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SUMMARY

Changes in transcriptional regulatory networks can
significantly contribute to species evolution and adap-
tation. However, identification of genome-scale regu-
latory networks is an open challenge, especially in
non-model organisms. Here, we introduce multi-spe-
cies regulatory network learning (MRTLE), a computa-
tional approach that uses phylogenetic structure,
sequence-specific motifs, and transcriptomic data,
to infer the regulatory networks in different species.
Using simulated data from known networks and tran-
scriptomic data from six divergent yeasts, we demon-
strate that MRTLE predicts networks with greater ac-
curacy than existing methods because it incorporates
phylogenetic information. We used MRTLE to infer the
structure of the transcriptional networks that control
the osmotic stress responses of divergent, non-model
yeast species and then validated our predictions
experimentally. Interrogating these networks reveals
that gene duplication promotes network divergence
across evolution. Taken together, our approach facil-
itates study of regulatory network evolutionary dy-
namics across multiple poorly studied species.

INTRODUCTION

Transcriptional regulatory networks are key components of
cellular information processing and transmit upstream signals
to affect downstream context-specific expression patterns.
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Such networks are defined by connections of regulators such
as transcription factors and signaling proteins to target genes
(Kim et al., 2009). Changes in transcriptional regulatory networks
have been repeatedly shown to contribute to phenotypic diver-
sity of organisms (King and Wilson, 1975; Romero et al., 2012;
Carroll, 2000; Wittkopp, 2007). However, our understanding of
how regulatory networks evolve and affect complex phenotypes
has been limited to a handful of transcription factors in a few
species (Borneman et al.,, 2007; Tuch et al., 2008; Schmidt
et al., 2010; Odom et al., 2007). An improved understanding of
regulatory network evolution requires a systematic framework
for both mapping global regulatory networks in multiple species
as well as comparing the networks across species.

While significant effort has been invested in identifying regula-
tory networks in individual model organisms such as Saccharo-
myces cerevisiae (Hughes and de Boer, 2013; Harbison et al.,
2004; Macisaac et al., 2006) and Escherichia coli (Faith et al.,
2007), an open challenge is to identify these networks in newly
sequenced species and compare networks across species.
Recently, several comparative functional genomic studies have
measured genome-wide mRNA levels in multiple species (Bra-
wand et al., 2011, 2014; Thompson et al., 2013). These quantita-
tive datasets serve as “readouts” of the network state and pro-
vide the opportunity to comprehensively study how regulatory
networks convert environmental signals into species-specific
phenotypes and change globally across species. However, there
are two major challenges that need to be overcome. First, most
successful network reconstructions have used hundreds of sam-
ples, whereas the available data for each species in a compara-
tive study is restricted to a few dozen samples. Second, to un-
derstand the role of regulatory network evolution on species
evolution, regulatory networks need to be inferred for a complex
phylogeny consisting of a sufficiently large number of species.
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A Overview of the MRTLE Framework
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Figure 1. Overview of the MRTLE Learning Algorithm and Results on Simulated Data

(A) The MRTLE algorithm takes as input a phylogenetic tree relating multiple extant species, expression data for each extant species, and optionally sequence-
specific transcription factor binding motifs for each species. MRTLE uses the phylogenetic tree and motif instances as prior knowledge and outputs multiple
regulatory networks, one for each species. Each regulatory network specifies the directed connections among regulatory proteins such as transcription factors
(blue filled circles) to target genes (red filled squares). To capture the evolutionary dynamics of regulatory edge gain and loss, MRTLE uses a phylogenetic prior
that is parameterized by a continuous-time Markov chain. Each branch on the tree can have different gain and loss rates depending upon the branch length (e.g.,
t, for species Z) and an overall gain and loss rate of regulatory connections specified in the rate matrix Q. R,-,-Z denotes the state of the edge between regulator i and
target gene j in species Z.

(B) Pairwise similarities measured by F-score for the simulated ground truth (True) set of seven networks, Net1-Net7, and the inferred sets of networks using two
baseline methods that do not incorporate any phylogenetic information (INDEP, GENIE3), and MRTLE that uses the phylogenetic tree of the considered species
during network inference.

(legend continued on next page)
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Incorporating the phylogenetic structure enables us to account
for the inherent relatedness of species based on their DNA
sequence composition, to trace the evolution of individual regu-
latory connections (edges) at different points on the phylogeny,
and to compare the relative contribution of sequence and
network divergence to phenotypic divergence. A large phy-
logeny is important to be able to systematically observe patterns
of conservation and divergence and to study different factors
such as gene duplication that can contribute to regulatory
network divergence. Existing approaches to infer regulatory net-
works for multiple species have either not attempted to explicitly
model the phylogeny of the species involved (Penfold et al., 2015;
Joshietal., 2014) or their applications have been restricted to two
or three species (Xie et al., 2011; Penfold et al., 2015). Extending
such approaches to infer genome-scale networks for a large phy-
logeny with complex orthologies can be computationally expen-
sive. While a number of studies have compared gene expression
profiles across multiple species (Bergmann et al., 2003; lhmels
et al., 2005; Kristiansson et al., 2013; Roy et al., 2013b), these
approaches typically identify gene modules that are conserved
or diverged across species and do not provide fine-grained reg-
ulatory network connectivity information. Such information is
critical to identify specific regulatory connections that evolution
must have made and broken as the species diverged.

In this paper, we develop a probabilistic graphical model-
based method, multi-species regulatory network learning
(MRTLE), that uses a phylogenetic framework to infer regulatory
networks in multiple species simultaneously. In MRTLE, the reg-
ulatory network of each species is modeled as a probabilistic
graphical model (Friedman, 2004), and the phylogenetic informa-
tion is incorporated by specifying a prior probability distribution
over edge gain and loss from the ancestral to extant species.
We use the ascomycete yeasts as a model system to study the
evolution of regulatory networks and validate MRTLE using sim-
ulations, available reconstructions of the yeast S. cerevisiae
network, and available chromatin immunoprecipitation (ChIP)-
chip-based transcription factor (TF) datasets in other species.
MRTLE reconstructs networks better than approaches that do
not incorporate phylogenetic information, while also inferring
networks that diverge in a manner consistent with the phylogeny
of the species involved. We use our inferred networks to identify
regulators with evolutionarily conserved roles in stress-related
repression and induction across ascomycete yeasts. In total,
our computational framework of simultaneously inferring regula-
tory networks for multiple species and assessing regulatory
network divergence enables a systematic study of the evolution
of gene regulatory networks in a complex phylogeny.

RESULTS

Inference and Analysis of Regulatory Networks in
Multiple Species Using MRTLE

We developed a multi-species network inference algorithm
called MRTLE that imposes a phylogenetically motivated prior

distribution on a set of graphs, each graph describing the regu-
latory network of a species (Figure 1A; STAR Methods). The prior
distribution encodes the belief that regulatory networks diverge
according to the phylogeny, that is, the regulatory networks of
species that are phylogenetically closer are likely to be more
similar. This probability is in turn described over individual
edge states (R7 in Figure 1A), for a given species Z as a function
of its state in A, the immediate ancestor of Z, P(RﬂRg.‘). This is
modeled as a continuous-time Markov process parameterized
by the rate matrix Q, which specifies the rates at which we
expect regulators to gain or lose targets per unit time, and the
branch length t,, which specifies the divergence time between
species Z and its immediate ancestor A. This parameterization
allows for the probability of edge gain and loss to be branch
specific (Hobolth and Jensen, 2005; Garber et al., 2009; Habib
et al., 2012). Each regulatory network is modeled by a depen-
dency network, a special type of a probabilistic graphical model
(PGM) (Friedman, 2004). A PGM has two components: the graph
structure (Figure 1A, Gx, Gy, Gz) and parametric functions (Fig-
ure 1A, ¥y, ¥y, ¥z). The nodes in the graph correspond to
random variables and encode the expression levels of a gene.
The graph structure specifies the regulators of each gene, while
the parameters of the graph specify how the regulator levels
determine the output expression level.

MRTLE takes as input expression data from k different spe-
cies, a phylogenetic tree with branch lengths, gene orthology re-
lationships including those arising from gene duplications, and
rate parameters for regulatory edge loss and gain (STAR
Methods; Figure 1A). The output of MRTLE is k networks, one
for each species. The prior is flexible and can integrate spe-
cies-specific regulatory information such as sequence-specific
motifs. The prior probability of a regulatory interaction between
a target gene and a regulator depends upon both per-species
prior regulatory information (e.g., presence of sequence-specific
motifs if available) and the phylogenetic prior (STAR Methods).

Since the majority of real regulatory network connections
remain undiscovered, especially in non-model organisms, we
first used simulations to assess our approach. The goal of the
simulation is to ask if the observed expression data from multiple
species are generated from phylogenetically divergent net-
works, does a method such as MRTLE perform better than other
methods? In our simulation, regulatory networks for seven extant
species were evolved from an ancestral network using a phylo-
genetic tree (Figure 1B), followed by generation of simulated
expression data at the extant species (STAR Methods). We
compared MRTLE with two baseline approaches, INDEP and
GENIES3 (Huynh-Thu et al., 2010), that performed network infer-
ence in each species independently (STAR Methods). INDEP is
similar to MRTLE except it did not use a phylogenetic prior.
GENIE3 was shown to have state-of-the-art performance in
network inference problems (Huynh-Thu et al., 2010; Marbach
et al., 2012). Three criteria were used for evaluation: (1) do the in-
ferred regulatory networks exhibit phylogenetic patterns of con-
servation that are similar to the true regulatory networks, (2) how

(C) Area under the precision-recall curve (AUPR) values comparing networks inferred by MRTLE, INDEP, and GENIE3 with the seven simulated ground truth

networks. The greater the AUPR the better the method.

(D) Comparison of AUPR between (i) MRTLE and INDEP, (i) MRTLE and GENIES3, (jii) INDEP and GENIE3, when considering only true and predicted conserved

edges between species pairs.
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Figure 2. Assessing Inferred Networks on the Ascomycete Yeast Phylogeny
(A) Precision-recall curves for MRTLE, INDEP, and GENIE3 without motifs assessing the agreement of inferred networks to an S. cerevisiae gold standard network

derived from ChIP-chip experiments.
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(B) Pairwise similarities measured by F-score for the networks inferred by GENIE3, INDEP, and MRTLE when motifs were withheld, for six yeast species.

