How do bacteria tune translation efficiency?

Citation: Li, Gene-Wei. “How Do Bacteria Tune Translation Efficiency?” Current Opinion in Microbiology 24 (April 2015): 66–71.

As Published: http://dx.doi.org/10.1016/J.MIB.2015.01.001

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/116707

Version: Author’s final manuscript: final author’s manuscript post peer review, without publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License
How do bacteria tune translation efficiency?

Gene-Wei Li
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
Gene-Wei Li: gwli@mit.edu

Abstract

Bacterial proteins are translated with precisely determined rates to meet cellular demand. In contrast, efforts to express recombinant proteins in bacteria are often met with large unpredictability in their levels of translation. The disconnect between translation of natural and synthetic mRNA stems from the lack of understanding of the strategy used by bacteria to tune translation efficiency. The development of array-based oligonucleotide synthesis and ribosome profiling provides new approaches to address this issue. Although the major determinant for translation efficiency is still unknown, these high-throughput studies point out a statistically significant but mild contribution from the mRNA secondary structure around the start codon. Here I summarize those findings and provide a theoretical framework for measuring translation efficiency.

Introduction

Soon after Jacob and Monod proposed the existence of polycistronic mRNA [1], it was noticed that different proteins originating from the same mRNA are translated at very different rates [2]. This observation was made for the RNA genome of a bacteriophage that was translated upon entrance to the host bacterium. The difference in translation rates was deemed necessary to synthesize a large excess of bacteriophage coat proteins relative to RNA polymerases for viral particle production. Although the initial studies suggested the use of mRNA secondary structure to modulate translation efficiency (TE) [3], the later discovery of the Shine-Dalgarno (SD) sequence pointed to the potential for tuning TE by changing the affinity of mRNA to the anti-Shine-Dalgarno sequence on the 16S rRNA [4, 5]. Detailed studies on individual genes and operons then revealed a plethora of means to modulate TE [6–9]. It remains unclear whether there exists a general principle for setting the TE for the 4,000+ genes in E. coli.

Recently, the promise of synthetic biology--the design of biological devices from genetic and protein components--increased the demand for better understanding and control of TE. To address this issue, several research groups created large-scale libraries of synthetic mRNAs to probe the sequence features that influence TE [10–13]. Meanwhile, with the
development of ribosome profiling (deep sequencing of ribosome protected mRNA fragments) it became possible to monitor the TE of endogenous genes at genome-scale [14]. Here, I will summarize the conclusions from these recent studies and discuss the missing pieces of the puzzle.

Defining translation efficiency

In this Review, “translation efficiency (TE)” is referred to as the rate of protein production per mRNA [14–16]. In other contexts, the same phrase has been defined as the rate of translation elongation, which affects the efficiency with which ribosomes are used [13, 17, 18]. Both definitions are widely used in the literature, and this can lead to profound confusion when the exact definition is not specified [19]. For example, factors that influence the efficiency of elongation should not be confused with the determinant of protein production per mRNA, or TE as defined here [19–21]. In cells, these two processes are sometimes connected because they both concern the cellular pool of ribosomes [22–24], but they are not the same. The possible connection between elongation and production per mRNA (or lack thereof) has been reviewed in several recent studies [21, 25–27]. Here I focus on understanding the meaning and utility of defining TE as the rate of protein production per mRNA.

It is clear that protein abundance is not equal to TE. Protein abundance is a product of mRNA level, TE, and protein lifetime (Box 1). Changes to the mRNA sequence can often affect some or all of these factors, making it difficult to attribute the resulting difference in protein level to changes in TE alone. Moreover, TE itself can also directly influence mRNA levels. If an mRNA is more stable when TE is high, the amount of proteins produced scales nonlinearly with TE (Box 1). It is therefore important to normalize protein abundance by differences in protein lifetime and, in particular, mRNA levels. As described later, the combination of ribosome profiling and RNA-seq enables accurate determination of protein production rate per mRNA.

Box 1

Definition of translation efficiency

Various definitions of translation efficiency have been a source of confusion. To make a clear definition of the term used in this Review, consider the four basic kinetic parameters in the central dogma (Fig. 1). mRNAs are produced at a rate k_1, and proteins are produced from mRNA with a first-order rate constant k_2. λ_1 and λ_2 are the first-order decay rate constants for mRNA and protein, respectively. The master equations for the scheme in Fig. 1 are

$$\frac{d}{dt} M = k_1 - \lambda_1 M \quad \text{(eq. 1)}$$

$$\frac{d}{dt} P = k_2 M - \lambda_2 P \quad \text{(eq. 2)}$$

Curr Opin Microbiol. Author manuscript; available in PMC 2016 April 01.
where M and P are the concentration of mRNA and protein, respectively. In this review, translation efficiency is defined as the rate of protein production per mRNA, which is equal to k_2.

$$TE \equiv k_2 \quad \text{(eq. 3)}$$

Operationally, most studies report changes in P or P/M as a measure for changes in TE. At steady state, the master equations yield

$$M = \frac{k_1}{\lambda_1} \quad \text{(eq. 4)}$$

$$P = \frac{k_2}{\lambda_2} M = \frac{k_2}{\lambda_2} \frac{k_1}{\lambda_1} \quad \text{(eq. 5)}$$

Therefore, both P and P/M are sensitive to changes in λ_1 or λ_2. In contrast, ribosome profiling in combination with RNA-seq reports k_2, a direct measure for TE (Box 2).

