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Abstract

The objective of this thesis is to explore experimentally the effects of adding dynamic
absorbers to a threc dimensional truss and to design analytical models which predic the
phenomena of attenuation.

The structure being tested is a 4.7 x0.84 x 0.8 m truss comprised of cells made of
aluminium rods and connected in series. 110 dynamic absorbers with a longitudinal and
flexural resonant frequency of 450 Hz and a torsional resonant frequency of 330 Hz are
mounted on the rods ir: the center cell to achieve a local mass ratio of 3. The truss is excited
at one end with white noise to measure the spatial attenuation averaged on octave bands as a
function of axial distance over the frequency range from 125 Hz te 8 kHz. The data are
compared to the spatial attenuation for the undamped structure. The differences determine
the effect of the dynamic absorbers. The overall shape of the differential curves of
atienuation versus axial distance is a step function, with the step located in the dynamic
absorbers attachment area.

Assuming the equi-partition of energy between the different wave types and using the
classical theory of attenuation of waves propagating on a semi-infinite rod loaded with a
continuous layer of dynamic absorbers, one predicts stronger attenuation than experimental
data at low frequencies (especially in the 500 Hz octave band). The assumption of equi-
partition of energy proves to be incorrect and the applicability of the semi-infinite model is
questioned. Subsequently, a new theory is derived and validated by experiment to describe
the attenuation of waves on finite rods loaded with a layer of dynamic absorbers. At low
frequencies, this model achieves a better estimation of the axial attenuation along the truss.
At high frequencies, the difference of impedance between the attached masses and the
unloaded rod results in the reflection of waves and explains the high level of attenuation
observed on experimental curves.

Thesis Supervisor: Dr. Ira Dyer
Title: Professor
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1 Introduction

The importance of the control of vibrational energy in truss-like structures has been
driven by recent developments in submarine design. The idea for mounting submarine
machinery on a cradle structure first emerged in France, in the beginning of the 1980's.
Studies were conducted by the Délégation Générale de 1'Armement. The design of the
French nuclear submarine type "Le Triomphant" is based on this concept. The progression
towards this design was driven by the requirement of using modularity in fabrication and
assembly. The architecture of a conventional architecture and a typical cradle structure is

Lo

presented in fig 1.1.

shell

/)

Conventional architecture Cradle structure architecture

Figure 1.1: Schematic of a submarine cross-section showing conventional architecture
and cradle structure architecture.

In the conventional architecture, the machinery is mounted on decks, which are in turn
resiliently mounted almost continuously to the shell. In the new architecture, the cradle is
the truss structure which supports the machinery. The cradle is located at the back of the
submarine and is connected to the shell at a limited number of attachment points. The use of
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a cradle structure provides separation between the interior structural dynamics and the hull
dynamics. As a consequence, different mechanisms can be employed to isolate the internal
sources of noise from the hull to minimize the underwater noise signature of the entire
vessel. The propagation of unwanted vibration can be reduced either at (a) the attachment
points or (b) within the truss.

a. Since the shell is a pressure vessel, stable against collapse and buckling modes, the
submarine internals need not contribute to the global strength of the outer shell. Therefore,
the cradle can be isolated from the outer shell by isolation mounts at a limited number of
attachment points. The design of these attachment points allows control of low frequency
radiation and shock.

b. The truss provides a tortuous path through which vibratory energy must travel
before it reaches the shell. Specific design of the truss components or added damping can
then be applied to reduce vibrations before they reach the attachment points and the hull.

1.1 Previous Research

MIT's research on machinery cradle damping began in early 1993. The objective of this
program is to understand the dynamics of complicated truss-like structires with localized or
distributed damping. A three dimensional truss was designed and built for laboratory
testing. Marcus R. A. Heath has explored the dynamics of this truss to determine the
inherent type and degree of damping [1]. He has shown that strut radiation is the main
mechanism of attenuation for all frequencies above a critical value. Other mechanisms of
attenuation such as radiation from joints, losses in the interface between components and
losses to ground through the supports, are negligible compared to the attenuation due to
scattering and strut radiation.

Many treatments can be used to achieve efficient damping of a truss structure. For
example, filling the hollow truss members with visco-elastic particulates, polyethylene
beads or sand achieve high frequency attenuation. This type of treatment has been studied
by the laboratories of the Délégation Générale de I'Armement and is currently being
studied at the Carderock Naval Surface Warfare Center and at MIT by Mark Hayner.
Unwanted vibratory energy can also be controlled by the application of uniformly
distributed damping layers placed on the truss members that absorb the waves via transfer
of vibratory energy to dissipating elements in the layer; this technology is very well
developed and is often used .
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Another form of control is the use of a layer of dynamic absorbers [2]. Waves are
attenuated by a distribution of masses resiliently mounted to the structure. The dynamic
absorber layer inhibits the wave by presenting a very high wave impedance over a region
which is large compared to the wavelength of propagating waves.

1.2 Objectives

The use of dynamic absorbers applied in a local region of the truss has been identified
by the MIT research team as a potential treatment for especially noisy source regions or
especially sensitive mounting areas. The objective of this thesis is to explore the effects of
adding dynamic absorbers to the MIT truss and design analytical models to predict the
phenomena of attenuation.

Dynamic absorbers are added on a section in the middle of the truss so that no wave can
propagate from one part to the other without going through a treated rod. The attenuation
versus axial distance is measured along the truss. These data are compared with the
attenuation for the unloaded truss, showing the effect of the added dynamic absorbers.

Previous studies conducted at MIT focus on the attenuation of flexural and longitudinal
waves on semi-infinite rods loaded with a layer of dynamic absorbers [3] [4]. In this study,
the treated rods involved in the truss are finite. The three kinds of waves present in the
truss, flexural, longitudinal and torsional, are studied analytically. A new model taking into
account finite boundary conditions is built and validated by experiment. The aim is to
understand the mechanisms of wave attenuation due to the addition of dynamic absorbers
by comparing analytical predictions to measured axial attenuation.

1.3 Approach

Analytical models dealing with the attenuatior of flexural and longitudinal waves on
semi-infinite rods are recalled in Chapter 2. A model of attenuation for torsional waves is
derived from the longitudinal case.

In Chapter 3, the design and building of different types of dynamic absorbers is
described. Single test experiments define their flexural and longitudinal resonance
frequencies; the torsional resonance frequency is calculated. A specific design is chosen to
insure that the mass ratic is high enough to influence the truss structure and that the
resonance frequencies allow a satisfactory frequency range of efficiency.

12



Chapter 4 deals with the measurement on the 4.7 x0.84 x 0.8 m truss of the axial
attenuation due to the addition of dynamic absorbers. A large number of absorbers is built
and mounted on the truss. A section in the middle of the truss is treated so that no wave can
propagate from one end to the other without going through a treated rod. The truss is
excited at one end by random noise on octave bands frequencies from 125 Hz to 8 kHz.
The spatial attenuation as a function of axial distance is determined by measuring the
acceleration at the joints. The data are compared to the spatial attenuation for the undamped
structure. The difference is plotted and determines the effect of the dynamic absorbers. The
overall shape of the experimental curves of attenuation versus axial distance is a step
function, with the step located in the dynamic absorbers attachment area. The step is
dramatic between 250 Hz and 4 kHz, with a maximum at 2 kHz.

Experimental curves and expectations due to theoretical models are compared and
discussed in Chapter 5. Assuming the equi-partition of energy and using the analytical
models recalled in Chapter 2, one predicts a stronger attenuation between 300 Hz and 1
kHz, and minor effects above. The assumption of equi-partition of energy proves to be
incorrect. The equi-partition of acceleration is a more realistic assumption. Also, the
analytical models are designed for semi-infinite rods and are not valid for high frequencies.
Therefore, a new analytical model is proposed to take into account the finite boundary
conditions of the rods involved in the truss. An experiment is conducted to validate this
theory. A rod located in the treated area of the truss is populated with accelerometers.
Excitation is provided at one end of the rod. The attenuation of flexural waves is measured
and plotted. This experiment shows the validity of the new model and also proves that the
attenuation of flexural waves is actually taking place in the truss but with a smaller
amplitude than the previous predictions. This confirms the experimental curves plotted in
Chapter 4. Mechanisms of attenuation involved at high frequencies are explored in the last
section of Chapter 5.

Chapter 6 summarizes the major results of this thesis and provides suggestions for
future research. This study shows that the use of dynamic absorbers applied in a local
region of a truss is a potential treatment for especially noisy source regions. The
comparison between experiment and analytical predictions proves that the assumption of
equi-partition of energy in the truss is not valid at low frequencies. Future work should
focus on the determination of the partitioning of energy in the truss and should also define
the behavior of dynamic absorbers at frequencies for which the continuity assumption is no
longer valid.

13



2 Analytical Models for the Attenuation of Rod Waves by a
Layer of Dynamic Absorbers

A layer of dynamic absorbers mounted on a semi-infinite rod can attenuate the
amplitude of propagating flexural, longitudinal and torsional waves. This chapter describes
the mechanisms involved and provides analytical models for them. The flexural and
longitudinal equaticns are found in previous studies [2] [3] [4] [5]. By using some
assumptions for the resilient material, it is possible to derive the torsional attenuation from
the longitudinal case.

2.1 Attenuation of Flexural Waves due to a Layer of Dynamic Absorbers

Consider a semi-infinite circular rod with regularly spaced, resiliently mounted discs
acting as a dynamic absorber layer. The model is symmetric with possible structural
imperfections ignored. Waves are one-dimensional and right traveling. A schematic is
depicted in Fig 2.1 below.

ke = Ky A
7 W 0 0
30 IR i L] Jw
/%*‘ﬂ }fi‘ ;"ﬂ ;f%' /%fi’
0 U 4 W4 oa

Fi gure 2.1: Transverse view of a semi-infinite circular rod
with a dynamic absorber layer
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The spacing of the dynamic absorbers is small compared to a wavelength so that
continuity of the layer can be assumed. The coupled equatiors of motion are:

d%u

EIV uy+M— a ! +Rf—(l1| uz) + ke (u-uy) =0 2.1
aazuzz + Rf—' (uz-uy) + kg (up-uy) =0 2.2)

where E is the Young's Modulus; I the area moment of inertia of the rod; M the mass
per unit area of the rod; Ry, kg, and m the per unit area resistance, stiffness, and mass
respectively of the layer; u; and u; the normal displacement of the rod and the attached
mass respectively, as shown in Fig 2.1.