(C) Precision-recall curves for MRTLE and INDEP when motifs were included, assessing the agreement of the inferred networks using an S. cerevisiae tran-
scription factor (TF) knockout network from Hu et al. (2007) as the gold standard.
(D) Pairwise similarities measured by F-score for the networks inferred by INDEP and MRTLE and the prior motif network for six yeast species.

(E) AUPR values assessing MRTLE and INDEP at recovering ChIP-chip targets of the TF, MCM1, in three species, C. albicans, K. lactis, and S. cerevisiae.
(F) Fold enrichment of MCM1 ChlIP-chip targets in MCM1’s inferred target set by MRTLE or INDEP in the 30,000 most confident edges from each method.
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well do the methods recover edges from the ground truth
network, and (3) how well do the methods recover those edges
that are conserved.

For (1), we computed the F-score-based similarity (STAR
Methods) for each pair of species’ true networks, and compared
this with the F-score for all pairs of inferred networks. Inclusion of
the phylogenetic prior greatly aids in recovering a pattern of
network similarity that agrees with the true pattern of conserva-
tion and divergence (Figure 1B). For example, when using
MRTLE, inferred networks Net1 and Net2 are more similar to
each other (F-score, 0.44), than Net1 is to Net7 (F-score, 0.36).
Similarly, Net6 and Net7 are more similar to each other (F-score,
0.40) than they are to any of the other species. This is in agree-
ment with the observed trend in the ground truth networks. In
contrast, both INDEP and GENIE3 substantially underestimated
the similarity between all pairs of networks, and their inferred net-
works did not exhibit a strong phylogenetic pattern of conserva-
tion, but rather appeared uniformly similar to each other. For (2),
we used edge precision and recall curves and the area under the
precision-recall curve (AUPR). Overall, MRTLE outperforms both
INDEP and GENIE3 (Figures 1C and S1), achieving a higher
AUPR than GENIES in six of the seven networks and a higher
AUPR than INDEP on all seven networks. Although the differ-
ences in AUPR are small, they are significant when comparing
MRTLE against the other two methods (t test, p < 0.05). GENIE3
and INDEP are comparable in performance with no significant
difference in performance, with INDEP tending to have higher
AUPRs than GENIES. For (3), we considered only true conserved
edges between pairs of species and again assessed the
methods’ accuracies in terms of AUPR. We found that MRTLE
is generally better at recovering edges that are evolutionarily
conserved compared with INDEP (Figure 1D, i) and GENIE3 (Fig-
ure 1D, ii). Furthermore, INDEP was better than GENIE3 at recov-
ering true conserved edges (Figure 1D, iii).

Our simulation results show that if the observed data are
generated from networks that share an evolutionary history,
an approach such as MRTLE that uses phylogenetic informa-
tion can more effectively learn regulatory networks across mul-
tiple species. Having established the utility of MRTLE on simu-
lated datasets, we next compared MRTLE, GENIE3, and
INDEP for inferring regulatory networks from real expression
data from six yeast species (STAR Methods): Saccharomyces
cerevisiae, Candida glabrata, Saccharomyces castellii, Candida
albicans, Kluyveromyces lactis, and Schizosaccharomyces
pombe. These datasets measure genome-wide transcriptome
states in different stress conditions: glucose depletion, heat
shock, oxidative stress, and osmotic stress. Glucose depletion,
heat shock, and oxidative stress datasets were previously pub-
lished (Thompson et al.,, 2013; Roy et al., 2013b; Wapinski
et al., 2007), while osmotic stress was generated as part of this
study. As potential regulators, we included ~500 genes that
have known DNA-binding roles in S. cerevisiae, as well as genes
whose protein products are known to bind RNA (Table S1). We

used the species tree branch lengths and gain and loss rate pa-
rameters inferred by Habib et al. (2012) to specify the probabili-
ties of edge loss and gain in MRTLE. We first assessed all three
network inference methods without making use of sequence-
specific motif priors. This enabled us to compare against
GENIES3, which does not incorporate priors, and also to assess
the broader, future applicability of MRTLE to species phylog-
enies for which such information may not be available. To
evaluate the inferred networks, we used criteria similar to the
simulation setting. To compute precision-recall curves, we
used a ChIP-chip-based regulatory network in S. cerevisiae,
which has been a gold standard in the field (Macisaac et al.
(2006)). MRTLE outperforms INDEP and GENIE3, achieving
higher precision at the same recall (Figure 2A). When comparing
the phylogenetic pattern of conservation, we observe that
MRTLE-inferred networks diverge in a pattern consistent with
the phylogeny (Figure 2B). In contrast, the networks inferred by
INDEP and GENIES display extreme divergence. Furthermore,
the extent of conservation in MRTLE networks is more consistent
with observed conservation of ChIP-chip-based binding profiles
(Tuch et al., 2008) than either INDEP or GENIE3 (Figure S2).
Overall, these results suggest that using phylogenetic informa-
tion as prior can enable a more accurate reconstruction of a reg-
ulatory network, and the absence of a phylogenetic prior leads to
an overestimation of the divergence in the species’ networks.
Since GENIE3 did not have a significantly different performance
than INDEP and does not incorporate sequence-specific motifs,
our subsequent results include only INDEP as the baseline.

Having established that MRTLE is able to outperform methods
that do not use phylogenetic priors (e.g., INDEP and GENIE3)
when neither method has access to sequence-specific motifs,
we next evaluated MRTLE when given valuable sequence-based
regulatory information. We used species-specific motifs from
Habib et al. (2012) as additional priors on the graphs. We could
not use the gold standard network of Macisaac et al. (2006),
because it used evolutionarily conservation as an additional filter
to define TF target edges, and our motif priors were also defined
using an evolutionary signature (Habib et al., 2012). As an alter-
native gold standard, we used an S. cerevisiae regulatory
network from Hu et al. (2007) obtained by systematically deleting
regulators and analyzing the downstream effects on expression
(Hu et al., 2007) (STAR Methods). Using this gold standard, we
found MRTLE to outperform INDEP in edge recovery (Figure 2C).
Notably, MRTLE outperforms INDEP at low recall (high precision)
thresholds, suggesting that those regulatory edges supported by
expression, evolutionary conservation, and a motif instance are
more likely to be functional than those supported only by expres-
sion and a motif instance.

Next, we examined the networks inferred by MRTLE and
INDEP to assess whether they diverge in a manner consistent
with the phylogeny. Since the degree and pattern of network
similarity is dependent upon the similarity in the motif networks
used as priors in addition to the expression data, we also

(G) AUPR values assessing MRTLE and INDEP at recovering edges of regulatory networks consisting of ChIP-chip targets of six different TFs in C. albicans and

S. cerevisiae.

(H) AUPR values for each TF assessing MRTLE and INDEP at recovering ChIP-chip targets of each of the six different TFs in C. albicans and S. cerevisiae. The

ground truth in (H) is the same as in (G) but presented at the per-TF level.
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Figure 3. Assessing Rates of Target Gain and Loss for Regulators in MRTLE-Inferred Networks and Motif Networks

(A and B) Boxplots of gain (A) and loss (B) rates calculated for the MRTLE-inferred networks, the rates calculated for the motifs used as prior knowledge in the
MRTLE framework, and the rates calculated for the motifs used by Habib et al. (2012). For the MRTLE networks, rates were calculated using the top approximately
50,000 edges in each species’ network.

(C and D) Cumulative distribution function plots of gain (C) and loss (D) rates calculated using the MRTLE-inferred networks at confidence thresholds amounting to
approximately 50,000 edges for regulators with duplication (blue) and without duplications (red).

(E and F) Boxplots of gain (E) and loss (F) rates for regulators in the MRTLE networks when considering all regulators and all targets (left; All), all regulators and
targets without duplications (middle; Uniform Targets), and duplicated regulators collapsed into a single average regulator with all targets (right; Collapsed

(legend continued on next page)
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estimated the similarity of all pairs of motif networks (Figure 2D,
Motif Prior). The motif prior networks exhibited stronger evolu-
tionary conservation compared with networks learned from
INDEP (Figure 2D). As was the case for simulated data (Figure 1B)
and for real expression data alone (Figure 2B), the networks
learned by MRTLE exhibit stronger evolutionary conservation
than those learned by INDEP and diverge in a pattern consistent
with the phylogeny (Figure 2D). As in the no motif case, the
observed conservation levels for MRTLE with motifs agrees
more with previous studies (Figure S2; Tuch et al., 2008). The
similarity scores for INDEP networks increased relative to the
scores when not using motifs, consistent with the hypothesis
that the motif prior constrains the inferred networks to be more
conserved than expression alone (Figures 2B and 2D). The sim-
ilarity scores for the MRTLE networks were comparable with and
without motifs, suggesting that MRTLE is robust to the prior
inputs.

