (LSP) is stable and can be a viable dark matter candidate. An inclusive search for SUSY in the single-lepton channel was performed with 13 TeV data recorded in 2015 by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 fb\(^{-1}\). Similar searches were performed in 7 TeV [10–12] and in 8 TeV [13–15] data by the CMS and ATLAS experiments. First results in the single-lepton final state at 13 TeV are also available from both collaborations [16–18]. In this paper, we present a search for gluino pair production designed to be sensitive to a variety of SUSY models.

In this analysis, the main backgrounds arise from W + jets events and top quark-antiquark (\(t\bar{t}\) + jets) events, which also lead to W-boson production. In W + jets events, or in \(t\bar{t}\) + jets events with a single leptonic W-boson decay, the missing transverse momentum \(\vec{p}_T^\text{miss}\), defined as the negative vector sum of the transverse momenta of all reconstructed particles in the event, provides a measurement of the neutrino transverse momentum. The quantity \(\vec{p}_T^\ell + \vec{p}_T^\text{miss}\), where \(\vec{p}_T^\ell\) is the lepton transverse momentum vector, corresponds to the transverse momentum of the W boson in background events of this type. We also define the magnitude of the missing transverse momentum, \(E_T^\text{miss} = |\vec{p}_T^\text{miss}|\), and the sum \(L_T = \vec{p}_T^\ell + E_T^\text{miss}\), where \(\vec{p}_T^\ell\) is the magnitude of \(\vec{p}_T^\ell\).

A key analysis variable is the azimuthal angle \(\Delta\Phi\), measured in the plane perpendicular to the beams, between \(\vec{p}_T^\ell\) and \(\vec{p}_T^\ell + \vec{p}_T^\text{miss}\). In background events with a single W-boson decay, \(\Delta\Phi\) corresponds to the azimuthal angle between the transverse momentum vectors of the charged lepton and the W boson. In such events, the distribution of \(\Delta\Phi\) falls rapidly and has a maximum value determined by the mass and transverse momentum of the W boson. The higher the boost of the W boson, the smaller the maximum value of \(\Delta\Phi\). In SUSY events corresponding to our signal models, however, \(E_T^\text{miss}\) typically receives a large contribution from the missing momentum of the two neutralino LSPs. As a consequence, the \(\Delta\Phi\) distribution in signal events is roughly uniform. The main backgrounds can therefore be suppressed by rejecting events with a small value of \(\Delta\Phi\). The primary remaining background arises from \(t\bar{t}\) + jets production, where both W bosons decay into a charged lepton and a neutrino, with one lepton being not well identified or falling outside the detector acceptance. This background populates the high region of \(\Delta\Phi\).

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Since many models of gluino pair production lead to final states with a large number of jets, the signal-to-background ratio is very small in regions with low jet multiplicity. We therefore restrict the search to regions of large jet multiplicity and use low jet multiplicity regions, dominated by events from SM processes, to estimate the background. Exclusive search regions are characterized by the number of jets (n_{jet}), the number of b-tagged jets (n_{b}), the scalar sum of the transverse momenta p_T of the jets (H_T), and L_T.

The results are interpreted in terms of simplified models [19-22] of gluino pair production. In the first model, designated T1tttt and shown in Fig. 1 (left), gluinos are pair produced and subsequently undergo three-body decays to $\tilde{t} + \chi^0_1$, where χ^0_1 is the lightest neutralino. In the second model, termed T5qqqqWW and shown in Fig. 1 (right), the gluinos undergo three-body decays to a quark-antiquark pair ($q\bar{q}$) from the first or second generation and a chargino (χ^\pm_1). The chargino mass is taken to be $m_{\chi^+_1} = 0.5(m_{\tilde{g}} + m_{\chi^0_1})$. The chargino then decays to a W boson and the χ^0_1, where the W boson can be virtual, depending on the mass difference between the chargino and the lightest neutralino.

The organization of this paper is as follows. Section II describes the CMS detector. The event reconstruction and selection are discussed in Secs. III and IV, respectively. The background estimations are given in Sec. V. An overview of the main systematic uncertainties is presented in Sec. VI. The results are discussed and interpreted in Sec. VII, and a summary is given in Sec. VIII.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end-cap sections, reside within the solenoid volume. Forward calorimeters extend the pseudorapidity (η) [23] coverage provided by the barrel and end-cap detectors. Muons are measured in the range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.

The silicon tracker measures charged particles within the range $|\eta| < 2.5$. Isolated particles with transverse momenta $p_T = 100$ GeV, emitted at $|\eta| < 1.4$, have track resolutions of 2.8% in p_T, and 10 (30)μm in the transverse (longitudinal) impact parameter [24]. The ECAL and HCAL measure energy depositions in the range $|\eta| < 3$, with quartz fiber and steel forward calorimeters extending the coverage to $|\eta| < 5$. When information from the various detector systems is combined, the resulting jet energy resolution is typically 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV [25]. The momentum resolution for electrons with $p_T \approx 45$ GeV from $Z \rightarrow ee$ decays ranges from 1.7% for electrons that do not shower in the barrel region to 4.5% for electrons that shower in the end caps [26]. Matching muons to tracks measured in the silicon tracker yields relative transverse momentum resolutions for muons with $20 < p_T < 100$ GeV of 1.3%-2.0% in the barrel, and less than 6% in the end caps. The p_T resolution in the barrel is below 10% for muons with p_T up to 1 TeV [27].

The CMS trigger system consists of two levels, where the first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a fixed time interval of less than 4μs. The high-level trigger (HLT) processor farm further decreases the event rate from around 100 kHz to less than 1 kHz, before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

III. EVENT RECONSTRUCTION AND SIMULATION

All objects in the event are reconstructed using the particle-flow event reconstruction algorithm [28,29], which reconstructs and identifies each individual particle through an optimized combination of information from the various elements of the CMS detector. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track [26]. Electron candidates are required to satisfy identification criteria designed to suppress contributions from misidentified jets, photon conversions, and electrons from heavy-flavor quark decays. Muons are reconstructed using a stand-alone muon track in the muon system serving as a seed to find a corresponding track in the silicon detector [27]. Additional criteria include requirements on the track and hit parameters. Events are vetoed if additional electrons or muons with looser identification requirements are found.
The degree of isolation of a lepton from other particles provides a strong indication of whether it was produced in a hadronic jet, such as a jet resulting from the fragmentation of a b quark, or in the leptonic decay of a W boson or other heavy particle. Lepton isolation is quantified by performing a scalar sum of the transverse momenta of all particles that lie within a cone of specified size around the lepton momentum vector, excluding the contribution of the lepton itself. To maintain high efficiency for signal events, which typically contain a large number of jets from the SUSY decay chains, we use a p_T-dependent cone radius $R = (0.2, 10 \text{ GeV}/p_T(\text{GeV})$, 0.05) for $(p_T < 50 \text{ GeV}, 50 \text{ GeV} < p_T < 200 \text{ GeV}, p_T > 200 \text{ GeV})$, respectively. The isolation variable is defined as a relative quantity, I_{rel}, by dividing this scalar sum by the p_T of the lepton. For selected muons or electrons, we require $I_{\text{rel}} < 0.2$ and $I_{\text{rel}} < 0.1$, respectively, while for additional leptons used in the event veto, we require $I_{\text{rel}} < 0.4$. When computing the isolation variable, an area-based correction is applied to remove the contribution of particles from additional proton-proton collisions within the same or neighboring bunch crossings (pileup).