Equations assume that the shear deformation and rotational energy centributions are
negligible. Additionally, the resilient layer is considered massless and thin compared to a
wavelength. Losses associated with the resilient layer are considered dominant, and losses
in the structural layers are ignored.

We now seek solutions to Eq. (2.1) and (2.2) of the form

=exp (iK;x - iwt) (2.3)

where Ky is the flexural wavenumber (2pi / wavelength) and w the radian frequency.

With some manipulation we can find that one-dimensional harmonic waves, described by
Eq. (2.3), exist if

K4=K;1l: +B ¥t + ioof/o? ] (2.4)
¥ + i(wh/w? - 1)
where B = -ﬁ- the mass ratio
R
Yr= a';‘ the loss factor of the dynamic absorbers

(oozf = l% the square of the dynamic absorber flexura! resonance frequency

w? E_NI[ the fourth power of the flexural wavenumber without the layer

A
i

The wavenumber has interesting behavior. For the simple case ¥ = 0 (no damping),

K =xf [1+ /(1 - w¥fedky)] (2.5)
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we can see that K¢ has an imaginary part for frequencies defined by

1 < /o <V 145 (2.6)

since the fourth-power term in Eq. (2.5) then entails a root of a negative quantity. We can
call the domain of Eq. (2.6) an attenuation band induced by the layer, since wherever the
imaginary part of K¢ (=Ki ) exists, the spatial dependence becomes exp (iKj x - K¢r x),
where K¢r and Ky are the real and imaginary parts of K¢ respectively. Of course for any
practical layer ¥ > 0, and the results in Egs. (2.5) and (2.6) are not entirely applicable.
Without any approximation, the resulting flexural attenuation in dB per unit distance is

Ar=201loge)Ksi =8.686Ksi dB/unit of distance 2.7)

This attenuation is plotted in Fig 2.2 and 2.3 for different values of the mass ratio and
the loss factor.

It appears that as the loss factor increases, the peak attenuation decreases and the band
widens, more so towards the higher frequencies. Note also that as the mass ratio increases
for fixed loss factor, the attenuation bandwidth increases, and the peak attenuation
increases. Thus mass is doubly beneficial, but dissipation serves to increase bandwidth at
the cost of reduced peak attenuation. ‘
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Figure 2.2: Predicted flexural attenuation per meter for §=1; the parameter is ¥;
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Figure 2.3: Predicted flexural attenuation per meter for B=3; the parameter is ¥; .
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2.2 Attenuation of Longitudinal Waves due to a Layer of Dynamic
absorbers

We consider the same rod with a layer of dynamic absorbers to understand the effect of
dynamic absorbers on longitudinal waves.

7 0 7 0 .

sy 9 s ¢ v

£ : £ 3

f////ir{-‘
2 W o a2

Figure 2.4: Transversal view of a semi-infinite circular rod
with a dynamic absorber layer

The spacing of the dynamic absorbers is small compared to a longitudinal wavelength,
so that continuity of the layer can be assumed. The coupled equations of motion are

-ES %2;"?‘ a;"; + RLa (vi-v9) + ki (vi-v5) =0 (2.8)
a;\;z + RLat (V2-V1) + k[_ (Vz-Vl) 0 (20)

where E and S are the modulus of elasticity and area of the rod; M the mass per unit
area of the rod; Ri, k1, and m the per unit area resistance, stiffness, and mass respectively
of the layer; v; and v, the longitudinal displacement of the rod and the attached mass
respectively, as show in Fig 2.4. To develop these equations, the same assumptions are
made as in the flexural case. However, the values of the resistance Ry and stiffness ky are
different because the resilient material may have different stiffnesses and resistances when
deflected in different directions.

We now seek solutions to Eq. (2.8) and (2.9) of the form

18



v =exp (K ix - iot) (2.10)

With some manipulation we find that harmonic waves exist if

K§=xg[1+ p .+ ivh/e? @.11)
1+ i(0f/w? - 1)
where B = &1 the mass ratio
R
= ‘5;;' the loss factor of the dynamic absorbers
0)%_ = l—% the square of the dynamic absorber longitudinal resonance frequency
KL= ‘c% the rod longitudinal wavenumber in the absence of the layer
and cy_is the longitudinal speed defined by ¢, = \/% 2.12)

Similarly, the resulting longitudinal attenuation in dB per unit distance is
AL =201log(e)KL i =8.686K; i dB/unit of distance (2.13)

The attenuation is plotted in fig 2.5 and 2.6 for different values of the mass ratio and
the loss factor.

The behavior is the same as the flexural case. As the loss factor increases, the peak
attenuation decreases and the band widens, more so towards the higher frequencies. And as
the mass ratio increases for fixed loss factor, the attenuation bandwidth increases, and the
peak attenuation increases.
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Figure 2.5: Predicted longitudinal attenuation per meter for B=1; the parameteris Yy
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Figure 2.6: Predicted longitudinal attenuation per meter for B=3; the parameteris ¥ .
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2.3 Attenuation of Torsional Waves by a Layer of Dynamic absorbers

Finally we consider the same rod with a layer of dynamic absorbers to understand the
effect of dynamic absorbers on torsional waves.

Figure 2.7: Side view of a semi-infinite circular rod
with a dynamic absorber layer.

The coupled equations of motion are

2 2
-GIl-aa% + I;-a-a—tez—l + R'[% (1‘161- 1'292) + k'r (I‘% 61- I'% 92) =0 (2.14)
2
Iz a—ag-z- + R'raa—t (1'292- 1'191) + k'r (l‘% 92- I‘% 91) =0 (215)

where I; and I, are the polar moments of inertia of the beam and the absorber; G the
shear modulus of elasticity of the rod; Rt and kt the per unit area resistance and stiffness
respectively of the layer; 6; and 6; the angular displacement of the rod and attached mass
respectively, as shown in Fig 2.7.

Consider r = (r;+ r2)/2. If the resilient layer is thin compared to the radius of the beam,
then we have r = r; =ry. Using this approximation, the equations of motion (2.14) and

(2.15) become

2 2
'Gllaa% + Ilaa% + RTréaE (91- 92) + k’rl’z (01-92) =0 (2.16)
2 d
Iz Qat% + R'rl'g (92- 61) + k'rl'2 (92- 9;) =0 (2.17)
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These equation of motion are seen to have the same form as the equations of motion
previously obtained for the propagation of longitudinal waves.
We now seek solutions to Eq. (2.16) and (2.17) of the form

0, =exp (iKrx - imt) (2.18)

Similarly, we find that harmonic waves exist if

K2 = x;[n g Yo+ ih/e’ 2.19)
o +i(0fr/e? - 1)
where B = &1 the mass ratio
R
Yr= ET the loss factor of the dynamic absorber
o2 =12
T 71, thesquare of the dynamic absorber's torsional resonance frequency

KT = % the rod torsional wavenumber in the absence of the layer

and cr is the torsional speed defined by

er= \/—Qg (2.20)

Similarly, the resulting attenuation per unit distance is

Ar=20log(e)Kri =8.686Kri dB/unitof distance (2.21)

So using the assumption that the resilient layer is thin compared to the radius of the
beam allows one to obtain similar equations as the in the longitudinal case. The curves
representing the attenuation versus frequency are similar to the longitudinal ones, the only
changing parameter being the speed of the wave which affects the amplitude of the
attenuation.
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3 Design of the Dynamic Absorbers

3.1 Preliminary Considerations

To apply the analytical models described in chapter 2, dynamic absorbers need to be
defined by their mass, stiffness and loss factor. The mass is easy to predict, knowing the
density and the geometry of the piece of material. The stiffness and the loss factor are much
more difficult to predict although some studies have been made on the subject [6]. As a
consequence an experiment has been designed to measure these characteristics. The
procedure followed is inspired by Richard Sapienza [7].

The objective is to build dynamiic absorbers which will have an effect on the truss. The
resonance frequency, influenced by the mass and the stiffness, has to be high enough so
that strong motion exits on the rods. Some practical considerations, developed in chapter
4, limit the use the foregoing models at high frequencies. Basically, if the resonance
frequency is high, more dynamic absorbers are required to obtain a continuous distribution
necessary to apply the analytical model.

3.2 Mechanical Design

Each dynamic absorber mass is built in two semi circular pieces so that it is easily put
on and removed from the structure. Aluminium is chosen for the material to facilitate the
manufacturing process. The symmetry is respected to prevent side effect resonances. A
base wide enough compared to the outer diameter is necessary to provide a decreased
likehood of rocking motion and misalignment.

A mechanical drawing of the dynamic absorber mass is presented in Fig 3.1. The inner
radius is larger than the radius of a typical rod used to build the truss so that the resilient
material can be added between the rod and the circular mass. The outer radius and the base
of the circular mass define the geometry (i.e. the mass) of the dynamic
absorber.
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outer radius of the rod
1/4 inch

Figure 3.1: Mechanical drawing of a dynamic absorber.

3.2 Measurement of the Resonance Frequencies

Longitudinal Resonance

The layer's longitudinal resonance is determined by using a single dynamic absorber
resiliently mounted on a rod similar to the ones used for the full truss. The setup is shown
on Fig 3.2. A control accelerometer is mounted as close to the mass as possible and a
response accelerometer is mounted to the outer diameter of the mass. The PCB model 309A
accelerometers are oriented in the direction defined by the main axis of the rod and attached
to the components with bees wax. A PCB 483B07 ICP signal conditioner provides the
voltage supply and amplification for the two sensors. The rod is hung horizontally by
means of monofilament lines with the input excitation supplied by means of a Wilcoxon
Research vibration generator (mode! F3/F9). Mounting of the shaker to the rod is
accomplished by adding a small aluminium plate, center drilled, tapped and fitted with a
mounting stud at the end of the rod. By tightening the shaker down on the mounting stud,
axial alignment is ensured, reducing possible coupling to flexural motion. The shaker is
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driven by a signal from a HP 3562A two channel dynamic signal analyzer with the source
option active. The input is band limited white noise. The analyzer is used to power the
accelerometers, as well as for signal analysis. The transfer function between the input and
response acceleration in the longitudinal direction is used to determine the longitudinal
resonance frequency and loss factor at resonance.

Figure 3.2: Photograph of longitudinal mass resonance apparatus.