Although large-scale knockout and ChlP-chip networks are not
available in non-model organisms, a handful of TFs have been
studied across multiple species (Tuch et al., 2008; Lavoie et al.,
2010) using ChIP-chip experiments. In particular, Tuch et al.
(2008) measured binding gene targets of the TF, MCM1, in
S. cerevisiae, K. lactis, and C. albicans. Lavoie et al. (2010)
measured targets of CBF1, HMO1, FHL1, IFH1, and RAP1 in
S. cerevisiae and C. albicans. We used these two ChlIP-chip data-
sets to test the ability of MRTLE and INDEP with motifs to recover
these targets. On the MCM1 datasets, MRTLE outperforms
INDEP in K. lactis and S. cerevisiae, and performs comparably
in C. albicans (Figure 2E). As an additional evaluation measure,
we calculated the fold enrichment of the ChlP-chip MCM1 targets
in the predicted MCM1 targets among the top ~30,000 edges
(Figure 2F; STAR Methods). Although the predicted targets from
both methods were enriched for ChIP-chip MCM1 targets,
MRTLE achieved a higher fold enrichment than INDEP in all
three species. We combined the predicted targets of all TFs stud-
ied by Lavoie et al. (2010) into a single network and found MRTLE
to significantly outperform INDEP for C. albicans (Figure 2G).
However, MRTLE was outperformed on S. cerevisiae (Figure 2G).
To gain insight into the lower performance of MRTLE on
this S. cerevisiae network, we analyzed our predictions per
TF (Figures 2H and S3). In S. cerevisiae, MRTLE outperformed
INDEP on RAP1 and TBF1, and it was outperformed for CBF1
(Figures 2H and S3). Both methods had low AUPRs on HMO1,
IFH1, and FHL1, likely due to the small number of targets. It is
likely that CBF1’s targets diverge substantially across species
giving no additional advantage with MRTLE, or, it is possible
that the current CBF1 target set is incomplete. Future experi-
ments combining ChIP-chip experiments with TF knockout are
needed to examine this property. Taken together, MRTLE was
more effective than INDEP at recovering ChlP-based regulatory

edges in non-model organisms, demonstrating that a phyloge-
netic prior-based framework is beneficial for non-model organ-
isms as well.

The genome-wide regulatory networks for these six species
enable us to more systematically study factors driving regulatory
network evolution. For example, estimated rates of gain and loss
of edges can provide insights into the relative importance of these
two types of network changes in regulatory network divergence.
Previously, Habib et al. (2012) assessed gain and loss rates of
computationally inferred binding sites of individual TFs. Using a
similar framework to Habib et al., we computed gain and loss rates
of targets for each regulator (TFs and signaling proteins; STAR
Methods, Table S2). We find loss rates to be higher (1.84 + 0.67)
than gain rates (0.48 + 0.20). A similar trend was observed with
the rates from Habib et al. (loss rate of 4.91 + 2.35 and gain rate
of 0.17 + 0.17), as well as in our recalculations of the rates using
motif instances only (loss rate 3.92 + 1.31, gain rate 0.94 + 0.31).
Our results show that regulatory networks evolve by losing edges
more rapidly than by gaining edges, and this property is true for
both purely sequence-based networks and MRTLE-inferred net-
works. Although the same trends are observed in all three sources
of rates, rates inferred using MRTLE networks were significantly
different from the rates inferred from Habib et al. (2012) or the rates
obtained in the prior networks. In particular, regulators in the
MRTLE network have a relatively lower loss rate (mean 1.84),
compared with the loss rate (mean 4.91) estimated by Habib
et al. MRTLE gain (Figure 3A) and loss rates (Figure 3B) are also
lower than those estimated directly on the motifs used as priors.
The significant differences in the rates from Habib et al.’s prior
networks and the MRTLE-inferred networks, suggest that the
MRTLE-inferred networks represent the output of integrating
expression and sequence-specific motifs.

Duplication of TFs can significantly contribute to regulatory
network divergence (Pougach et al., 2014; Voordeckers et al.,
2015). We next asked if regulators with duplications differ in their
rates of gain and loss compared with regulators without dupli-
cations. We find that regulators with duplications have signifi-
cantly higher edge gain rates (Kolmogorov-Smirnov [KS] test,
p <1 x 1078, Figure 3C) compared with regulators without dupli-
cations. Such regulators also tend to lose edges more than
those without duplications, but the trend is less pronounced (KS
test, p < 0.04, Figure 3D). We repeated the rate calculations using
targets with uniform orthology, and collapsing duplicated regula-
tors into a single orthogroup by taking the average rate, and found
similar results (Figures 3E and 3F, STAR Methods). In addition, we
calculated the rates at various confidence thresholds and found
the results to be robust to the threshold used (Figure S4).

We identified 19 regulators that had a significantly higher rate
of edge gain (>2 SD from mean; Table S3). These regulators were
associated with diverse processes including stress response

Regulators). Rates are computed using the top 50,000 edge set. p values from KS tests are given in parentheses, testing the hypothesis that regulators with
duplications have higher gain (E) or loss (F) rates than regulators without duplications.
(G) Each point represents a regulator, with the x coordinate specifying the regulator’s loss rate and the y coordinate specifying its gain rate. Outlier regulators with

high gain rates (2 SD above the mean) are noted.

(H) Comparison of MRTLE and motif prior rates of target gain (i, iii) and loss (ii, iv) for each regulator and its targets, including only those regulators from or-
thogroups with at least one duplication (i, i) and from orthogroups without duplications (jii, iv). Each point represents a specific regulator, with the x coordinate
specifying the gain/loss rate of the regulator’s motif-based targets and the y coordinate specifying the gain/loss rate of the regulator’'s MRTLE-based targets from

the top 50,000 edge set.
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(SKN7, CRzZ1, CAD1, RLM1), response to nutrients (MIG1, GZF3,
CBF1, HAP4), cell cycle (FKH1, FKH2, ACE2), RNA binding
(SUI3, JSN1, NOT5), and chromatin organization (CBF1, FKH1,
FKH2, RPH1, TBF1). Regulators with high gain rates tend to
also have high loss rates (Pearson’s correlation of 0.66), but
this pattern was defied by KRE33, which had one of the slowest
loss rates (1.68 SD below mean) despite having the highest gain
rate (4.77 SD above mean; Figure 3G). KRE33 is involved in ribo-
somal biogenesis, a process that has been shown to be inher-
ently tied to species lifestyle in the ascomycete lineage (Thomp-
son et al., 2018), and KRE33 might be an important factor in
regulatory divergence in this phylogeny. Although the majority
of these regulators were from orthogroups that had a duplica-
tion, four of the regulators (CBF1, KRE33, HAP4, SUI3) were
from orthogroups that did not have duplications. Such regulators
tend to be associated with response to stress and chemical stim-
uli, suggesting that such processes may be subject to multiple
forces of evolutionary turnover, including gene duplication.

Recently, Pougach et al. (2014) showed that sequence affinity
of paralogous TFs diverges after duplication, which can influ-
ence regulatory network rewiring. To investigate the role of
sequence affinity divergence on the overall edge gain rate, we
correlated the MRTLE gain and loss rates to the motif gain and
loss rates. We found a strong correlation between rates calcu-
lated using MRTLE networks or the motif networks (Figure 3H,
i, i) for TFs from duplicated families. This correlation was nega-
tive or weak for TFs from families with no duplications (Figure 3H,
iii, iv), although we had many fewer TFs that had motifs and came
from non-duplicating families. This suggests that sequence
divergence can contribute to network divergence of TFs from
duplicated gene families. For two of the TF families, we had
sequence motifs for both paralogs: SKN7, HSF1 and YAP1,
CAD1. The difference in MRTLE gain rates was much greater
for the SKN7, HSF1 pair compared with the YAP1, CAD1 pair
(Figure 3H, i). Interestingly, SKN7 and HSF1 had very different
sequence affinities (Figure S5) compared with YAP1 and
CAD1. These results are consistent with published studies of
regulatory divergence of individual TFs (Pougach et al., 2014)
and offer preliminary evidence that sequence divergence could
explain, in part, the greater tendency to gain targets. Taken
together, our inferred networks enabled us to quantitatively
assess regulatory network evolution and predict regulators that
contribute to regulatory network divergence more than others.
Such regulators tend to come from regulator families with dupli-
cations or are implicated in stress response.

Evolution of the Osmotic Stress Response Regulatory
Network

To gain insight into how changes in regulatory networks can
affect complex phenotypes, we used MRTLE-inferred regulatory
networks to study response to osmotic stress across six Asco-
mycota species. Response to environmental stress is a major
driving force in the evolution of new phenotypic traits (Hiyama
et al., 2012; Hoffmann and Willi, 2008), especially in unicellular
organisms (Gasch, 2007). Our current understanding of the reg-
ulatory network in response to stress is strongly biased to
S. cerevisiae, and we understand little about its structure and
function in other species. To address this gap, we first measured
using microarrays, genome-wide gene expression profiles under

550 Cell Systems 4, 543-558, May 24, 2017

osmotic stress in six species. We then identified stress-specific
transcriptional modules using a multi-species module inference
algorithm, Arboretum (Roy et al., 2013b). Application of Arbo-
retum to our osmotic stress response (OSR)-specific expression
data identified five modules ranging from the most repressed
genes (module 1) to the most induced genes (module 5, Fig-
ure 4A). We then inferred OSR-specific networks by filtering
the original MRTLE inferred networks to keep only those edges
that connected targets and regulators within the same OSR
module (STAR Methods). We refer to this approach of inferring
context-specific expression networks as MRTLE + Arboretum.
To assess the accuracy of our inferred context-specific regulato-
ry network edges, we performed miSeq expression profiling in
knockout strains of two regulators, MSN2/4 and SKO1, under
osmotic stress (Figures 4B-4D; STAR Methods). MSN2/4 is a
general stress response regulator (Gasch et al., 2000), and
SKO1 is an OSR-specific regulator. Both of these regulators co-
ordinate with the protein kinase, HOG1, to control OSR in
S. cerevisiae (Capaldi et al., 2008). We compared our predicted
targets against the miSeq data in two ways. First, we asked
whether the expression of MRTLE and MRTLE + Arboretum in-
ferred targets of these two TFs was significantly different based
on a KS test, from non-targets under osmotic stress (Figures 4B
and 4C). Second, we used LIMMA to define targets of these
mutants in each species (Figure 4D; STAR Methods) (Smyth
et al., 2005). Based on the KS test, both MRTLE and MRTLE +
Arboretum targets are significantly repressed in the MSN2/4
knockout in S. cerevisiae compared with wild-type, which sug-
gests that our predicted regulatory connections are valid. We
did not find significant differences for the knockout of the ortho-
log of MSN2/4 in the two other species, C. albicans and Schizo-
saccharomyces pombe. The lack of significant differences in
these species is consistent with previous observations where
MSN2/4 does not play a significant role in general stress
response (Nicholls et al., 2004; Chen et al., 2008; Sanso et al.,
2008). In particular, the C. albicans MSN2/4 homologs, MNL1
and MSN4, do not play a role in general stress response (Nicholls
et al., 2004). Only MNL1 is required for adaptation to weak acid
stress (Ramsdale et al., 2008). For SKO1, we found a significant
downregulation of targets in C. albicans and a significant, albeit
reduced, effect in S. cerevisiae.