Box 2

Ribosome density as a measure of translation efficiency

To understand the relationship between ribosome density and rate of protein synthesis, consider the following simplified model for translation of an mRNA (Fig. 2). The codon positions for the ORF are labeled from 1 to N. Let q_i denote the probability that the i^{th} codon is occupied by a ribosome (‘occupancy’), and r_i denote the ribosome translocation rate constant from i to $i+1$. The overall rate of translocating from i to $i+1$ is r_i multiplied by the occupancy at i. Assuming that ribosomes do not dissociate until the end of the ORF, which is valid for most genes [35], the net rate of change in q_i is the difference between the translocation rates from $i-1$ and from i.

$$\frac{d}{dt} q_i = r_{i-1} q_{i-1} - r_i q_i \quad \text{(eq. 6)}$$

For the master equation above I made an approximation that the occupancy is much less than unity ($q_i \ll 1$), so that the translocation rate from $i-1$ to i is independent of q_i. There are several ways to justify this approximation. One approach is based on the length of rRNA (4.6 kb) and the ratio between rRNA and mRNA content in a cell (~20 nt of rRNA per 1 nt of mRNA) during steady state growth [38, 39]. These give 4 ribosomes per 1 kb of mRNA. Because each ribosome occupies ~30 nt of mRNA, the maximal occupancy is $4 \times 30/1000 = 0.12$. Because only ~70% of ribosomes are actively translating, the actual occupancy is close to 0.08. Therefore we can assume $q_i \ll 1$ and that there is no traffic jam.

At the end of the ORF, the rate of ribosome leaving the mRNA is equal to the rate of protein synthesis from this molecule of transcript (k_2, Fig. 2). Based on conservation
of flux, the rate of ribosomes initiating translation on this transcript must also be \(k_2 \). Thus, the master equations for the boundaries are

\[
\frac{d}{dt} q_1 = k_2 - r_1 q_1 \quad \text{(eq. 7)}
\]

\[
\frac{d}{dt} q_N = r_{N-1} q_{N-1} - k_2 \quad \text{(eq. 8)}
\]

At steady state, the solutions give

\[
r_1 q_1 = \cdots = r_{N-1} q_{N-1} = r_i q_i = \cdots = k_2 \quad \text{(eq. 9)}
\]

In other words,

\[
q_i = \frac{k_2}{r_i} \quad \text{(eq. 10)}
\]

Averaging the occupancy over the ORF gives

\[
\langle q \rangle = k_2 \left(\frac{1}{\langle r \rangle} \right) = k_2 \langle \tau \rangle \quad \text{(eq. 11)}
\]

where \(\langle \tau \rangle \) is the average translocation time per codon. We can now rewrite \(k_2 \) in terms of the observables in RNA-seq \(\langle M \rangle \) and in ribosome profiling \(\langle q \rangle \langle M \rangle \):

\[
k_2 = \frac{1}{\langle \tau \rangle} \frac{\langle q \rangle \langle M \rangle}{\langle M \rangle} = \frac{1}{\langle \tau \rangle} \frac{\text{ribosome density}}{\text{RNA level}} \quad \text{(eq. 12)}
\]

Therefore, the ribosome density per mRNA is proportional to TE, provided that \(\langle \tau \rangle \), or the average translocation time, is the same for each transcript.

The average translocation time could differ among transcripts with different codon usage if each codon is decoded at different rates. However, studies using ribosome profiling have observed a similar elongation rate (well below twofold difference) for every codon during steady state growth [27, 40–44], which is likely due to balanced codon usage and tRNA abundance. Furthermore, local variations due to internal Shine-Dalgarno sequences and, to a lesser extent, different codons are often averaged out and the residual can be corrected for when considering the average translocation time. The balance between codon usage and charged tRNA level can be perturbed under nutrient limitation or overexpression of heterologous genes [25–27, 45]. In these scenarios, it is important to correct for the difference in \(\langle \tau \rangle \) when using ribosome density to infer TE. During steady state growth, the average translocation time can be considered constant across messages.
Consider a simple case in which mRNA degradation depends on the level of translation, which is common in bacteria [37]. If the mRNA decay rate is inversely proportional to TE \(\left(\lambda_1 = \frac{A}{k_2} \right) \), the amount of protein produced then scales quadratically with \(TE \left(P = \frac{k_1 + k_2^2}{A} \right) \) whereas \(\frac{P}{\lambda_2} \) still scales linearly with \(TE \left(\frac{P}{\lambda_2} \propto k_2 \right) \). This example illustrates the importance of normalizing protein levels by mRNA levels when reporting TE. In ribosome profiling, the ratio between ribosome density and mRNA level is not affected by changes in mRNA decay.

