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ABSTRACT
We study broadcast capacity and minimum delay scaling laws for

highly mobile wireless networks, in which each node has to dis-

seminate or broadcast packets to all other nodes in the network. In

particular, we consider a cell partitioned network under the simpli-

�ed independent and identically distributed (IID) mobility model,

in which each node chooses a new cell at random every time slot.

We derive scaling laws for broadcast capacity and minimum delay

as a function of the cell size. We propose a simple �rst-come-�rst-

serve (FCFS) �ooding scheme that nearly achieves both capacity

and minimum delay scaling. Our results show that high mobility

does not improve broadcast capacity, and that both capacity and

delay improve with increasing cell sizes. In contrast to what has

been speculated in the literature we show that there is (nearly) no

tradeo� between capacity and delay. Our analysis makes use of

the theory of Markov Evolving Graphs (MEGs) and develops two

new bounds on �ooding time in MEGs by relaxing the previously

required expander property assumption.
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1 INTRODUCTION
We study all-to-all broadcast capacity and delay scaling behavior in

mobile wireless networks. Interest in mobile wireless networks has

increased in recent years due to the emergence of autonomous aerial

vehicle (UAV) networks. Dense networks of small UAVs are being

used in a wide range of applications including product delivery,

disaster and environmental monitoring, surveillance, and more [9,

14, 15, 20, 26]. Our work is motivated by the need to disseminate
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Figure 1: Network partitioned intoC = 1

aN cells. Each cell of
area aN .

timely control information in such networks [9, 11, 20, 23]. An

important communication operation that needs to be performed in

exchanging safety critical information is that of all-to-all broadcast,

where each vehicle or node broadcasts its current state or location

information to all other vehicles in its vicinity.

We consider a cell partitioned network with N nodes, shown in

Figure 1, in which a unit square is partitioned into C cells. Due to

interference, only a single packet transmission can take place in

the cell at a given time, and all other nodes in the cell can correctly

receive the packet. Di�erent cells can have simultaneous packet

transmissions. �is simple model captures the essential features

of interference and helps obtain key insights into its impact on

throughput and delay [7, 18, 27]. We consider IID mobility, where,

at the end of every slot, each node chooses a new cell uniformly

at random. �is mobility model was used in [18, 28] to capture

the impact of high mobility, and the resultant intermi�ent net-

work connectivity, on throughput and delay. Moreover, this model

serves as a good model for UAV networks where rapid mobility and

intermi�ent connectivity are common [9, 11, 20].

We study all-to-all broadcast capacity and delay scaling as a

function of node density. Here, capacity is de�ned as the maximum

rate at which each node can transmit packets to all other nodes

in the system and delay as the average time taken by a packet to

reach every node in the system. We say that a network is dense if

the number of vehicles or nodes per cell is increasing with N , and

sparse otherwise. �us, if the cell size grows as cN−α , for some

c > 0, then the network is dense for 0 < α < 1 and sparse for α ≥ 1.

We show that as the network gets more dense the all-to-all

broadcast capacity increases to reach a maximum scaling of 1/N .
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Table 1: Capacity and Average Delay

Capacity
Upper bound FCFS �ooding

(�eorem 2.1) (Eqn. (55))

Sparse: α ≥ 1
1

N α
1

N α
1

logN
Dense: 0 < α < 1

1

N
1

N
1

log logN
Average Delay

Lower bound FCFS �ooding

(�eorem 2.2) (Eqns. (54) and (53))

Sparse: α ≥ 1 N α−1
logN N α−1

logN
Dense: 0 < α < 1 1 log logN

Interestingly, delay decreases as the network gets denser. In fact,

both, capacity and delay a�ain their best scaling in N when the

cell size is just smaller than order 1/N , i.e., when α = 1 − ϵ for a

small positive ϵ . We further note that the best per-node capacity

scaling of 1/N is the same as that can be achieved in a static wireless

network, thus, mobility does not improve network capacity. �is is

in contrast to the unicast case where mobility improves capacity [8].

Our scaling results are summarized in Table 1.

We propose a simple �rst-come-�rst-serve (FCFS) �ooding scheme

that achieves capacity scaling, up to a logN factor from the optimal

when the network is sparse and up to a log logN factor from the

optimal when the network is dense. �e FCFS �ooding scheme also

achieves the minimum delay scaling when the network is sparse,

and up to a factor of log logN from minimum delay when the net-

work is dense. �us, nearly optimal throughput and delay scaling

is achieved simultaneously.

�e IID mobility model was analyzed for unicast and multicast

operations in [18] and [28], respectively, using standard proba-

bilistic arguments. In contrast, we use the abstraction of Markov

evolving graphs (MEG), and �ooding time bounds for MEGs [4].

An MEG is a discrete time Markov chain with state space being a

collection of graphs with N nodes. An MEG of the IID mobility

model can be constructed by drawing an edge between two nodes

in the same cell and viewing the network as a graph at each time

step. Flooding time, is then, the time it takes for a single packet to

reach all nodes from a single source node.

A �ooding time bound for MEGs was derived in [4]. It relied on

an expander property which states that whenever m nodes have

the packet then in the next slot at least km new nodes will receive

the packet with high probability, for some k > 0. However, this

strong requirement does not always hold. For example, when the

IID mobility model is sparse, this expander property cannot be

guaranteed. We derive two new bounds on �ooding time in MEGs

by relaxing the strong expander property requirements imposed

in [4]. �ese new bounds on MEG are of independent theoretical

interest.

1.1 Previous Work
In [23], we considered the impact of wireless interference con-

straints on the ability to exchange timely control information in

UAV networks. We showed that, in guaranteeing location aware-

ness of other vehicles in the networks, wireless interference con-

straints can limit mobility of aerial vehicles in such networks. �is

result motivates us to study the delay and capacity scalings of

all-to-all broadcast in mobile wireless networks.

Broadcast has been studied before in the contexts of dissemi-

nating data packets in wireless ad-hoc networks [16, 25], sensor

information in sensor networks, and in exchanging intermediate

variables in distributed computing [3]. Scaling laws for capacity and

delay in wireless networks have received signi�cant a�ention in the

literature. Capacity scaling for unicast tra�c, in which each node

sends packets to only one other destination node, was analyzed

in [10, 13]. It was shown that the capacity scales as 1/
√
N logN

with increasing N . Minimum delay scaling for the static unicast

network was analyzed in [7], where it was also shown that it is not

possible to simultaneously achieve minimum delay and capacity.

�is implied a tradeo� between capacity and delay. In [8], it was

shown that if the nodes were mobile, then a constant per node ca-

pacity that does not diminish with N can be achieved. �e seminal

works of [10] and [8] led to the analysis of capacity and delay scal-

ing under various mobility models including IID [18], Markov [7],

Brownian motion [17], and Random Waypoint [22]. Capacity-delay

tradeo�s were observed in each of these se�ings.

