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First Observation of a Baryonic Bþ
c Decay

R. Aaij et al.*

(LHCb Collaboration)
(Received 6 August 2014; published 10 October 2014)

A baryonic decay of the Bþ
c meson, Bþ

c → J=ψpp̄πþ, is observed for the first time, with a significance
of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding
to an integrated luminosity of 3.0 fb−1 taken at center-of-mass energies of 7 and 8 TeV. With the
Bþ
c → J=ψπþ decay as the normalization channel, the ratio of branching fractions is measured to be

BðBþ
c → J=ψpp̄πþÞ=BðBþ

c → J=ψπþÞ ¼ 0.143þ0.039
−0.034 ðstatÞ � 0.013ðsystÞ. The mass of the Bþ

c meson is
determined as MðBþ

c Þ ¼ 6274.0� 1.8ðstatÞ � 0.4ðsystÞ MeV=c2, using the Bþ
c → J=ψpp̄πþ channel.

DOI: 10.1103/PhysRevLett.113.152003 PACS numbers: 14.40.Nd, 12.39.St, 13.25.Hw

The Bþ
c meson is the ground state of the b̄c system and is

the only doubly heavy flavored meson that decays weakly
(the inclusion of charge conjugated processes is implied
throughout this Letter). A large number of Bþ

c decay modes
are expected, since either the b̄ quark or the c quark can
decay, with the other quark acting as a spectator, or the two
quarks can annihilate into a virtual Wþ boson. The Bþ

c
meson was first observed by CDF through the semileptonic
decay Bþ

c → J=ψlþνlX [1], and the hadronic decay Bþ
c →

J=ψπþ was observed later by CDF and D0 [2,3]. Many
more hadronic decay channels of the Bþ

c meson have been
observed by LHCb [4–10]. At LHCb, the Bþ

c mass was
measured in the Bþ

c → J=ψπþ [11] and Bþ
c → J=ψDþ

s [7]
decays, and its lifetime has been determined using the
Bþ
c → J=ψμþνμX decay [12]. However, baryonic decays of

Bþ
c mesons have not been observed to date. Baryonic

decays of Bmesons provide good opportunities to study the
mechanism of baryon production and to search for excited
baryon resonances [13–15]. The observation of intriguing
behavior in the baryonic decays of the B0 and Bþ mesons,
e.g., the enhancements of the rate of multibody decays and
the production of baryon pairs of low mass [16–22], has
further motivated this study.
This Letter presents the first observation of a baryonic

Bþ
c decay, Bþ

c → J=ψpp̄πþ, and the measurement of its
branching fraction with respect to the channel
Bþ
c → J=ψπþ. The mass of the Bþ

c meson is also deter-
mined using the Bþ

c → J=ψpp̄πþ channel. Owing to the
small energy release (Q value) of this channel, the
systematic uncertainty of the measured Bþ

c mass is small
compared to the Bþ

c → J=ψπþ channel.
The data used in this analysis are from pp collisions

recorded by the LHCb experiment, corresponding to an

integrated luminosity of 1.0 fb−1 at a center-of-mass energy
of 7 TeVand 2.0 fb−1 at 8 TeV. The LHCb detector [23] is a
single-arm forward spectrometer covering the pseudora-
pidity range 2 < η < 5, designed for the study of particles
containing b or c quarks. The detector includes a high-
precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region, a
large-area silicon-strip detector located upstream of a
dipole magnet with a bending power of about 4 Tm, and
three stations of silicon-strip detectors and straw drift tubes
placed downstream [24]. The combined tracking system
provides a momentum measurement with relative uncer-
tainty varying from 0.4% at low momentum to 0.6% at
100 GeV=c, and impact parameter resolution of 20 μm for
tracks with large transverse momentum (pT). Different
types of charged hadrons are distinguished using informa-
tion from two ring-imaging Cherenkov detectors [25].
Photon, electron, and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers [26]. The trigger [27] consists of
a hardware stage, based on information from the calorim-
eter and muon systems, followed by a software stage,
which applies a full event reconstruction. In this analysis,
J=ψ candidates are reconstructed in the dimuon decay
channel, and only trigger information related to the final
state muons is considered. Events are selected by the
hardware triggers requiring a single muon with pT >
1.48 GeV=c or a muon pair with product of transverse
momenta greater than ð1.3 GeV=cÞ2. At the first stage of
the software trigger, events are selected that contain two
muon tracks with pT > 0.5 GeV=c and invariant mass
Mðμþμ−Þ > 2.7 GeV=c2, or a single muon track with
pT > 1 GeV=c and χ2 of the impact parameter (χ2IP) greater
than 16 with respect to any primary vertices. The quantity
χ2IP is the difference between the χ2 values of a given
primary vertex reconstructed with and without the
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considered track. The second stage of the software trigger
selects a muon pair with an invariant mass that is consistent
with the known J=ψ mass [28], with the effective decay
length significance of the reconstructed J=ψ candidate, SL,
greater than 3, where SL is the distance between the J=ψ
vertex and the primary vertex divided by its uncertainty.
The off-line analysis uses a preselection, followed by a