Using synthetic DNA libraries to interrogate determinant of TE

Examining the effect of mutations on protein production is a common approach to dissect the determinants of TE. An important limitation is that it is not feasible to explore every possible combination of mutations, as a 200-aa protein can have \(10^{120} \) possible synonymous coding variants multiplied by additional variations for the untranslated regions of mRNA. Therefore, even with high-throughput oligonucleotide synthesis technology, a library of mutations can only cover a very small subset of the sequence space. Therefore, instead of aiming for unbiased coverage, synthetic libraries are often designed to test specific hypotheses. For example, a library of ~100 mutations in the 5′ untranslated region (UTR) was constructed to systematically examine the effects of sequences surrounding the ribosome binding site using RFP fluorescence as a readout [10]. Note that this approach assumes that the potential impact of 5′ UTR on mRNA stability is negligible. The results of this study suggested that TE was influenced by multiple factors including the Shine-Dalgarno sequence, the thermostability of RNA secondary structure, and other features of the ribosome binding site.

In parallel to the 5′ UTR study, several groups constructed fluorescent reporter libraries of similar size (~10^2) to test the effect of different synonymous mutations within the open reading frame (ORF) [11, 13]. These studies found that the usage of rare codons has little or no effect on protein abundance. Instead, the lack of mRNA secondary structure at the start site has the most significant, albeit weak, correlation with protein abundance [11, 13]. As was true of the previous study, the parameter measured was the final amount of protein produced. Thus, it was unclear whether the effects of RNA folding were on mRNA decay or TE. In fact, a later study reanalyzed the data and found that when protein abundance is normalized by mRNA levels, the correlation with RNA folding vanishes even though TE remains variable over two orders of magnitude [28]. How the observed TE is modulated is still unknown.

Bacterial mRNAs tend to have a lower amount of secondary structure around the translational start site, both in the 5′ UTR and the initial ORF region [29–31]. What is the role of this structure-free region? To address this issue, Goodman et al constructed a much larger scale library (~10^4) combining variants in both the 5′ UTR and the first 11 codons from endogenous E. coli genes [12]. As previously reported, codon substitutions that increase mRNA folding stability have a negative impact on protein abundance. Interestingly, rare codons in the N-terminal region tend to decrease the amount of secondary structure and thereby increase TE, explaining why rare codons are enriched in the beginning of ORFs.
Despite this progress, the predicted strength of ribosome binding site and mRNA folding are still not sufficient to explain the variations in TE, pointing to the need both for improved RNA structural prediction and for a better mechanistic understanding of translation [32–34].

Using ribosome profiling to measure TE for endogenous genes

Ribosome profiling, developed at about the same time as the synthetic oligo approach described in the previous section, has emerged as a methodology that enables the direct monitoring of translation [14]. Based on deep sequencing of ribosome protected mRNA fragments, ribosome profiling reports the number of ribosomes translating each gene. Provided that most ribosomes complete translation to yield full-length polypeptides and the elongation time averaged across the entire transcript is the same, then the density of ribosomes (number of ribosome per unit length of a gene) is proportional to the rate of protein synthesis [35]. Indeed, studies show that these two assumptions are correct (Box 2). Moreover, ribosome density is highly correlated with the individually quantified copy numbers of stable proteins in E. coli [35]. Additionally, ribosome density is proportional to the stoichiometry of members of multi-protein complexes (‘proportional synthesis’), indicating that each subunit is synthesized proportionally. These lines of evidence confirm that ribosome density can be used to report the rates of protein synthesis [35].

One can then obtain TE by dividing rate of synthesis of each protein (ribosome density) by the corresponding mRNA levels as measured by RNA-seq [14] (Box 2). This metric is independent of mRNA and protein lifetimes. Application of ribosome profiling to E. coli revealed that the TE for endogenous genes can vary by >100 fold even among open reading frames on the same polycistronic transcript [36]. In fact, modulation of TE is broadly used by bacteria to enable differential production of proteins in the same operon. For example, ribosomal proteins are often translated at much higher levels than other proteins, such as those involved in DNA repair and membrane translocation, that share the same transcript. Among functional modules, one component is often translated at a higher level according to its hierarchical role. The level of fine-tuning is best illustrated by the observation that operons that encode multi-protein complexes often modulate TE to match the stoichiometry of the different proteins in the complex [35].

