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Distributed CSMA with Pairwise Coding

Nathaniel M. Jones∗§, Brooke Shrader§, and Eytan Modiano∗

∗LIDS, Massachusetts Institute of Technology, Cambridge, MA 02139
§Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420

Abstract—We consider distributed strategies for joint routing,
scheduling, and network coding to maximize throughput in wire-
less networks. Network coding allows for an increase in network
throughput under certain routing conditions. We previously de-
veloped a centralized control policy to jointly optimize for routing
and scheduling combined with a simple network coding strategy
using max-weight scheduling (MWS) [9]. In this work we focus
on pairwise network coding and develop a distributed carrier
sense multiple access (CSMA) policy that supports all arrival rates
allowed by the network subject to the pairwise coding constraint.
We extend our scheme to optimize for packet overhearing to
increase the number of beneficial coding opportunities. Simulation
results show that the CSMA strategy yields the same throughput
as the optimal centralized policy of [9], but at the cost of increased
delay. Moreover, overhearing provides up to an additional 25%
increase in throughput on random topologies.

I. INTRODUCTION

Network coding, originally introduced in [1], can increase

network throughput by allowing intermediate nodes to combine

or encode the data they receive, rather than simply forwarding

it. The benefit of this approach for wireless transmissions was

clearly demonstrated by COPE [10], an opportunistic network

coding protocol that allows encoding of packets between multi-

ple unicast sessions using binary XOR operations. The authors

combine their coding strategy with a modified MAC protocol

to show significant throughput improvements versus a standard

802.11 MAC on a wireless testbed. While the original work

on COPE [10] explored the interplay between coding and

scheduling, subsequent work in [21] motivated the need for

routing protocols to be aware of network coding by formulating

an offline linear program to show that significant throughput

improvements are possible. In this work, we address the joint

design and performance of routing, scheduling, and network

coding in a wireless network.

Numerous previous works have considered joint routing and

scheduling in the absence of network coding. In their semi-

nal paper on network control [23], Tassiulas and Ephremides

introduce the max-weight scheduling (MWS) and differential

backlog routing policy to provide throughput optimal network

control. The policy has an attractive property for dynamic

control in that decisions rely only on current queue state

information, without requiring knowledge of the long-term
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arrival rates. The authors are able to prove, using Lyapunov

stability theory, that their policy can stabilize the network

queues for any stochastic arrival process within the stability

region of the network. In [16], MWS is extended to optimize

for routing, scheduling, and power control in wireless networks.

MWS is a very powerful scheduling technique, but the benefits

do not come without cost. Even [23] notes that it can be

cumbersome to collect queue state information from across a

wireless network to a centralized controller. Additionally, MWS

requires the solution to the maximum weight independent set

(MWIS) problem, which is known to be NP-Hard under general

interference constraints.

Jiang and Walrand [7] recently developed an adaptive carrier

sense multiple access (CSMA) policy based on queue size

information, and proved their policy to be throughput optimal.

This adaptive CSMA policy is a randomized scheduler and

operates under distributed control, addressing some of the

main concerns with the scalability of MWS. In [17], the

adaptive CSMA scheduler is extended by relaxing some ideal

assumptions from [7], maintaining throughput optimality in the

presence of collisions in control traffic. An alternate proof of

optimality is provided in [14] for queue-based CSMA policies

on wireless networks with primary interference constraints.

In [13], the authors provide another proof of CSMA rate

convergence and study the effects of collisions. A throughput

optimal ALOHA policy that chooses transmission probabilities

as a function of queue backlog is developed in [19]. Other

works ([3], [15]) have focused on distributed queue-based

scheduling, and can be extended to incorporate backpressure

routing. Performance bounds are characterized in [3] for a

distributed maximal scheduler with imperfect matchings. A

distributed scheduler that achieves 100% throughput using a

randomized gossip algorithm is developed in [15].

Recently, network coding has been incorporated into the

design of scheduling and routing schemes. A number of recent

works, including [4], [11], [18], and [20], develop joint schedul-

ing and coding schemes in a network control framework, either

for single-hop transmissions, or under the assumption that

routes are fixed and specified a priori. In addressing the routing

problem, [24] provides a linear optimization approach for

identifying network coding opportunities on butterfly subgraphs

with multiple unicast sessions, while [6] develops a policy for

dynamic routing and scheduling to provide stability throughout

the region from [24]. Using a different approach, [5] provides a

distributed backpressure routing and maximum weight schedul-

ing policy for a generalized COPE coding scheme, making



opportunistic coding decisions to increase throughput, and [22]

formulates a linear program to solve the offline problem for

joint routing, scheduling and pairwise coding. Finally, in our

previous work we developed the LCM-Frame policy [9] that

jointly optimizes for routing, scheduling, and a simple network

coding scheme using an online scheduler under centralized

control.

This paper differs from previous works in that we develop a

distributed online queue-size based policy that is throughput

optimal subject to our coding constraints. We modify the

adaptive CSMA policy from [7] to incorporate a simple network

coding scheme that we first proposed in [9]. We focus on

pairwise coding, combined with a packet overhearing feature

that can increase the number of coding opportunities with

only a constant increase in algorithmic complexity. Our main

contributions include:

• We propose a distributed CSMA policy for routing,

scheduling, and pairwise coding that supports all arrival

rates within the stability region of pairwise coding;

• We develop an extension to our coding strategy to allow

for additional coding opportunities via overhearing of

uncoded transmissions, and update our policy to optimize

for these overhearing opportunities;

• We address several practical implementation issues;

• We provide results from packet simulation and linear

program evaluation to compare the performance of our

policy under various settings.