The LIMMA-based analysis confirmed our observations. At
p < 0.05, we found 117 MSN2/4 targets in S. cerevisiae and
159 SKO1 targets in C. albicans. LIMMA identified relatively
fewer targets (14) for S. cerevisiae SKO1, and therefore we
excluded it from this analysis. After removing genes from these
sets that were not in the dataset used by MRTLE, we were left
with 114 targets of MSN2/4 in S. cerevisiae and 149 targets of
SKO1in C. albicans. Our MRTLE + Arboretum approach yielded
311 predicted targets of MSN2/4, 31 of which were among the
114 LIMMA targets, representing a 4.2-fold enrichment (hyper-
geometric test, p < 1.2 x 10~ "2, Figure 4D). In contrast, the orig-
inal MRTLE S. cerevisiae network predicted 891 MSN2/4 targets,
50 of which overlapped with the LIMMA results, representing a
2.4-fold enrichment (p < 1719). Similarly for C. albicans SKO1,
MRTLE alone predicted 334 targets, 21 of which overlapped
with LIMMA targets (2.3-fold enrichment, p < 1.7 x 107%. In
contrast, 6 of MRTLE + Arboretum’s 40 SKO1 targets overlap-
ped with LIMMA resulting in a higher fold enrichment (5.6-fold
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Figure 4. Osmotic Stress Response Module Assessment

(A) Expression heatmaps for each of five inferred OSR-specific expression modules, ranging from most repressed (left) to most induced (right). The height of each
heat bar is proportional to the genes in each module.

(B and C) Boxplots comparing differential expression under osmotic stress response (OSR) for predicted targets and non-targets of MSN2/4 (B) and SKO1 (C), as
predicted by MRTLE and an approach that combines MRTLE with modular filtering (MRTLE + Arboretum). Targets inferred with the MRTLE + Arboretum
approach are those targets inferred by MRTLE with the additional constraint that a target must be present in the same OSR-specific module as its regulator. Each
plot shows the log2 ratio of expression in knockout over wild-type of the specified regulator’s targets. p Values from KS tests are given for each pair of com-
parisons, testing the hypothesis that the predicted targets have decreased expression after knockout relative to the non-targets, implying that the knocked out TF
has an activating role under salt stress.

(D) Fold enrichment of LIMMA-based targets of MSN2/4 in S. cerevisiae and SKO1 in C. albicans. Targets were called with LIMMA and fold enrichment.
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enrichment, p < 5.8 x 107%). These analyses suggest that the
MRTLE + Arboretum approach can greatly improve the accuracy
of stress-specific regulatory network learning.

To assess the overall extent of conservation in our complete
OSR-specific networks, we calculated the F score similarity be-
tween networks of each species pair (Figure 5A). We found a
significant phylogenetic pattern, although the extent of conser-
vation was lower than what we observed before (Figure 2D).
We then examined the portions of our OSR-specific networks
spanning the most repressed and most induced modules, and
identified conserved regulators acting as hubs in each case (Fig-
ure 5B). In the repressed module, KRE33 remained a conserved
hub across all species. BAS1 acted as a repressor in the three
most recently diverged species, S. castellii, C. glabrata, and
S. cerevisiae, while TOD6 acted as a repressor in all species
except Schizosaccharomyces pombe, for which no ortholog ex-
ists. In the induced modules, we found MSN2/4 as a hub in the
most recently diverged species (Table S4). Intriguingly, we found
COM2 (MNL1 in C. albicans), which belongs to the MSN2/4
family, as a hub in C. albicans. In the other species we found
the YAP family of TFs and cell-cycle regulators (SWI5, SWI4,
MBP1) to act as hubs. In Schizosaccharomyces pombe glucose
regulators were predicted as the strongest hub followed by the
cell-cycle-related regulators. These regulatory networks thus
predict several regulators that have not been associated with
stress response in these species that can be followed up with
future validation studies.

While the structure of the network specifies which regula-
tors regulate which genes, the function of a network specifies
how the regulator drives the expression of its targets. A regu-
lator can regulate expression by acting as an activator or
repressor of expression. Do regulator roles of activation and
repression change across species and to what extent do
such changes depend upon the stress? To address these
questions, we examined the regulator-module relationships
in the OSR and heat shock response (HSR) data (Table S5)
(Roy et al., 2013b).

We used two measures to assess a regulator’s activating or
repressive role. The first measure used the significance of
enrichment of a regulator’s targets in the activating versus
repressive module (STAR Methods). Our second measure
compared the expression of the targets for each time point in
the repressed or induced module. Our enrichment-based anal-
ysis identified several notable regulators with a conserved asso-
ciation with repression in response to osmotic stress, such as
KRES33, NSR1, SFP1, LOC1, REH1/REI1, and CHA4/TEA1 (Fig-
ure BA, Table S5). Interestingly, the majority of the conserved,
repressed regulators are associated with ribosomal biogenesis,
which is repressed in species under stress. Regulators with
conserved activating roles across all six species included the
MSN2/4 family, the SKN7/HSF1 family, and AFT1/AFT2. Most
of these regulators have general or specific stress-related func-
tions. Our second analysis focused on regulators with targets in

both activating and repressive modules. This was a comple-
mentary measure, which recapitulated regulators from our
enrichment-based measure and also identified several addi-
tional candidates of regulator divergence (typically in one or
two species, Figure 6B). This included cell-cycle regulators
such as FKH1/2 and MBP1/SWI4, stress regulators (CRZ1),
chromatin remodelers (GIS1, RPH1), and HAP4. Notably,
several of these regulators were also associated with higher
gain rates, suggesting that regulator expression divergence
might be associated with the tendency of the regulators to
gain or lose edges. However, additional datasets would be
needed to more fully understand this phenomenon. Overall, reg-
ulators tended to not change signs between species from acti-
vating to repressive or vice versa.

To examine the generality of this observation, we compared
the OSR regulator signs with those in HSR (Figure 7). The major-
ity of the regulators had similar associations in these stresses,
with stress-related regulators such as MSN2/4 exhibiting a
conserved activation and ribosomal biogenesis regulators ex-
hibiting a conserved repression across species. However,
some notable differences were uncovered, including a pro-
nounced inductive role under heat stress in all species for
HSP60, which is known to have a regulatory role post heat
stress. Consistent with its role in the S. cerevisiae OSR, SKO1
also exhibited a conserved role of upregulation in all species
except Schizosaccharomyces pombe, and showed no signifi-
cant association in HSR. Examples of regulators that changed
their association with expression modules between stresses
were observed primarily in a species-specific manner. In partic-
ular, PHO4 and TYE7 were associated with repression in heat
shock in C. albicans (Figure 7) but did not have a significant as-
sociation in C. albicans in osmotic stress (Figure 6). In summary,
regulator associations with module expression are generally
conserved across species for particular stresses. Regulator-
module associations change their sign between stresses, but
these changes are rare and happen in a species- and clade-spe-
cific manner.

DISCUSSION

A comparative framework for regulatory networks can provide
insights into principles of gene regulation (Garfield and Wray,
2010; Li and Johnson, 2010; Wohlbach et al., 2009), as well as
inform better learning of network structure (Penfold et al.,
2015; Thompson et al., 2015). Here, we have presented our algo-
rithm MRTLE for inferring regulatory networks for multiple spe-
cies related by a known phylogeny. MRTLE makes use of a
known phylogenetic tree to explicitly model evolutionary rates
of regulatory edge gain and loss and can additionally incorporate
sequence-specific motifs to identify regulatory networks in a
complex phylogeny. Furthermore, MRTLE is able to incorporate
complex many-to-many orthology relationships arising from
gene duplications, which are known to play a crucial role in

Figure 5. MRTLE + Arboretum Inferred Osmotic Stress Response Networks in Six Ascomycete Yeast Species

(A) Conservation of the inferred OSR networks for each species measured by F score.

(B) Networks spanning the most repressed and most induced OSR modules. Node size is proportional to node degree. Networks were constructed at the gene
level rather than the orthogroup level, but nodes are labeled with S. cerevisiae orthology names for species other than S. cerevisiae. Nodes with many S. cerevisiae

orthologs were truncated due to space considerations.
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regulatory network evolution (Voordeckers et al., 2015; Teich-
mann and Babu, 2004; Perez et al., 2014).

By leveraging data from related species within a phylogenetic
framework, MRTLE is able to outperform methods that do not
make use of evolutionary information (INDEP, GENIES), in both
simulated and real data settings. By favoring networks that are
more phylogenetically coherent, MRTLE is able to recover the
conserved parts of regulatory networks more accurately than
methods that do not incorporate the phylogeny. MRTLE can
accurately learn regulatory networks even when the sample
size of expression data is small as demonstrated by our cross-
species ChlIP-chip comparisons. These results suggest that
MRTLE can be an effective tool for inferring regulatory networks
in non-model organisms, for which data are just becoming avail-
able and little is known about their regulatory networks. Compu-
tationally inferred high-confidence regulatory interactions could
be critical for prioritizing ChlP-seq and regulator perturbation ex-
periments needed to understand the regulatory networks in
these poorly characterized species.

Inferring genome-wide regulatory networks in a large set of
species enabled us to perform several systematic analyses to
study regulatory network evolution. One of the properties that
we discovered was the relatively higher rates of target gain and
loss in regulators with duplications versus regulators without du-
plications. Notable exceptions were a few stress-related regula-
tors that exhibited high rates of turnover but did not have dupli-
cations. Consistent with previous work (Pougach et al., 2014),
we find that the MRTLE rates of TFs in duplicated families are
more correlated to the sequence-derived rates, suggesting
that sequence affinity divergence can facilitate TFs with duplica-
tions to diverge. However, additional experimental data
measuring sequence affinity of individual members for a larger
number of families are needed to more robustly examine this
property. The MRTLE framework also enabled us to compare,
for the first time to our knowledge, global transcriptional net-
works for a specific stress. We found that patterns of functional
divergence of a regulator-module relationship were typically
gradual and included a change from down- or upregulation to
no significant association with a module. While some regulators
changed their association across different stresses, most of the
divergence in association is likely to occur gradually through
fine-tuning of expression.