Flexural Resonance

The layer's flexural resonance is also determined by using a single dynamic absorber
resiliently mounted on a rod similar to the ones used for the full truss. The accelerometers,
amplifiers and analyzers remain the same but the setup is different and shown in figure 3.3.
A fixed shaker is attached to a special piece of aluminium designed for the experiment. The
excitation, perpendicular to the tube axis, is transmitted at each end of the small rod. This
creates a symmetric excitation and insures that the dynamic absorber only moves in the
direction perpendicular to the tube axis. The input is also band limited white noise. The
transfer function between the input and response acceleration in the normal direction is used
to determine the flexural resonance frequency and loss factor at resonance.
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Figure 3.3: Photograph of flexural mass resonance apparatus.

3.4 Results

Different materials such as weatherstriping and neoprene of different durometers have
been tested to attach the masses on the tubes. Different sizes for the masses have also been
tested.

Measurements of the resonance frequencies and loss factors were performed as
described in section 3.3. The resonance frequency fy is defined as the frequency at the
transfer function peak. The loss factor is determined by the 3dB bandwidth of the transfer
function and is given by the equation

y=40a 3.1)
0

A dynamic absorber made of weatherstriping and a mass of 38g was selected as
satisfactory. The inner radius is 0.25 inch + 1mm, the outer radius is 0.75 inch and the
base is 0.5 inch. The weatherstriping is squeezed between the two masses and the rod. The
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flexural and longitudinal rescnances of this dynamic absorber are approximatly the same
(437 Hz and 447 Hz) and fill the conditions defined at the beginning of this chapter. The
mass of this dynamic absorber allows one to create a mass ratio of approximatly three on
the different kinds of finite rods used on the full truss (see next chapter for more details).
As the resonance frequency and the loss factor depend on parameters such as
temperature, time relaxation of the resilient material and operator manipulations such as the
way the resilient material is squeezed, many tests were completed to obtain averaged
values. The results are shown in Tables 3.1 and 3.2. The transfer functions correspondirig

to Test #1 and Test #6 are shown on Fig 3.4 and Fig 3.5 .

Test #1 Test #2 Test #3 Test #4 Test #5 Mean
for (Hz) 417 416 477 452 422 437
Ye 0.18 0.20 0.19 0.18 0.19 0.19
Table 3.1: Flexural characteristics
Test #6 Test #7 Test #8 Test #9 Test #10 Mean
for (Hz) 448 481 415 430 461 447
'Yli 0.34 0.36 0.37 0.33 0.34 0.35

Table 3.2: Longitudinal characteristics
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Figure 3.4: Transfer function of Test #1.
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Figure 3.5: Transfer function of Test #6.
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3.5 Torsional Resonance Frequency

The rods used for the truss are 1/2 inch diameter. The equipment necessary to measure
the angular displacement is not available at MIT. So for practical reasons, the torsional
resonance could not be measured. However, a simple model is shown here to estimate the
torsional resonance frequency.

For flexural resonance, the strain of the resilient material is a complicated ~»mbination
of compression and shear which is not well adapted to analysis. But for iongitudinal and
torsional movement, the physical process of deformation of the resilient material is of the
same nature [6]. As a consequence, the stiffness can be considered as equivalent in both
cases.

The longitudinal resonance is given by

WoL = v-?an (3.2)

and the torsional resonance is given by

_ [kt
ot mXibs (3'3)

where Xabs is the radius of giration of the mass, defined by Xabs = %‘V TonerTauer

Making the assumption that the stiffness is the same in (3.2) and (3.3) and combining

the two equations, we find
2
= ~inner
WoT = OL o (3.4)

or

= f linner
fO'I' tfoL Yabs (35)

For the design shown in Fig 3.1, we have Iy, = 0.735cm and Xabs = 1.02 cm,
SO fo']' = 330 Hz.
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4 Experiment

4.1 Preparation and Preliminary Considerations

The experimental model was designed, built and used by Marcus Heath. It is a truss
consisting of eleven square-based pyramids joined in series. It is fabricated from 6061 T6
aluminium joints and rods, and has a mass of 16 kg. The architecture of the truss is
represented in Fig 4.1. Details of truss design, construction and material properties are to
be found in [1]. Although scaling provides some degree of applicability to the model, the
truss is not architectured as a feasible internal structure, but as a model allowing to
understand the dynamics of a three dimensional truss. The length of the truss has been
selected to maximize the axial dimension so that attenuation is readily measurable.

Figure 4.1: Architecture of the truss.

The truss is suspended from the laboratory ceiling using two bungee chords. The
natural frequency of rigid body oscillation is of the order of 10 Hz so that the truss is
considered to be suspended in free space for frequencies above 100 Hz, i.e. for the
frequency range of this experiment. The two supports are attached at intermediate positions
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along the truss in order to minimize hogging or sagging effects. The axial direction of the
truss is considered the X direction, Y extends in the horizontal transverse direction and Z
represents the vertical transverse direction.

The dynamic absorbers are added on the truss as shown on Fig 4.2 .

Figure 4.2: Attachment of dynamic absorbers on the structure.

The first parameter which affects the spacing of the absorbers is the mass ratio . We
recall in Chapter 2 that the dynamic absorbers create an attenuation band approximately

defined by
1 < /o, <V 1+p 2.6)

For = 3, the attenuation band is limited by fy and 2fp. In our case, the resonance
frequency is 450 Hz for longitudinal and flexural waves; a mass ratio of 3 creates an
attenuation band between 450 and 900 Hz. B = 3 is arbitrarily selected as satisfactory. A
dynamic absorber has a mass of 38 g and the mass per length of the tubes is 0.154 g/m so

the spacing d is defined by
d=-—0038 —0082m (4.1)
3x0.154
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The attachment spacing of the absorbers also has to be such that the continuous
distribution required to apply the analytical model is satisfied. As a rule of thumb (7], a
minimum of four masses per wavelength satisfies the continuity criteria. Consider the
flexural waves which have the smallest wavelengths in the frequency range considered. A
is given by

h=v2m g @2)

where X is the radius of giration, c; the longitudinal wave speed and f the frequency.
For a spacing of d = 0.082 m, the continuity criteria is valid up to A; =4d = 0.33 m.

This critical wavelength corresponds to a critical frequency f, defined by

_ 2mx0.004x5091

0.332 = 1180 Hz 4.3)

cr

In conclusion, if the dynamic absorbers are added on the tubes every 8.2 cm, the mass
ratio is three, then the continuity criteria for flexural waves is valid up to approximately
1200 Hz. The exact spacing used in the experiment is discussed in 4.3.

4.2 Equipment

To simulate the vibration caused by rotating machinery, a vibration generator is fixed to
an end joint (joint bl) by means of a mounting stud. Located at one extreme end, the shaker
maximizes the available length of measurement. A Bruel and Kjaer type 4810 vibration
generator is used to excite the iruss in frequency bands over the desired frequency range of
80 Hz to 12 kHz. This shaker applies sufficient force to maintain a signal to noise ratio of
at least 25 dB throughout the truss. This shaker incorporates an external force transducer
for transfer function measurements.

Twelve PCB model 309A internally amplified accelerometers are attached to the truss
components with bees wax. The PCB sensors weighing 1 gram have a negligible effect on
the level of vibration of the joints (a joint has a mass of 120 grams [1]). A twelve channel
PCB 483B07 ICP signal conditioner provides the voltage supply and amplification for the
twelve sensors. The twelve amplified channels become input to a HP 3562A two channel
dynamic signal analyzer. Each measurement requires to switch from one amplified channel
to the next one.
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4.3 Procedure

Dynamic absorbers are added on a section in the middle of the truss so that no wave can
propagate from one part to the other without going through a treated rod. In this first
configuration called ‘half damped’, seven tubes are treated. This configuration is
represented in Fig 4.3. Four 20 inch long tubes receive 6 equally spaced dynamic
absorbers. On these tubes B =291, d =7.3 cm and f,, = 1500 Hz. Three 33 inch long
tubes receive 10 equally spaced dynamic absorbers. On these tubes p =2.94, d = 7.6 cm

and f,, = 1400 Hz. A total of 54 dynamic absorbers are added to the truss.
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Figure 4.3: Half damped configuration.

In a second configuration called 'fully damped’, six additional tubes are treated. This
configuration is represented in Fig 4.4. Four 33 inch long tubes re:eive 10 equally spaced
dynamic absorbers (same characteristics as in the first configuration). Two opposite 29
inch long tubes receive 8 dynamic absorbers. On these tubes = 2.68, d =8.2 cm and f,

= 1200 Hz. 110 dynamic absorbers are required for this second configuration.



Figure 4.4: Fully damped configuration

The procedure for the measurements is the same than the one followed by Marcus
Heath for the measurement of the steady state attenuation of acceleration as a function of
axial distance [1]. As a consequence, data from the undamped structure can be compared to
data acquired from the treated structure.

In a first experiment, a random force signal in proportional frequency bands, ranging
from the 125 Hz to the 8 kHz octave, excites the truss. The excitation of only one band at a
time permits data acquisition within the band while maximizing the power available to the
vibration generator. The HP 3562 dynamic signal analyzer generates the band passed
signals and acquires and processes data.

In a second procedure, attention is focused on narrow frequency bands from 350 Hz to
750 Hz.

In each case and for each band, the steady state accelerance of every joint is measured
and recorded in dB re 1g/N. The data are presented in the frequency domain and many sets
of data are averaged to reduce response fluctuations. At high frequencies 32 averages are
ronducted; at low frequencies 3 'averages are conducted. Although this is a2 small number of
averages, at low frequencies additional averages do not really improve the quality of the
signal. A linear average of all processed accelerance data within each band (expressed in
dB) is executed to obtain a single averaged value. To obtain the overall effect of axial
attenuation, the response in dB of each three joint grouping per section is linearly averaged.
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This effectively smooths variations over one section. Finally, the accelerance data are
normalized by the the response measured at the first joint near the shaker.

To summarize, the attenuation in acceleration with reference to the first section is
measured for each section and is given in dB.

4.4 Resuits

The attenuation is measured for the half damped and the fully damped configuration.
This attenuation is compared with data obtained by Marcus Heath for the undamped truss in
similar conditions. The difference between the curves show the effect of the dynamic
absorbers. The difference between the half damped and undamped truss is plctted on Figs
4.5 and 4.6. The difference between the fully damped and undamped truss is plotted on
Figs 4.7, 4.8 and 4.9.