The energy of charged hadrons is determined from a combination of their momenta measured in the tracker and the matching ECAL and HCAL energy depositions, corrected for zero-suppression effects in the readout electronics, and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Jets are clustered with the anti-k_T algorithm [30] with a distance parameter of 0.4 [25], as implemented in the FASTJET package [31]. Jet momentum is determined as the vectorial sum of all particle momenta in the jet. An offset is subtracted from the jet energies to take into account the contribution from pileup [32]. Jet energy corrections are obtained from simulation and are confirmed with in situ measurements of the energy balance in dijet and photon + jet events [25]. Additional selection criteria are applied to each event to remove spurious jetlike features originating from isolated noise patterns in certain HCAL regions.

To identify jets originating from b quarks, we use an inclusive combined secondary vertex tagger (CSVv2) [33,34], which employs both secondary vertex and track-based information. The working point is chosen to have about 70% b-tagging efficiency and a 1.5% light-flavor misidentification rate [35]. Double counting of objects is avoided by not considering jets that lie within a cone of radius 0.4 around a selected lepton.

While the main backgrounds are determined from data, as described in Sec. V, simulated events are used to validate the techniques and to estimate extrapolation factors as needed. In addition, some smaller backgrounds are estimated entirely from simulation. The leading-order (LO) MADGRAPH5_AMC@NLO [36] event generator, using the NNPDF3.0LO [37] parton distribution functions (PDFs), is used to simulate $t\bar{t} +$ jets, $W +$ jets, $Z +$ jets, and multijet events.

Single-top quark events in the t-channel and the tW process are generated using the next-to-leading order (NLO) POWHEGv1.0 [38–42] program, and in the s-channel process, as well as for $t\bar{t}W$ and $t\bar{t}Z$ production, using NLO MADGRAPH5_AMC@NLO [43]. All signal events are generated with MADGRAPH5, with up to two partons in addition to the gluino pair. Both programs use the NNPDF3.0NLO [37] PDF. The gluino decays are based on a pure phase-space matrix element [44], with signal production cross sections [45–49] computed at NLO plus next-to-leading-logarithm (NLL) accuracy.

We define several benchmark points: the model T1tttt (1.2,0.8) (T1tttt(1.5,0.1)) corresponds to a gluino mass of 1.2 (1.5) TeV and neutralino mass of 0.8 (0.1) TeV, respectively. The model T5qqqWW(1.0,0.7) (T5qqqWW(1.2,0.8) and T5qqqWW(1.5,0.1)) corresponds to a gluino mass of 1.0 (1.2 and 1.5) TeV and neutralino mass of 0.7 (0.8 and 0.1) TeV. For the latter, the intermediate chargino mass is fixed at 0.85 (1.0 and 0.8) TeV.

Showering and hadronization of all partons is performed using the PYTHIA 8.2 ackage [44]. Pileup is generated for some nominal distribution of the number of proton-proton interactions per bunch crossing, which is weighted to match the corresponding distribution in data. The detector response for all backgrounds is modeled using the GEANT4 [50] package, while for the signal, the CMS fast simulation program [51] is used to reduce computation time. The fast simulation has been validated against the detailed GEANT4-based simulation for the variables relevant for this search, and efficiency corrections based on measurements in data are applied.

IV. TRIGGER AND EVENT SELECTION

The events are selected with an L1 trigger requiring $H_T > 150$ GeV, followed by HLT requirements of $H_T > 350$ GeV (online reconstruction) and at least one isolated lepton (an electron or muon) satisfying $p_T > 15$ GeV. A trigger efficiency of $94 \pm 1\%$ is observed in the kinematic regime of the analysis, defined by lepton $p_T > 25$ GeV and $H_T > 500$ GeV, where the trigger efficiency reaches its maximum.

The electron or muon candidate is required to have a minimum p_T of 25 GeV. Events with additional electrons or muons with $p_T > 10$ GeV, satisfying the criteria for vetoed leptons, are rejected. Jets are selected with $p_T > 30$ GeV and $|\eta| < 2.4$. In all search regions, we require at least five jets, where the two highest-p_T jets must satisfy $p_T > 80$ GeV.

To separate possible new-physics signals from background, we use the L_T variable, which is defined as the scalar sum of the lepton p_T and the missing transverse energy E_T^{miss}, and reflects the leptonic energy scale of the event. A minimum L_T of 250 GeV is required, such that the analysis is not only sensitive to events with high E_T^{miss}, but also to signal events with very small E_T^{miss}, but higher lepton p_T. An additional kinematic quantity important for the
TABLE I. Expected event yields for SUSY signal benchmark models, normalized to 2.3 fb$^{-1}$. The baseline selection corresponds to all requirements up to and including the requirement on L_T. The last two lines are exclusive for the zero-b and the multi-b selection, respectively. The events are corrected with scale factors to account for differences in the lepton identification and isolation efficiencies, trigger efficiency, and the b-tagging efficiency between simulation and data.

<table>
<thead>
<tr>
<th>Selection</th>
<th>T1tttt (1.2,0.8) x10</th>
<th>T1tttt (1.5,0.1) x10</th>
<th>T5qqqqWW (1.2,0.8) x10</th>
<th>T5qqqqWW (1.5,0.1) x10</th>
</tr>
</thead>
<tbody>
<tr>
<td>All events</td>
<td>178</td>
<td>30</td>
<td>185</td>
<td>31</td>
</tr>
<tr>
<td>One hard lepton</td>
<td>55</td>
<td>11</td>
<td>51</td>
<td>9.3</td>
</tr>
<tr>
<td>No veto lepton</td>
<td>45</td>
<td>9.1</td>
<td>47</td>
<td>8.8</td>
</tr>
<tr>
<td>$n_{j\ell} \geq 5$</td>
<td>44</td>
<td>8.9</td>
<td>36</td>
<td>8.1</td>
</tr>
<tr>
<td>p_T (jet 2) > 80 GeV</td>
<td>36</td>
<td>8.9</td>
<td>34</td>
<td>8.1</td>
</tr>
<tr>
<td>H_T > 500 GeV</td>
<td>30</td>
<td>8.9</td>
<td>27</td>
<td>8.1</td>
</tr>
<tr>
<td>L_T > 250 GeV</td>
<td>15</td>
<td>8.4</td>
<td>21</td>
<td>7.8</td>
</tr>
<tr>
<td>$n_b = 0$ and $\Delta \Phi > 0.75$</td>
<td>0.47</td>
<td>0.26</td>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td>$n_b \geq 1$, $n_{j\ell} \geq 6$ and $\Delta \Phi > 0.75$</td>
<td>9.3</td>
<td>5.1</td>
<td>2.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The search is given by the hadronic energy scale of the event H_T. A cutflow for the benchmark signal models is given in Table I.

After imposing the minimum requirements on L_T and H_T, several search regions are defined in bins of $n_{j\ell}$, n_b, L_T, and H_T, where $n_{j\ell}$ and n_b are the numbers of jets and b-tagged jets, respectively. Defining search bins in b-jet multiplicity enables the analysis to target specific event topologies and to separate them from SM backgrounds. The phase space is divided into exclusive $[0, 1, 2, \geq 3]$ b-tagged jet categories when defining search bins, with a minimum b-jet p_T of 30 GeV.