Broadcast has been studied in static wireless networks in [12, 16,

21, 25]. It was shown that the per-node broadcast capacity scales

as 1/N in static wireless networks [25]. However, to the best of our

knowledge, optimal delay scalings for static broadcast has not been

analyzed. In [28], the authors conjectured a capacity-delay tradeo�

for multicast, and by implication for broadcast as a special case,

under IID mobility. However, in this paper, we show that there is

nearly no capacity-delay tradeo� for broadcast. In particular, we

propose a scheme that (nearly) achieves both capacity and minimum

delay, which is up to a log logN factor when the network is dense

and up a logN factor when the network is sparse. Moreover, we

show that the capacity scaling does not improve with mobility,

unlike in the unicast case [8].

Although, throughput and delay scalings have been investigated

under various communication operations and mobility models for

the past 15 years, the same problem under broadcast has not been

thoroughly analyzed even for the simplest IID mobility model.

In [28], delay bounds were obtained for multicast, however, these

bounds are very weak when applied to the all-to-all broadcast oper-

ation. By using and extending the theory of MEGs developed in [4]

we are able to obtain tight bounds on delay.

Flooding time bounds on MEG have been used for various net-

work models in [4–6]. To the best of our knowledge, this is the

�rst time that these techniques are being used in the mobility set-

ting. Moreover, the new bounds derived in Section 3 could be of

independent interests and can also be applied to models considered

in [4–6].

1.2 Organization
�e paper is organized as follows. In Section 2 we derive bounds

on capacity and minimum delay. In Section 3, we summarize the

�ooding time upper bound result of [4], and derive two new upper

bounds on �ooding time for MEGs. In Section 4, we apply these
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results to our se�ing and, in Section 5, we use it to analyse the FCFS

�ooding scheme. We propose a single-hop scheme in Section 6 that

achieves capacity for a sparse network. We conclude in Section 7.

2 FUNDAMENTAL LIMITS: CAPACITY AND
MINIMUM DELAY

Consider the network of Figure 1 with N nodes that are uniformly

distributed over a unit square. �e size of each cell is aN =
1

C =

cN−α , for some α > 0 and c > 0.
1

We consider a slo�ed time

system. �e duration of each slot is su�cient to complete the

transmission of a single packet. We use the IID mobility model

of [18] in which, at the end of every slot, each node chooses a new

cell/location uniformly at random and independent of other node’s

locations.

In this paper we make extensive use of order notation, which

we brie�y summarize for convenience. For in�nite sequences {aN }
and {bN }, aN = O (bN ) implies limN→∞

aN
bN
≤ c1 for some c1 > 0

and aN = Θ (bN ) implies aN = O (bN ) and bN = O (aN ). We write

aN ≤N bN if there exists a N0 ≥ 1 such that for all N ≥ N0 we

have aN ≤ bN . Positive constants are denoted by c1, c2 . . ..

2.1 Capacity
Each node receives an in�ow of packets at rate λ, and each of these

packets have to be broadcast to all other nodes in the network. A

communication scheme is said to achieve a rate of λ if at this arrival

rate the average number of backlogged packets in the network

does not increase to in�nity. �e capacity of the network is the

maximum achievable rate. We start with a simple upper-bound on

the capacity.

Theorem 2.1. �e achievable rate λ is bounded by

λ ≤ 1

2(N − 1)

(
1 − (1 − aN )N−1

)
(1)

=


Θ

(
1

N α

)
if α ≥ 1 (sparse)

Θ
(

1

N

)
if 0 < α < 1 (dense)

. (2)

Proof: For an intuitive argument, consider a scheme that achieves

a rate of λ. �en the average number of packet receptions per slot

must be at least N (N − 1)λ under this scheme, because there are

(N − 1) destinations for each of the N sources. However, the total

number of receptions per slot cannot be more than the average

number of nodes in each cell, across all cells. �us,

N (N − 1)λ ≤ average no. receptions in each slot (3)

≈ C
N∑
k=2

kP [k nodes in a cell] (4)

=
1

aN

N∑
k=2

k

(
N

k

)
akN (1 − aN )

N−k
(5)

= N
{
1 − (1 − aN )N−1

}
. (6)

In (4), the summation starts from k = 2 as there must be at least

two nodes in a cell to have a transmission. �e above intuition

1
We restrict aN to be of the form cN −α only for clarity of presentation. �e results,

and their proofs, can be easily generalized to any other aN .

turns out to be true. Scaling law of the upper bound is then ob-

tained by substituting aN = cN
−α

. �e complete proof is given in

Appendix A. �
�is capacity upper bound is in fact achievable. �e single-hop

scheme in Section 6 achieves capacity when the network is sparse

and the FCFS �ooding scheme in Section 5 achieves capacity, up to a

log logN factor, when the network is dense. Typically, one expects

to have larger broadcast capacity with increasing cell sizes, i.e., with

decreasing α . A larger cell size implies more nodes in a given cell,

and hence, more receptions per slot can occur by exploiting the

broadcast nature of the wireless medium. �eorem 2.1, however,

shows that the capacity remains constant at Θ
(

1

N

)
for 0 < α < 1.

�is is because, larger cell sizes also result in fewer transmission

opportunities in every slot due to interference. As a result capacity

remains constant when 0 < α < 1.

2.2 Minimum Delay
Another important performance measure is the delay. �e delay of

a packet is de�ned as the time from the arrival of the packet to the

time the packet reaches all its N − 1 destination nodes. �e delay

of a communication scheme is the average delay, averaged over all

packets in the network. To obtain a lower-bound on the network’s

delay performance we de�ne a single packet �ooding scheme that

transmits a single packet to all other nodes in the network. As we

show later, this lower-bound provides a fundamental limit on delay.

Single packet �ooding scheme: At the beginning of the �rst slot,

only a single node has the packet.

(1) In every cell, randomly select one packet carrying node to

be the transmi�er in that slot. If no such node exists in a

cell no transmission occurs in that particular cell.

(2) In each cell, the transmi�er node (if present) transmits the

packet to all other nodes in the cell.

(3) If all nodes have the packet then terminate the process,

otherwise repeat from step 1.

�e single packet �ooding scheme is clearly the fastest way to

disseminate a packet to all nodes in the network. Hence, a lower-

bounded is given by the time it takes for a single packet to reach

all other nodes under the single packet �ooding scheme.

�e analysis of the single packet �ooding scheme relies on the

following observation: if h nodes have the packet at a given time

slot then the number of nodes that will receive the packet in the next

slot, N (h), is a binomial random variable Bin(N −h, 1− (1 − aN )h ).
To see this, let H = {1, 2, . . .h} and H = {h + 1,h + 2, . . .N }

denote the set of nodes that have and do not have the packet at a

given time slot, respectively. For the node i that has not received

the packet, i.e. i ∈ H , letXi be a binary valued random variable that

is 1 if node i receives the packet in the next slot and 0 otherwise.