The analysis of these curves is done in Chapter 5.
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Figure 4.5: Difference of attenuation versus axial distance at low frequencies between

the half damped and the undamped configuration.
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Figure 4.6: Difference of attenuation versus axial distance at high frequencies between
the half damped and the undamped configuration.
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Figure 4.7: Difference of attenuation versus axial distance at low frequencies between
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5 Analysis

In this chapter, the measured axial attenuation along the truss is compared to analytical
predictions. Differences in the shape of the curves question the assumptions made for the
prediction of axial attenuation and the validity of the analytical models of Chapter 2. Section
5.3 is introduces a new model which takes into account finite boundary conditions. In
Section 5.4, the solution obtained with this new model is compared to an experiment to
prove its validity. Section 5.5 deals with the behavior of dynamic absorbers at high
frequencies. As experimental data show a higher level of attenuation than expected at high
frequencies, mechanisms of attenuation and of reflection are proposed when the continuity
criteria of the layer is no longer valid, which is the case above 1200 Hz for flexural waves.

5.1  Analysis of the Experimental Curves

For all configurations, the dynamic absorbers are located at a distance of 1.9 to 2.4
meters from the vibration source. The overall shape of the experimental curves of
attenuation versus distance is a step function, with the step located in the dynamic
absorbers attachment area. The step is dramatic for frequency bands ranging from the 250
Hz octave band to the 4 kHz octave band. For low frequencies, the attenuation due to
dynamic absorbers is no. _aificant.

The difference between the half damped configuration and the fully damped
configuration is not significant. Thic means that the main effect of the dynamic absorbers
is to separate the truss in two parts with two different levels of vibrations. To simplify the
representation, the experimental curves corresponding to the half damped configurations
are averaged over each section separated by the dynamic absorber "filter". These curves are
presented in Figs 5.1 and 5.2.
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Figure 5.1: Averaged attenuation versus axial distance at low frequencies for the half
damped case.

The 125 Hz octave band curve is flat and remains equal to zero along the truss; the
dynamic absorbers do not attenuate waves at low freqiiencies. However, the attached
masses probably have an effect on the global motion of the truss as shown on Fig 4.7. The
configuration can be depicted as a beam with an added mass at the center. This added mass
increases the level of attenuation at the center of the beam.

The 250 Hz and 500 Hz octave band curves show clearly a step function. In the 250 Hz
octave band, mostly torsional waves are expected to be absorbed. In the 500 Hz octave
band, the ¢hree types of waves are absorbed, resulting in a bigger step of 5 dB. -

The 1000 Hz octave band is a double step function. The first step of 3 dB occurs near
the source. The second step of 3 dB occurs in the dynamic absorbers area. This same trend
exists for the 2 kHz and 4 kHz octave bands.
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Figure 5.2: Averaged attenuation versus axial distance at high frequencies for the half
damped case.

For the 8 kHz octave band, the second step disappears. The level of attenuation is 5 dB
all along the truss, except near the source. The dynamic absorbers no longer separate the
truss in two parts with two different levels of vibration.

§.2 Analytical Predictions

The dynamic absorbers added to the structure have a flexural and longitudinal
resonance frequency of 450 Hz, and a torsional resonance frequency of 330 Hz. The
attenuation per meter of a semi-infiniie rod for the different types wave types is plotted in
Fig 5.3. These analytical curves, based on the models discussed in Chapter 2, predict a
strong attenuation between 300 Hz and 1 kHz. These curves can be used to predict the axial
attenuation along the truss given assumptions described in the following section.

44



90 ! v 1 1 L

80 — flexural waves |
- - longitudinal waves

----- ional waves i
70 torsio

60 i

50

40 i

30 ]

N
o
T

)

0 - 500 1000 1500 2000 2500 3000

Frequency, Hz

Figure 5.3: Attenuation per meter versus frequency of flexural, longitudinal and
torsional waves for a semi-infinite rod.

A wave wavelling across the treated section of the half damped truss has 7 path
options: either one of the four 50 cm long rods or one of the three 84 cm long rods. An
equivalent treated distance can be defined as the mean distance a wave is expected to cover
on treated rods. For this configuration the equivalent distance can be defined as

50%4 + 83x3 N

equivalent distance = 34

65 cm (5.1)

For each wave, the accelerance corresponding to the attenuation suffered on a 65 cm
long rod can be evaluated versus frequency and averaged on octave bands. The averaged
values are plotted on Fig 5.4.
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Figure 5.4: Attenuation versus frequency of flexural, longitudinal and torsional waves
after 65 cm of treated rod and corresponding averaged values on octave band.

To predict the total axial attenuation along the truss, two assumptions are required.
First, I assume that the transfer functions of the different accelerances from the rods to the
joints are independent of wave type and frequency. This means that attenuation suffered on
the rod results in the same attenuation measured at the joints. Second, knowledge about the
partition of mean square acceleration between the different kinds of waves is necessary. As
this information is not available, I make the assumption of equi-partition of energy among
all wave types. With some calculation, the partitioning of acceleration can be derived from
this hypothesis.

Using these two assumptions, the axial attenuation along the truss can be evaluated for
a right-travelling wave. I assume that the attenuation only takes place in the treated area and
that the added dynamic absorbers do not influence the level of vibration before and after the
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treated area. Therefore, the band-averaged attenuation for each wave type is multiplied by
its partition coefficient and the antilog values are added to give the global attenuation along
the truss, resulting in a step function. The curves obtained are shown on Fig 5.5.

First, I calculate the partitioning of acceleration assuming equi-partition of energy.
The total mean square acceleration in a given frequency band is

a? = a? +af +a} (5.2)

Eq. (5.2) can be rewritten

2.3 %
if—z—-l +-a?+;2- (5.3)
or
o 1
2 2 2
a 1+92L+h2 (5.4)
7 o

The flexural, longitudinal and torsional wave energy per unit area and per unit of time

are respectively
= Pcfg;‘ (-3)
IL= PCL% (5.:6)
Iy = pord 5.7

where P is the density of the material, @ the frequency, c;, ¢, and cy the flexural,
longitudinal and torsional wave speeds respectively.
The assumpticn of equi-partition of energy means that

L=1=I (5.8)
or

c@af = ciaf = cra (5.9)
Using Eq (5.9) and (5.10), and making the assumption that the different wave speeds
are constant in a given frequency band, we have
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Following the same process, this can be calculated for longitudinal and torsional waves
a1
1

1+ %t (5.12)
¢ d

The following table provides the values of these coefficients in different octave bands.

o e or g a a

a2 a2 a2
125 126 5050 3115 0.938 0.023 0.038
250 178 5050 3115 0.915 0.032 0.052
500 251 5050 3115 0.884 0.044 0.072
1000 356 5050 3115 0.844 0.059 0.097
2000 503 5050 3115 0.793 0.079 0.128

Table 5.1: Partition coefficients of acceleration using equi-partition of energy.

Now taking into account the partition of acceleration previously calculated, the total
axial antilog attenuation along the truss is given by

2
B2 oct. band = E% f, oct. bmd“';LB L. oct. band "" BZT oct. band (5.13)

The resulting step function is plotted in Fig 5.5.

48



40 i ! ! 1 1 I I 1 ¥

351 | — 125 Hz octave i’

30F |~ — 250 Hz octave |
.—-- 500 Hz octave ]

25+ I

---- 1 kHz octave
ool | ©  2kHz octave .

15F ! '

10

T
.~

— — e - — mm - e e —— e —— —— e -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 5.5: Predicted axial attenuation along the truss using equi-partition of energy

These curves deviate significantly from the experimental data (see Figs. 5.1 and 5.2).
The predicted step function in the treated area is much larger, especially for the 500 Hz
octave bands. At least one of the assumption made to build the predicted attenuation is
invalid.

The transfer function between the rods and the joints varies among different wave types
and may prevent accurate measurement of the attenuation on the rods when measuring the
level of vibration at the joints. However an attenuation of 40 dB on the rods which results
in an attenuation of only 5 dB on the second half of the truss is not realistic. So the
assumption of equi-partition of energy is probably incorrect, especially at low frequencies.
This is the first indirect evidence that energy in the truss is not equally partitioned among
different wave types.

A more realistic partitioning is proposed. Assume instead that each wave type accounts
for one third of the total acceleration., so that

2 - R2 2 - w2
B oct. band = Bf, oct. band + BL. oct.band + BT. oct. band (5.19)
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Figure 5.6: Predicted axial attenuation along the truss using equi-partition o<
accelerance

The resulting curve is plotted on Fig. 5.6. This prediction fits betier with the
experimental data, although the step function in the 500 Hz ociave band is too large.

This higher level of predicted attenuation questions the validity of considering only
right-travelling waves. This case is considered because the models described in Chapter 2
are developed for right-going waves travelling on semi-infinite rod. In fact, waves are
reflected at each end of the truss and travel back and forth. In the next section, a new theory
is derived to take this phenomenon into account.

Furthermore, the analytical model is based on the continuity criterion of the layer of
dynamic absorbers. For flexural waves, this criterion is no longer valid above 1200 Hz. So
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at high frequencies, other mechanism of attenuation may be involved. A description of the
mechanisms involved is proposed in Section 5.5.

5.3 Analytical Model for a Finite Rod with a Dynamic Absorber Layer

In this section, a new analytical model is introduced to describe the attenuation of
waves on a finite rod loaded with a layer of dynamic absorbers. The process is similar for
any wave type, so we consider that the wave number k can either be the flexural,
longitudinal or torsional wavenumber. The values of these wavenumbers are given in
Chapter 2.

In a semi-infinite rod with a dynamic absorber layer, the attenuation of propagating
waves is a linear function of the distance and is given by
A(x) =20 log(eKiX) = 8.69kjx , in dB per distance x (5.15)

where kj is the imaginary part of the wave number and x is the axial distance along the rod.

Now consider a finite tube.
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Figure 5.7: Finite beam with a layer of dynamic absorbers.