This paper is organized as follows. We describe our system

model in Section II, and characterize the stability region under

this model in Section III. In Section IV we design a distributed

routing, scheduling, and pairwise coding policy. Section V adds

a packet overhearing option to our coding strategy and updates

the policy to take advantage of coding opportunities with

overhearing. We address implementation issues in Section VI,

provide numerical results in Section VII, and offer concluding

remarks in Section VIII.

II. MODEL

A. Wireless Network

We model the wireless network as a directed hypergraph,

G = (N ,H), where N is the set of nodes in the network and
H is the set of directed hyperedges supported by the network.
Hyperedge (a, J) allows node a to communicate directly with
a set of tail nodes J using a single transmission, where J is
always in alphabetical order. For example, in Fig. 1a node a
can transmit to nodes b and c simultaneously over hyperedge
(a, J), J = (b, c). Standard edge (a, b) is a special case of a
hyperedge where node b is the only tail node. In this paper
we consider hyperedges with at most two tail nodes, |J | ≤ 2
(corresponding to pairwise coding).

We consider unicast traffic, but utilize wireless multicast

(i.e. transmit on hyperedges) for network coded packets and

to enable a packet overhearing feature. We assume time to be

continuous, and for simplicity assume unit rate links and that

exogenous arrivals are for packets of a fixed size corresponding

to one time unit. Packets destined for node c are called
commodity c packets. Let λc

a be the average rate of exogenous

arrivals at node a for commodity c, and let λ = (λc
a) be a

vector of arrival rates for all sources a and commodities c.
We assume that non-interfering transmissions are reliable,

but otherwise allow arbitrary interference constraints. Let L
be the set of all feasible schedules on the network. Here,

schedule ℓ is a group of simultaneous (hyper)edge activations,
and ℓ is feasible if these activations don’t violate the network
interference constraints. While our policy supports general

interference models, our simulations were conducted using

two simple interference models, known as 1-hop and 2-hop

interference. The 1-hop interference model allows any node

to transmit or receive at most one packet at a time. The

2-hop interference model requires at least two hops in the

network between any simultaneous transmissions, else they will

interfere.

B. Adaptive CSMA

Wireless networks are subject to packet losses from inter-

fering transmissions, and thus benefit from a scheduling policy

that prevents interfering transmissions from becoming simulta-

neously active. CSMA is a random access scheduler where each

node listens to the channel for interfering transmissions, and

competition for the channel is mitigated using random backoff

times. Our CSMA policy is based on the policy from [7], which

we extend to account for hyperedges with our coding scheme.

Jiang and Walrand [7] developed an adaptive CSMA pol-

icy that operates in continuous time, choosing exponentially

distributed backoff times for each edge i as a function of
the queue backlog on that edge Ui(t). The policy assumes an
idealized setting where each node can sense any transmission

that it would interfere with and channel sensing is instanta-

neous. Combined with backoff times drawn from a continuous

distribution1, this ideal setting avoids packet collisions. The

backoff rate Ri(t) is updated at periodic times t = nT , where
T is the duration of the update interval. The weight of edge i
is chosen as Wi(t) = Ui(t), and the backoff rate is chosen as:

ri(t) = α ·Wi(nT ), ∀t : nT ≤ t < (n+ 1)T, (1)

Ri(t) = exp (ri(t)) . (2)

Here, ri(t) is called the transmission aggressiveness parameter,
and α is a step size parameter controlling the convergence of
the algorithm. The mean backoff time 1/Ri(t) decreases as
the backlog increases, giving preference to transmissions on

edges with higher backlog. In this policy, each edge i transitions
between idle, wait, and transmit states as follows.

• Idle State: Edge i remains in the idle state while the
channel is sensed to be busy, in that an interfering edge is

active. When the channel is later sensed to be inactive2,

draw a backoff timer from an exponential distribution with

mean 1/Ri and switch to the wait state.

1The probability that any two edges choose the same backoff time from the
exponential distribution is 0, independent of the edge backoff rates.
2We allow for multiple simultaneous activations outside of the sensing range.



• Wait State: Edge i remains in the wait state while the
channel is sensed to be inactive and the backoff timer is

non-zero. If the channel becomes busy, switch to the idle

state. Else, when the backoff timer expires switch to the

transmit state.

• Transmit State: Transmit packet of unit duration3. When

the transmission has completed, switch to the idle state.

C. Backpressure Routing

Combined with an optimal scheduler, backpressure routing

was proved to be a throughput optimal routing strategy in [23].

The idea is simple: choose the weight of each edge as the

difference in backlog across the edge for the commodity that

maximizes the difference. For example, edge (a, b) has weight:

Wab(t) = max
c∈N

[U c
a(t)− U c

b (t)]
+
, (3)

where notation [x]+ represents max(x, 0). Backpressure rout-
ing was combined with adaptive CSMA for multihop traffic

in [7], where the weight from Eqn. (3) is used to calculate

aggressiveness parameter rab(t) in Eqn. (1). The backoff rate
Rab(t) is then calculated as in Eqn. (2).

D. Network Coding

Network coding is a technique that allows for increased

throughput by encoding packets at intermediate nodes in the

network. Our network coding scheme allows data to be ex-

changed in fewer transmissions by strategically combining

packets such that each recipient has previously seen some

portion of the encoded set. In [9] we described a simple network

coding scheme that under specific routing conditions allows

intermediate nodes to exchange k packets in k−1 transmissions.
When evaluating this scheme on random wireless topologies,

we observed that the majority of coding gains are generated

by k = 2 pairwise coding operations. Similar observations
are noted in [10], [5], and [22]. Therefore, here we limit our

consideration to the pairwise coding case. We describe pairwise

coding in the following example.