multivariate selection based on a boosted decision tree
(BDT) [29,30]. In the preselection, the invariant mass of
the J=ψ candidate is required to be in the interval
½3020; 3135� MeV=c2. The J=ψ candidates are selected
by requiring the χ2 per degree of freedom, χ2=ndf, of the
vertex fit to be less than 20. The muons are required to have
χ2IP > 4 with respect to any reconstructed pp vertex, to
suppress the J=ψ candidates produced promptly in pp
collisions. The decay Bþ

c → J=ψπþ (Bþ
c → J=ψpp̄πþ)

is reconstructed by combining a J=ψ candidate with
one (three) charged track(s) under πþ (p, p̄, and πþ)
mass hypothesis. The requirements χ2IP > 4 and
pT > 0.1 GeV=c, are applied to these hadron tracks.
Particle identification (PID) is performed using dedicated
neural networks, which use the information from all the
subdetectors. Well-identified pions are selected by a tight
requirement on the value of the PID discriminant Pπ. A
loose requirement is applied to the PID discriminants of
protons and antiprotons, Pp, Pp̄, followed by the optimi-
zation described below. To improve the PID performance,
the momenta of protons and antiprotons are required to be
greater than 10 GeV=c [25]. The Bþ

c candidate is required to
have vertex fit χ2=ndf < 6, pT > 2 GeV=c, χ2IP < 16 with
respect to at least one reconstructed pp collision and decay-
time significance larger than 9 with respect to the vertex with
the smallest χ2IP. To improve the mass and decay-time
resolutions, a kinematic fit [31] is applied to the Bþ

c decay,
constraining the mass of the J=ψ candidate to the current
best world average [28] and the momentum of the Bþ

c
candidate to point back to the primary vertex.
The BDT is trained with a simulated sample, where Bþ

c
candidates are generated with BCVEGPY [32], interfaced to
PYTHIA6 [33], using a specific LHCb configuration [34].
Decays of hadronic particles are described by EVTGEN

[35], in which final-state radiation (FSR) is generated using
PHOTOS [36]. The interaction of the generated particles
with the detector and its response are implemented using
the GEANT4 toolkit [37,38] as described in Ref. [39]. For
the background, candidates in the invariant mass sidebands
of the preselected Bþ

c data sample are used. The BDT input
variables are pT , χ2IP, SL of the Bþ

c candidate, χ2=ndf of its
vertex fit, the quality of the constrained kinematic fit of the
decay chain, and pT , χ2IP of the hadrons. For the Bþ

c →
J=ψpp̄πþ candidates, the selection criteria are fixed by
optimizing the BDT discriminant and the product of two
proton PID discriminants, Pp × Pp̄, at the same time. The
selections on BDT discriminant and the combined PID
discriminant are chosen to maximize the figure of merit,

aiming for a signal significance of 3 standard deviations,
ϵ=ð3=2þ ffiffiffiffi

B
p Þ [40], where ϵ is the signal efficiency

determined using simulated events and B is the number
of expected background candidates estimated using side-
band events in the data. For the Bþ

c → J=ψπþ decay, the
BDT discriminant is selected to maximize the signal
significance S=

ffiffiffiffiffiffiffiffiffiffiffiffi

Sþ B
p

, where S and B are the expected
signal and background yields, estimated from simulated
events and sideband data, respectively.
Figure 1 shows the invariant mass distributions of the

Bþ
c → J=ψpp̄πþ and Bþ

c → J=ψπþ candidates after all
selections, together with the results of unbinned extended
maximum likelihood fits. For both decays, the signal shape
is modeled with a modified Gaussian distribution with
power-law tails on both sides, with the tail parameters fixed
from simulation. The combinatorial background is described
by a linear function. The Bþ

c → J=ψπþ channel is affected
by a peaking background from the Bþ

c → J=ψKþ decay
where the kaon is misidentified as a pion. The shape of this
component is taken from the simulation and its yield, relative
to the Bþ

c → J=ψπþ decay, is fixed to the ratio of their
branching fractions, 0.069� 0.019 [5], corrected by their
relative efficiency. The invariant mass resolution for the
Bþ
c → J=ψπþ decay is determined to be 13.0� 0.3