�e probability that the node i does not receive the packet in the

next slot is the probability that no node of H lies in the same cell

as node i . �is happens with probability (1 − aN )h as locations of

node’s are independent and identically distributed (i.i.d.). Hence,

P [Xi = 0] = (1 − aN )h . Also, the Xi s are independent across i ∈ H
as, again, the node locations are i.i.d. and uniform. Since N (h) =∑
i ∈H Xi the result follows. We use this to obtain a lower-bound

on delay.
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Theorem 2.2. Any achievable average delay D is lower-bounded
by

D ≥
{

Θ
(
N α−1

logN
)

if α ≥ 1 (sparse)
Θ (1) if 0 < α < 1 (dense) . (7)

Proof: As a lower-bound we compute the time it takes for the

single packet �ooding scheme to terminate. Let Kt denote the

number of nodes that have the packet a�er t slots; where K1 = 1.

Let TN be the �ooding time, i.e., the �rst time when Kt = N . Let

Ai , for 1 ≤ i ≤ Kt , be the number of new nodes to which node i
transmits the packet in slot t + 1. We then have

Kt+1 = Kt +

Kt∑
i=1

Ai . (8)

Since E [Ai |Kt ] ≤ (N − 1)aN , we have

E [Kt+1 |Kt ] = E
[
Kt +

Kt∑
i=1

Ai |Kt

]
, (9)

≤ Kt (1 + (N − 1)aN ) , (10)

for all t ≥ 1. Applying this recursively, we obtain

E [Kt ] ≤ (1 + (N − 1)aN )t . (11)

Now, using Markov inequality we have

E [TN ] ≥ tP [TN > t] . (12)

�e event {TN > t} is same as {Kt < N }. Hence, we have

E [TN ] ≥ tP [Kt < N ] , (13)

= t (1 − P [Kt ≥ N ]) , (14)

≥ t

(
1 − E [Kt ]

N

)
, (15)

where the last inequality follows from Markov inequality. Us-

ing (11), we obtain

E [TN ] ≥ t

(
1 − 1

N
(1 + (N − 1)aN )t

)
, (16)

for all t ≥ 1. Since (16) is a valid lower-bound for all values of t ≥ 1,

se�ing t =
1/2 logN

log(1+(N−1)aN ) for α ≥ 1 and t =
1/2 logN α

log(1+(N−1)aN ) for

0 < α < 1 yields the result. �

In Figure 2, we plot the lower-bound on average delay D as a

function of α . We observe that as the network gets sparser the

number of nodes receiving the �ooded packet per cell decreases,

thereby, increasing the broadcast delay. �us, the lower-bound is

a non-decreasing function of α . However, for 0 < α < 1 the delay

bound is a constant O(1), and remains unchanged. Clearly, ifC = 1,

i.e. if the entire network is a single cell, then the broadcast delay will

be 1 as the packet can reach all other nodes in a single transmission.

In the next two sections we show that this lower-bound on average

delay is in fact achievable, up to log logN factor.

3 FLOODING TIME IN MARKOV EVOLVING
GRAPHS

In order to gains further insights into the �ooding time of the

packet �ooding scheme we explore the theory of Markov evolving

graphs (MEG). We use it to derive the necessary upper bound on

Figure 2: Lower bound on achievable average delay D as a
function of α .

the �ooding time. We start with a brief introduction to MEG and a

review of pertinent results.

Let G be a family of graphs with node set [N ] = {1, 2, . . .N }.
�e Markov chainM = (Gt )t ∈N, where Gt ∈ G, with state space

G is called a MEG. Note that G is a �nite set. For our network

model of Figure 1, if we draw edge between i and j whenever both

nodes i and j lie in the same cell, the resulting time evolving graph

is an MEG. When the MEG has a unique stationary distribution we

call it a stationary MEG.
2

In this work, we assume that a stationary

MEG starts from it’s stationary distribution. �e IID mobility model

results in one such stationary MEG, as every graph formation can

follow any other in G. We now describe the single packet �ooding

scheme in MEG.

Single packet �ooding for a MEG: In the �rst slot only a single

node s has the packet, i.e. I1 = {s}. Here, It ⊂ [N ] denotes the set

of nodes that have the packet at time t . In every slot t ≥ 1:

(1) Identify the neighbors of It that are not in It :

N (It ) = {neighbours of It in Gt \It } . (17)

(2) Transmit the packet to each node in N (It ). We, thus, have

It+1 = It
⋃

N (It ). (18)

(3) If It = [N ] then stop, else start again from Step 1.

Let TN be the �ooding time, i.e., the time it takes for this process

to terminate. Note that, this scheme reduces to the single packet

�ooding scheme of Section 2 for our network model. An upper

bound on �ooding time was derived in [4]. �is bound depended

on the MEG satisfying certain expander properties. We summarize

this result in �eorem 3.3, and provide two new bounds on �ooding

time in �eorem 3.4 and �eorem 3.5.

�e expander property of MEG is de�ned in terms of the ex-

pander property of a static graph [4].

De�nition 3.1. A graph G = ([N ],E) is said to be ([h0,h1],k)-
expander if for every I ⊂ [N ] such that h0 < |I | ≤ h1 we have

|N (I )| ≥ k |I |, (19)

where N (I ) is the set of all neighbours of nodes in I that are not

already in I .

We now use this to de�ne the expander property of MEG.

2
Since the state space G is �nite, it always has at least one stationary distribution.
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De�nition 3.2. Stationary MEG M = (Gt )t ∈N is ([h0,h1],k)-
expander with probability p if

P [G0 is ([h0,h1],k) -expander] ≥ p. (20)

If the graph is ([h − 1,h],k)-expander then for notational sim-

plicity we say that it is (h,k)-expander. To show that a stationary

MEG is (h,k)-expander we have to evaluate the probability

P


⋂

I : |I |=h
{|N (I )| ≥ k |I |}

 . (21)

�e following upper bound on �ooding time was derived in [4].

Theorem 3.3. [4] For a stationary MEG, if

P

[ s⋂
i=1

{G0 is an ([hi−1,hi ],ki ) -expander}
]
≥N 1 − c1

N 2
(22)

for some c1 > 0, 1 = h0 ≤ h1 < h2 < · · · < hs =
N
2
, a non-

increasing sequence k1 ≥ k2 ≥ · · · ≥ ks > 0, and s ∈ {2, 3, . . . N
2
}

then the �ooding time

TN = O

( s∑
i=1

log (hi/hi−1)
log(1 + ki )

)
, (23)

with probability at least 1 − c2

N for some c2 > 0.

A stationary MEG may not always satisfy the expander property

required by (22). In such a case, we provide the following two

bounds for �ooding time for a stationary MEG

Theorem 3.4. If for every h ∈ 1, 2, . . .N − 1 and for all I ⊂ [N ]
with |I | = h, there exists a function p(h) such that P [N (I ) = 1] ≥N
p(h) > 0 then the �ooding time

TN = O

(N−1∑
h=1

1

p(h)

)
, (24)

with probability at least 1 − e−c1N for some c1 > 0.