MRTLE can be extended in several directions. A particular
challenge to employing MRTLE is setting the prior probability
of an edge gain or loss for each branch. In this paper, we
used previously established motif gain and loss rates as a
proxy for regulatory edge gain and loss rates. While this
yielded good performance in our setting, a different approach

may be necessary in phylogenies where motif turnover rates
are not available. In addition, one could incorporate variable
gain and loss rates for each putative regulator, making use
of prior information about each regulator’s gain and loss rates.
MRTLE’s reliance on the high predictive power of a target’s
mRNA level based on the expression of TFs makes it difficult
to discover potential regulatory roles of genes such as
HOG1, which is known to be important in the OSR in
S. cerevisiae. Integrating regulator activity levels that are less
dependent on gene expression levels is another future exten-
sion to MRTLE. Another direction of future work is to extend
our simulation to model the evolution of sequence-specific
motifs, together with the network evolution model, to enable
a more controlled study of the role of sequence and expres-
sion evolution in regulatory network evolution. In summary,
MRTLE represents a powerful framework to infer and compare
regulatory networks on a genome-wide scale in a complex
phylogeny, and should enable furthering our understanding
of regulatory network evolution and its impact on how species
interact and adapt to environmental changes.
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Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
e CONTACT FOR REAGENT AND RESOURCE SHARING
o EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Osmotic Stress Response Gene Expression Profiling
e METHOD DETAILS
O Probabilistic Framework for Phylogeny-Aware Regula-
tory Network Learning for Multiple Species: MRTLE

O Details of the Baseline Algorithms Compared

O Datasets

O Evaluation of Learned Networks

O Experiments on Simulated Data

O Evaluation in Real Expression Setting

O Evaluation Metrics

O Inference of Stress-Specific Regulatory Networks for
Multiple Species

O Assessing a Regulator’s Role as Repressive or Acti-
vating

O Defining Targets of Selected Regulators based
on LIMMA

O Estimation of Gain and Loss Rates in MRTLE Inferred
Network

o DATA AND SOFTWARE AVAILABILITY

Figure 6. Comparative Analysis of Regulator Association to Osmotic Stress Response Expression Levels

(A) Shown are regulator-module association scores computed using the most repressed and most induced OSR modules. Each association score represents the
difference of the negative log(p value) from two hypergeometric tests, one for the most induced and one for the most repressed module. Positive scores (red)
represent a stronger association with the most induced module compared with the repressed module, while negative scores (blue) represent a stronger as-
sociation with the repressed module compared with the induced module. Blank scores represent a species for which a regulator was not present due to a gene
loss event, or for which no targets were predicted in the top 30,000 edges in MRTLE. Regulators for which all species had low scores for both stresses (absolute

value <2) are excluded from the figure (see Table S5 for all regulators).

(B) Shown is the negative log(p value) from a t test comparing the expression levels of targets of a regulator in the induced versus repressed module for each
experimental condition (time point and stress signal) for OSR. The intensity of red or blue in each entry is proportional to —log(p value) (see color scale at the
bottom). Regulators with more targets in the induced module than the repressed module are considered as activators and use the red color map. Regulators with
more targets in the repressed module than the induced module are considered as repressors and use the blue color map.
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Figure 7. Comparative Analysis of Regulator Association to Heat Stress Response Expression Levels

(A) Shown are regulator-module association scores computed using the most repressed and most induced HSR modules. Each association score represents the
difference of the negative log(p value) from two hypergeometric tests, one for the most induced and one for the most repressed module. Positive scores (red)
represent a stronger association with the most induced module compared with the repressed module, while negative scores (blue) represent a stronger as-
sociation with the repressed module compared with the induced module. Blank scores represent a species for which a regulator was not present due to a gene
loss event, or for which no targets were predicted in the top 30,000 edges in MRTLE. Regulators for which all species had low scores for both stresses (absolute

value <2) are excluded from the figure (see Table S5 for all regulators).

(B) Shown is the negative log(p value) from a t test comparing the expression levels of targets of a regulator in the induced versus repressed module for each
experimental condition (time point and stress signal) for HSR. The intensity of red or blue in each entry is proportional to —log(p value) (see heatmaps at the
bottom). Regulators with more targets in the induced module than the repressed module are considered as activators and use the red color map. Regulators with
more targets in the repressed module than the induced module are considered as repressors and use the blue color map.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Osmotic Stress Response Gene Expression Profiling

Strains and Growth Conditions

The following wild-type strains were used for each species in the study: S. cerevisiae W303 (Capaldi et al., 2008), C. glabrata CBS
1838, S. castellii CLIB 592, K. lactis CLIB 209, C. albicans SC5314, C. albicans BWP17, S. pombe SPY73h+. Deletion mutant strain
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S. pombe HSR1 was obtained from Bioneer. S. cerevisiae deletion mutation strains of MSN2/4 and SKO1 were created on the W303
wild type strain previously described in Capaldi et al. (Capaldi et al., 2008). Deletion mutation strain for C. albicans SKO1 and MNL1
were previously described in Homann et al. (Homann et al., 2009). All species were grown in the following rich medium chosen to
minimize cross-species variation in growth (termed BMW): yeast extract (1.5%), peptone (1%), dextrose (2%), SC amino acid mix
(Sunrise Science) 2 g/L, adenine 100 mg/L, tryptophan 100 mg/L, uracil 100 mg/L (Thompson et al., 2013). For each strain, cells
were plated onto BMW plates from frozen glycerol stocks. After 2 days, cells were taken from plates and re-suspended into liquid
BMW and grown overnight. Approximately 100-1500ul quantities (depending on the species growth rate and timing constraints
for the days experiments) of the overnight cultures were used to inoculate pre-warmed, 350 ml BMW cultures in 2L Erlenmeyer flasks
in New Brunswick Scientific water bath model C76 shakers. All strains were grown at 180 rpm at 30 C except for S. castellii, which was
grown at 25 C.

Osmotic Stress Response Profile Experiments

The OD600 was measured throughout the day to ensure culture growth was tracking as expected (Thompson et al., 2013). When
samples reached a species-specific OD600, corresponding to slightly late mid-log, we transferred 150ml of the culture to each of
100mI BMW (CTRL) and 100mI BMW+KCI (EXP). Both CTRL and EXP media were pre-warmed for 40-60 minutes in the shaker prior
to the experiment. EXP media was either BMW + 0.5M KCI, 1M KCI, or 2M KClI, yielding a final concentration of 0.2M KCI, 0.4M KCI,
and 0.8M KClI, respectively, upon addition of the culture. In each case, CTRL media was added first, followed by the EXP media,
whereupon the shaker was immediately activated to 180 rpm and the timer started simultaneously. Samples (20ml) were collected
from the CTRL media + culture immediately upon activation of the shaker (T=0), then at T=10, 20, 40, and 80 minutes from the EXP
media + culture. Samples were collected in 50 mL conicals filled with 30ml of 100% methanol to yield a 60/40 methanol/sample
mixture. The methanol-filled tubes were stored at -80 C until ready for use. During sample collection tubes were placed in a rack
in a dry-ice ethanol bath kept at approximately -40 C. Once the sample was added to the methanol, the methanol and media
were separated from the cells by centrifugation and poured off. The conicals containing a cell pellet were flash frozen in liquid nitrogen
and then stored at -80 C until processed for permanent storage or RNA isolation. To process, the cell pellets were washed in 5 ml of
nuclease-free water and spun for 5 min at 3700 rpm at 4 C. The supernatant was discarded and the pellet re-suspended in 2 mL of
RNAlater (Ambion) and transferred to 2 ml Sarstadt tubes for storage.

RNA Preparation and Labeling

Total RNA was isolated using the RNeasy Mini Kits (Qiagen) according to the provided instructions for mechanical lysis. Samples
were quality controlled with the RNA 6000 Pico kit of the Bioanalyzer 2100 (Agilent). Total RNA samples were labeled with either
Cy3 or Cy5 using a modification of the protocol developed by Joe DeRisi (University of California at San Francisco) and Rosetta In-
pharmatics as described previously (Wapinski et al., 2010). In the case of the OSR profile experiments, the control was a pooled sam-
ple, consisting of equal quantities of 160ng RNA from each of the T=0, 10, 20, 40, and 80 minute samples. The pool was constructed
prior to the SS-Ill reverse transcription step, where the Agilent spike-in A (or spike-in B in the case of labeling with Cy5), could be
incorporated into the reaction.

Microarray Hybridization

We used two-color Agilent 55- or 60-mer oligo-arrays in the 4 x 44 K format (four to five probes per target gene) and 8 x 15 K format
(two probes per target gene). After hybridization and washing per the manufacturer’s instructions, arrays were scanned using an Agi-
lent scanner and analyzed with Agilent’s Feature Extraction software (release 10.5.1.)

cDNA Synthesis for Mi-seq RNA-Sequencing Gene Expression Studies

1 ug of total RNA in a volume of 11 uL was used as input. Heat fragmentation was completed by adding 3 uL The RNA Storage
Solution-Ambion (AM7000) to each sample in an Eppendorf 96 well plate (951020401, Fisher Scientific) and heating at 98°C for 30 mi-
nutes. First strand cDNA was created by adding 1uL of OligoDT to samples and heating at 70C 10min. Samples were then put imme-
diately on ice. A mastermix of 2 uL of 10x Affinity script buffer, 0.8 uL of 25mM dNTPs, 2 uL of DTT and 1 uL of the AffinityScript RT
Enzyme (AffinityScript Multiple Temperature Reverse Transcriptase, 600109) was created. 5.8 uL of the mastermix was added to
each sample well and mixed. Samples were incubated at room temperature of 10 minutes in a thermocycler, followed by 1 hour
at 50°C, 15 minutes at 70°C and a 4°C hold.

