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Abstract

It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at
small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by
tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not
applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-
mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent
eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-
mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model.
However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from

µ^ ^ ^
-

^( )E k dk k dk8 3 to µ^ ^ ^
-

^( )E k dk k dk3 .
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1. Introduction

In many astrophysical flows, such as those governing stellar
coronae and winds, the dynamics of planetary magnetospheres,
the structures in the warm interstellar medium, and many
others, the dissipation scales are so small that the flows become
turbulent over a broad range of scales. At scales much larger
than the plasma microscales (the particles’ gyroradii and skin
depths), the dynamics can be reasonably well approximated
by single-fluid magnetohydrodynamics (MHD; e.g., Biskamp
2003; Davidson 2017). Some fundamental processes of plasma
energetics, such as plasma heating, particle acceleration, and
magnetic field reconnection, however, depend on plasma
turbulence at the kinetic scales (e.g., Kulsrud 2005; Chen 2016).
At such scales, the MHD description is not adequate, and the
need arises to extend the relatively well-developed theory of
MHD turbulence to the small, kinetic scales.

Recently, it has been suggested that magnetic reconnection
may be a critical element of MHD turbulence(Boldyrev &
Loureiro 2017; Loureiro & Boldyrev 2017; Mallet et al. 2017).
This realization arises from the observation, motivated by the
dynamic alignment picture (Boldyrev 2006), that turbulent
eddies become progressively more susceptible to the tearing
mode instability (which drives reconnection) as their char-
acteristic scale, λ, gets smaller. Those authors have thus
proposed that the role of reconnection in MHD turbulence can
be quantified by comparing the characteristic timescales of the
two processes. A typical turbulent eddy at scale λ lasts an
amount of time (the eddy turnover time) that is itself a function
of λ. Similarly, a reconnection event at scale λ occurs on a
timescale which depends in some nontrivial way on λ. If the
time associated with reconnection decreases with the scale of
the eddy faster than the eddy turnover time does, then, given a
large enough inertial interval, reconnection inevitably becomes
important below a certain critical scale, λcr. This scale is thus
defined as the scale below which reconnection becomes faster
than the turbulence—for this is the only way to ensure that
reconnection has time to occur before the eddies are destroyed
by the turbulence.

In Loureiro & Boldyrev (2017) it was proposed that the
scale-invariant energy cascade should persist in the reconnec-
tion-mediated interval, and that the energy should have a
power-law Fourier spectrum. This concept was further
developed in Boldyrev & Loureiro (2017) and, along some-
what different lines of reasoning, in Mallet et al. (2017).4

However, these interesting new developments cannot be
directly applied to weakly collisional turbulent astrophysical
environments such as those mentioned earlier. There are two
reasons for that. First, even if the eddy scale itself is larger than
those of the kinetic scales, the tearing instability in such an
eddy leads to the formation of finer scales (a boundary layer)
which are, almost inevitably, in the kinetic regime. Indeed, for
realistic values of the resistivity, one finds that the mechanism
breaking the frozen flux condition, and thus enabling
reconnection, is likely to be the electron inertia, rather than
the resistivity. Second, turbulence in very weakly collisionless
plasmas extends to weakly collisional turbulent astrophysical
environments; it is possible, as we will show, that reconnection
may only become important at those scales(Cerri & Califano
2017; Franci et al. 2017).
This paper presents the first attempt at extending these recent

ideas on the role of reconnection in turbulence to accommodate
kinetic physics.

2. The Tearing Mode in a Strongly Magnetized,
Collisionless Plasma

Let us begin by analyzing the case of a low-beta plasma,
me/mi=β=1, where β=8πnT/B0

2 (here we implicitly
assume the ion and electron temperatures to be comparable,
though not necessarily equal) and B0 is a large-scale uniform
magnetic field whose presence we assume. Small magnetic
fluctuations in the direction normal to B0 will be denoted as b.
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4 Interestingly, Huang & Bhattacharjee (2016) observed a similar power-law
spectrum in turbulence driven by plasmoid instability. Although in their setting
the reconnecting magnetic profiles were not generated by turbulence, their
numerical observations may have presented the first glimpse of the
phenomenon studied in these works.
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We will first consider plasma fluctuations with typical scales a
such that

r r~ ( )a , 1i s

where ρi is the ion gyroscale and ρs is the ion-acoustic scale.5

For simplicity, and without loss of generality, we assume an
hydrogen plasma, which is one of the most relevant cases in
astrophysical applications. As we discuss in more detail in the
following section, it is reasonable to assume that the magnetic
profile of a turbulent eddy at MHD scales resembles a current
sheet with thicknessa (e.g., Boldyrev 2006; Mallet &
Schekochihin 2017).