Suppose that a wave in the form e(ikx-imt) starts at x=0. This wave is travelling in the
+x direction and is attenuated by the layer of dynamic absorbers. At x=L, the attenuation is
the magnitude of eikL, We make the assumption that this wave is perfectly reflected and
travels back in the beam. The reflected wave is in the form elkL e-ik(x-L)-io0t, At x=0 we
also make the assumption that the left-going wave is perfectly reflected.
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The displacement of the rod, uj, is then the addition of an infinite number of right and
left travelling waves. So we have

U3 (X)swe = Ueikx + UeikL e-ik(x-L) + Ue2ikL eikx + ¢3ikL e-ik(x-L) +...
where U=U e-10t
1 (e = 9, Ue2pikL eikx + Y Ue(2q+1)iKL e-ik(x-L) (5.16)

p=o q=0

These two terms are the sums of geometric series

=U—1 i ekl ik(x-L
U3 (X) gnine Ul.cZildddkx+U1.52ikLc (x-L) 5.17)

With some manipulation we find that

=U ei.k(X-L) + e-ik(X-L)

U1 (X) e kL . okl (5.18)
The magnitude of this complex number gives the attenuation along the tube.
In dB we have
. eik(x-L) + e-ik(x-L) ]
A(K)an = - 20 log [mag el (5.19)

The attenuation versus distance is plotted at different frequencies in Fig. 5.8, 5.9, 5.10
and 5.11. The resonance frequency of the dynamic absorbers is 450 Hz and the mass ratio
is 3. The length of the bzam is 0.5 m. The attenuation obtained is compared to the
equivalent linear attenuation due to an infinite rod. Notice that the attenuation at a distance
equal to L is less in the finite case.
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Figure 5.8: Flexural attenuation for a finite beam at 500 Hz.
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Figure 5.9: Flexural attenuation for a finite beam at 1000 Hz.
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Figure 5.11: Flexural attenuation for a finite beam at 200 Hz.
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5.4 Experimental Validation of the New Analytical Model

An experiment has been conducted to validate the finite loaded rod analytical model.
The configuration of the truss is 'fully damped' (Chapter 4). We consider a rod located in
the treated area of the truss. The rod chosen is 50 cm long and crosses the treated area. A
total of six dynamic absorbers are on this rod, one every 7.3 cm. A shaker is attached to
one end of the rod. The shaker is perpendicular to the axis of the rod, so that flexural
waves are highly excited. The setup is presented on Fig 5.12 .

Figure 5.12: Photograph of the experimental test of attenuation for a finite beam.
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Seven PCB model 309A accelerometers are placed on the rod between dynamic
absorbers. They are criented in a direction normal to the main axis of the rod and are
attached with bees wax. They are numerated from one to seven as shown in Fig 5.13.

CRERLRCEL

shaker

/l//z -
-
e
é ®
e

Figure 5.13: setup and enumeration of the accelerometers for the validation test

An HP 3562A two channel dynamic analyzer is used in the same configuration as the
single resonance frequency test described in Chapter 3. The input is band limited white
noise. The transfer function between the accelerance measured at accelerometer 1 and the
six other accelerometers is plotted.

Three of these curves corresponding to the transfer functions between 2 and 1,4 and 1,
7 and 1, are presented respectively in Figs. 5.14, 5.15 and 5.16. They are compared with
the equivalent analytical predictions. The infinite rod model is plotted with dotted line, the
new analytical model is plotted with a continuous line.

Both curves agree with the experimental data, but the new analytical model is more
refined. At low frequencies, it takes inio account peaks observed on the experimental
curve, corresponding to resonance frequencies of the rod. At the end of the rod
(accelerometer 7) the behavior is better described. The infinite model, which does not take
into account waves coming back, overestimates the level of attenuation by 10 dB at high
frequencies. The finite model corrects this overestimatior: and fits with the experimental
curve.

In conclusion this experiment proves that:

- the new finite model better describes phenomena involved in finite rods than the
semi-infinite rod model, :

- the mechanism of attenuation due to a layer of dynamic absorbers is actually taking
place in the truss as predicted (except for the higher frequencies at which the spacing
criterion of the analytical models is violated; see section 5.5).
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Figure 5.14: Transfer function between accelerometer 2 and accelerometer 1.
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Figure 5.15: Transfer function between accelerometer 4 and accelerometer 1.
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Figure 5.16: Transfer function between accelerometer 7 and accelerometer 1.
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5.5 Behavior of a Layer of Dynamic absorbers at High Frequencies

To understand the mechanism involved at high frequencies, I make the assumption that
the wavelength of the propagating waves is no longer larger than the spacing of the
dynamic absorbers, but still larger than the width of the attached masses. Under such
conditions, the dynamic absorbers act as "blocking springs". The difference in impedance
between the loaded and unloaded part is responsible for the reflection of the waves.

In the following section, I do not intend to do more than introducing the nature of the
ensuing complexities with a few preliminary calculations for their full exposition would be
beyond the scope of this thesis.

First, the reflection coefficient due to one dynamic absorber is calculated for
longitudinal waves. The same computation can be conducted for flexural waves, although
the formulation is much more complicated. The calculation for flexural waves can be
derived from a "blocking mass" study [9], but as the physical ideas for all wave types are
well embodied by the longitudinal case, only the longitudinal case is considered. After this
first step, a process is proposed to evaluate a global transmission coefficient due to the
effect of the periodic spacing of the absorbers.

Single transmission coefficient for longitudinal waves
Consider a dynamic absorber located on an infinite rod. The velocities v; and v, on the

two sides of the mass are equal, and the resultant velocity ahead of the mass may be
considered as composed of an incoming and of a reflected part, as shown in Fig 5.17.

Figure 5.17: Dynamic absorber on an infinite rod.

Vi=Viy + V. =V3 ) (520)



However, the force acting on the two sides of the mass are different, and their
difference accelerates the mass through the resilient layer. The difference between F; and
F;, F, can be found by solving the equations of motion for the mass and the rod

R,_g—t (v3-vp) + ki (va-v) =F (5.21)
m -852-:5& + RL% (Vz-Vg) + kl_ (Vz-Vg) =0 (522)

Consider harmonic displacements of the form exp(ikx -iwt). We have

-iOJRL (v3-va) + kL (V3-V2) =F (523)

-iwszZ - iR (v2-v3) + ki (va-v3) =0 (5.24)
Eq. (5.23) gives

vy = — KL IOR, (5.25)

" io?m - ioR, + kg

and using Eq. (5.24), one finds

. ki - iwR
F = -io?m —KLd0Ry
-i0’m - iR, +kg (5.26)

Notice that for low frequencies, F = -im2mv; ; the dynamic absorber acts like a
"blocking mass". For high frequencies (large compared to the the resonance frequency of
the dynamic absorber), F= (ki - iwR)vs; for small values of the resistance, the dynamic
absorber acts like a "blocking spring".

The resultant force acting on the front of the mass can also be considered as made up of
an incident and a reflected part and these components are proportional to the corresponding
displacement components, v;, and v;.

Fy, =i0Z;vy, (5.27)
Fi. =i0Zyv;. (5.28)
where Z, is the impedance of the rod.

By substituting (5.27) and (5.28) into (5.26) one obtains
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-10)2111 (kL - i(!)RL) 1

Vis-Vi.=val +
e * -iw’m - 10R + ki Z, (5.29)
and by use of (5.8) one finds the transmission coefficient
T= —‘-’l— = 1
v -- - .
1+ 1+ .l(l)zm (lf]__ l(l)RL) 1 (5.30)
-iw’m - iRy + k. 2Z,
The reflection coefficient is given by the relation
n+R=1 (5.31)

Global reflection coefficient

The treated rods considered in the experiment possess many equally spaced dynamic
absorbers. As a reflection coefficient is introduced at each attached mass, waves travel back
and forth before reaching the end of the rod. This configuration can be compared to the
propagation of waves travelling in changing continuous media, a topic largely covered in
[10].

First consider two identical dynamic absorbers which separate a rod into three
continuous parts.

Figure 5.18: Two dynamic absorbers on an infinite rod.

The reflection coefficient between 1 and 3, Ru3, is given by

Ryy = —Raa+ Ryp e
3 1+ R23R12 e2ikd

where d is the spacing of the absorbers.

(5.32)
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In that case, the local reflection coefficients are the same so that we have

2ikd
Riz= R+ Re X

1+ i’f.z e2ikd (5.33)
By recurrence it is possible to extend the previous formuia to n parts (n-1 dynamic

absorbers), and obtain a global reflection coefficient.

The single coefficients, and therefore the global ones, are highly frequency dependent.
In the experiment described in chapter 4, the axial attenuation is considered for octave
bands only. A full theory for n-1 dynamic absorbers would be very difficult to compare.
The aim of the preliminary calculations is not to corroborate experiment but rather to
suggest a mechanism for the phenomena involved at high frequencies where a step function
located in the dynamic absorbers area subsists above 1 kHz in the experimental data.
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6 Conclusion

An experiment has been conducted to show the attenuation caused by the addition of
dynamic absorbers on a truss. Rods located in the middle of the truss have been treated so
that no wave can propagate from one end to the other without going through a loaded rod.
The steady state attenuation of acceleration as a function of axial distance is measured for
the damped and undamped truss and plotted for different octave bands. The difference
between the damped and undamped curves shows the effect of the dynamic absorbers.

The overall shape of the differential curves of attenuation versus axial distance is a step
function, with the step located in the dynamic absorbers attachment area. The step is
dramatic for frequency bands ranging from the 250 Hz octave band to the 4 kHz octave
band. For low frequencies, the attenuation due to dynamic absorbers is not significant. At
high frequencies the attenuation level is higher than expected all along the truss. The main
effect of the dynamic absorbers is to scparate the truss in two parts with two different
levels of vibration.

Assuming the equi-partition of energy between the different wave types and using the
classical theory of atienuation of waves propagating on a semi-infinite rod loaded with a
continuous layer of dynamic absorbers, one can predict the axial attenuation along the
truss. The assumption of equi-partition of energy proves to be incorrect. The equi-partition
of acceleration is a better assumption but the level of attenuation predicted is still too high.
The applicability of the semi-infinite model is questioned by these results. As a
consequence, a refinement of the model has been constructed to take into account the finite
boundary conditions of the rods used in the truss. This model has been validated by an
experiment and better estimates the attenuation at the end of each treated rod.

An explanation is proposed for the existence of the experimental step function at higher
frequencies in the treated area. For flexural waves, the assumption of continuity is no
longer valid above 1200 Hz. In such conditions, the dynamic absorber act as a "blocking
spring". The difference in impedance betweer. the loaded and unloaded part is responsible
for the reflection of waves. Meanwhile, for this range of frequencies, attenuation of
torsional and longitudinal waves are still expected to be predicted by continuous dynamic
absorbers models.

No explanation is proposed for the existence of a step function near the source of
excitation at high frequencies. .