Consider the wireless network in Fig. 1a with 1-hop in-

terference. We would like to exchange packets pY and pX
between nodes b and c via a relay at node a. Without network
coding it takes 2 transmissions to exchange each packet, for

a total of 4 transmissions. With network coding, however,

these same packets can be exchanged in only 3 transmissions:

(1) send pY from b to a; (2) send pX from c to a; and
(3) send coded packet pX ⊕ pY as a binary XOR combination
of pX and pY from node a to nodes b and c simultaneously
via a single wireless multicast transmission. Using the packets

that they contributed, nodes b and c can each recover the
packet destined for them. In this example, network coding

has increased throughput by a factor of 4/3. As in [9], here
our coded transmissions are decoded hop-by-hop and each

3Both exponentially distributed and unit duration transmissions are consid-
ered in [7]. The authors cite the main result from [12], which states that for
an ideal CSMA network, edge activation frequencies are insensitive to the
distributions of backoff and transmit times when given their means.

b a c

pY

pX

(a) Pairwise Coding Scenario

(1) send pY on
edge (b, a)

(2) send pX on
edge (c, a)

(3) send pX ⊕ pY on hyperedge
(a, J), J = (b, c)

(b) Edge Activations

Fig. 1. Pairwise coding operation at node a. (a) Standard edges shown with
solid lines, with all hyperedges available; traffic demands shown with dashed
arrows. (b) Edge activations shown with solid arrows.

b a c

Qb,x
a Qa,x

a Qc,x
a

Fig. 2. Subqueues at node a for commodity x. Subqueue Qb,x
a contains

network arrivals from neighbor b; subqueue Qa,x
a contains local exogenous

arrivals; subqueue Qc,x
a contains network arrivals from neighbor c. Packet

arrivals shown in dashed arrows.

node maintains a side information buffer of packets that it

previously transmitted (so that they can be used to decode coded

transmissions).

A pairwise coding opportunity
(

s,(a, J)
)

, is formed by the

combination of hyperedge (a, J), J = (b, c), and commodity
pair s = (x, y) for which: (1) a packet of commodity x
was received at node a from neighbor c, and (2) a packet
of commodity y was received at node a from neighbor b.
Identifying coding opportunities requires that nodes keep track

of which one-hop neighbor supplied each packet. While other

works on differential backlog routing (e.g. [23],[7]) track the

number of packets for each commodity at each node, we

further divide the queues into subqueues to track the number of

packets from each neighbor for each commodity. For example,

subqueue Qb,x
a at node a contains U b,x

a number of packets

received from neighbor b for commodity x. This is illustrated
in Fig. 2 for commodity x packets received at node a from
various sources.

III. STABILITY REGION

The stability region ΛNC of our network coding strategy is

the set of all arrival rate vectors (λc
a) that can be supported

while ensuring that all packet queues are stable. This region

is independent of the control policy chosen, and is a special

case of the stability region that we specified in [9] for network

coding with maximum code size of 2. We specify the region

here for convenience.

Let fd,c
ab be the rate of uncoded flow of commodity c packets

supplied by node d and sent over edge (a, b), and let fs
aJ be the

rate of coded flow over hyperedge (a, J) for each commodity in
set s, where

(

s,(a, J)
)

is a coding opportunity. For simplicity,

we use the following f̂ notation to represent a sum over a set
of underlying flow variables. Let f̂d,c

ab be the total uncoded and

coded flow rate from node a to neighbor b for commodity c
from subqueue Qd,c

a , where node a received the packets from
one-hop neighbor d. Thus,

f̂d,c
ab = fd,c

ab +
∑

g:s=(c,g)

fs
aJ , ∀a, b, c, d ∈ N , J = (b, d), (4)



where the summation is over all commodities g such that
(

s,(a, J)
)

, s = (c, g), is a coding opportunity. Let f̂ c
ab be the

total coded and uncoded flow rate from a to b for commodity
c traffic from all one-hop subqueues.

f̂ c
ab =

∑

d f̂
d,c
ab , ∀a, b, c ∈ N (5)

We define the stability region by starting with some effi-

ciency assumptions: nodes don’t transmit to themselves and

nodes don’t transmit any traffic destined for themselves. Also,

all flow variables are non-negative. The remaining constraints

are as follows.

λc
a =

∑

b

f̂ c
ab −

∑

d

f̂ c
da, ∀a, c ∈ N : a 6= c (6)

∑

b

(

f̂d,c
ab − fd,c

ab

)

≤ f̂ c
da, ∀ a, c, d ∈ N (7)

GaJ =
∑

ℓ∈L

γℓ I(a,J)∈ℓ, ∀(a, J),
∑

ℓ∈L

γℓ = 1, γℓ ≥ 0 ∀ℓ (8)

∑

d,c∈N

fd,c
ab ≤ GaJ , ∀(a, b) : J = {b} (9)

∑

s∈{N}2

fs
aJ ≤ GaJ , ∀(a, J) : |J | = 2 (10)

Eqn. (6) is the flow conservation constraint, stating that all

flow entering any node a for commodity c must leave node
a, except at the destination (a = c). The coding constraint in
Eqn. (7) states that the total flow into subqueue Qd,c

a from node

d gives an upper bound on the total coded flow out of Qd,c
a to

all neighbors b. Eqn. (8) is a convexity constraint, stating that
activation frequencies GaJ for all edges and hyperedges (a, J)
must be in the convex hull of the set of all feasible schedules

L. Here, indicator I(a,J)∈ℓ = 1 if (a, J) is active in schedule
ℓ, and 0 otherwise. The edge and hyperedge rate constraints
in Eqns. (9-10) state that activation frequency GaJ gives an

upper bound on the total flow for all commodities over edge or

hyperedge (a, J). The stability region for our pairwise coding
strategy is the polytope bounded by the set of constraints in

Eqns. (6-10).

IV. DISTRIBUTED CSMA

Our proposed policy adapts that of [7] to account for pairwise

network coding as follows. The policy is parameterized for step-

size α and update interval T . The policy updates backoff rate
parameters every T time units and maintains edge timers asso-
ciated with transitions between idle, transmit, and wait states.

