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SUMMARY

Changes in transcriptional regulatory networks can
significantlycontribute tospeciesevolutionandadap-
tation. However, identification of genome-scale regu-
latory networks is an open challenge, especially in
non-model organisms. Here, we introduce multi-spe-
cies regulatory network learning (MRTLE), a computa-
tional approach that uses phylogenetic structure,
sequence-specific motifs, and transcriptomic data,
to infer the regulatory networks in different species.
Using simulated data from known networks and tran-
scriptomic data from six divergent yeasts, we demon-
strate that MRTLE predicts networks with greater ac-
curacy than existingmethods because it incorporates
phylogenetic information.WeusedMRTLE to infer the
structure of the transcriptional networks that control
theosmotic stress responsesofdivergent, non-model
yeast species and then validated our predictions
experimentally. Interrogating these networks reveals
that gene duplication promotes network divergence
across evolution. Taken together, our approach facil-
itates study of regulatory network evolutionary dy-
namics across multiple poorly studied species.

INTRODUCTION

Transcriptional regulatory networks are key components of

cellular information processing and transmit upstream signals

to affect downstream context-specific expression patterns.
Cell Systems 4, 543–558,
This is an open access article under the CC BY-N
Such networks are defined by connections of regulators such

as transcription factors and signaling proteins to target genes

(Kim et al., 2009). Changes in transcriptional regulatory networks

have been repeatedly shown to contribute to phenotypic diver-

sity of organisms (King and Wilson, 1975; Romero et al., 2012;

Carroll, 2000; Wittkopp, 2007). However, our understanding of

how regulatory networks evolve and affect complex phenotypes

has been limited to a handful of transcription factors in a few

species (Borneman et al., 2007; Tuch et al., 2008; Schmidt

et al., 2010; Odom et al., 2007). An improved understanding of

regulatory network evolution requires a systematic framework

for both mapping global regulatory networks in multiple species

as well as comparing the networks across species.

While significant effort has been invested in identifying regula-

tory networks in individual model organisms such as Saccharo-

myces cerevisiae (Hughes and de Boer, 2013; Harbison et al.,

2004; Macisaac et al., 2006) and Escherichia coli (Faith et al.,

2007), an open challenge is to identify these networks in newly

sequenced species and compare networks across species.

Recently, several comparative functional genomic studies have

measured genome-wide mRNA levels in multiple species (Bra-

wand et al., 2011, 2014; Thompson et al., 2013). These quantita-

tive datasets serve as ‘‘readouts’’ of the network state and pro-

vide the opportunity to comprehensively study how regulatory

networks convert environmental signals into species-specific

phenotypes and change globally across species. However, there

are two major challenges that need to be overcome. First, most

successful network reconstructions have used hundreds of sam-

ples, whereas the available data for each species in a compara-

tive study is restricted to a few dozen samples. Second, to un-

derstand the role of regulatory network evolution on species

evolution, regulatory networks need to be inferred for a complex

phylogeny consisting of a sufficiently large number of species.
May 24, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 543
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Figure 1. Overview of the MRTLE Learning Algorithm and Results on Simulated Data

(A) The MRTLE algorithm takes as input a phylogenetic tree relating multiple extant species, expression data for each extant species, and optionally sequence-

specific transcription factor binding motifs for each species. MRTLE uses the phylogenetic tree and motif instances as prior knowledge and outputs multiple

regulatory networks, one for each species. Each regulatory network specifies the directed connections among regulatory proteins such as transcription factors

(blue filled circles) to target genes (red filled squares). To capture the evolutionary dynamics of regulatory edge gain and loss, MRTLE uses a phylogenetic prior

that is parameterized by a continuous-timeMarkov chain. Each branch on the tree can have different gain and loss rates depending upon the branch length (e.g.,

tz for species Z) and an overall gain and loss rate of regulatory connections specified in the rate matrixQ.Rij
Z denotes the state of the edge between regulator i and

target gene j in species Z.

(B) Pairwise similarities measured by F-score for the simulated ground truth (True) set of seven networks, Net1-Net7, and the inferred sets of networks using two

baseline methods that do not incorporate any phylogenetic information (INDEP, GENIE3), and MRTLE that uses the phylogenetic tree of the considered species

during network inference.

(legend continued on next page)
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Incorporating the phylogenetic structure enables us to account

for the inherent relatedness of species based on their DNA

sequence composition, to trace the evolution of individual regu-

latory connections (edges) at different points on the phylogeny,

and to compare the relative contribution of sequence and

network divergence to phenotypic divergence. A large phy-

logeny is important to be able to systematically observe patterns

of conservation and divergence and to study different factors

such as gene duplication that can contribute to regulatory

network divergence. Existing approaches to infer regulatory net-

works for multiple species have either not attempted to explicitly

model the phylogeny of the species involved (Penfold et al., 2015;

Joshi et al., 2014) or their applications have been restricted to two

or three species (Xie et al., 2011; Penfold et al., 2015). Extending

such approaches to infer genome-scale networks for a large phy-

logeny with complex orthologies can be computationally expen-

sive. While a number of studies have compared gene expression

profiles across multiple species (Bergmann et al., 2003; Ihmels

et al., 2005; Kristiansson et al., 2013; Roy et al., 2013b), these

approaches typically identify gene modules that are conserved

or diverged across species and do not provide fine-grained reg-

ulatory network connectivity information. Such information is

critical to identify specific regulatory connections that evolution

must have made and broken as the species diverged.

In this paper, we develop a probabilistic graphical model-

based method, multi-species regulatory network learning

(MRTLE), that uses a phylogenetic framework to infer regulatory

networks in multiple species simultaneously. In MRTLE, the reg-

ulatory network of each species is modeled as a probabilistic

graphical model (Friedman, 2004), and the phylogenetic informa-

tion is incorporated by specifying a prior probability distribution

over edge gain and loss from the ancestral to extant species.

We use the ascomycete yeasts as a model system to study the

evolution of regulatory networks and validate MRTLE using sim-

ulations, available reconstructions of the yeast S. cerevisiae

network, and available chromatin immunoprecipitation (ChIP)-

chip-based transcription factor (TF) datasets in other species.

MRTLE reconstructs networks better than approaches that do

not incorporate phylogenetic information, while also inferring

networks that diverge in a manner consistent with the phylogeny

of the species involved. We use our inferred networks to identify

regulators with evolutionarily conserved roles in stress-related

repression and induction across ascomycete yeasts. In total,

our computational framework of simultaneously inferring regula-

tory networks for multiple species and assessing regulatory

network divergence enables a systematic study of the evolution

of gene regulatory networks in a complex phylogeny.

RESULTS

Inference and Analysis of Regulatory Networks in
Multiple Species Using MRTLE
We developed a multi-species network inference algorithm

called MRTLE that imposes a phylogenetically motivated prior
(C) Area under the precision-recall curve (AUPR) values comparing networks inf

networks. The greater the AUPR the better the method.

(D) Comparison of AUPR between (i) MRTLE and INDEP, (ii) MRTLE and GENIE3

edges between species pairs.
distribution on a set of graphs, each graph describing the regu-

latory network of a species (Figure 1A; STARMethods). The prior

distribution encodes the belief that regulatory networks diverge

according to the phylogeny, that is, the regulatory networks of

species that are phylogenetically closer are likely to be more

similar. This probability is in turn described over individual

edge states (Rz
ij in Figure 1A), for a given species Z as a function

of its state in A, the immediate ancestor of Z, PðRz
ijjRA

ij Þ: This is

modeled as a continuous-time Markov process parameterized

by the rate matrix Q, which specifies the rates at which we

expect regulators to gain or lose targets per unit time, and the

branch length tz, which specifies the divergence time between

species Z and its immediate ancestor A. This parameterization

allows for the probability of edge gain and loss to be branch

specific (Hobolth and Jensen, 2005; Garber et al., 2009; Habib

et al., 2012). Each regulatory network is modeled by a depen-

dency network, a special type of a probabilistic graphical model

(PGM) (Friedman, 2004). A PGM has two components: the graph

structure (Figure 1A, GX, GY, GZ) and parametric functions (Fig-

ure 1A, jX ; jY ; jZ ). The nodes in the graph correspond to

random variables and encode the expression levels of a gene.

The graph structure specifies the regulators of each gene, while

the parameters of the graph specify how the regulator levels

determine the output expression level.

MRTLE takes as input expression data from k different spe-

cies, a phylogenetic tree with branch lengths, gene orthology re-

lationships including those arising from gene duplications, and

rate parameters for regulatory edge loss and gain (STAR

Methods; Figure 1A). The output of MRTLE is k networks, one

for each species. The prior is flexible and can integrate spe-

cies-specific regulatory information such as sequence-specific

motifs. The prior probability of a regulatory interaction between

a target gene and a regulator depends upon both per-species

prior regulatory information (e.g., presence of sequence-specific

motifs if available) and the phylogenetic prior (STAR Methods).

Since the majority of real regulatory network connections

remain undiscovered, especially in non-model organisms, we

first used simulations to assess our approach. The goal of the

simulation is to ask if the observed expression data frommultiple

species are generated from phylogenetically divergent net-

works, does a method such as MRTLE perform better than other

methods? In our simulation, regulatory networks for seven extant

species were evolved from an ancestral network using a phylo-

genetic tree (Figure 1B), followed by generation of simulated

expression data at the extant species (STAR Methods). We

compared MRTLE with two baseline approaches, INDEP and

GENIE3 (Huynh-Thu et al., 2010), that performed network infer-

ence in each species independently (STAR Methods). INDEP is

similar to MRTLE except it did not use a phylogenetic prior.