MeV=c2, which is the width of the core of the modified
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FIG. 1 (color online). Invariant mass distribution for (top)
Bþ
c → J=ψpp̄πþ and (bottom) Bþ

c → J=ψπþ candidates. The
superimposed curves show the fitted contributions from signal
(dashed), combinatorial background (dotted), misidentification
background (dot-dashed), and their sum (solid).
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Gaussian, and the value in the simulated sample is
11.69� 0.06 MeV=c2. In the fit to the Bþ

c → J=ψpp̄πþ
invariant mass distribution, the signal resolution is fixed to
6.40 MeV=c2, which is the measured resolution of Bþ

c →
J=ψπþ decay in data scaled with their ratio in simulation,
0.492� 0.005ðstatÞ. The observed signal yields are 23.9�
5.3 (2835� 58) for the Bþ

c → J=ψpp̄πþ (Bþ
c → J=ψπþ)

decay, where the uncertainties are statistical. The signifi-
cance of the decay Bþ

c → J=ψpp̄πþ is 7.3σ, determined
from the likelihood ratio of the fits with background
only and with signal plus background hypotheses, taking
into account the systematic uncertainty due to the fit
functions [41].
From the fit to the Bþ

c invariant mass distribution in the
Bþ
c → J=ψpp̄πþ decay, the mass of the Bþ

c meson is found
to be 6273.8� 1.8 MeV=c2. Table I summarizes the sys-
tematic uncertainties of theBþ

c mass measurement, which are
dominated by the momentum scale calibration. The align-
ment of the LHCb tracking system is performedwith samples
of prompt D0 → K−πþ decays, and the momentum is
calibrated using Kþ from Bþ → J=ψKþ decays, and vali-
dated using a variety of known resonances. The uncertainty
of themomentum scale calibration is 0.03% [42], which is the
difference between momentum scale factors determined
using different resonances. This effect is studied by changing
the momentum scale by 1 standard deviation and repeating
the analysis, taking the variation of the reconstructed mass as
a systematic uncertainty. The amount of material traversed by
a charged particle in the tracking system is known with an
uncertainty of 10%, and the systematic effect of this
uncertainty on the Bþ

c mass measurement is studied by
varying the energy loss correction by 10% in the
reconstruction [43]. Since only charged tracks are recon-
structed, the Bþ

c mass is underestimated due to FSR by
0.20� 0.03 MeV=c2, as determined with a simulated sam-
ple. Therefore, the measured mass is corrected by 0.20 and
0.03 MeV=c2 is assigned as a systematic uncertainty. The
contribution from the fit model is studied by using alternative
fit functions for the signal and background, by using different
fit invariant mass ranges or by changing the estimated mass
resolution within its uncertainty. The total systematic
uncertainty of the mass measurement is 0.42 MeV=c2.
After the correction for FSR, the mass of the Bþ

c meson is
determined to be 6274.0� 1.8ðstatÞ � 0.4ðsystÞ MeV=c2.

A combination of this result with previous LHCb measure-
ments [7,11] gives 6274.7� 0.9ðstatÞ � 0.8ðsystÞ MeV=c2.
In the combination of the mass measurements, the total
uncorrelated uncertainties, including the statistical uncer-
tainty and the systematic uncertainties due to the mass fit
model and FSR, are used as the weights.
In the branching fraction measurement of the decay

Bþ
c → J=ψpp̄πþ, to account for any difference between

data and simulation, the PID efficiency is calibrated using
control data samples. To allow easy calibration of the PID
efficiency, the selection on the individual PID discrimi-
nants, Pp and Pp̄, is applied instead of their product. The
same cut value is applied to the two PID variables, and this
cut value is optimized simultaneously with the BDT
discriminant, maximizing the same figure of merit. With
the new selection criteria, used to determine the branching
fraction, the signal yield of the Bþ

c → J=ψpp̄πþ decay is
19.3þ5.3

−4.6ðstatÞ. The ratio of yields between the Bþ
c →

J=ψpp̄πþ and Bþ
c → J=ψπþ modes is determined to

be rN ¼ 0.0068þ0.0019
−0.0016ðstatÞ.

The ratio of branching fractions is calculated as

BðBþ
c → J=ψpp̄πþÞ

BðBþ
c → J=ψπþÞ ¼ rN

rϵ
;

where rϵ ≡ ϵðBþ
c → J=ψpp̄πþÞ=ϵðBþ

c → J=ψπþÞ is the
ratio of the total efficiencies. The geometrical acceptance,
reconstruction, selection and trigger efficiencies are deter-
mined from simulated samples for both channels. The
central value of the Bþ

c lifetime measured by LHCb, 509�
8ðstatÞ � 12ðsystÞ fs [12], is used in the simulation. The
PID efficiency for each track is measured in data in bins of
momentum p, pseudorapidity η of the track, and track
multiplicity of the event ntrk. The PID efficiency for pions is
determined with πþ from D�-tagged D0 → K−πþ decays.
Similarly, the PID efficiency for protons is determined
using protons from Λþ