Each node requires backlog information only for the queues of

one-hop neighbors, therefore this policy is distributed.

A. Distributed CSMA Policy for Pairwise Coding

Parameter Updates: For each edge or hyperedge (a, J), we
maintain a transmission aggressiveness (TA) parameter raJ(t)
and a backoff rate RaJ(t). At times t = nT , for integer values
of n ≥ 0, these parameters are updated as follows.
For each standard edge (a, b), calculate edge weight as

Wab(t) = max
d,c

[Ud,c
a (t)− Ua,c

b (t)]+, (11)

a

b

g

(a)

a

b

g

(b)

Fig. 3. Simple packet overhearing operation. (a) Transmission from a to g,
overheard by b. (b) Analogous routing scenario.

where c∗ is the optimal commodity and d∗ identifies the optimal
subqueue Qd∗,c∗

a that maximize Eqn. (11). TA parameter rab(t)
and backoff rate Rab(t) for edge (a, b) can then be calculated
as in Eqns. (1) and (2).

For each hyperedge (a, J), J = (b, g), calculate weight as

WaJ(t) = max
x

[Ug,x
a (t)− Ua,x

b (t)]+

+max
y

[U b,y
a (t)− Ua,y

g (t)]+, (12)

where x∗ identifies the optimal commodity to send from node

a to b and y∗ identifies the optimal commodity to send from
node a to g. This optimal commodity pair s = (x∗, y∗)
and hyperedge (a, J), J = (b, g), form a coding opportunity
(

s,(a, J)
)

as long as there is (1) a packet at node a of
commodity x∗ from neighbor g, i.e. Ug,x∗

a (t) > 0, and (2)
a packet at node a of commodity y∗ from neighbor b, i.e.
U b,y∗

a (t) > 0. Next, calculate TA parameter raJ(t) and backoff
rate RaJ(t) as in Eqns. (1) and (2).
State Transitions: The Idle, Wait, and Transmit states are

handled as in Section II-B. For a transmission on standard edge

(a, b), transmit an uncoded packet pC for optimal commodity
c∗ from subqueue Qd∗,c∗

a . For a transmission on hyperedge

(a, J), J = (b, g), transmit a coded packet pXY = pX ⊕ pY ,
where packet pX is from subqueue Qg,x∗

a and packet pY is
from subqueue Qb,y∗

a . If a subqueue is ever found to be empty,

the policy creates a null packet to send.

B. Rate Stability

It can be shown that distributed CSMA with pairwise coding

stabilizes the network for all arrival rate vectors strictly interior

to the stability region ΛNC specified in Eqns. (6-10). The

proof follows the method shown in [7]. We give a sketch

of this proof in the Appendix. Whenever the packet queues

are stable, the distributed CSMA policy also stabilizes all

side information buffers in the network. This is clear from

the discussion of maintenance operations on side information

buffers in Section VI-D.

V. PACKET OVERHEARING EXTENSION

Network coding can be combined with packet overhearing

to yield additional coding opportunities. Packet overhearing

occurs when any nodes receive a packet concurrently with that

packet’s intended next-hop recipient. These additional nodes

can then use their knowledge of the overheard packet in future

decoding operations. The use of overhearing has been explored

in [10], [5], [11], [18], and [20].

We consider a simple packet overhearing scheme to improve

our network coding strategy, as shown in Fig. 3. A transmission
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b

g c

pY

pX

(a)

a

b

g

e

c

pY

pX

(b)

pY pX

pX ⊕ pY

(c)

pY pX

pX ⊕ pY

(d)

Fig. 4. Pairwise coding scenarios with overhearing shown in (a) and (b), where
solid lines indicate edges and dashed lines indicate traffic demands. Associated
edge activations shown below each overhearing scenario in (c) and (d), where
dotted arrows indicate overheard transmissions.

from node a to node g that is overheard by node b, where nodes
b and g are neighbors as shown in Fig. 3a, is analogous to a
special routing operation where a transmission is sent from

node a to node b to node g all at once, as shown in Fig. 3b.
We allow for overhearing of uncoded transmissions, creating

two additional pairwise coding scenarios as shown in Fig. 4.

A single overhearing operation leads to the pairwise coding

opportunity shown in Fig. 4a, using edge activations in Fig. 4c.

Here, node a transmits packet pY to node g, and this packet
is overheard by node b, allowing b to later decode the coded
packet pX ⊕ pY from g. The addition of a second overhearing
operation leads to the pairwise coding opportunity shown in

Fig. 4b, using edge activations in Fig. 4d. In addition to the

overhearing at node b, node e transmits packet pX to node g,
and pX is overheard by node c. Nodes b and c can both decode
the coded packet pX ⊕ pY from g.
A standard uncoded transmission from a to g for commodity

x has weight Wag from Eqn. (13), while the same transmission

overheard by node b has weight Wabg from Eqn. (14). (Here

d is the source of the subqueue at node a containing the
commodity x packet.)

Wag = [Ud,x
a (t)− Ua,x

g (t)]+ (13)

Wabg = [Ud,x
a (t)− U b,x

g (t)]+ (14)

For both transmissions, the packet exits subqueue Qd,x
a at node

a, but the packet enters different subqueues at node g. For the
standard transmission from a to g, the packet enters subqueue
Qa,x

g and a copy is stored in the side information buffer at node

a. However, for the overheard transmission, the packet enters
subqueue Qb,x

g because we treat the packet as if it was received

at g from node b, as shown in Fig. 3b. The overheard packet
is then stored in the side information buffer at node b instead
of at node a.

A. Improved Stability Region

Overhearing leads to minor changes to the stability region.