Second strand cDNA synthesis was completed with mRNA Second Strand Synthesis Module, E6111L. cDNA synthesis reaction
was cleaned up using Agencourt AMPure XP beads (A63881, Beckman Coulter). Sample and beads were used as input to library
construction; beads remain in the plate well with sample until the adapter ligation cleanup.

Library Construction for Sequencing

Libraries were created using KAPA Biosystems Library Preparation Kit (KK2505 and KK8202) in an Eppendorf 96 well plate. Enzy-
matic reactions were cleaned up by adding AMPure XP to the sample after end repair, and leaving the beads in the sample throughout
adapter ligation. 20% PEG, NaCl 2.5M was added to samples and beads for A-base and Adapter ligation cleanup, as previously
described (Fisher et al., 2011). Prior to library enrichment, samples were eluted from AMPure XP beads. For library enrichment
and amplification, a mastermix containing 12 uL of 5X Kapa HiFi Fidelity Buffer 2mM Mg, 1 uL of 25 mM dNTPs, 4 uL of primer
mix, 1 uL of Kapa HiFi HotStart Enzyme and 2 uL of water per sample was created. 20 uL of the mastermix was added to the sample
and the following PCR program was run: 98C for 45 seconds, 12 cycles of 98C for 15 seconds, 60C for 30 seconds and 72C for 30
seconds, a final extension at 72C for 1 min and a 4C hold. The library enrichment reaction was cleaned by adding 60 uL of AMPure XP
beads and samples were eluted off of the AMPure beads in 15 ul of Trish-HCL (pH 8). The samples were then transferred to new plate
and library quality was assessed.
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Library Quality Control

Libraries were checked for quality control using Agilent High Sensitivity D5000 Screentape assay; size range for each sample was
between 200-500 base pairs.

Library Sequencing

Each library was diluted to 2nM and pooled prior to sequencing. Sequencing was completed on the MiSeq platform and a 25 x 25,
paired end sequencing run was completed.

METHOD DETAILS

Probabilistic Framework for Phylogeny-Aware Regulatory Network Learning for Multiple Species: MRTLE
Our multi-species network inference approach is based on a probabilistic graphical model representation of a regulatory network
(Friedman, 2004; Segal et al., 2003; Friedman et al., 2000; Markowetz and Spang, 2007; Pe’er et al., 2006). Bayesian networks (Fried-
man et al., 2000) and dependency networks (Heckerman et al., 2001) are examples of probabilistic graphical models that have been
used to represent regulatory networks. Here, we use a dependency network representation because they can be relatively easily
learned from observed expression data and can capture cyclic dependencies (Huynh-Thu et al., 2010; Heckerman et al., 2001).
Below, we first give a description of a probabilistic model representation of a regulatory network for a single species, followed by
a description of the probabilistic priors we have employed to capture phylogenetic relationships, and then a sketch of the MRTLE
algorithm.
Modeling a Regulatory Network in One Species
A probabilistic graphical model (PGM) of a regulatory network has two components: the structure, which specifies the regulators of a
target gene, and the parameterized functions, which describe the sign and magnitude of the interactions of individual and combina-
tions of regulators specifying the expression of a target gene. In PGMs, the expression level of a gene i is captured by a random var-
iable, X;, and a conditional probability distribution relates the expression levels of regulators to the expression level of a target gene,
by specifying the probability of a target gene taking a specific expression value given the expression values of its regulators. In
MRTLE, X; and its parents are assumed to be jointly Gaussian and the conditional distribution for each X; given its parent is a con-
ditional Gaussian.
Extending to Multiple Regulatory Networks
Let N denote the number of species, and let G denote the graph associated with the s species. Let Ds denote the expression data-
sets associated with the s™ species that represent measured expression levels of both targets and regulators under multiple condi-
tions. Given datasets, D4,---,Dy and a phylogenetic tree over N species, our goal is to simultaneously infer the unknown regulatory
networks G+,---,Gy for all species. We use a Bayesian framework to tackle this problem and optimize the posterior probability of the
graphs given the data, P(G1, --,Gn|D1, +-,Dn). Using Bayes rule this is proportional to P(D+,---,Dn|G1,---,GN)P(G1,-+-,Gn), Where
P(D+,---,Dn|G1,---,Gp) is the data likelihood that is computed easily for each species independently, ﬁ (PDs|Gs). P(G1,---,Gn) is
s=1
the prior over the N graphs. To incorporate the phylogenetic similarity between species, we use a specific formulation of the
multi-graph prior, which we describe below.
Phylogenetic and Species-Specific Graph Priors
P(G+,---,Gp) is defined as a product of I'1(G1, -+, Gn), which captures the multi-species phylogenetic prior, and I'z(G+---, Gy) that
captures any species-specific regulatory information such as binding sites. I'y and I'; each define a distribution over a set of graphs,
where each graph is represented by a set of edges from regulators to target genes. These are not bipartite graphs because there exist
genes that act as both regulators and targets. To describe I'y in more detail we make use of the concept of an orthogroup (Wapinski
et al., 2007), which is defined as a set of orthologous genes. Each orthogroup contains 0 or more gene members from each species.
We assume that I'1 decomposes as a product over sets of edges between regulator orthogroups and target orthogroups. For
simplicity, we first assume that each species has one gene in each regulator orthogroup and one gene in each target orthogroup.
Later, we describe how to relax this assumption. Let Iy = {/}k, ~-~,l;)(’} be a binary vector for each regulator j and target gene k pair.
l;k is a binary variable capturing the state of the edge from regulator j to target k for the /' species, taking a value of 0 if the edge
is absent and 1 if the edge is present. We express this prior as I'1 (G1, ---,Gn) = [] P(li), which assumes that the prior decomposes

I*}
as a product over the edges. P(lx) can be efficiently computed using Felsentein’s algorithm for computing the probability of discrete
observations at the leaf nodes of a phylogenetic tree (Felsenstein, 1981). First, we expand I to include the ancestral species at the
N—1 intermediate points in the tree using indices N+1 to 2N—1 to represent these internal points. P(l/.1k7 ~~~,Ijﬁ) requires us to integrate

away the state of the edges at the internal nodes as Y, ..., > P(l}, ...,Ijﬁ, Ij’-)(”1 ,--,[5771) . Using the tree structure to make indepen-

IN+1 2N-1
" 7

dence assumptions, we can write thisas >, ..., > P(Iﬁ(’\’*1) 11 P(I]’-k Iﬁf"(’)), where pa(/) denotes the immediate ancestor species of /.
!

N1 N1
ik ik
Hence the probability, P(l;), can be computed efficiently using the probability of an edge state in /, given the state of the edge in the

ancestor of /, P(l}, Iﬁf(')).
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Two parameters, pgy and p,,, each taking values from zero to one, are used to determine this probability. The first, denoted py,
represents the probability of gaining a regulatory edge given that the edge does not exist in the ancestral species. The second,
denoted p,,, represents the probability of maintaining a regulatory edge, given its presence in the ancestral species. Setting these
parameters to appropriate values is a difficult task. In our experiments on real data with six yeast species, we estimated a rate
matrix using the average rate of motif binding site gain and loss from (Habib et al., 2012). We then set pg and p,, for each branch in
the phylogenetic tree based on this rate matrix and the branch length. In this regard, we used binding site gain and loss rates as a
proxy for regulatory edge gain and loss rates. Thus our prior I'1 is parameterized by branch lengths and the two rate parameters
that are multiplied to obtain the probabilities pg and p,,. Because branch lengths vary, the probabilities p,, and p, are modeled
separately for each branch. The second part of the prior, I'2(Gj, ---, Gn), acts in a per-species manner, and can be further decom-

N
posed as a product over species-specific graphs I'>(G+,--,Gy) = [[ P(Gi). Each P(G)) further decomposes as a product of
i=1

edges, P(I(X;—Xx)), where | is an indicator function for an edge existing between regulator j and target k. Similar to (Roy

et al., 2013a), we parameterize the prior probability as a logistic function: P(I(X;— Xi)=1) as m. Here, mj, specifies

whether gene k has a motif in its promoter region that can be bound by regulator j. In our current implementation of the algorithm,
each my, takes on a real value, proportional to the significance of an instance of j’s motif found in k’s promoter. These weights
could be estimated using a standard motif scanning tool, for example FIMO (Grant et al., 2011). B¢ is a sparsity prior that can
be used to control the extent to which the algorithm penalizes the addition of a new edge. ;1 controls the strength of the motif
prior. Both 8o and 4 are user-tunable parameters. The addition of the motif prior enables us to select interactions that are weakly
predicted by expression data, but are supported by the motif presence. Note that this framework is flexible and can easily be
modified to fit a scenario where we do not have species-specific motif information (81=0), or in settings where additional types
of prior information for an edge are present.

Score-Based Learning of Regulatory Networks

To infer graphs for all species we use a score-based approach that searches over the space of possible graphs. Because the
space of possible graphs is super-exponential in the number of variables, it is not possible to find a global optima. Instead, it is
typical to use heuristic search algorithms over the graph space, score each candidate graph, and select the one that corre-
sponds to a local optima. In the multi-species setting, we need to simultaneously search over the N graphs. Specifically, the
score of a current graph configuration is composed of the data likelihood, P(Dy, ---,Dn|G1, -+, Gn), as well as the graph prior,
P(G4,---,Gn). As described above, P(Dy, ---,Dn|G1, -+, Gn) is written as a product over the N species, [[ P(Ds|Gs). In a depen-

S

dency network we cannot easily compute the likelihood P(Ds|Gs), but instead we compute a pseudo likelihood, which is given
by the product of conditional distributions, P(X?|Rj ), where R} denotes the regulator set for X§ in species s. We assume
that each variable X? and its regulators R} are distributed according to a multi-variate Gaussian. The conditional P(X,S|R§(/_) is
a conditional Gaussian distribution with mean K R, and variance xR, estimated from the joint using Lauritzen et al (Lauritzen,

1996). Using the conditional means, Fixs RS, » and variances, TXSIRS, » of a variable given its regulator set, we compute the conditional

data likelihood for each variable X7 using data from species s. To compute the portion of the score representing the graph prior,
we need to compute I'y and I'>. As described above, I’y decomposes as a product over each possible regulator-target or-
thogroup, and can be computed using Felsentein’s algorithm (Felsenstein, 1981), while T'> is computed in a species-specific
manner.