A turbulent eddy with such a magnetic profile will reconnect
if it is unstable to the tearing mode(Furth et al. 1963). In this
case, the magnetic profile tends to develop a singularity
characterized by an inverse scale Δ′, which is a fundamental
parameter of the tearing instability. The other crucial
parameter, the size of the inner boundary layer of the tearing
mode, δin, is much smaller than the scale of the reconnecting
magnetic profile. Due to Equation (1), the eddy scale a belongs
to the MHD regime of plasma turbulence. We, however,
assume that the inner scale δin belongs to the kinetic range,

d r r~ ( ). 2i sin

It is inequality (2) that ensures that kinetic effects (electron
inertia in this case) become important at the inner scale of the
tearing mode. This inequality distinguishes our kinetic theory
from the MHD theory of reconnection-mediated turbulence
developed in Boldyrev & Loureiro (2017) and Loureiro &
Boldyrev (2017).

Under these conditions, the linear growth rate of the tearing
instability of such a magnetic field configuration scales as
follows (see Zocco & Schekochihin (2011) and references
therein). For low Δ′ (i.e., for Δ′δin=1) we have

g r~ D¢ ( )kv d a, 3e sA

whereas for large Δ′ (i.e., Δ′δin1)

g r~ ( )kv d a. 4e sA
1 3 2 3

In these expressions, vA denotes the Alfvén speed based on the
reconnecting magnetic field ba, k is the wavenumber of the
perturbation parallel to the reconnecting field, and de≡c/ωpe

is the electron skin depth (with ωpe the electron plasma
frequency).6

The instability parameter Δ′ is obtained by solving the outer
region (MHD) equation. It is a function of the wavenumber k,
but its specific scaling with k (for ka=1) depends on the
functional form of the reconnecting magnetic field. For the
usual Harris magnetic field profile(Harris 1962) it is Δ′a∼
1/(ka). In the Harris profile, the field reverses direction on the
scale a, but its plateau region is much longer than a (strictly

speaking, it is infinite). In the other limiting case, where the
scales of the field reversal and the field plateau are comparable
(say a sinusoidal profile), the scaling is Δ′a∼1/(ka)2.
Because both scalings are, a priori, possible in a turbulent
eddy, we will keep this dependence generic by assuming
simply that Δ′a∼1/(ka)n, where 1<n�2 is a parameter
(not necessarily integer).
The usual procedure to find the wavenumber of the fastest

growing tearing mode is to equate the expressions for the
growth rate and solve for kmax. This gives

r~ - - ( )( ) ( ) ( )k d a , 5n
e

n
s

n n
max

2 3 1 3 2 1

which corresponds to the maximum growth rate

g r~ + + - - ( )( ) ( ) ( )v d a . 6n
e

n
s

n n
max A

1 2 3 2 1 3 2 1

For the Harris sheet-like configuration, the n→1 case, the
fastest growing mode and the corresponding maximal growth
rate are

r~ ( )( )k d a , 7e smax
1 2 3 1 3 2

g r~ ( )( ) v d a . 8e smax
1

A
3

In the limiting case n=2, the fastest growing mode and the
associated growth rate are

r~ - ( )( )k d a , 9e smax
2 1 3 1 6 3 2

g r~ - ( )( ) v d a . 10e smax
2

A
2 3 5 6 5 2

3. Kinetic Reconnection in MHD Turbulence

Let us now apply these scalings in the context of MHD
turbulence as described by Boldyrev (2006).7 Therefore, we
envision a tearing-unstable magnetic profile whose character-
istic scale, identified as a above, is the width of the turbulent
eddy, λ. Correspondingly, the length of the current sheet, Lcs, is
the other field-perpendicular eddy dimension,

x l~ ( ) ( )L L , 113 4

where L is the outer scale of the turbulence. Likewise, the
Alfvén velocity that appears in the scalings above is identified
with the Alfvén velocity at scale λ, i.e.,

l ~l ( ) ( )v v v L , 12A AA , ,0
1 4

where vA,0 is the Alfvén velocity at the outer scale L. The eddy
turnover time at scale λ is

t l~ ( )L v . 13A
1 2 1 2

,0

The following calculations hold provided that λ remains larger
than any of the kinetic scales.