GENIE3 was shown to have state-of-the-art performance in

network inference problems (Huynh-Thu et al., 2010; Marbach

et al., 2012). Three criteria were used for evaluation: (1) do the in-

ferred regulatory networks exhibit phylogenetic patterns of con-

servation that are similar to the true regulatory networks, (2) how
erred by MRTLE, INDEP, and GENIE3 with the seven simulated ground truth

, (iii) INDEP and GENIE3, when considering only true and predicted conserved

Cell Systems 4, 543–558, May 24, 2017 545
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Figure 2. Assessing Inferred Networks on the Ascomycete Yeast Phylogeny

(A) Precision-recall curves forMRTLE, INDEP, andGENIE3 without motifs assessing the agreement of inferred networks to anS. cerevisiae gold standard network

derived from ChIP-chip experiments.

(B) Pairwise similarities measured by F-score for the networks inferred by GENIE3, INDEP, and MRTLE when motifs were withheld, for six yeast species.

(C) Precision-recall curves for MRTLE and INDEP when motifs were included, assessing the agreement of the inferred networks using an S. cerevisiae tran-

scription factor (TF) knockout network from Hu et al. (2007) as the gold standard.

(D) Pairwise similarities measured by F-score for the networks inferred by INDEP and MRTLE and the prior motif network for six yeast species.

(E) AUPR values assessing MRTLE and INDEP at recovering ChIP-chip targets of the TF, MCM1, in three species, C. albicans, K. lactis, and S. cerevisiae.

(F) Fold enrichment of MCM1 ChIP-chip targets in MCM1’s inferred target set by MRTLE or INDEP in the 30,000 most confident edges from each method.

(legend continued on next page)
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well do the methods recover edges from the ground truth

network, and (3) how well do the methods recover those edges

that are conserved.

For (1), we computed the F-score-based similarity (STAR

Methods) for each pair of species’ true networks, and compared

this with the F-score for all pairs of inferred networks. Inclusion of

the phylogenetic prior greatly aids in recovering a pattern of

network similarity that agrees with the true pattern of conserva-

tion and divergence (Figure 1B). For example, when using

MRTLE, inferred networks Net1 and Net2 are more similar to

each other (F-score, 0.44), than Net1 is to Net7 (F-score, 0.36).

Similarly, Net6 and Net7 are more similar to each other (F-score,

0.40) than they are to any of the other species. This is in agree-

ment with the observed trend in the ground truth networks. In

contrast, both INDEP and GENIE3 substantially underestimated

the similarity between all pairs of networks, and their inferred net-

works did not exhibit a strong phylogenetic pattern of conserva-

tion, but rather appeared uniformly similar to each other. For (2),

we used edge precision and recall curves and the area under the

precision-recall curve (AUPR). Overall, MRTLE outperforms both

INDEP and GENIE3 (Figures 1C and S1), achieving a higher

AUPR than GENIE3 in six of the seven networks and a higher

AUPR than INDEP on all seven networks. Although the differ-

ences in AUPR are small, they are significant when comparing

MRTLE against the other two methods (t test, p < 0.05). GENIE3

and INDEP are comparable in performance with no significant

difference in performance, with INDEP tending to have higher

AUPRs than GENIE3. For (3), we considered only true conserved

edges between pairs of species and again assessed the

methods’ accuracies in terms of AUPR. We found that MRTLE

is generally better at recovering edges that are evolutionarily

conserved compared with INDEP (Figure 1D, i) and GENIE3 (Fig-

ure 1D, ii). Furthermore, INDEPwas better thanGENIE3 at recov-

ering true conserved edges (Figure 1D, iii).

Our simulation results show that if the observed data are

generated from networks that share an evolutionary history,

an approach such as MRTLE that uses phylogenetic informa-

tion can more effectively learn regulatory networks across mul-

tiple species. Having established the utility of MRTLE on simu-

lated datasets, we next compared MRTLE, GENIE3, and

INDEP for inferring regulatory networks from real expression

data from six yeast species (STAR Methods): Saccharomyces

cerevisiae, Candida glabrata, Saccharomyces castellii, Candida

albicans, Kluyveromyces lactis, and Schizosaccharomyces

pombe. These datasets measure genome-wide transcriptome

states in different stress conditions: glucose depletion, heat

shock, oxidative stress, and osmotic stress. Glucose depletion,

heat shock, and oxidative stress datasets were previously pub-

lished (Thompson et al., 2013; Roy et al., 2013b; Wapinski

et al., 2007), while osmotic stress was generated as part of this

study. As potential regulators, we included �500 genes that

have known DNA-binding roles in S. cerevisiae, as well as genes

whose protein products are known to bind RNA (Table S1). We
(G) AUPR values assessing MRTLE and INDEP at recovering edges of regulatory

S. cerevisiae.

(H) AUPR values for each TF assessing MRTLE and INDEP at recovering ChIP-ch

ground truth in (H) is the same as in (G) but presented at the per-TF level.
used the species tree branch lengths and gain and loss rate pa-

rameters inferred by Habib et al. (2012) to specify the probabili-

ties of edge loss and gain in MRTLE. We first assessed all three

network inference methods without making use of sequence-

specific motif priors. This enabled us to compare against

GENIE3, which does not incorporate priors, and also to assess

the broader, future applicability of MRTLE to species phylog-

enies for which such information may not be available. To

evaluate the inferred networks, we used criteria similar to the

simulation setting. To compute precision-recall curves, we

used a ChIP-chip-based regulatory network in S. cerevisiae,

which has been a gold standard in the field (Macisaac et al.

(2006)). MRTLE outperforms INDEP and GENIE3, achieving

higher precision at the same recall (Figure 2A). When comparing

the phylogenetic pattern of conservation, we observe that

MRTLE-inferred networks diverge in a pattern consistent with

the phylogeny (Figure 2B). In contrast, the networks inferred by

INDEP and GENIE3 display extreme divergence. Furthermore,

the extent of conservation inMRTLE networks ismore consistent

with observed conservation of ChIP-chip-based binding profiles

(Tuch et al., 2008) than either INDEP or GENIE3 (Figure S2).

Overall, these results suggest that using phylogenetic informa-

tion as prior can enable a more accurate reconstruction of a reg-

ulatory network, and the absence of a phylogenetic prior leads to

an overestimation of the divergence in the species’ networks.

Since GENIE3 did not have a significantly different performance

than INDEP and does not incorporate sequence-specific motifs,

our subsequent results include only INDEP as the baseline.

Having established that MRTLE is able to outperformmethods

that do not use phylogenetic priors (e.g., INDEP and GENIE3)

when neither method has access to sequence-specific motifs,

we next evaluatedMRTLEwhen given valuable sequence-based

regulatory information. We used species-specific motifs from

Habib et al. (2012) as additional priors on the graphs. We could

not use the gold standard network of Macisaac et al. (2006),

because it used evolutionarily conservation as an additional filter

to define TF target edges, and our motif priors were also defined

using an evolutionary signature (Habib et al., 2012). As an alter-

native gold standard, we used an S. cerevisiae regulatory

network fromHu et al. (2007) obtained by systematically deleting

regulators and analyzing the downstream effects on expression

(Hu et al., 2007) (STAR Methods). Using this gold standard, we

foundMRTLE to outperform INDEP in edge recovery (Figure 2C).

Notably, MRTLE outperforms INDEP at low recall (high precision)

thresholds, suggesting that those regulatory edges supported by

expression, evolutionary conservation, and a motif instance are

more likely to be functional than those supported only by expres-

sion and a motif instance.

Next, we examined the networks inferred by MRTLE and

INDEP to assess whether they diverge in a manner consistent

with the phylogeny. Since the degree and pattern of network

similarity is dependent upon the similarity in the motif networks

used as priors in addition to the expression data, we also
networks consisting of ChIP-chip targets of six different TFs in C. albicans and

ip targets of each of the six different TFs in C. albicans and S. cerevisiae. The
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Figure 3. Assessing Rates of Target Gain and Loss for Regulators in MRTLE-Inferred Networks and Motif Networks
(A and B) Boxplots of gain (A) and loss (B) rates calculated for the MRTLE-inferred networks, the rates calculated for the motifs used as prior knowledge in the

MRTLE framework, and the rates calculated for themotifs used byHabib et al. (2012). For theMRTLE networks, rateswere calculated using the top approximately

50,000 edges in each species’ network.

(C andD) Cumulative distribution function plots of gain (C) and loss (D) rates calculated using theMRTLE-inferred networks at confidence thresholds amounting to

approximately 50,000 edges for regulators with duplication (blue) and without duplications (red).

(E and F) Boxplots of gain (E) and loss (F) rates for regulators in the MRTLE networks when considering all regulators and all targets (left; All), all regulators and

targets without duplications (middle; Uniform Targets), and duplicated regulators collapsed into a single average regulator with all targets (right; Collapsed

(legend continued on next page)
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estimated the similarity of all pairs of motif networks (Figure 2D,

Motif Prior). The motif prior networks exhibited stronger evolu-

tionary conservation compared with networks learned from

INDEP (Figure 2D). Aswas the case for simulated data (Figure 1B)

and for real expression data alone (Figure 2B), the networks

learned by MRTLE exhibit stronger evolutionary conservation

than those learned by INDEP and diverge in a pattern consistent

with the phylogeny (Figure 2D). As in the no motif case, the

observed conservation levels for MRTLE with motifs agrees

more with previous studies (Figure S2; Tuch et al., 2008). The

similarity scores for INDEP networks increased relative to the

scores when not using motifs, consistent with the hypothesis

that the motif prior constrains the inferred networks to be more

conserved than expression alone (Figures 2B and 2D). The sim-

ilarity scores for the MRTLE networks were comparable with and

without motifs, suggesting that MRTLE is robust to the prior

inputs.

Although large-scale knockout and ChIP-chip networks are not

available in non-model organisms, a handful of TFs have been

studied across multiple species (Tuch et al., 2008; Lavoie et al.,

2010) using ChIP-chip experiments. In particular, Tuch et al.