Handling Non-Uniform Orthogroups

In the description so far, we have assumed that each species has exactly one gene in the regulator orthogroup, and exactly one gene
in the target orthogroup. However, for most evolutionary studies, the ability to handle many-to-many mappings between species is
essential. In our problem setting, when there are duplications, we need to specially handle the I variable that specifies the state of
edges between the regulatory orthogroup j and the target orthogroup k. If a species has more than one gene in the regulator or-
thogroup or target orthogroup, we consider all possible edges between the genes in the regulator orthogroup to the genes in the
target orthogroup, and select the edge that has the highest improvement in score. That is, if a species / has p regulators and q targets
in the j and k™ orthogroups, respectively, we will consider all p xq edges for that species. We set l/I'k =1 if any member of the /" regu-
lator orthogroup has an edge to any member of the k" target orthogroup.

Computational Complexity of the MRTLE Algorithm

MRTLE uses a greedy network learning algorithm which operates on one orthogroup at a time, which can be parallelized
because the priors decompose at the orthogroup level. The search decomposes into per-orthogroup regulator set estimation
problems, where the orthogroup corresponds to the target gene. In each iteration, for a target orthogroup, MRTLE would
search among all regulator orthogroups to find the best regulator orthogroup that would result in an overall score improve-
ment. For a target orthogroup j and regulator orthogroup i, this score improvement is calculated based on: (a) A species-spe-
cific contribution that examines all regulators genes in the orthogroup and all target genes in the target orthogroup to find the
regulator gene pair with the highest score improvement. (b) The computation of the phylogenetic prior. Operation (a) requires
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n,.sxmjS operations in species s with n} regulators in the i orthogroup and m/-S genes in the j orthogroup. For N species, the
overall complexity for this calculation is O(Nn;m)), where n; and m; are the maximum number of regulator and target genes in
the i and j orthogroups respectively. The second operation of computing the phylogenetic prior uses the Felsenstein al-
gorithm that is linear in the number of species, O(N). Taken together, scoring a given target and regulator orthogroup pair is
therefore O(Nn;m;), which we write simply as O(Nnm), with n denoting the maximum number of genes in a species in a regu-
lator orthogroup and m denoting the maximum number of genes in the target orthogroup in a species. This search procedure
is executed for all regulator orthogroups to find the best move. If R is the total number of regulator orthogroups, finding
the best move takes O(RNnm). Finally, the iteration of finding the next best regulator is executed at most the maximum num-
ber of pre-specified regulators a gene can have. Let this be k. Hence the overall complexity of the MRTLE algorithm is
O(kRNnm).

We note that the complexity of the algorithm without the phylogenetic prior, would require O(kRNnm) operations as well. However,
this can be parallelized across species and therefore would be faster.

Details of the Baseline Algorithms Compared

We compared MRTLE to two baseline algorithms, GENIE3 and INDEP, both of which aimed to learn a regulatory network for each
species independently.

GENIE3

GENIES is a dependency network learning algorithm that infers the structure of the regulatory network by solving a set of individual
regression problems, one per gene. Each regression problem is solved by learning tree-based ensembles (either Random Forests or
Extra Trees) that represent the regulatory program of a gene. GENIE3 takes as input an expression data matrix and a set of candidate
regulators and outputs a ranking of potential regulatory edges. GENIE3 was one of the best performers in the DREAM network infer-
ence challenge (Huynh-Thu et al., 2010; Marbach et al., 2012).

INDEP

The INDEP algorithm is also a dependency network learning algorithm, that infers the structure of the regulatory network by solving a
set of individual linear regression problems. The INDEP algorithm uses a per-gene greedy algorithm that aims to infer the regulators of
each gene one at a time and is described in more detail in Siahpirani & Roy (Siahpirani and Roy, 2016) as the Per-Gene Greedy (PGG)
algorithm. Briefly if D, represents the dataset for the s species, INDEP aims to learn the graph structure G by optimizing P(Gs|Ds)
which is proportional to P(Ds|Gs)P(Gs). P(Gs) is defined in the same manner as the species-specific prior of MRTLE. INDEP makes
the same assumptions as MRTLE about the Gaussian distribution of the gene expression data (See Sections Modeling a regulatory
network in one species and Phylogenetic and species-specific graph priors).

Datasets

We evaluated our learning algorithm on simulated data with known ground truth, as well as with real yeast expression data.
Simulated Datasets

Our simulation framework made use of a simple probabilistic process of network structure evolution, which was parameterized with
the probability, pg, of gaining an edge that does not exist in the ancestral species, and the probability, p,,, of maintaining an edge that
exists in the ancestral species. The simulation started from an ancestral network of 300 genes and 33 regulators and a species tree
shown in Figure 1B, and evolved each possible edge down the branch of a tree until the leaves in the species tree were reached. We
set py = 0.2, and p,,, = 0.8 for this process. Once we had the network structures for each species, we used GeneNetWeaver to
generate data from each species (Schaffter et al., 2011). GeneNetWeaver uses stochastic differential equations to generate expres-
sion data. Specifically, each sample in each dataset represents a steady state measurement after perturbing a node and running the
system to steady state. Each dataset consisted of 300 samples.

Yeast Expression Datasets

We applied our algorithm to real expression data from six ascomycete yeast species (Thompson et al., 2013; Roy et al., 2013b;
Wapinski et al., 2010), and a new osmotic stress response dataset collected in this work (GSE94628). These data measure gene
expression for six species, namely S. cerevisiae, C. glabrata, S. castellii, K. lactis, C. albicans and S. pombe in four stresses: glucose
depletion, heat shock, osmotic stress, and oxidative stress (oxidative stress data was not available for S. pombe). A total of 35 mea-
surements were used for C. albicans and C. glabrata, 30 measurements were used for S. cerevisiae, S. castellii, and K. lactis, and 21
measurements were used for S. pombe for which oxidative stress data was not available. In addition to the phylogenetic priors, our
study in yeast included species-specific sequence motifs identified using the Cladeoscope algorithm, developed by Habib et al
(Habib et al., 2012). We learned regulatory networks using a gene set drawn from 6,547 orthogroups, which included genes with com-
plex orthology relationships and many duplication levels. 459 of these orthogroups contained at least one potential regulator in at
least one species.

Evaluation of Learned Networks

We assessed the effectiveness of network reconstruction using the MRTLE approach by comparing against two baseline ap-
proaches described above, GENIE3 and INDEP, on both simulated and real expression data.
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Experiments on Simulated Data

GENIE3

We downloaded GENIE3 from http://homepages.inf.ed.ac.uk/vhuynht/software.html. We ran GENIE3 on the entire dataset of 300
samples. GENIE3’s internal ensemble framework automatically generates confidence estimates on individual regulatory edges.
GENIES has two main parameters: the number of trees, n,,, and the number of features to be used at each split, K. We tested multiple
configurations for each parameter: n,e {100,500,1000,1500}, and Ke {sqrt,all}, where sqrt uses the square root of the number of reg-
ulators, while all will select all the regulators. For each configuration of these parameters, GENIE3 will output a confidence value of the
presence of a regulatory edge for all potential edges. To select a particular configuation we used AUPR (described below in Evalu-
ation metrics). We found the configuration of n,=1500 and K=all to give the best AUPR and used the network inferred from this setting
for our downstream evaluation. However, the overall performance of GENIE3 was stable across different parameter configurations
(Figure SB6A).

INDEP

INDEP was run within a stability selection framework, where a network was learned on one of 50 random subsamples of data con-
taining 150 samples each. This allowed us to compute a confidence for each regulatory edge defined by the fraction of data subsets
for which the edge was selected. The INDEP algorithm has two parameters that control the influence of the prior distribution: 3, for
controlling the sparsity of the inferred network and 8 to control the influence of the sequence-specific motifs. In the simulation case
61 was set to 0. We tried different parameter configurations of 8o {—0.6,-0.8,-1.0,-1.2,—1.4,—-1.6,—1.8,-2.0,—3.0,—4.0,—5.0}. As
in GENIE3, we used AUPR to select the best setting. We found 8, = -3.0 to give the best performance, however the overall perfor-
mance of INDEP was stable across different parameter configurations (Figure S6B).

MRTLE

Similarly to INDEP, MRTLE was also run within a stability selection framework, with 50 random subsamples of the data each
comprising 150 samples. MRTLE has multiple parameter configurations: pg for controlling the probability of an edge to be gained
in the child species, p,, to control the probability of maintaining an existing edge, (o for controlling sparsity, and 34 for controlling
the influence of the motif prior. As in the INDEP case, we set $;=0. We tested different configurations for MRTLE pg=
{0.1,0.2,0.3,0.4}, p,={0.7,0.8,0.9} and $,={-0.6,-0.8,-1.0,-1.2,-1.4,—-1.6,—1.8,-2.0}. We found §y=—2.0, p,=0.2, p,,=0.9, to
give the best results, however, the performance of MRTLE is stable across different configuration settings (Figure S6C).

Evaluation in Real Expression Setting

The evaluation proceeded in the same way as in the simulation case where we tried different parameter configurations and selected
the one with the highest AUPR.

GENIE3

We ran GENIES3 with different values of the features used per split, Ke {all,sqrt}, and number of trees, n,e {100,500,1000,1500,2000}.
We selected the best configuration based on the AUPR performance on the Maclsaac gold standard available for S. cerevisiae (Ma-
cisaac et al., 2006). This configuration was K = sqrt, and n;, = 500, but GENIE3 was quite stable to different parameter configurations
(Figure S7A).

INDEP

To infer the networks, we used a stability selection framework, where we divided the expression datasets into 25 equal partitions
each consisting of 20 measurements of the available stress response measurements. In S. pombe, for which oxidative stress
data was not available, we partitioned the data into subsamples consisting of 14 measurements. We then inferred networks using
each of the 25 data partitions, and calculated a confidence for each regulator-target interaction for each species, by calculating
the percentage of the 25 networks that each edge was present in.