Understanding how bacteria tune their own TE promises to provide critical information for designing synthetic constructs. Surprisingly, the strength of the Shine-Dalgarno sequence has no predictive power for the variation in TE for endogenous genes, i.e. genes with a weak Shine-Dalgarno sequence do not, in general, have lower translation efficiency than those with strong SDs [35]. TE is weakly anti-correlated with predicted thermal stability of RNA folding around the start codon. Importantly, neither the predicted accessibility nor strength of the ribosome binding site can explain the level of fine control of translation that bacteria have evolved [35]. These results suggest that bacteria do not use the SD sequence to tune TE. Interestingly, the same conclusion, which seems paradoxical at the current time, was first drawn when Shine and Dalgarno described the SD sequence in 1974 [4]. They noted that the gene with the strongest SD site (protein A) on the MS2 bacteriophage RNA is in fact most weakly translated [4]. 40 years after their discovery, the major determinant of translation efficiency is still largely unknown.
Conclusion

The ability to control translation efficiency is fundamental to the operon strategy in bacteria. Organizing functionally related genes into the same operon allows a simple control for transcription so as to regulate the overall level of the functional group. Meanwhile, tuning translation efficiency is essential to differential protein production within the group. This strategy is analogous to a single-handle faucet design in which one direction controls the overall flow rate and the other controls the ratio between hot and cold water. An alternative strategy that uses two independent handles for hot and cold water makes it difficult to reach the desired output in pressure and temperature. From a practical perspective, the bacterial operon strategy can be applied to synthetic biology only when it becomes possible to control TE artificially.

From the recent high-throughput studies reviewed here, it is apparent that we currently cannot predict TE in a quantitative way. A major bottleneck could lie in the biophysical algorithms that compute the most physiologically relevant RNA secondary structure. Alternatively, there might be uncharacterized molecular mechanisms that broadly influence TE. The combination of ribosome profiling and large-scale synthetic DNA libraries will likely shed light on the major mechanism for the translational control of protein synthesis.

Acknowledgments

I am grateful to Carol Gross, Jonathan Weissman, and David Burkhardt for their critical reading and discussion of this review. This work is supported by the NIH Pathway to Independence Award (GM105913).

References

11**. Allert M, Cox JC, Hellinga HW. Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol. 2010; 402:905–18. The authors created a synthetic library of 285 genes and determined the expression levels in vitro in E. coli extracts. High AU content and low secondary structure in the ORF 5′ region of the mRNA have the most significant effect on expression. [PubMed: 20727358]

12**. Goodman DB, Church GM, Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes. Science. 2013; 342:475–9. The authors synthesized a library of 14,000 reporters and used FlowSeq to measure the protein levels. Synonymous mutations in the N-terminal region were found to be associated with decreased mRNA secondary structure and higher protein levels. [PubMed: 24072823]

13**. Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009; 324:255–8. The authors engineered a synthetic library of 154 genes that code for GFP and found that codon usage is not correlated with the level of fluorescence. The stability of mRNA folding around the ribosome binding site has the most significant correlation with fluorescence levels. [PubMed: 19359587]

Curr Opin Microbiol. Author manuscript; available in PMC 2016 April 01.

35**. Li GW, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 2014; 157:624–35. Using ribosome profiling and RNAseq, the authors directly measured the translation efficiency of endogenous genes in E. coli. Modulation of TE was found to be broadly used by bacteria to enable differential production of proteins in the same operon. [PubMed: 24766808]

• The rates of protein production are precisely tuned in bacteria to meet cellular demand.
• The general strategy to quantitatively modulate translation efficiency (TE) is not well understood.
• High-throughput methods provide new approach to study TE for endogenous and synthetic genes.
• A theoretical framework is provided for interpreting these measurements of TE.
Defining translation efficiency and other kinetic constants in gene expression. The mRNA \((M)\) is transcribed from DNA at a rate \(k_1\) and degraded \((\phi)\) with a rate constant \(\lambda_1\). The corresponding protein \((P)\) is translated from mRNA with a rate constant \(k_2\) and degraded \((\phi)\) with a rate constant \(\lambda_2\). Translation efficiency is defined as \(k_2\) in this Review. See Box 1.

Figure 1.
Figure 2. Calculation of ribosome density. Consider a molecule of mRNA of length N (cylinder). The transition rate constant from position i to $i+1$ is r_{i}. The ribosome occupancy at position i is q_{i}. Assuming that every ribosome that initiates on the mRNA finishes translation, the steady state condition requires that the rate of producing a full-length protein from this mRNA (k_{2}) is the same as the rate of initiation. See Box 2.