(2008) measured binding gene targets of the TF, MCM1, in

S. cerevisiae, K. lactis, and C. albicans. Lavoie et al. (2010)

measured targets of CBF1, HMO1, FHL1, IFH1, and RAP1 in

S. cerevisiae andC. albicans. We used these two ChIP-chip data-

sets to test the ability of MRTLE and INDEP with motifs to recover

these targets. On the MCM1 datasets, MRTLE outperforms

INDEP in K. lactis and S. cerevisiae, and performs comparably

in C. albicans (Figure 2E). As an additional evaluation measure,

we calculated the fold enrichment of the ChIP-chipMCM1 targets

in the predicted MCM1 targets among the top �30,000 edges

(Figure 2F; STAR Methods). Although the predicted targets from

both methods were enriched for ChIP-chip MCM1 targets,

MRTLE achieved a higher fold enrichment than INDEP in all

three species. We combined the predicted targets of all TFs stud-

ied by Lavoie et al. (2010) into a single network and foundMRTLE

to significantly outperform INDEP for C. albicans (Figure 2G).

However, MRTLE was outperformed on S. cerevisiae (Figure 2G).

To gain insight into the lower performance of MRTLE on

this S. cerevisiae network, we analyzed our predictions per

TF (Figures 2H and S3). In S. cerevisiae, MRTLE outperformed

INDEP on RAP1 and TBF1, and it was outperformed for CBF1

(Figures 2H and S3). Both methods had low AUPRs on HMO1,

IFH1, and FHL1, likely due to the small number of targets. It is

likely that CBF1’s targets diverge substantially across species

giving no additional advantage with MRTLE, or, it is possible

that the current CBF1 target set is incomplete. Future experi-

ments combining ChIP-chip experiments with TF knockout are

needed to examine this property. Taken together, MRTLE was

more effective than INDEP at recovering ChIP-based regulatory
Regulators). Rates are computed using the top 50,000 edge set. p values from

duplications have higher gain (E) or loss (F) rates than regulators without duplica

(G) Each point represents a regulator, with the x coordinate specifying the regulato

high gain rates (2 SD above the mean) are noted.

(H) Comparison of MRTLE and motif prior rates of target gain (i, iii) and loss (ii,

thogroups with at least one duplication (i, ii) and from orthogroups without duplic

specifying the gain/loss rate of the regulator’s motif-based targets and the y coord

the top 50,000 edge set.
edges in non-model organisms, demonstrating that a phyloge-

netic prior-based framework is beneficial for non-model organ-

isms as well.

The genome-wide regulatory networks for these six species

enable us to more systematically study factors driving regulatory

network evolution. For example, estimated rates of gain and loss

of edges can provide insights into the relative importance of these

two types of network changes in regulatory network divergence.

Previously, Habib et al. (2012) assessed gain and loss rates of

computationally inferred binding sites of individual TFs. Using a

similar framework toHabib et al.,wecomputedgain and loss rates

of targets for each regulator (TFs and signaling proteins; STAR

Methods, Table S2). We find loss rates to be higher (1.84 ± 0.67)

than gain rates (0.48 ± 0.20). A similar trend was observed with

the rates from Habib et al. (loss rate of 4.91 ± 2.35 and gain rate

of 0.17 ± 0.17), as well as in our recalculations of the rates using

motif instances only (loss rate 3.92 ± 1.31, gain rate 0.94 ± 0.31).

Our results show that regulatory networks evolve by losing edges

more rapidly than by gaining edges, and this property is true for

both purely sequence-based networks and MRTLE-inferred net-

works. Although the same trends are observed in all three sources

of rates, rates inferred using MRTLE networks were significantly

different from the rates inferred fromHabib et al. (2012) or the rates

obtained in the prior networks. In particular, regulators in the

MRTLE network have a relatively lower loss rate (mean 1.84),

compared with the loss rate (mean 4.91) estimated by Habib

et al. MRTLE gain (Figure 3A) and loss rates (Figure 3B) are also

lower than those estimated directly on the motifs used as priors.

The significant differences in the rates from Habib et al.’s prior

networks and the MRTLE-inferred networks, suggest that the

MRTLE-inferred networks represent the output of integrating

expression and sequence-specific motifs.

Duplication of TFs can significantly contribute to regulatory

network divergence (Pougach et al., 2014; Voordeckers et al.,

2015). We next asked if regulators with duplications differ in their

rates of gain and loss compared with regulators without dupli-

cations. We find that regulators with duplications have signifi-

cantly higher edge gain rates (Kolmogorov-Smirnov [KS] test,

p < 13 10�6, Figure 3C) compared with regulators without dupli-

cations. Such regulators also tend to lose edges more than

those without duplications, but the trend is less pronounced (KS

test, p < 0.04, Figure 3D). We repeated the rate calculations using

targets with uniform orthology, and collapsing duplicated regula-

tors into a single orthogroup by taking the average rate, and found

similar results (Figures 3E and 3F, STARMethods). In addition, we

calculated the rates at various confidence thresholds and found

the results to be robust to the threshold used (Figure S4).

We identified 19 regulators that had a significantly higher rate

of edge gain (>2 SD frommean; Table S3). These regulators were

associated with diverse processes including stress response
KS tests are given in parentheses, testing the hypothesis that regulators with

tions.

r’s loss rate and the y coordinate specifying its gain rate. Outlier regulators with

iv) for each regulator and its targets, including only those regulators from or-

ations (iii, iv). Each point represents a specific regulator, with the x coordinate

inate specifying the gain/loss rate of the regulator’s MRTLE-based targets from
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(SKN7, CRZ1, CAD1, RLM1), response to nutrients (MIG1, GZF3,

CBF1, HAP4), cell cycle (FKH1, FKH2, ACE2), RNA binding

(SUI3, JSN1, NOT5), and chromatin organization (CBF1, FKH1,

FKH2, RPH1, TBF1). Regulators with high gain rates tend to

also have high loss rates (Pearson’s correlation of 0.66), but

this pattern was defied by KRE33, which had one of the slowest

loss rates (1.68 SD below mean) despite having the highest gain

rate (4.77 SD above mean; Figure 3G). KRE33 is involved in ribo-

somal biogenesis, a process that has been shown to be inher-

ently tied to species lifestyle in the ascomycete lineage (Thomp-

son et al., 2013), and KRE33 might be an important factor in

regulatory divergence in this phylogeny. Although the majority

of these regulators were from orthogroups that had a duplica-

tion, four of the regulators (CBF1, KRE33, HAP4, SUI3) were

from orthogroups that did not have duplications. Such regulators

tend to be associatedwith response to stress and chemical stim-

uli, suggesting that such processes may be subject to multiple

forces of evolutionary turnover, including gene duplication.

Recently, Pougach et al. (2014) showed that sequence affinity

of paralogous TFs diverges after duplication, which can influ-

ence regulatory network rewiring. To investigate the role of

sequence affinity divergence on the overall edge gain rate, we

correlated the MRTLE gain and loss rates to the motif gain and

loss rates. We found a strong correlation between rates calcu-

lated using MRTLE networks or the motif networks (Figure 3H,

i, ii) for TFs from duplicated families. This correlation was nega-

tive or weak for TFs from families with no duplications (Figure 3H,

iii, iv), althoughwe hadmany fewer TFs that hadmotifs and came

from non-duplicating families. This suggests that sequence

divergence can contribute to network divergence of TFs from

duplicated gene families. For two of the TF families, we had

sequence motifs for both paralogs: SKN7, HSF1 and YAP1,

CAD1. The difference in MRTLE gain rates was much greater

for the SKN7, HSF1 pair compared with the YAP1, CAD1 pair

(Figure 3H, i). Interestingly, SKN7 and HSF1 had very different

sequence affinities (Figure S5) compared with YAP1 and

CAD1. These results are consistent with published studies of

regulatory divergence of individual TFs (Pougach et al., 2014)

and offer preliminary evidence that sequence divergence could

explain, in part, the greater tendency to gain targets. Taken

together, our inferred networks enabled us to quantitatively

assess regulatory network evolution and predict regulators that

contribute to regulatory network divergence more than others.

Such regulators tend to come from regulator families with dupli-

cations or are implicated in stress response.

Evolution of the Osmotic Stress Response Regulatory
Network
To gain insight into how changes in regulatory networks can

affect complex phenotypes, we used MRTLE-inferred regulatory

networks to study response to osmotic stress across six Asco-

mycota species. Response to environmental stress is a major

driving force in the evolution of new phenotypic traits (Hiyama

et al., 2012; Hoffmann and Willi, 2008), especially in unicellular

organisms (Gasch, 2007). Our current understanding of the reg-

ulatory network in response to stress is strongly biased to

S. cerevisiae, and we understand little about its structure and

function in other species. To address this gap, we first measured

usingmicroarrays, genome-wide gene expression profiles under
550 Cell Systems 4, 543–558, May 24, 2017
osmotic stress in six species. We then identified stress-specific

transcriptional modules using a multi-species module inference

algorithm, Arboretum (Roy et al., 2013b). Application of Arbo-

retum to our osmotic stress response (OSR)-specific expression

data identified five modules ranging from the most repressed

genes (module 1) to the most induced genes (module 5, Fig-

ure 4A). We then inferred OSR-specific networks by filtering

the original MRTLE inferred networks to keep only those edges

that connected targets and regulators within the same OSR

module (STAR Methods). We refer to this approach of inferring

context-specific expression networks as MRTLE + Arboretum.