We used the “with motif” case to determine the optimal parameter configurations. Specifically, we set the sparsity parameter
Boe{—1,-2,—3,—4,—5} and the motif parameter 8,€{1,2,3,4,5} (Figure S7B). We used AUPR computed on the Hu et al. dataset
from S. cerevisiae (Davis and Goadrich, 2006), to determine the best setting (similar strategy as in GENIE3), and found 8y=—5.0
and (1=5.0 to give the best results.

Inthe case where motifs were not used, we need only to specify the sparsity parameter, 8o. We selected 8o=—5.0, because this was
the configuration that was ideal for the motif case. We checked the sensitivity of INDEP to multiple settings of gq:
Boe{—1.0,—2.0,—3.0,—4.0,—5.0}. INDEP results were very stable across different 8, values (Figure S7C).

MRTLE

Similarly to INDEP, we used a stability selection framework to learn regulatory networks with MRTLE. We used settings of pg and pp,,
that were derived from the species tree branch lengths, and used §oe {—0.8,—0.9} and (1€ {3,4,5}. We ran MRTLE with these config-
urations using only those target orthogroups without duplications, and computed AUPR on the Hu et al. dataset. We found the
AUPRs to be very stable (Figure S7D), however, 8,=—0.9 and 81=4 gave the best AUPR, and we used this configuration in all further
analyses.

Evaluation Metrics
We used different evaluation metrics to assess the quality of the inferred networks.
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Area Under the Precision Recall Curve

On both simulated data (all species) and real expression data (S. cerevisiae), we compared the inferred networks with the true net-
works based on Area under the precision recall curve (AUPR) computed using the aupr tool from Davis and Goadrich. (Davis and
Goadrich, 2006). Precision is defined as the ratio of true positives to the total number of predicted edges. Recall is defined as the
ratio of the number of true positive edges to the number of true edges. To compute the precision-recall curve, we need to estimate
precision and recall at different confidence thresholds for edges. For MRTLE and INDEP, we obtained these confidences using sta-
bility selection. That is, we generated random subsamples of the data, learned a network from each subsample, and computed a
confidence for each edge representing the fraction of inferred networks in which the edge was present. GENIE3 has its own bootstrap
procedure during the Random Forests learning procedure and directly outputs a confidence for each edge. The area under the pre-
cision-recall curve gives an overall assessment of the quality of the inferred networks.

Pattern of Phylogenetic Conservation

We assessed the quality of the inferred regulatory networks using the extent of inferred conservation and the ability to capture phylo-
genetically coherent patterns of conservation between species. A pattern of conservation is said to be phylogenetic if it obeys the
phylogenetic structure, that is, networks for species that are close on the phylogeny should exhibit greater similarity than networks
of species that are further apart. We used an F-score measure to assess the similarity between pairs of networks, where F-score is
defined as the harmonic mean of precision, P, and recall, R, F-score :%. This required us to specify a network at a specific con-
fidence threshold for each species. For the simulated data we picked these thresholds to obtain = 3,000 edges. For the real data, we
picked thresholds to obtain = 30,000 edges.

In the simulation setting, since we had access to the true networks, we could additionally directly assess the extent of conservation
and divergence present, and compare this to the conservation and divergence present in the inferred networks. This comparison was
done by defining the predicted common edges between two inferred networks and comparing to true common edges using AUPR.
Evaluating Regulator-Target Edge Predictions in S. cerevisiae
To evaluate our networks inferred for S. cerevisiae when motifs were withheld, we used a ChlP-chip derived TF-target gene network
from Macisaac et al., 2006, which has previously been used as a gold standard in the field (Marbach et al., 2012). When evaluating the
full power of MRTLE with motifs included into its prior formulation, we used a dataset from Hu et al., which was constructed by sys-
tematically examining the genome-wide expression profile in 268 individual deletion strains, each strain representing a transcription
factor (TF) (Hu et al., 2007). The regulatory network was defined using a two step approach. First, an initial network was defined as the
total set of significantly differentially expressed genes in each deletion strain. Second, this network was refined using a regulatory
epistasis approach in an effort to remove indirect interactions. See Hu et al (Hu et al., 2007) for details.

Evaluation of Regulator-Target Edge Predictions in Non- S. cerevisiae Species

The evaluation of edges in the non-S. cerevisiae species was done using available ChlP-chip datasets for a handful of transcription
factors, namely MCM1 from (Tuch et al., 2008) and CBF1, HMO1, FHL1, IFH1, and RAP1 from (Lavoie et al., 2010). We evaluated the
quality of the inferred interactions for these TFs based on AUPR and fold enrichment of ChIP-based targets in the MRTLE inferred
networks. Fold enrichment is defined as the ratio of the observed over expected proportion of true edges as follows:

(# of true positive targets) | (# of predicted targets)
(# of actual targets) | (# of genes in dataset)

Inference of Stress-Specific Regulatory Networks for Multiple Species

To define the regulatory network for each stress, e.g., Osmotic stress response, we used the Arboretum algorithm to first define five
transcriptional modules as described in Roy et al (Roy et al., 2013b). We next filtered the MRTLE regulatory network inferred in each
species using the module assignments such that an edge was removed from the network if either of the end points of the edge were in
different modules, resulting in a single stress-specific network for each species. We refer to this combined approach as
Arboretum+MRTLE.

Assessing a Regulator’s Role as Repressive or Activating

We used two measures to assess whether a regulator acted in a repressive or activating manner. In the first, we used a Hypergeo-
metric distribution to calculate the significance of overlap between the MRTLE inferred targets of a regulator and a transcriptional
module. A regulator, r's association with a repressed or induced module was quantified based on the difference,
—log(p — valueact) — (—log(p — valuegep)), where p—valueact and p—valueggp are the Hypergeometric test p-values obtained
when testing for enrichment of r’s targets in the most induced or most repressed module, respectively. Regulators with negative
values for this measurement were considered to be repressive regulators, while positive values indicated an activator. In the second
analysis, we directly compared the expression of the targets of a regulator in the induced and repressed modules based on a one-
sided T-test for each time point. We required a regulator to have at least 5 targets in one module (e.g. most induced) and at least 2
targets in the other (e.g. most repressed) module and tested whether the targets in the induced module were significantly higher than
the repressed module. Next, to assign a sign to a regulator, we used the difference in the number of targets in each module; if a
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regulator had more targets in the repressive module, it was considered as a repressor, whereas, if it had more targets in the induced
module, it was called an activator. This too gave a single statistic that could be used to assess if a regulator was mostly repressive or
activating.

Defining Targets of Selected Regulators based on LIMMA

To validate predicted targets of key transcription factors we measured mRNA levels using miseq, and utilized the LIMMA software
(Smyth et al., 2005), applying it to salt stress data sets in wild type and mutant strains of yeast. Here a wild type (Scer.WT) and an
MSN2/MSN4 knockout mutant (Scer.msn2.4) S. cerevisiae strain were used to define the targets of MSN2/4, and a wild type and
SKO1 mutant strain of C. albicans were used to define the targets of SKO1 in C. albicans. For S. cerevisiae two replicate RNA-
seq experiments were performed for each of 4 conditions for both wild type and mutant: (1) T=0 minutes under no salt stress
(BMW.TO0), (2) T=20 minutes under no salt stress (BMW.T20), (3) T=0 minutes under a KCL salt stress treatment (KCL.TO), (4)
T=20 minutes under a KCL salt stress treatment (KCL.T20). Using LIMMA, differentially expressed genes were called for MSN2/
MSN4 in S. cerevisiae with the following contrast functions: (Scer.WT.KCI.T20-Scer.WT.BMW.T0)-(Scer.msn2.4.KCI.T20-
Scer.msn2.4.BMW.TO). The rationale for this contrast function is that the genes that are under MSN2/4 control under osmotic stress
are those whose expression changes from T0 to T20 in the wild type, but not in the MSN2/4 strain when subjected to the same stress.
Similarly for C. albicans, the contrast function used was (Calb.WT.KCI.T20-Calb.WT.BMW.T0)-(Calb.sko1.KCI.T20-Calb.-
sko1.BMW.TO0). A similar contrast function was applied for the other strains as well. While targets were called for other species
and regulators, in only the above two cases did MRTLE and the limma analysis both find a sufficient number of targets to allow
for enrichment analyses. The LIMMA algorithm results for these two contrasts then provided us with a log-fold change and an
adjusted p-value (q value) measure for the significance of differential expression of each gene. A g-value <0.05 was chosen to select
targets of MSN2/MSN4 in S. cerevisiae and SKO1 in C. albicans. These target lists were then utilized in the downstream analyses.
When comparing our MRTLE results to the MSN2/4 double knockout, any gene predicted to be regulated by either MSN2 or MSN4 by
MRTLE was considered.

Estimation of Gain and Loss Rates in MRTLE Inferred Network

Rates of target gain and loss were calculated for each regulator orthogroup by modeling gain and loss of targets with a continuous-
time Markov process, and using an expectation-maximization (EM) based approach to estimate the rates, as in Hobolth et al. and
Garber et al. (Hobolth and Jensen, 2005; Garber et al., 2009). When assessing the rates in MRTLE, three separate sets of rates
were calculated (Figures 3E and 3F). The first allowed for many-to-many orthology relationships within a regulator group, construct-
ing rate matrices for each possible mapping when regulator duplications were present (Figures 3E and 3F; All). In the second set, we
separated the effect of genes lost from the genome from the effect of regulators’ targets lost. For this, we calculated rates for each
regulator after removing any targets from consideration that did not have uniform, one-to-one orthology (Figures 3E and 3F; Uniform
Targets). In the third set, we tested whether double-counting of certain regulators did not bias the results. To address this, we calcu-
lated the rates by taking the average rate of each of the possible orthology mappings for a regulator (Figures 3E and 3F; Collapsed
Regulators).

DATA AND SOFTWARE AVAILABILITY

The MRTLE software and inferred networks are available at https://bitbucket.org/roygroup/mrtle. The expression datasets generated
as part of this study are available in GEO (GSE94628).
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