We represent the overhearing transmission as flow variable

ḟ j,c
dab, which is the flow from subqueue Qj,c

d at node d to
node b and overheard by node a. We introduce an Overhear-
ing Constraint as a prerequisite for our overhearing strategy:

overhearing flow variables can only represent positive flow for

hyperedges (d, J), J = (a, b), where edge (a, b) is also avail-
able in the network; otherwise the overhearing flow variable

must take the value of zero flow. The total uncoded and coded

flows f̂d,c
ab from Eqn. (4) becomes:

f̂d,c
ab = fd,c

ab +
∑

j

ḟ j,c
dab +

∑

g:s=(c,g)

fs
aJ ,

∀a, b, c, d ∈ N ,

J = (b, d).
(15)

Eqns. (5) and Flow Conservation (6) incorporate the addition of

overhearing from Eqn. (15) but otherwise remain unchanged.

The Coding Constraint (7) changes to account for outgoing

overheard transmissions:
∑

b

(

f̂d,c
ab − fd,c

ab −
∑

g ḟ
d,c
abg

)

≤ f̂ c
da , ∀ a, c, d ∈ N (16)

The Hyperedge Rate Constraints in Eqns. (8-10) remain un-

changed. However, note that we have generalized the hyperedge

activation rate GaJ in Eqn. (10) to include both pairwise

coding and uncoded overhearing, as these both operate over

hyperedges. The stability region with overhearing is then given

by the constraints in Eqns. (6, 8-10, 16).

B. Policy Modification for Overhearing

The overhearing extension requires only minor changes to

how hyperedge rate parameters are handled by our distributed

CSMA policy. Parameter updates for standard edges remain

unchanged, and the state transitions behave exactly as without

the overhearing feature.

Parameter Updates for Hyperedges: At each time t = nT ,
for integer n ≥ 0, for each hyperedge (a, J), J = (b, g),
calculate three weights:

1) For transmissions from a to g overheard by b, W 1
aJ =

maxc,d[U
d,c
a (t)−U b,c

g (t)]+ if (b, g) ∈ H, else W 1
aJ = 0.

2) For transmissions from a to b overheard by g, W 2
aJ =

maxc,d[U
d,c
a (t)−Ug,c

b (t)]+ if (g, b) ∈ H, else W 2
aJ = 0.

3) For coded transmission from a to b and g, W 3
aJ is

calculated as in Eqn. (12).

We then choose the coding or overhearing operation that

maximizes the weight of the hyperedge:

WaJ(t) = max
{

W 1
aJ ,W

2
aJ ,W

3
aJ

}

. (17)

TA parameter raJ(t) and backoff rate RaJ(t) are calculated as
in Eqns. (1) and (2).

C. Linear Program Results

We compare coding gains directly by evaluating the bounds

of the stability region using an LP solver. We generate 100

random 16 node topologies, where there are 16 × 15 = 240
possible traffic demands on each topology. We choose traffic

demand vector λ ∈ {0, 1}240, where each demand is activated
with probability p, and find the maximum offered load without
coding ρ1 such that λ · ρ1 ∈ Λ and the maximum offered load
with network coding ρNC such that λ · ρNC ∈ ΛNC . Coding

gain is then the ratio ρNC/ρ1. These topologies are evaluated
with 2-hop interference constraints.

Fig. 5 shows coding gains for traffic demand probabilities

p = 1/16 and p = 1/2. For each demand probability, 5000
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Fig. 5. Comparison of pairwise coding gains with and without overhearing for
individual traffic vectors. Random traffic demands with probability p. Results
sorted in order of increasing gain for coding without overhearing.

Max. Ri Max. Associated
Data Type of Ri before overflow ri = log(Ri)

Double Precision Floating Point 1.7977e+308 709.78
Single Precision Floating Point 3.4028e+38 88.72
Unsigned 64-bit Integer 1.8447e+19 44.36

TABLE I
MAXIMUM VALUES FOR ri BEFORE OVERFLOW OF RATE Ri .

individual arrival rate vectors are generated (50 per topology).

Coding gain is then evaluated for each arrival rate vector, both

with and without overhearing. For each demand probability,

the vectors are sorted in increasing order of coding gain for

pairwise coding without overhearing, and the values for coding

gain are plotted in that order. In Fig. 5a where p = 1/16,
we observe up to 25% additional gain from overhearing,

although these additional gains are only present in 32% of our

observations. In Fig. 5b where p = 1/2, the additional gain
from overhearing is at most 5%, and these additional gains

are present in 50% of our observations. In both scenarios, the

median additional coding gain from overhearing is around 2%,

however the small computational cost to include overhearing

and the potential increase in coding gain make it a worthwhile

extension. It is interesting to note that the gain from overhearing

is greatest when the traffic vector is sparse. Additional traffic

demands increase the likelihood of coding opportunities without

the need for overheard transmissions, so overhearing provides

only small incremental gains when the traffic vector is dense.

VI. IMPLEMENTATION CONSIDERATIONS

Next we discuss some details related to implementation of

the distributed CSMA policy.

A. Backoff Times

Backoff rate Ri grows exponentially with aggressiveness

parameter ri, and for any finite precision computation this can
lead to overflow of variable Ri. This occurs, for example, in the

case of a bursty source node, and is exacerbated on systems that

require the use of fixed-point arithmetic. Table I shows values

of ri that lead to overflow for various data types of variable Ri.

When the differential backlog is large, multiple outgoing edges

i can be assigned backoff rate Ri = ∞ and the node will not be
able to correctly discriminate between exponentially distributed

backoff times Bi ∼ Exp(Ri = ∞) = 0.