All search bins with at least one b-tagged jet, called “multi-b” bins in the following, are sensitive to the T1tttt model, while the search bins requiring zero b-tagged jets, called “zero-b” bins, are sensitive to the T5qqqqWW model. The baseline selection and the background estimation method differ for these two b-tag categories. For T1tttt, we expect a large number of jets and find in simulation that the $n_{j\ell}$ distribution peaks at eight jets for most mass points. We require at least six jets for the multi-b analysis and define two independent categories with 6–8 and ≥ 9 jets. For the zero-b analysis, where the investigated simplified T5qqqqWW model has fewer jets, we require, in the search region, 5, 6–7, or ≥ 8 jets. Depending on the specific SUSY particle masses, the hadronic event activity varies.

To accommodate this, we define search bins in H_T. Figure 2 shows the H_T distributions for the multi-b and the zero-b selection. To exploit the strong separation power associated with the L_T variable, we divide the search region into four bins in L_T, such that sufficient statistical accuracy is given in each control bin to predict the background in the corresponding search bin.

After these selections, the main backgrounds are leptonically decaying $W +$ jets and semileptonic $t\bar{t}$ events. These backgrounds, both of which contain one lepton and one neutrino (from the W boson decay) in the final state, are mostly located at small $\Delta \Phi$ values due to the correlation between the lepton and the neutrino. Therefore, the region with large $\Delta \Phi$ is defined as the search region, while the events with small $\Delta \Phi$ are used as the control sample.
depends on the W momentum, being smaller for W bosons with higher boost, the $\Delta \Phi$ requirement for the signal region is chosen depending on $L_\math{T}$, which is a measure of the W boson p_T. For the zero-b analysis, $\Delta \Phi$ is required to be larger than 1.0 for most regions except for those with large $L_\math{T}$, where the requirement is relaxed to 0.75, while the multi-b analysis has a relaxed $\Delta \Phi$ requirement of 0.75 and 0.5 for medium- and high-$L_\math{T}$ regions, respectively.

In total, we define 30 search bins in the multi-b analysis and 13 search bins in the zero-b analysis, as described in detail in Table II.

V. BACKGROUND ESTIMATION

The dominant backgrounds in this search are from $t\bar{t} + \text{jets}$ and $W + \text{jets}$ events, whose contributions vary with the multiplicity of b-tagged jets and the kinematic region in $H_\math{T}$ and $L_\math{T}$. To determine these backgrounds, we define two regions for each bin in $L_\math{T}$, $H_\math{T}$, and n_b; the search region (SR) with large values of $\Delta \Phi$, and the control region (CR) with low values of $\Delta \Phi$, with the separation requirement depending on the $L_\math{T}$ value, as shown in Table II. We further divide each of these bins into low-$n_\math{jet}$ sideband (SB) and high-$n_\math{jet}$ main band (MB) regions.

About 10%–15% of the SM background events in the CR are expected to be multijet events (denoted in the following as QCD) and are predicted as described in Sec. V C. Since the multijet background is negligible in the SR, it is subtracted from the number of background events in the CR when calculating the transfer factor $R_{\math{CS}}$ to extrapolate from CR (low-$\Delta \Phi$) to SR (high-$\Delta \Phi$). This transfer factor $R_{\math{CS}}$ is determined from data in the low-$n_\math{jet}$ SB regions, separately for each $L_\math{T}$, $H_\math{T}$, and n_b search region:

$$R_{\math{CS}} = \frac{N^{SB}_{\math{data}(SR)}}{N^{SB}_{\math{data}(CR)} - N^{SB}_{\math{QCD}\text{pred}(CR)}},$$

where $N^{SB}_{\math{data}(SR)}$ is the number of events in the low-$n_\math{jet}$ SB high-$\Delta \Phi$ signal region, $N^{SB}_{\math{data}(CR)}$ the number of events in the low-$n_\math{jet}$ SB low-$\Delta \Phi$ control region, and $N^{SB}_{\math{QCD}\text{pred}(CR)}$ the predicted number of QCD multijet events in the SB CR.

In the regions with one b tag and four or five jets, about 80% $t\bar{t} + \text{jets}$ events and 15%–20% $W + \text{jets}$ and single top quark events are expected, while in all other multi-b regions, $t\bar{t}$ background is completely dominant. Because only a single SM background dominates in the multi-b analysis, just one $R_{\math{CS}}$ factor is needed for each $L_\math{T}$, $H_\math{T}$, and n_b range. In the zero-b bins, the contributions from $W + \text{jets}$ and $t\bar{t} + \text{jets}$ are roughly equal. Here, an extension of the multi-b strategy is employed, which takes into account differences in the $R_{\math{CS}}$ values for these two backgrounds.

An overview of the $(n_\math{jet}, n_b)$ regions used in this analysis, as discussed in detail in Secs. VA–VC, is given in Table III.
TABLE II. Search regions and the corresponding minimum $\Delta \Phi$ requirements.

<table>
<thead>
<tr>
<th>n_{jet}</th>
<th>n_{b}</th>
<th>$L_{T} ,$[GeV]</th>
<th>$H_{T} ,$[GeV]</th>
<th>$\Delta \Phi ,$[rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 1, = 2, \geq 3$</td>
<td>$[250, 350]$</td>
<td>$[500, 750], \geq 750$</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>[6,8]</td>
<td>$= 1, \geq 2$</td>
<td>$[350, 450]$</td>
<td>$[500, 750], \geq 750$</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>≥ 3</td>
<td>≥ 600</td>
<td>$[500, 1250], \geq 1250$</td>
<td>0.5</td>
</tr>
<tr>
<td>≥ 9</td>
<td>$= 1, = 2, \geq 3$</td>
<td>$[250, 350]$</td>
<td>≥ 500</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>≥ 3</td>
<td>≥ 450</td>
<td>≥ 500</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>$= 1, \geq 2$</td>
<td>≥ 450</td>
<td>≥ 500</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>≥ 450</td>
<td>≥ 500</td>
<td>1.0</td>
</tr>
<tr>
<td>[6,7]</td>
<td>≥ 8</td>
<td>$[250, 350]$</td>
<td>$[500, 750], \geq 750$</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>$\geq 500, \geq 750$</td>
<td>$[500, 1000], \geq 1000$</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

A. Estimate of the leading backgrounds for $n_{b} \geq 1$

For the multi- b analysis, the SB region, where R_{CS} is determined, is required to have four or five jets, while the MB region must satisfy $n_{\text{jet}} \in [6-8]$ or $n_{\text{jet}} \geq 9$. To account for possible differences in this extrapolation from SB to MB as a function of jet multiplicity, we apply multiplicative correction factors κ_{EW}, determined from simulation. The predicted number $N_{\text{pred}}(\text{SR})$ of background events in each MB SR is then given by

$$N_{\text{pred}}(\text{SR}) = R_{CS}^{\text{EW}} N_{\text{data}}^{\text{MC}} \left[N_{\text{data}}^{\text{CR}} - N_{\text{QCD pred}}^{\text{CR}} \right]$$

with

$$\kappa_{EW} = \frac{R_{CS}^{\text{MC}}(\text{MB, EW})}{R_{CS}^{\text{MC}}(\text{SB, EW})}.$$ \hfill (3)

Here R_{CS}^{data} is determined from Eq. (1), $N_{\text{data}}^{\text{MC}}(\text{CR})$ is the number of data events in the CR of the MB region, and $N_{\text{QCD pred}}^{\text{MC}}(\text{CR})$ is the predicted number of multijet events in the MB. The label EW refers to all backgrounds other than multijets. The residual difference of the values of R_{CS} between the SB and MB regions is evaluated in simulation as the correction factor κ_{EW} given by Eq. (3), where $R_{CS}^{\text{MC}}(\text{MB, EW})$ is the R_{CS} in a search MB region from simulation and $R_{CS}^{\text{MC}}(\text{SB, EW})$ is the R_{CS} in the corresponding SB region in simulation for the EW background.