c → pK−πþ decays. These efficien-
cies are assigned to the simulated candidate according to p
and η of the final state hadron tracks, and ntrk of the event.
The distribution of ntrk in simulation is reweighted to match
that in data. The overall ratio of efficiencies, rϵ, is found to
be ð4.76� 0.06Þ%, where the uncertainty is statistical.
The systematic uncertainties for the branching fraction

measurement are summarized in Table II. For the signal
yields, the systematic uncertainty is obtained by varying the
invariant mass fit functions of the two modes. The effect of
geometrical acceptance is evaluated by comparing the
efficiencies obtained from samples simulated with different
data taking conditions. The systematic uncertainty due to
the trigger requirement is studied by comparing the trigger
efficiency in data and simulated samples, using a large J=ψ
sample [7,44]. The impact of the uncertainty of the Bþ

c
lifetime is evaluated from the variation of the relative
efficiency when the Bþ

c lifetime is changed by 1 standard
deviation of the LHCb measurement [12]. The systematic

TABLE I. Systematic uncertainties for the Bþ
c mass measure-

ment.

Source Value (MeV=c2)

Momentum scale 0.40
Energy loss 0.05
Final state radiation 0.03
Fit model 0.10
Total 0.42
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uncertainty associated with the reconstruction efficiency of
the two additional hadron tracks, p and p̄, in the Bþ

c →
J=ψpp̄πþ mode compared to the Bþ

c → J=ψπþ mode, is
also studied, considering the uncertainty due to the had-
ronic interaction probability, the track finding efficiency,
and the efficiency of the track quality requirements [7].
Different assumptions for the pion PID efficiency in the
kinematic regions where no calibration efficiency is avail-
able introduce a systematic uncertainty. For the protons, the
systematic uncertainty from PID selection takes into
account the uncertainties in the single-track efficiencies,
the binning scheme in (p, η, ntrk) intervals and the
uncertainty of the track multiplicity distribution. Another
systematic uncertainty is related to the unknown decay
model of the mode Bþ

c → J=ψpp̄πþ. The simulated sample
is generated according to a uniform phase-space decay
model. Figure 2 shows the one-dimensional invariant mass
distributions of Mðpp̄Þ and MðpπþÞ for data, with back-
ground subtracted using the sPlot method [45]. Figure 2
also shows the distributions for simulated events, which
agree with those in data within the large statistical uncer-
tainties. The efficiency calculated using the observed
distribution in data relative to the efficiency determined
using the simulated decay model is 0.949� 0.067, where
the uncertainty is statistical. Since the value is consistent

with unity within the uncertainty, no correction to the
efficiency is made and a systematic uncertainty of
6.7% is assigned. The total systematic uncertainty asso-
ciated with the relative branching fraction measurement
is 8.9%.
As a result, the ratio of branching fractions is measured

to be

BðBþ
c → J=ψpp̄πþÞ

BðBþ
c → J=ψπþÞ ¼ 0.143þ0.039

−0.034ðstatÞ � 0.013ðsystÞ;

which is consistent with the expectation from the spectator
decay model assuming factorization [46] BðBþ

c → J=
ψpp̄πþÞ=BðBþ

c → J=ψπþÞ∼BðB0 →D�−pp̄πþÞ=BðB0 →
D�−πþÞ ¼ 0.17� 0.02. The branching fractions for B0 →
D�−pp̄πþ and B0 → D�−πþ decays are taken from
Ref. [28].
In conclusion, the decay Bþ

c → J=ψpp̄πþ is observed
with a significance of 7.3 standard deviations, using a data
sample corresponding to an integrated luminosity of
3.0 fb−1 collected by the LHCb experiment. This is the
first observation of a baryonic decay of the Bþ

c meson. The
branching fraction of this decay relative to that of the Bþ

c →
J=ψπþ decay is measured. The mass of the Bþ

c meson is
measured to be 6274.0� 1.8ðstatÞ � 0.4ðsystÞ MeV=c2.
In combination with previous results by LHCb [7,11],
the Bþ

c mass is determined to be 6274.7� 0.9ðstatÞ�
0.8ðsystÞ MeV=c2.
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FIG. 2 (color online). Invariant mass distributions of (left)
Mðpp̄Þ and (right) MðpπþÞ for data (dots) and simulation (solid)
using the uniform phase-space model, for Bþ

c → J=ψpp̄πþ decay.

TABLE II. Systematic uncertainties (in percent) for the relative
branching fraction measurement.

Source Value (%)

Fit model 2.0
Acceptance 0.7
Trigger 1.1
Lifetime 1.1
Reconstruction of p, p̄ 2 × 2.3
Pion PID 1.1
Proton PID 2.4
Decay model 6.7
Total 8.9
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