To assess the accuracy of our inferred context-specific regulato-

ry network edges, we performed miSeq expression profiling in

knockout strains of two regulators, MSN2/4 and SKO1, under

osmotic stress (Figures 4B–4D; STAR Methods). MSN2/4 is a

general stress response regulator (Gasch et al., 2000), and

SKO1 is an OSR-specific regulator. Both of these regulators co-

ordinate with the protein kinase, HOG1, to control OSR in

S. cerevisiae (Capaldi et al., 2008). We compared our predicted

targets against the miSeq data in two ways. First, we asked

whether the expression of MRTLE and MRTLE + Arboretum in-

ferred targets of these two TFs was significantly different based

on a KS test, from non-targets under osmotic stress (Figures 4B

and 4C). Second, we used LIMMA to define targets of these

mutants in each species (Figure 4D; STAR Methods) (Smyth

et al., 2005). Based on the KS test, both MRTLE and MRTLE +

Arboretum targets are significantly repressed in the MSN2/4

knockout in S. cerevisiae compared with wild-type, which sug-

gests that our predicted regulatory connections are valid. We

did not find significant differences for the knockout of the ortho-

log of MSN2/4 in the two other species, C. albicans and Schizo-

saccharomyces pombe. The lack of significant differences in

these species is consistent with previous observations where

MSN2/4 does not play a significant role in general stress

response (Nicholls et al., 2004; Chen et al., 2008; Sanso et al.,

2008). In particular, the C. albicans MSN2/4 homologs, MNL1

andMSN4, do not play a role in general stress response (Nicholls

et al., 2004). Only MNL1 is required for adaptation to weak acid

stress (Ramsdale et al., 2008). For SKO1, we found a significant

downregulation of targets in C. albicans and a significant, albeit

reduced, effect in S. cerevisiae.

The LIMMA-based analysis confirmed our observations. At

p < 0.05, we found 117 MSN2/4 targets in S. cerevisiae and

159 SKO1 targets in C. albicans. LIMMA identified relatively

fewer targets (14) for S. cerevisiae SKO1, and therefore we

excluded it from this analysis. After removing genes from these

sets that were not in the dataset used by MRTLE, we were left

with 114 targets of MSN2/4 in S. cerevisiae and 149 targets of

SKO1 in C. albicans. Our MRTLE + Arboretum approach yielded

311 predicted targets of MSN2/4, 31 of which were among the

114 LIMMA targets, representing a 4.2-fold enrichment (hyper-

geometric test, p < 1.23 10�12, Figure 4D). In contrast, the orig-

inal MRTLES. cerevisiae network predicted 891MSN2/4 targets,

50 of which overlapped with the LIMMA results, representing a

2.4-fold enrichment (p < 1�10). Similarly for C. albicans SKO1,

MRTLE alone predicted 334 targets, 21 of which overlapped

with LIMMA targets (2.3-fold enrichment, p < 1.7 3 10�4). In

contrast, 6 of MRTLE + Arboretum’s 40 SKO1 targets overlap-

ped with LIMMA resulting in a higher fold enrichment (5.6-fold
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Figure 4. Osmotic Stress Response Module Assessment
(A) Expression heatmaps for each of five inferred OSR-specific expressionmodules, ranging frommost repressed (left) to most induced (right). The height of each

heat bar is proportional to the genes in each module.

(B and C) Boxplots comparing differential expression under osmotic stress response (OSR) for predicted targets and non-targets of MSN2/4 (B) and SKO1 (C), as

predicted by MRTLE and an approach that combines MRTLE with modular filtering (MRTLE + Arboretum). Targets inferred with the MRTLE + Arboretum

approach are those targets inferred byMRTLEwith the additional constraint that a target must be present in the sameOSR-specific module as its regulator. Each

plot shows the log2 ratio of expression in knockout over wild-type of the specified regulator’s targets. p Values from KS tests are given for each pair of com-

parisons, testing the hypothesis that the predicted targets have decreased expression after knockout relative to the non-targets, implying that the knocked out TF

has an activating role under salt stress.

(D) Fold enrichment of LIMMA-based targets of MSN2/4 in S. cerevisiae and SKO1 in C. albicans. Targets were called with LIMMA and fold enrichment.
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enrichment, p < 5.8 3 10�4). These analyses suggest that the

MRTLE + Arboretum approach can greatly improve the accuracy

of stress-specific regulatory network learning.

To assess the overall extent of conservation in our complete

OSR-specific networks, we calculated the F score similarity be-

tween networks of each species pair (Figure 5A). We found a

significant phylogenetic pattern, although the extent of conser-

vation was lower than what we observed before (Figure 2D).

We then examined the portions of our OSR-specific networks

spanning the most repressed and most induced modules, and

identified conserved regulators acting as hubs in each case (Fig-

ure 5B). In the repressed module, KRE33 remained a conserved

hub across all species. BAS1 acted as a repressor in the three

most recently diverged species, S. castellii, C. glabrata, and

S. cerevisiae, while TOD6 acted as a repressor in all species

except Schizosaccharomyces pombe, for which no ortholog ex-

ists. In the induced modules, we found MSN2/4 as a hub in the

most recently diverged species (Table S4). Intriguingly, we found

COM2 (MNL1 in C. albicans), which belongs to the MSN2/4

family, as a hub in C. albicans. In the other species we found

the YAP family of TFs and cell-cycle regulators (SWI5, SWI4,

MBP1) to act as hubs. In Schizosaccharomyces pombe glucose

regulators were predicted as the strongest hub followed by the

cell-cycle-related regulators. These regulatory networks thus

predict several regulators that have not been associated with

stress response in these species that can be followed up with

future validation studies.

While the structure of the network specifies which regula-

tors regulate which genes, the function of a network specifies

how the regulator drives the expression of its targets. A regu-

lator can regulate expression by acting as an activator or

repressor of expression. Do regulator roles of activation and

repression change across species and to what extent do

such changes depend upon the stress? To address these

questions, we examined the regulator-module relationships

in the OSR and heat shock response (HSR) data (Table S5)

(Roy et al., 2013b).

We used two measures to assess a regulator’s activating or

repressive role. The first measure used the significance of

enrichment of a regulator’s targets in the activating versus

repressive module (STAR Methods). Our second measure

compared the expression of the targets for each time point in

the repressed or induced module. Our enrichment-based anal-

ysis identified several notable regulators with a conserved asso-

ciation with repression in response to osmotic stress, such as

KRE33, NSR1, SFP1, LOC1, REH1/REI1, and CHA4/TEA1 (Fig-

ure 6A, Table S5). Interestingly, the majority of the conserved,

repressed regulators are associated with ribosomal biogenesis,

which is repressed in species under stress. Regulators with

conserved activating roles across all six species included the

MSN2/4 family, the SKN7/HSF1 family, and AFT1/AFT2. Most

of these regulators have general or specific stress-related func-

tions. Our second analysis focused on regulators with targets in
Figure 5. MRTLE + Arboretum Inferred Osmotic Stress Response Netw

(A) Conservation of the inferred OSR networks for each species measured by F

(B) Networks spanning the most repressed and most induced OSR modules. Nod

level rather than the orthogroup level, but nodes are labeled withS. cerevisiae ortho

orthologs were truncated due to space considerations.
both activating and repressive modules. This was a comple-

mentary measure, which recapitulated regulators from our

enrichment-based measure and also identified several addi-

tional candidates of regulator divergence (typically in one or

two species, Figure 6B). This included cell-cycle regulators

such as FKH1/2 and MBP1/SWI4, stress regulators (CRZ1),

chromatin remodelers (GIS1, RPH1), and HAP4. Notably,

several of these regulators were also associated with higher

gain rates, suggesting that regulator expression divergence

might be associated with the tendency of the regulators to

gain or lose edges. However, additional datasets would be

needed tomore fully understand this phenomenon. Overall, reg-

ulators tended to not change signs between species from acti-

vating to repressive or vice versa.

To examine the generality of this observation, we compared

the OSR regulator signs with those in HSR (Figure 7). The major-

ity of the regulators had similar associations in these stresses,

with stress-related regulators such as MSN2/4 exhibiting a

conserved activation and ribosomal biogenesis regulators ex-

hibiting a conserved repression across species. However,

some notable differences were uncovered, including a pro-

nounced inductive role under heat stress in all species for

HSP60, which is known to have a regulatory role post heat

stress. Consistent with its role in the S. cerevisiae OSR, SKO1

also exhibited a conserved role of upregulation in all species

except Schizosaccharomyces pombe, and showed no signifi-

cant association in HSR. Examples of regulators that changed

their association with expression modules between stresses

were observed primarily in a species-specific manner. In partic-

ular, PHO4 and TYE7 were associated with repression in heat

shock in C. albicans (Figure 7) but did not have a significant as-

sociation in C. albicans in osmotic stress (Figure 6). In summary,

regulator associations with module expression are generally

conserved across species for particular stresses. Regulator-

module associations change their sign between stresses, but

these changes are rare and happen in a species- and clade-spe-

cific manner.

DISCUSSION

A comparative framework for regulatory networks can provide

insights into principles of gene regulation (Garfield and Wray,

2010; Li and Johnson, 2010; Wohlbach et al., 2009), as well as

inform better learning of network structure (Penfold et al.,

2015; Thompson et al., 2015). Here, we have presented our algo-

rithm MRTLE for inferring regulatory networks for multiple spe-

cies related by a known phylogeny. MRTLE makes use of a

known phylogenetic tree to explicitly model evolutionary rates

of regulatory edge gain and loss and can additionally incorporate

sequence-specific motifs to identify regulatory networks in a

complex phylogeny. Furthermore, MRTLE is able to incorporate

complex many-to-many orthology relationships arising from

gene duplications, which are known to play a crucial role in
orks in Six Ascomycete Yeast Species

score.

e size is proportional to node degree. Networks were constructed at the gene

logy names for species other thanS. cerevisiae. NodeswithmanyS. cerevisiae
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regulatory network evolution (Voordeckers et al., 2015; Teich-

mann and Babu, 2004; Perez et al., 2014).

By leveraging data from related species within a phylogenetic

framework, MRTLE is able to outperform methods that do not

make use of evolutionary information (INDEP, GENIE3), in both

simulated and real data settings. By favoring networks that are

more phylogenetically coherent, MRTLE is able to recover the

conserved parts of regulatory networks more accurately than

methods that do not incorporate the phylogeny. MRTLE can

accurately learn regulatory networks even when the sample

size of expression data is small as demonstrated by our cross-

species ChIP-chip comparisons. These results suggest that

MRTLE can be an effective tool for inferring regulatory networks

in non-model organisms, for which data are just becoming avail-

able and little is known about their regulatory networks. Compu-

tationally inferred high-confidence regulatory interactions could

be critical for prioritizing ChIP-seq and regulator perturbation ex-

periments needed to understand the regulatory networks in

these poorly characterized species.