The κ_{EW} factor is determined separately for each search bin, except that an overall κ_{EW} factor is applied for the $n_{b} \geq 2$ search bins with the same H_{T} and L_{T}, since the κ_{EW} factors are found to be nearly independent of n_{b}. Similarly, R_{CS} at very high H_{T} is determined jointly across all three n_{b} bins to increase the number of events, as the overall uncertainty of the background prediction for several of the search bins is dominated by the statistical uncertainty of the yield in the SR of the side band.

The value of R_{CS} for the total background is equal to the sum of the R_{CS} values of each background component, weighted with the relative contributions of the components. For semileptonic $t\bar{t}$ and $W + \text{jets}$ events, which contain both one neutrino from the hard interaction, R_{CS} typically has values of 0.01 to 0.04, depending on the search bin. In events with more than one neutrino, e.g. in $t\bar{t}$ events in which both W bosons decay leptonically, R_{CS} is higher, with values of around 0.5. This is visible in Fig. 3, where at high $\Delta \Phi$ a large fraction of events is due to dileptonic $t\bar{t} + \text{jets}$ background, while the low-$\Delta \Phi$ region is dominated by events with only one neutrino. A larger R_{CS} is also expected for events with three neutrinos, such as $t\bar{t}Z$, when the $t\bar{t}$ system decays semileptonically and the Z boson decays to

TABLE III. Overview of the definitions of sideband and main band regions. For the multijet (QCD) fit, the electron (e) sample is used, while for the determination (det.) of $R_{CS}(W^{\pm})$, the muon (μ) sample is used. Empty cells are not used in this analysis.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Multi- b analysis</th>
<th>Zero- b analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_{\text{jet}} = 3$</td>
<td>$n_{b} = 0$ QCD bkg. fit (e sample)</td>
<td>$n_{b} = 0$ $R_{CS}(W^{\pm})$ det. (e sample)</td>
</tr>
<tr>
<td>$n_{\text{jet}} = 4$</td>
<td>$n_{b} \geq 1$ R_{CS} det.</td>
<td>$n_{b} = 0$ $R_{CS}(W^{\pm})$ det. (e sample)</td>
</tr>
<tr>
<td>$n_{\text{jet}} = 5$</td>
<td>QCD bkg. fit (e sample)</td>
<td>$n_{b} = 0$ $R_{CS}(\bar{t} + \text{jets})$ det.</td>
</tr>
<tr>
<td>$n_{\text{jet}} \geq 6$</td>
<td>MB</td>
<td>$n_{b} = 1$ $R_{CS}(\bar{t} + \text{jets})$ det.</td>
</tr>
</tbody>
</table>

012011-6
two neutrinos. The influence of these latter processes is small since their relative contribution to the background is minor. Most of the SRs with six or more jets are dominated by semileptonic \(t \bar{t} \) events, and therefore this background dominates the total \(R_{CS} \) value of \(\approx 0.05 \). As the \(R_{CS} \) for dileptonic \(t \bar{t} \) events is an order of magnitude larger than for semileptonic \(t \bar{t} \) events, a slight change in composition in the CR from low- to high-\(n_{\text{jet}} \) multiplicity translates into \(\kappa_{\text{EW}} \) slightly different from unity. This change in the dileptonic \(t \bar{t} \) contribution is accounted for by assigning an uncertainty on the \(n_{\text{jet}} \) extrapolation based on a dileptonic control sample in data, as discussed in Sec. VI.

B. Estimate of the leading backgrounds for \(n_b = 0 \)

For search bins in which \(b \)-tagged jets are vetoed, the background contributions from \(W + \) jets and \(t \bar{t} + \) jets events are estimated by applying the \(R_{CS} \) method separately to each of the two components. This strategy implies the use of two sidebands enriched in \(W + \) jets and \(t \bar{t} + \) jets events, respectively. We write the total background in each search region \(N_{\text{MB}}^{\text{SR}}(0b) \) (with a \(\Delta \Phi \) requirement as shown in Table II) as

\[
N_{\text{MB}}^{\text{SR}}(0b) = N_{W}^{\text{SR}}(0b) + N_{t}\bar{t}^{\text{SR}}(0b) + N_{\text{other}}^{\text{SR}(MC)}(0b),
\]

where the predicted yields of \(W + \) jets and \(t \bar{t} + \) jets background events are denoted by \(N_{W}^{\text{SR}} \) and \(N_{t}\bar{t}^{\text{SR}} \), respectively. Additional backgrounds from rare sources are estimated from simulation and denoted by \(N_{\text{other}}^{\text{SR}(MC)} \).

The expected number of events for each of the background components can be described by

\[
N_{i}^{\text{SR}} = N_{\text{data}}^{\text{CR}} f_{i} R_{CS}^{i}, \quad \text{with } i = [W, t\bar{t}],
\]

where \(N_{\text{data}}^{\text{CR}} \) is the total number of events in the CR of the MB region and \(f_{i} \) is the relative yield of component \(i \). The relative contributions of the two components are determined by a fit of templates obtained from simulation to the \(n_{\text{jet}} \) multiplicity distribution in the CR of the MB region. The contribution of the QCD multijet background in the CR is fixed to the yield estimated from data as described in Sec. V C. The contribution of other rare background components is obtained from simulation as well, as is done in the SR. Uncertainties in these two components are propagated as systematic uncertainties to the final prediction. Examples of these fits are shown in Fig. 4.

The two \(R_{CS} \) values, for \(W + \) jets and \(t \bar{t} + \) jets, are measured in two different low-\(n_{\text{jet}} \) SB regions. For the \(t \bar{t} + \) jets estimate, a sideband with the requirements \(4 \leq n_{\text{jet}} \leq 5 \) and \(n_{b} = 1 \) is used. The value of \(R_{CS}^{t\bar{t}} \) is then given by

\[
R_{CS}^{t\bar{t}}(0b, n_{\text{jet}}^{\text{SR}}) = \kappa_{b}\kappa_{t\bar{t}} R_{CS}^{\text{data}}(1b, n_{\text{jet}} \in [4, 5]).
\]

The correction factors \(\kappa_{b} \) and \(\kappa_{t\bar{t}} \) are determined from simulation. The factor \(\kappa_{b} \) corrects for a potential difference of \(R_{CS}^{t\bar{t}} \) between samples with zero or one \(b \) jet and for the small contributions of backgrounds other than \(t \bar{t} + \) jets or QCD multijet events. The factor \(\kappa_{t\bar{t}} \) corrects for a residual dependence of \(R_{CS}^{t\bar{t}} \) on \(n_{\text{jet}} \), in analogy to the \(\kappa_{\text{EW}} \) factor defined in Sec. V A. Both values, \(\kappa_{b} \) and \(\kappa_{t\bar{t}} \), are close to unity, and statistical uncertainties from the simulation are propagated to the predicted yields.