5 In studies of turbulence the eddy scale a is typically denoted by λ. However,
in this work we keep the notation traditional for the reconnection literature
wherever the results of the reconnection theory are discussed.
6 These expressions are valid for finite ion temperature; this, however, only
affects the numerical prefactors that multiply these expressions(Zocco &
Schekochihin 2011), and so does not affect the order of magnitude derivations
that follow. Another point worth mentioning is that throughout this paper we
will only focus on β1 plasmas; and, in addition, the reconnecting
component of the magnetic field is weaker than of the the guide field, as
pertains to the turbulence model that we envisage. As such, pressure anisotropy
effects are not expected to play an important role here.

7 In our work we use the dynamic alignment model (Boldyrev 2006; Mallet
et al. 2015; Mallet & Schekochihin 2017), which self-consistently predicts the
formation of current sheets in turbulence. Current sheets are observed in direct
numerical simulations, which we think lends credence to the dynamic
alignment hypothesis. If future theoretical studies are to replace the dynamic
alignment as it is currently understood with a different model, then consistency
with numerical simulations will nonetheless require such a theory to describe
current sheets in turbulence. Given the specific predictions for the turbulent
eddy structure and turnover time in such a theory (analogous to our
Equations (11), (12)), the arguments in this paper can be adjusted accordingly.
The specific scaling predictions might then change, but not the fundamental
underlying idea of our argument, which is that reconnection eventually
becomes competitive with the turbulence nonlinear time.
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For the general magnetic profile, the transition scale between
the inertial and reconnection-dominated intervals is given by
the criterion8

g t ~ ( )( ) 1. 14n
max

This yields

l r~ + + + +( ) ( )( ) ( ) ( )( ) ( ) ( )L d L L . 15n
e scr

1 2n n n n
1
3

2 5
4

1 1
3

1 5
4

1

In the limiting case n=1, this relation becomes9

l r~ ( ) ( ) ( )( ) L d L L . 16e scr
1 4 9 4 9

This expression is valid provided that λcr?ρs, i.e.,

r b- ( ) ( )L m m , 17s e i e
2 2

where we have used the definition r b~ -( )d m me s e i e
1 2 1 2.

For an n=2 type magnetic profile, we instead obtain

l r~ ( ) ( ) ( )( ) L d L L . 18e scr
2 8 21 10 21

The validity condition λcr?ρs now implies

r b- ( ) ( )L m m . 19s e i e
4 3 4 3

Both limits of our model provide similar transition scales and
rather weak parameter restrictions for the reconnection-
mediated turbulence in a low-beta plasma. For instance, for
the plasma in the solar corona, where one expects βe∼0.01 at
the distance of ∼10 solar radii from the Sun (e.g., Chandran
et al. 2011), we obtain from Equation (17):

r ´ - ( )L 3 10 , 20s
3

while the restriction corresponding to the other limiting case
(19) yields

r - ( )L 10 . 21s
1

In both cases a Hydrogen plasma is assumed. We may therefore
expect that the inertial interval of the coronal Alfvénic
turbulence should transform into the reconnection-mediated
interval at small scales.

4. Turbulence Spectrum

To obtain the energy spectrum in the reconnection-mediated
range, we proceed as in Boldyrev & Loureiro (2017).
Specifically, we assume that a consequence of the tearing
mode becoming nonlinear is that the eddy evolution rate (γnl)
then becomes enslaved to that of the mode, i.e.,

g g~ ( ). 22tnl

As in the MHD case, it is known from theoretical and
numerical studies that the growth rate of the kinetic tearing
mode discussed in Section 2 remains unchanged from its linear
value as the mode enters the nonlinear regime (e.g., Wang &
Bhattacharjee 1993; Porcelli et al. 2002).