Proof: We denote X ∼ Geo(p) when X is a geometrically dis-

tributed random variable with parameter p, that is, P [X = k] =
p (1 − p)k−1

for all k ≥ 1. Let Xh ∼ Geo (P [N (h) = 1]) and Zh ∼
Geo (p(h)) for all h ∈ {1, 2, . . .N − 1}. It is clear that Xh ≤N Zh a.s.

for all 1 ≤ h ≤ N − 1. If the packet transmissions were to take place

only at the occurrences of the events {N (h) = 1}, the �ooding time

would be much larger, and would equal

∑N−1

h=1
Xh . �is implies

TN ≤
N−1∑
h=1

Xh (25)

Further, since P [N (h) = 1] ≥N p(h) we have Xh ≤N Zh a.s. for all

h. �is implies

TN ≤
N−1∑
h=1

Xh ≤N
N−1∑
h=1

Zh . (26)

Now, using the concentration bound given in Lemma C.3 of Ap-

pendix C on {Z1, . . .ZN−1} and substituting t = µ =
∑N−1

h=1

1

p(h)
we obtain

P

[N−1∑
h=1

Zh > 2c1µ

]
≤

(
1 − p∗

)µ
exp

{
−2c1 − 3

4

(N − 1)
}
, (27)

for some c1 ≥ 2, where p∗ = minh∈{1,2, ...N−1} p(h). Note that

(1 − p∗)µ ≤ 1. We, thus, have

P

[N−1∑
h=1

Zh > 2c1µ

]
≤ exp

{
−2c1 − 3

4

(N − 1)
}

(28)

= Θ (exp{−c2N }) , (29)

for some positive constant c2. From (26) and (29) we have

P

[
TN ≤ 2c1

N−1∑
h=1

1

p(h)

]
≥N 1 − exp{−c2N }. (30)

�is completes the proof. �
Notice that instead of P [N (I ) = 1] ≥N p(h) > 0 if we have the

condition P [N (I ) ≥ 1] ≥N p(h) > 0 the same result holds, using

an identical proof.

�eorem 3.4, does not use any expander properties of the MEG. It

can happen that a stationary MEG satis�es the expander property

for some subsets I ⊂ [N ] but not all. In this case �eorem 3.4

may not give a very tight bound. We can combine the ideas of

�eorem 3.3 and 3.4 to establish the following result.

Theorem 3.5. For a stationary MEG if
(1) there exists a s ∈ {2, 3, . . . N

2
}, strictly increasing sequence

1 < h1 < h2 < · · · < hs =
N
2
, and a non-increasing

sequence k2 ≥ k3 ≥ · · · ≥ ks > 0 such that

P

[ s⋂
i=2

{G0 is ([hi−1,hi ],ki ) -expander}
]
≥N 1 − c1

N 2
, (31)

for some c1 > 0,
(2) for 1 ≤ h ≤ h1, for all I ⊂ [N ] such that |I | = h we have

P [N (I ) = 1] ≥N p(h) > 0, (32)

and
(3) h1 ≥ c2 logN is such that

lim

N→∞
h1

logN
= ∞, (33)

then

TN = O
©­«
h1∑
h=1

1

p(h) +
s∑
i=2

log (hi/hi−1)
log (1 + ki )

ª®¬ , (34)

with probability at least 1 − c2/N for some c2 > 0.

Proof: It ⊂ [N ] denotes the number of nodes that have the packet

at time t ≥ 1. Let T1 be the �rst time at which at least h1 nodes get

the packet, i.e.,

T1 = min {t ≥ 1| |It | ≥ h1 and |I1 | = 1} , (35)

andT2:N = TN −T1. Clearly,T2:N will be less than the time it takes

for the packet to reach all nodes if the system were to start with

exactly h1 nodes carrying the packet, i.e.,

T2:N ≤ T
′
2:N = min {t ≥ 1| |It | = N and |I1 | = h1} . (36)

Following the same arguments listed in [4] for the proof of �eo-

rem 3.3, while using the expander property (31), we have

T
′
2:N = O

( s∑
i=2

log (hi/hi−1)
log (1 + ki )

)
, (37)

with probability at least 1 − c1/N for some c1 > 0.
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Following the same arguments in the proof of �eorem 3.4, while

using (32), yields

T1 = O
©­«
h1∑
h=1

1

p(h)
ª®¬ , (38)

with probability at least 1− exp {−c2h1} for some c2 > 0. From (33),

it is clear that h1 > γ logN for any γ > 0. �is implies

1 − exp {−c2h1} ≥ 1 − exp {−c2γ logN } , (39)

≥ 1 − 1

N c2γ
, (40)

for any γ > 0. Choosing any γ ≥ 1/c2 yields

T1 = O
©­«
h1∑
h=1

1

p(h)
ª®¬ , (41)

with probability at least 1 − c3/N for some c3 > 0. We know that

TN ≤ T1+T
′
2:N . Using (37) and (41) we obtain the desired result. �

�e results also hold if we replace the condition P [N (I ) = 1] ≥N
p(h) > 0 with

P [N (I ) ≥ 1] ≥N p(h) > 0. (42)

�eorems 3.3, 3.4, and 3.5 give a high probability upper bound on

�ooding time, and not an upper bound on average �ooding time. In

the next section we apply these results to obtain a high probability

upper bound on �ooding time for our network model, and show

that it nearly scales as the lower bound on average �ooding time

obtained in �eorem 2.2 of Section 2. In Section 5, we use this fact to

propose a FCFS �ooding scheme that achieves the high probability

upper bound as its average delay.

4 FLOODING TIME FOR THE IID MOBILITY
MODEL

We now apply the high probability upper bounds on �ooding time

from �eorems 3.3, 3.4, and 3.5 of Section 3 to our network model.

As to which of the three results we use depends on whether the

network is sparse or dense. Let M denote the stationary MEG

for our network model of Figure 1, and let G0 be it’s stationary

distribution.

Theorem 4.1. �e �ooding time is

TN =

{
O

(
N α−1

logN
)

if α ≥ 1 (sparse)
O (log logN ) if 0 < α < 1 (dense) , (43)

with probability at least 1 − c1

N for some c1 > 0.

Proof: We derive this by showing the expander properties of

the networkM. We split the proof into three cases: 0 < α < 1,

1 ≤ α < 2, and α ≥ 2.

(1) 0 < α < 1: In this case, the expander properties of �eo-

rem 3.3 hold. Note that

E [N (h)] = (N − h)
[
1 −

(
1 − c/N α )h ]

. (44)

It is also easy to see that 1 − (1 − c/N α )h = Θ (h/N α ) if

h/N α → 0, and 1 − (1 − c/N α )h = Θ(1) if h/N α → ∞.