This study proves that the use of dynamic absorbers applied in a local region is a
potential treatment for especially noisy source regions or especially sensitive mounting
areas.

The behavior of dynamic absorbers at frequencies for which the continuity assumption
is no longer valid has been studied for longitudinal waves. Future work should validate this
theory by measuring the reflection coefficient of a single loaded rod supporting longitudinal
waves. An analytical model should also be derived and validated for the reflection of
flexural waves. The calculation can be derived from the theory of blocking masses found in
91.

The knowledge of the steady state energy balance between the different kinds of waves
is essential to predict exactly the level of axial attenuation along the truss. The assumpticn
of equi-partition of energy has been proposed, but the predicted attenuation following this
assumption does not fit with experimental data. The equi-partition of acceleration is a more
realistic assumption. Future work should focus on the determination of the partitioning
between the different wave types.
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Appendix A: Matlab Codes for Calculation of Various Graphs.

Figures 2.2 and 2.3: Attenuation of flexural waves on a rod loaded with a continuous
distribution of dynamic absorbers.

clear

clf

%

%plot flexural attenuation on a rod due to a continuous distribution of abs.
%

beta=3;

wo=450*2*pi,

%

x=0:0.02:3;

%

y=1./x;

kf=sqrt{(x.*wo)./(0.004*5096));

%

nu=0.01;
kif=kf.*imag((1+beta*(nu+i.*y.*y)./(nu+i.*y.*y-i)}."(0.25));
Af1=8.686*Kif;

%

nu=0.1;
kif=kf.*imag((1+beta*(nu+i.*y.*y)./(nu+i.*y.*y-i))."(0.25));
Af2=8.686*kif;

%

nu=0.3;
kif=kf.*imag((1+beta*(nu+i.*y.*y)./(nu+i.*y.*y-i))."(0.25));
Af3=8.686*kif;

%

nu=0.5;
kif=kf.*imag((1+beta*(nu+i.*y.*y)./(nu+i.*y.*y-i))."(0.25));
Af4=8.686*kif;

%

axes(’position’,[0.2,0.2,0.56,0.56]);

plot(x,Af1,’’);

hold on;

plot(x,Af2,’-.");

plot(x,Af3,’--");

plot(x,Af4,’-');

ylabel(’dB’)

%title(’Predicted flexural Attenuation per meter, as a function frequency normalized by the oscillator
flexural resonance frequency ’)

legend(’0.01°,°0.1°,70.3°,°0.5)
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Figures 2.5 and 2.6: Attenuation of longitudinal waves on a rod loaded with a
continuous distribution of dynamic absorbers.

clear

clf

%

%plot longitudinal atteruation on a rod due to a continuous distribution of abs.
%

beta=3;

wo=450%*2*pi;

%

x=0:0.02:3;

w=X.*wo;

kl=w./5091;

%

nu=0.01;
kil=kl.*imag((1+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.*x)).*(0.5));
Al1=8.686*kil;

%

nu=0.1;
kil=kl.*imag((1+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.*x))."(0.5));
Al2=8.686*kil;

%

nu=0.3;

kil=kl. *imag((1-+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.*x)).*(0.5));
Al3=8.686%kil;

%

nu=0.5;
kil=kl.*imag((1+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.¥x))."(0.5));
Al4=8.686*kil;

%

%

axes(’position’,[0.2,0.2,0.56,0.56]);

plot(x,All,’:" x,Al2,’-" x,Al3,"--" x,Al4,’-");
%xlabel('Normalized Frequency’)

ylabel(’dB *)

%title(’Predicted longitudinal attenuation per meter, as a function frequency normalized by the oscillator
longitudinal resonance frequency *)

legend(’0.01°,’0.1°,°0.3°,’0.5")
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Figures 4.5 and 4.6: Difference of attenuation versus axial distance between the half
damped and the undamped configuration

clear
clf
% enter raw data

%ie. a2 a4 a6 a8 al0 al2

al25=[-11.98 -15.88 -15.64 -17.3 -18.29 -8.14];
a250=[-6.44 -10.14 -11.57 -12.21 -9.68 -7.56];
aS=[-.42-1.52-.1-1.65-3-2.13];

al=[4.322.052.54 2.48 1.58 1.85];

a2=[3.64 .05 .27 -2.06 -2.21 -1.4};

a4=[5.27 -1.38 -5.56 -8.28 -9.37 -11.22];

a8=[7.59 -2.65 -6.55 -11.35 -13.07 -13.56];
al6=[2.03 -3.22 -9.57 -15.08 -19.69 -25.39];

a3=[-.62 -3.42 -7.18 -12.18 -19.06 -25.28];
b125=1-10.11 -17.52 -14.83 -15.41 -16.78 -12.67 -8.73];
b250=[-5.92 -9.32 -11.13 -12.57 -12.71 -13.72 -7.37};
b5=[2.78 -2.2 -1.66 .03 -1.46 -3.66 1.62];

b1=[8.32 3.26 2.67 2.11 1.62 1.63 2.19];

b2=[6.70 7.56 3.97 2.46 -.73 1.43 -2.21};

b4=[9.37 3.39 -1.15 -5.01 -9.32 -9.47 -13.1};
b8=[13.70 7.71 -5.36 -9.04 -14.79 -15.95 -25.14];
b16=[9.41 5.28 -5.05 -12.46 -17.08 -21.96 -26.43];

b3=[1.24 -.77 -5.61 -9.57 -15.82 -22.80 -26.37];
c125=[-15.53 -15.77 -14.36 -17.62 -11.97 -10.86];

c250=[-6.64 -10.04 -10.66 -11.25 -12.64 -8.81];
c5=[-.65-1.39 .87 -1.13 -3.14 -2.38];

c1=[4.06 2.62 2.46 2.11 1.01 1.25];

c2=[4.31 1.57 42 -2.15 -2.12 -2.65];

c4=[5.94 -.95 -4.69 -7.51 -9.91 -10.94];
c8=[7.96 -1.62 -7.76 -10.13 -13.65 -13.96];
c16=[2.21 -4.17 -11.81 -15.84 -18.92 -23.87];
c3=[-.21 -3.26 -6.02 -12.01 -17.48 -24.55];
d125={-13 -12.44 -14 -21.43 -12.33];
d250=[-10.7 -12.13 -12.48 -13.38 -9.86};
d5=[.25-3.36 -4.1 -1.65 -3.75];

dl=[3 3.43 1.84 2.1 -.32];

d2=[3.79 -.26 -.78 -1.02 -3.14];

d4=[-.17 -6.34 -8.02 -8.3 -10.5];

d8=[-1.97 -9.54 -12.63 -15.14 -17.86];
d16=([-3.26 -9.78 -16.92 -20.22 -24.54];
d3=[-2.31 -4.87 -10.44 -17.08 -23.35];
e125=[-11.52 -16.03 -15.96 -19.21 -15.78 -12.58];
€250=[-9.02 -14.15 -12.71 -12.91 -17.12 -6.34];
€5=[2.04 -1.79 -2.6 -2.58 -2.18 1.1];

e1=[6.66 3.98 4.41 1.28 0.76 2.22];

€2=[5.46 3.76 4.48 .76 1.45 1.02];

e4=[3.15 -.64 -2.26 -8.32 -8.5 -11.21];
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e8=[6.72-1.98 -11.16 -19.53 -17.5 -21.04];
e16=[1.48 -4.51 -9.71 -16.685 -20.21 -27.41];
e3=[-2.74 -2.49 -5.66 -12.55 -20.01 -25.01};
£125=[-10.25 -13.75 -14.4 -21.24 -12.54);
£250=[-10.3 -16.36 -11.31 -12.73 -8.61];
f5=[-.71 -3.81 -3.54 -2.07 -2.97];

f1=[3.17 3.16 1.75 2.23 .5];

f2=[1.61 -.54 -.56 -.55 -2.75|;

f4=[-.62 -7.27 -6.83 -7.59 -11.56}

8=[-1.92 -12.91 -11.57 -15.44 -19.64];
f16=[-4.62 -11.1 -15.94 -21.46 -25.72];

f3=[-1.75 -5.41 -10.19 -14.59 -23.66];
% average three joints per section (excluding end joints b1, b13)

v1125=b125(1);
v2125=(al25(1)+c125(1)+e125(1))/3;
v3125=(b125(2)+d125(1)+f125(1))/3;
v4125::(al25(2)+c125(2)+e125(2))/3;
v5125=(b125(3)+d125(2)+f125(2))/3;
v6125=(al25(3)+c125(3)+e125(3))/3;
v7125=(b125(4)+d125(3)+f125(3))/3;
v8125=(al25(4)+c125(4)+e125(4))/3;
v9125=(b125(5)+d125(4)+f125(4))/3;
v10125=(al25(5)+c125(5)+e125(5))/3;
v11125=(b125(6)+d125(5)+f125(5))/3;
v12125=(al25(6)+c125(6)+€125(6))/3;
v13125=b125(7);

v1250=b250(1);
v2250=(a250(1)+c250(1)+e250(1))/3;
v3250=(b250(2)+d250(1)+£250(1))/3;
v4250=(a250(2)+c250(2)+e250(2))/3;
v5250=(b250(3)+d250(2)+f250(2))/3;
v6250=(a250(3)+c250(3)+e250(3))/3;
v7250=(b250(4)+d250(3)+f250(3))/3
v8250=(a250(4)+c250(4)+e250(4))/3;
v9250=(b250(5)+d250(4)+250(4))/3;
v10250=(a250(5)+c250(5)+e250{5))/3;
v11250:=2(b250(6)+d250(5)+£250(5))/3;
v12250=(a250(6)+c250(6)+e250(6))/3;
v13250=b250(7);

v15=b5(1);

v25=(aS(1)+c5(1)+e5(1))/3;
v35=(b5(2)+d5(1)+£5(1))/3;
v45=(a5(2)+c5(2)+e5(2))/3;
v55=(b5(3)+d5(2)+f5(2))/3;
v65=(a5(3)+c5(3)+e5(3))/3;
v75=(b5(4)+d5(3)+£5(3))/3;
v85=(a5(4)+c5(4)+e5(4))/3;
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v95=(bS(5)+d5(4)+f5(4))/3;
v105=(aS(5)+cS5({5)+e5(5))/3;
v115=(b5(6)+dS(5)}+£5(5))/3;
v125=(a5(6)+c5(6)+e5(6))/3;
v135=b5(7);