Inferring genome-wide regulatory networks in a large set of

species enabled us to perform several systematic analyses to

study regulatory network evolution. One of the properties that

we discovered was the relatively higher rates of target gain and

loss in regulators with duplications versus regulators without du-

plications. Notable exceptions were a few stress-related regula-

tors that exhibited high rates of turnover but did not have dupli-

cations. Consistent with previous work (Pougach et al., 2014),

we find that the MRTLE rates of TFs in duplicated families are

more correlated to the sequence-derived rates, suggesting

that sequence affinity divergence can facilitate TFs with duplica-

tions to diverge. However, additional experimental data

measuring sequence affinity of individual members for a larger

number of families are needed to more robustly examine this

property. The MRTLE framework also enabled us to compare,

for the first time to our knowledge, global transcriptional net-

works for a specific stress. We found that patterns of functional

divergence of a regulator-module relationship were typically

gradual and included a change from down- or upregulation to

no significant association with a module. While some regulators

changed their association across different stresses, most of the

divergence in association is likely to occur gradually through

fine-tuning of expression.

MRTLE can be extended in several directions. A particular

challenge to employing MRTLE is setting the prior probability

of an edge gain or loss for each branch. In this paper, we

used previously established motif gain and loss rates as a

proxy for regulatory edge gain and loss rates. While this

yielded good performance in our setting, a different approach
Figure 6. Comparative Analysis of Regulator Association to Osmotic S

(A) Shown are regulator-module association scores computed using themost repr

difference of the negative log(p value) from two hypergeometric tests, one for th

represent a stronger association with the most induced module compared with

sociation with the repressed module compared with the induced module. Blank s

loss event, or for which no targets were predicted in the top 30,000 edges in MRT

value <2) are excluded from the figure (see Table S5 for all regulators).

(B) Shown is the negative log(p value) from a t test comparing the expression lev

experimental condition (time point and stress signal) for OSR. The intensity of re

bottom). Regulators with more targets in the induced module than the repressedm

more targets in the repressed module than the induced module are considered a
may be necessary in phylogenies where motif turnover rates

are not available. In addition, one could incorporate variable

gain and loss rates for each putative regulator, making use

of prior information about each regulator’s gain and loss rates.

MRTLE’s reliance on the high predictive power of a target’s

mRNA level based on the expression of TFs makes it difficult

to discover potential regulatory roles of genes such as

HOG1, which is known to be important in the OSR in

S. cerevisiae. Integrating regulator activity levels that are less

dependent on gene expression levels is another future exten-

sion to MRTLE. Another direction of future work is to extend

our simulation to model the evolution of sequence-specific

motifs, together with the network evolution model, to enable

a more controlled study of the role of sequence and expres-

sion evolution in regulatory network evolution. In summary,

MRTLE represents a powerful framework to infer and compare

regulatory networks on a genome-wide scale in a complex

phylogeny, and should enable furthering our understanding

of regulatory network evolution and its impact on how species

interact and adapt to environmental changes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Osmotic Stress Response Gene Expression Profiling
Strains and Growth Conditions

The following wild-type strains were used for each species in the study: S. cerevisiae W303 (Capaldi et al., 2008), C. glabrata CBS

138, S. castellii CLIB 592, K. lactis CLIB 209, C. albicans SC5314, C. albicans BWP17, S. pombe SPY73h+. Deletion mutant strain
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S. pombe HSR1was obtained from Bioneer. S. cerevisiae deletion mutation strains ofMSN2/4 and SKO1were created on theW303

wild type strain previously described in Capaldi et al. (Capaldi et al., 2008). Deletion mutation strain for C. albicans SKO1 andMNL1

were previously described in Homann et al. (Homann et al., 2009). All species were grown in the following rich medium chosen to

minimize cross-species variation in growth (termed BMW): yeast extract (1.5%), peptone (1%), dextrose (2%), SC amino acid mix

(Sunrise Science) 2 g/L, adenine 100 mg/L, tryptophan 100 mg/L, uracil 100 mg/L (Thompson et al., 2013). For each strain, cells

were plated onto BMW plates from frozen glycerol stocks. After 2 days, cells were taken from plates and re-suspended into liquid

BMW and grown overnight. Approximately 100-1500ul quantities (depending on the species growth rate and timing constraints

for the days experiments) of the overnight cultures were used to inoculate pre-warmed, 350ml BMW cultures in 2L Erlenmeyer flasks

in NewBrunswick Scientific water bathmodel C76 shakers. All strainswere grown at 180 rpmat 30C except forS. castellii, whichwas

grown at 25 C.

Osmotic Stress Response Profile Experiments

The OD600 was measured throughout the day to ensure culture growth was tracking as expected (Thompson et al., 2013). When

samples reached a species-specific OD600, corresponding to slightly late mid-log, we transferred 150ml of the culture to each of

100ml BMW (CTRL) and 100ml BMW+KCl (EXP). Both CTRL and EXP media were pre-warmed for 40-60 minutes in the shaker prior

to the experiment. EXP media was either BMW + 0.5M KCl, 1M KCl, or 2M KCl, yielding a final concentration of 0.2M KCl, 0.4M KCl,

and 0.8M KCl, respectively, upon addition of the culture. In each case, CTRL media was added first, followed by the EXP media,

whereupon the shaker was immediately activated to 180 rpm and the timer started simultaneously. Samples (20ml) were collected

from the CTRL media + culture immediately upon activation of the shaker (T=0), then at T=10, 20, 40, and 80 minutes from the EXP

media + culture. Samples were collected in 50 mL conicals filled with 30ml of 100% methanol to yield a 60/40 methanol/sample

mixture. The methanol-filled tubes were stored at -80 C until ready for use. During sample collection tubes were placed in a rack

in a dry-ice ethanol bath kept at approximately -40 C. Once the sample was added to the methanol, the methanol and media

were separated from the cells by centrifugation and poured off. The conicals containing a cell pellet were flash frozen in liquid nitrogen

and then stored at -80 C until processed for permanent storage or RNA isolation. To process, the cell pellets were washed in 5 ml of

nuclease-free water and spun for 5 min at 3700 rpm at 4 C. The supernatant was discarded and the pellet re-suspended in 2 mL of

RNAlater (Ambion) and transferred to 2 ml Sarstadt tubes for storage.

RNA Preparation and Labeling

Total RNA was isolated using the RNeasy Mini Kits (Qiagen) according to the provided instructions for mechanical lysis. Samples

were quality controlled with the RNA 6000 Pico kit of the Bioanalyzer 2100 (Agilent). Total RNA samples were labeled with either

Cy3 or Cy5 using a modification of the protocol developed by Joe DeRisi (University of California at San Francisco) and Rosetta In-

pharmatics as described previously (Wapinski et al., 2010). In the case of the OSR profile experiments, the control was a pooled sam-

ple, consisting of equal quantities of 160ng RNA from each of the T= 0, 10, 20, 40, and 80 minute samples. The pool was constructed

prior to the SS-III reverse transcription step, where the Agilent spike-in A (or spike-in B in the case of labeling with Cy5), could be

incorporated into the reaction.

Microarray Hybridization

We used two-color Agilent 55- or 60-mer oligo-arrays in the 43 44 K format (four to five probes per target gene) and 83 15 K format

(two probes per target gene). After hybridization and washing per the manufacturer’s instructions, arrays were scanned using an Agi-

lent scanner and analyzed with Agilent’s Feature Extraction software (release 10.5.1.)

cDNA Synthesis for Mi-seq RNA-Sequencing Gene Expression Studies

1 ug of total RNA in a volume of 11 uL was used as input. Heat fragmentation was completed by adding 3 uL The RNA Storage

Solution-Ambion (AM7000) to each sample in an Eppendorf 96well plate (951020401, Fisher Scientific) and heating at 98�C for 30mi-

nutes. First strand cDNAwas created by adding 1uL of OligoDT to samples and heating at 70C 10min. Samples were then put imme-

diately on ice. A mastermix of 2 uL of 10x Affinity script buffer, 0.8 uL of 25mM dNTPs, 2 uL of DTT and 1 uL of the AffinityScript RT

Enzyme (AffinityScript Multiple Temperature Reverse Transcriptase, 600109) was created. 5.8 uL of the mastermix was added to

each sample well and mixed. Samples were incubated at room temperature of 10 minutes in a thermocycler, followed by 1 hour

at 50�C, 15 minutes at 70�C and a 4�C hold.

Second strand cDNA synthesis was completed with mRNA Second Strand Synthesis Module, E6111L. cDNA synthesis reaction

was cleaned up using Agencourt AMPure XP beads (A63881, Beckman Coulter). Sample and beads were used as input to library

construction; beads remain in the plate well with sample until the adapter ligation cleanup.

Library Construction for Sequencing

Libraries were created using KAPA Biosystems Library Preparation Kit (KK2505 and KK8202) in an Eppendorf 96 well plate. Enzy-

matic reactionswere cleaned up by adding AMPure XP to the sample after end repair, and leaving the beads in the sample throughout

adapter ligation. 20% PEG, NaCl 2.5M was added to samples and beads for A-base and Adapter ligation cleanup, as previously

described (Fisher et al., 2011). Prior to library enrichment, samples were eluted from AMPure XP beads. For library enrichment

and amplification, a mastermix containing 12 uL of 5X Kapa HiFi Fidelity Buffer 2mM Mg, 1 uL of 25 mM dNTPs, 4 uL of primer

mix, 1 uL of Kapa HiFi HotStart Enzyme and 2 uL of water per sample was created. 20 uL of the mastermix was added to the sample

and the following PCR program was run: 98C for 45 seconds, 12 cycles of 98C for 15 seconds, 60C for 30 seconds and 72C for 30

seconds, a final extension at 72C for 1min and a 4C hold. The library enrichment reaction was cleaned by adding 60 uL of AMPure XP

beads and samples were eluted off of the AMPure beads in 15 ul of Trish-HCL (pH 8). The samples were then transferred to new plate

and library quality was assessed.
e2 Cell Systems 4, 543–558.e1–e8, May 24, 2017



Library Quality Control

Libraries were checked for quality control using Agilent High Sensitivity D5000 Screentape assay; size range for each sample was

between 200-500 base pairs.