When h/N α = Θ(1), both are true. We, therefore, have

E [N (h)] =
{

Θ (Nh/N α ) for 1 ≤ h ≤ N α

Θ(N ) for N α + 1 ≤ h ≤ N /2 . (45)

Since, in both cases we have E [N (h)] → ∞, we can use

Lemma C.2, the concentration bound on the binomial distri-

bution, to show that the event {N (h) ≥ c1E [N (h)]} occurs

with high probability for some 0 < c1 < 1. �is proves that

the graph is (h,k(h))-expander where k(h) = c1

E[N (h)]
h ,

i.e.,

P


N /2⋂
h=2

{G0 is (h,k(h))-expander}
 ≥N 1 − c2

N 2
, (46)

for some c2 > 0 where

k(h) =
{
c3N

1−α
for 1 ≤ h ≤ N α

c4

N
h for N α + 1 ≤ h ≤ N /2 , (47)

for some c3, c4 > 0. We skip this proof due to limited

space. �is satis�es the expander property requirements

of �eorem 3.3. Applying �eorem 3.3, we obtain

TN = O (log logN ) , (48)

with probability at least 1 − c5

N for some c5 > 0. Detailed

arguments are given in the technical report [24].

(2) 1 ≤ α < 2: In this case, the expander properties of �eo-

rem 3.5 hold. Note that
h
N α → 0 for all 1 ≤ h ≤ N /2. We,

thus, have

(
1 − (1 − c/N α )h

)
= Θ (h/N α ). Using the ex-

pression forE [N (h)] in (44) we haveN (h) = Θ (Nh/N α ) =
Θ

(
h/N α−1

)
.

Here, E [N (h)] does not always go in�nity in N . How-

ever, we observe that, for all βN α−1
logN + 1 ≤ h ≤ N /2

and for any β > 0, E [N (h)] → ∞ as N →∞. We can then

use Lemma C.2, the concentration bounds for binomial

distribution, to derive the following expander property for

βN α−1
logN + 1 ≤ h ≤ N /2:

P


N /2⋂

h>βN α−1
logN

{
G0 is

(
h,

c1

N α−1

)
-expander

}
≥N 1 − c2

N 2
, (49)

for some c1, c2 > 0 and provided β > c3 for some c3 > 0.

For 1 ≤ h ≤ βN α−1
logN , E [N (h)] need not always

go to in�nity, and can in fact go to zero. Due to this, the

networkM does not satisfy any expander property for all

1 ≤ h ≤ βN α−1
logN . �erefore, we derive a lower-bound

on the probability P [N (h) ≥ 1]. In particular, there exists

c3 > 0 such that

P [N (h) ≥ 1] ≥N c3

(
1 − exp

{
−h/N α−1

})
, (50)

for all h ∈ {1, 2, . . . βN α−1
logN }. We skip the proof due

to space constraints. �is satis�es the conditions of �eo-

rem 3.5. From this, one can obtain

TN = O
(
N α−1

logN
)
,

with probability at least 1− c4

N for some c4 > 0. �e detailed

proof is given in Appendix B.

(3) α ≥ 2: In this case, the conditions of �eorem 3.4 hold.

Since α ≥ 2, we have h/N α → 0 for all 1 ≤ h ≤ N /2.

�is implies 1−(1 − c/N α )h = Θ (h/N α ). �us, using (44),



Capacity and delay scaling for broadcast transmission in highly mobile wireless networks Mobihoc ’17, July 10-14, 2017, Chennai, India

Figure 3: High probability upper bound and the average
lower-bound on �ooding time TN as a function of α .

we have E [N (h)] = Θ (Nh/N α ) → 0 for all 1 ≤ h ≤
N /2. �is shows that the networkM does not satisfy any

expander property. We, therefore, derive a lower-bound

on P [N (h) = 1]. �ere exists a c1 > 0 such that

P [N (h) = 1] ≥N c1

(N − h)h
N α , (51)

for all 1 ≤ h ≤ N − 1. We skip the proof due to space

constraints. �is satis�es the condition of �eorem 3.4,

using which we get

TN = O
(
N α−1

logN
)
, (52)

with probability at least 1 − c2

N for some c2 > 0.

Detailed arguments are given in the technical report [24]. �
Figure 3 compares the high probability upper bound with the

average lower-bound on �ooding time TN from �eorem 2.2. We

observe a gap of at mostO (log logN )when 0 < α < 1. For all other

values of α the upper and lower-bounds are of the same order. �e

lower-bound on �ooding time was derived in �eorem 2.2, which

was also the lower-bound on the achievable average delay. In the

next section, we show that a simple FCFS �ooding scheme achieves

the high probability upper bound on �ooding time as its achievable

average delay.

5 FCFS FLOODING SCHEME
We propose a scheme that is based on the idea of single packet

�ooding described in Section 2. In this scheme, only a single packet

is transmi�ed over the entire network at any given time. Packets

are served sequentially by the network on a FCFS basis. Each packet

gets served for a �xed duration of UN . �e packet is dropped if

within this duration it is not received by all the other (N − 1) nodes.

We call this the FCFS packet �ooding scheme.

FCFS Packet Flooding: Packets arrive at rate λ at each node.

(1) Among all the packets that have arrived, select the one

that had arrived the earliest. At this time only one node,

i.e. the source node, has this packet.

(2) In every cell, randomly select one packet carrying node (if

it exists) as a transmi�er.

(3) Selected nodes transmit in each cell during the slot while all

other nodes in the corresponding cells receive the packet.

(4) Repeat Steps 2 and 3 for UN time slots.

(5) A�er UN slots, remove the current packet from the trans-

mission queue and go to Step 1.

Since we abruptly terminate the process in Step 5 a�er UN slots,

it can happen that the packet has not reached all the (N − 1) desti-

nation nodes. To ensure that this happens rarely let

UN =

{
c1N

α−1
logN if α ≥ 1 (sparse)

c2 log logN if 0 < α < 1 (dense)

, (53)

for some positive constants c1 and c2 such that TN < UN with

probability 1− 1

N . Such constants exists by �eorem 4.1. �is leads

to a vanishingly small packet drop rates.

�e network under the FCFS packet �ooding scheme can be

thought of as a M/D/1 queue with an arrival rate of Nλ and service

time of UN . �e waiting time for such a system is given by [2] as

W̃ = UN +UN
ρ

2(1 − ρ) , (54)

for any arrival rate Nλ < 1

UN
, where ρ = NUN λ < 1 is the

queue utilization. Selecting any ρ < 1, we obtain W̃ = Θ(UN )
and λ = Θ

(
1

NUN

)
. �is implies that the delay lower-bound of

�eorem 2.2 is achieved, up to a gap of O (log logN ), when the

network is dense, i.e. 0 < α < 1. Also, substituting (53), the rate λ
is

λ =


Θ

(
1

N α
logN

)
if α ≥ 1 (sparse)

Θ
(

1

N log logN

)
if 0 < α < 1 (dense)

. (55)

�is shows that λ is less than the capacity upper bound of �eo-

rem 2.1 by a factor of log logN when 0 < α < 1 and by a factor

of logN when α ≥ 1. �e log logN gap appears due to the exact

same gap between the �ooding time upper and lower bounds when

0 < α < 1. �e logN factor gap for α ≥ 1 occurs even though

the �ooding time upper and lower bounds are asymptotically tight.