v11=bl(1);
v21=(al(1)+c1(1)+el(1))/3;
v31=(b1(2)+d1(1)+f1(1))/3;
vdl=(al(2)+c1(2)+e1(2))/3;
v51=(b1(3)+d1(2)+1(2))/3;
v61=(al(3)+c1(3)+e1(3))/3
v71=(b1(4)+d1(3)+1(3))/3;
v81=(al(4)+c1(4)+e1(4))/3;
v91=(b1(5)+d1(4)+f1(4))/3;
v101=(al(5)+c1(5)+e1(5))/3;
v111=(b1(6)+d1(5)+f1(5))/3;
v121=(al(6)+c1(6)+e1(6))/3;
131=b1(7);

v12=b2(1);
v22=(a2(1)+c2(1)+e2(1))/3;
v32=(b2(2)+d2(1)+f2(1))/3;
v42=(a2(2)+c2(2)+e2(2))/3;
v52=(b2(3)+d2(2)+2(2))/3;
v62=(a2(3)+c2(3)+e2(3))/3;
v72=(b2(4)+d2(3)+£2(3))/3;
v82=(a2(4)+c2(4)+c2(4))/3;
v92=(b2(5)+d2(4)+£2(4))/3;
v102=(a2(5)+c2(5)+e2(5))/3;
v112=(b2(6)+d2(5)+f2(5))/3;
v122=(a2(6)+c2(6)+€2(6))/3;
v132=b2(7);

v14=b4(1);
v24=(ad(1)+c4(1)+ed(1))/3;
v34=(b4(2)+d4(1)+f4(1))/3;
v44=(ad(2)+c4(2)+e4(2))/3;
v54=(b4(3)+d4(2)+f4(2))/3;
v64=(ad(3)+c4(3)+e4(3))/3;
v74=(b4(4)+d4(3)+f4(3))/3;
v84=(ad(4)+ca(4)+ed(4))/3;
v94=(b4(5)+d4(4)+f4(4))/3;
v104=(ad(5)+c4(5)+e4(5))/3;
v114=(b4(6)+d4(5)+f4(5))/3;
v124=(a4(6)+c4(6)+¢4(6))/3;
v134=b4(7);

v18=b8(1);
v28=(a8(1)+c8(1)+e8(1))/3;
v38=(b8(2)+d8(1)+f8(1))/3;
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v48=(a8(2)+c8(2)+c8(2))/3;
v58=(b8(3)+d8(2)+{8(2))/3;
v68=(a8(3)+c8(3)+e8(3))/3;
v78=(b8(4)+d8(3)+f8(3))/3;
v88=(a8(4)+c8(4)+e8(4))/3;
v98=(b8(5)+d8(4)+{8(4))/3;
v108=(a8(5)+c8(5)+e8(5))/3;
v118=(b8(6)+d8(5)+f8(5))/3;
v128=(a8(6)+c8(6)+e8(6))/3;
v138=b8(7);

v116=b16(1);
v216=(al6(1)+c16(1)+e16(1))/3;
v316=(b16(2)+d16(1)+f16(1))/3;
v416=(al6(2)+c16(2)+e16(2))/3;
v516=(b16(3)+d16(2)+f16(2))/3;
v616=(al6(3)+c16(3)+e16(3))/3;
v716=(b16(4)+d16(3)+f16(3))/3;
v816=(al6(4)+c16(4)+e16(4))/3;
v916=(b16(5)+d16(4)+f16(4))/3;
v1016=(al€(5)4c16(5)+e16(5))/3;
v1116=(b16{6)+d16(5)+f16(5))/3;
v1216=(a16(6)+c16(6)+e16(6))/3;
v1316=b16(7);

v13=b3(1);
v23=(a3(1)+c3(1)+e3(1))/3
v33=(b3(2)+d3(1)+£3(1))/3;
v43=(a3(2)+c3(2)+e3(2))/3;
v53=(b3(3)+d3(2)+f3(2))/3;
v63=(a3(3)+c3(3)+e3(3))/3;
v73=(b3(4)+d3(3)+f3(3))/3;
v83=(a3(4)+c3(4)+e3(4))/3;
v93=(b3(5)+d3(4)+£3(4))/3;
v103=(a3(5)+c3(5)+e3(5))/3;
v113=(b3(6)+d3(5)+f3(5))/3;
v123=(a3(6)+c3(6)+e3(6))/3;
v133=b3(7);

% assemble one attenuation matrix

unt=[v1125 v2125 v3125 v4125 v5125 v6125 v7125 v8125 v9125 vi0125 v11125 v12125 v13125
v1250 v2250 v3250 v4250 v5250 v6250 v7250 v8250 v9250 v10250 v11250 v12250 v13250

vi5 v25 v35 v45 v55 v65 v75 v85 v95 v105 v115 v125 v135

vll v21 v31 v41 v51 v61 v71 v81 v91 v101 vi11 v121 v131

v12 v22 v32 v42 v52 v62 v72 v82 v92 vi02 vi12 v122 v132

v14 v24 v34 v44 v54 v64 v74 v84 v94 vi04 v114 v124 v134

v18 v28 v38 v48 v58 v68 v78 v88 v98 v108 v118 vi28 v138]

%v116 v216 v316 v416 v516 v616 v716 v816 vS16 v1016 v1116 v1216 v1316

%0v13 v23 v33 v43 v53 v63 v73 v83 v93 v103 v113 v123 v133];
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%
%treated results half damped
%

al25=[-12.8 -12.9-11.9-17.1 -13.4 -9.2];
a250=[-6.1 -9-10-14.4 -14 -9.9};
a5=[1.4-09-0.1-3.8-5.8 -8.1};
al=[3.403315-4.7-6.7];
a2=[4.723-19-41-8.6-68];

a4=[5.1 -0.5-6.3-7.8-13.4-12];
a8=[7.2-2.7-8.8-104 -16.8 -15.5];
alé=();

a3=[};

b125=[-8.4 -9.4 -12.7 -10.8 -16.7 -8.1 -6.6];
b250=[-5.1 -7.5-11.7 -10.5-13.3-15.9 -6.9];
b5=[6.5-4.80.7 -2.7 -4.7-7.7 -1.2];
bl1=[11.23.73.5-0.3-1.2-0.7-0.7};
b2=[14.96.229-0.5-1.7-2.4-4.8],

b4={16 2.8 -1.4 -6.3 -8.5 -10 -13.5];
b8=[18.3 7.6 -7.6 -10.4 -16.1 -19.2 -23.5];
bl6=[];

b3=[];

cl125=[-7.2 -13 -12.6 -14.4 -14.5 -17.5];
¢c250=[-3.8-9-9.4 -13.2-14.7 -8.3];
c5=[2.3-0.7-1.4-3.6 -7.3 -6.6];
cl=[2.71.22.5-09-4.8-5.5];
c2=[5.32.5-0.7-7.1 -6.1 -8.8];
c4=[5.80.7-4-10.5 -9.4 -14 4];
c8=[7.2-34-7.5-13.1 -14.3-16.8);
clé=(];

c3=[};

d125=[-15.1 -11.9 -10.7 -16.3 -14.6};
d250=[-9.4 -11 -13.8 -15.3-11.9}];
d5=[2.4 -0.8 -7.6 -6.3 -8.6];
di1=[24.7-2.1-27-261
d2=[3.32.6-5.2-6-7.2];
d4=[1.1-4.5-93-11.6 -12.7];
d8=[-1.9-9-12.7-15.8 -18.4];
d16=[];

d3=[];

e125=[-9.6-11.2-11.6 -14.4 -13 -11.2];
€250=(-6.7 -10.5 -11.2 -14.4 -14.7 -7.6};
e5=[4.1 -0.6 -5.6 -6 -5 -6.6];
el=[7.553.6-0.5-2.2 -2.5];
€2=[7.13.529-2.2-5.8 -4.4];
e4=[3.8-1.3-3.6-9.7 -13.1 -13.6];
e8=[6.9-5.1-12.6-17.9 -22 -21.8]
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elé=[};
e3=[}

f125=[-10.5-10-10.6 -15.5 -13.8];
£250=[-10.2 -12.5 -13.6 -15.7 -13.6];
f5=(1.8 -1.7 -5.4 -7.4 -9.3];
f1=[3.33-09-4.6-35];

f2=[2.8 -1 -4.1 -7.7 -7.2];

f4=[0.5 -6.7 -9.3 -13.9 -13.3];
f8=[-2.4 -12-13.8 -16.4 -19.5];
f16=(];

3=(};

% average three joints per section (excluding end joints b1, b13)
Yoalready written above

% assemble nne attenuation matrix

tri=[v1125 v2125 v3125 v4125 v5125 v6125 v7125 v8125 v9125 v10125 v11125 v12125 v13125
v1250 v2250 v3250 v4250 v5250 v6250 v7250 v8250 v9250 v10250 v11250 v12250 v13250

v15 v25 v35 v45 v55 v65 v75 v85 v95 vi05 v115 vi25 vi3s

v11 v21 v31 v41 v51 v61 v71 v81 v91 v101 v111 vi21 v131

v12 v22 v32 v42 v52 v62 v72 v82 v92 v102 v112 v122 v132

v14 v24 v34 v44 v54 v64 v74 v84 v94 v104 v114 v124 v134

v18 v28 v38 v48 v58 v68 v78 v88 v98 v108 v118 v128 v138];

%Difference program

%

%

% set up the dimensions and frequencies

% f -frequency octave band

%N  -section number

o x -axial distance along truss (global)
% z -strut length

=[125 250 500 1000 2000 4000 $000 16000 32000]’;
N=[12345678910111213];

x=(N-1)*0.3843;
dif=trl-unt

% normalize by the first section
b=zeros(7,13);
for j=1:13,

b(1:7,j)=dif(1:7,1);
end
am=-1*(dif-b);

% plot of experimental differential attenuation curves, 2 graphs

firstone=0;

if firstone==1,

plot(x,am(1,1:13),’-’ x,am(2,1:13),’--* ,x,am(3,1:13),’-." x,am(4,1:13),’:") axis([0 5 -5 40])
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%gtext(’ Average of all Joints at Each Section’)
% LEGEND WORKS FOR MATLAB 4.1 ONLY (ATHENA)
legend(’125 Hz octave’,’250 Hz octave’,’S00 Hz octave’,’1 kHz octave’)
%gtext(’__. 125 Hz octave’)
%ogtext(’-- 250 kHz octave’)
Jogtext(’-. 500 Hz octave’)
%ogtext(’.. 1 kHz octave’)
end

secdone=1;

if secdone==1,

plot(x,am(5,1:13),’-’,x,am(6,1:13),”--" ,x,am(7,1:13),’-.”)
axis({0 5 0 40))