Library Sequencing

Each library was diluted to 2nM and pooled prior to sequencing. Sequencing was completed on the MiSeq platform and a 25 x 25,

paired end sequencing run was completed.

METHOD DETAILS

Probabilistic Framework for Phylogeny-Aware Regulatory Network Learning for Multiple Species: MRTLE
Our multi-species network inference approach is based on a probabilistic graphical model representation of a regulatory network

(Friedman, 2004; Segal et al., 2003; Friedman et al., 2000; Markowetz and Spang, 2007; Pe’er et al., 2006). Bayesian networks (Fried-

man et al., 2000) and dependency networks (Heckerman et al., 2001) are examples of probabilistic graphical models that have been

used to represent regulatory networks. Here, we use a dependency network representation because they can be relatively easily

learned from observed expression data and can capture cyclic dependencies (Huynh-Thu et al., 2010; Heckerman et al., 2001).

Below, we first give a description of a probabilistic model representation of a regulatory network for a single species, followed by

a description of the probabilistic priors we have employed to capture phylogenetic relationships, and then a sketch of the MRTLE

algorithm.

Modeling a Regulatory Network in One Species

A probabilistic graphical model (PGM) of a regulatory network has two components: the structure, which specifies the regulators of a

target gene, and the parameterized functions, which describe the sign and magnitude of the interactions of individual and combina-

tions of regulators specifying the expression of a target gene. In PGMs, the expression level of a gene i is captured by a random var-

iable, Xi, and a conditional probability distribution relates the expression levels of regulators to the expression level of a target gene,

by specifying the probability of a target gene taking a specific expression value given the expression values of its regulators. In

MRTLE, Xi and its parents are assumed to be jointly Gaussian and the conditional distribution for each Xi given its parent is a con-

ditional Gaussian.

Extending to Multiple Regulatory Networks

LetN denote the number of species, and letGs denote the graph associated with the sth species. Let Ds denote the expression data-

sets associated with the sth species that represent measured expression levels of both targets and regulators under multiple condi-

tions. Given datasets, D1,/,DN and a phylogenetic tree over N species, our goal is to simultaneously infer the unknown regulatory

networks G1,/,GN for all species. We use a Bayesian framework to tackle this problem and optimize the posterior probability of the

graphs given the data, P(G1,/,GNjD1,/,DN). Using Bayes rule this is proportional to P(D1,/,DNjG1,/,GN)P(G1,/,GN), where

P(D1,/,DNjG1,/,GN) is the data likelihood that is computed easily for each species independently,
YN

s= 1

ðPDsjGsÞ. P(G1,/,GN) is

the prior over the N graphs. To incorporate the phylogenetic similarity between species, we use a specific formulation of the

multi-graph prior, which we describe below.

Phylogenetic and Species-Specific Graph Priors

P(G1,/,GN) is defined as a product of G1ðG1;/;GNÞ, which captures the multi-species phylogenetic prior, and G2ðG1/;GNÞ that
captures any species-specific regulatory information such as binding sites. G1 and G2 each define a distribution over a set of graphs,

where each graph is represented by a set of edges from regulators to target genes. These are not bipartite graphs because there exist

genes that act as both regulators and targets. To describe G1 in more detail we make use of the concept of an orthogroup (Wapinski

et al., 2007), which is defined as a set of orthologous genes. Each orthogroup contains 0 or more gene members from each species.

We assume that G1 decomposes as a product over sets of edges between regulator orthogroups and target orthogroups. For

simplicity, we first assume that each species has one gene in each regulator orthogroup and one gene in each target orthogroup.

Later, we describe how to relax this assumption. Let Ijk = fI1jk ;/; INjkg be a binary vector for each regulator j and target gene k pair.

Iijk is a binary variable capturing the state of the edge from regulator j to target k for the ith species, taking a value of 0 if the edge

is absent and 1 if the edge is present. We express this prior as G1ðG1;/;GNÞ=
Q
j/k

PðIjkÞ, which assumes that the prior decomposes

as a product over the edges. PðIjkÞ can be efficiently computed using Felsentein’s algorithm for computing the probability of discrete

observations at the leaf nodes of a phylogenetic tree (Felsenstein, 1981). First, we expand Ijk to include the ancestral species at the

N�1 intermediate points in the tree using indices N+1 to 2N�1 to represent these internal points. PðI1jk ;/; INjkÞ requires us to integrate

away the state of the edges at the internal nodes as
P
IN+1
jk

;.;
P
I2N�1
jk

PðI1jk ;.; INjk ; I
N+ 1
jk ;.; I2n�1

jk Þ . Using the tree structure to make indepen-

dence assumptions, we can write this as
P
IN+1
jk

;.;
P
I2N�1
jk

PðI2N�1
jk ÞQ

l

PðIljk
���IpaðlÞjk Þ, where pa(l) denotes the immediate ancestor species of l.

Hence the probability, P(Ijk), can be computed efficiently using the probability of an edge state in l, given the state of the edge in the

ancestor of l, PðIljk
���IpaðlÞjk Þ.
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Two parameters, pg and pm, each taking values from zero to one, are used to determine this probability. The first, denoted pg,

represents the probability of gaining a regulatory edge given that the edge does not exist in the ancestral species. The second,

denoted pm, represents the probability of maintaining a regulatory edge, given its presence in the ancestral species. Setting these

parameters to appropriate values is a difficult task. In our experiments on real data with six yeast species, we estimated a rate

matrix using the average rate of motif binding site gain and loss from (Habib et al., 2012). We then set pg and pm for each branch in

the phylogenetic tree based on this rate matrix and the branch length. In this regard, we used binding site gain and loss rates as a

proxy for regulatory edge gain and loss rates. Thus our prior G1 is parameterized by branch lengths and the two rate parameters

that are multiplied to obtain the probabilities pg and pm. Because branch lengths vary, the probabilities pm and pg are modeled

separately for each branch. The second part of the prior, G2ðG1;/;GNÞ, acts in a per-species manner, and can be further decom-

posed as a product over species-specific graphs G2ðG1;/;GNÞ=
YN

i = 1

PðGiÞ. Each P(Gi) further decomposes as a product of

edges, PðIðXj/XkÞÞ, where I is an indicator function for an edge existing between regulator j and target k. Similar to (Roy

et al., 2013a), we parameterize the prior probability as a logistic function: PðIðXj/XkÞ= 1Þ as 1
1+ expðb0 + b1 �mjk Þ. Here, mjk specifies

whether gene k has a motif in its promoter region that can be bound by regulator j. In our current implementation of the algorithm,

each mjk takes on a real value, proportional to the significance of an instance of j’s motif found in k’s promoter. These weights

could be estimated using a standard motif scanning tool, for example FIMO (Grant et al., 2011). b0 is a sparsity prior that can

be used to control the extent to which the algorithm penalizes the addition of a new edge. b1 controls the strength of the motif

prior. Both b0 and b1 are user-tunable parameters. The addition of the motif prior enables us to select interactions that are weakly

predicted by expression data, but are supported by the motif presence. Note that this framework is flexible and can easily be

modified to fit a scenario where we do not have species-specific motif information (b1=0), or in settings where additional types

of prior information for an edge are present.

Score-Based Learning of Regulatory Networks

To infer graphs for all species we use a score-based approach that searches over the space of possible graphs. Because the

space of possible graphs is super-exponential in the number of variables, it is not possible to find a global optima. Instead, it is

typical to use heuristic search algorithms over the graph space, score each candidate graph, and select the one that corre-

sponds to a local optima. In the multi-species setting, we need to simultaneously search over the N graphs. Specifically, the

score of a current graph configuration is composed of the data likelihood, PðD1;/;DNjG1;/;GNÞ, as well as the graph prior,

P(G1,/,GN). As described above, PðD1;/;DNjG1;/;GNÞ is written as a product over the N species,
Q
s
PðDsjGsÞ. In a depen-

dency network we cannot easily compute the likelihood P(DsjGs), but instead we compute a pseudo likelihood, which is given

by the product of conditional distributions, PðXs
i

��Rs
Xi
Þ, where Rs

Xi
denotes the regulator set for Xs

i in species s. We assume

that each variable Xs
i and its regulators Rs

Xi
are distributed according to a multi-variate Gaussian. The conditional PðXs

i

��Rs
Xi
Þ is

a conditional Gaussian distribution with mean mXs
i

���Rs
Xi

and variance sXs
i

���Rs
Xi

, estimated from the joint using Lauritzen et al (Lauritzen,

1996). Using the conditional means, mXs
i

���Rs
Xi

, and variances, sXs
i

���Rs
Xi

, of a variable given its regulator set, we compute the conditional

data likelihood for each variable Xs
i using data from species s. To compute the portion of the score representing the graph prior,

we need to compute G1 and G2. As described above, G1 decomposes as a product over each possible regulator-target or-

thogroup, and can be computed using Felsentein’s algorithm (Felsenstein, 1981), while G2 is computed in a species-specific

manner.