Similarly, the \(W + \) jets contribution is estimated using \(R_{CS} \) values from a sideband with \(3 \leq n_{\text{jet}} \leq 4 \) and \(n_{b} = 0 \). With respect to the SB used for the estimate of \(R_{CS}^{t\bar{t}} \), a lower jet multiplicity is chosen in order to limit the contamination from \(t \bar{t} + \) jets events. Only the muon channel is used since it has a negligible contamination from QCD multijet events, contrary to the electron channel. A systematic uncertainty is derived from simulation to cover potential differences between the \(\mu \) and the combined \(e \) and \(\mu \) samples. The
value of R_{CS}^{W} is given by

$$R_{CS}^{W}(0b, n_{\text{jet}}) = \kappa_{W} R_{CS}^{\text{data(corr)}}(0b, n_{\text{jet}} \in [3, 4]).$$

Again, the factor κ_{W} corrects for a residual dependence of R_{CS}^{W} on the jet multiplicity. The raw value of R_{CS}^{data} measured in the SB has to be corrected for the contamination of $\tau +$ jets events. The $\tau +$ jets yields are subtracted in the numerator and denominator according to

$$R_{CS}^{\text{data(corr)}}(0b, n_{\text{jet}} \in [3, 4]) = \frac{N_{\text{data}^{\text{SR}}} - R_{CS}^{\text{MC}} f_{\tau}^{\tau} N_{\text{data}^{\text{CR}}}}{N_{\text{data}^{\text{CR}}}}. \tag{8}$$

The event yields $N_{\text{data}^{\text{CR}}}$ and $N_{\text{data}^{\text{SR}}}$ are measured in the SB CRs and SRs. The fraction of $\tau +$ jets events f_{τ} is again obtained by a fit to the n_{b} multiplicity in the SB CR. The R_{CS} value for $\tau +$ jets in this SB is obtained from simulation.

Systematic uncertainties are assigned to κ_{τ} and κ_{W} according to the difference between the R_{CS} values in the sideband and the result of a linear fit over the full range of n_{jet}. The uncertainties vary from 3% to 43% for κ_{τ} and from 1% to 49% for κ_{W}. The two sources are treated as being independent.

C. Estimate of the multijet background

Multijet events enter this analysis mostly when reconstructed electrons originate from misidentified jets or from photon conversion in the inner detector. This background is estimated from the yield of “antiselected” electron candidates in each region, which pass looser identification and isolation requirements, and fail the tighter criteria for selected electrons. These events are scaled by the ratio of jets and photons that pass the tight electron identification requirements to the number of antiselected electron candidates in a multijet-enriched control sample with no b-tagged jets and three or four other jets. The assumption is that this sample is devoid of genuine prompt electrons. The estimation method was introduced previously [10,52], and it relies on the L_{p} variable:

$$L_{p} = \frac{p_{T}^{e}}{p_{T}^{\tau}} \cos(\Delta \Phi). \tag{9}$$

For the dominant SM backgrounds, $\tau +$ jets and $W +$ jets, the distribution of L_{p} is a well-understood consequence of the W boson polarization and falls from 0 to 1. In contrast, the distribution of L_{p} for multijet events peaks near $L_{p} = 1$.

The ratio of selected to antiselected electron candidates is obtained from a fit to the L_{p} distribution in bins of L_{T}. The shape of the QCD multijet contribution used in the fit is taken from the antiselected sample, while the shape of all other contributions is taken from simulation, as the behavior due to W polarization is well understood. The ratios are found to be in the range 0.1–0.2.

In principle, the background estimation with the R_{CS} method requires knowledge of the multijet contribution in the SR and CR separately. Since the multijet background estimation is performed inclusively with respect to $\Delta \Phi$, an R_{CS} factor for multijet events is determined as well. In practice, since the resulting R_{CS} values are all found to be below 2%, the multijet contamination is negligible for the SR. Therefore, the previously described R_{CS} method takes into account only the QCD multijet contribution in the CR, as written in Eq. (1). For the muon channel, the contribution from QCD multijet background is typically of the order of 1% of the total background. To estimate this contribution, a procedure similar to the one outlined above is applied and assigned a 100% uncertainty.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties either influence κ, and thereby the predictions for the background, or modify the expected signal yield.

The main systematic uncertainty on the background arises from the extrapolation of R_{CS} from the low n_{jet} region, where it is measured, to the MB regions of higher jet multiplicities, where it is applied. Therefore, a systematic uncertainty on R_{CS} is determined in a dedicated control region with dileptonic events. The ratio of the semileptonic to dileptonic $\tau +$ jets final states for different numbers of reconstructed jets is of major importance since the total R_{CS} is based on the fraction of the two channels and their corresponding R_{CS} values, which differ significantly in $\tau +$ jets events. To ensure that the data are described well by simulation, a high-purity dilepton $\tau +$ jets control sample is selected from the data by requiring two leptons of opposite charge. For same-flavor leptons, it is also required that the invariant mass of the lepton pair be more than 10 GeV away from the Z boson mass peak. To study the behavior of the dileptonic events in the single-lepton selection, one of the two leptons is removed from the event. Since these “lost leptons” are principally from $\tau \rightarrow$ hadrons + ν decays, we replace the removed lepton by a jet with 2/3 of the original lepton’s p_{T} to accommodate for the missing energy due to the neutrino from the τ decay, and we recalculate the L_{T}, $\Delta \Phi$, and H_{T} values of the now “single-lepton” event. In order to maximize the number of events, no $\Delta \Phi$ requirement is applied, and all events are used twice, with each reconstructed lepton being considered as the lost lepton. We refer to the samples produced using this procedure as the dilepton CRs.

A key test is performed by comparing the jet multiplicity distribution in the sample resulting from single-lepton baseline selection (excluding the SRs) with the corresponding simulated event sample, and by comparing the dilepton CRs with the corresponding simulated event sample. Both comparisons show the same trend, a slight overprediction.
by simulation of the rate of high jet multiplicity events. The ratio of event yields in data-to-simulation is computed for each comparison, and the two ratios are then divided to see whether the behavior in data relative to simulation is the same in both pairs of samples. This double ratio is consistent with unity within statistical uncertainty. The systematic uncertainty in the description of the \(n_{\text{jet}} \) distribution in simulation is determined from this double ratio and is mainly due to the statistical uncertainty of the data samples, which is within 8%–40%, and therefore larger than the observed slope of the double ratio vs \(n_{\text{jet}} \).

The remaining uncertainties are smaller than the one from the dileptonic \(t\bar{t} + \text{jets} \) fraction. In particular, the applied jet energy scale (JES) factors are varied up and down according to their uncertainty [25] as a function of jet \(p_T \) and \(\eta \), and these changes are propagated to \(E_T^{\text{miss}} \). The scale factors applied to the efficiencies for the identification of \(b \)-quark jets and for the misidentification of \(c \)-quark, light-quark, or gluon jets are also varied up and down according to their uncertainties [34]. Uncertainties for the efficiency of lepton reconstruction and identification are resulting in an uncertainty of 2.7%.

The \(W + \text{jets} \) and \(t\bar{t} + \text{jets} \) cross sections are changed by 30% [55] to cover possible biases in the estimation of the background composition in terms of \(W + \text{jets} \) vs \(t\bar{t} + \text{jets} \) events, which would lead to a slight change in the \(\kappa \) value. These changes have only a small impact on the zero-\(b \) analysis, where the relative fraction of the two processes is determined from a fit. Also, the following changes in the simulation are performed, with differences between the values of \(\kappa \) in the reweighted and original samples defining the uncertainties. Motivated by measurements at \(\sqrt{s} = 8 \) TeV, simulated \(t\bar{t} + \text{jets} \) events are reweighted by a factor \(\sqrt{F(p_T^1)p_T^1} / F(p_T^1) \), with \(F(p_T) = \min(0.5, \exp(0.156 - 0.00137p_T)) \), to improve the modeling of the top quark \(p_T \) spectrum [56]. The reweighting preserves the normalization of the sample, and the difference relative to the results obtained with the unweighted sample is assigned as a systematic uncertainty. The polarization of \(W \) bosons is varied by reweighting events by the factor \(\cos(\theta) = 1 + \alpha(1 - \cos \theta) \), where \(\theta \) is the angle between the charged lepton and \(W \) boson in the \(W \) boson rest frame. In \(W + \text{jets} \) events, we take \(\alpha \) to be 0.1, guided by the theoretical uncertainty and measurements found in Refs. [52,57–59]. For \(t\bar{t} + \text{jets} \) events, we take \(\alpha = 0.05 \). For \(W + \text{jets} \) events, where the initial state can have different polarizations for \(W^+ \) vs \(W^- \) bosons, we take, as the uncertainty, the larger change in \(\kappa \) resulting from reweighting only the \(W^+ \) bosons in the sample, and from reweighting all \(W \) bosons. The \(t\bar{t}V \) cross section is varied by 100%. The systematic uncertainty in the multijet estimation depends on \(n_{\text{jet}} \) and \(n_b \), and ranges from 25% to 100%.