Thus, let us define the energy cascade rate  = V LA0
3

0 and
assume it to be independent of scale (λ) both in the inertial and
reconnection ranges. Dimensionally, we have

g ~ l ( )v . 23Anl
2

Then, imposing γnl∼γt, we obtain, for n=1 type magnetic
profiles,

 l r~l
- - ( )v d , 24A e s

1 3 1 3 1 3

from which one easily finds

 r~^ ^
- -

^
-

^( ) ( )E k dk d k dk , 25e s
2 3 2 3 2 3 3

where l~k̂ 1 .
Similarly, it is easy to see that for a type n=2 magnetic

profile one has

 l r~l
- - ( )v d , 26A e s

1 3 5 6 2 9 5 18

corresponding to the energy spectrum

 r~^ ^
- -

^
-

^( ) ( )E k dk d k dk . 27e s
2 3 4 9 5 9 8 3

According to our results, the energy spectrum of Alfvénic
turbulence mediated by kinetic reconnection should therefore
range from ^

-k 8 3 to ^
-k 3, in the scale range l r^

- k scr
1,

with λcr yielded by Equation (16) or Equation (18), as
appropriate.

5. Ultralow Beta Limit

The limit when plasma beta is so low that βe=me/mi can
similarly be considered; this is relevant for, e.g., the Earthʼs
magnetosphere (e.g., Chaston et al. 2008).
The calculation proceeds as in the previous sections. From

Zocco & Schekochihin (2011), we find that in this limit the
fastest growing tearing mode wavenumber and corresponding
growth rate are

~ - - ( )( )k d a , 28n
e

n n
max

1 1 1

g ~ + - - ( )( ) d v a . 29n
e

n n
max

1 1
A

2 1

Application of the criterion stated by Equation (14) yields
the following critical scale for reconnection onset:

l ~ + +( )( )( ) ( )( ) L d L . 30n
e n n

cr
1 1 5

4
1

The two limiting cases of interest of this expression are n=1,
for which we find

l ~ ( ) ( )( ) L d L ; 31ecr
1 8 9

and n=2, which yields

l ~ ( ) ( )( ) L d L . 32ecr
2 6 7

The validity of this analysis requiresl >( ) dn
ecr , which in both

cases reduces to de<L, a condition that is trivially satisfied.
As in the previous section, we can compute the energy

spectra in this regime assuming that the growth rate of the
tearing mode in the early nonlinear stage remains unchanged
from its linear value. We obtain

~^ ^ ^
-

^( ) ( )( )E k dk d k dk , 33e
1 2 3 4 3 3

~^ ^
-

^
-

^( ) ( )( )E k dk d k dk , 34e
2 2 3 1 8 3

valid in the scale range of l ^
- k decr

1, with λcr given by
Equation (31) or Equation (32), respectively. We see that the

8 It is implicit in what follows, and throughout the rest of the paper, that the
tearing mode which first satisfies condition (14) is the intersectional mode(5)
yielded by the matching of the low and largeΔ′ scalings. This is, in fact, not an
assumption: it can be easily checked that this is indeed true for all of the cases
that we consider.
9 A. Mallet, A. Schekochihin, and B. Chandran have informed us in a private
communication that they have independently arrived at the same expression for
the transition scale.
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spectral slopes are unaltered from the previous expressions. We
also note that the transition scales (31) and (32) are always
larger than that of the electron inertial scale de. This may be
consistent with the slightly larger than de scale of the Alfvénic
spectral break observed in the Earthʼs magnetosphere turbu-
lence (Chaston et al. 2008, their Figure2).

6. Large β

Another case of interest are plasmas where βe∼1. This can
be considered using the approximate two-fluid tearing mode
scalings derived in Fitzpatrick & Porcelli (2004, 2007).10

Again, the procedure is entirely similar, so we simply state the
key results.

The tearing mode dispersion relations in this regime are

g ~ D¢( ) ( )kv d a d , 35i eA

for low Δ′; and

g ~ ( ) ( ) ( )kv d a d a , 36i eA
3 5 2 5

at large Δ′. The most unstable mode and corresponding growth
rate is

~ - - ( )( ) ( ) ( )k d d a , 37n
e

n
i

n n
max

3 5 2 5 1 1

g ~ + + - - ( )( ) ( ) ( ) ( ) ( )v d d a . 38n
e

n n
i

n n n
max A

3 2 5 2 3 5 2 1

Note that Equation (38) exhibits the same dependence on a as
Equation (6).