Handling Non-Uniform Orthogroups

In the description so far, we have assumed that each species has exactly one gene in the regulator orthogroup, and exactly one gene

in the target orthogroup. However, for most evolutionary studies, the ability to handle many-to-many mappings between species is

essential. In our problem setting, when there are duplications, we need to specially handle the Ijk variable that specifies the state of

edges between the regulatory orthogroup j and the target orthogroup k. If a species has more than one gene in the regulator or-

thogroup or target orthogroup, we consider all possible edges between the genes in the regulator orthogroup to the genes in the

target orthogroup, and select the edge that has the highest improvement in score. That is, if a species l has p regulators and q targets

in the jth and kth orthogroups, respectively, we will consider all p3q edges for that species. We set Iljk = 1 if any member of the jth regu-

lator orthogroup has an edge to any member of the kth target orthogroup.

Computational Complexity of the MRTLE Algorithm

MRTLE uses a greedy network learning algorithm which operates on one orthogroup at a time, which can be parallelized

because the priors decompose at the orthogroup level. The search decomposes into per-orthogroup regulator set estimation

problems, where the orthogroup corresponds to the target gene. In each iteration, for a target orthogroup, MRTLE would

search among all regulator orthogroups to find the best regulator orthogroup that would result in an overall score improve-

ment. For a target orthogroup j and regulator orthogroup i, this score improvement is calculated based on: (a) A species-spe-

cific contribution that examines all regulators genes in the orthogroup and all target genes in the target orthogroup to find the

regulator gene pair with the highest score improvement. (b) The computation of the phylogenetic prior. Operation (a) requires
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nsi 3ms
j operations in species s with nsi regulators in the ith orthogroup and ms

j genes in the jth orthogroup. For N species, the

overall complexity for this calculation is O(Nnimj), where ni and mj are the maximum number of regulator and target genes in

the ith and jth orthogroups respectively. The second operation of computing the phylogenetic prior uses the Felsenstein al-

gorithm that is linear in the number of species, O(N). Taken together, scoring a given target and regulator orthogroup pair is

therefore O(Nnimj), which we write simply as O(Nnm), with n denoting the maximum number of genes in a species in a regu-

lator orthogroup and m denoting the maximum number of genes in the target orthogroup in a species. This search procedure

is executed for all regulator orthogroups to find the best move. If R is the total number of regulator orthogroups, finding

the best move takes O(RNnm). Finally, the iteration of finding the next best regulator is executed at most the maximum num-

ber of pre-specified regulators a gene can have. Let this be k. Hence the overall complexity of the MRTLE algorithm is

O(kRNnm).

We note that the complexity of the algorithm without the phylogenetic prior, would requireO(kRNnm) operations as well. However,

this can be parallelized across species and therefore would be faster.

Details of the Baseline Algorithms Compared
We compared MRTLE to two baseline algorithms, GENIE3 and INDEP, both of which aimed to learn a regulatory network for each

species independently.

GENIE3

GENIE3 is a dependency network learning algorithm that infers the structure of the regulatory network by solving a set of individual

regression problems, one per gene. Each regression problem is solved by learning tree-based ensembles (either Random Forests or

Extra Trees) that represent the regulatory program of a gene. GENIE3 takes as input an expression data matrix and a set of candidate

regulators and outputs a ranking of potential regulatory edges. GENIE3 was one of the best performers in the DREAM network infer-

ence challenge (Huynh-Thu et al., 2010; Marbach et al., 2012).

INDEP

The INDEP algorithm is also a dependency network learning algorithm, that infers the structure of the regulatory network by solving a

set of individual linear regression problems. The INDEP algorithm uses a per-gene greedy algorithm that aims to infer the regulators of

each gene one at a time and is described in more detail in Siahpirani & Roy (Siahpirani and Roy, 2016) as the Per-Gene Greedy (PGG)

algorithm. Briefly if Ds represents the dataset for the sth species, INDEP aims to learn the graph structure Gs by optimizing PðGsjDsÞ
which is proportional to PðDsjGsÞPðGsÞ. P(Gs) is defined in the same manner as the species-specific prior of MRTLE. INDEP makes

the same assumptions as MRTLE about the Gaussian distribution of the gene expression data (See Sections Modeling a regulatory

network in one species and Phylogenetic and species-specific graph priors).

Datasets
We evaluated our learning algorithm on simulated data with known ground truth, as well as with real yeast expression data.

Simulated Datasets

Our simulation framework made use of a simple probabilistic process of network structure evolution, which was parameterized with

the probability, pg, of gaining an edge that does not exist in the ancestral species, and the probability, pm, of maintaining an edge that

exists in the ancestral species. The simulation started from an ancestral network of 300 genes and 33 regulators and a species tree

shown in Figure 1B, and evolved each possible edge down the branch of a tree until the leaves in the species tree were reached. We

set pg = 0.2, and pm = 0.8 for this process. Once we had the network structures for each species, we used GeneNetWeaver to

generate data from each species (Schaffter et al., 2011). GeneNetWeaver uses stochastic differential equations to generate expres-

sion data. Specifically, each sample in each dataset represents a steady state measurement after perturbing a node and running the

system to steady state. Each dataset consisted of 300 samples.

Yeast Expression Datasets

We applied our algorithm to real expression data from six ascomycete yeast species (Thompson et al., 2013; Roy et al., 2013b;

Wapinski et al., 2010), and a new osmotic stress response dataset collected in this work (GSE94628). These data measure gene

expression for six species, namely S. cerevisiae, C. glabrata, S. castellii, K. lactis, C. albicans and S. pombe in four stresses: glucose

depletion, heat shock, osmotic stress, and oxidative stress (oxidative stress data was not available for S. pombe). A total of 35 mea-

surements were used for C. albicans and C. glabrata, 30 measurements were used for S. cerevisiae, S. castellii, and K. lactis, and 21

measurements were used for S. pombe for which oxidative stress data was not available. In addition to the phylogenetic priors, our

study in yeast included species-specific sequence motifs identified using the Cladeoscope algorithm, developed by Habib et al

(Habib et al., 2012).We learned regulatory networks using a gene set drawn from 6,547 orthogroups, which included genes with com-

plex orthology relationships and many duplication levels. 459 of these orthogroups contained at least one potential regulator in at

least one species.

Evaluation of Learned Networks
We assessed the effectiveness of network reconstruction using the MRTLE approach by comparing against two baseline ap-

proaches described above, GENIE3 and INDEP, on both simulated and real expression data.
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Experiments on Simulated Data
GENIE3

We downloaded GENIE3 from http://homepages.inf.ed.ac.uk/vhuynht/software.html. We ran GENIE3 on the entire dataset of 300

samples. GENIE3’s internal ensemble framework automatically generates confidence estimates on individual regulatory edges.

GENIE3 has twomain parameters: the number of trees, nb, and the number of features to be used at each split, K. We tested multiple

configurations for each parameter: nb˛{100,500,1000,1500}, and K˛{sqrt,all}, where sqrt uses the square root of the number of reg-

ulators, while allwill select all the regulators. For each configuration of these parameters, GENIE3will output a confidence value of the

presence of a regulatory edge for all potential edges. To select a particular configuation we used AUPR (described below in Evalu-

ationmetrics). We found the configuration of nb=1500 andK=all to give the best AUPR and used the network inferred from this setting

for our downstream evaluation. However, the overall performance of GENIE3 was stable across different parameter configurations

(Figure S6A).

INDEP

INDEP was run within a stability selection framework, where a network was learned on one of 50 random subsamples of data con-

taining 150 samples each. This allowed us to compute a confidence for each regulatory edge defined by the fraction of data subsets

for which the edge was selected. The INDEP algorithm has two parameters that control the influence of the prior distribution: b0 for

controlling the sparsity of the inferred network and b1 to control the influence of the sequence-specific motifs. In the simulation case

b1 was set to 0. We tried different parameter configurations of b0˛{�0.6,�0.8,�1.0,�1.2,�1.4,�1.6,�1.8,�2.0,�3.0,�4.0,�5.0}. As

in GENIE3, we used AUPR to select the best setting. We found b0 = -3.0 to give the best performance, however the overall perfor-

mance of INDEP was stable across different parameter configurations (Figure S6B).

MRTLE

Similarly to INDEP, MRTLE was also run within a stability selection framework, with 50 random subsamples of the data each

comprising 150 samples. MRTLE has multiple parameter configurations: pg for controlling the probability of an edge to be gained

in the child species, pm to control the probability of maintaining an existing edge, b0 for controlling sparsity, and b1 for controlling

the influence of the motif prior. As in the INDEP case, we set b1=0. We tested different configurations for MRTLE pg=

{0.1,0.2,0.3,0.4}, pm={0.7,0.8,0.9} and b0={�0.6,�0.8,�1.0,�1.2,�1.4,�1.6,�1.8,�2.0}. We found b0=�2.0, pg=0.2, pm=0.9, to

give the best results, however, the performance of MRTLE is stable across different configuration settings (Figure S6C).

Evaluation in Real Expression Setting
The evaluation proceeded in the same way as in the simulation case where we tried different parameter configurations and selected

the one with the highest AUPR.

GENIE3

We ran GENIE3 with different values of the features used per split, K˛{all,sqrt}, and number of trees, nb˛{100,500,1000,1500,2000}.
We selected the best configuration based on the AUPR performance on the MacIsaac gold standard available for S. cerevisiae (Ma-

cisaac et al., 2006). This configuration was K = sqrt, and nb = 500, but GENIE3 was quite stable to different parameter configurations

(Figure S7A).

INDEP

To infer the networks, we used a stability selection framework, where we divided the expression datasets into 25 equal partitions

each consisting of 20 measurements of the available stress response measurements. In S. pombe, for which oxidative stress

data was not available, we partitioned the data into subsamples consisting of 14 measurements. We then inferred networks using

each of the 25 data partitions, and calculated a confidence for each regulator-target interaction for each species, by calculating

the percentage of the 25 networks that each edge was present in.

We used the ‘‘with motif’’ case to determine the optimal parameter configurations. Specifically, we set the sparsity parameter

b0˛{�1,�2,�3,�4,�5} and the motif parameter b1˛{1,2,3,4,5} (Figure S7B). We used AUPR computed on the Hu et al. dataset

from S. cerevisiae (Davis and Goadrich, 2006), to determine the best setting (similar strategy as in GENIE3), and found b0=�5.0

and b1=5.0 to give the best results.