For the zero-\(b \) analysis, an additional systematic uncertainty is applied, based on linear fits of \(R_{CS} \) as a function of \(n_{\text{jet}} \) as described in Sec. V B, and a 50% cross-section uncertainty is used for all backgrounds other than \(W + \text{jets} \), \(t\bar{t} + \text{jets} \), \(t\bar{t}V \), and multijets.

For the signal, an uncertainty in initial-state radiation (ISR) is applied, based on the \(p_T \) of the gluino-gluino system, which corresponds to a 15% uncertainty at \(p_T \) between 400 and 600 GeV, and 30% at larger \(p_T \). This

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty for multi-(b) [%]</th>
<th>Uncertainty for zero-(b) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilepton control sample</td>
<td>5.8–20</td>
<td>7.5–40</td>
</tr>
<tr>
<td>JES</td>
<td>0.2–11</td>
<td>0.6–8.2</td>
</tr>
<tr>
<td>Tagging of (b)-jets</td>
<td>0.1–17</td>
<td>1.4–4.5</td>
</tr>
<tr>
<td>(\sigma(W + \text{jets}))</td>
<td>0.3–6.4</td>
<td><2.5</td>
</tr>
<tr>
<td>(W) polarization</td>
<td>0.1–2</td>
<td>0.2–3.4</td>
</tr>
<tr>
<td>(\sigma(t\bar{t}V))</td>
<td>0.1–5</td>
<td>0.2–2.9</td>
</tr>
<tr>
<td>Reweighting of top quark (p_T)</td>
<td>0.1–10</td>
<td>0.1–7.1</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.3–23</td>
<td>0.1–10</td>
</tr>
<tr>
<td>Fit to (R_{CS}(n_{\text{jet}}))</td>
<td>---</td>
<td>3.3–35</td>
</tr>
<tr>
<td>((W + \text{jets}) and (t\bar{t} + \text{jets})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.0–28</td>
<td>10–54</td>
</tr>
<tr>
<td>Statistical uncertainty in MC events</td>
<td>3.0–30</td>
<td>8.2–48</td>
</tr>
</tbody>
</table>

where \(\theta \) is the angle between the charged lepton and \(W \) boson in the \(W \) boson rest frame. In \(W + \text{jets} \) events, we take \(\alpha = 0.05 \). For \(W + \text{jets} \) events,

TABLE IV. Summary of systematic uncertainties in the total background prediction for the multi-\(b \) and for the zero-\(b \) analyses.

TABLE V. Summary of the systematic uncertainties and their average effect on the yields of the benchmark signals. The values are very similar for the multi-\(b \) and the zero-\(b \) analyses, and are usually larger for compressed scenarios, where the mass difference between the gluino and the neutralino is small.
uncertainty is based on measurements of ISR in Z + jets and $\bar{t}\bar{t}$ + jets events [16,60]. The factorization and renormalization scales are each changed by a factor of 0.5 and 2. Uncertainties in the signal cross section are also taken into account.

The impact of the systematic uncertainties in the total background prediction for the multi-b and zero-b analyses is summarized in Table IV. While the systematic uncertainty is determined for each signal point, the uncertainties typical for most signals are summarized, for illustration, in Table V.

VII. RESULTS AND INTERPRETATION

The backgrounds for all SRs are determined, as described previously, in different SB regions with lower jet or b-jet multiplicities. The results of the background prediction and the observed data are shown in Table VI and Fig. 5 for the multi-b events. In this figure, the outline of the filled histogram represents the total number of background events from the prediction. For illustration, the relative amount of $\bar{t}\bar{t}$ + jets, W + jets, and of other backgrounds is shown as well, based on the fractions estimated in simulation. Table VII and Fig. 6 show the results for the zero-b events. Here, the filled histogram represents the predictions from data for $\bar{t}\bar{t}$ + jets and W + jets events, and for the remaining backgrounds, where the latter include the multijet prediction determined from data and rare backgrounds taken from simulation. The data agree with SM expectations, and no excess is observed.

To set limits, separate likelihood functions, one for the multi-b analysis and one for the zero-b analysis, are constructed from the Poisson probability functions for all four data regions (the CRs and SRs in the SB as well in the MB) to determine the background in the MB SR. In addition, the κ values from simulation are included to correct any residual differences between the SB and MB regions, with uncertainties incorporated through log-normal constraints. The estimated contribution from multijet events in the two CRs is also included. A possible signal contamination is taken into account by including signal terms in the fit for both the sideband and the control