�is, we conjuncture, is because the FCFS �ooding scheme does not

allow simultaneous transmissions of di�erent packets, which leads

to ine�cient utilization of available transmission opportunities. We

summarize these results in Table 1. Unlike the unicast case, where

a capacity-delay tradeo� has been observed [7, 18, 22], nearly no

such tradeo� exists for the broadcast problem, and both capacity

and minimum delay can be nearly achieved simultaneously.

6 SINGLE HOP SCHEME
We now propose a single-hop scheme that achieves the capacity

upper-bound of �eorem 2.1 when the network is sparse, i.e. α ≥ 1.

In this scheme, every packet reaches it’s destination by a direct

source to destination transmission. Furthermore, this scheme only

allows for a single receiver in each cell, thus, ignores the broadcast

nature of the wireless medium. �e scheme still achieves the upper-

bound capacity as the number of nodes in a cell tends to be very

small in the sparse case.

Single-Hop Scheme: Each node makes (N−1) copies of an arrival

packet, one for each receiving node. Figure 4 illustrates this for

node 1, where a copy of an arriving packet at node 1 is transferred

to each of the queues Q1, j for all 2 ≤ j ≤ N .

(1) In each cell, select a pair of nodes at random. If a cell

contains fewer than two nodes no transmissions occur in

that cell.
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Figure 4: Node 1 makes (N − 1) copies of every arriving
packet, one for each queueQ1, j for 2 ≤ j ≤ N . Service rate of
Q1, j is denoted by r1, j .

(2) For each selected pair, assign one node as a transmi�er and

the other as receiver, randomly with equal probability.

(3) For each pair, if the transmi�er node has a packet for the

receiver node (in the respective Qi, j ) then transmit it, else

remain idle.

(4) Wait for the next slot to begin, and restart the process from

Step 1.

�e scheme is opaque to which node pairs are chosen as the

source-destination pairs. �us, every queue Qi, j is activated at

the same rate. �is implies that all the queues Qi, j have identical

service rates. Hence, ∑
i,j

ri, j = N (N − 1)r1,2. (56)

�e le� hand side of (56) corresponds to the total tate of service

opportunities across the network, which is given by Cp, where p
is the probability that there are at least two nodes in a cell: p =

1−(1 − aN )N −NaN (1 − aN )N−1
. �us, N (N −1)r1,2 = Cp, which

gives,

r1,2 =
Cp

N (N − 1) . (57)

Hence, any arrival rate λ < r1,2 will yield a stable network under

the single-hop scheme. �e delay achieved by this scheme is lower-

bounded by the delay in the single queue. Since each queue is

Bernoulli arrival and Bernoulli service, the waiting time in each

queue is given by W̄ = 1−λ
r1,2−λ . Se�ing λ = 1

2
r1,2 we obtain W̄ =

Θ
(
1/r1,2

)
. We summarize this in the following result.

Theorem 6.1. �e single hop scheme achieves a capacity of

λSH =


Θ

(
1

N α

)
if α ≥ 1 (sparse)

Θ
(

1

N 2−α

)
if 0 < α < 1 (dense)

, (58)

Furthermore, the delay achieved at this rate is

DSH ≥
{

Θ (N α ) if α ≥ 1 (sparse)
Θ

(
N 2−α )

if 0 < α < 1 (dense) . (59)

Hence, the single hop scheme achieves the capacity upper-bound

for α ≥ 1. �us, the capacity upper bound in �eorem 2.1 is indeed

achievable.

7 CONCLUSION
We derived the broadcast capacity and minimum delay scaling in

number of vehicles N for highly mobile networks. We observed that

the capacity and minimum delay scalings can be nearly achieved

simultaneously. We showed that the capacity cannot scale be�er

than 1/N . �is, in conjunction with earlier known results for static

network [25], proves that the broadcast capacity does not improve

with high mobility. �is is in contrast with the unicast case for

which mobility improves network capacity [8].

We show that a simple FCFS �ooding scheme (nearly) achieves

both capacity and minimum delay scalings. �e �ooding time

bound for Markov evolving graphs (MEG), proposed in [4], was

used to analyze the FCFS �ooding scheme. Moreover, we derive

two new bounds on �ooding time for MEG that don’t satisfy the

expander property. �ese new bounds allows us to analyze FCFS

�ooding scheme when the network is sparse, and are of independent

theoretical interest.
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A PROOF OF THEOREM 2.1
Let λ be the rate achieved by a scheme. If Xh (T ) is the number of

packets delivered to the destination in exactly h hops by time T
then for an ϵ > 0 we have

1

T

∑
h≥1

Xh (T ) > N (N − 1)λ − ϵ (60)

for all T > Tϵ , for some Tϵ > 0.

If Zk
i (t) is a binary random variable which equals 1 if there are

k nodes in cell i in slot t then the total number of packet receptions

by time T is at most

∑C
i=1

∑N
k=2

∑T
t=1
(k − 1)Zk

i (t). Hence,

∑
h≥1

hXh (T ) ≤
C∑
i=1

N∑
k=2

T∑
t=1

(k − 1)Zk
i (t). (61)

Combining (60) and (61) we obtain

C∑
i=1

N∑
k=2

1

T

T∑
t=1

(k − 1)Zk
i (t) ≥

1

T

∑
h≥1

hXh (T ), (62)

=
1

T
X1(T ) +

1

T

∑
h≥2

hXh (T ), (63)

≥ 1

T
X1(T ) +

2

T

∑
h≥2

Xh (T ). (64)

Using (60) we obtain

C∑
i=1

N∑
k=2

1

T

T∑
t=1

(k − 1)Zk
i (t)

≥ 1

T
X1(T ) + 2

(
N (N − 1)λ − ϵ − 1

T
X1(T )

)
. (65)
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Taking T → +∞ we have

C∑
i=1

N∑
k=2

(k − 1)p(k) ≥ Cp + 2 (N (N − 1)λ − ϵ −Cp) , (66)

= 2N (N − 1) − 2ϵ −Cp, (67)

where p(k) is the probability that there are k nodes in a cell and p
is the probability that there are at least two nodes in a cell; we use

the fact that lim supT→+∞
X1(T )
T ≤ Cp. Taking ϵ → 0, we obtain

2N (N − 1)λ ≤ Cp +C
N∑
k=2

(k − 1)p(k). (68)

Substituting p(k) =
(n
k
)
akN (1 − aN )

N−k
and computing the bino-

mial sum we obtain

2N (N − 1)λ = N
(
1 − (1 − aN )N−1

)
. (69)

�is proves (2), and substituting aN = cN−α gives the required

scaling; see [24].

B PROOF OF EXPANDER PROPERTY AND
FLOODING TIMEWHEN 1 ≤ α < 2

Let β > 0. We show that the network has expander property for

βN α−1
logN + 1 ≤ h ≤ N /2 for some β > 0, and prove a lower-

bound on probability P [N (h) ≥ 1] for 1 ≤ h ≤ βN α−1
logN .