In the casewheremotifs were not used, we need only to specify the sparsity parameter, b0.We selected b0=�5.0, because this was

the configuration that was ideal for the motif case. We checked the sensitivity of INDEP to multiple settings of b0:

b0˛{�1.0,�2.0,�3.0,�4.0,�5.0}. INDEP results were very stable across different b0 values (Figure S7C).

MRTLE

Similarly to INDEP, we used a stability selection framework to learn regulatory networks with MRTLE. We used settings of pg and pm

that were derived from the species tree branch lengths, and used b0˛{�0.8,�0.9} and b1˛{3,4,5}. We ran MRTLE with these config-

urations using only those target orthogroups without duplications, and computed AUPR on the Hu et al. dataset. We found the

AUPRs to be very stable (Figure S7D), however, b0=�0.9 and b1=4 gave the best AUPR, and we used this configuration in all further

analyses.

Evaluation Metrics
We used different evaluation metrics to assess the quality of the inferred networks.
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Area Under the Precision Recall Curve

On both simulated data (all species) and real expression data (S. cerevisiae), we compared the inferred networks with the true net-

works based on Area under the precision recall curve (AUPR) computed using the aupr tool from Davis and Goadrich. (Davis and

Goadrich, 2006). Precision is defined as the ratio of true positives to the total number of predicted edges. Recall is defined as the

ratio of the number of true positive edges to the number of true edges. To compute the precision-recall curve, we need to estimate

precision and recall at different confidence thresholds for edges. For MRTLE and INDEP, we obtained these confidences using sta-

bility selection. That is, we generated random subsamples of the data, learned a network from each subsample, and computed a

confidence for each edge representing the fraction of inferred networks in which the edgewas present. GENIE3 has its own bootstrap

procedure during the Random Forests learning procedure and directly outputs a confidence for each edge. The area under the pre-

cision-recall curve gives an overall assessment of the quality of the inferred networks.

Pattern of Phylogenetic Conservation

We assessed the quality of the inferred regulatory networks using the extent of inferred conservation and the ability to capture phylo-

genetically coherent patterns of conservation between species. A pattern of conservation is said to be phylogenetic if it obeys the

phylogenetic structure, that is, networks for species that are close on the phylogeny should exhibit greater similarity than networks

of species that are further apart. We used an F-score measure to assess the similarity between pairs of networks, where F-score is

defined as the harmonic mean of precision, P, and recall, R, F-score = 2�P�R
P+R . This required us to specify a network at a specific con-

fidence threshold for each species. For the simulated data we picked these thresholds to obtainz 3,000 edges. For the real data, we

picked thresholds to obtain z 30,000 edges.

In the simulation setting, since we had access to the true networks, we could additionally directly assess the extent of conservation

and divergence present, and compare this to the conservation and divergence present in the inferred networks. This comparison was

done by defining the predicted common edges between two inferred networks and comparing to true common edges using AUPR.

Evaluating Regulator-Target Edge Predictions in S. cerevisiae
To evaluate our networks inferred for S. cerevisiae when motifs were withheld, we used a ChIP-chip derived TF-target gene network

fromMacisaac et al., 2006, which has previously been used as a gold standard in the field (Marbach et al., 2012). When evaluating the

full power of MRTLE with motifs included into its prior formulation, we used a dataset from Hu et al., which was constructed by sys-

tematically examining the genome-wide expression profile in 268 individual deletion strains, each strain representing a transcription

factor (TF) (Hu et al., 2007). The regulatory network was defined using a two step approach. First, an initial network was defined as the

total set of significantly differentially expressed genes in each deletion strain. Second, this network was refined using a regulatory

epistasis approach in an effort to remove indirect interactions. See Hu et al (Hu et al., 2007) for details.

Evaluation of Regulator-Target Edge Predictions in Non- S. cerevisiae Species

The evaluation of edges in the non-S. cerevisiae species was done using available ChIP-chip datasets for a handful of transcription

factors, namely MCM1 from (Tuch et al., 2008) and CBF1, HMO1, FHL1, IFH1, and RAP1 from (Lavoie et al., 2010). We evaluated the

quality of the inferred interactions for these TFs based on AUPR and fold enrichment of ChIP-based targets in the MRTLE inferred

networks. Fold enrichment is defined as the ratio of the observed over expected proportion of true edges as follows:

ð# of true positive targetsÞ = ð# of predicted targetsÞ
ð# of actual targetsÞ = ð# of genes in datasetÞ :

Inference of Stress-Specific Regulatory Networks for Multiple Species
To define the regulatory network for each stress, e.g., Osmotic stress response, we used the Arboretum algorithm to first define five

transcriptional modules as described in Roy et al (Roy et al., 2013b). We next filtered the MRTLE regulatory network inferred in each

species using themodule assignments such that an edgewas removed from the network if either of the end points of the edgewere in

different modules, resulting in a single stress-specific network for each species. We refer to this combined approach as

Arboretum+MRTLE.

Assessing a Regulator’s Role as Repressive or Activating
We used two measures to assess whether a regulator acted in a repressive or activating manner. In the first, we used a Hypergeo-

metric distribution to calculate the significance of overlap between the MRTLE inferred targets of a regulator and a transcriptional

module. A regulator, r’s association with a repressed or induced module was quantified based on the difference,

�logðp� valueACTÞ � ð�logðp� valueREPÞÞ, where p�valueACT and p�valueREP are the Hypergeometric test p-values obtained

when testing for enrichment of r’s targets in the most induced or most repressed module, respectively. Regulators with negative

values for this measurement were considered to be repressive regulators, while positive values indicated an activator. In the second

analysis, we directly compared the expression of the targets of a regulator in the induced and repressed modules based on a one-

sided T-test for each time point. We required a regulator to have at least 5 targets in one module (e.g. most induced) and at least 2

targets in the other (e.g. most repressed) module and tested whether the targets in the inducedmodule were significantly higher than

the repressed module. Next, to assign a sign to a regulator, we used the difference in the number of targets in each module; if a
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regulator had more targets in the repressive module, it was considered as a repressor, whereas, if it had more targets in the induced

module, it was called an activator. This too gave a single statistic that could be used to assess if a regulator was mostly repressive or

activating.

Defining Targets of Selected Regulators based on LIMMA
To validate predicted targets of key transcription factors we measured mRNA levels using miseq, and utilized the LIMMA software

(Smyth et al., 2005), applying it to salt stress data sets in wild type and mutant strains of yeast. Here a wild type (Scer.WT) and an

MSN2/MSN4 knockout mutant (Scer.msn2.4) S. cerevisiae strain were used to define the targets of MSN2/4, and a wild type and

SKO1 mutant strain of C. albicans were used to define the targets of SKO1 in C. albicans. For S. cerevisiae two replicate RNA-

seq experiments were performed for each of 4 conditions for both wild type and mutant: (1) T=0 minutes under no salt stress

(BMW.T0), (2) T=20 minutes under no salt stress (BMW.T20), (3) T=0 minutes under a KCL salt stress treatment (KCL.T0), (4)

T=20 minutes under a KCL salt stress treatment (KCL.T20). Using LIMMA, differentially expressed genes were called for MSN2/

MSN4 in S. cerevisiae with the following contrast functions: (Scer.WT.KCl.T20-Scer.WT.BMW.T0)-(Scer.msn2.4.KCl.T20-

Scer.msn2.4.BMW.T0). The rationale for this contrast function is that the genes that are under MSN2/4 control under osmotic stress

are those whose expression changes from T0 to T20 in the wild type, but not in theMSN2/4 strain when subjected to the same stress.

Similarly for C. albicans, the contrast function used was (Calb.WT.KCl.T20-Calb.WT.BMW.T0)-(Calb.sko1.KCl.T20-Calb.-

sko1.BMW.T0). A similar contrast function was applied for the other strains as well. While targets were called for other species

and regulators, in only the above two cases did MRTLE and the limma analysis both find a sufficient number of targets to allow

for enrichment analyses. The LIMMA algorithm results for these two contrasts then provided us with a log-fold change and an

adjusted p-value (q value) measure for the significance of differential expression of each gene. A q-value <0.05 was chosen to select

targets of MSN2/MSN4 in S. cerevisiae and SKO1 in C. albicans. These target lists were then utilized in the downstream analyses.

When comparing ourMRTLE results to theMSN2/4 double knockout, any gene predicted to be regulated by eitherMSN2 orMSN4 by

MRTLE was considered.

Estimation of Gain and Loss Rates in MRTLE Inferred Network
Rates of target gain and loss were calculated for each regulator orthogroup by modeling gain and loss of targets with a continuous-

time Markov process, and using an expectation-maximization (EM) based approach to estimate the rates, as in Hobolth et al. and

Garber et al. (Hobolth and Jensen, 2005; Garber et al., 2009). When assessing the rates in MRTLE, three separate sets of rates

were calculated (Figures 3E and 3F). The first allowed for many-to-many orthology relationships within a regulator group, construct-

ing rate matrices for each possible mapping when regulator duplications were present (Figures 3E and 3F; All). In the second set, we

separated the effect of genes lost from the genome from the effect of regulators’ targets lost. For this, we calculated rates for each

regulator after removing any targets from consideration that did not have uniform, one-to-one orthology (Figures 3E and 3F; Uniform

Targets). In the third set, we tested whether double-counting of certain regulators did not bias the results. To address this, we calcu-

lated the rates by taking the average rate of each of the possible orthology mappings for a regulator (Figures 3E and 3F; Collapsed

Regulators).

DATA AND SOFTWARE AVAILABILITY

TheMRTLE software and inferred networks are available at https://bitbucket.org/roygroup/mrtle. The expression datasets generated

as part of this study are available in GEO (GSE94628).
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