<table>
<thead>
<tr>
<th>n_{jet}</th>
<th>L_{T} [GeV]</th>
<th>H_{T} [GeV]</th>
<th>n_{b}</th>
<th>Bin name</th>
<th>Expected signal T1tttt m_{t}/m_{τ} [TeV]</th>
<th>Predicted background</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6, 8]</td>
<td>[250, 350]</td>
<td>[500, 750]</td>
<td>1</td>
<td>LT1, HT0, NB1</td>
<td><0.01</td>
<td>0.41 ± 0.02</td>
<td>9.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>LT1, HT0, NB2</td>
<td><0.01</td>
<td>0.67 ± 0.03</td>
<td>8.4 ± 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥3</td>
<td>LT1, HT0, NB3i</td>
<td><0.01</td>
<td>0.67 ± 0.03</td>
<td>1.23 ± 0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥750</td>
<td>LT1, HT1i, NB1</td>
<td>0.03 ± 0.00</td>
<td>0.15 ± 0.01</td>
<td>9.8 ± 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT1, HT1i, NB2</td>
<td>0.07 ± 0.00</td>
<td>0.27 ± 0.02</td>
<td>7.1 ± 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥3</td>
<td>LT1, HT1i, NB3i</td>
<td>0.07 ± 0.00</td>
<td>0.22 ± 0.02</td>
<td>0.85 ± 0.40</td>
</tr>
<tr>
<td>[350, 450]</td>
<td>[500, 750]</td>
<td></td>
<td>1</td>
<td>LT2, HT0, NB1</td>
<td><0.01</td>
<td>0.19 ± 0.02</td>
<td>2.42 ± 0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>LT2, HT0, NB2</td>
<td>0.01 ± 0.00</td>
<td>0.28 ± 0.02</td>
<td>0.89 ± 0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥3</td>
<td>LT2, HT0, NB3i</td>
<td>0.01 ± 0.00</td>
<td>0.24 ± 0.02</td>
<td>10 ± 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥750</td>
<td>LT2, HT1i, NB1</td>
<td>0.08 ± 0.00</td>
<td>0.16 ± 0.01</td>
<td>3.6 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT2, HT1i, NB2</td>
<td>0.12 ± 0.01</td>
<td>0.24 ± 0.02</td>
<td>3.8 ± 1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥3</td>
<td>LT2, HT1i, NB3i</td>
<td>0.13 ± 0.01</td>
<td>0.19 ± 0.01</td>
<td>0.54 ± 0.35</td>
</tr>
<tr>
<td>[450, 600]</td>
<td>[500, 1250]</td>
<td></td>
<td>1</td>
<td>LT3, HT01, NB1</td>
<td>0.07 ± 0.00</td>
<td>0.18 ± 0.02</td>
<td>4.1 ± 1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT3, HT01, NB2i</td>
<td>0.19 ± 0.01</td>
<td>0.42 ± 0.02</td>
<td>4.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥1250</td>
<td>LT3, HT2i, NB1</td>
<td>0.08 ± 0.00</td>
<td>0.02 ± 0.00</td>
<td>0.62 ± 0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT3, HT2i, NB2i</td>
<td>0.29 ± 0.01</td>
<td>0.08 ± 0.01</td>
<td>0.59 ± 0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥600</td>
<td>LT4i, HT01, NB1</td>
<td>0.18 ± 0.01</td>
<td>0.05 ± 0.01</td>
<td>0.60 ± 0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT4i, HT01, NB2i</td>
<td>0.57 ± 0.01</td>
<td>0.16 ± 0.01</td>
<td>0.25 ± 0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥1250</td>
<td>LT4i, HT2i, NB1</td>
<td>0.26 ± 0.01</td>
<td>0.07 ± 0.01</td>
<td>0.20 ± 0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT4i, HT2i, NB2i</td>
<td>0.95 ± 0.02</td>
<td>0.16 ± 0.01</td>
<td>0.42 ± 0.53</td>
</tr>
<tr>
<td>≥9</td>
<td>[250, 350]</td>
<td>[500, 1250]</td>
<td>1</td>
<td>LT1, HT01, NB1</td>
<td>0.01 ± 0.00</td>
<td>0.22 ± 0.02</td>
<td>0.52 ± 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>LT1, HT01, NB2</td>
<td>0.01 ± 0.00</td>
<td>0.55 ± 0.03</td>
<td>0.23 ± 0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥500</td>
<td>LT1, HT01, NB3i</td>
<td>0.08 ± 0.00</td>
<td>0.74 ± 0.03</td>
<td>0.32 ± 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥1250</td>
<td>LT1, HT2i, NB1</td>
<td>0.02 ± 0.00</td>
<td>0.02 ± 0.01</td>
<td>0.17 ± 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT1, HT2i, NB2</td>
<td>0.04 ± 0.00</td>
<td>0.05 ± 0.01</td>
<td>0.24 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>[350, 450]</td>
<td>[500, 1250]</td>
<td>1</td>
<td>LT2, HT01, NB1</td>
<td>0.04 ± 0.00</td>
<td>0.23 ± 0.02</td>
<td>0.28 ± 0.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>LT2, HT01, NB2</td>
<td>0.10 ± 0.01</td>
<td>0.41 ± 0.02</td>
<td>0.05 ± 0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥3</td>
<td>LT2, HT01, NB3i</td>
<td>0.12 ± 0.01</td>
<td>0.51 ± 0.02</td>
<td>0.04 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>≥500</td>
<td>[500, 1250]</td>
<td>1</td>
<td>LT3i, HT01, NB1</td>
<td>0.29 ± 0.01</td>
<td>0.23 ± 0.02</td>
<td>0.31 ± 0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥2</td>
<td>LT3i, HT01, NB2i</td>
<td>1.42 ± 0.02</td>
<td>0.99 ± 0.03</td>
<td>0.15 ± 0.13</td>
</tr>
</tbody>
</table>
regions. For the zero-\(b\) analysis, the relative contributions of \(W + \text{jets}\) and \(t\bar{t} + \text{jets}\) events as determined in the fits to the \(n_b\) distribution in the CRs are treated as external measurements. The correlation between the \(W + \text{jets}\) and \(t\bar{t} + \text{jets}\) yields introduced by these fits is taken into account. A profile likelihood ratio in the asymptotic approximation [61] is used as the test statistic. Limits are then calculated at the 95\% confidence level (CL) using the asymptotic CL\(_s\) criterion [62,63].

The cross-section limits obtained for the T1ttt model using the multi-\(b\) analysis, and for the T5qqqqWW model using the zero-\(b\) analysis, are shown in Fig. 7 as a function of \(m(\tilde{g})\) and \(m(\tilde{\chi}_1^0)\), assuming branching fractions of 100\% as shown in Fig. 1. Using the \(\tilde{g}\tilde{g}\) pair production cross section calculated at next-to-leading order within next-to-leading-logarithmic accuracy, exclusion limits are set as a function of the \((m_{\tilde{g}}, m_{\tilde{\chi}_1^0})\) mass hypothesis.

TABLE VII. Summary of the results of the zero-\(b\) search.

<table>
<thead>
<tr>
<th>(n_{\text{jet}})</th>
<th>(L_T) [GeV]</th>
<th>(H_T) [GeV]</th>
<th>Bin name</th>
<th>Expected signal T5qqqqWW (m_{\tilde{g}}/m_{\tilde{\chi}_1^0}) [TeV]</th>
<th>Predicted background</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>[250, 350]</td>
<td>(\geq 500)</td>
<td>LT1, HT1</td>
<td>(1.67 \pm 0.27) (0.68 \pm 0.07) (0.03 \pm 0.01)</td>
<td>12.8 (\pm 2.9)</td>
<td>13</td>
</tr>
<tr>
<td>(\geq 500)</td>
<td>(\geq 500)</td>
<td>LT2, HT1</td>
<td>(1.13 \pm 0.22) (0.68 \pm 0.07) (0.04 \pm 0.01)</td>
<td>4.5 (\pm 2.2)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\geq 450)</td>
<td>(\geq 500)</td>
<td>LT3, HT1</td>
<td>(1.48 \pm 0.26) (0.79 \pm 0.08) (0.51 \pm 0.02)</td>
<td>3.9 (\pm 2.0)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[6,7] (\geq 500)</td>
<td>[250, 350]</td>
<td>(\geq 750)</td>
<td>LT1, HT1</td>
<td>(3.03 \pm 0.36) (1.06 \pm 0.09) (< 0.01)</td>
<td>4.2 (\pm 1.4)</td>
<td>8</td>
</tr>
<tr>
<td>(\geq 750)</td>
<td>(\geq 750)</td>
<td>LT2, HT2</td>
<td>(0.92 \pm 0.20) (0.36 \pm 0.05) (< 0.01)</td>
<td>4.8 (\pm 1.6)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\geq 450)</td>
<td>[250, 1000]</td>
<td>LT3, HT12</td>
<td>(1.54 \pm 0.26) (0.90 \pm 0.08) (< 0.01)</td>
<td>1.4 (\pm 1.1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\geq 1000)</td>
<td>(\geq 1000)</td>
<td>LT3, HT3</td>
<td>(1.15 \pm 0.21) (< 0.01) (< 0.01)</td>
<td>1.29 (\pm 0.74)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(\geq 8)</td>
<td>[250, 350]</td>
<td>[500, 750]</td>
<td>LT1, HT1</td>
<td>(1.99 \pm 0.29) (1.83 \pm 0.12) (0.11 \pm 0.01)</td>
<td>2.25 (\pm 0.93)</td>
<td>0</td>
</tr>
<tr>
<td>(\geq 750)</td>
<td>(\geq 750)</td>
<td>LT1, HT2</td>
<td>(0.85 \pm 0.19) (0.41 \pm 0.05) (0.06 \pm 0.01)</td>
<td>1.10 (\pm 0.61)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(\geq 500)</td>
<td>(\geq 500)</td>
<td>LT2, HT1</td>
<td>(1.41 \pm 0.23) (< 0.01) (0.09 \pm 0.01)</td>
<td>0.45 (\pm 0.28)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\geq 450)</td>
<td>(\geq 500)</td>
<td>LT3, HT1</td>
<td>(2.44 \pm 0.31) (1.27 \pm 0.09) (0.84 \pm 0.03)</td>
<td>0.39 (\pm 0.26)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