Larger values of ri can be supported by comparing loga-
rithms of the backoff times instead of comparing the back-

off times directly. We use the inverse transform method to

generate backoff times Bi ∼ Exp(Ri) as follows. Generate
random variable Z ∼ Uniform[0, 1], where the CDF of Z is
FZ(z) = P(Z ≤ z) = z. Then choose backoff times using the
function Bi = − log(Z)/Ri. The CDF of Bi is FBi

(bi) =
P(Bi ≤ bi) = P(− log(Z)/Ri ≤ bi) = P(Z ≥ e−biRi) =
1 − e−biRi , so Bi is exponentially distributed with rate Ri.

Taking the logarithm of bi and using Ri = eri , we have

log(bi) = log

(

− log(z)

eri

)

= log
(

− log(z)
)

− ri, (18)

which allows almost the full range of values supported by

variable ri, except when z is extremely close to 0 or 1. The
earliest of a group of backoff times can then be chosen as

min
i

bi = exp
(

min
i

log(bi)
)

. (19)

A node can then choose the minimum backoff time between

interfering edges with the correct activation probabilities, or a

simulation engine can choose between all waiting edges in the

network. New backoff times can be drawn at each comparison

due to the memoryless property of the exponential distribution.

B. Avoiding Greedy Application of Network Coding

It may be tempting to opportunistically promote edge acti-

vations into hyperedge activations. However, it is known that

greedy application of network coding can reduce through-

put [4]. One such scenario is the 4 node diamond topology with

1-hop interference and arrival rates as indicated in Fig. 6a. Here

the network can be stabilized for offered loads ρ < 1/4. With
1-hop interference, edges (c, a) and (c, d) mutually interfere
with all hyperedges in the network, (a, Ja), (b, Jb), (c, Jc),
and (d, Jd), where Ja = (b, c), Jb = (a, d), Jc = (a, d), and
Jd = (b, c). Thus, a greedy application of network coding on
any hyperedge reduces the fraction of time that edges (c, a)
and (c, d) can be active. This problem is illustrated as follows.
Without loss of generality, assume that traffic only flows on

efficient paths (e.g. traffic from c to a doesn’t go the long
way around the diamond), and let ρ be feasible. By Eqn. (9)
we find activation frequency Gca ≥ f c,a

ca = 2ρ and likewise
Gcd ≥ 2ρ. Using the convexity of schedules from Eqn. (8),
Gca + Gcd + GaJa

+ GbJb
+ GcJc

+ GdJd
≤ 1, and thus

GaJa
+ GbJb

+ GcJc
+ GdJd

≤ 1 − 4ρ. Therefore, as the
offered load ρ approaches the stability bound 1/4, all hyperedge
activation frequencies must go to 0 as a prerequisite for stability.

We evaluate distributed CSMA with pairwise coding on the

scenario from Fig. 6a by simulating our policy using Poisson

arrivals, α = 1/10, and T = 10. The simulations are run for
10 million time units for each value of offered load considered.

Fig. 6b shows the activation frequency of each hyperedge versus

offered load ρ, while Fig. 6c shows activation frequencies for
standard edges in the same scenario. As ρ approaches 1/4, we
observe that Gca and Gcd each converge to 1/2 = 2ρ, Gab,

Gbd, Gdb, and Gba all converge to 1/4 = ρ, and all other
edges and hyperedges converge to 0, as desired.
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Fig. 6. The 4 node diamond scenario. Under 1-hop interference, greedy application of network coding can reduce throughput. Stability requires all activation
frequencies Gi → 0 for each hyperedge i as offered load approaches stability bound ρ = 0.25. Our policy satisfies this condition.

C. Minimum Queue Size with Network Coding

As the arrival rate vector approaches the upper bound of the

stability region, our policy requires use of small values of step-

size α to achieve necessary service rates. However, we observe
that queues grow large for small values of α. As a function of
step-size α and offered load ρ, we find a lower bound on the
average network queue size required for rate convergence on the

3 node scenario in Fig. 1a. In particular we show that the queue

size must be inversely proportional to α. For simplicity of this
example, let the arrival rates be symmetric, i.e. ρ = λc

b = λb
c,

and let ρ be in the range 1/4 < ρ < 1/3 such that pairwise
coding is required to stabilize the network.

Using the result from [12], we model schedule activations of

our policy as a Markov chain. In this simple 3 node scenario, at

most one edge can be active at a time, so activation frequency πi

of each schedule i is the service rate for edge i. Note convexity
constraint π∅ + πba + πca + πac + πab + πaJ = 1, where J =
(b, c), πi ≥ 0, and π∅ is the activation frequency of the empty

schedule. By symmetry, πca = πba and πac = πab. Combine the

convexity constraint with service requirements πba = πca ≥ ρ,
and πac+πaJ ≥ ρ, we find upper bound πab ≤ 1−3ρ. Applying
this bound to service requirement πab+πaJ ≥ ρ, we find lower
bound πaJ ≥ 4ρ− 1. Taking the ratio between πaJ and πab,

4ρ− 1

1− 3ρ
≤

πaJ

πab

=
π∅RaJ

π∅Rab

=
erab+rac

erab

= erac , (20)

where πi = π∅Ri is given by the stationary distribution of the

Markov chain, RaJ = exp(raJ ), and raJ = rab + rac. Solving
for rac yields rac ≥ log 4ρ−1

1−3ρ . By a similar method, we find

rba ≥ log ρ
1−3ρ + rac. By symmetry, rca = rba and rac = rab.

When rate parameters are stable, average queue sizes can be

found as follows. Applying Eqn. (1), U b,c
a = U c,b

a = rac

α
, and

accounting for differential backlog, U b,c
b = U c,b

c = rba+rac

α
.