Lemma B.1. For every ϵ > 0 we have

P [N (h) ≥ 1] ≥N 1 − (1 + ϵ) exp

{
−h/N α−1

}
, (70)

for all 1 ≤ h ≤ βN α−1
logN .

Proof: Due to space constraints we do not list the proof here. See

the technical report [24] for a detailed proof.

Lemma B.2. For every ϵ > 0 we have

(1 − ϵ) h

N α−1
≤N E [N (h)] ≤N (1 + ϵ)

h

N α−1
, (71)

for all βN α−1
logN + 1 ≤ h ≤ N /2.

Proof: See [24] for a detailed proof.

From Lemma B.2, we note that E [N (h)] → ∞ as N → ∞ for

all βN α−1
logN ≤ h ≤ N /2. Using Lemma C.2 of Appendix C, we

obtain for a given ϵ > 0

P

[
N (h) < η(1 − ϵ) ch

N α−1

]
≤N exp

{
−c1

ch

N α−1

}
, (72)

for some η ∈ (0, 1), c1 > 0, and all h ∈ {βN α−1
logN + 1, . . . N

2
}.3

�is, with union bound, implies

P


N /2⋃

h=βN α−1
logN+1

{
N (h) < η(1 − ϵ) ch

N α−1

} (73)

≤
N /2∑

h=βN α−1
logN+1

P

[
N (h) < η(1 − ϵ) ch

N α−1

]
, (74)

≤N
N /2∑

h=βN α−1
logN+1

exp

{
−c1

ch

N α−1

}
, (75)

3
Note that c1 does not depend on h; see Lemma C.2 in Appendix C.

where the last inequality follows by using the probability bound

in (74). Bounding the sum using the largest component we get

P


N /2⋃

h=βN α−1
logN+1

{
N (h) < η(1 − ϵ) ch

N α−1

} (76)

≤ N exp

{
−c1c

βN α−1
logN + 1

N α−1

}
, (77)

= Θ (N exp {−c2β logN }) , (78)

= Θ

(
1

N c2β−1

)
, (79)

for some c2 > 0. Choosing β > 3/c2 we have

P


N /2⋃

h=βN α−1
logN+1

{
N (h) < η(1 − ϵ) ch

N α−1

} ≤N
c3

N 2
, (80)

for some c3 > 0. �is implies

P


N /2⋂

h=βN α−1
logN+1

{
N (h) ≥ η(1 − ϵ) ch

N α−1

} ≥N 1 − c3

N 2
, (81)

which proves the expander properties of (49).

B.0.1 Computing the Flooding Time. Set

p(h) = 1 − c4 exp

{
−ch/N α−1

}
, (82)

for all h ∈ {1, 2, . . . βN α−1
logN } and some c4 > 0. We know from

�eorem 3.5, Lemma B.1, and the expander property (49) that the

�ooding time is upper bounded by

βN α−1
logN∑

h=1

1

p(h) +
βN α−1

logN−1∑
h=1

log

(
h+1

h

)
log

(
1 + c5/N α−1

) , (83)

where c5 = η(1 − ϵ)c . Computing the �rst term we get

βN α−1
logN∑

h=1

1

p(h) =
βN α−1

logN∑
h=1

1

1 − c4 exp

{
−ch/N α−1

} , (84)

=

βN α−1
logN∑

h=1

exp

{
ch/N α−1

}
exp

{
ch/N α−1

}
− c4

, (85)

= Θ

(∫ βN α−1
logN

1

exp

{
ch/N α−1

}
exp

{
ch/N α−1

}
− c4

dh

)
.

�e integral turns out to be of the order Θ
(
N α−1

logN
)
; see [24].

Computing the second term in the expression (83) we have

βN α−1
logN−1∑

h=1

log

(
h+1

h

)
log

(
1 + c5/N α−1

) = log

(∏βN α−1
logN−1

h=1

h+1

h

)
log

(
1 + c5/N α−1

) ,

(86)

=
log

(
βN α−1

logN
)

log

(
1 + c5/N α−1

) . (87)

It is easy to see that (87) is of order Θ
(
N α−1

logN
)
. �is proves

that the �ooding time is TN = O
(
N α−1

logN
)

with probability at

least 1 − c6/N 2
for some c6 > 0.
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C CONCENTRATION BOUNDS
We list here some concentration bounds that we use in our proofs.

�e following Lemma is from Chap. 1 in [19].

Lemma C.1. If X ∼ Bin (n,p) for some p ∈ (0, 1) and µ = np then
for all k ≥ µ

P [X ≥ k] ≤ exp

{
−µH

(
k

µ

)}
, (88)

and for all k ≤ µ

P [X ≤ k] ≤ exp

{
−µH

(
k

µ

)}
, (89)

where H (a) = 1 − a + a loga for all a > 0.

We now extend this result to the following result.

Lemma C.2. If X1,X2, . . .Xд(n) are binomial random variables
such that

c1 f (n) ≤N E [Xh ] ≤N c2 f (n), (90)

for some positive constants c1 and c2, where д(n) and f (n) are in-
creasing functions of n. �en there exists an η ∈ (0, 1) and a positive
constant c3 such that

P [Xh < ηc1 f (n)] ≤N e−c3f (n), (91)

for all h ∈ {1, 2, . . .д(n)}.

Proof: For every h ∈ {1, 2, . . .д(n)}, Xh is a binomial random

variable. Lemma C.1 gives

P [Xh < ηc1 f (n)] ≤ exp

{
−E [Xh ]H

(
ηc1 f (n)
E [Xh ]

)}
. (92)

Evaluating the exponent of the right hand side, we get

E [Xh ]H
(
ηc1 f (n)
E [Xh ]

)
(93)

= E [Xh ] − ηc1 f (n) + ηc1 f (n) log

(
ηc1 f (n)
E [Xh ]

)
, (94)

≥N c1 f (n) − ηc1 f (n) + ηc1 f (n) log (c1/c2) , (95)

=

[
1 − η
η
− log (c2/c1)

]
ηc1 f (n). (96)

where the second inequality follows from the fact that c1 f (n) ≤n
E [Xh ] ≤n c2 f (n). Now, since

1−η
η can take any positive real values

for η ∈ (0, 1), we have

E [Xh ]H
(
ηc1 f (n)
E [Xh ]

)
≥ c3 f (n), (97)

for some η ∈ (0, 1) and c3 =
[

1−η
η − log (c2/c1)

]
ηc1 > 0 for the cor-

responding η. Notice that c3 does not depend on h, and hence, (97)

holds for all h ∈ {1, 2, . . .д(n)}. Combining (92) and (97) we obtain

P [Xh < ηc1 f (n)] ≤n exp {−c3 f (n)} , (98)

for all h ∈ {1, 2, . . .д(n)}. �

Lemma C.3. Let X1,X2, . . .Xn be independent geometrically dis-
tributed random variables with parameters 0 < p1 ≤ p2 ≤ · · · ≤ pn ,
i.e., P [Xi = t] = pi (1 − pi )t−1 for all t ≥ 1. Let Sn =

∑n
i=1

Xi and

µ = E [Sn ] =
1

p1

+
1

p2

+ · · · + 1

pn
. (99)

�en, for some c ≥ 2,

P [Sn > c(µ + t)] ≤ (1 − p1)t exp {−(2c − 3)n/4} . (100)

�e proof is given in [1].