012011-11
A search for supersymmetry has been performed with 2.3 fb$^{-1}$ of proton-proton collision data recorded by the CMS experiment at $\sqrt{s} = 13$ TeV in 2015. The data are analyzed in several exclusive categories, differing in the number of jets and b-tagged jets, the scalar sum of all jet transverse momenta, and the scalar sum of the missing transverse momentum and the transverse momentum of the lepton. The main background is significantly reduced by requiring a large azimuthal angle between the directions of the momenta of the lepton and of the reconstructed W boson. No significant excess is observed, and the results are interpreted in terms of two simplified models that describe gluino pair production.

For the simplified model T1tttt, in which each gluino decays through an off-shell top quark to a $t\bar{t}$ pair and the lightest neutralino, gluino masses up to 1.6 TeV are excluded for neutralino masses below 600 GeV. Neutralino masses below 850 GeV can be excluded for a gluino mass up to 1.4 TeV. Similar to Ref. [16], these results extend the limits obtained from the 8 TeV searches [13–15] by about 250 GeV.

The second simplified model T5qqqqWW also contains gluino pair production, with the gluinos decaying to first or second generation squarks and a chargino, which then...
decays to a W boson and the lightest neutralino. The chargino mass in this decay chain is taken to be $m_{\tilde{\chi}^\pm} = 0.5(m_{3/2} + m_{\tilde{g}})$. In this model, gluino masses below 1.4 TeV are excluded for neutralino masses below 700 GeV. For a gluino mass of 1.3 TeV, neutralinos with masses up to 850 GeV can be excluded. These results improve existing limits [17] on the neutralino mass in this channel for gluino masses between 900 GeV and 1.4 TeV.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering, so effectively, the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced by European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center NCN (Poland), Contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845.

[12] ATLAS Collaboration, Further search for supersymmetry at $\sqrt{s} = 7$ TeV in final states with jets, missing transverse...

P. Piroué,161 D. Stickland,161 C. Tully,161 A. Zuranski,161 S. Malik,161 A. Barker,161 V. E. Barnes,161 S. Folgueras,
A. Svyatkovskiy,161 F. Wang,161 W. Xie,161 L. Xu,161 N. Parashar,161 J. Stupak,161 A. Adair,161 B. Akgun,161 Z. Chen,
K. M. Ecklund,161 F. J. M. Geurts,161 M. Guilbaud,161 W. Li,161 B. Michlin,161 M. Northup,161 B. P. Padley,161 R. Redjimi,
J. Roberts,161 J. Rorie,161 Z. Tu,161 J. Zabel,161 B. Betchart,161 A. Bodek,161 P. de Barbaro,161 R. Demina,161 Y. t. Duh,
T. Ferbel,161 M. Galanti,161 A. Garcia-Bellido,161 J. Han,161 O. Hindrichs,161 A. Khukhunaishvili,161 K. H. Lo,161 T. Medvedeva,
M. Verzetti,161 T. Ferbel,161 J. P. Chou,161 E. Contreras-Campana,161 Y. Gershtein,161 T. A. Gómez Espinosa,161 E. Halkiadakis,
M. Galanti,171 A. Garcia-Bellido,171 J. Han,171 O. Hindrichs,171 A. Khukhunaishvili,171 K. H. Lo,171 T. Medvedeva,
M. Verzetti,171 T. Ferbel,171 J. P. Chou,161 E. Contreras-Campana,161 Y. Gershtein,161 T. A. Gómez Espinosa,161 E. Halkiadakis,
S. Duric,175 B. Gomber,175 M. Grothe,175 M. Herndon,175 A. Hervé,175 P. Klabbers,175 A. Lanaro,175 A. Levine,175
K. Long,175 R. Loveless,175 I. Ojalvo,175 T. Perry,175 G. A. Pierro,175 G. Polese,175 T. Ruggles,175 A. Savin,175 A. Sharma,175
N. Smith,175 W. H. Smith,175 D. Taylor,175 and N. Woods

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12aUniversidade PaulistaSão Paulo, Brazil
12bUniversidade Federal do ABCSão Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Beihang University, Beijing, China
16Institute of High Energy Physics, Beijing, China
17State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
18University of Los Andes, Bogota, Colombia
19University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
20University of Split, Faculty of Science, Split, Croatia
21Institute Rudjer Boskovic, Zagreb, Croatia
22University of Cyprus, Nicosia, Cyprus
23Charles University, Prague, Czech Republic
24Universidad San Francisco de Quito, Quito, Ecuador
SEARCH FOR SUPERSYMMETRY IN EVENTS WITH ONE ...
Bogazici University, Istanbul, Turkey

Istanbul Technical University, Istanbul, Turkey

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA

The University of Alabama, Tuscaloosa, Alabama, USA

Boston University, Boston, Massachusetts, USA

Brown University, Providence, Rhode Island, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, California, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA

California Institute of Technology, Pasadena, California, USA

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

University of Colorado Boulder, Boulder, Colorado, USA

Cornell University, Ithaca, New York, USA

Fairfield University, Fairfield, Connecticut, USA

Fermi National Accelerator Laboratory, Batavia, New York, USA

University of Florida, Gainesville, Florida, USA

Florida International University, Miami, Florida, USA

Florida State University, Tallahassee, Florida, USA

Florida Institute of Technology, Melbourne, Florida, USA

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

The University of Iowa, Iowa City, Iowa, USA

Johns Hopkins University, Baltimore, Maryland, USA

The University of Kansas, Lawrence, Kansas, USA

Kansas State University, Manhattan, New York, USA

Lawrence Livermore National Laboratory, Livermore, California, USA

University of Maryland, College Park, Maryland, USA

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

University of Minnesota, Minneapolis, Minnesota, USA

University of Mississippi, Oxford, Mississippi, USA

University of Nebraska-Lincoln, Lincoln, Nebraska, USA

State University of New York at Buffalo, Buffalo, New York, USA

Northeastern University, Boston, Massachusetts, USA

Northwestern University, Evanston, Illinois, USA

University of Notre Dame, Notre Dame, Indiana, USA

The Ohio State University, Columbus, Ohio, USA

Princeton University, Princeton, New Jersey, USA

University of Puerto Rico, Mayaguez, Puerto Rico, USA

Purdue University, West Lafayette, Indiana, USA

Purdue University Calumet, Hammond, Indiana, USA

Rice University, Houston, Texas, USA

University of Rochester, Rochester, New York, USA

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA

University of Tennessee, Knoxville, Tennessee, USA

Texas A&M University, College Station, Texas, USA

Texas Tech University, Lubbock, Texas, USA

Vanderbilt University, Nashville, Tennessee, USA

University of Virginia, Charlottesville, Virginia, USA

Wayne State University, Detroit, Michigan, USA

University of Wisconsin—Madison, Madison, Wisconsin, USA

*aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.