Using these relationships, we find that the critical eddy size
for transition to the reconnection-mediated turbulence range is

l ~ + + + +( ) ( ) ( )( ) ( ) ( ) ( ) ( )L d L d L , 39n
e

n n
i

n n
cr

4 5 3 2 4 5 4 5 2 3 4 5

which has the following two limiting cases:

l ~ ( ) ( ) ( )( ) L d L d L , 40e icr
1 4 9 4 9

valid if

 ( ) ( )d L m m ; 41i e i
2

and

l ~ ( ) ( ) ( )( ) L d L d L , 42e icr
2 2 5 16 35

valid if

 ( ) ( )d L m m . 43i e i
7 3

The corresponding spectra can be easily obtained as

~^ ^
- -

^
-

^( ) ( )( )E k dk d d k dk , 44e i
1 2 3 2 3 2 3 3

~^ ^
- -

^
-

^( ) ( )( )E k dk d d k dk , 45e i
2 2 3 7 15 8 15 8 3

whose validity range is l-
^

- k dicr
1 1, with λcr given by

Equation (40) or Equation (42). These predictions for the
energy spectra exhibit the same k⊥power-law indices as those
obtained earlier at low β (Equations (25)–(27))—the reason
being that the growth rate of the tearing mode in this regime,
Equation (38), has the same dependence on the magnetic shear
length a (equivalently, λ) as Equation (6). We however note
that conditions (41) and (43) are very stringent and may, in

fact, imply that in plasmas where βe∼1, the transition to the
reconnection range cannot happen in the MHD-scale interval.

7. Reconnection in the Kinetic Turbulence Range

One would now like to extend these ideas to the kinetic
turbulence range, when the eddies are on sub-ion scales, i.e.,
λ<max(ρi, ρs). This is, however, nontrivial, because our
understanding of kinetic-scale turbulence is less developed than
that of MHD turbulence. In particular, we are not familiar with
an analytical theory that offers the kinetic equivalent of
Equations (11)–(13), implying, therefore, that we cannot know
whether the tendency to develop current sheets that is present in
the MHD range remains true in the kinetic range. However,
numerical simulations and observations (e.g., Boldyrev &
Perez 2012; Wan et al. 2012, 2016; TenBarge & Howes 2013;
Chen et al. 2015; Cerri & Califano 2017; Franci et al. 2017) do
show evidence for current sheet formation at such scales, and
so perhaps it is legitimate to assume that current sheets remain
the fundamental units of sub-ion scales turbulence. Note that
the argument that follows is completely independent of the
nature of the waves that are found in the kinetic regime; indeed,
no specific property of the turbulence in the kinetic range is
invoked, other than its tendency to form current sheets.
Let us then assume that this is indeed so. There are two

options: either the critical scale for onset of the reconnection
range has been met at the MHD scales, i.e., λcr>max(ρi, ρs),
or it has not. In the latter case, we are not able to estimate it,
because there is currently no theory to describe the eddy
structure at those scales. Therefore, it remains to be seen
whether reconnection may become important at subproton
scales. If, however, this is the case, we may compute the energy
spectrum, provided that Equation (22) holds and that the
tearing mode growth rate in the early nonlinear regime remains
unchanged from its linear value.
We will address this question in the framework of the

equations derived in Chen & Boldyrev (2017), valid at scales
below the ion Larmor radius and assuming βi?βe and
βe=1 (Equations(19)–(20) of that reference). Such a regime
may be relevant for the solar corona (e.g., Chandran
et al. 2011), hot accretion flows (e.g., Quataert 1998),
collisionless shocks (e.g., Treumann 2009; Ghavamian
et al. 2013; Chen & Boldyrev 2017), etc. The tearing mode
calculation proceeds in the usual way; it is not hard to see that
the most unstable tearing mode is such that Δ′δ∼1 and
δ∼de. This allows us to find immediately that

~ - - ( )( )k d a , 46n
e

n n
max

1 1 1

g b~ - - ( )( ) d d a , if 1, 47n
i e

n n
imax

1 2 1

g r b~ - -  ( )( ) d a , if 1. 48n
i e

n n
imax

1 2 1

The expected energy spectra follow straightforwardly as

~^ ^
- -

^
-( ) ( ) ( )( )E k dk m m d k , 49i e e

1 2 3 1 3 4 3 3

~^ ^
- -

^
-( ) ( ) ( )( )E k dk m m d k , 50i e e

2 2 3 1 3 1 8 3

if βi∼1. In the opposite case of βi=1 the above expressions
for the spectrum appear multiplied by the prefactor b-

i
1 3.