REFERENCES
[1] 2012. Tail bound on the sum of independent (non-identical) geometric random

variables. h�p://math.stackexchange.com/questions/110691/tail-bound-on-the-

sum-of-independent-non-identical-geometric-random-variables. (Feb. 2012).

[2] Dimitri P. Bertsekas and Robert G. Gallager. 1992. Data Networks (2 ed.). Prentice

Hall.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. 1997. Parallel and Distributed Com-
puting: Numerical Methods. Athena Scienti�c.

[4] A. Clementi, A. Monti, F. Pasquale, and R. Silvestri. 2011. Information Spreading

in Stationary Markovian Evolving Graphs. IEEE Trans. Parallel and Dist. Sys. 22,

9 (Sep. 2011), 1425–1432.

[5] A. Clementi, F. Pasquale, and R. Silvestri. 2013. Opportunistic MANETs: Mobility

Can Make Up for Low Transmission Power. IEEE/ACM Trans. Netw. 21, 2 (Apr.

2013), 610–620.

[6] A. Clementi, R. Silvestri, and L. Trevisan. 2015. Information spreading in dynamic

graphs. Distributed Computing 28, 1 (2015), 55–73.

[7] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah. 2006. Optimal throughput-

delay scaling in wireless networks - part I: the �uid model. IEEE Trans. Info.
�eory 52, 6 (Jun. 2006), 2568–2592.

[8] Ma�hias Grossglauser and D.N.C. Tse. 2002. Mobility increases the capacity of

ad hoc wireless networks. IEEE/ACM Trans. Netw. 10, 4 (Aug. 2002), 477–486.

[9] L. Gupta, R. Jain, and G. Vaszkun. 2016. Survey of Important Issues in UAV

Communication Networks. IEEE Commun. Surveys Tutorials 18, 2 (Nov. 2016),

1123–1152.

[10] P. Gupta and P.R. Kumar. 2000. �e capacity of wireless networks. IEEE Trans.
Info. �eory 46, 2 (Mar. 2000), 388–404.

[11] S. Hayat, E. Yanmaz, and R. Muza�ar. 2016. Survey on Unmanned Aerial Vehicle

Networks for Civil Applications: A Communications Viewpoint. IEEE Commun.
Surveys Tutorials 18, 4 (Apr. 2016), 2624–2661.

[12] Alireza Keshavarz-Haddad, Vinay Ribeiro, and Rudolf Riedi. 2006. Broadcast

Capacity in Multihop Wireless Networks. In Proc. MobiComm. 239–250.

[13] Sanjeev R. Kulkarni and Pramod Vishwanath. 2004. A Deterministic Approach to

�roughput Scaling in Wireless Networks. IEEE Trans. Info. �eory 50, 6 (2004),

1041–1049.

[14] Vijay Kumar and Nathan Michael. 2012. Opportunities and challenges with

autonomous micro aerial vehicles. Int. J. Robotics Research 31, 11 (Sep. 2012),

1279–1291.

[15] Aleksandr Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. 2013.

Towards a swarm of agile micro quadrotors. Autonomous Robots 35 (Nov. 2013),

287–300.

[16] Xiang-Yang Li, Jizhong Zhao, Yan-Wei Wu, Shao-Jie Tang, Xiao-Hua Xu, and

Xu-Fei Mao. 2008. Broadcast capacity for wireless ad hoc networks. In Proc. IEEE
Int. Conf. Mob. Ad Hoc and Sensor Sys. 114–123.

[17] Xiaojun Lin, G. Sharma, R.R. Mazumdar, and N.B. Shro�. 2006. Degenerate

delay-capacity tradeo�s in ad-hoc networks with Brownian mobility. IEEE Trans.
Info. �eory 52, 6 (Jun. 2006), 2777–2784.

[18] M.J. Neely and E. Modiano. 2005. Capacity and delay tradeo�s for ad hoc mobile

networks. IEEE Trans. Info. �eory 51, 6 (Jun. 2005), 1917–1937.

[19] Mathew Penrose. 2003. Random Geometric Graphs. Oxford Studies in Prob.

[20] Ozgur Koray Sahingoz. 2014. Networking Models in Flying Ad-Hoc Networks

(FANETs): Concepts and Challenges. J. Intell. Robotics Syst. 74, 1-2 (Apr. 2014),

513–527.

[21] Srinivas Shakko�ai, Xin Liu, and R. Srikant. 2010. �e Multicast Capacity of Large

Multihop Wireless Networks. IEEE/ACM Trans. Netw. 18, 6 (2010), 1691–1700.

[22] G. Sharma and R. Mazumdar. 2004. On Achievable Delay/Capacity Trade-o�s in

Mobile Ad Hoc Networks. In W. on Modeling and Opt. in Ad Hoc Mob. Netw.
[23] R. Talak, S. Karaman, and E. Modiano. 2016. Speed limits in autonomous vehicular

networks due to communication constraints. In Proc. CDC. 4998–5003.

[24] Rajat Talak, Sertac Karaman, and Eytan Modiano. 2017. Capacity and delay

scaling for broadcast transmission in highly mobile wireless networks. ArXiv
e-prints (Feb. 2017).

[25] Bulent Tavli. 2006. Broadcast Capacity of Wireless Networks. IEEE Commmun.
Le�. 10, 2 (2006), 68–69.

[26] Justin �omas, Giuseppe Loianno, Joseph Polin, Koushil Sreenath, and Vijay

Kumar. 2014. Toward autonomous avian-inspired grasping for micro aerial

vehicles. Bioinspiration & Biomimetics 9, 2 (Jun. 2014).

[27] S. Toumpis and A.J. Goldsmith. 2004. Large wireless networks under fading,

mobility, and delay constraints. In Proc. INFOCOM, Vol. 1. 609–619.

[28] Xinbing Wang, Wentao Huang, Shangxing Wang, Jinbei Zhang, and Chenhui Hu.

2011. Delay and Capacity Tradeo� Analysis for Motioncast. IEEE/ACM Trans.
Netw. 19, 5 (2011), 1354–1367.


	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Organization

	2 Fundamental Limits: Capacity and Minimum Delay
	2.1 Capacity
	2.2 Minimum Delay

	3 Flooding Time in Markov Evolving Graphs
	4 Flooding Time for the IID Mobility Model
	5 FCFS Flooding Scheme
	6 Single Hop Scheme
	7 Conclusion
	8 Acknowledgement
	A Proof of Theorem 2.1
	B Proof of Expander Property and Flooding Time when 1 < 2
	C Concentration Bounds
	References