% gtext(’ Average of all Joints at Each Section’)
legend(*2 kHz octave’,’4 kHz octave’,’8 kHz octave’)
% gtext(’__ 2 kHz octave’)

% gtext(’-- 4 kHz octave’)

% gtext(’-. 8 kHz octave’)

% gtext(’.. 16 kHz octave’

% gtext(’* 32 kHz octave’)

end
xlabel(’ Axial Distance Along Truss (m)’)

ylabel(’ Attenuation (dB) *)
%title(’ Attenuation of Acceleration vs. Distance From Force Excitation’)
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Figures 4.7 and 4.8: Difference of attenuation versus axial distance between the fully

damped and the undamped configuration
(same program, I only mention the experimental values)

al25=[-6.3 -14.6-11.9-16.9 -10.4 -8.8];
a250=[-5.4 -9.2 -10.4 -16.8 -13.7 -9.7];
a5=[3.11.1-0.2-7.1 -4.8-6.7];
al=[49222.1-29-3.7-4.7];

a2={5.6 0.3 -2.7-10.2 -8.6 -9.8];
44=[6-1.4 -7.3 -14.3 -14.7 -15.9];
a8=[8.2-3.5-10.3 -14.2 -14.3 -15.7];

b125=[-3.5-14.2-14.8 -15.8 -14.8 -9.3 -8.5];
b250=([-3.2-6.7-11.9 -12.6 -12.5 -15.7 -8.4];
b5=[5.10.80.9-3.1-3.6-9.6 -1.9];
b1=[10.64.22.9-2.6-1.5-4.0-2.1];
b2=[147.33.5-2.9-5.1-59 -11.1];
b4=[1534.52.1-8.1-8.7-11.8 -18];
b8=[17.4 8.8-3.9-13.1 -11.8-16.3 -25.7];

c125=[-12.1 -12.1 -11.7 -12.9 -14.2 -8];
c250=[-4.2 -8.9-9.2 -12-14.8 -9.2];
c5=[1.50.21.4-53-6.9-6.2];
c1=[4.83.52.3-0.7-44 -4.7};

c2=[6.4 1.9 -0.6 -10.1 -9.9 -10.6];
c4=[6.71-5.1-8.9-12.9 -14.3];
c8=[7.3-2.5-8.9-9.8-14 -16.8];

d125=[-10.4 -10.7 -7.2 -13.3 -11.6];
d250=[-5.5-8.9-11.4 -18.1 -11.5];
d5=[2.90-8.9-5.3 -8.8];

d1=[2.6 3.7 4.5 -5.2 -7.0];
d2=[1.7-1.4-8.4 -9.6 -10.7];
d4=[0-5.7-11.3 -13.6 -15.8];
d8=[-2.2-10.8 -15.3 -16.4 -18.6];

e125=[-9.6 -12.7-14.7 -12.9 -15.6 -10.8];
€250=[-4.9 -12.5 -13.6 -15.5 -20.2 -7.6};
€5={530.5-5-7.4-5.4 -3.8];

¢1=[8.8 5.73.5-3.7-5.7-4.2];
e2=[8.13.8 2.6 -6.8 -8.7 -10];

e4=[7.8 -0.3-3.8-13.2-13.9 -16.4];
e8=[8.8-29-11.2-19.5-17.6 -21.8};

f125=[-8.6 -14.2 -15.4 -14.1 -13.7];
£250=[-4.6 -16.7 -14.6 -13.8 -12.4];
f5=[2.5 -2.3 -8.5 -6 -8.6};

f1=[4.9 2.7 -4.7 -5.9 -7.0];
f2=[3.5-0.5-8.3-11.4-12];
f4=[0.8 -4.1 -12.9 -14.2 -154];
f8=[-1.3 -11.7-17 -19.9 -21};
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Figures 4.9: Difference of attenuation versus axial distance between the half damped and
the undamped configuration

(same program, I only mention the e, *rimental values)

a3=[3.30.6-7.9-8.6-5.7-7.1];
a5=[0.6 -8.31.5-7.9-7.1 -15};
a6=[7.4-3.93.2-09-6.3-8.9};
a7=[1.1154.5-04 -3.7-6.3];

b3=[{3.40.1 -2.3-7-6.7-11.3 0.5];
b5=([5.8-4.51.4-2.8-3.7-7.2-34];
b6=[11.1-24.718-1.7-5.2-2.4];
b7=[13.21.82.73.3-2.1-5-3.2];

c3=[1.32.2-1.9-8.5-6.7 -5.9];
c5=[-4.1-3.35.8-5.4-10.2 -10.5];
¢6=[2.91.86.40.7-5.2-6.9];
¢7=[01.7 5.8 2-6.5 -6.6];

d3=[-0.7-2.3-8.5-6.1-12.2 ];
d5=[3.41.2-8.9-10.1 -12];
d6=[-7.4-1.3-6.8 -6.3 1.6];
d7=[6974-4-34-36];

€3=[0.9-2.3-6.6 -6.7 -7.2 -3.8];
e5=[8.12-8-15.6 -2.1 -3.6];
€6=[9.4 0.7 -10.6 -1.9 -2.5 -0.9];
e7=[8.67.4-1.2-2.7-6.8 -4.9];
el=[8.85.73.5-3.7-5.7-4.2];

£3=[-0.6 -5.2 -7 -4.3 -13.5);
£5=[1.2 0.6 -6.2 -8.4 -7.1);
f6=[6.5 -2.7 -6.3 -10.1 -0.13;
f7=[5.8 5.2 -4.2 -5.2 -4.5);
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Fig 5.3: Attenuation versus frequency of flexural, longitudinal and torsional waves after
65 cm of treated rod and corresponding averaged values on octave bands

clear

cif

%oplot flexural attenuation on a rod due to a continuous distribution of abs.
%

nu=0.19;

beta=2.8;

£=50:10:3000;

w=2.*pi.*f;

y=450./f;

kf=sqrt(w./(0.004*509€))

kif=kf.*imag((1+beta*(nu+i.*y. *y)./(nu+i.*y.*y-1))."(0.25));
Af=8.686*kif*0.65;

%

%plot longitudinal attenuation

%

nu=0.34;

x=f./450;

ki=w./5091;
kil=kl.*imag((1+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.*x))."(0.5));
Al=8.69*kil*0.65;

%

%plot rotational attenuation

%

nu=0.34;

x=£./330;

kr=w./3000;
kil=kr.*imag((1+beta.*(1-i.*nu.*x)./(1-i.*nu.*x-x.*x))."(0.5));
Ar=8.69*kil*0.65;

%

%legend(’flexural waves',’longitudinal waves’,’torsional waves’);

% average over octave bands

O = [125 250 500 1000 2000];
fl = f0./sqrt(2);
fu = sqrt(2)*f0;
nfl = round((fi-50)/10.0);
nfu = round((fu-506)/10.0);
for ii = 1:5,
avgf(ii) = sum(Af(},nfl(ii):nfu(ii)))/(nfu(ii)-nfl(ii)+1);
avgl(ii) = sum(Al(1,nfl(ii):nfu(ii)))/(nfu(ii)-nfl(ii)+1);
avgr(ii) = sum(Ar(1,nfi(ii):nfu(ii)))/(nfu(ii)-nfl(ii)+1);
end
%
axes(’position’,[0.1,0.1,0.65,0.65]);
plot(f,Af,’- f,Al,’--" f,Ar,"." f0,avgf,"*’ f0,avgl,’x’f0,avgr,’+');
legend(’flexural waves’, longitudinal waves’, torsional waves’);
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Figures 5.8, 5.9, 5.10 and 5.11: Flexural attenuation for a finite beam at 500 Hz, 1000
Hz, 2000 Hz and 200 Hz

nu=0.19;
beta=2.9;
L=0.5;

=500;

% £ can also be equal to 1000, 2000 or 200
w=2.*pi.*f;

y=450./f;

kf=sqrt(w./(0.004*5096))
k=kf.*(1+beta*(nu+i.*y.*y)./(nu+i.*y.*y-i))."(0.25);
x=0:0.001:L;

A=-10*log(exp(-imag(k).*x));
g=(1./(exp(-i.*k.*L)-exp(i.*k.*L))).*(exp(i.*k.*(x-L))+exp(i.*k.*L).*exp(-i.*k.*x)):
magg=(real(g)."2+imag(g)."2)."(0.5);
magG=-10.*log(magg);
axes(’position’,[0.2,0.2,0.56,0.56});
plot(x,magG,’-’' .x,A,’--");

legend(’finite beam’,’semi-infinite beam’)

ylabel(’ Attenuation (dB) °)

Figures 5.14, 5.15 and 5.16: Analytical predictions for the transfer functions

clear

clf

nu=0.19;

beta=3;

L=0.5;

f=100:10:2100;

w=2_*pi.*f;

y=500./f;

kf=sqrt(w./(0.004*5096))
k=kf.*(14+beta*(nu-+i.*y.*y)./(nu+i.*y.*y-i))."(0.25);
%

%calculation at X=0.03

%

x=0.03;

A0=10*log(exp(-imag(k).*x));
g0=(1./(exp(-i.*k.*L)-exp(i.*k.*L))).*(exp(i.*k.*(x-L))+exp(i.*k.*L).*exp(-i.*k.*x));
magg0=(real(g0)."2+imag(g0)."2)."(0.5);
magGO0=10.*log(magg0);

%

oCalculation at X=0.3

% the calculation is also done at X=0.1 and X=0.5
%

x=0.3;

AL=10*log(exp{-imag(k).*x));
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gL=(1./(exp(-i.*k.*L)-exp(i.*k.*L))).*(exp(i.*k.*(x-L))+exp(i.*k.*L).*exp(-i. *k.*x));
maggl=(real(gL)."2+imag(gL)."2)."(0.5);

magGL=10.*log(maggL);

A=AL-AO0;

magG=magGL-magG0;

axes(’position’,[0,0.1,1.0287,0.42]);

plot(f,magG,’-’ .f,A,’--");

axis([100 2100 -60 20]);

% legend(’finite beam’,’semi-infinite beam’)
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