These expressions apply at scales l-
^

- k decr
1 1—but, as

we mention above, this range can only be precisely quantified
once a kinetic theory of turbulence is available that allows us to
compute λcr.

10 The equations in Fitzpatrick & Porcelli (2004, 2007) are formally derived in
the cold-ion limit. However, usually the inclusion of finite ion temperature does
not modify the scalings, only numerical prefactors; so, it is possible that the
results in this section apply equally to cases where τ∼1.
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Again, interestingly, we observe that the k⊥dependence of
the spectra are the same as in all of the cases considered above.

8. Discussion and Conclusion

We have proposed that, in collisionless plasmas, the inertial
interval of Alfvénic turbulence can cross over to a
reconnection-mediated interval at scales (λcr) larger than the
relevant plasma microscales, such as the ion-acoustic scale or
the electron skin depth. We predict that, depending on the
parameters of the model, the magnetic energy spectrum in the
reconnection-mediated interval can vary from E(k)∝k−8/3 to
E(k)∝k−3, both in low-beta plasmas (e.g., as the solar corona,
interplanetary coronal mass ejections, planetary magneto-
spheres, etc.; e.g., Chaston et al. 2008; Chen et al. 2014; Bale
et al. 2016) and plasmas with β∼1. These spectral predictions
are valid for wavenumbers such that l-

^ kcr
1

l-kin
1 , where λkin is the kinetic scale relevant for each of the

different cases analyzed. Given the specific scalings for λcr that
we have derived, we observe that this scale range may be
narrow in several applications of interest. However, the
importance of the existence of a reconnection range goes well
beyond its spectral extent, for it implies that the turbulence that
arrives at the kinetic scales is qualitatively different (different
alignment angle, different turn-over time) than it would be were
reconnection not to occur. In other words, if λcr satisfies the
validity conditions derived in each regime, then our paper
predicts that the eddies at the transition from the MHD to the
kinetic range can no longer be described by the model of
Boldyrev (2006; or any Kolmogorov-like model for that
matter). In the typical energy cascade picture of turbulence, this
result therefore implies the presence of a new relevant scale
parameter, in addition to the Kolmogorov scale. This new scale
parameter reflects a new, reconnection-mediated regime of
turbulence, which may qualitatively impact not only the
physics of the transition between the Alfvénic and the kinetic
regimes, but also the physics of the kinetic range itself.

We have suggested that our theory may be extended to the
subproton-scale turbulence λ<ρi. Indeed, the turbulent
fluctuations at such scales resemble current sheets (e.g.,
Boldyrev & Perez 2012; Wan et al. 2012, 2016; TenBarge &
Howes 2013; Chen et al. 2015; Cerri & Califano 2017; Franci
et al. 2017), although those turbulent structures (and generally
turbulence at kinetic scales) are relatively less understood than
their Alfvénic counterpart. If we may assume that, similarly to
the Alfvénic case, the dynamics at subproton scales are
governed by the fastest growing tearing modes, the reconnec-
tion-dominated turbulence should have the same scaling
E(k)∝k−8/3 to E(k)∝k−3 that we have derived for the
Alfvénic case.

Interestingly, the predicted spectral scaling is very close to
the spectrum of turbulence ≈−2.8 measured in the β∼1 solar
wind plasma below the ion-cyclotron scale (e.g., Alexandrova
et al. 2009; Kiyani et al. 2009; Chen et al. 2010a, 2012;
Sahraoui et al. 2013). We should caution that the close
proximity of the reconnection-mediated spectra of turbulence to
the spectra derived from qualitatively different turbulence
models (related to cascades of the kinetic-Alfvén or, possibly,
whistler waves (Howes et al. 2008; Schekochihin et al. 2009;
Chen et al. 2010b; Boldyrev & Perez 2012)), may not allow
one to discern what physical mechanism is dominant based
solely on the measurements of the spectral exponents.
Numerical simulations and observations, however, offer

increasing evidence that current sheets are important dynamic
players in turbulence at both MHD and kinetic scales. It thus
seems conceivable to suppose that their presence affects the
spectral properties of turbulence; this paper presents the first
theoretical analysis of how they may do so.
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