The policy will back-fill packets to learn the forward direction

of traffic flow, so Ua,c
b = Ua,b

c = U b,c
a . Taking a sum over all

queues, a lower bound on average network queue size is:

∑

i,c,d

Ud,c
i ≥

2

α
log

ρ

1− 3ρ
+

8

α
log

4ρ− 1

1− 3ρ
. (21)

Considering offered load ρ = 0.32 in Eqn. (21), we find
that convergence of service rates requires a minimum network

queue size of 19.73/α, which is inversely proportional to α
as expected from Eqn. (1). We evaluate this lower bound on

  0 2e5 4e5 6e5 8e5 1e6
0

100

200

300

400

simulation time

n
e

tw
o

rk
 q

u
e

u
e

 s
iz

e
, 

a
v
e

ra
g

e

(a) Queue Size vs. Time

  0.315 0.32 0.325 0.33   1/3
0

500

1000

1500

2000

2500

3000

offered load, ρ

n
e
tw

o
rk

 q
u
e
u
e
 s

iz
e
, 
a
v
e
ra

g
e

 

 

CSMA, α = 1/20

CSMA, α = 1/10

CSMA, α = 1/5

MWS

(b) Queue Size vs. Offered Load

Fig. 7. Simulations on 3 node scenario from Fig. 1a. Legend applies to both
subplots. (a) Offered load ρ = 0.32 for various α. Dotted lines show lower
bound on stable queue size from Eqn. (21). (b) Stability bound at ρ = 1/3.

network queue size for various values of α, as shown in Fig. 7a.
Simulations for this scenario are discussed in Section VII.

D. Managing Side Information Buffers

This subsection describes a distributed method to determine

when packets can be discarded from side information buffers.

Let Sb,c
a be the size of the side information buffer at node a

for packets sent to neighbor b for commodity c. The policy
exchanges backlog information with neighbors every T units
of time. Side information buffers are kept in FIFO order, so

when node b sends backlog information Ua,c
b to node a, the

associated side information buffer at node a can be reduced
such that it contains only the most recent Sb,c

a = Ua,c
b packets.

Without loss of generality, assume node b can transmit at most
one packet at a time. Therefore node b can transmit at most
T packets between sending backlog updates to node a. Thus,
Sb,c
a ≤ Ua,c

b + T , and the side information buffers are stable
whenever the queues are stable.

VII. NUMERICAL RESULTS

We simulate our policy using Poisson arrivals, and compare

distributed CSMA with our MWS policy from [9]. All config-

urations were simulated for 10 million time units.

We first consider the performance of our CSMA policy on

the 3 node scenario from Fig. 1a with symmetric offered load

ρ = λc
b = λb

c. We simulate CSMA with α = {1/5, 1/10, 1/20}
and update interval T = 10. Fig. 7a shows the network queue
size as a function of time for offered load ρ = 0.32. Here
we see that CSMA operates with queue size at roughly 1/α
times that of MWS. The lower bound on CSMA queue size

from Eqn. (21), shown as a dotted horizontal lines, appears

reasonably close to actual network queue size in this scenario.
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Fig. 8. Queue size of CSMA with pairwise coding for tandem network with
increasing number of intermediate nodes with symmetric end-to-end traffic.

However, the distance between the bound and actual queue size

will vary based on offered load and arrival process. Fig. 7b

shows average network queue size versus offered load, where

the bound of the stability region is indicated with a dashed

vertical line at ρ = 1/3. For all configurations, we see that
queues remain relatively small when the offered load is interior

to the stability region, and the queues grow large as the offered

load approaches the stability bound.

We next consider how queue sizes scale with the number

of nodes n on a tandem configuration with symmetric end-
to-end traffic, as shown in Fig. 8a. We configure CSMA with

α = 1/10, T = 10, ρ = λn
1 = λ1

n = 0.3, and evaluate this
scenario under the 1-hop interference model. Fig. 8b shows

average network queue size for our CSMA and MWS policies

on networks with n = {3, 4, ..., 10} nodes. For both policies
we observe that the queues grow quadratically with number of

nodes n due to differential backlog routing, which is consistent
with findings from [2]. The ratio between CSMA and MWS

network queue sizes is roughly 10 for n = 3 nodes and
increases to around 30 for n = 10 nodes.
Finally, we consider queue size versus offered load for a

16 node scenario with 11 traffic demands as shown in Fig. 9a,

with 2-hop interference. (This is the same scenario considered

in Fig. 3 of [9].) MWS results are shown on Fig. 9b, while

CSMA results are shown on Fig. 9c. The dotted vertical lines

indicate the bounds of the stability region (computed using an

LP solver) at ρ = 1/19 without coding, ρ = 1/17.5 for pairwise
coding, and at ρ = 1/16 for pairwise coding with overhearing.
This yields a pairwise coding gain of 19/17.5 = 1.086 without
overhearing and 19/16 = 1.188 with overhearing. We see that
the queues remain relatively small for values of ρ interior to the
stability bound, and the queues grow rapidly when ρ exceeds
the bound. We also observe that CSMA queues operate at

between 10 and 20 times those for MWS, although this will

vary with α.

VIII. CONCLUSION

In this paper, we consider distributed techniques for joint

routing, scheduling, and pairwise network coding to maximize

throughput in wireless networks. We presented the distributed

CSMA policy for pairwise coding, and showed that this policy

can come arbitrarily close to supporting the full stability region

allowed by our coding constraint. We developed a packet

overhearing extension to increase the number of beneficial

coding opportunities and evaluated our policy with and without

overhearing on multiple scenarios. On random scenarios we

find the additional gains from our overhearing scheme are low

on average at around 2%, but occasionally we observe larger

gains of up to 25% that make this simple extension worthwhile.

In comparing performance of our CSMA and MWS policies,

we find that the distributed control of the CSMA policy comes

at the expense of growth in average queue size. For a simple

pairwise coding scenario, we provide a lower bound on stable

CSMA queue size as a function of the offered load and α. This
bound is inversely proportional to α, and we found it useful for
approximating the network queue size in our simulations. We

evaluated stable queue size as a function of the number of nodes

in a tandem network, and observe quadratic growth in stable

CSMA queue size. While MWS also experiences quadratic

growth, the growth rate is noticeably faster for CSMA.

APPENDIX

RATE STABILITY

Using appropriate choices for parameters α and T , we wish
to show that for any strictly feasible arrival rate vector λ
and any flow decomposition f̂ , the distributed CSMA policy
chooses TA parameters ri such that service si(r) dominates
arrivals f̂i for each edge i. Here, λ is strictly feasible if
(λ + ǫ) ∈ ΛNC , for ǫ ≥ 0, and f̂ is a flow decomposition of
λ according to Eqns. (6-10). First, we show that if a solution
is attainable for finite r∗, then si(r

∗) ≥ f̂i, ∀i. Second, we
show that the solution is attainable whenever the arrival rate is

strictly feasible. Combining the first and second steps gives the

desired result.

Let γℓ be an activation probability for schedule ℓ satisfying
flow decomposition f̂i, and let πℓ(r) be the actual activation
frequency of each schedule ℓ according to service rates si(r)∀i.
Indicator Ii∈ℓ = 1 if edge i is active in schedule ℓ, and
0 otherwise. Then f̂i =

∑

ℓ γℓ Ii∈ℓ. Again using the result

from [12], we model schedule activations of our policy as a

continuous time Markov chain where the schedule activation

frequencies conditioned on ri are given by:

πℓ(r) = exp(
∑

i ri Ii∈ℓ)
/

C(r) (22)

C(r) =
∑

j exp(
∑

i ri Ii∈j) (23)

We can minimize the Kullback-Leibler divergence between

distributions γ and π(r) by solving supr≥0 F(r), where F(r)
is non-positive for r ≥ 0 and is defined as

F(r) =
∑

ℓ γℓ log
(

πℓ(r)
)

=
∑

i f̂iri − log(C(r)). (24)

Note that ∂
∂ri

F(r) = f̂i − si(r), so a distributed gradient
algorithm to solve supr≥0 F(r) is

ri(n+ 1) = [ri(n) + α(n)( f̂i − si(r(n)))]
+, ∀i. (25)

Choosing ri(0) = 0, α(n) = α, interval n of duration T , and
observing that f̂i and si(r) correspond to queue arrivals and
departures, respectively, we obtain ri(nT ) = αUi(nT ). This is
in the form of Eqn. (1).



1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

(a) Scenario

0.0475 0.0525 0.0575 0.0625
0

2e3

4e3

6e3

8e3

10e3

offered load, ρ

n
e
tw

o
rk

 q
u
e
u
e
 s

iz
e
, 
a
v
e
ra

g
e

 

 

Pairwise

No Coding

(b) MWS

0.0475 0.0525 0.0575 0.0625
0

10e3

20e3

30e3

40e3

50e3

60e3

offered load, ρ

n
e

tw
o

rk
 q

u
e

u
e

 s
iz

e
, 

a
v
e

ra
g

e

 

 

Pairwise with
Overhearing

Pairwise

No Coding

(c) CSMA

Fig. 9. Comparing MWS and CSMA for a 16 node scenario. (a) Traffic demands as dashed lines with arrows. (b)&(c) Stability bounds as dotted vertical lines.

Existence Proposition: If r∗ ≥ 0 exists such that
F(r∗) = supr≥0 F(r), then si(r

∗) ≥ f̂i, ∀i. Dualize each
constraint ri ≥ 0 with dual variables di ≥ 0: L(r, d) =
F(r) +

∑

i diri. At solution r∗ we have ∂
∂ri

L(r∗, d∗) =

f̂i − si(r
∗) + d∗i = 0. We know di ≥ 0, so si(r

∗) ≥ f̂i∀i.
Attainability Proposition: If λ is strictly feasible, then

F(r∗) = supr≥0 F(r) is attainable. In [8], it is shown that the
dual of supr≥0 F(r) is

max
u

−
∑

ℓ uℓ log(uℓ) s.t.
∑

ℓ(uℓ Ii∈ℓ) ≥ f̂i, ∀i
∑

ℓ uℓ = 1, uℓ ≥ 0. (26)

The optimal value for Eqn. (26) occurs when

u∗
ℓ = exp(

∑

i y
∗
i Ii∈ℓ)

/ (
∑

j exp(
∑

i y
∗
i Ii∈j)

)

, ∀ℓ, (27)

where yi is the dual variable for constraint
∑

ℓ(uℓIi∈ℓ) ≥ f̂i.
Observe that u∗

ℓ is in the form of πℓ(r
∗) from Eqns. (22-23),

where y∗i = r∗i ∀i. Then the optimal value for Eqn. (26) equals
F(r∗) and is obtained whenever λ is strictly feasible.
Combining the two propositions: If λ is strictly feasible,

then si(r) ≥ f̂i, ∀i. Note that for fixed values of parameters
α and T , we are only guaranteed that the service rates will
converge to the neighborhood of the link arrivals f̂i. For rate
stability, it is sufficient for the convergence neighborhood to be

fully contained in the stability region. By assumption, arrival

rates are strictly feasible, so there always exists a value of α
small enough that the neighborhood of convergence is fully

within the stability region. Thus, the parameterized policy can

come arbitrarily close to supporting the full stability region.

Note that for pairwise coding, e.g. in Fig. 1a, we have

assumed that TA parameter for hyperedge (a, J), J = (b, c),
is raJ = rab + rac. This assumption is confirmed by verifying
that the total service rate sab(r) on edge (a,b) is πab + πaJ :

sab(r) =
∂

∂rab

log
(

C(r)
)

=
(

exp(rab)+exp(rab+rac)
)/

C(r)

= π∅

(

Rab +RaJ

)

= πab + πaJ , where π∅ = 1/C(r).
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